WO2018225782A1 - 量子ドット含有硬化性組成物、量子ドット含有硬化物、光学部材の製造方法、及び表示装置の製造方法 - Google Patents

量子ドット含有硬化性組成物、量子ドット含有硬化物、光学部材の製造方法、及び表示装置の製造方法 Download PDF

Info

Publication number
WO2018225782A1
WO2018225782A1 PCT/JP2018/021692 JP2018021692W WO2018225782A1 WO 2018225782 A1 WO2018225782 A1 WO 2018225782A1 JP 2018021692 W JP2018021692 W JP 2018021692W WO 2018225782 A1 WO2018225782 A1 WO 2018225782A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
solvent
curable composition
mass
meth
Prior art date
Application number
PCT/JP2018/021692
Other languages
English (en)
French (fr)
Inventor
中村 和彦
崇 岩澤
琢実 鈴木
山縣 秀明
義之 平岩
Original Assignee
株式会社Dnpファインケミカル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Dnpファインケミカル filed Critical 株式会社Dnpファインケミカル
Priority to JP2019523942A priority Critical patent/JP7216642B2/ja
Priority to CN201880037151.0A priority patent/CN110709736A/zh
Publication of WO2018225782A1 publication Critical patent/WO2018225782A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a quantum dot-containing curable composition, a quantum dot-containing cured product, a method for producing an optical member, and a method for producing a display device.
  • quantum dots which have been attracting attention as light emitting materials, are semiconductor nanometer-sized fine particles (semiconductor nanocrystals), and electrons and excitons are confined in small nanometer-sized crystals. Due to the confinement effect (quantum size effect), it exhibits specific optical and electrical properties and is expected to be used in a wide range of fields.
  • the wavelength of light emitted from the quantum dots depends on the particle size of the quantum dots, and light of various wavelengths can be obtained by controlling the particle size.
  • the light emission of the quantum dots is excellent in color purity because of its narrow spectral width.
  • the layer containing quantum dots can be formed by a wet method in which a dispersion liquid in which the quantum dots are dispersed is applied, or a dry method in which a quantum dot raw material is formed into a film by vapor deposition or sputtering. From the viewpoints of process simplicity and smoothness of the resulting layer, wet methods tend to be employed.
  • Patent Document 1 describes that a layer including quantum dots is formed on a substrate surface by screen printing, contact printing, ink jet printing, or the like.
  • a quantum dot tends to aggregate in a dispersion liquid. Since the emission color of a quantum dot depends on its size, if the quantum dot agglomerates and its crystal structure changes, it may cause a change in the emission color and further quenching, which greatly reduces the emission characteristics. One of the causes. Further, in order to spray ink in accordance with an accurate pattern by an ink jet method, straightness and stability when ejected from the ejection head are required. However, when the quantum dot-containing layer is formed by the ink jet method, there is a problem that clogging of the ink jet head is likely to occur due to aggregation of the quantum dots.
  • the ink layer formed by the inkjet method may have radial unevenness on the surface. If unevenness occurs on the surface of the quantum dot-containing layer, unevenness may occur in the emission color.
  • the present invention has been achieved in view of the above-mentioned actual situation, and includes quantum dots that are excellent in ejection stability in an ink jet system, can suppress the aggregation of quantum dots, and can form a quantum dot-containing cured layer with reduced unevenness.
  • An object is to provide a curable composition.
  • an object of this invention is to provide the quantum dot containing hardened
  • this invention aims at providing the manufacturing method of an optical member which has the quantum dot containing hardening layer by which the nonuniformity formed using the said quantum dot containing curable composition was reduced.
  • this invention aims at providing the manufacturing method of a display apparatus using the manufacturing method of the said optical member.
  • the quantum dot-containing curable composition according to the present invention contains a curable binder component, quantum dots, and a solvent
  • the solvent contains a solvent component having a boiling point of 165 ° C. or more and 260 ° C. or less as the first solvent, and further contains a solvent component having a boiling point of 100 ° C. or more and less than 165 ° C. as the second solvent.
  • the quantum dot-containing cured product according to the present invention is a cured product of the quantum dot-containing curable composition according to the present invention.
  • the method for producing an optical member according to the present invention includes a step of forming a quantum dot-containing layer by selectively adhering the quantum dot-containing curable composition according to the present invention to a predetermined region on a substrate by an ink jet method. , Curing the quantum dot-containing layer to form a quantum dot-containing cured layer; Have
  • a method for manufacturing a display device includes a step of manufacturing an optical member by the method for manufacturing an optical member according to the present invention, Mounting the manufactured optical member.
  • the present invention it is possible to provide a quantum dot-containing curable composition that can form a quantum dot-containing cured layer that is excellent in ejection stability in an ink jet method, suppresses aggregation of quantum dots, and has reduced unevenness. it can.
  • cured material with which the nonuniformity formed using the said quantum dot containing curable composition was reduced can be provided.
  • the manufacturing method of an optical member which has a quantum dot containing hardening layer by which the nonuniformity formed using the said quantum dot containing curable composition was reduced can be provided.
  • the manufacturing method of a display apparatus using the manufacturing method of the said optical member can be provided.
  • light includes electromagnetic waves having wavelengths in the visible and invisible regions, and further includes radiation, and the radiation includes, for example, microwaves and electron beams. Specifically, it means an electromagnetic wave having a wavelength of 5 ⁇ m or less and an electron beam.
  • (meth) acryloyl represents each of acryloyl and methacryloyl
  • (meth) acryl represents each of acryl and methacryl
  • (meth) acrylate represents each of acrylate and methacrylate.
  • the quantum dot-containing curable composition according to the present invention contains a curable binder component, quantum dots, and a solvent,
  • the solvent contains a solvent component having a boiling point of 165 ° C. or more and 260 ° C. or less as the first solvent, and further contains a solvent component having a boiling point of 100 ° C. or more and less than 165 ° C. as the second solvent.
  • the quantum dot-containing curable composition according to the present invention is a composition suitable for forming a layer containing quantum dots such as a light-emitting layer and a light conversion layer of an optical member by an inkjet method, and is used for inkjet. It can be preferably used.
  • the quantum dot containing curable composition which concerns on this invention uses the solvent which combines the 1st solvent whose boiling point is 165 degreeC or more and 260 degrees C or less, and the 2nd solvent whose boiling point is 100 degreeC or more and less than 165 degreeC. Further, aggregation of quantum dots in the quantum dot-containing curable composition can be suppressed and dispersibility can be improved. This is presumed to be because the solvent composition in the ink, particularly in the ink jet apparatus, has high stability, the aggregation of quantum dots can be suppressed, and the dispersibility can be maintained.
  • the quantum dot containing hardening layer by which aggregation of the quantum dot was suppressed can be formed by using the quantum dot containing curable composition which concerns on this invention.
  • the quantum dot-containing curable composition according to the present invention is excellent in dispersibility of quantum dots as described above, so that the quantum dots can be uniformly dispersed, and a curable binder component is used as a binder component. Therefore, when the curable composition containing quantum dots according to the present invention is cured, the curable binder component forms a cross-linked structure and fixes the quantum dots while maintaining the state in which the quantum dots are uniformly dispersed. Conceivable.
  • the quantum dot-containing curable composition according to the present invention is excellent in ejection stability in an ink jet system by using a solvent containing a combination of the specific first solvent and the specific second solvent, A quantum dot-containing cured layer with reduced unevenness can be formed.
  • Quantum dot-containing curable composition according to the present invention since the specific first solvent having a moderately slow drying rate suppresses rapid drying of the quantum dot-containing curable composition, the quantum dot-containing curing from the discharge head It is considered that excellent discharge stability is achieved by improving the straightness and stability when discharging the functional composition and suppressing clogging of the discharge head.
  • the quantum dot-containing curable composition according to the present invention it is possible to form a quantum dot-containing cured layer with reduced unevenness using the quantum dot-containing curable composition according to the present invention by using the specific first solvent and the specific second solvent.
  • the specific first solvent and the specific second solvent By containing in combination, because it has an appropriate drying speed, in the drying process when forming the quantum dot-containing layer, the flow of solute is suppressed, and the occurrence of radial unevenness on the coating surface is suppressed, It is also presumed that the occurrence of unevenness due to the aggregation of quantum dots is suppressed.
  • each component used for the quantum dot containing curable composition concerning this invention is demonstrated in an order from a solvent.
  • the quantum dot-containing curable composition according to the present invention may be referred to as ink.
  • the solvent used in the quantum dot-containing curable composition according to the present invention contains a solvent component having a boiling point of 165 ° C. or higher and 260 ° C. or lower as the first solvent, and further has a boiling point of 100 ° C. or higher and 165 ° C. as the second solvent. It contains less than less solvent components. Since the solvent component having a boiling point of 165 ° C. or more and 260 ° C. or less has an appropriate drying property, the quantum dot-containing curable composition according to the present invention containing such a solvent component as the first solvent is intermittent.
  • the quantum dot-containing curable composition according to the present invention has an optimum drying rate by combining an appropriate amount of a solvent component having a boiling point of 100 ° C. or more and less than 165 ° C. as a second solvent in addition to the above-mentioned specific first solvent. And aggregation of quantum dots can be suppressed. Although it does not dry rapidly at the nozzle tip of the ink jet head, it is possible to prevent the solute from flowing because the drying speed is moderately high when the coating film of the quantum dot-containing curable composition is dried. Therefore, after being ejected onto the substrate, it can be sufficiently leveled by being familiar with the surface of the substrate and then properly dried in a relatively short time by a suitable drying means. Therefore, when the quantum dot-containing curable composition of the present invention is used, a highly uniform pattern with reduced unevenness can be obtained and dried efficiently.
  • the solvent component used as the first solvent may be one kind or a mixed solvent of two or more kinds as long as it has the above boiling point.
  • the ratio of the first solvent in the total amount of the solvent in the quantum dot-containing curable composition according to the present invention is not particularly limited, but it is easy to obtain a drying property suitable for an ink jet method, It is preferably 30% by mass or more from the viewpoint of improving intermittent discharge stability, more preferably 40% by mass or more from the viewpoint of further improving initial dischargeability, and further improving intermittent discharge stability. From the point of view, it is more preferably 50% by mass or more.
  • the proportion of the first solvent in the total amount of the solvent in the quantum dot-containing curable composition according to the present invention can sufficiently contain the second solvent, and optimize the drying speed of the composition From the point that can be performed, it is preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less, and particularly preferably 65% by mass or less. .
  • the surface tension of the first solvent at 23 ° C. is preferably 24 mN / m or more from the viewpoint that the outflow of the quantum dot-containing curable composition can be suppressed during patterning.
  • said 1st solvent is 2 or more types of mixed solvents, it is preferable to have the said surface tension as the whole mixed solvent.
  • an ink-philic region is formed in a portion where the quantum dot-containing layer is to be formed on the substrate, and the present invention is applied to the ink-philic region by an inkjet method.
  • the standard solution shown in the wettability test specified in JIS K6768 was used as the first solvent, and after 30 seconds from contact with the droplets The contact angle ( ⁇ ) is measured, and the contact angle with respect to the surface of the test piece having a critical surface tension of 30 mN / m determined from the Zisman plot graph is 25 ° or more, preferably 30 ° or more, and the same measurement method You may select and use what the contact angle with respect to the surface of the test piece whose critical surface tension calculated
  • the first solvent is a mixed solvent of two or more kinds, it is preferable that the mixed solvent has the above contact angle as a whole.
  • the composition When a quantum dot-containing curable composition is prepared using a solvent exhibiting the above behavior with respect to wettability, the composition is applied to the surface of the wettability variable layer before changing the wettability of the wettability variable layer described later. It shows a large rebound, and after changing the wettability of the wettability variable layer in the direction of increasing hydrophilicity, it shows a great affinity for the surface of the wettability variable layer. Therefore, the wettability of the quantum dot-containing curable composition with respect to the ink-philic region formed by selectively exposing a part of the surface of the wettability variable layer and the wettability of the ink-repellent region with respect to the surrounding region. The difference can be made large, and the ink sprayed onto the ink-philic region by the ink jet method can be spread evenly to every corner of the ink-philic region.
  • test piece having the above characteristics with respect to the critical surface tension may be formed of any material.
  • test pieces having a critical surface tension of 30 mN / m include, for example, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyethylene terephthalate having a smooth surface, and the polymer or surface modifier applied on a smooth glass surface.
  • the above test can be actually performed from among those, and the corresponding one can be selected.
  • the said test is actually performed from what apply
  • Examples of the first solvent include glycol ethers, glycol ether esters, aliphatic carboxylic acids, aliphatic esters, aromatic esters, dicarboxylic acid diesters, alkoxycarboxylic acid esters, ketocarboxylic acid esters, halogens, among others.
  • Carboxylic acids alcohols, phenols, aliphatic ethers, alkoxy alcohols, glycol oligomers, amino alcohols, alkoxy alcohol esters, ketones, morpholines, aliphatic amines, aromatic amines, halogenated
  • One or more selected from the group consisting of aromatic hydrocarbons and alkanes is preferable from the viewpoint of suppressing aggregation of quantum dots and ejection stability in the ink jet system.
  • the first solvent can be selected from, for example, the following solvents: ethylene glycol monohexyl ether, diethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monoethyl ether Glycol ethers such as propylene glycol monobutyl ether, diethylene glycol methyl ethyl ether, dipropylene glycol dimethyl ether; glycol ether esters such as ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate; 2-ethylhexane Aliphatic carboxylic acids such as acids; fats such as cyclohexyl acetate Aromatic esters such as propyl benzoate; dicarboxylic acid diesters such as diethyl carbonate; alkoxycarboxylic acid esters such as methyl 3-methoxypropionate and ethyl 3-ethoxy
  • 3-methoxy-3-methyl-1-butanol, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate are particularly preferred from the viewpoint of dispersibility of quantum dots and ejection stability in the ink jet system.
  • the first solvent preferably has no hydroxyl group from the viewpoint of improving the storage stability of the quantum dot-containing curable composition, and particularly used in combination with a blocked carboxylic acid curing agent described later. In this case, it is preferable from the viewpoint of improving storage stability.
  • the second solvent is a solvent component having a boiling point of 100 ° C. or higher and lower than 165 ° C., and has a boiling point appropriately lower than that of the first solvent. Therefore, by combining the second solvent with the first solvent, the nozzle tip of the ink jet head does not dry rapidly, but the solute is prevented from flowing when the quantum dot-containing layer is dried, and the drying speed is adjusted appropriately. It becomes possible to do.
  • the solvent component used as the second solvent may be used alone or in combination of two or more as long as it has the above boiling point.
  • the boiling point of each solvent component used for the second solvent is preferably 105 ° C. or more and 160 ° C. or less, and particularly 110 ° C. or more and 150 ° C. or less improves the dispersibility of the quantum dots, This is preferable because a good coating film with reduced unevenness is easily obtained.
  • the proportion of the second solvent in the total amount of the solvent in the quantum dot-containing curable composition according to the present invention is not particularly limited, but improves the dispersibility of the quantum dots and suppresses unevenness of the quantum dot-containing cured layer.
  • it is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, particularly preferably 35% by mass or more
  • the first solvent can be sufficiently contained and the ink jet discharge property can be improved, it is preferably 70% by mass or less, more preferably 60% by mass or less, and 50% by mass or less. It is even more preferable.
  • the viscosity of the second solvent at 23 ° C. is preferably 0.5 to 6 mPa ⁇ s.
  • the viscosity of the quantum dot-containing curable composition can be appropriately reduced without hindering the effect of the first solvent, and the ink itself
  • the landed ink droplets are easily wetted and spread to every corner of the entire quantum dot-containing layer formation region.
  • the landed ink can spread evenly to the narrow portion of the partition wall, and to prevent color loss and luminance reduction of the pixels.
  • the viscosity of the second solvent at 23 ° C. is preferably 0.5 to 3 mPa ⁇ s.
  • the viscosity at 23 ° C. in the present invention can be measured by a rotational vibration type viscometer (for example, a rotational vibration type viscometer Viscomate VM-1G manufactured by Yamaichi Electronics Co., Ltd.).
  • the surface tension of the second solvent at 23 ° C. can be suitably used as long as it is 35 mN / m or less.
  • the surface tension of the second solvent at 23 ° C. is 30 mN / m or less, the surface tension can be appropriately reduced without hindering the effect of the first solvent, and the ink itself Therefore, the landed ink droplets easily spread to every corner of the entire quantum dot-containing layer formation region.
  • the surface tension at 23 ° C. in the present invention can be measured by a surface tension meter (Wilhelmi method) (for example, an automatic surface tension meter CBVP-Z manufactured by Kyowa Interface Science Co., Ltd.).
  • the second solvent includes glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, propylene glycol monopropyl ether, diethylene glycol dimethyl ether, and ethylene glycol monomethyl ether.
  • glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, propylene glycol monopropyl ether, diethylene glycol dimethyl ether, and ethylene glycol monomethyl ether.
  • Glycol esters including glycol ether esters such as acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and carboxylic acids such as isobutyric acid, propionic acid, butyric acid; Ethyl herbate, hexyl formate, amyl acetate, isoamyl acetate, ethyl lactate, methyl lactate, propylene Aliphatic esters such as isoamyl acid, butyl propionate, butyl butyrate, dimethyl oxalate; aliphatic carboxylic acids such as acetic acid and acetic anhydride and their acid anhydrides; n-amyl alcohol, isoamyl alcohol, 2-ethylbutanol , Alcohols such as 1-butanol, n-hexanol, 4-methyl-2-pentanol, cycl
  • the second solvent examples include ethers including polyhydric alcohol ethers such as glycol ethers and glycerin ethers, polyhydric alcohol esters such as glycol esters and glycerin esters, aliphatic esters, alkoxy It is preferable from the point of the dispersibility of a quantum dot to use 1 or more types selected from the group which consists of carboxylic acid esters and ester containing ketocarboxylic acid esters. In the case of using esters and ethers as described above, there is an advantage that it is easy to maintain good ink stability even when a highly reactive resin is used for the binder component or the like.
  • glycol ethers or glycol esters when glycol ethers or glycol esters are used, the wettability with respect to the glass substrate is improved, and it becomes easy to wet and spread to every corner of the entire quantum dot-containing layer formation region, which is effective in preventing color loss of pixels. It is.
  • ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, propylene glycol monoethyl are particularly preferable from the viewpoint of dispersibility of quantum dots and ejection stability in the ink jet system.
  • Ether propylene glycol monopropyl ether, diethylene glycol dimethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, hexyl formate, ethyl lactate, isoamyl propionate, butyl propionate, butyl butyrate, dimethyl oxalate 1-butanol, 1,4-dioxane, octane, nonane, toluene, xyle
  • One or more solvents selected from the group consisting of ethylbenzene and anisole are preferably used, and from the viewpoint of improving the dispersibility of the quantum dots, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl More preferably, it is at least one selected from the group consisting of ether acetate, toluene,
  • ethylene glycol monomethyl ether acetate ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, And at least one selected from the group consisting of propylene glycol monomethyl ether acetate.
  • ethylene glycol monobutyl ether acetate diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate
  • the first solvent which is one or more selected from the group consisting of -methoxy-3-methylbutyl acetate, ethyl 3-ethoxypropionate, and 3-methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl
  • ether acetate ethylene glycol monopropyl ether acetate, toluene, and propylene glycol monomethyl ether acetate
  • the combination of a serial second solvents are preferred.
  • the solvent used in the quantum dot-containing curable composition according to the present invention is different from the first solvent and the second solvent in the range not impairing the effects of the present invention, and other solvents having a boiling point of less than 100 ° C. Further, it may be included.
  • the proportion of the other solvent in the total amount of the solvent used in the quantum dot-containing curable composition according to the present invention is preferably 30% by mass or less, more preferably 10% by mass or less, and more preferably 5% by mass. More preferably, it is more preferably 2% by mass or less, and particularly preferably 0.5% by mass or less.
  • the total content of the solvent including the first solvent and the second solvent is not particularly limited, but from the point of dispersibility of the quantum dots, the inkjet head From the viewpoint of initial dischargeability and intermittent discharge stability, and from the point of suppressing unevenness occurring on the surface of the cured film, it is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass. It is still more preferable that it is above.
  • the content ratio of the solvent is too large, it becomes difficult to contain a sufficient amount of quantum dots and binder components in the quantum dot-containing cured layer. % Or less is more preferable, and 80% by mass or less is even more preferable.
  • Quantum dot-containing curable composition provides a film-forming property and adhesion to the surface to be coated, and also maintains the dispersibility of the quantum dots in the film in a good state. Containing.
  • the curable binder component is a component that is contained in order to attach and fix the quantum dots at a predetermined position, and is usually a mixture.
  • the quantum dot-containing curable composition according to the present invention is a quantum dot-containing cured product obtained by curing a quantum dot-containing curable composition by containing a curable binder component. Aggregation can be suppressed. Moreover, the quantum dot containing curable composition which concerns on this invention can provide sufficient intensity
  • the curable binder component include a photocurable binder component that can be polymerized and cured by light such as visible light, ultraviolet light, and electron beam, and a thermosetting binder component that can be polymerized and cured by heating. A polymerizable binder component can be used.
  • a curable binder component used in the quantum dot-containing curable composition of the present invention containing at least one of a thermosetting binder component and a photocurable binder component can easily suppress aggregation of quantum dots and It is preferable from the viewpoint of strength and durability.
  • a solvent having high solvent solubility and high compatibility with the quantum dots can be appropriately selected and used.
  • thermosetting binder component a combination of a compound having two or more thermosetting functional groups in one molecule and a curing agent is usually used, and further a catalyst capable of promoting a thermosetting reaction. May be added. Further, a polymer having no polymerization reactivity per se may be further used.
  • an epoxy compound can be preferably used.
  • thermosetting functional group an oxetane group, an isocyanate group, a hydroxyl group etc. other than an epoxy group are mentioned.
  • the compound having two or more thermosetting functional groups selected from the group consisting of an epoxy group, an oxetane group, an isocyanate group, and a hydroxyl group in one molecule is a solvent solubility in the specific solvent, and It can be preferably used from the viewpoint that compatibility with the quantum dots tends to be good.
  • the oxetane compound replaced with the oxetane group instead of the epoxy group in the epoxy compound described later can be used in the same manner as the epoxy compound.
  • a combination of a compound having two or more isocyanate groups in one molecule (polyisocyanate compound) and a compound having two or more hydroxyl groups in one molecule (polyol compound) is caused by the reaction between the isocyanate group and the hydroxyl group.
  • a urethane bond is formed between the molecules, which can be a polymer.
  • At least one of the compound having two or more isocyanate groups in one molecule and the compound having two or more hydroxyl groups in one molecule may be a polymer compound or a urethane prepolymer.
  • an epoxy compound having two or more epoxy groups in one molecule is preferably used.
  • An epoxy compound having two or more epoxy groups in one molecule is an epoxy compound having two or more, preferably 2 to 50, more preferably 2 to 20 epoxy groups in one molecule (referred to as an epoxy resin). Is included).
  • the epoxy group should just be a structure which has an oxirane ring structure, for example, can show a glycidyl group, an oxyethylene group, an epoxycyclohexyl group, etc.
  • Examples of the epoxy compound include known polyvalent epoxy compounds that can be cured by carboxylic acid. Examples of such an epoxy compound include “Epoxy resin handbook” edited by Masaki Shinbo, published by Nikkan Kogyo Shimbun (Showa 62). These can be used widely.
  • Examples of the epoxy compound include epoxy group-containing (co) polymers and epoxy group-containing monomers, and commercially available epoxy resins can also be used.
  • An epoxy group-containing (co) polymer is a homopolymer of a monomer containing a carbon-carbon unsaturated bond and an epoxy group (hereinafter sometimes referred to as an epoxy group-containing monomer), or a monomer copolymerizable with an epoxy group-containing monomer. And a copolymer.
  • the molecular form of the copolymer may be linear or may have a branched structure, and may be any form such as a random copolymer, a block copolymer, or a graft copolymer.
  • the epoxy group-containing polymer can be obtained by a polymerization method such as a radical polymerization method or an ionic polymerization method.
  • Examples of the epoxy group-containing monomer include glycidyl methacrylate (hereinafter referred to as GMA), 3,4-epoxycyclohexylmethyl methacrylate, neopentyl glycol glycidyl ether, and the like.
  • Examples of the monomer copolymerized with the epoxy group-containing monomer include alkyl (meth) acrylate, styrene, N-alkylmaleimide and the like.
  • epoxy resin examples include bisphenol A type novolak epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, and diphenyl ether type epoxy resin.
  • Hydroquinone type epoxy resin Hydroquinone type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, fluorene type epoxy resin, phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, trishydroxyphenylmethane type epoxy resin, trifunctional type epoxy resin, tetrapheny Roll ethane type epoxy resin, dicyclopentadiene phenol type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol A-nucleated nucleated polyol type epoxy resin, polypropylene glycol type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, glioxal type epoxy resin, alicyclic epoxy resin, heterocyclic type epoxy resin and the like.
  • bisphenol A type epoxy resin examples include, for example, trade name jER828, trade name jER157S70, trade name jER1001 [all manufactured by Mitsubishi Chemical Corporation].
  • cresol novolac type epoxy resin examples include trade name YDCN-701 (manufactured by Toto Kasei Co., Ltd.).
  • EHPE3150 trade name EHPE3150 (manufactured by Daicel Corporation) may be used.
  • the curing agent used for the thermosetting binder component is appropriately selected according to the type of the thermosetting functional group contained in the thermosetting binder component, and is not particularly limited.
  • a conventionally known carboxylic acid compound can be used as the curing agent.
  • Specific examples include acids such as succinic anhydride, phthalic anhydride, 1,2-cyclohexanedicarboxylic anhydride, trimellitic anhydride, 1,2,4-cyclohexanetricarboxylic anhydride, methylhexahydrophthalic anhydride, etc.
  • Anhydrides aliphatic polycarboxylic acids such as succinic acid, adipic acid, 1,2,3,4-butanetetracarboxylic acid, azelaic acid, sebacic acid, decamethylene dicarboxylic acid; phthalic acid, isophthalic acid, terephthalic acid, tri Aromatic polycarboxylic acids such as merit acid and pyromellitic acid; alicyclic polycarboxylic acids such as tetrahydrophthalic acid, hexahydrophthalic acid and 1,2,4-cyclohexanetricarboxylic acid; 2 or more carboxyl groups in one molecule Polymer resins such as polyester resin, acrylic resin, maleated polybutadiene resin Phosphate; and the like and will be described later blocked carboxylic acid curing agents. Commercially available products may be used, for example, Portugalcid MH700, HNA-100, MTA-15 [all manufactured by Shin Nippon Rika Co., Ltd.] and the like.
  • a blocked carboxylic acid curing agent in which a carboxy group is blocked (latentized) from the viewpoint of ejection properties, dispersibility of quantum dots, and storage stability of a quantum dot-containing curable composition Is preferred. That is, as the curable binder component, a thermosetting binder component containing the epoxy compound and the blocked carboxylic acid curing agent can be preferably used. When the blocked carboxylic acid curing agent is heated, the vinyl ether compound is released and a carboxylic acid compound is produced. The produced carboxylic acid compound reacts with the epoxy compound. Since the blocked carboxylic acid curing agent has a high deblocking temperature, it can improve the storage stability of the composition.
  • the blocked carboxylic acid curing agent should be present at a high concentration with the epoxy group. Therefore, it is a component that can improve heat resistance and solvent resistance.
  • blocked carboxylic acid curing agents when used in combination with quantum dots, blocked carboxylic acid curing agents are less susceptible to the effects of heat and light on the manufacturing process and display, can keep the distance between quantum dots constant, and inhibit excitation. Can be prevented.
  • Examples of the blocked carboxylic acid curing agent include compounds obtained by blocking a carboxy group of a polyvalent carboxylic acid compound with a vinyl ether compound.
  • Examples of preferable polyvalent carboxylic acid compounds include compounds represented by the following general formula (1).
  • m is an integer from 0 to 4 inclusive, a is 0 or 1, n is 1 to 4 integer. Further, R 1 is when n is 1 a hydrogen atom or a hydrocarbon group having 2 to 8 carbon atoms, .R 2 when n is 2 to 4 is R 1 is a hydrocarbon group having 2 to 8 carbon atoms, 1 or more carbon atoms An alkyl group of 5 or less.
  • vinyl ether compound for example, a compound represented by the following general formula (2) is preferable.
  • R 3 is a hydrocarbon group having 1 to 10 carbon atoms.
  • R 3 is the same as in general formula (2).
  • examples of the compound in which R 1 is other than a hydrogen atom include a half ester obtained by a reaction between an alcohol compound and an acid anhydride.
  • examples of alcohol compounds used in this reaction include monovalent alcohol compounds such as ethanol, propanol, hexanol, octanol, and isopropyl alcohol; ethylene glycol, propylene glycol, butanediol, hexanediol, neopentyl glycol, and cyclohexane.
  • Preferred examples include divalent alcohol compounds such as xanthandiol; trivalent alcohol compounds such as glycerin, pentanetriol, hexanetriol, cyclohexanetriol, benzenetriol, and trimethylolpropane; and tetravalent alcohol compounds such as pentaerythritol. More preferably, hexanol, isopropyl alcohol, 1,2-propylene glycol, 1,3-propylene glycol, 1,6-hexanediol, Examples include lysine, trimethylolpropane, and pentaerythritol.
  • Examples of the acid anhydride used in the reaction include compounds represented by the following formula (4). Specifically, 1,2-cyclohexanedicarboxylic acid anhydride, 1,3,4-cyclohexane Hexanetricarboxylic acid-3,4-anhydride is a preferred example.
  • a compound in which R 1 is a hydrogen atom is preferably used from the viewpoint of compatibility.
  • the compound in which R 1 is a hydrogen atom include alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; alicyclic tricarboxylic acids such as 1,2,4-cyclohexanetricarboxylic acid (CHTA); Examples include alicyclic tetracarboxylic acids such as 4,5-cyclohexanetetracarboxylic acid, among which CHTA is preferable.
  • the acid equivalent of the polyvalent carboxylic acid compound is preferably 55 g / mol or more, more preferably 60 g / mol or more, from the viewpoint of increasing the crosslinking density and improving the toughness of the cured film, From the point of compatibility, it is preferably 600 g / mol or less, and more preferably 500 g / mol or less.
  • the above acid equivalent refers to the equivalent of a carboxyl group, and is measured according to JIS K-0070-3 (1992).
  • the said polyvalent carboxylic acid compound can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the vinyl ether compound include alkyl vinyl ethers such as isopropyl vinyl ether, n-propyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, t-butyl vinyl ether, 2-ethylhexyl vinyl ether, and cyclohexyl vinyl ether. N-propyl vinyl ether and isobutyl vinyl ether are preferred.
  • the vinyl ether compounds can be used singly or in combination of two or more.
  • the blocked carboxylic acid curing agent causes the polyvalent carboxylic acid compound and the vinyl ether compound to react at a temperature in the range of about 20 ° C. to 150 ° C. in the presence of an acid catalyst and a solvent, if necessary. Can be obtained.
  • the molar equivalent ratio of the vinyl group of the vinyl ether compound to the carboxy group of the polyvalent carboxylic acid compound [molar equivalent ratio of (vinyl group / carboxy group)] is 2 or less in terms of reaction efficiency and yield. preferable.
  • the lower limit of the molar equivalent ratio is appropriately adjusted depending on the application, and is not particularly limited. For example, it can be 0.5 or more, and can be 1 or more.
  • as said acid catalyst an acidic phosphate compound etc. are mentioned, for example.
  • curing agent can be used individually by 1 type or in combination of 2 or more types.
  • the molar equivalent ratio (carboxyl group and blocked carboxy group / epoxy group) between the epoxy group in the epoxy compound and the sum of the carboxy group and the blocked carboxy group in the curing agent capable of reacting with the epoxy compound is: From the point of heat resistance and hardness of the cured film, it is preferably 0.2 or more, more preferably 0.5 or more, and from the point of adhesion of the cured film, it is preferably 1.6 or less. 1.2 or less is more preferable.
  • thermosetting binder component when used as the curable binder component, in one molecule such as the epoxy compound with respect to the total solid content of the quantum dot-containing curable composition.
  • the total content of the compound having two or more thermosetting functional groups is preferably 40% by mass or more from the viewpoint of suppressing aggregation of quantum dots in the cured product and the strength of the cured product. More preferably, it is 50% by mass or more. On the other hand, it is preferably 90% by mass or less and more preferably 80% by mass or less from the viewpoint of suppressing discharge stability and unevenness of the cured product surface.
  • the solid content means all components other than the solvent.
  • the content of the curing agent relative to the total solid content of the quantum dot-containing curable composition is: It is preferably 5% by mass or more, more preferably 10% by mass or more, from the viewpoint of sufficiently promoting the progress of the polymerization reaction and the point of bumping and unevenness reduction during the drying process, while stable discharge. From the viewpoint of suppressing unevenness on the surface of the cured product and the surface of the cured product and storage stability, it is preferably 40% by mass or less, more preferably 30% by mass or less, and more preferably 25% by mass or less. Further preferred.
  • photocurable binder component a combination of a photocurable resin that can be polymerized and cured by light such as ultraviolet rays and electron beams and a photopolymerization initiator is usually used.
  • the photocurable binder component preferably contains a polymer having a relatively high molecular weight for the purpose of imparting film formability and adhesion to the surface to be coated.
  • the relatively high molecular weight means that the molecular weight is higher than that of so-called monomers and oligomers, and a weight average molecular weight of 3,000 or more can be used as a guide.
  • any of a polymer having no polymerization reactivity per se and a polymer having a polymerization reactivity per se may be used, and a combination of two or more types may be used. May be.
  • a polymer having a relatively high molecular weight as a main component if necessary, a polyfunctional monomer or oligomer having two or more photopolymerizable functional groups, a monofunctional monomer or oligomer having one photopolymerizable functional group, A photopolymerization initiator activated by light, a sensitizer, and the like are blended to constitute a photocurable binder component.
  • Examples of relatively high molecular weight polymers include (meth) acrylic copolymers, (meth) acrylic resins such as styrene- (meth) acrylic copolymers, and epoxy (meth) acrylate resins.
  • (meth) acrylic resins such as (meth) acrylic resins and styrene- (meth) acrylic copolymers can be preferably used from the viewpoint of dispersibility of quantum dots.
  • the epoxy (meth) acrylate resin include an epoxy (meth) acrylate compound obtained by reacting a reaction product of an epoxy compound and an unsaturated group-containing monocarboxylic acid with an acid anhydride.
  • the epoxy compound, unsaturated group-containing monocarboxylic acid, and acid anhydride can be appropriately selected from known ones.
  • the polymer having a relatively high molecular weight include (meth) acrylic resins such as these (meth) acrylic copolymers and styrene- (meth) acrylic copolymers, and epoxy (meth) acrylate resins.
  • a thermoplastic resin such as a polyester resin, a maleic acid resin, a polyolefin resin, a polyamide resin, or a polycarbonate resin may be used.
  • the polymer used as a dispersing agent can also be used.
  • One or more kinds of resins selected from the group consisting of the (meth) acrylic resin, epoxy (meth) acrylate resin, polyester resin, and maleic resin are solvent solubility in the specific solvent, and quantum dots It can be preferably used from the viewpoint that the compatibility with is easily improved.
  • As said polymer with comparatively high molecular weight 2 or more types may be mixed and used, and 1 type of resin may be used independently.
  • the polymer having a relatively high molecular weight preferably has an acid value of 200 mgKOH / g or less, more preferably 150 mgKOH / g or less, and 125 mgKOH / g or less from the viewpoint of dispersibility of quantum dots. Even more preferably.
  • the acid value refers to the mass (mg) of potassium hydroxide required to neutralize the acidic component contained in 1 g of the solid content of the polymer, and can be measured by the method defined in JIS K 0070. it can.
  • the polymer having a relatively high molecular weight may have an amine value from the viewpoint of the dispersibility of the quantum dots.
  • the amine value is 40 mgKOH / g or more and 140 mgKOH / g or less. Preferably, it is 120 mgKOH / g or less, more preferably 100 mgKOH / g or less, and still more preferably 80 mgKOH / g or less.
  • the amine value refers to the number of mg of potassium hydroxide equivalent to perchloric acid required to neutralize the amine component contained in 1 g of the solid content of the polymer, and is defined in JIS-K7237: 1995. It can be measured by the method.
  • the (meth) acrylic resin can be obtained by, for example, (co) polymerizing an ethylenically unsaturated monomer and other monomers copolymerizable as necessary by a known method.
  • the ethylenically unsaturated monomer for example, (meth) acrylate monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate are preferably used. it can.
  • a structural unit derived from an ester group-containing ethylenically unsaturated monomer such as a (meth) acrylate monomer can function as a component that improves the solubility in a solvent and further the solvent re-solubility.
  • the structural unit derived from a monomer means a structural unit in which a polymerizable carbon-carbon double bond (C ⁇ C) in the monomer is a single bond (C—C).
  • the content ratio of the structural unit having an ester group is 5% by mass or more with respect to 100% by mass of the total amount of monomer components used for the synthesis of the copolymer from the point that a good pattern is obtained. It is preferable that it is 10 mass% or more.
  • the content ratio of the structural unit having an ester group is 95% with respect to 100% by mass of the total amount of monomer components used for the synthesis of the copolymer used for the synthesis of the copolymer. % Or less, and more preferably 80% by mass or less.
  • the (meth) acrylic resin preferably has a hydrocarbon ring from the viewpoint of excellent adhesion of the cured film.
  • the hydrocarbon ring which is a bulky group in (meth) acrylic-type resin By having the hydrocarbon ring which is a bulky group in (meth) acrylic-type resin, the solvent resistance of the obtained cured film, especially swelling of a cured film are suppressed. Although the action is unclear, the presence of bulky hydrocarbon rings in the cured film suppresses the movement of molecules in the cured film, resulting in increased strength of the coating and suppression of swelling by the solvent. It is estimated that.
  • Examples of such a hydrocarbon ring include a cyclic aliphatic hydrocarbon ring which may have a substituent, an aromatic ring which may have a substituent, and combinations thereof.
  • a substituent such as a carbonyl group, a carboxy group, an oxycarbonyl group, or an amide group.
  • a substituent such as a carbonyl group, a carboxy group, an oxycarbonyl group, or an amide group.
  • the hydrocarbon ring include aliphatic hydrocarbons such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, norbornane, tricyclo [5.2.1.0 (2,6)] decane (dicyclopentane), and adamantane.
  • Rings aromatic rings such as benzene, naphthalene, anthracene, phenanthrene, fluorene; chain polycycles such as biphenyl, terphenyl, diphenylmethane, triphenylmethane, stilbene, and cardo structures represented by the following chemical formula (i) It is done.
  • the (meth) acrylic resin preferably has a maleimide structure represented by the following general formula (ii).
  • R M is an optionally substituted hydrocarbon ring.
  • R M of the general formula (ii) there may Specific examples of the optionally substituted hydrocarbon ring, those similar to the specific example of the hydrocarbon ring.
  • Examples of the ethylenically unsaturated monomer having a hydrocarbon ring include cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, and phenoxy.
  • cyclohexyl (meth) acrylate dicyclopentanyl (meth) acrylate, adamantyl (meth) acrylate, benzyl (meth) acrylate Styrene is preferred, and cyclohexyl (meth) acrylate and styrene are particularly preferred.
  • the curable binder component is preferably a photocurable binder component containing a (meth) acrylic resin containing a (meth) acrylic copolymer having a structural unit having an ethylenic double bond in the side chain.
  • a (meth) acrylic resin a (meth) acrylic copolymer having a structural unit having a hydrocarbon ring and a structural unit having an ethylenic double bond can be more preferably used.
  • (meth) acrylic copolymer having a structural unit having an ethylenic double bond in the side chain is included, in the curing step of the composition, the (meth) acrylic resins or the (meth) acrylic Since the resin and the photopolymerizable compound can form a cross-linked bond, the film strength of the cured film is improved, and the quantum dots are fixed and the dispersibility is maintained.
  • (meth) acrylic copolymers having a structural unit having an ethylenic double bond in the side chain are less susceptible to the effects of heat and light received during the manufacturing process and display when used in combination with quantum dots. It is preferable because the distance between quantum dots can be kept constant and excitation inhibition can be prevented.
  • the method for introducing an ethylenic double bond into the (meth) acrylic copolymer may be appropriately selected from conventionally known methods. For example, a structural unit having a carboxy group is introduced into the copolymer, and a compound having an epoxy group and an ethylenic double bond in the molecule, such as glycidyl (meth) acrylate, is added to the carboxy group. , A method of introducing an ethylenic double bond into the side chain, or a constitutional unit having a hydroxyl group is introduced into the copolymer, and a compound having an isocyanate group and an ethylenic double bond in the molecule is added. And a method of introducing an ethylenic double bond into the side chain.
  • Examples of the carboxy group-containing ethylenically unsaturated monomer for deriving a structural unit having a carboxy group include (meth) acrylic acid, vinyl benzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, Cinnamic acid, acrylic acid dimer, etc. are mentioned.
  • an addition reaction product of a monomer having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate and a cyclic anhydride such as maleic anhydride, phthalic anhydride, or cyclohexanedicarboxylic anhydride, ⁇ -carboxy-polycaprolactone mono ( A (meth) acrylate etc. can also be utilized.
  • a cyclic anhydride such as maleic anhydride, phthalic anhydride, or cyclohexanedicarboxylic anhydride, ⁇ -carboxy-polycaprolactone mono ( A (meth) acrylate etc.
  • anhydride containing monomers such as maleic anhydride, itaconic anhydride, and citraconic anhydride, as a precursor of a carboxy group.
  • (meth) acrylic acid is particularly preferable from the viewpoints of copolymerizability, cost, solubility, glass transition temperature, and the like.
  • the content ratio of the structural unit having an ethylenic double bond in the side chain is 100% by mass based on the total amount of the monomer components. From the viewpoint of maintaining the dispersibility of the quantum dots, it is preferably 5% by mass or more, more preferably 10% by mass or more, while, from the viewpoint of storage stability of the composition, it is 50% by mass or less. It is preferably 40% by mass or less.
  • the acid value is preferably 120 mgKOH / g or less from the viewpoint of dispersibility of the quantum dots, and 80 mgKOH / G or less is more preferable, and 70 mgKOH / g or less is still more preferable.
  • the (meth) acrylic resin includes a thermal latent (meth) acrylic copolymer having a structural unit derived from a tertiary carbon-containing (meth) acrylate monomer and a structural unit having a hydroxyl group.
  • the curable binder component contains a thermal latent (meth) acrylic copolymer having a structural unit derived from a tertiary carbon-containing (meth) acrylate monomer and a structural unit having a hydroxyl group.
  • a photocurable binder component containing a (meth) acrylic resin can be preferably used.
  • the structural unit derived from the tertiary carbon-containing (meth) acrylate monomer that the thermal latent (meth) acrylic copolymer has has an oxygen atom adjacent to the (meth) acryloyl group and a third adjacent to it due to heat.
  • the O—C bond between the secondary carbon atom is broken, and it is easily decomposed into (meth) acrylic acid and a stable compound generated on the tertiary carbon atom side. Therefore, for example, when the quantum dot-containing curable composition of the present invention contains the thermal latent (meth) acrylic copolymer, polymerization of the curable binder component in the quantum dot-containing curable composition.
  • the structural unit derived from the tertiary carbon-containing (meth) acrylate monomer described above is decomposed by further heat treatment, and the (meth) acrylic acid unit and the tertiary carbon atom side are decomposed.
  • the resulting stable compound is produced.
  • the hydroxyl group in the thermal latent (meth) acrylic copolymer reacts with the carboxy group of the generated (meth) acrylic acid unit to produce an ester cross-linked structure, whereby the curability of the curable composition.
  • the solvent resistance and heat resistance after curing are improved.
  • the heat-latent (meth) acrylic copolymer since the heat-latent (meth) acrylic copolymer has a carboxy group blocked, the storage stability of the quantum dot-containing curable composition can be improved.
  • the thermal latent (meth) acrylic copolymer when used in combination with quantum dots, is less susceptible to the effects of heat and light received during the manufacturing process and display, and keeps the distance between the quantum dots constant. This is preferable because excitation inhibition can be prevented.
  • the tertiary carbon-containing (meth) acrylate monomer preferably has a structure in which an oxygen atom adjacent to the (meth) acryloyl group is bonded to a tertiary carbon atom. That is, the tertiary carbon-containing (meth) acrylate monomer preferably has a structure in which an oxygen atom adjacent to the (meth) acryloyl group is bonded to a tertiary carbon atom.
  • the tertiary carbon atom means a carbon atom having three other carbon atoms bonded to the carbon atom.
  • the tertiary carbon-containing (meth) acrylate monomer is preferably a compound having one (meth) acryloyl group in the molecule, and examples thereof include compounds represented by the following general formula (5).
  • CH 2 ⁇ C (R a ) —C ( ⁇ O) —OA (5) R a represents a hydrogen atom or a methyl group, and A represents a monovalent organic group including a structure having a tertiary carbon atom on the oxygen atom side.
  • the organic group represented by A can be represented by, for example, —C (R b ) (R c ) (R d ).
  • R b , R c and R d are the same or different and are preferably a hydrocarbon group having 1 to 30 carbon atoms, and the hydrocarbon group may be a saturated hydrocarbon group And may be an unsaturated hydrocarbon group. Moreover, it may have a cyclic structure and may further have a substituent.
  • R b , R c and R d may be linked to each other at a terminal site to form a cyclic structure.
  • the O—C bond between the oxygen atom adjacent to the (meth) acryloyl group and the tertiary carbon atom in A adjacent thereto is cleaved. It is preferable that carbon number of the organic group represented by said A is 12 or less at the point which an easy compound volatilizes.
  • the organic group represented by A is preferably a group derived from at least one selected from t-butyl (meth) acrylate and t-amyl (meth) acrylate.
  • the organic group represented by A may have a branched structure.
  • the tertiary carbon atom bonded to the oxygen atom adjacent to the (meth) acryloyl group has at least one of the adjacent carbon atoms bonded to a hydrogen atom. Preferably it is.
  • a tertiary carbon-containing (meth) acrylate monomer is a compound represented by the above general formula (5), and A is a group represented by —C (R b ) (R c ) (R d )
  • R b , R c and R d contains a carbon atom having one or more hydrogen atoms, and the carbon atom is bonded to a tertiary carbon atom.
  • R b , R c and R d contains a carbon atom having one or more hydrogen atoms, and the carbon atom is bonded to a tertiary carbon atom.
  • the R b , R c and R The hydrocarbon group in d is preferably a saturated hydrocarbon group having 1 to 15 carbon atoms, more preferably a saturated hydrocarbon group having 1 to 10 carbon atoms, still more preferably a saturated hydrocarbon group having 1 to 5 carbon atoms.
  • the organic group represented by A is preferably at least one selected from a t-butyl group and a t-amyl group.
  • the content ratio of the tertiary carbon-containing (meth) acrylate monomer unit is set to 100% by mass of the total amount of monomer components from the point that the above-described effect is more exerted. On the other hand, it is preferably 5% by mass or more, more preferably 15% by mass or more, and particularly preferably 20% by mass or more.
  • the upper limit of the content is preferably 90% by mass or less, more preferably 75% by mass or less, and still more preferably 60% by mass or less from the viewpoint of further improving the pattern characteristics.
  • the structural unit having a hydroxyl group contained in the thermal latent (meth) acrylate polymer is a structural unit having a hydroxyl group in a side chain.
  • the monomer for deriving the structural unit having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth) acrylic acid.
  • Preferred examples include hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2,3-hydroxypropyl (meth) acrylate.
  • the content ratio of the structural unit having a hydroxyl group is 5% by mass or more from the viewpoint of curability and solvent resistance with respect to 100% by mass of the total amount of monomer components.
  • it is 10% by mass or more, more preferably 15% by mass or more.
  • it is preferably 50% by mass or less from the viewpoint of suppressing whitening of the cured product surface.
  • it is 40 mass% or less, More preferably, it is 35 mass% or less.
  • the heat-latent (meth) acrylate polymer preferably has a structural unit derived from (meth) acrylic acid from the viewpoints of copolymerizability, cost, solubility, glass transition temperature, and the like.
  • the content ratio of the structural unit derived from (meth) acrylic acid is 5% by mass or more from the viewpoint of maintaining the dispersibility of the quantum dots with respect to 100% by mass of the total amount of monomer components. More preferably, it is 10% by mass or more.
  • it is preferably 35% by mass or less, and more preferably 25% by mass or less.
  • the thermal latent (meth) acrylate polymer preferably has an acid value of 120 mgKOH / g or less, more preferably 80 mgKOH / g or less, and 70 mgKOH / g or less from the viewpoint of dispersibility of quantum dots. Even more preferably.
  • fever latent (meth) acrylate type polymer has a structural unit which has tertiary amine.
  • the monomer for deriving the structural unit having a tertiary amine include alkyl groups such as dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, diethylaminoethyl (meth) acrylate, and diethylaminopropyl (meth) acrylate.
  • Preferred examples include substituted amino group-containing (meth) acrylates, alkyl group-substituted amino group-containing (meth) acrylamides such as dimethylaminoethyl (meth) acrylamide and dimethylaminopropyl (meth) acrylamide.
  • the content of the structural unit having a tertiary amine is 5% by mass or more from the viewpoint of maintaining the dispersibility of the quantum dots with respect to 100% by mass of the total amount of the monomer components. It is preferably 10% by mass or more, and on the other hand, from the viewpoint of stability, it is preferably 35% by mass or less, more preferably 25% by mass or less.
  • the heat latent (meth) acrylate polymer preferably has an amine value of 40 mgKOH / g or more and 140 mgKOH / g or less, preferably 120 mgKOH / g or less, and 100 mgKOH. / G or less is more preferable, and 80 mgKOH / g or less is still more preferable.
  • the heat latent (meth) acrylate polymer has a structural unit having an ethylenically unsaturated group in the side chain from the viewpoint of improving the film strength of the cured film.
  • the structural unit having an ethylenically unsaturated group in the side chain for example, when synthesizing the heat-latent (meth) acrylate polymer, introduces a structural unit derived from (meth) acrylic acid, For example, it can be obtained by adding glycidyl (meth) acrylate or the like to the carboxyl group or the hydroxyl group of the monomer unit having the hydroxyl group.
  • the heat latent (meth) acrylate polymer is obtained, for example, by polymerizing a tertiary carbon-containing (meth) acrylate monomer, a monomer having a hydroxyl group, and, if necessary, other monomer components. Can do.
  • the other monomer component include a monomer that derives a structural unit having the hydrocarbon ring, a (meth) acrylate monomer that does not contain tertiary carbon, and a structural unit that has an ethylenic double bond in the side chain. And the like.
  • the (meth) acrylic resin a (meth) acrylic copolymer having a structural unit having an ethylenic double bond in a side chain, and the thermal latent (meth) acrylate-based resin It is preferable from the point of the dispersibility of a quantum dot to contain at least 1 sort (s) chosen from a polymer.
  • the quantum dot containing curable composition of this invention contains the (meth) acrylic-type copolymer which has a structural unit which has an ethylenic double bond in a side chain, with respect to the total solid of a quantum dot containing curable composition
  • the content ratio of the (meth) acrylic copolymer having a structural unit having an ethylenic double bond in the side chain is the (meth) acrylic copolymer having a structural unit having an ethylenic double bond in the side chain. From the point of fully exhibiting the effect of coalescence, it is preferably 10% by mass or more, more preferably 15% by mass or more, while 35% by mass or less from the point of sufficiently containing other components. It is preferable that it is, and it is more preferable that it is 25 mass% or less.
  • the quantum dot containing curable composition of this invention contains the said heat latent (meth) acrylate type polymer
  • the said heat latent (meth) acrylate with respect to the total solid of a quantum dot containing curable composition
  • the content of the polymer is preferably 10% by mass or more, more preferably 15% by mass or more from the viewpoint of sufficiently exerting the effect of the heat latent (meth) acrylate polymer.
  • it is preferably 35% by mass or less and more preferably 25% by mass or less from the viewpoint of sufficiently containing other components.
  • a block copolymer used as a dispersant is also preferably used from the viewpoint of dispersibility of quantum dots.
  • the block copolymer (meth) acrylic resin used as a dispersant is usually an acidic group such as a carboxy group or a basic amine such as a tertiary amine, tertiary amine salt, or quaternary ammonium salt as a block portion. It has a block part containing the structural unit which has group, and a block part containing the structural unit which has 1 type, or 2 or more types of ester groups.
  • the structural unit having a carboxy group, the structural unit having a tertiary amine, and the structural unit having an ester group may be the same as described above, and other structural units having an acidic group and structural units having a basic group may be used as appropriate.
  • Known structural units can be used.
  • the (meth) acrylic resin used as the dispersant can be appropriately selected and a commercially available product can be used.
  • the block copolymer (meth) acrylic resin used as a dispersant also preferably has an amine value of 40 mgKOH / g or more and 140 mgKOH / g or less, and 120 mgKOH / g or less from the viewpoint of dispersibility of the quantum dots. It is preferably 100 mg KOH / g or less, more preferably 80 mg KOH / g or less.
  • the weight average molecular weight (Mw) of the (meth) acrylic copolymer contained in the (meth) acrylic resin is preferably in the range of 1,000 to 50,000, more preferably 3,000 to 20 , 000.
  • the weight average molecular weight of the (meth) acrylic copolymer is 1,000 or more, it is preferable from the viewpoint of excellent binder function after curing, and when it is 50,000 or less, it is preferable from the viewpoint of improving dischargeability.
  • the weight average molecular weight (Mw) of the polymer can be measured by a Shodex GPC System-21H using polystyrene as a standard substance and THF as an eluent.
  • the ethylenically unsaturated bond equivalent improves the film strength of the cured film and has the effect of being excellent in adhesion to the substrate, A range of 100 to 2000 is preferable, and a range of 140 to 1500 is particularly preferable. If the ethylenically unsaturated bond equivalent is 2000 or less, the adhesion is excellent. Moreover, since the ratio of other structural units, such as a structural unit which has a hydrocarbon ring, can be increased relatively if it is 100 or more, heat resistance etc. can be improved.
  • the ethylenically unsaturated bond equivalent is a weight average molecular weight per mole of the ethylenically unsaturated bond in the (meth) acrylic resin, and is represented by the following mathematical formula (1).
  • Ethylenically unsaturated bond equivalent (g / mol) W (g) / M (mol) (In Formula (1), W represents the mass (g) of the (meth) acrylic resin, and M represents the number of moles of ethylenic double bonds contained in the (meth) acrylic resin W (g) (mol )
  • the ethylenically unsaturated bond equivalent is measured by, for example, the number of ethylenic double bonds contained in 1 g of (meth) acrylic resin in accordance with a test method for an elementary value as described in JIS K 0070: 1992. You may calculate by doing.
  • the (meth) acrylic resin may be used alone or in combination of two or more, and the content is not particularly limited.
  • the (meth) acrylic resin is preferably in the range of 5% by mass to 60% by mass, and more preferably in the range of 10% by mass to 40% by mass, based on the total solid content of the quantum dot-containing curable composition.
  • the content of the (meth) acrylic resin is not less than the above lower limit value, it is preferable from the viewpoint of improving the dispersibility of the quantum dots, and when the content of the (meth) acrylic resin is not more than the above upper limit value, This is preferable from the viewpoint of improving dischargeability.
  • the said polymer with comparatively high molecular weight may be used individually by 1 type, may be used in combination of 2 or more types,
  • the content Although there is no particular limitation, the polymer having a relatively high molecular weight with respect to the total solid content of the quantum dot-containing curable composition is preferably 5% by mass to 60% by mass, more preferably 10% by mass to 40% by mass. Within range.
  • the content of the relatively high molecular weight polymer is not less than the above lower limit value, it is preferable from the viewpoint of improving the dispersibility of quantum dots, and the content of the relatively high molecular weight polymer is not more than the above upper limit value. If it is, it is preferable from the point which discharge property improves.
  • the polyfunctional monomer is not particularly limited as long as it can be polymerized by a photoinitiator described later, and usually a compound having two or more ethylenically unsaturated double bonds is used, particularly an acryloyl group or a methacryloyl group. It is preferable that it is polyfunctional (meth) acrylate which has 2 or more. Such polyfunctional (meth) acrylate may be appropriately selected from conventionally known ones.
  • a polyfunctional (meth) acrylate may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polyfunctional monomer has three (trifunctional) or more polymerizable double bonds.
  • the content of the polyfunctional monomer used in the quantum dot-containing curable composition is not particularly limited, but the polyfunctional monomer is preferably 5 to 60% by mass based on the total solid content of the quantum dot-containing curable composition. More preferably, it is in the range of 10 to 40% by mass.
  • the content of the polyfunctional monomer is not less than the above lower limit value, it is preferable from the viewpoint that the photocuring is sufficiently facilitated, and in order to sufficiently contain other components, the content of the polyfunctional monomer is the above upper limit value. The following is preferable.
  • Photoinitiator There is no restriction
  • photoinitiators include aromatic ketones, benzoin ethers, halomethyloxadiazole compounds, ⁇ -amino ketones, biimidazoles, N, N-dimethylaminobenzophenone, halomethyl-S-triazine compounds, thioxanthone, and the like. be able to.
  • the photoinitiator include aromatic ketones such as benzophenone, 4,4′-bisdiethylaminobenzophenone and 4-methoxy-4′-dimethylaminobenzophenone, benzoin ethers such as benzoin methyl ether, and ethylbenzoin.
  • aromatic ketones such as benzophenone, 4,4′-bisdiethylaminobenzophenone and 4-methoxy-4′-dimethylaminobenzophenone
  • benzoin ethers such as benzoin methyl ether
  • ethylbenzoin Benzoin, biimidazoles such as 2- (o-chlorophenyl) -4,5-phenylimidazole dimer, 2-trichloromethyl-5- (p-methoxystyryl) -1,3,4-oxadiazole, etc.
  • Halomethyloxadiazole compounds such as 2- (4-butoxy-naphth-1-yl) -4,6-bis-trichloromethyl-S-triazine, 2,2-dimethoxy-1 , 2-Diphenylethane-1-one, 2-methyl-1- [4- (methylthio) phenyl]- -Morpholinopropanone, 1,2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,1-hydroxy-cyclohexyl-phenyl ketone, benzyl, benzoylbenzoic acid, methyl benzoylbenzoate, 4-Benzoyl-4′-methyldiphenyl sulfide, benzylmethyl ketal, dimethylaminobenzoate, isoamyl p-dimethylaminobenzoate, 2-n-butoxyethyl-4-dimethylamin
  • 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2- (dimethylamino) -1- (4-morpholinophenyl) -1- Butanone, 4,4′-bis (diethylamino) benzophenone, and diethylthioxanthone are preferably used.
  • a photoinitiator that does not interfere with the light absorption of the quantum dots is preferable, and a photoinitiator that absorbs less than 350 nm or 400 nm, which is the excitation wavelength of the quantum dots, is preferable.
  • a photoinitiator for example, an ⁇ -hydroxyketone-based initiator having absorption near 250 nm can be mentioned.
  • the above Irgacure 127, 184, 651, 1173, and 2959 are trade names and are available from BASF.
  • the total content of the photoinitiator is preferably 5% by mass to 15% by mass with respect to the total solid content of the quantum dot-containing curable composition.
  • the content of the photoinitiator is usually about 0.01 to 100 parts by mass, preferably 5 to 60 parts by mass with respect to 100 parts by mass of the polyfunctional monomer.
  • the photocuring is sufficiently advanced, and on the other hand, it is suppressed that the resulting cured film is less yellowed and the transparency is lowered. It is preferable from the point which can be performed.
  • the binder component used in the quantum dot-containing curable composition of the present invention preferably has a total content of 35% by mass to 97% by mass, and 40% by mass with respect to the total solid content of the quantum dot-containing curable composition. More preferably, it is blended in a proportion of from% to 96% by mass. If it is more than the said lower limit, it is preferable from the point which can obtain the cured film excellent in hardness and the adhesiveness with a board
  • the quantum dots used in the present invention are compound semiconductor fine particles having a size of several nanometers to several tens of nanometers, and are not particularly limited as long as they are light emitting materials that produce a quantum confinement effect (quantum size effect).
  • quantum size effect a well-known quantum dot can be used, 1 type may be used individually, and 2 or more types may be mixed and used for it.
  • Known quantum dots include a quantum dot (R) having an emission center wavelength in a wavelength band of 600 nm to 680 nm, a quantum dot (G) having an emission center wavelength in a wavelength band of 500 nm to 600 nm, and 400 nm to 500 nm.
  • quantum dots (B) having an emission center wavelength in the wavelength band of, and the quantum dot (R) is excited by excitation light to emit red light, and the quantum dot (G) emits green light
  • the quantum dots (B) emit blue light.
  • the quantum dots include MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, II-VI semiconductor compounds such as HgSe and HgTe, IIIV semiconductors such as AlN, AlP, AlAs, AlSb, GaAs, GaP, GaN, GaSb, InN, InAs, InP, InSb, TiN, TiP, TiAs, and TiSb
  • a group IV semiconductor such as Si, Ge and
  • the quantum dot may be composed of one kind of semiconductor compound or may be composed of two or more kinds of semiconductor compounds.
  • a core composed of a semiconductor compound and a semiconductor compound different from the core You may have a core-shell type structure which has a shell consisting of.
  • the core-shell type quantum dot uses a material with a higher band gap than the semiconductor compound that forms the core as the semiconductor compound that forms the core so that excitons are confined in the core. Can be increased.
  • Examples of the core-shell structure (core / shell) having such a bandgap size relationship include CdSe / ZnS, CdSe / ZnSe, CdSe / CdS, CdTe / CdS, InP / ZnS, and CuInS / ZnS.
  • the size of the quantum dot may be appropriately adjusted depending on the material constituting the quantum dot so that light having a desired wavelength can be obtained.
  • the particle size of the quantum dot decreases, the energy band gap increases. That is, as the crystal size decreases, the light emission of the quantum dots shifts to the blue side, that is, to the high energy side. Therefore, by changing the size of the quantum dots, the emission wavelength can be adjusted over the wavelength range of the spectrum in the ultraviolet region, the visible region, and the infrared region.
  • a ligand having a coordinating group coordinated on the surface may be used.
  • the coordinating group include an amino group, a carboxy group, a mercapto group, a phosphine group, and a phosphine oxide group.
  • the ligand include hexylamine, decylamine, hexadecylamine, octadecylamine, oleylamine, myristylamine, laurylamine, oleic acid, mercaptopropionic acid, trioctylphosphine, trioctylphosphine oxide and polyethylene glycol. be able to.
  • a quantum in which a ligand having at least one coordination group selected from the group consisting of trioctylphosphine, trioctylphosphine oxide, octadecylamine and oleylamine is coordinated on the surface is preferable, and a quantum dot in which a ligand having at least one coordination group selected from trioctylphosphine oxide, octadecylamine, and oleylamine is coordinated on the surface is more preferable.
  • the quantum dot which the ligand which has the said coordinating group coordinated on the surface is J. for example. Am. Chem. Soc. 115, pp 8706-8715 (1993), or J. Org. Phys. Chem. , 101, pp 9463-9475 (1997), and commercially available products can also be suitably used.
  • the quantum dot a quantum dot whose surface is protected by a protective material may be used.
  • the protective material include one or more hydrophilic groups in one molecule and a hydrophobic group, and the hydrophobic group includes a triphenylamine derivative, an arylamine derivative, an oxadiazole derivative, a dinaphthylanthracene derivative, Examples thereof include those containing at least one residue selected from a distilarylene derivative, a carbazole derivative, a benzimidazole derivative, and an aluminum quinolinol complex derivative.
  • hydrophilic group examples include a carboxyl group, amino group, hydroxyl group, thiol group, aldehyde group, sulfonic acid group, amide group, sulfonamide group, phosphoric acid group, phosphine group, and phosphine oxide group.
  • the content of quantum dots contained in the total solid content of the quantum dot-containing curable composition of the present invention is preferably 0.1% by mass or more, and 0.3% by mass or more from the viewpoint of light emission intensity. On the other hand, it is preferably 40% by mass or less and more preferably 35% by mass or less from the viewpoint of ejection stability and dispersibility by the ink jet method.
  • the quantum dot containing curable composition of this invention may contain various additives as needed.
  • the additive include an antioxidant, a polymerization terminator, a chain transfer agent, a leveling agent, a plasticizer, a surfactant, an antifoaming agent, a silane coupling agent, an ultraviolet absorber, and an adhesion promoter.
  • the quantum dot-containing curable composition of the present invention can be produced by adding the above-described components to the solvent and mixing them, and dissolving or dispersing the solid components.
  • a curable binder composition prepared by dissolving or dispersing a binder component such as a curable resin and a curing agent in a solvent is prepared in advance, and the curable binder composition, quantum dots, and optional addition components are further added to the solvent.
  • the method of adding and mixing can be preferably used.
  • the solvent used for the preparation of the curable binder composition is preferably at least one selected from the group consisting of the first solvent and the second solvent.
  • the solvent in the quantum dot-containing curable composition by further adding at least one selected from the group consisting of the first solvent and the second solvent, the solvent in the quantum dot-containing curable composition
  • the solvent contains the first solvent and the second solvent.
  • a method for producing the quantum dot-containing curable composition of the present invention for example, Preparing a curable binder composition containing the curable binder component and at least one selected from the group consisting of the first solvent and the second solvent; Mixing the curable binder composition, the quantum dots, and at least one selected from the group consisting of the first solvent and the second solvent; And a mixed solvent of the solvent in the curable binder composition and the solvent used in the mixing step contains the first solvent and the second solvent.
  • a polymer that functions as a dispersant is used as the curable binder component, it is selected from the group consisting of the curable binder component excluding the polymer that functions as a dispersant, the first solvent, and the second solvent.
  • Preparing a curable binder composition containing at least one kind Preparing a quantum dot dispersion by dispersing the quantum dots, a polymer functioning as a dispersant, and at least one selected from the group consisting of the first solvent and the second solvent; A step of mixing the curable binder composition, the dispersion, and, if necessary, at least one selected from the group consisting of the first solvent and the second solvent; And a mixed solvent of the solvent in the curable binder composition and the solvent used in the mixing step contains the first solvent and the second solvent.
  • the application of the quantum dot containing curable composition which concerns on this invention is not specifically limited, For example, it can use for formation of the quantum dot containing cured layer which the various optical members used for the display apparatus etc. which are mentioned later have.
  • the quantum dot containing curable composition which concerns on this invention is a composition suitable for forming the layer containing a quantum dot by an inkjet system, and can be preferably used for inkjet.
  • the optical member include semiconductor optical members such as a light conversion member and a light emitting member.
  • Quantum dot-containing cured product is a cured product of the quantum dot-containing curable composition according to the present invention. Since the quantum dot-containing cured product according to the present invention has reduced unevenness and suppressed aggregation of quantum dots in the cured product, a desired color can be obtained.
  • the quantum dot-containing cured product according to the present invention forms, for example, a quantum dot-containing layer that is a coating film of the quantum dot-containing curable composition according to the present invention by an inkjet method, and cures the quantum dot-containing layer. Can be obtained.
  • the method for forming the quantum dot-containing layer and the curing method can be, for example, the same methods as those used in the optical member manufacturing method described later.
  • the quantum dot-containing cured product according to the present invention has a high luminance and a wide color reproduction range when used as a quantum dot-containing cured layer possessed by various optical members such as a light conversion member and a light emitting member used in a display device described later. Can be achieved.
  • the quantum dot-containing cured product according to the present invention can have desired color development characteristics by appropriately adjusting the type and content of quantum dots.
  • the chromaticity coordinates x and y are in the XYZ color system of JIS Z8701: 1931 measured using a blue LED light source.
  • the manufacturing method of the optical member according to the present invention is a method of selectively attaching the quantum dot-containing curable composition of the present invention to a predetermined region on a substrate by an ink jet method. Forming, and Curing the quantum dot-containing layer to form a quantum dot-containing cured layer; It is characterized by having.
  • the manufacturing method of the optical member which concerns on this invention may have another process further as needed other than each process mentioned above.
  • the method for producing an optical member according to the present invention uses the quantum dot-containing curable composition of the present invention, a quantum dot-containing cured layer with reduced unevenness can be formed, and the quantum dot-containing cured layer can be formed. Since aggregation of the quantum dots inside is suppressed, a desired color can be obtained.
  • the quantum dot-containing cured layer can be adjusted to have desired color development properties by appropriately selecting the type and content of quantum dots, and is the same as the quantum dot-containing cured product according to the present invention described above. Color gamut.
  • the predetermined region on the substrate is preferably a region surrounded by a partition wall on the substrate.
  • the optical member obtained by the production method of the present invention can achieve high brightness and a wide color reproduction range when used as various semiconductor optical members such as a light conversion member and a light emitting member used in a display device to be described later. It is preferable from the point.
  • FIG. 1 is a diagram for explaining an example of a method for producing an optical member according to the present invention.
  • a substrate 1 of an optical member is prepared as shown in FIG.
  • the substrate is not particularly limited as long as it is conventionally used for an optical member, and examples thereof include a transparent substrate and a TFT (thin film transistor) substrate.
  • a transparent substrate for example, a transparent flexible material having no flexibility such as quartz glass, Pyrex (registered trademark) glass, synthetic quartz plate, or a transparent flexible material having flexibility such as a transparent resin film or an optical resin plate. Materials can be used.
  • the substrate may be a substrate subjected to surface treatment for the purpose of imparting a gas barrier property, if necessary.
  • a partition wall 2 is formed in a region serving as a boundary between subpixels on one surface side of the substrate 1.
  • the partition wall 2 can be formed by forming a metal thin film of chromium or the like having a thickness of about 1000 to 2000 mm by sputtering or vacuum deposition and patterning the thin film.
  • a normal patterning method such as sputtering can be used.
  • the partition wall 2 may be a layer in which light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments are contained in a resin binder.
  • a resin binder for example, a black matrix can be used.
  • the resin binder used for the partition include polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, cellulose, or a mixture of two or more resins, photosensitive resin, An O / W emulsion type resin composition, for example, an emulsion of reactive silicone can be used.
  • the thickness of the resin partition wall can be set within a range of 0.5 to 15 ⁇ m.
  • the partition wall 2 may or may not have ink repellency. However, if the partition wall 2 does not have the ink repellency convex portion 3 described later, the partition wall 2 has ink repellency. Is preferred. As means for imparting ink repellency, the same means as the ink repellency convex portion 3 described later can be used.
  • the height of the partition wall is not particularly limited, but is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more from the viewpoint of color mixing (oblique light blocking), From the viewpoint of productivity, it is preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • an ink-repellent convex portion 3 may be formed as necessary.
  • the composition of such an ink-repellent convex portion is a resin composition having low affinity with the quantum dot-containing curable composition of the present invention, repelling the quantum dot-containing curable composition, and having ink repellency.
  • it does not need to be transparent in particular and may be colored.
  • a material that is used for the partition and does not include a black material can be used.
  • a photocurable resin is preferably used for reasons such as easy handling and curing.
  • the surface may be treated with an ink-repellent treatment agent such as a silicone compound or a fluorine-containing compound.
  • the patterning of the ink-repellent convex portions can be performed by printing using an ink-repellent resin composition coating liquid or photolithography using a photo-curable coating liquid.
  • the height of the ink-repellent convex portion is provided to prevent ink from being mixed when applied by the ink jet method, and may be adjusted as appropriate. Although it varies depending on the amount of ink deposited, it is usually preferably in the range of 0.1 to 3.0 ⁇ m.
  • surface treatment such as plasma treatment may be used to impart ink repellency.
  • the surface treatment include reduced-pressure plasma treatment and atmospheric pressure plasma treatment in which a gas containing fluorine or a fluorine compound is used as an introduction gas and plasma irradiation is performed in a reduced-pressure atmosphere or an atmospheric pressure atmosphere.
  • plasma treatment is performed in a gas containing a fluorine compound and oxygen, a phenomenon occurs in which the fluorine compound enters the surface of the organic material in parallel with the above reaction.
  • each quantum dot-containing layer formation region 4 defined by the pattern of the partition walls 2 is formed on the surface of the substrate 1.
  • the functional layer for example, by appropriately selecting the type and content of a colorant, light scattering particles, etc., by blocking or diffusing desired light from the light source and light from outside light, or the performance of both It can be set as the layer which provides.
  • the functional layer may be provided on the quantum dot-containing cured layer after the quantum dot-containing cured layer is formed.
  • a functional layer provided on a quantum dot content hardening layer functional layers, such as a gas barrier layer, are mentioned, for example.
  • a material and a formation method of the functional layer can be appropriately selected depending on the function.
  • the functional layer is formed, for example, by a known method such as a photolithography method or an ink jet method, and a coating film of a resin composition containing a resin and, if necessary, a colorant or light scattering particles is cured. Can be obtained.
  • the quantum dot-containing composition according to the present invention for each color is prepared as an inkjet ink.
  • a sub-pixel forming ink of a desired color is applied to each quantum dot-containing layer forming region 4 defined by the pattern of the partition wall 2 on the surface of the substrate 1 by an ink jet method.
  • a quantum dot content layer is formed by spraying. In this ink spraying process, the sub-pixel forming ink does not easily increase in viscosity at the tip of the head 5 and can continue to maintain good ejection properties.
  • the ink of the corresponding color can be adhered accurately and uniformly in the predetermined quantum dot-containing layer formation region, and when the second solvent has a predetermined surface tension and viscosity, a corner is formed. It is possible to form sub-pixels that are wet and spread, and have no color unevenness or color loss with an accurate pattern.
  • the ink for forming subpixels of each color can be simultaneously sprayed onto the substrate using a plurality of heads, the working efficiency can be improved as compared with the case of forming subpixels for each color.
  • the quantum dot-containing layer 6 of each color is dried and pre-baked as necessary, it is cured by appropriately exposing and / or heating.
  • prebaking is performed on a hot plate at 60 to 140 ° C. for 3 to 20 minutes.
  • each quantum dot-containing hardened layer 7 may be the same type or different types.
  • each sub-pixel is not particularly limited, but may be, for example, 5 ⁇ m ⁇ 5 ⁇ m or more and 200 ⁇ m ⁇ 200 ⁇ m or less.
  • a desired quantum dot-containing cured layer can be accurately formed on such a small subpixel.
  • the thickness of a quantum dot containing hardened layer can be about 0.01 micrometer or more and 10 micrometers or less, for example.
  • the thickness of the cured layer may be changed for each subpixel, and the optimum thickness may be set for each color.
  • the maximum value of the film thickness of the quantum dot-containing cured layer is 15 ⁇ m or less. Further, it is preferably 10 ⁇ m or less.
  • the difference between the maximum value of the film thickness of the quantum dot-containing cured layer, particularly the maximum value of the film thickness at the end of the quantum dot-containing cured layer and the average film thickness is It is preferably 5 ⁇ m or less, more preferably 2.5 ⁇ m or less. In such a case, the thick film portion becomes dark and display defects are reduced.
  • the film thickness refers to the height from the substrate.
  • the average film thickness of the cured layer is calculated by dividing the volume of the coating film in the subpixel by the area of the surface of the cured layer. Furthermore, the maximum value of the film thickness at the end portion means the value of the film thickness at the highest film thickness in the end bulge portion.
  • the optical member 101 is manufactured using the quantum dot containing curable composition which concerns on this invention.
  • the manufacturing method of the optical member which concerns on this invention may further have the process of forming the overcoat layer which covers the partition 2 and the quantum dot containing hardening layer 7.
  • FIG. That is, the optical member obtained by the manufacturing method according to the present invention may have an overcoat layer 9 that covers the partition walls 2 and the quantum dot-containing cured layer 7 as shown in FIG.
  • the overcoat layer is provided in order to flatten the optical member and prevent elution of components contained in the subpixel and intrusion of oxygen and moisture.
  • the thickness of the overcoat layer can be set in consideration of the light transmittance of the material used, the surface state of the optical member, etc., and can be set, for example, in the range of 0.01 to 2.0 ⁇ m.
  • the overcoat layer may be, for example, a known photosensitive resin, an organic material such as a two-part curable resin, silicon oxide, aluminum oxide, tantalum oxide, yttrium oxide, hafnium oxide, zirconia oxide, titanium oxide, or other metal oxide, Among materials such as silicon oxynitrides, metal alkoxides, silicon oxynitride, hafnium aluminate, and other inorganic materials, organic-inorganic hybrid materials, etc., those having light transmittance, gas barrier properties, etc. required as a protective layer Can be formed. Further, the method for forming the overcoat layer is appropriately selected from known methods depending on the material to be used, and is not particularly limited. However, when the inorganic material, the organic-inorganic hybrid material, or the like is used, for example, a sol-gel method, vapor deposition, or the like. Method, sputtering method and the like.
  • a method of forming the quantum dot-containing layer by selectively attaching the quantum dot-containing curable composition to the quantum dot-containing layer forming region by an ink jet method is preferably used. be able to.
  • ink When ink is attached to a quantum dot-containing layer formation region that has a high affinity with the quantum dot-containing curable composition, that is, a large ink affinity, the ink wettability is further improved, and color loss and film thickness unevenness are reduced. This is because it is possible to obtain sub-pixels that can be more effectively prevented and that do not cause brightness or color unevenness.
  • the process of selectively changing the wettability in a predetermined region of the substrate surface to form a quantum dot-containing layer forming region having a higher ink affinity than the surroundings is not particularly limited, and the plasma treatment as described above
  • a surface treatment such as the above may be used.
  • plasma treatment is performed in a gas containing a fluorine-based compound and oxygen, unreacted groups are generated on the surface of the inorganic material by plasma discharge, and the unreacted groups are oxidized by oxygen, and carbonyl groups, hydroxyl groups, etc. Polar groups are generated and ink affinity is imparted.
  • the organic material a phenomenon occurs in which the fluorine-based compound enters the surface of the organic material in parallel with the above reaction.
  • the amount of fluorine compound is larger than oxygen, for example, in a gas atmosphere with an excessive amount of fluorine compound such that the content of fluorine compound relative to the total amount of fluorine compound and oxygen is set to 60% or more. Since the fluorine compound mixing phenomenon is more prominent than the oxidation reaction with oxygen, the organic material surface is depolarized by the mixing phenomenon and ink repellency is imparted.
  • the glass substrate corresponding to the quantum dot-containing layer forming region is The ink affinity is greater than the surroundings, the partition walls 2 and the protrusions are ink repellant, and the protrusions are the ink repellency protrusions 3.
  • the partition wall 2 is formed of an inorganic material and the convex portion is formed thereon with an organic material, the glass substrate and the partition wall 2 have high ink affinity, and the convex portion has ink repellency.
  • Manufacturing method of display device includes: A step of producing an optical member by the method of producing an optical member according to the present invention; And a step of mounting the manufactured optical member.
  • the display device manufactured by the method for manufacturing a display device according to the present invention is not particularly limited as long as the display device includes an optical member manufactured by the method for manufacturing an optical member of the present invention. It can select suitably from conventionally well-known display apparatuses, for example, a micro LED display apparatus, a quantum dot light emission display apparatus, a liquid crystal display apparatus, an organic light emission display apparatus etc. are mentioned.
  • the manufacturing method of the present invention is particularly preferable as a manufacturing method of a micro LED display device and a quantum dot light-emitting display device because it can achieve high luminance and a wide color reproduction range.
  • FIG. 2 is a schematic diagram illustrating an example of a display device obtained by the manufacturing method according to the present invention, and is a schematic diagram illustrating an example of a micro LED display device. As illustrated in FIG.
  • the micro LED display device 200 has a configuration in which the above-described optical member (light conversion member) 100 of the present invention and the counter substrate 11 having a micro LED substrate are bonded together.
  • the optical member 100 included in the micro LED display device 200 includes the overcoat layer 9 and is assembled so that the surface of the optical member 100 on the overcoat layer 9 side and the counter substrate 11 face each other.
  • the optical member 100 included in the micro LED display device 200 includes subpixels 10R, 10G, and 10B that are adjusted to red, green, or blue.
  • the sub-pixel 10 ⁇ / b> R that is adjusted to red has a quantum dot-containing cured layer 7 ⁇ / b> R containing quantum dots that exhibit red emission color, and blocks blue light between the substrate 1 and the quantum dot-containing cured layer 7 ⁇ / b> R.
  • the functional layer 8 is provided.
  • the subpixel 10G to be adjusted to green has a quantum dot-containing cured layer 7G containing a quantum dot that exhibits a green emission color, and blocks blue light between the substrate 1 and the quantum dot-containing cured layer 7G.
  • the functional layer 8 is provided.
  • the sub-pixel 10 ⁇ / b> B that adjusts to blue does not have the quantum dot-containing cured layer but has the functional layer 8.
  • the micro LED display device obtained by the manufacturing method of the present invention is not limited to the configuration shown in FIG. 2, and is generally a micro LED display device using a semiconductor optical member (light conversion member). A known configuration can be adopted.
  • the counter substrate can be appropriately selected and used according to the driving method of the micro LED display device of the present invention.
  • micro LED display device obtained by the manufacturing method of the present invention is not limited to the one having the configuration shown in FIG. 2, and is described in, for example, JP-T-2016-523450, JP-T-2016-533030, etc. The thing which has the well-known structure to be mentioned can also be mentioned.
  • FIG. 3 is a schematic diagram illustrating another example of a display device obtained by the manufacturing method according to the present invention, and is a schematic diagram illustrating an example of a quantum dot light-emitting display device.
  • the quantum dot light emitting display device 300 includes a color filter 40 and a light emitter 80 including the optical member 74 of the present invention.
  • An organic protective layer 50 or an inorganic oxide film 60 may be provided between the color filter 40 and the light emitter 80.
  • the transparent anode 71, the hole injection layer 72, the hole transport layer 73, the optical member 74 of the present invention, the electron injection layer 75, and the cathode 76 are sequentially formed on the color filter 40. And a method of bonding the light emitter 80 formed on another substrate onto the inorganic oxide film 60.
  • the transparent anode 71, the hole injection layer 72, the hole transport layer 73, the electron injection layer 75, the cathode 76, and other configurations in the light emitter 80 known configurations can be appropriately used.
  • the quantum dot light emitting display device 300 manufactured as described above can be applied to, for example, a passive drive type QLED display and an active drive type QLED display.
  • FIG. 4 is a schematic diagram showing another example of a display device obtained by the manufacturing method according to the present invention, and is a schematic diagram showing an example of a liquid crystal display device. As illustrated in FIG.
  • the liquid crystal display device 400 includes an optical member (light conversion member) 100 and a liquid crystal driving substrate having a liquid crystal layer 13 on one surface side of a counter substrate 12 having a TFT array substrate or the like.
  • a liquid crystal layer 13 is provided between the optical member (light converting member) 100 and the counter substrate 12.
  • the liquid crystal display device of the present invention is not limited to the configuration shown in FIG. 4, and generally has a known configuration as a liquid crystal display device using a semiconductor optical member (light conversion member). Can do.
  • the driving method of the liquid crystal display device of the present invention is not particularly limited, and a driving method generally used for a liquid crystal display device can be employed. Examples of such a drive method include a TN method, an IPS method, an OCB method, and an MVA method. In the present invention, any of these methods can be preferably used. Further, the counter substrate can be appropriately selected and used according to the driving method of the liquid crystal display device of the present invention.
  • a method for forming a liquid crystal layer a method generally used as a method for producing a liquid crystal cell can be used, and examples thereof include a vacuum injection method and a liquid crystal dropping method.
  • an organic light emitting display device is manufactured by the method for manufacturing a display device according to the present invention
  • the step of mounting the manufactured optical member for example, a step of preparing an organic light emitting body including the manufactured optical member, A step of assembling the organic light emitter and the color filter to face each other.
  • An organic light-emitting display device obtained by the method for manufacturing a display device according to the present invention has an organic light-emitting body including the optical member (light-emitting member) according to the present invention described above.
  • Such an organic light emitting display device of the present invention will be described with reference to the drawings.
  • the organic light emitting display device 500 includes a color filter 40 and an organic light emitter 81 including an optical member (light emitting member) 74 ′ according to the present invention.
  • An organic protective layer 50 or an inorganic oxide film 60 may be provided between the color filter 40 and the organic light emitter 81.
  • the optical member (light emitting member) according to the present invention used in the organic light emitting display device has a subpixel having a quantum dot-containing cured layer and a subpixel having a light emitting layer containing an organic light emitting compound. Can do.
  • the organic light emitting compound an organic light emitting compound used in a light emitting layer of a known organic light emitting display device can be used.
  • the optical member according to the present invention that can have a transparent anode 71, a hole injection layer 72, a hole transport layer 73, and a light-emitting layer containing an organic light-emitting compound on the color filter upper surface ( Light-emitting member) 74 ′, electron injection layer 75, and cathode 76 are sequentially formed, and an organic light-emitting body 180 formed on another substrate is bonded onto the inorganic oxide film 60.
  • the organic light emitting display device 500 thus manufactured can be applied to, for example, a passive drive type organic EL display or an active drive type organic EL display. Note that the organic light emitting display device of the present invention is not limited to the configuration shown in FIG. 5, and can be configured as a general organic light emitting display device.
  • the weight average molecular weight was measured with a Shodex GPC System-21H (polystyrene) as a standard substance and THF as an eluent.
  • the acid value was measured based on JIS K 0070.
  • Production Example 1-1 Synthesis of epoxy group-containing copolymer B
  • diethylene glycol monobutyl ether acetate also referred to as butyl carbitol acetate, hereinafter sometimes referred to as BCA
  • BCA diethylene glycol monobutyl ether acetate
  • PGMEA Propylene glycol monomethyl ether acetate (boiling point: 146 ° C)
  • BCA Diethylene glycol monobutyl ether acetate (boiling point: 247 ° C.)
  • GMA Glycidyl methacrylate
  • CHMA Cyclohexyl methacrylate
  • Perbutyl O t-Butylperoxy 2-ethylhexanoate (trade name, manufactured by NOF Corporation)
  • the obtained binder acrylic resin B is a resin in which a side chain having an ethylenic double bond is introduced into the main chain formed by copolymerization of CHMA, MMA, and MAA using GMA.
  • the solid content was 40 mass% and the acid value was 3 mgKOH / g.
  • the binder acrylic resin B had a weight average molecular weight of 12,000.
  • a binder acrylic resin C solution was obtained in the same manner as in Synthesis of binder acrylic resin B in Production Example 3-1, except that CHMA was 40 parts by mass, MMA was 15 parts by mass, and MAA was 25 parts by mass.
  • the obtained binder acrylic resin C is a resin in which a side chain having an ethylenic double bond is introduced into the main chain formed by copolymerization of CHMA, MMA, and MAA using GMA.
  • the solid content was 40% by mass, and the acid value was 74 mgKOH / g.
  • the binder acrylic resin C had a weight average molecular weight of 12500.
  • the obtained binder acrylic resin D is a resin in which a side chain having an ethylenic double bond is introduced into the main chain formed by copolymerization of styrene and MAA using GMA.
  • the minute was 40% by mass.
  • the binder acrylic resin D had a weight average molecular weight of 10,000.
  • the binder acrylic resin was manufactured in the same manner as in the production of the binder acrylic resin B of Production Example 3-1, except that 34 parts by mass of CHMA, 22 parts by mass of MMA, 22 parts by mass of MAA, and 22 parts by mass of glycidyl methacrylate (GMA) were used.
  • a resin E solution was obtained.
  • the obtained binder acrylic resin E is a resin in which a side chain having an ethylenic double bond is introduced into the main chain formed by copolymerization of CHMA, MMA, and MAA using GMA.
  • the solid content was 40% by mass, and the acid value was 64 mgKOH / g.
  • the binder acrylic resin E had a weight average molecular weight of 8700.
  • Example 1 Preparation of Binder Composition A Teflon (registered trademark) -coated rotor was placed in a sample bottle and placed on a magnetic stirrer. In this sample bottle, the epoxy group-containing copolymer A described in Preparation Example 1-1, polyfunctional epoxy resin, etc. are added according to the following ratio, and sufficiently stirred and dissolved at room temperature. A diluting solvent was added and dissolved with stirring so that the solid content was 40% by mass, and this was filtered to obtain a binder composition.
  • Teflon (registered trademark) -coated rotor was placed in a sample bottle and placed on a magnetic stirrer.
  • the epoxy group-containing copolymer A described in Preparation Example 1-1, polyfunctional epoxy resin, etc. are added according to the following ratio, and sufficiently stirred and dissolved at room temperature. A diluting solvent was added and dissolved with stirring so that the solid content was 40% by mass, and this was filtered to obtain a binder composition.
  • a quantum dot-containing cured layer (quantum dot-containing cured product) was formed to obtain an optical member.
  • Examples 2-6 and Comparative Examples 1-2, 4 In preparation of (2) quantum dot containing curable composition of Example 1, it replaces with BCA and it shows in Table 3 so that the mixing
  • the quantum dot-containing curable compositions and optical members of Examples 2 to 6 and Comparative Examples 1 to 2, and 4 were obtained in the same manner as Example 1 except that each solvent was used.
  • Example 7 and 8 In the preparation of the binder composition of Example 1 (1), the composition of the binder component was changed to the composition shown in Table 3, and the composition of the solvent in the quantum dot-containing curable composition was as shown in Table 3. As described above, the quantum dot-containing curability of Examples 7 and 8 was the same as Example 1 except that instead of PGMEA, a mixed solvent of PGMEA and BCA was used as the diluent solvent used in the binder composition. A composition and an optical member were obtained.
  • Example 3 In the preparation of the binder composition of Example 1 (1), the composition of the binder component was changed to be the same composition as the binder component of Example 7, and instead of PGMEA as a diluent solvent used in the binder composition, The quantum dot containing curable composition and optical member of the comparative example 3 were obtained like Example 1 except having used BCA.
  • Comparative Example 5 In the preparation of the binder composition of Example 1 (1), the composition of the binder component was changed so as to be the same as the binder component of Example 7, and instead of PGMEA as a diluent solvent used in the binder composition, BCA In the preparation of (2) quantum dot-containing curable composition of Example 1 in the same manner as in Example 1 except that ethyl acetate was used instead of BCA, the quantum dot-containing curing of Comparative Example 3 was used. Composition and an optical member were obtained.
  • Example 9 In the preparation of the curable composition containing quantum dots (2) in Example 1, PGMEA and BCA are used instead of BCA so that the composition of the solvent in the quantum dot-containing curable composition is as shown in Table 3.
  • the quantum dot-containing curable compositions and optical members of Examples 9 to 11 were obtained in the same manner as in Example 1 except that the mixed solvent was used.
  • Example 12 In the preparation of the binder composition of Example 1 (1), the composition of the binder component was changed so as to be the same as the binder component of Example 7, and the composition of the solvent in the quantum dot-containing curable composition was changed to Table 3. In the same manner as in Example 1 except that instead of PGMEA, a mixed solvent of PGMEA and BCA was used as the diluent solvent, the quantum dot-containing curable composition of Example 12 and An optical member was obtained.
  • Examples 13 to 16 In the preparation of the binder composition of Example 1 (1), the composition of the binder component was changed to the composition shown in Table 4, and in the preparation of the optical member of Example 1 (3), a quantum dot-containing cured layer ( The quantum dot-containing curable compositions and optical members of Examples 13 to 16 were obtained in the same manner as in Example 1 except that the method for forming the quantum dot-containing curable composition) was changed to the following method.
  • a black matrix pattern having a line width of 20 ⁇ m and a film thickness of 5.0 ⁇ m is formed on a glass substrate (manufactured by Asahi Glass Co., Ltd.) having a thickness of 0.7 mm by a photolithographic method using a curable resin composition for black matrix. Formed.
  • the obtained quantum dot containing curable composition was made to adhere in the area
  • Examples 17 to 19, 24, 29 In the preparation of the binder composition of Example 1 (1), the composition of the binder component was changed to the composition shown in Table 4, and in the preparation of the curable composition containing (2) quantum dots of Example 1, Including the quantum dots of Examples 17 to 19, 24, and 29 in the same manner as in Example 1, except that the materials and the blending thereof were changed so that the composition of the dot-containing curable composition became the composition shown in Table 4. A curable composition and an optical member were obtained.
  • Examples 20 to 23, 25 to 28, 30 to 33 In the preparation of the binder composition of Example 1 (1), the composition of the binder component was changed to the composition shown in Table 4, and in the preparation of the curable composition containing (2) quantum dots of Example 1, In the production of the optical member of Example 1 (3), the quantum dot-containing cured layer (quantum dot-containing cured layer) was changed so that the composition of the dot-containing curable composition was changed to the composition shown in Table 4
  • the curable composition containing quantum dots of Examples 20 to 23, 25 to 28, and 30 to 33 is the same as Example 1, except that the method for forming the composition is changed to the same method as in Example 13. And the optical member was obtained.
  • Examples 34 to 37 In the preparation of the binder composition of Example 1 (1), the composition of the binder component was changed to the composition shown in Table 5, and in the preparation of the curable composition containing (2) quantum dots of Example 1, Quantum dot-containing curable compositions of Examples 34 to 37 in the same manner as in Example 1 except that the materials and the blending thereof were changed so that the composition of the dot-containing curable composition was as shown in Table 5. And the optical member was obtained.
  • the total amount of MEK (methyl ethyl ketone) in Example 37 was included in the urethane resin (Nipporan 5253).
  • Examples 38 to 44 In the preparation of the binder composition of Example 1 (1), the composition of the binder component was changed to the composition shown in Table 5, and in the preparation of the curable composition containing (2) quantum dots of Example 1, In the production of the optical member of Example 1 (3), the quantum dot-containing cured layer (quantum dot-containing curing) was changed so that the composition of the dot-containing curable composition was changed to the composition shown in Table 5
  • the quantum dot-containing curable compositions and optical members of Examples 38 to 44 were obtained in the same manner as in Example 1, except that the method for forming the curable composition) was changed to the same method as in Example 13.
  • Example 45 (1) Preparation of dispersion In a 225 mL mayonnaise bottle, 65 parts by mass of PGMEA, acrylic block resin (trade name, BYK-LPN6919, amine value 120 mgKOH / g, Big Chemie Japan) (solid content 60%) 33 parts by mass The mixture was stirred.
  • Example 46 to 49 In the preparation of the binder composition in Example 1 (1), the composition of the binder component was changed to the composition shown in Table 6, and in the preparation of the curable composition containing quantum dots in Example 1 (2).
  • the quantum dot-containing curable compositions of Examples 46 to 49 were the same as Example 1 except that EEP was used instead of BCA so that the composition of the quantum dot-containing curable composition was as shown in Table 6.
  • a composition was obtained.
  • An optical member was obtained in the same manner as in Example 1 except that each of the obtained quantum dot-containing curable compositions was used and the post-baking temperature was changed to 150 ° C.
  • Examples 50 to 60 In the preparation of the binder composition in Example 1 (1), the composition of the binder component was changed to the composition shown in Table 6, and in the preparation of the curable composition containing quantum dots in Example 1 (2).
  • the quantum dot-containing curable compositions of Examples 50 to 60 were the same as Example 1 except that the quantum dot-containing curable composition was changed to EEP instead of BCA such that the composition of the quantum dot-containing curable composition was as shown in Table 6. A composition was obtained. Further, in the manufacture of optical elements, optical members of Examples 50 to 60 were obtained in the same manner as in Example 13 for forming the quantum dot-containing cured layer (quantum dot-containing curable composition).
  • Example 61 In Example 45, the quantum dot-containing curability of Example 61 having the blending ratio shown in Table 6 is the same as that of Example 45 except that the composition shown in Table 6 is changed to EEP instead of BCA. A composition was obtained. In the production of the optical element, the optical member of Example 61 was obtained in the same manner as in Example 13 for forming the quantum dot-containing cured layer (quantum dot-containing curable composition).
  • C Ink does not come out from most holes in the head. [Evaluation criteria for intermittent discharge stability] AA: It is possible to re-discharge ink from all holes of the head. A: There are a few holes in the head where ink does not come out. B: About half of the holes where ink does not come out on the head. C: Ink does not come out from most holes in the head.
  • Quantum dot dispersibility A section obtained by cutting the optical member of each example and each comparative example obtained above to 100 nm width is prepared, and the cut surface of the quantum dot-containing cured layer included in the section is defined as a transmission electron.
  • Microscope TEM (transmission electron microscopy) model number Tecnai G2 spirits (manufactured by FEI) was used and observed at 50,000 times. The state of aggregation of the quantum dots was observed at a field of view of 500 nm ⁇ 500 nm and evaluated according to the following evaluation criteria. The evaluation results are shown in Tables 3-6. [Evaluation criteria for quantum dot dispersibility] AA: Aggregation is not observed A: Mild aggregation is observed B: Partial aggregation is observed C: Many aggregates are observed
  • surface has shown the solid content conversion value.
  • the abbreviations in the table are as follows. 748056-25MG: Quantum dot, Merck 777750-5ML: Quantum dot solution, Merck 790192-25MG: Quantum dot, Merck 777777-5ML: Quantum dot solution, Merck jER1001: Multifunctional epoxy resin, product Name, manufactured by Mitsubishi Chemical Corporation jER157S70: polyfunctional epoxy resin, trade name, manufactured by Mitsubishi Chemical Corporation, Nippon Run 5253: urethane resin, trade name, manufactured by Tosoh Corporation Coronate L: isocyanate curing agent, trade name, manufactured by Tosoh Corporation 200: Polyester resin, trade name, manufactured by Toyobo Co., Ltd.
  • Byron 802 Polyester resin, trade name, manufactured by Toyobo Co., Ltd., Marquide No. 1: Maleic acid resin, trade name, Marquide No. 31: Maleic acid resin, trade name, manufactured by Arakawa Chemical Co., Ltd.
  • BYK6919 Acrylic block resin, trade name, BYK-LPN6919, Big Chemie Japan
  • DPPA Dipentaerythritol pentaacrylate
  • Irg184 1-hydroxy-cyclohexyl-phenyl-ketone
  • BCA Diethylene glycol monobutyl ether acetate
  • Solfit AC 3-methoxy-3-methylbutyl acetate
  • Solfit 3-methoxy-3-methyl-1-butanol
  • EEP Ethyl 3-ethoxypropionate
  • PGMEA Propylene glycol monomethyl ether acetate
  • MEK Methyl ethyl ketone
  • the ejection stability in the inkjet method was inferior, and aggregation and unevenness of quantum dots were observed in the cured layer.
  • the comparative example 3 used only the 1st solvent as a solvent and did not use the 2nd solvent, aggregation and the nonuniformity of the quantum dot were observed in the hardened layer.
  • Comparative Example 4 since a mixed solvent of the second solvent and a high-boiling solvent not corresponding to any of the first solvent and the second solvent was used, aggregation and unevenness of quantum dots were observed in the cured layer.
  • Comparative Example 5 uses a mixed solvent of a first solvent and a low boiling point solvent that does not correspond to any of the first solvent and the second solvent, so that the ejection stability in the ink jet method is inferior, and the quantum dots are aggregated in the cured layer. And unevenness was observed.
  • the ratio of the first solvent in the total solvent is 30% by mass to 80% by mass, and the second solvent It was shown that the dispersibility of a quantum dot is more excellent in the ratio of 20 mass% or more and 70 mass% or less, and a nonuniformity is reduced. Further, Examples 13 to 16 showed that even when a photocurable binder component was used, the ejection stability in the ink jet system was excellent, the dispersibility of the quantum dots was excellent, and unevenness was reduced.
  • Example 13 using the heat latent (meth) acrylic copolymer and Example 16 using the styrene- (meth) acrylic copolymer the dispersibility of the quantum dots was excellent. Further, from Examples 17 and 18, even when the content of quantum dots in the quantum dot-containing curable composition is increased, the ejection stability in the ink jet system is excellent, the quantum dots are excellent in dispersibility, and unevenness is reduced. It was shown that. Also, from Examples 19 to 33, even if the type of quantum dots in the quantum dot-containing curable composition and the type of the second solvent are changed, the ejection stability in the ink jet system is excellent, and the quantum dot dispersibility is excellent. It was shown that unevenness was reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)

Abstract

硬化性バインダー成分と、量子ドットと、溶剤とを含有し、前記溶剤が、第一溶剤として、沸点が165℃以上260℃以下の溶剤成分を含有し、更に第二溶剤として、沸点が100℃以上165℃未満の溶剤成分を含有する、量子ドット含有硬化性組成物を提供する。

Description

量子ドット含有硬化性組成物、量子ドット含有硬化物、光学部材の製造方法、及び表示装置の製造方法
 本発明は、量子ドット含有硬化性組成物、量子ドット含有硬化物、光学部材の製造方法、及び表示装置の製造方法に関する。
 近年、発光材料として注目されている量子ドット(Quantum Dot;QD)は、半導体のナノメートルサイズの微粒子(半導体ナノ結晶)であり、電子や励起子がナノメートルサイズの小さな結晶内に閉じ込められる量子閉じ込め効果(量子サイズ効果)により、特異的な光学的、電気的性質を示し、幅広い分野でその利用が期待され、ディスプレイ用途としての利用も提案されている。量子ドットより放出される光は、その波長が量子ドットの粒径に依存しており、粒径の制御により種々の波長の光を得ることができる。また、量子ドットの発光は、スペクトル幅が狭いため、色純度に優れる。
 量子ドットを含有する層は、該量子ドットを分散させた分散液を塗布する湿式法、或いは、量子ドット原料を蒸着法やスパッタリング等により膜化する乾式法により、形成することができ、装置や工程の簡便性や、得られる層の平滑性等の観点から、湿式法が採用される傾向がある。例えば特許文献1には、量子ドットを含む層を、スクリーン印刷、コンタクト印刷、またはインクジェット印刷等によって基板表面に形成する旨が記載されている。
特表2010-533976号公報
 しかしながら、湿式法で量子ドット含有層を形成する場合、分散液中において、量子ドットが凝集しやすいという問題がある。量子ドットの発光色はそのサイズに依存していることから、量子ドットが凝集し、その結晶構造が変化すると、発光色の変化、さらには、消光を引き起こす場合があり、発光特性を低下させる大きな原因のひとつとなる。
 また、インクジェット方式でインクを正確なパターンに合わせて吹き付けるためには、吐出ヘッドから吐出する際の直進性、安定性が求められる。しかし、インクジェット方式により量子ドット含有層を形成する場合、量子ドットが凝集することにより、インクジェットヘッドに目詰まりが生じやすくなるという問題がある。また、インクの蒸発速度が早すぎると、吐出ヘッドのノズル先端でインクの粘度が急激に増加してインク滴の飛行曲がりが発生したり、時間を空けて間歇的に吐出すると目詰まりを起こして再吐出できなくなったりする。
 また、インクジェット方式により形成されるインキ層は、表面に放射状のムラが生じる場合がある。量子ドット含有層の表面にムラが生じると、発光色にムラが生じる場合がある。
 本発明は上記実状に鑑みて成し遂げられたものであり、インクジェット方式における吐出安定性に優れ、量子ドットの凝集が抑制され、且つムラが低減された量子ドット含有硬化層を形成可能な量子ドット含有硬化性組成物を提供することを目的とする。また、本発明は、前記量子ドット含有硬化性組成物を用いて形成されたムラが低減された量子ドット含有硬化物を提供することを目的とする。また、本発明は、前記量子ドット含有硬化性組成物を用いて形成されたムラが低減された量子ドット含有硬化層を有する、光学部材の製造方法を提供することを目的とする。また、本発明は、前記光学部材の製造方法を用いた、表示装置の製造方法を提供することを目的とする。
 本発明に係る量子ドット含有硬化性組成物は、硬化性バインダー成分と、量子ドットと、溶剤とを含有し、
 前記溶剤が、第一溶剤として、沸点が165℃以上260℃以下の溶剤成分を含有し、更に第二溶剤として、沸点が100℃以上165℃未満の溶剤成分を含有する。
 本発明に係る量子ドット含有硬化物は、前記本発明に係る量子ドット含有硬化性組成物の硬化物である。
 本発明に係る光学部材の製造方法は、基板上の所定領域に、前記本発明に係る量子ドット含有硬化性組成物を、インクジェット方式によって選択的に付着させて量子ドット含有層を形成する工程と、
 前記量子ドット含有層を硬化させて量子ドット含有硬化層を形成する工程と、
を有する。
 本発明に係る表示装置の製造方法は、前記本発明に係る光学部材の製造方法により光学部材を製造する工程と、
 前記製造された光学部材を搭載する工程とを有する。
 本発明によれば、インクジェット方式における吐出安定性に優れ、量子ドットの凝集が抑制され、且つムラが低減された量子ドット含有硬化層を形成可能な量子ドット含有硬化性組成物を提供することができる。また、本発明によれば、前記量子ドット含有硬化性組成物を用いて形成されたムラが低減された量子ドット含有硬化物を提供することができる。また、本発明によれば、前記量子ドット含有硬化性組成物を用いて形成されたムラが低減された量子ドット含有硬化層を有する、光学部材の製造方法を提供することができる。また、本発明によれば、前記光学部材の製造方法を用いた、表示装置の製造方法を提供することができる。
本発明に係る光学部材の製造方法の一例を説明する図である。 本発明に係る製造方法により得られる表示装置の一例を示す概略図である。 本発明に係る製造方法により得られる表示装置の別の一例を示す概略図である。 本発明に係る製造方法により得られる表示装置の別の一例を示す概略図である。 本発明に係る製造方法により得られる表示装置の別の一例を示す概略図である。 量子ドット含有硬化層のムラを評価する方法を説明する図である。
 以下、本発明に係る量子ドット含有硬化性組成物、量子ドット含有硬化物、光学部材の製造方法、及び表示装置の製造方法について、順に詳細に説明する。
 なお、本発明において光には、可視及び非可視領域の波長の電磁波、さらには放射線が含まれ、放射線には、例えばマイクロ波、電子線が含まれる。具体的には、波長5μm以下の電磁波、及び電子線のことをいう。
 本発明において(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表し、(メタ)アクリルとは、アクリル及びメタクリルの各々を表し、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表す。
I.量子ドット含有硬化性組成物
 本発明に係る量子ドット含有硬化性組成物は、硬化性バインダー成分と、量子ドットと、溶剤とを含有し、
 前記溶剤が、第一溶剤として、沸点が165℃以上260℃以下の溶剤成分を含有し、更に第二溶剤として、沸点が100℃以上165℃未満の溶剤成分を含有する。
 本発明に係る量子ドット含有硬化性組成物は、光学部材が有する発光層や光変換層等の量子ドットを含有する層を、インクジェット方式により形成するのに適した組成物であり、インクジェット用として好ましく用いることができる。
 本発明に係る量子ドット含有硬化性組成物は、沸点が165℃以上260℃以下の第一溶剤と、沸点が100℃以上165℃未満の第二溶剤とを組み合わせて含有する溶剤を用いることにより、量子ドット含有硬化性組成物中の量子ドットの凝集を抑制し、分散性を向上することができる。これは、インク中、特にインクジェット装置内でのインク中の溶剤組成の安定性が高く、量子ドットの凝集を抑制でき、分散性を維持できるためと推定される。また、本発明に係る量子ドット含有硬化性組成物を用いることにより、量子ドットの凝集が抑制された量子ドット含有硬化層を形成することができる。これは、本発明に係る量子ドット含有硬化性組成物が、上述したように量子ドットの分散性に優れるため、量子ドットを均一に分散することができ、且つバインダー成分として硬化性バインダー成分を用いるため、本発明に係る量子ドット含有硬化性組成物を硬化させると、量子ドットが均一に分散された状態を維持しながら、硬化性バインダー成分が架橋構造を形成して量子ドットを固定するためと考えられる。
 また、本発明に係る量子ドット含有硬化性組成物は、前記特定の第一溶剤と前記特定の第二溶剤とを組み合わせて含有する溶剤を用いることにより、インクジェット方式における吐出安定性に優れながら、ムラが低減された量子ドット含有硬化層を形成することができる。本発明に係る量子ドット含有硬化性組成物は、乾燥速度が適度に遅い前記特定の第一溶剤が、量子ドット含有硬化性組成物の急速な乾燥を抑制するため、吐出ヘッドから量子ドット含有硬化性組成物が吐出する際の直進性及び安定性を向上し、また、吐出ヘッドの目詰まりを抑制することにより、優れた吐出安定性を有すると考えられる。また、本発明に係る量子ドット含有硬化性組成物を用いてムラが低減された量子ドット含有硬化層を形成することができるのは、前記特定の第一溶剤と前記特定の第二溶剤とを組み合わせて含有することにより、適度な乾燥速度を有するため、量子ドット含有層を形成する際の乾燥過程において、溶質の流動が抑制され、塗膜表面の放射状のムラの発生が抑制されるため、また、量子ドットの凝集に起因するムラの発生が抑制されるためと推定される。
 以下、本発明に係る量子ドット含有硬化性組成物に用いられる各成分について、溶剤から順に説明する。なお、以下において、本発明に係る量子ドット含有硬化性組成物をインクと称する場合がある。
 <溶剤>
 本発明に係る量子ドット含有硬化性組成物に用いられる溶剤は、第一溶剤として、沸点が165℃以上260℃以下の溶剤成分を含有し、更に第二溶剤として、沸点が100℃以上165℃未満の溶剤成分を含有することを特徴とする。
 沸点が165℃以上260℃以下の溶剤成分は、適度な乾燥性を有しているため、このような溶剤成分を第一溶剤として含有する本発明に係る量子ドット含有硬化性組成物は、間歇吐出及び連続吐出のいずれを行う場合でも急速には乾燥しないので、インクジェットヘッドのノズル先端において急激な粘度の上昇や目詰まりを起こし難く、吐出方向や吐出量の安定性に優れている。従って、本発明の量子ドット含有硬化性組成物を用いてインクジェット方式により基板表面に所定のパターンに合わせて吐出することにより、パターン状の量子ドット含有硬化層を正確且つ均一に形成することができる。
 更に、本発明に係る量子ドット含有硬化性組成物は、上記特定の第一溶剤に加えて、第二溶剤として沸点が100℃以上165℃未満の溶剤成分を適量組み合わせることにより、乾燥速度を最適化することができ、量子ドットの凝集を抑制できる。インクジェットヘッドのノズル先端においては急速に乾燥しないが、量子ドット含有硬化性組成物の塗膜乾燥時には乾燥速度が適度に速いことから溶質が流動することを抑制できる。従って、基板上に吐出された後は、基板表面になじんで十分にレベリングさせてから、適宜乾燥手段によって比較的短時間に且つ完全に乾燥させることができる。従って、本発明の量子ドット含有硬化性組成物を用いると、ムラが低減された膜厚の均一性の高いパターンが得られると共に、効率よく乾燥させることができる。
 前記第一溶剤として用いられる溶剤成分は、上記した沸点を有する溶剤であれば1種であっても又は2種以上の混合溶剤であっても良い。本発明に係る量子ドット含有硬化性組成物中の溶剤全量中の、前記第一溶剤の割合は、特に限定はされないが、インクジェット方式に適した乾燥性が得られやすく、インクジェットの初期吐出性及び間歇吐出安定性が向上する点から、30質量%以上であることが好ましく、初期吐出性をより向上する点から、40質量%以上であることがより好ましく、更に間歇吐出安定性をより向上する点から、50質量%以上であることがより更に好ましい。一方で、本発明に係る量子ドット含有硬化性組成物中の溶剤全量中の、前記第一溶剤の割合は、前記第二溶剤を十分に含有させることができ、組成物の乾燥速度を最適化することができる点から、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがより更に好ましく、65質量%以下であることが特に好ましい。
 前記第一溶剤の23℃での表面張力は、24mN/m以上であることが、パターニング時に量子ドット含有硬化性組成物の流出を抑制できる点から好ましい。なお、前記第一溶剤が2種以上の混合溶剤である場合には、混合溶剤全体として上記表面張力を有することが好ましい。
 また、基板表面に後述する濡れ性可変層を形成し露光することにより、基板上の量子ドット含有層を形成したい部分に親インク性領域を形成し、当該親インク性領域にインクジェット方式によって本発明の量子ドット含有硬化性組成物を選択的に付着させる場合には、第一溶剤として、JIS K6768に規定する濡れ性試験において示された標準液を用い、液滴を接触させて30秒後の接触角(θ)を測定し、ジスマンプロットのグラフにより求めた臨界表面張力が30mN/mの試験片の表面に対する接触角が25°以上、好ましくは30°以上を示し、且つ、同じ測定法により求めた臨界表面張力が70mN/mの試験片の表面に対する接触角が10°以下を示すものを選択して用いてもよい。第一溶剤が2種以上の混合溶剤である場合には、混合溶剤全体として上記接触角を有することが好ましい。
 濡れ性に関して上記挙動を示す溶剤を用いて量子ドット含有硬化性組成物を調製すると、当該組成物は、後述する濡れ性可変層の濡れ性を変化させる前は当該濡れ性可変層の表面に対して大きな反撥性を示し、当該濡れ性可変層の濡れ性を変化させて親水性が大きくなる方向に変化させた後は当該濡れ性可変層の表面に対して大きな親和性を示す。従って、濡れ性可変層の表面の一部を選択的に露光して形成した親インク性領域に対する量子ドット含有硬化性組成物の濡れ性と、その周囲の領域に対する撥インク性領域の濡れ性の差を大きくとることができるようになり、親インク性領域にインクジェット方式で吹き付けたインクが、親インク性領域の隅々にまで均一に濡れ広がるようにすることができる。
 ここで、臨界表面張力に関し上記特性を有する試験片は如何なる材料で形成されていても差し支えない。臨界表面張力30mN/mを示す試験片としては、例えば、表面が平滑なポリメチルメタクリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレンテレフタレート、平滑なガラス表面に前記ポリマーや表面改質剤等を塗布したものの中から実際に上記試験を行って該当するものを選択することができる。また、臨界表面張力70mN/mを示す試験片としては、例えば、ナイロンや親水化処理したガラス表面等を塗布したものの中から実際に上記試験を行って該当するものを選択することができる。
 前記第一溶剤としては、中でも、グリコールエーテル類、グリコールエーテルエステル類、脂肪族カルボン酸類、脂肪族エステル類、芳香族エステル類、ジカルボン酸ジエステル類、アルコキシカルボン酸エステル類、ケトカルボン酸エステル類、ハロゲン化カルボン酸類、アルコール類、フェノール類、脂肪族エーテル類、アルコキシアルコール類、グリコールオリゴマー類、アミノアルコール類、アルコキシアルコールエステル類、ケトン類、モルホリン類、脂肪族アミン類、芳香族アミン類、ハロゲン化芳香族炭化水素類及びアルカン類よりなる群から選択される1種以上であることが、量子ドットの凝集を抑制する点、及びインクジェット方式における吐出安定性の点から好ましい。
 より具体的には、前記第一溶剤としては、例えば以下に示すような溶剤の中から選んで用いることができる:エチレングリコールモノヘキシルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールメチルエチルエーテル、ジプロピレングリコールジメチルエーテルのようなグリコールエーテル類;エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートのようなグリコールエーテルエステル類;2-エチルヘキサン酸のような脂肪族カルボン酸類;酢酸シクロヘキシルのような脂肪族エステル類;安息香酸プロピルのような芳香族エステル類;炭酸ジエチルのようなジカルボン酸ジエステル類;3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチルのようなアルコキシカルボン酸エステル類;アセト酢酸メチル、アセト酢酸エチルのようなケトカルボン酸エステル類;クロロ酢酸、ジクロロ酢酸のようなハロゲン化カルボン酸類;エタノール、イソプロパノール、フェノール、2-メチルシクロヘキサノール、2-オクタノール、n-ヘプタノール、ジアセトンアルコールのようなアルコール類又はフェノール類;ジエチルエーテル、ジイソアミルエーテル、及び1、8-シネオールのような脂肪族エーテル類;3-メトキシ-3-メチル-1-ブタノールのようなアルコキシアルコール類;ジエチレングリコール、トリプロピレングリコールのようなグリコールオリゴマー類;2-ジエチルアミノエタノールのようなアミノアルコール類;3-メトキシ-3-メチルブチルアセテート、3-メトキシブチルアセテートのようなアルコキシアルコールエステル類;ジイソブチルケトン、メチルシクロヘキサノン、メチル-n-ヘキシルケトンのようなケトン類;フェニルモルホリンのようなモルホリン類;アニリンのような脂肪族又は芳香族アミン類;ジクロロベンゼン等のハロゲン化芳香族炭化水素類;デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等のアルカン類。
 前記第一溶剤としては、中でも、量子ドットの分散性の点、及びインクジェット方式における吐出安定性の点から、3-メトキシ-3-メチル-1-ブタノール、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、3-メトキシ-3-メチルブチルアセテート、ジエチレングリコールジブチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールメチルエチルエーテル、ジプロピレングリコールジメチルエーテル、ジイソアミルエーテル、1、8-シネオール、アジピン酸ジエチル、シュウ酸ジブチル、マロン酸ジメチル、マロン酸ジエチル、コハク酸ジメチル、コハク酸ジエチル、3-メトキシブチルアセテートアセト酢酸メチル、酢酸シクロヘキシル、3-エトキシプロピオン酸エチル、デカン、ウンデカン、ドデカン、トリデカン及びテトラデカンよりなる群から選択される1種以上であることが好ましく、量子ドットの分散性向上の点から、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、3-メトキシ-3-メチルブチルアセテート、3-エトキシプロピオン酸エチル、及び3-メトキシブチルアセテートよりなる群から選択される1種以上であることがより好ましい。
 また、前記第一溶剤は、水酸基を有しないものであることが、量子ドット含有硬化性組成物の保存安定性を向上する点から好ましく、特に、後述するブロック化カルボン酸硬化剤と組み合わせて用いる場合に、保存安定性を向上する点から好ましい。
 前記第二溶剤は、沸点が100℃以上165℃未満の溶剤成分であり、前記第一溶剤よりも適切に低い沸点を有する。従って、前記第二溶剤を前記第一溶剤に組み合わせることにより、インクジェットヘッドのノズル先端においては急速に乾燥しないが、量子ドット含有層乾燥時に溶質が流動することを抑制し、乾燥速度を適切に調整することが可能になる。第二溶剤として用いられる溶剤成分は、上記沸点を有する溶剤であれば単独で又は2種以上混合して用いても良い。
 中でも、第二溶剤に用いられる各溶剤成分の沸点は、更に、105℃以上160℃以下であることが好ましく、特に110℃以上150℃以下であることが、量子ドットの分散性が向上し、ムラが低減された良好な塗膜が得られ易い点から好ましい。
 本発明に係る量子ドット含有硬化性組成物中の溶剤全量中の、前記第二溶剤の割合は、特に限定はされないが、量子ドットの分散性を向上し、量子ドット含有硬化層のムラを抑制する点から、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがより更に好ましく、35質量%以上であることが特に好ましく、一方で、前記第一溶剤を十分に含有させることができ、インクジェット吐出性を向上できる点から、70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがより更に好ましい。
 また、前記第二溶剤の23℃での粘度は、0.5~6mPa・sであることが好ましい。このような場合には、第二溶剤が含まれることにより、上記第一溶剤が奏する効果を阻害することなく量子ドット含有硬化性組成物の粘度を適切に低下することが可能で、インク自体の濡れ広がり性が向上する結果、着弾したインク滴が量子ドット含有層形成領域全体の隅々にまで濡れ広がり易くなる。その結果、多様化している基板に対しても、着弾したインクが隔壁のきわ部分にまで濡れ広がることが可能になり、画素の色抜けや輝度低下を防止できる。領域の隅にインクを付着させるために領域の端の方にインクを着弾させる方法もあるが、この方法だと隔壁の間隙からインクが流出する恐れがある。それに対し、本発明のようにインク自体によって隔壁のきわ部分にまで濡れ広がらせることは、インク流出の恐れがなくより望ましい方法である。前記第二溶剤の23℃での粘度は、更に0.5~3mPa・sであることが好ましい。第二溶剤が2種以上混合して用いられる場合には、単独では上記範囲外であっても混合溶剤の粘度が上記範囲であれば、好適に用いられる。ここで、本発明における23℃での粘度は、回転振動型粘度計(例えば、山一電機社製、回転振動型粘度計ビスコメイトVM-1Gなど)により測定することができる。
 前記第二溶剤の23℃での表面張力は、35mN/m以下であれば好適に用いることができる。中でも、前記第二溶剤の23℃での表面張力が30mN/m以下である場合には、上記第一溶剤が奏する効果を阻害することなく表面張力を適切に低下することが可能で、インク自体の濡れ広がり性が向上するため、着弾したインク滴が量子ドット含有層形成領域全体の隅々にまで濡れ広がり易くなる。ここで、本発明における23℃での表面張力は、表面張力計(ウィルヘルミ法)(例えば、協和界面科学社製、自動表面張力計CBVP-Zなど)により測定することができる。
 また、前記第二溶剤としては、上記沸点を有する溶剤であれば良いが、第一溶剤との相溶性に優れる溶剤を適宜選択して用いることが好ましい。
 前記第二溶剤としては、具体的には、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、プロピレングリコールモノプロピルエーテル、ジエチレングリコールジメチルエーテルのようなグリコールエーテル類や、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートのようなグリコールエーテルエステル類を含むグリコールエステル類や、イソ酪酸、プロピオン酸、酪酸のようなカルボン酸類;イソ吉草酸エチル、蟻酸ヘキシル、酢酸アミル、酢酸イソアミル、乳酸エチル、乳酸メチル、プロピオン酸イソアミル、プロピオン酸ブチル、酪酸ブチル、シュウ酸ジメチルのような脂肪族エステル類;酢酸、無水酢酸等の脂肪族カルボン酸類及びその酸無水物;n-アミルアルコール、イソアミルアルコール、2-エチルブタノール、1-ブタノール、n-ヘキサノール、4-メチル-2-ペンタノール、シクロヘキサノール、2-ヘプタノール、3-ヘプタノールのようなアルコール類;エチル-n-ブチルケトン、ジ-n-プロピルケトン、アセチルアセトンのようなケトン類;オクタン、ノナン等のアルカン類;トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;アニソール等の芳香族エーテル類;1,4-ジオキサン等の脂肪族エーテル類等が挙げられる。
 前記第二溶剤としては、中でも、グリコールエーテル類やグリセリンエーテル類などの多価アルコールエーテル類を含むエーテル類、およびグリコールエステル類やグリセリンエステル類などの多価アルコールエステル類、脂肪族エステル類、アルコキシカルボン酸エステル類、ケトカルボン酸エステル類を含むエステル類よりなる群から選択される1種以上を用いることが量子ドットの分散性の点から好ましい。上記のようなエステル類、およびエーテル類を用いる場合には、バインダー成分等に反応性が高い樹脂を用いた場合であっても、インクの安定性を良好に維持しやすいという利点がある。また、グリコールエーテル類、グリコールエステル類を用いる場合には、ガラス基材に対する濡れ性が向上し、量子ドット含有層形成領域全体の隅々にまで濡れ広がり易くなり、画素の色抜け防止に効果的である。
 前記第二溶剤としては中でも特に、量子ドットの分散性の点、及びインクジェット方式における吐出安定性の点から、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、蟻酸ヘキシル、乳酸エチル、プロピオン酸イソアミル、プロピオン酸ブチル、酪酸ブチル、シュウ酸ジメチル、1-ブタノール、1,4-ジオキサン、オクタン、ノナン、トルエン、キシレン、エチルベンゼン及びアニソールよりなる群から選択される1種以上である溶剤が好適に用いられ、量子ドットの分散性向上の点から、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、トルエン、及びプロピレングリコールモノメチルエーテルアセテートよりなる群から選択される1種以上であることがより好ましく、更に、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、及びプロピレングリコールモノメチルエーテルアセテートよりなる群から選択される1種以上であることがより好ましい。
 また、本発明に係る量子ドット含有硬化性組成物に用いられる溶剤としては、中でも、量子ドットの分散性向上の点から、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、3-メトキシ-3-メチルブチルアセテート、3-エトキシプロピオン酸エチル、及び3-メトキシブチルアセテートよりなる群から選択される1種以上である前記第一溶剤と、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、トルエン、及びプロピレングリコールモノメチルエーテルアセテートよりなる群から選択される1種以上である前記第二溶剤との組み合わせが好ましい。
 本発明に係る量子ドット含有硬化性組成物に用いられる溶剤は、本発明の効果を損なわない範囲において、前記第一溶剤及び前記第二溶剤とは異なる、沸点が100℃未満の他の溶剤を更に含んでいても良い。本発明に係る量子ドット含有硬化性組成物に用いられる溶剤全量中の前記他の溶剤の割合は、30質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがより好ましく、2質量%以下であることがより更に好ましく、0.5質量%以下であることが特に好ましい。
 本発明に係る量子ドット含有硬化性組成物における、前記第一溶剤及び前記第二溶剤を含む前記溶剤の合計含有量は、特に限定はされないが、量子ドットの分散性の点、インクジェットヘッドからの初期吐出性及び間歇吐出安定性の点、並びに、硬化膜表面に発生するムラを抑制する点から、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがより更に好ましい。一方で、溶剤の含有割合が多すぎると、量子ドット含有硬化層に、量子ドット及びバインダー成分等を十分量含有させることが困難になることから、98質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以下であることがより更に好ましい。
<硬化性バインダー成分>
 本発明に係る量子ドット含有硬化性組成物は、成膜性や被塗工面に対する密着性を付与すると共に、膜中の量子ドットの分散性を良好な状態で維持するために、硬化性バインダー成分を含有する。本発明において、硬化性バインダー成分は、量子ドットを所定の位置に付着させ固定するために含有させる成分であり、通常は混合物である。
 本発明に係る量子ドット含有硬化性組成物は、硬化性バインダー成分を含有することにより、量子ドット含有硬化性組成物を硬化させた量子ドット含有硬化物において、製造時及び経時的に量子ドットの凝集を抑制することができる。また、本発明に係る量子ドット含有硬化性組成物は、硬化性バインダー成分を含有することにより、量子ドット含有硬化物に十分な強度、耐久性、密着性を付与することができる。
 前記硬化性バインダー成分としては、例えば、可視光線、紫外線、電子線等の光により重合硬化させることができる光硬化性バインダー成分や、加熱により重合硬化させることができる熱硬化性バインダー成分のような、重合可能なバインダー成分を用いることができる。本発明の量子ドット含有硬化性組成物に用いる硬化性バインダー成分としては、熱硬化性バインダー成分及び光硬化性バインダー成分の少なくとも1種を含有することが、量子ドットの凝集を抑制しやすい点及び強度、耐久性の点から好ましい。本発明の量子ドット含有硬化性組成物に用いる硬化性バインダー成分は、前記溶剤の溶剤溶解性、及び、量子ドットとの相溶性が高いものを適宜選択して用いることができる。
 (1)熱硬化性バインダー成分
 熱硬化性バインダー成分としては、1分子中に熱硬化性官能基を2個以上有する化合物と硬化剤の組み合わせが通常用いられ、更に、熱硬化反応を促進できる触媒を添加しても良い。また、それ自体は重合反応性のない重合体を更に用いても良い。
  1分子中に熱硬化性官能基を2個以上有する化合物としては、エポキシ化合物を好ましく用いることができる。また、熱硬化性官能基としては、エポキシ基の他、オキセタン基、イソシアネート基、水酸基等が挙げられる。エポキシ基、オキセタン基、イソシアネート基、及び水酸基からなる群から選択される1種以上の熱硬化性官能基を1分子中に2個以上有する化合物は、前記特定の溶剤に対する溶剤溶解性、及び、量子ドットとの相溶性が良好になり易い点から好ましく用いることができる。
 後述するエポキシ化合物におけるエポキシ基の代わりにオキセタン基に替えたオキセタン化合物は、エポキシ化合物と同様に用いることができる。また、1分子中にイソシアネート基を2個以上有する化合物(ポリイソシアネート化合物)と、1分子中に水酸基を2個以上有する化合物(ポリオール化合物)の組み合わせは、当該イソシアネート基と水酸基との反応により、分子間にウレタン結合が形成され高分子となり得る。1分子中にイソシアネート基を2個以上有する化合物と、1分子中に水酸基を2個以上有する化合物は、少なくとも一方が、高分子化合物であっても良く、ウレタンプレポリマーであっても良い。
(エポキシ化合物)
 前記エポキシ化合物としては、1分子中にエポキシ基2個以上を有するエポキシ化合物が好ましく用いられる。1分子中にエポキシ基2個以上を有するエポキシ化合物は、エポキシ基を2個以上、好ましくは2~50個、より好ましくは2~20個を1分子中に有するエポキシ化合物(エポキシ樹脂と称されるものを含む)である。エポキシ基は、オキシラン環構造を有する構造であればよく、例えば、グリシジル基、オキシエチレン基、エポキシシクロヘキシル基等を示すことができる。エポキシ化合物としては、カルボン酸により硬化しうる公知の多価エポキシ化合物を挙げることができ、このようなエポキシ化合物は、例えば、新保正樹編「エポキシ樹脂ハンドブック」日刊工業新聞社刊(昭和62年)等に広く開示されており、これらを用いることが可能である。
 前記エポキシ化合物としては、エポキシ基含有(共)重合体及びエポキシ基含有モノマーが挙げられ、市販のエポキシ樹脂を用いることもできる。
  エポキシ基含有(共)重合体は、炭素-炭素不飽和結合とエポキシ基を含有するモノマー(以降、エポキシ基含有モノマーという場合がある)の単独重合体、エポキシ基含有モノマーと共重合可能なモノマーとの共重合体である。共重合体の分子形態としては直鎖状であっても、分岐構造を持っていても良く、ランダム共重合体、ブロック共重合体、グラフト共重合体等いずれの形態であっても良い。エポキシ基含有重合体は、ラジカル重合法、イオン重合法等の重合法で得ることができる。
  エポキシ基含有モノマーとしては、例えば、グリシジルメタクリレート(以下、GMAと称する)、3,4-エポキシシクロヘキシルメチルメタクリレート、ネオペンチルグリコールグリシジルエーテルなどが挙げられる。エポキシ基含有モノマーと共重合するモノマーとしては例えば、アルキル(メタ)アクリレート、スチレン、N-アルキルマレイミドなどが挙げられる。
  エポキシ樹脂としては、例えばビスフェノールA型ノボラック系エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、3官能型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールA含核ポリオール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリオキザール型エポキシ樹脂、脂環式エポキシ樹脂、複素環型エポキシ樹脂などが挙げられる。
 ビスフェノールA型エポキシ樹脂の市販品は、例えば商品名jER828、商品名jER157S70、商品名jER1001〔いずれも三菱ケミカル(株)製〕などである。クレゾールノボラック型エポキシ樹脂は、例えば商品名YDCN-701〔東都化成(株)製〕などである。また、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物として、商品名EHPE3150〔株式会社ダイセル製〕を用いても良い。
  これらのエポキシ化合物は、単独あるいは2種類以上を組み合わせて使用することができる。
(硬化剤)
 前記熱硬化性バインダー成分に用いられる硬化剤としては、前記熱硬化性バインダー成分に含まれる熱硬化性官能基の種類に応じて適宜選択され、特に限定はされない。
 例えば、前記熱硬化性バインダー成分が前記エポキシ化合物を含む場合は、硬化剤としては、従来公知のカルボン酸化合物を使用することができる。
  具体的には例えば、無水コハク酸、無水フタル酸、1,2-シクロヘキサンジカルボン酸無水物、無水トリメリット酸、1,2,4-シクロヘキサントリカルボン酸無水物、メチルヘキサヒドロ無水フタル酸などの酸無水物;コハク酸、アジピン酸、1,2,3,4-ブタンテトラカルボン酸、アゼライン酸、セバシン酸、デカメチレンジカルボン酸などの脂肪族ポリカルボン酸;フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸などの芳香族ポリカルボン酸;テトラヒドロフタル酸、ヘキサヒドロフタル酸、1,2,4-シクロヘキサントリカルボン酸などの脂環式ポリカルボン酸;1分子中にカルボキシル基2個以上を有するポリエステル樹脂、アクリル樹脂、マレイン化ポリブタジエン樹脂などの重合体カルボン酸;および後述するブロック化カルボン酸硬化剤などが挙げられる。
 市販品を用いても良く、例えば、リカシッドMH700、HNA-100、MTA-15〔いずれも新日本理化(株)製〕等が挙げられる。
  これらの中でも、吐出性、量子ドットの分散性の点、及び、量子ドット含有硬化性組成物の保存安定性の点から、カルボキシ基がブロック化(潜在化)された、ブロック化カルボン酸硬化剤が好ましい。すなわち、前記硬化性バインダー成分としては、前記エポキシ化合物と、前記ブロック化カルボン酸硬化剤とを含む熱硬化性バインダー成分を好ましく用いることができる。
 ブロック化カルボン酸硬化剤は、加熱することでビニルエーテル化合物が脱離し、カルボン酸化合物が生成する。生成したカルボン酸化合物はエポキシ化合物と反応する。ブロック化カルボン酸硬化剤は、脱ブロック化される温度が高いため、組成物の保存安定性を向上させることができ、更に、ブロック化カルボン酸硬化剤は、高濃度でエポキシ基と共存させることが可能であるために、耐熱性及び耐溶剤性を向上させることができる成分である。また、ブロック化カルボン酸硬化剤は、量子ドットと組み合わせて用いる場合に、製造工程や、表示時に受ける熱や光の影響を受けにくく、量子ドット間の距離を一定に保つ事ができ、励起阻害を防ぐ事ができるため、好ましい。
  前記ブロック化カルボン酸硬化剤としては、多価カルボン酸化合物のカルボキシ基をビニルエーテル化合物でブロック化した化合物が挙げられる。好ましい多価カルボン酸化合物としては、例えば、下記一般式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 (一般式(1)中、mは0以上4以下の整数であり、aは0又は1であり、nは1以上4以下の整数である。また、nが1の場合にはRは水素原子又は炭素数2以上8以下の炭化水素基であり、 nが2以上4以下の場合にはRは炭素数2以上8以下の炭化水素基である。Rは、炭素数1以上5以下のアルキル基である。 )
 前記ビニルエーテル化合物としては、例えば、下記一般式(2)で表される化合物が好適なものとして挙げられる。
Figure JPOXMLDOC01-appb-C000002
(一般式(2)中、Rは炭素数1以上10以下の炭化水素基である。)
 また、好ましい前記ブロック化カルボン酸硬化剤としては、例えば、前記一般式(1)中のカルボキシ基が、下記一般式(3)で表されるようにブロック化された構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000003
(一般式(3)中、Rは前記一般式(2)と同様である。)
 前記一般式(1)で表される化合物のうち、Rが水素原子以外の化合物としては、アルコール合物と酸無水物との反応により得られるハーフエステル体が挙げられる。この反応の際に用いられるアルコール化合物としては、エタノール、プロパノール、へキサノール、オクタノール、イソプロピルアルコール等の1価のアルコール化合物;エチレングリコール、プロピレングリコール、ブタンジオール、へキサンジオール、ネオ ペンチルグリコール、シクロへキサンジオール等の2価のアルコール化合物;グリセリン、ペンタントリオール、へキサントリオール、シクロへキサントリオール、ベンゼントリオール、トリメチロールプロパン等の3価のアルコール化合物;ペンタエリスリトール等の4価のアルコール化合物が好ましい例として挙げられ、より好ましくはへキサノール、イソプロピルアルコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,6-へキサンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトールが挙げられる。
 前記反応の際に用いられる酸無水物としては下記式(4)で表される化合物が挙げられ、具体的には、1,2-シクロへキサンジカルボン酸無水物、1,3,4-シクロへキサントリカルボン酸-3,4-無水物が好ましい例として挙げられる。
Figure JPOXMLDOC01-appb-C000004
(一般式(4)中、R、a及びmは、前記一般式(1)と同様である。)
 前記一般式(1)で表される化合物のうち、Rが水素原子である化合物は、相溶性の点から好適に用いられる。Rが水素原子である化合物としては、シクロへキサンジカルボン酸等の脂環式ジカルボン酸;1,2,4-シクロへキサントリカルボン酸(CHTA)などの脂環式トリカルボン酸;1,2,4,5-シクロへキサンテトラカルボン酸などの脂環式テトラカルボン酸等が挙げられ、中でもCHTAが好ましい。
 前記多価カルボン酸化合物の酸当量としては、架橋密度を高め、硬化膜の靱性を向上する点から、55g/mol以上であることが好ましく、より好ましくは60g/mol以上であり、一方で、相溶性の点から、600g/mol以下であることが好ましく、より好ましくは、500g/mol以下である。以上の酸当量とはカルボキシル基の当量を指し、JIS K-0070-3(1992)に準じて測定される。
 なお、前記多価カルボン酸化合物は、1種単独で、または2種以上を組み合わせて用いることができる。
 前記ビニルエーテル化合物としては、例えば、イソプロピルビニルエーテル、n-プロピルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、t-ブチルビニルエーテル、2-エチルへキシルビニルエーテル、シクロへキシルビニルエーテル等のアルキルビニルエーテル類が挙げられ、中でも、n-プロピルビニルエーテル及びイソブチルビニルエーテルが好ましい。 前記ビニルエーテル化合物は、1種単独で、または2種以上を組み合わせて用いることができる。
 前記ブロック化カルボン酸硬化剤は、前記多価カルボン酸化合物と、前記ビニルエーテル化合物とを、必要に応じて酸触媒及び溶媒等の存在下、20℃以上150℃以下程度の範囲の温度で反応させることにより得ることができる。
 前記多価カルボン酸化合物のカルボキシ基に対する前記ビニルエーテル化合物のビニル基のモル当量比[(ビニル基/カルボキシ基)のモル当量比]は、反応効率及び収率の点から、2以下であることが好ましい。前記モル当量比の下限は、用途によって適宜調整され、特に限定はされず、例えば0.5以上とすることができ、1以上とすることもできる。
 また、前記酸触媒としては、例えば、酸性リン酸エステル化合物等が挙げられる。
 なお、前記ブロック化カルボン酸硬化剤は、1種単独で、または2種以上を組み合わせて用いることができる。
  前記エポキシ化合物中のエポキシ基と、エポキシ化合物と反応しうる硬化剤中のカルボキシ基及びブロック化されたカルボキシ基の合計とのモル当量の比(カルボキシル基及びブロック化カルボキシ基/エポキシ基)は、硬化膜の耐熱性及び硬度の点から、0.2以上であることが好ましく、0.5以上であることがより好ましく、硬化膜の密着性の点から、1.6以下であることが好ましく、1.2以下であることがより好ましい。
  本発明の量子ドット含有硬化性組成物において、前記硬化性バインダー成分として、前記熱硬化性バインダー成分を用いる場合、前記量子ドット含有硬化性組成物の固形分全量に対する前記エポキシ化合物等の1分子中に熱硬化性官能基を2個以上有する化合物の合計含有量は、硬化物中の量子ドットの凝集を抑制する点、及び硬化物の強度の点から、40質量%以上であることが好ましく、50質量%以上であることがより好ましく、一方で、吐出安定性及び硬化物表面のムラを抑制する点から、90質量%以下であることが好ましく、80質量%以下であることがより好ましい。
 なお、本発明において固形分とは、溶剤以外の全ての成分をいう。
 本発明の量子ドット含有硬化性組成物において、前記硬化性バインダー成分として、前記熱硬化性バインダー成分を用いる場合、前記量子ドット含有硬化性組成物の固形分全量に対する前記硬化剤の含有量は、重合反応の進行を十分に促進する点、及び乾燥工程時の突沸及びムラ低減の点から、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、一方で、吐出安定性及び硬化物表面のムラを抑制する点、及び保存安定性の点から、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、25質量%以下であることがより更に好ましい。
 (2)光硬化性バインダー成分
 光硬化性バインダー成分としては、紫外線、電子線等の光により重合硬化させることができる光硬化性樹脂と、光重合開始剤の組み合わせが通常用いられる。光硬化性バインダー成分においては、成膜性や被塗工面に対する密着性を付与することを目的として比較的分子量の高い重合体を含むことが好ましい。ここでいう比較的分子量が高いとは、所謂モノマーやオリゴマーよりも分子量が高いことをいい、重量平均分子量3,000以上を目安にすることができる。比較的分子量の高い重合体としては、それ自体は重合反応性のない重合体、及び、それ自体が重合反応性を有する重合体のいずれを用いてもよく、また、2種以上を組み合わせて用いても良い。そして、比較的分子量の高い重合体を主体とし、必要に応じて、光重合性官能基を2つ以上有する多官能モノマーやオリゴマー、光重合性官能基を1つ有する単官能のモノマーやオリゴマー、光により活性化する光重合開始剤、及び、増感剤などを配合して、光硬化性バインダー成分を構成する。
 比較的分子量の高い重合体としては、例えば、(メタ)アクリル系共重合体、スチレン-(メタ)アクリル系共重合体等の(メタ)アクリル系樹脂、エポキシ(メタ)アクリレート樹脂等が挙げられ、中でも量子ドットの分散性の点から、(メタ)アクリル系樹脂、スチレン-(メタ)アクリル系共重合体等の(メタ)アクリル系樹脂を好ましく用いることができる。
 エポキシ(メタ)アクリレート樹脂としては、例えば、エポキシ化合物と不飽和基含有モノカルボン酸との反応物を酸無水物と反応させて得られるエポキシ(メタ)アクリレート化合物が挙げられる。エポキシ化合物、不飽和基含有モノカルボン酸、及び酸無水物は、公知のものの中から適宜選択して用いることができる。
 前記比較的分子量の高い重合体としては、これら(メタ)アクリル系共重合体及びスチレン-(メタ)アクリル系共重合体等の(メタ)アクリル系樹脂、並びにエポキシ(メタ)アクリレート樹脂等のほか、ポリエステル系樹脂、マレイン酸樹脂、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂等の熱可塑性樹脂を用いても良い。或いは、分散剤として用いられる重合体を用いることもできる。
 前記(メタ)アクリル系樹脂、エポキシ(メタ)アクリレート樹脂、ポリエステル系樹脂、及びマレイン酸樹脂からなる群から選択される1種以上の樹脂は、前記特定の溶剤に対する溶剤溶解性、及び、量子ドットとの相溶性が良好になり易い点から好ましく用いることができる。
 前記比較的分子量の高い重合体としては、2種以上混合して使用してもよいし、一種の樹脂を単独で使用してもよい。
 前記比較的分子量の高い重合体としては、側鎖にエチレン性不飽和基等の光重合性官能基を有するものが、硬化膜の膜強度を向上する点から好ましい。
 また、前記比較的分子量の高い重合体は、量子ドットの分散性の点から、酸価が200mgKOH/g以下であることが好ましく、150mgKOH/g以下であることがより好ましく、125mgKOH/g以下であることがより更に好ましい。
 なお、前記酸価は、重合体の固形分1g中に含まれる酸性成分を中和するために要する水酸化カリウムの質量(mg)をいい、JIS K 0070に定義された方法により測定することができる。
 また、前記比較的分子量の高い重合体は、量子ドットの分散性の点から、アミン価を有していても良く、アミン価を有する場合は、アミン価が40mgKOH/g以上140mgKOH/g以下であることが好ましく、120mgKOH/g以下であることが好ましく、100mgKOH/g以下であることがより好ましく、80mgKOH/g以下であることがより更に好ましい。
 なお、前記アミン価は、重合体の固形分1g中に含まれるアミン成分を中和するために要する過塩素酸と当量の水酸化カリウムのmg数をいい、JIS-K7237:1995に定義された方法により測定することができる。
 前記(メタ)アクリル系樹脂は、例えば、エチレン性不飽和モノマー、及び必要に応じて共重合可能なその他のモノマーを、公知の方法により(共)重合して得ることができる。
 エチレン性不飽和モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリレート系モノマーを好ましく用いることができる。(メタ)アクリレート系モノマーのようなエステル基含有エチレン性不飽和モノマー由来の構成単位は、溶剤に対する溶解性、さらには溶剤再溶解性を向上させる成分として機能し得る。なお、モノマー由来の構成単位とは、当該モノマー中の重合性炭素-炭素二重結合(C=C)が単結合(C-C)になった構造単位を意味する。
 (メタ)アクリル系樹脂において、エステル基を有する構成単位の含有割合は、良好なパターンが得られる点から、共重合体の合成に用いられるモノマー成分の総量100質量%に対し、5質量%以上であることが好ましく、10質量%以上であることがより好ましい。一方、量子ドットの分散性の点から、エステル基を有する構成単位の含有割合は、共重合体の合成に用いられる共重合体の合成に用いられるモノマー成分の総量100質量%に対し、95質量%以下であることが好ましく、80質量%以下であることがより好ましい。
 前記(メタ)アクリル系樹脂は、硬化膜の密着性が優れる点から、炭化水素環を有することが好ましい。(メタ)アクリル系樹脂に、嵩高い基である炭化水素環を有することにより、得られた硬化膜の耐溶剤性、特に硬化膜の膨潤が抑制される。作用については未解明であるが、硬化膜内に嵩高い炭化水素環が含まれることにより、硬化膜内における分子の動きが抑制される結果、塗膜の強度が高くなり溶剤による膨潤が抑制されるものと推定される。
 このような炭化水素環としては、置換基を有していてもよい環状の脂肪族炭化水素環、置換基を有していてもよい芳香族環、及びこれらの組み合わせが挙げられ、炭化水素環がカルボニル基、カルボキシ基、オキシカルボニル基、アミド基等の置換基を有していてもよい。中でも、脂肪族環を含む場合には、硬化膜の耐熱性や密着性が向上すると共に、得られた硬化膜の透明性が向上する。
 炭化水素環の具体例としては、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、ノルボルナン、トリシクロ[5.2.1.0(2,6)]デカン(ジシクロペンタン)、アダマンタン等の脂肪族炭化水素環;ベンゼン、ナフタレン、アントラセン、フェナントレン、フルオレン等の芳香族環;ビフェニル、ターフェニル、ジフェニルメタン、トリフェニルメタン、スチルベン等の鎖状多環や、下記化学式(i)に示されるカルド構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 また、前記(メタ)アクリル系樹脂は、下記一般式(ii)で表されるマレイミド構造を有するのも好ましい。
Figure JPOXMLDOC01-appb-C000006
(一般式(ii)において、Rは、置換されていてもよい炭化水素環である。)
 前記一般式(ii)のRにおける、置換されていてもよい炭化水素環の具体例としては、前記炭化水素環の具体例と同様のものが挙げられる。
 炭化水素環として、脂肪族環を含む場合には、硬化膜の耐熱性や密着性が向上すると共に、得られた硬化膜の輝度が向上する点から好ましい。
 また、前記化学式(i)に示されるカルド構造を含む場合には、硬化膜の硬化性が向上し、耐溶剤性が向上する点から特に好ましい。
 前記炭化水素環を有するエチレン性不飽和モノマーとしては、例えば、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、スチレンなどが挙げられ、量子ドットの分散性が良好になる点から、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ベンジル(メタ)アクリレート、スチレンが好ましく、特にシクロヘキシル(メタ)アクリレート及びスチレンが好ましい。
 また、前記(メタ)アクリル系樹脂としては、側鎖にエチレン性二重結合を有する構成単位を有する(メタ)アクリル系共重合体を含むことが好ましく用いることができる。すなわち、前記硬化性バインダー成分としては、側鎖にエチレン性二重結合を有する構成単位を有する(メタ)アクリル系共重合体を含有する(メタ)アクリル系樹脂を含む光硬化性バインダー成分を好ましく用いることができる。
 また、前記(メタ)アクリル系樹脂としては、炭化水素環を有する構成単位と、エチレン性二重結合を有する構成単位とを有する(メタ)アクリル系共重合体をより好ましく用いることができる。
 側鎖にエチレン性二重結合を有する構成単位を有する(メタ)アクリル系共重合体を含む場合には、組成物の硬化工程において、(メタ)アクリル系樹脂同士、乃至、当該(メタ)アクリル系樹脂と光重合性化合物等が架橋結合を形成し得るため、硬化膜の膜強度が向上し、また、量子ドットが固定され分散性が維持されるようになる。
 また、側鎖にエチレン性二重結合を有する構成単位を有する(メタ)アクリル系共重合体は、量子ドットと組み合わせて用いる場合に、製造工程や、表示時に受ける熱や光の影響を受けにくく、量子ドット間の距離を一定に保つ事ができ、励起阻害を防ぐ事ができるため、好ましい。
 (メタ)アクリル系共重合体中に、エチレン性二重結合を導入する方法は、従来公知の方法から適宜選択すればよい。例えば、カルボキシ基を有する構成単位を共重合体に導入しておいて、当該カルボキシ基に、分子内にエポキシ基とエチレン性二重結合とを併せ持つ化合物、例えばグリシジル(メタ)アクリレート等を付加させ、側鎖にエチレン性二重結合を導入する方法や、水酸基を有する構成単位を共重合体に導入しておいて、分子内にイソシアネート基とエチレン性二重結合とを備えた化合物を付加させ、側鎖にエチレン性二重結合を導入する方法などが挙げられる。
 カルボキシ基を有する構成単位を誘導するカルボキシ基含有エチレン性不飽和モノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマーなどが挙げられる。また、2-ヒドロキシエチル(メタ)アクリレートなどの水酸基を有するモノマーと無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物のような環状無水物との付加反応物、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレートなども利用できる。また、カルボキシ基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸などの無水物含有モノマーを用いてもよい。中でも、共重合性やコスト、溶解性、ガラス転移温度などの点から(メタ)アクリル酸が特に好ましい。
 側鎖にエチレン性二重結合を有する構成単位を有する(メタ)アクリル系共重合体において、側鎖にエチレン性二重結合を有する構成単位の含有割合は、モノマー成分の総量100質量%に対し、量子ドットの分散性維持の点から、5質量%以上であることが好ましく、より好ましくは10質量%以上であり、一方で、組成物の保存安定性の点から、50質量%以下であることが好ましく、より好ましくは40質量%以下である。
 また、側鎖にエチレン性二重結合を有する構成単位を有する(メタ)アクリル系共重合体において、、量子ドットの分散性の点から、酸価が120mgKOH/g以下であることが好ましく、80mgKOH/g以下であることがより好ましく、70mgKOH/g以下であることがより更に好ましい。
 また、前記(メタ)アクリル系樹脂は、3級炭素含有(メタ)アクリレート系モノマー由来の構成単位と、水酸基を有する構成単位とを有する、熱潜在性(メタ)アクリル系共重合体を含むことが、量子ドットの分散性、保存安定性、硬化性、硬化膜の耐溶剤性、密着性、耐熱性の点から好ましい。
 すなわち、前記硬化性バインダー成分としては、3級炭素含有(メタ)アクリレート系モノマーに由来する構成単位と、水酸基を有する構成単位とを有する、熱潜在性(メタ)アクリル系共重合体を含有する(メタ)アクリル系樹脂を含む光硬化性バインダー成分を好ましく用いることができる。
 前記熱潜在性(メタ)アクリル系共重合体が有する3級炭素含有(メタ)アクリレート系モノマー由来の構成単位は、熱により、(メタ)アクリロイル基に隣接する酸素原子と、それに隣接する第3級炭素原子との間のO-C結合が切断されて、(メタ)アクリル酸と、第3級炭素原子側で生じる安定的な化合物とに分解されやすい。そのため、例えば、本発明の量子ドット含有硬化性組成物が、前記熱潜在性(メタ)アクリル系共重合体を含有する場合は、当該量子ドット含有硬化性組成物中の硬化性バインダー成分の重合反応を行った後、更に加熱処理を行うことによって、上述した3級炭素含有(メタ)アクリレート系モノマーに由来する構成単位が分解され、(メタ)アクリル酸単位と、第3級炭素原子側で生じる安定的な化合物とが生成する。そして、前記熱潜在性(メタ)アクリル系共重合体中の水酸基と、生成した(メタ)アクリル酸単位のカルボキシ基とが反応してエステル架橋構造が生じることにより、硬化性組成物の硬化性及び硬化後の耐溶剤性及び耐熱性が向上する。また、前記熱潜在性(メタ)アクリル系共重合体は、カルボキシ基がブロック化されているため、量子ドット含有硬化性組成物の保存安定性を向上することができ、また、硬化膜の膜厚を薄くできる為、密着性が向上すると考えられる。さらに、前記熱潜在性(メタ)アクリル系共重合体は、量子ドットと組み合わせて用いる場合に、製造工程や、表示時に受ける熱や光の影響を受けにくく、量子ドット間の距離を一定に保つ事ができ、励起阻害を防ぐ事ができるため、好ましい。
 3級炭素含有(メタ)アクリレート系モノマーは、(メタ)アクリロイル基に隣接する酸素原子が第3級炭素原子と結合した構造を有するものであることが好ましい。すなわち、上記3級炭素含有(メタ)アクリレート系モノマーは、(メタ)アクリロイル基に隣接する酸素原子が第3級炭素原子と結合した構造を有することが好ましい。なお、第3級炭素原子とは、該炭素原子に結合している他の炭素原子が3個である炭素原子を意味する。
 上記3級炭素含有(メタ)アクリレート系モノマーとしては、分子中に(メタ)アクリロイル基を1個有する化合物であることが好ましく、例えば、下記一般式(5)で表される化合物が挙げられる。
CH=C(R)-C(=O)-O-A   (5)
(Rは、水素原子又はメチル基を表し、Aは、酸素原子側に第3級炭素原子を有する構造を含む、一価の有機基を表す。)
 上記一般式(5)において、Aで表される有機基は、例えば、-C(R)(R)(R)で表すことができる。この場合、R、R及びRは、同一又は異なって、炭素数1~30の炭化水素基であることが好適であり、当該炭化水素基は、飽和炭化水素基であってもよいし、不飽和炭化水素基であってもよい。また、環状構造を有するものであってもよいし、更に置換基を有していてもよい。また、R、R及びRは、互いに末端部位で連結して環状構造を形成していてもよい。
 なお、本発明では、後述するように、(メタ)アクリロイル基に隣接する酸素原子と、それに隣接する前記A中の第3級炭素原子との間のO-C結合が切断されて生成する新たな化合物が揮発し易い点で、前記Aで表される有機基の炭素数は12以下であることが好ましい。中でも、前記Aで表される有機基が、(メタ)アクリル酸t-ブチル及び(メタ)アクリル酸t-アミルから選ばれる少なくとも1種に由来する基であることが好ましい。また、前記Aで表される有機基は、分岐構造を有していてもよい。
 ここで、上記3級炭素含有(メタ)アクリレート系モノマーにおいて、(メタ)アクリロイル基に隣接する酸素原子に結合する第3級炭素原子は、隣接する炭素原子の少なくとも1つが水素原子と結合していることが好ましい。例えば、3級炭素含有(メタ)アクリレート系モノマーが上記一般式(5)で表される化合物であって、Aが、-C(R)(R)(R)で表される基である場合、R、R及びRのうち少なくとも1つが、水素原子を1個以上有する炭素原子を含み、かつ該炭素原子が3級炭素原子に結合することが好ましい。このような形態では、加熱により、(メタ)アクリロイル基に隣接する酸素原子と、それに隣接する第3級炭素原子との間のO-C結合が切断され、(メタ)アクリル酸が生成すると同時に、該第3級炭素原子とそれに隣接する炭素原子との間で二重結合(C=C)が形成されて新たな化合物がより安定的に生成することになる。
 前記新たな化合物が揮発しやすく、硬化物(硬化膜)の膜厚を低減しながら、硬化物(硬化膜)中の量子ドットの濃度を増大し得る点から、前記R、R及びRにおける炭化水素基は、炭素数1~15の飽和炭化水素基であることが好ましく、より好ましくは炭素数1~10の飽和炭化水素基であり、更に好ましくは炭素数1~5の飽和炭化水素基であり、特に好ましくは炭素数1~3の飽和炭化水素基である。
 中でも、前記Aで表される有機基が、t-ブチル基及びt-アミル基から選ばれる少なくとも1種であることが好ましい。
 前記熱潜在性(メタ)アクリレート系共重合体において、前記3級炭素含有(メタ)アクリレート系モノマー単位の含有割合は、上述した効果がより発揮される点から、モノマー成分の総量100質量%に対し、5質量%以上であることが好ましく、より好ましくは15質量%以上、特に好ましくは20質量%以上である。上記含有割合の上限は、パターン特性をより向上させる観点から、90質量%以下であることが好ましく、より好ましくは75質量%以下、更に好ましくは60質量%以下である。
 前記熱潜在性(メタ)アクリレート系重合体が有する水酸基を有する構成単位は、側鎖に水酸基を有する構成単位であることが好ましい。前記水酸基を有する構成単位を誘導するモノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2,3-ヒドロキシプロピル等のヒドロキシアルキル(メタ)アクリレート等が好ましく挙げられる。
 前記熱潜在性(メタ)アクリレート系共重合体において、前記水酸基を有する構成単位の含有割合は、モノマー成分の総量100質量%に対し、硬化性及び耐溶剤性の点から、5質量%以上であることが好ましく、より好ましくは10質量%以上であり、更に好ましくは15質量%以上であり、一方で、硬化物表面の白化を抑制する点から、50質量%以下であることが好ましく、より好ましくは40質量%以下であり、更に好ましくは35質量%以下である。
 前記熱潜在性(メタ)アクリレート系重合体は、(メタ)アクリル酸に由来する構成単位を有することが、共重合性やコスト、溶解性、ガラス転移温度などの点から好ましい。
 前記(メタ)アクリレート系共重合体において、(メタ)アクリル酸に由来する構成単位の含有割合は、モノマー成分の総量100質量%に対し、量子ドットの分散性維持の点から、5質量%以上であることが好ましく、より好ましくは10質量%以上であり、一方で、安定性の点から、35質量%以下であることが好ましく、より好ましくは25質量%以下である。
 前記熱潜在性(メタ)アクリレート系重合体は、量子ドットの分散性の点から、酸価が120mgKOH/g以下であることが好ましく、80mgKOH/g以下であることがより好ましく、70mgKOH/g以下であることがより更に好ましい。
 また、前記熱潜在性(メタ)アクリレート系重合体は、3級アミンを有する構成単位を有することが、量子ドットの分散性の点から好ましい。前記3級アミンを有する構成単位を誘導するモノマーとしては、例えば、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート等のアルキル基置換アミノ基含有(メタ)アクリレート等、ジメチルアミノエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミドなどのアルキル基置換アミノ基含有(メタ)アクリルアミド等が好ましく挙げられる。
 前記(メタ)アクリレート系共重合体において、3級アミンを有する構成単位の含有割合は、モノマー成分の総量100質量%に対し、量子ドットの分散性維持の点から、5質量%以上であることが好ましく、より好ましくは10質量%以上であり、一方で、安定性の点から、35質量%以下であることが好ましく、より好ましくは25質量%以下である。
 前記熱潜在性(メタ)アクリレート系重合体は、量子ドットの分散性の点から、アミン価が40mgKOH/g以上140mgKOH/g以下であることが好ましく、120mgKOH/g以下であることが好ましく、100mgKOH/g以下であることがより好ましく、80mgKOH/g以下であることがより更に好ましい。
 また、前記熱潜在性(メタ)アクリレート系重合体は、側鎖にエチレン性不飽和基を有する構成単位を有することが、硬化膜の膜強度が向上する点から好ましい。側鎖にエチレン性不飽和基を有する構成単位は、例えば、前記熱潜在性(メタ)アクリレート系重合体を合成する際に、(メタ)アクリル酸由来の構成単位を導入し、当該構成単位のカルボキシ基や、前記水酸基を有するモノマー単位の水酸基に、例えばグリシジル(メタ)アクリレート等を付加させることにより得られる。
 前記熱潜在性(メタ)アクリレート系重合体は、例えば、3級炭素含有(メタ)アクリレート系モノマーと、水酸基を有するモノマーと、更に必要に応じて他のモノマー成分とを重合することにより得ることができる。
 前記他のモノマー成分としては、例えば、前記炭化水素環を有する構成単位を誘導するモノマーや、3級炭素を含有しない(メタ)アクリレート系モノマーや、側鎖にエチレン性二重結合を有する構成単位を誘導するモノマー等が挙げられる。
 本発明においては、中でも、前記(メタ)アクリル系樹脂として、側鎖にエチレン性二重結合を有する構成単位を有する(メタ)アクリル系共重合体、及び、前記熱潜在性(メタ)アクリレート系重合体から選ばれる少なくとも1種を含有することが、量子ドットの分散性の点から好ましい。
 本発明の量子ドット含有硬化性組成物が側鎖にエチレン性二重結合を有する構成単位を有する(メタ)アクリル系共重合体を含有する場合、量子ドット含有硬化性組成物の全固形分に対する、側鎖にエチレン性二重結合を有する構成単位を有する(メタ)アクリル系共重合体の含有割合は、当該側鎖にエチレン性二重結合を有する構成単位を有する(メタ)アクリル系共重合体の効果を十分に発揮する点から、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、一方で、他の成分を十分に含有させる点から、35質量%以下であることが好ましく、25質量%以下であることがより好ましい。
 また、本発明の量子ドット含有硬化性組成物が前記熱潜在性(メタ)アクリレート系重合体を含有する場合、量子ドット含有硬化性組成物の全固形分に対する、前記熱潜在性(メタ)アクリレート系重合体の含有割合は、当該熱潜在性(メタ)アクリレート系重合体の効果を十分に発揮する点から、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、一方で、他の成分を十分に含有させる点から、35質量%以下であることが好ましく、25質量%以下であることがより好ましい。
 また、本発明においては、前記(メタ)アクリル系樹脂として、分散剤として用いられるブロック共重合体も、量子ドットの分散性の点から好適に用いられる。分散剤として用いられるブロック共重合体の(メタ)アクリル系樹脂は、通常、ブロック部として、カルボキシ基等の酸性基、又は、3級アミン、3級アミン塩、4級アンモニウム塩等の塩基性基を有する構成単位を含むブロック部と、1種又は2種以上のエステル基を有する構成単位を含むブロック部とを有する。カルボキシ基を有する構成単位、3級アミンを有する構成単位、及びエステル基を有する構成単位は、前述と同様であって良く、その他の酸性基を有する構成単位や塩基性基を有する構成単位も適宜公知の構成単位を用いることができる。
 分散剤として用いられる(メタ)アクリル系樹脂は、適宜選択して市販品を用いることもできる。
 分散剤として用いられるブロック共重合体の(メタ)アクリル系樹脂も、量子ドットの分散性の点から、アミン価が40mgKOH/g以上140mgKOH/g以下であることが好ましく、120mgKOH/g以下であることが好ましく、100mgKOH/g以下であることがより好ましく、80mgKOH/g以下であることがより更に好ましい。
 前記(メタ)アクリル系樹脂が含有する(メタ)アクリル系共重合体の好ましい重量平均分子量(Mw)は、好ましくは1,000~50,000の範囲であり、さらに好ましくは3,000~20,000である。前記(メタ)アクリル系共重合体の重量平均分子量が、1,000以上であると、硬化後のバインダー機能に優れる点から好ましく、50,000以下であると、吐出性が向上する点から好ましい。
 なお、重合体の上記重量平均分子量(Mw)は、ポリスチレンを標準物質とし、THFを溶離液としてショウデックスGPCシステム-21H(Shodex GPC System-21H)により測定することができる。
 (メタ)アクリル系樹脂の側鎖にエチレン性不飽和基を有する場合のエチレン性不飽和結合当量は、硬化膜の膜強度が向上し、基板との密着性に優れるといった効果を得る点から、100~2000の範囲であることが好ましく、特に、140~1500の範囲であることが好ましい。該エチレン性不飽和結合当量が、2000以下であれば密着性に優れている。また、100以上であれば、炭化水素環を有する構成単位などの他の構成単位の割合を相対的に増やすことができるため、耐熱性等を向上することができる。
 ここで、エチレン性不飽和結合当量とは、上記(メタ)アクリル系樹脂におけるエチレン性不飽和結合1モル当りの重量平均分子量のことであり、下記数式(1)で表される。
数式(1)   エチレン性不飽和結合当量(g/mol)=W(g)/M(mol)
(数式(1)中、Wは、(メタ)アクリル系樹脂の質量(g)を表し、Mは(メタ)アクリル系樹脂W(g)中に含まれるエチレン性二重結合のモル数(mol)を表す。)
 上記エチレン性不飽和結合当量は、例えば、JIS K 0070:1992に記載のよう素価の試験方法に準拠して、(メタ)アクリル系樹脂1gあたりに含まれるエチレン性二重結合の数を測定することにより算出してもよい。
 本発明の量子ドット含有硬化性組成物において、(メタ)アクリル系樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよく、その含有量としては特に制限はないが、量子ドット含有硬化性組成物の固形分全量に対して(メタ)アクリル系樹脂は好ましくは5質量%~60質量%、さらに好ましくは10質量%~40質量%の範囲内である。(メタ)アクリル系樹脂の含有量が上記下限値以上であると、量子ドットの分散性が向上する点から好ましく、また、(メタ)アクリル系樹脂の含有量が上記上限値以下であると、吐出性が向上する点から好ましい。
 また、本発明の量子ドット含有硬化性組成物において、前記比較的分子量の高い重合体は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよく、その含有量としては特に制限はないが、量子ドット含有硬化性組成物の固形分全量に対して前記比較的分子量の高い重合体は好ましくは5質量%~60質量%、さらに好ましくは10質量%~40質量%の範囲内である。前記比較的分子量の高い重合体の含有量が上記下限値以上であると、量子ドットの分散性が向上する点から好ましく、また、前記比較的分子量の高い重合体の含有量が上記上限値以下であると、吐出性が向上する点から好ましい。
(多官能モノマー)
 多官能モノマーは、後述する光開始剤によって重合可能なものであればよく、特に限定されず、通常、エチレン性不飽和二重結合を2つ以上有する化合物が用いられ、特にアクリロイル基又はメタクリロイル基を2つ以上有する、多官能(メタ)アクリレートであることが好ましい。
 このような多官能(メタ)アクリレートとしては、従来公知のものの中から適宜選択して用いればよい。
 多官能(メタ)アクリレートは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、本発明の量子ドット含有硬化性組成物に優れた光硬化性(高感度)が要求される場合には、多官能モノマーが、重合可能な二重結合を3つ(三官能)以上有するものであるものが好ましく、3価以上の多価アルコールのポリ(メタ)アクリレート類やそれらのジカルボン酸変性物が好ましく、具体的には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートのコハク酸変性物、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートのコハク酸変性物、ジペンタエリスリトールヘキサ(メタ)アクリレート等が好ましい。
 量子ドット含有硬化性組成物において用いられる上記多官能モノマーの含有量は、特に制限はないが、量子ドット含有硬化性組成物の固形分全量に対して多官能モノマーは好ましくは5~60質量%、さらに好ましくは10~40質量%の範囲内である。多官能モノマーの含有量が上記下限値以上であると、十分に光硬化が進行し易い点から好ましく、また、他の成分を十分に含有させるため、多官能モノマーの含有量は、上記上限値以下であることが好ましい。
(光開始剤)
 光開始剤としては、特に制限はなく、従来知られている各種光開始剤の中から、1種又は2種以上を組み合わせて用いることができる。
 光開始剤としては、芳香族ケトン類、ベンゾインエーテル類、ハロメチルオキサジアゾール化合物、α-アミノケトン、ビイミダゾール類、N,N-ジメチルアミノベンゾフェノン、ハロメチル-S-トリアジン系化合物、チオキサントン等を挙げることができる。光開始剤の具体例としては、ベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン等の芳香族ケトン類、ベンゾインメチルエーテル等のベンゾインエーテル類、エチルベンゾイン等のベンゾイン、2-(o-クロロフェニル)-4,5-フェニルイミダゾール2量体等のビイミダゾール類、2-トリクロロメチル-5-(p-メトキシスチリル)-1,3,4-オキサジアゾール等のハロメチルオキサジアゾール化合物、2-(4-ブトキシ-ナフト-1-イル)-4,6-ビス-トリクロロメチル-S-トリアジン等のハロメチル-S-トリアジン系化合物、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパノン、1,2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1,1-ヒドロキシ-シクロヘキシル-フェニルケトン、ベンジル、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルサルファイド、ベンジルメチルケタール、ジメチルアミノベンゾエート、p-ジメチルアミノ安息香酸イソアミル、2-n-ブトキシエチル-4-ジメチルアミノベンゾエート、2-クロロチオキサントン、2,4-ジエチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、4-ベンゾイル-メチルジフェニルサルファイド、1-ヒドロキシ-シクロヘキシル-フェニルケトン、2-ベンジル-2-(ジメチルアミノ)-1-[4-(4-モルフォリニル)フェニル]-1-ブタノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォリニル)フェニル]-1-ブタノン、α-ジメトキシ-α-フェニルアセトフェノン、フェニルビス(2,4,6-トリメチルベンゾイル)フォスフィンオキサイド、2-メチル-1-[4-(メチルチオ)フェニル]-2-(4-モルフォリニル)-1-プロパノンなどが挙げられる。
 中でも、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-(ジメチルアミノ)-1-(4-モルフォリノフェニル)-1-ブタノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、ジエチルチオキサントンが好ましく用いられる。
 特に量子ドットの光吸収を妨げない光開始剤が好ましく、量子ドットの励起波長である350nm以上や400nm以上の吸収が少ない光開始剤であることが好ましい。このような光開始剤としては、例えば、250nm近傍に吸収を持つα-ヒドロキシケトン系開始剤が挙げられる。2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン (Irgacure 127)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(Irgacure 184)、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(Irgacure 651)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(Irgacure 1173)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(Irgacure 2959)などである。なお、上記Irgacure 127、184、651、1173、及び2959は、商品名であり、BASFより入手可能である。
前記光開始剤の合計含有量は、量子ドット含有硬化性組成物の固形分全量に対して、5質量%~15質量%が好ましい。
 また、前記光開始剤の含有量は、上記多官能モノマー100質量部に対して、通常0.01質量部~100質量部程度、好ましくは5質量部~60質量部である。
 前記光開始剤の含有量が上記下限値以上であると十分に光硬化が進みやすく、一方上記上限値以下であると得られる硬化膜の黄変性が弱くなって透明性が低下することを抑制できる点から好ましい。
 本発明の量子ドット含有硬化性組成物において用いられるバインダー成分は、これらの合計含有量が、量子ドット含有硬化性組成物の固形分全量に対して35質量%~97質量%が好ましく、40質量%~96質量%の割合で配合するのがより好ましい。上記下限値以上であれば、硬度や、基板との密着性に優れた硬化膜を得ることができる点から好ましい。また上記上限値以下であれば、熱収縮による微小なシワの発生も抑制される点から好ましい。
<量子ドット>
 本発明に用いられる量子ドットは、数nm~数十nmの大きさをもつ化合物半導体の微粒子であり、量子閉じ込め効果(量子サイズ効果)を生じる発光材料であれば特に限定されない。
 前記量子ドットとしては、公知の量子ドットを用いることができ、1種単独で用いても良いし、2種以上を混合して用いても良い。公知の量子ドットには、600nm~680nmの範囲の波長帯域に発光中心波長を有する量子ドット(R)、500nm~600nmの範囲の波長帯域に発光中心波長を有する量子ドット(G)、400nm~500nmの波長帯域に発光中心波長を有する量子ドット(B)があり、前記量子ドット(R)は、励起光により励起され赤色光を発光し、前記量子ドット(G)は緑色光を発光し、前記量子ドット(B)は青色光を発光する。
 前記量子ドットしては、具体的には、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe及びHgTeのようなII-VI族半導体化合物、AlN、AlP、AlAs、AlSb、GaAs、GaP、GaN、GaSb、InN、InAs、InP、InSb、TiN、TiP、TiAs及びTiSbのようなIIIV族半導体化合物、Si、Ge及びPbのようなIV族半導体等を含有する半導体結晶の他、InGaPのような3元素以上を含んだ半導体化合物が挙げられる。或いは、上記半導体化合物に、Eu3+、Tb3+、Ag、Cuのような希土類金属のカチオン又は遷移金属のカチオンをドープしてなる半導体結晶を用いることができる。
 また、前記量子ドットは、1種の半導体化合物からなるものであっても、2種以上の半導体化合物からなるものであってもよく、例えば、半導体化合物からなるコアと、該コアと異なる半導体化合物からなるシェルとを有するコアシェル型構造を有していてもよい。コアシェル型の量子ドットとしては、励起子が、コアに閉じ込められるように、シェルを構成する半導体化合物として、コアを形成する半導体化合物よりもバンドギャップの高い材料を用いることで、量子ドットの発光効率を高めることができる。このようなバンドギャップの大小関係を有するコアシェル構造(コア/シェル)としては、例えば、CdSe/ZnS、CdSe/ZnSe、CdSe/CdS、CdTe/CdS,InP/ZnS、CuInS/ZnS等が挙げられる。
 量子ドットのサイズは、所望の波長の光が得られるように、量子ドットを構成する材料によって、適宜調節すればよい。量子ドットは粒径が小さくなるに従い、エネルギーバンドギャップが大きくなる。すなわち、結晶サイズが小さくなるにつれて、量子ドットの発光は青色側へ、つまり、高エネルギー側へとシフトする。そのため、量子ドットのサイズを変化させることにより、紫外領域、可視領域、赤外領域のスペクトルの波長領域にわたって、その発光波長を調節することができる。
 また、前記量子ドットとしては、配位性基を有する配位子が表面に配位したものを用いても良い。前記配位性基としては、アミノ基、カルボキシ基、メルカプト基、ホスフィン基、及びホスフィンオキシド基等を挙げることができる。前記配位子としては、例えば、ヘキシルアミン、デシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、ミリスチルアミン、ラウリルアミン、オレイン酸、メルカプトプロピオン酸、トリオクチルホスフィン、トリオクチルホスフィンオキシド及びポリエチレングリコール等を挙げることができる。中でも、表面欠陥による消光を防ぐ点から、トリオクチルホスフィン、トリオクチルホスフィンオキシド、オクタデシルアミン及びオレイルアミンよりなる群から選ばれる少なくとも1種の配位性基を有する配位子が表面に配位した量子ドットが好ましく、トリオクチルホスフィンオキシド、オクタデシルアミン及びオレイルアミンから選ばれる少なくとも1種の配位性基を有する配位子が表面に配位した量子ドットがより好ましい。
 なお、前記配位性基を有する配位子が表面に配位した量子ドットは、例えば、J.Am.Chem.Soc.,115,pp8706-8715(1993)、又は、J.Phys.Chem.,101,pp9463-9475(1997)に記載された方法によって合成することができ、また、市販のものを好適に用いることもできる。
 また、前記量子ドットとしては、保護材料によりその表面が保護された量子ドットを用いても良い。前記保護材料としては、例えば、一分子中に親水基を1残基以上及び疎水基を有し、該疎水基として、トリフェニルアミン誘導体、アリールアミン誘導体、オキサジアゾール誘導体、ジナフチルアントラセン誘導体、ジスチルアリーレン誘導体、カルバゾール誘導体、ベンズイミダゾール誘導体及びアルミニウムキノリノール錯体誘導体から選ばれる少なくとも1種の残基を含有するものが挙げられる。
 前記親水性基としては、例えば、カルボキシル基、アミノ基、水酸基、チオール基、アルデヒド基、スルホン酸基、アミド基、スルホンアミド基、リン酸基、ホスフィン基、ホスフィンオキシド基などを挙げることができる。
 本発明の量子ドット含有硬化性組成物の全固形分中に含まれる量子ドットの含有量は、発光強度の点から、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、一方で、インクジェット方式による吐出安定性、分散性の点から、40質量%以下であることが好ましく、35質量%以下であることがより好ましい。
<任意添加成分>
 本発明の量子ドット含有硬化性組成物には、必要に応じて、各種添加剤を含むものであってもよい。添加剤としては、例えば、酸化防止剤、重合停止剤、連鎖移動剤、レベリング剤、可塑剤、界面活性剤、消泡剤、シランカップリング剤、紫外線吸収剤、密着促進剤等などが挙げられる。
<量子ドット含有硬化性組成物の製造方法>
 本発明の量子ドット含有硬化性組成物は、上述した各成分を前記溶剤に投入して混合し、固形成分を溶解又は分散させて製造することができる。例えば、硬化性樹脂及び硬化剤等のバインダー成分を溶剤に溶解乃至分散させた硬化性バインダー組成物を予め調製し、当該硬化性バインダー組成物と、量子ドットと、任意添加成分とを、さらに溶剤を添加して混合する方法を好ましく用いることができる。前記硬化性バインダー組成物の調製に用いる溶剤としては、前記第一溶剤及び前記第二溶剤よりなる群から選ばれる少なくとも1種が好ましい。また、例えば、前記硬化性バインダー組成物を調製した後、前記第一溶剤及び前記第二溶剤よりなる群から選ばれる少なくとも1種を更に添加することにより、量子ドット含有硬化性組成物中の溶剤が、前記第一溶剤と、前記第二溶剤とを含む溶剤となるようにすることが好ましい。
 すなわち、本発明の量子ドット含有硬化性組成物の製造方法としては、例えば、
 前記硬化性バインダー成分と、前記第一溶剤及び前記第二溶剤よりなる群から選ばれる少なくとも1種とを含有する硬化性バインダー組成物を調製する工程と、
 前記硬化性バインダー組成物と、前記量子ドットと、前記第一溶剤及び前記第二溶剤よりなる群から選ばれる少なくとも1種とを混合する工程と、
を有し、前記硬化性バインダー組成物中の溶剤と、前記混合する工程に用いる溶剤との混合溶剤が、前記第一溶剤と前記第二溶剤とを含有する、製造方法が挙げられる。
 前記硬化性バインダー成分として、分散剤として機能する重合体を用いる場合には、分散剤として機能する重合体を除く硬化性バインダー成分と、前記第一溶剤及び前記第二溶剤よりなる群から選ばれる少なくとも1種とを含有する硬化性バインダー組成物を調製する工程と、
 前記量子ドットと、分散剤として機能する重合体と、前記第一溶剤及び前記第二溶剤よりなる群から選ばれる少なくとも1種とを分散処理して量子ドット分散液を調製する工程と、
 前記硬化性バインダー組成物と、前記分散液と、必要に応じて更に前記第一溶剤及び前記第二溶剤よりなる群から選ばれる少なくとも1種とを混合する工程と、
を有し、前記硬化性バインダー組成物中の溶剤と、前記混合する工程に用いる溶剤との混合溶剤が、前記第一溶剤と前記第二溶剤とを含有する、製造方法が挙げられる。
<用途>
 本発明に係る量子ドット含有硬化性組成物の用途は、特に限定はされず、例えば後述する表示装置等に用いられる各種光学部材が有する量子ドット含有硬化層の形成に用いることができる。また、本発明に係る量子ドット含有硬化性組成物は、量子ドットを含有する層をインクジェット方式により形成するのに適した組成物であり、インクジェット用として好ましく用いることができる。
 前記光学部材としては、例えば、光変換部材、発光部材等の半導体光学部材が挙げられる。
II.量子ドット含有硬化物
 本発明に係る量子ドット含有硬化物は、前記本発明に係る量子ドット含有硬化性組成物の硬化物である。
 本発明に係る量子ドット含有硬化物は、ムラが低減され、硬化物中の量子ドットの凝集が抑制されたものであるため、所望の発色を得ることができる。
 本発明に係る量子ドット含有硬化物は、例えば、前記本発明に係る量子ドット含有硬化性組成物の塗膜である量子ドット含有層を、インクジェット方式により形成し、該量子ドット含有層を硬化することにより得ることができる。前記量子ドット含有層を形成する方法及び前記硬化の方法としては、例えば、後述する光学部材の製造方法において用いられる方法と同様の方法とすることができる。
 本発明に係る量子ドット含有硬化物は、例えば後述する表示装置等に用いられる光変換部材、発光部材等の各種光学部材が有する量子ドット含有硬化層として用いると、高輝度及び広色再現域を達成することができる。
 本発明に係る量子ドット含有硬化物は、量子ドットの種類及び含有量を適宜調節することにより、所望の発色特性を有するものとすることができる。
 本発明に係る量子ドット含有硬化物の色再現域は、例えば光源としてBlue LEDを用いて、赤色、緑色、青色及び白色の発光色を実現することが可能である。より具体的には、色度座標(x、y)において、Rx=0.60~0.71、Ry=0.29~0.35の赤色、Gx=0.16~0.35、Gy=0.55~0.80の緑色、Bx=0.13~0.16、By=0.03~0.10の青色を実現することができる。
 なお、前記色度座標x、yは、Blue LED光源を使用して測色したJIS Z8701:1931のXYZ表色系におけるものである。
III.光学部材の製造方法
 本発明に係る光学部材の製造方法は、基板上の所定領域に、前記本発明の量子ドット含有硬化性組成物を、インクジェット方式によって選択的に付着させて量子ドット含有層を形成する工程と、
 前記量子ドット含有層を硬化させて量子ドット含有硬化層を形成する工程と、
を有することを特徴とする。
 なお、本発明に係る光学部材の製造方法は、上述した各工程の他、更に必要に応じて別の工程を有するものであってもよい。
 本発明に係る光学部材の製造方法は、前記本発明の量子ドット含有硬化性組成物を用いるため、ムラが低減された量子ドット含有硬化層を形成することができ、また、量子ドット含有硬化層中の量子ドットの凝集が抑制されるため、所望の発色を得ることができる。
 なお、量子ドット含有硬化層は、量子ドットの種類及び含有量を適宜選択することにより、所望の発色特性を有するように調整することができ、上述した本発明に係る量子ドット含有硬化物と同様の色再現域を有する。
 本発明の光学部材の製造方法において、前記基板上の所定領域は、基板上の隔壁に囲まれた領域であることが好ましい。
 本発明の製造方法により得られる光学部材は、例えば後述する表示装置等に用いられる光変換部材、発光部材等の各種半導体光学部材として用いると、高輝度及び広色再現域を達成することができる点から好ましい。
 本発明の光学部材の製造方法の一例を、図を用いて以下に説明する。
 図1は、本発明に係る光学部材の製造方法の一例を説明する図である。図1に示す方法においては、先ず、図1(A)に示すように光学部材の基板1を準備する。この基板としては、従来より光学部材に用いられているものであれば特に限定されるものではなく、例えば、透明基板、TFT(thin film transistor)基板等が挙げられる。透明基板としては、例えば石英ガラス、パイレックス(登録商標)ガラス、合成石英板等の可とう性のない透明なリジット材、あるいは透明樹脂フィルム、光学用樹脂板等の可とう性を有する透明なフレキシブル材を用いることができる。
 前記基板は、必要に応じて、ガスバリア性付与等の目的で表面処理を施した基板であってもよい。
 次に、図1(B)に示すように、基板1の一面側のサブピクセル間の境界となる領域に隔壁2を形成する。隔壁2は、スパッタリング法、真空蒸着法等により厚み1000~2000Å程度のクロム等の金属薄膜を形成し、この薄膜をパターニングすることにより形成することができる。このパターニングの方法としては、スパッタ等の通常のパターニング方法を用いることができる。
 また、隔壁2としては、樹脂バインダー中にカーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子を含有させた層であってもよく、例えば、ブラックマトリックスを用いることができる。隔壁に用いられる樹脂バインダーとしては、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアクリルアミド、ポリビニルアルコール、ゼラチン、カゼイン、セルロース等の樹脂を1種または2種以上混合したものや、感光性樹脂、さらにはO/Wエマルジョン型の樹脂組成物、例えば、反応性シリコーンをエマルジョン化したもの等を用いることができる。このような樹脂製隔壁の厚みとしては、0.5~15μmの範囲内で設定することができる。このような樹脂製隔壁のパターニングの方法としては、フォトリソ法、印刷法等一般的に用いられている方法により所定のパターン状に形成し、電離放射線照射などの方法で硬化させ、必要に応じてベークする方法を用いることができる。
 また、隔壁2は、撥インク性を有するものであっても、有しないものであってもよいが、後述する撥インク性凸部3を有しない場合は、隔壁2が撥インク性を有することが好ましい。撥インク性を付与する手段は、後述する撥インク性凸部3と同様の手段を用いることができる。
 前記隔壁の高さは、特に限定はされないが、混色(斜め光の遮断)の点から、1.0μm以上であることが好ましく、2.0μm以上であることがより好ましく、一方で、隔壁の生産性の点から、15μm以下であることが好ましく、10μm以下であることがより好ましい。
 隔壁2のパターン上には、図1(C)に示すように、撥インク性凸部3を必要に応じて形成してもよい。このような撥インク性凸部の組成は、本発明の量子ドット含有硬化性組成物との親和性が低く、量子ドット含有硬化性組成物をはじく、撥インク性を有する樹脂組成物であれば、特に限定されるものではない。また、特に透明である必要はなく、着色されたものであってもよい。例えば、隔壁に用いられる材料であって、黒色の材料を混入しない材料等を用いることができる。具体的には、ポリアクリルアミド、ポリビニルアルコール、ゼラチン、カゼイン、セルロース等の水性樹脂を1種または2種以上混合した組成物や、O/Wエマルジョン型の樹脂組成物、例えば、反応性シリコーンをエマルジョン化したもの等を挙げることができる。本発明においては、取扱性および硬化が容易である点等の理由から、光硬化性樹脂が好適に用いられる。また、この撥インク性凸部は、撥インク性が強いほど好ましいので、その表面をシリコーン化合物や含フッ素化合物等の撥インク処理剤で処理したものでもよい。
 撥インク性凸部のパターニングは、撥インク性樹脂組成物の塗工液を用いる印刷や、光硬化性塗工液を用いるフォトリソグラフィーにより行うことができる。撥インク性凸部の高さは、上述したようにインクジェット法により塗工する際にインクが混色することを防止するために設けられるものであることから、適宜調整されれば良く、具体的には、吹き付けるインクの堆積量によっても異なるが、通常は0.1~3.0μmの範囲内であることが好ましい。
 また、撥インク性凸部の形成において、撥インク性を付与するのに、プラズマ処理等の表面処理を用いても良い。表面処理としては、例えば、導入ガスにフッ素又はフッ素化合物を含んだガスを使用し、減圧雰囲気下や大気圧雰囲気下でプラズマ照射をする減圧プラズマ処理や大気圧プラズマ処理が挙げられる。フッ素系化合物及び酸素を含んだガス中でプラズマ処理を行なうと、有機材料においては上記反応と並行してフッ素系化合物が有機材料表面に入り込む現象が生ずる。特にフッ素系化合物が酸素よりも多い場合、例えば、フッ素系化合物及び酸素の総量に対するフッ素系化合物の含有量が60%以上に設定されているような、フッ素系化合物の量が過多のガス雰囲気下では、酸素による酸化反応よりもフッ素系化合物混入化現象の方が盛んになるため、混入化現象によって有機材料表面が非極性化され、撥インク性が付与される。
 隔壁2及び必要に応じて撥インク性凸部3を形成した後、図1では図示しないが、基板1の表面に、隔壁2のパターンにより画成された各量子ドット含有層形成領域4に、必要に応じて各種機能を付与するための機能層を形成してもよい(例えば、後述する図2の機能層8)。当該機能層は、例えば、着色剤や光散乱粒子等の種類及び含有量等を適宜選択することにより、光源や外光からの光のうち、所望の光を遮断もしくは拡散、もしくはその両方の性能を付与する層とすることができる。
 なお、機能層は、図示しないが、量子ドット含有硬化層を形成後、量子ドット含有硬化層の上に設けても良い。量子ドット含有硬化層の上に設ける機能層としては、例えば、ガスバリア層等の機能層が挙げられる。
 当該機能層は、機能に応じて材料及び形成方法を適宜選択することができる。当該機能層は、例えば、フォトリソ方式やインクジェット方式等の公知の方式により、樹脂、及び必要に応じて着色剤や光散乱粒子等を含む樹脂組成物の塗膜を形成し、当該塗膜を硬化することにより得ることができる。
 次に、各サブピクセル形成用インクとして、各色の上記本発明に係る量子ドット含有組成物をインクジェットインクとして用意する。そして、図1(D)に示すように、基板1の表面に、隔壁2のパターンにより画成された各量子ドット含有層形成領域4に、所望の色のサブピクセル形成用インクをインクジェット方式により吹き付けて量子ドット含有層を形成する。このインクの吹き付け工程において、サブピクセル形成用インクは、ヘッド5の先端部で粘度増大を起こし難く、良好な吐出性を維持し続けることができる。従って、所定の量子ドット含有層形成領域内に、対応する色のインクを正確に、且つ、均一に付着させることができ、また、第二溶剤が所定の表面張力や粘度を有する場合には隅々にまで濡れ広がり、正確なパターンで色ムラや色抜けのないサブピクセルを形成することができる。また、各色のサブピクセル形成用インクを、複数のヘッドを使って同時に基板上に吹き付けることもできるので、各色ごとにサブピクセルを形成する場合と比べて作業効率を向上させることができる。
 次に、図1(E)に示すように、各色の量子ドット含有層6を乾燥し必要に応じてプリベークした後、適宜露光及び/又は加熱することにより硬化させる。中でも、本発明においては、通常のプリベーク段階の前に前記量子ドット含有層を減圧乾燥する工程を更に含むことが、表面の放射状ムラを抑制することが出来る点から好ましい。例えば、60~140℃のホットプレート上で3~20分間のプリベークを行う。また、加熱と減圧乾燥を同時に行っても良い。その後量子ドット含有層を適宜露光及び/又は加熱すると、インクジェットインク中に含まれる硬化性樹脂の架橋要素が架橋反応を起こし、量子ドット含有層が硬化して、量子ドット含有硬化層7が形成される。
 なお、各量子ドット含有硬化層7が含有する量子ドットは、同じ種類のものであってもよいし、異なる種類のものであってもよい。
 なお、各サブピクセルの大きさは、特に限定はされないが、例えば、5μm×5μm以上、200μm×200μm以下とすることができる。本発明の製造方法によれば、このような小さなサブピクセルに、正確に所望の量子ドット含有硬化層を形成することができる。
 また、量子ドット含有硬化層の厚さは、例えば、0.01μm以上10μm以下程度とすることができる。また、サブピクセル毎に硬化層の厚さを変えて、各色ごとに最適な厚みに設定してもよい。
 また、本発明において製造される光学部材においては、前記量子ドット含有硬化層の膜厚の最高値、中でも前記量子ドット含有硬化層の端部の膜厚の最高値が15μm以下であることが好ましく、更に10μm以下であることが好ましい。また、本発明において製造される光学部材においては、前記量子ドット含有硬化層の膜厚の最高値、中でも前記量子ドット含有硬化層の端部の膜厚の最高値と平均膜厚との差が5μm以下、更に2.5μm以下であることが好ましい。このような場合には、厚膜部分が暗くなったり、表示不良が低減する。なお、膜厚は、基板からの高さをいう。また、硬化層の平均膜厚は、サブピクセル内の塗膜体積を硬化層表面の面積で割ることにより、算出する。更に、端部の膜厚の最高値とは、端部盛り上がり部位の中で膜厚が最も高い箇所における膜厚の値をいう。
 このようにして、本発明に係る量子ドット含有硬化性組成物を用いて光学部材101が製造される。
 また、本発明に係る光学部材の製造方法は、隔壁2及び量子ドット含有硬化層7を覆うオーバーコート層を形成する工程を更に有するものでもあっても良い。すなわち、本発明に係る製造方法により得られる光学部材は、後述する図2に示すように、隔壁2及び量子ドット含有硬化層7を覆うオーバーコート層9を有するものであっても良い。
 オーバーコート層は、光学部材を平坦化するとともに、サブピクセルに含有される成分の溶出や酸素や水分の侵入を防ぐために設けられる。オーバーコート層の厚みは、使用される材料の光透過率、光学部材の表面状態等を考慮して設定することができ、例えば、0.01~2.0μmの範囲で設定することができる。オーバーコート層は、例えば、公知の感光性樹脂、二液硬化型樹脂等の有機材料、酸化シリコン、酸化アルミニウム、酸化タンタル、酸化イットリウム、酸化ハフニウム、酸化ジルコニア、酸化チタン等の金属酸化物、窒化シリコン等の金属酸窒化物、金属アルコキシド、シリコンオキシナイトライド、ハフニウムアルミネート等の無機材料、有機無機ハイブリッド材料等の中から、保護層として要求される光透過率、ガスバリア性等を有するものを用いて形成することができる。また、オーバーコート層の形成方法は、使用する材料に応じて公知の方法から適宜選択され、特に限定はされないが、前記無機材料、有機無機ハイブリッド材料等を用いる場合は、例えば、ゾルゲル法、蒸着法、スパッタリング法等が挙げられる。
 本発明に係る光学部材の製造方法においては、前記量子ドット含有層を形成する工程の前に、更に、
 前記基板表面の所定領域内の濡れ性を選択的に変化させて、周囲と比べて前記量子ドット含有硬化性組成物との親和性の高い量子ドット含有層形成領域を形成する工程を含み、
 前記量子ドット含有層を形成する工程において、前記量子ドット含有層形成領域に、前記量子ドット含有硬化性組成物をインクジェット方式によって選択的に付着させて前記量子ドット含有層を形成する方法を好ましく用いることができる。
 量子ドット含有硬化性組成物との親和性の高い、すなわち親インク性の大きい量子ドット含有層形成領域にインクを付着させると、インクの濡れ広がり性がより向上し、色抜けや膜厚ムラをより効果的に防止でき、明るさや色むらが生じないサブピクセルを得ることができるからである。
 基板表面の所定領域内の濡れ性を選択的に変化させて、周囲と比べて親インク性の大きい量子ドット含有層形成領域を形成する工程としては、特に限定されず、上述したようなプラズマ処理等の表面処理を用いても良い。例えば、フッ素系化合物及び酸素を含んだガス中でプラズマ処理を行なうと、無機材料の表面にはプラズマ放電により未反応基が発生し、酸素により未反応基が酸化されてカルボニル基や水酸基等の極性基が発生し、親インク性が付与される。一方、有機材料においては上記反応と並行してフッ素系化合物が有機材料表面に入り込む現象が生ずる。特にフッ素系化合物が酸素よりも多い場合、例えばフッ素系化合物及び酸素の総量に対するフッ素系化合物の含有量が60%以上に設定されているような、フッ素系化合物の量が過多のガス雰囲気下では、酸素による酸化反応よりもフッ素系化合物混入化現象の方が盛んになるため、混入化現象によって有機材料表面が非極性化され、撥インク性が付与される。したがって、ガラス基板上に有機材料により隔壁2や凸部を形成した後に、上記のようなフッ素形化合物が過多の条件でプラズマ処理を行なうと、量子ドット含有層形成領域に該当するガラス基板上は周囲に比べて親インク性が大きくなり、隔壁2や凸部は撥インク性となり、凸部は撥インク性凸部3となる。このようにして得られた量子ドット含有層形成領域はインクが濡れ広がり易く、色抜けや膜厚ムラが防止される上、他のインク形成領域との境界に該当する凸部からのインク流出が防止される。また、この場合において、隔壁2を無機材料で形成し、その上に凸部を有機材料で形成すると、ガラス基板と隔壁2は、親インク性が大きくなり、凸部は撥インク性となる。
IV.表示装置の製造方法
 本発明に係る表示装置の製造方法は、
 前記本発明に係る光学部材の製造方法により光学部材を製造する工程と、
 前記製造された光学部材を搭載する工程とを有することを特徴とする。
 本発明に係る表示装置の製造方法により製造される表示装置としては、前記本発明の光学部材の製造方法により製造された光学部材を備えた表示装置であれば、その構成は特に限定されず、従来公知の表示装置の中から適宜選択することができ、例えば、マイクロLED表示装置、量子ドット発光表示装置、液晶表示装置、有機発光表示装置等が挙げられる。本発明の製造方法は、高輝度及び広色再現域を達成できる点から、マイクロLED表示装置及び量子ドット発光表示装置の製造方法として特に好ましい。
<マイクロLED表示装置>
 本発明に係る表示装置の製造方法によりマイクロLED表示装置を製造する場合、前記製造された光学部材を搭載する工程を、例えば、前記製造された光学部材と、マイクロLED基板を含む対向基板とを対向させて組み立てる工程とすることができる。
 このような本発明の製造方法により得られるマイクロLED表示装置について、図を参照しながら説明する。図2は、本発明に係る製造方法により得られる表示装置の一例を示す概略図であり、マイクロLED表示装置の一例を示す概略図である。図2に例示するようにマイクロLED表示装置200は、前述した本発明の光学部材(光変換部材)100と、マイクロLED基板を有する対向基板11とを張り合わせた構成を有している。マイクロLED表示装置200が有する光学部材100は、オーバーコート層9を有し、光学部材100のオーバーコート層9側の面と、対向基板11とが対向するように組み立てられている。また、マイクロLED表示装置200が有する光学部材100は、赤色、緑色又は青色へ調整するサブピクセル10R、10G、10Bを有する。赤色へ調整するサブピクセル10Rは、赤色の発光色を示す量子ドットを含有する量子ドット含有硬化層7Rを有し、基板1と量子ドット含有硬化層7Rとの間に、青色光を遮断するための機能層8を有する。緑色へ調整するサブピクセル10Gは、緑色の発光色を示す量子ドットを含有する量子ドット含有硬化層7Gを有し、基板1と量子ドット含有硬化層7Gとの間に、青色光を遮断するための機能層8を有する。青色へ調整するサブピクセル10Bは、量子ドット含有硬化層を有さず、機能層8を有する。
 なお、本発明の製造方法により得られるマイクロLED表示装置は、図2に示される構成に限定されるものではなく、一般的に半導体光学部材(光変換部材)が用いられたマイクロLED表示装置として公知の構成とすることができる。
 また、対向基板は、本発明のマイクロLED表示装置の駆動方式等に応じて適宜選択して用いることができる。
 また、本発明の製造方法により得られるマイクロLED表示装置としては、図2に示す構成を有するものに限定されず、例えば、特表2016-523450号公報及び特表2016-533030号公報等に記載される公知の構成を有するものを挙げることもできる。
<量子ドット発光表示装置>
 本発明に係る表示装置の製造方法により量子ドット発光表示装置を製造する場合は、前記光学部材の製造に用いる基板として、TFT基板を用い、前記製造された光学部材を搭載する工程を、例えば、前記製造された光学部材を含む発光体と、カラーフィルタとを対向させて組み立てる工程とすることができる。
 このような本発明の製造方法により得られる量子ドット発光表示装置について、図を参照しながら説明する。図3は、本発明に係る製造方法により得られる表示装置の別の一例を示す概略図であり、量子ドット発光表示装置の一例を示す概略図である。図3に例示するように量子ドット発光表示装置300は、カラーフィルタ40と、本発明の光学部材74を含む発光体80とを有している。カラーフィルタ40と、発光体80との間に、有機保護層50や無機酸化膜60を有していても良い。
 発光体80の積層方法としては、例えば、カラーフィルタ40上面へ透明陽極71、正孔注入層72、正孔輸送層73、本発明の光学部材74、電子注入層75、および陰極76を逐次形成していく方法や、別基板上へ形成した発光体80を無機酸化膜60上に貼り合わせる方法などが挙げられる。発光体80における、透明陽極71、正孔注入層72、正孔輸送層73、電子注入層75、および陰極76、その他の構成は、公知のものを適宜用いることができる。このようにして作製された量子ドット発光表示装置300は、例えば、パッシブ駆動方式のQLEDディスプレイにもアクティブ駆動方式のQLEDディスプレイにも適用可能である。
<液晶表示装置>
 本発明に係る表示装置の製造方法により液晶表示装置を製造する場合、前記製造された光学部材を搭載する工程を、例えば、前記製造された光学部材と、液晶の駆動用基板とを対向させて組み立てる工程とすることができる。
 このような本発明の製造方法により得られる液晶表示装置について、図を参照しながら説明する。図4は、本発明に係る製造方法により得られる表示装置の別の一例を示す概略図であり、液晶表示装置の一例を示す概略図である。図4に例示するように液晶表示装置400は、光学部材(光変換部材)100と、TFTアレイ基板等を有する対向基板12の一面側に液晶層13を有する液晶の駆動用基板とを有し、上記光学部材(光変換部材)100と上記対向基板12との間に液晶層13を有している。
 なお、本発明の液晶表示装置は、この図4に示される構成に限定されるものではなく、一般的に半導体光学部材(光変換部材)が用いられた液晶表示装置として公知の構成とすることができる。
 本発明の液晶表示装置の駆動方式としては、特に限定はなく一般的に液晶表示装置に用いられている駆動方式を採用することができる。このような駆動方式としては、例えば、TN方式、IPS方式、OCB方式、及びMVA方式等を挙げることができる。本発明においてはこれらのいずれの方式であっても好適に用いることができる。
 また、対向基板としては、本発明の液晶表示装置の駆動方式等に応じて適宜選択して用いることができる。
 液晶層の形成方法としては、一般に液晶セルの作製方法として用いられる方法を使用することができ、例えば、真空注入方式や液晶滴下方式等が挙げられる。
<有機発光表示装置>
 本発明に係る表示装置の製造方法により有機発光表示装置を製造する場合、前記製造された光学部材を搭載する工程を、例えば、前記製造された光学部材を含む有機発光体を準備する工程と、前記有機発光体と、カラーフィルタとを対向させて組み立てる工程、とすることができる。
 本発明に係る表示装置の製造方法により得られる有機発光表示装置は、前述した本発明に係る光学部材(発光部材)を含む有機発光体を有する。
 このような本発明の有機発光表示装置について、図を参照しながら説明する。図5は、本発明に係る製造方法により得られる表示装置の別の一例を示す概略図であり、有機発光表示装置の一例を示す概略図である。図5に例示するように有機発光表示装置500は、カラーフィルタ40と、本発明に係る光学部材(発光部材)74’を含む有機発光体81とを有している。カラーフィルタ40と、有機発光体81との間に、有機保護層50や無機酸化膜60を有していても良い。また、有機発光表示装置に用いられる本発明に係る光学部材(発光部材)は、量子ドット含有硬化層を有するサブピクセルと、有機発光化合物を含む発光層を有するサブピクセルとを有するものとすることができる。当該有機発光化合物としては、公知の有機発光表示装置の発光層に用いられる有機発光化合物を用いることができる。
 有機発光体81の積層方法としては、例えば、カラーフィルタ上面へ透明陽極71、正孔注入層72、正孔輸送層73、有機発光化合物を含む発光層を有し得る本発明に係る光学部材(発光部材)74’、電子注入層75、および陰極76を逐次形成していく方法や、別基板上へ形成した有機発光体180を無機酸化膜60上に貼り合わせる方法などが挙げられる。有機発光体81における、透明陽極71、正孔注入層72、正孔輸送層73、電子注入層75、および陰極76、その他の構成は、公知のものを適宜用いることができる。このようにして作製された有機発光表示装置500は、例えば、パッシブ駆動方式の有機ELディスプレイにもアクティブ駆動方式の有機ELディスプレイにも適用可能である。
 なお、本発明の有機発光表示装置は、この図5に示される構成に限定されるものではなく、一般的な有機発光表示装置として公知の構成とすることができる。
 以下、本発明について実施例を示して具体的に説明する。これらの記載により本発明を制限するものではない。
 なお、重量平均分子量はポリスチレンを標準物質とし、THFを溶離液としてショウデックスGPCシステム-21H(Shodex GPC System-21H)により測定した。また酸価の測定方法は、JIS K 0070に基づいて測定した。
(製造例1-1:エポキシ基含有共重合体Aの合成)
 温度計、還流冷却器、攪拌機、滴下ロートを備えた4つ口フラスコに、表1に示す配合割合に従って、プロピレングリコールモノメチルエーテルアセテート(以下、PGMEAと示すことがある。)を40.7質量部仕込み、攪拌しながら加熱して140℃ に昇温した。次いで、140℃の温度で表1に記載した組成の単量体、及び、重合開始剤の混合物(滴下成分)54.7質量部を、2時間かけて滴下ロートより等速滴下した。滴下終了後、110℃に降温し重合開始剤及びPGMEAの混合物(追加触媒成分)4.6質量部を添加し、110℃の温度を2 時間保ったところでPGMEA37.5質量部を添加し反応を終了することにより、表1に記載の特性を有するエポキシ基含有共重合体Aを得た。
(製造例1-2:エポキシ基含有共重合体Bの合成)
 前記製造例1-1において、PGMEAに代えて、ジエチレングリコールモノブチルエーテルアセテート(別名ブチルカルビトールアセテート、以下、BCAと示すことがある。)を用いた以外は、前記製造例1-1と同様にして、表1に記載の特性を有するエポキシ基含有共重合体Bを得た。
Figure JPOXMLDOC01-appb-T000007
 なお、表中の各略号は以下の通りである。
 PGMEA:プロピレングリコールモノメチルエーテルアセテート(沸点:146℃)
 BCA:ジエチレングリコールモノブチルエーテルアセテート(沸点:247℃)
 GMA:グリシジルメタクリレート
 CHMA:シクロヘキシルメタクリレート
 パーブチルO:t-ブチルパーオキシ2-エチルヘキサノエート(日本油脂(株)製商品名)
(製造例2-1:バインダーアクリル樹脂Aの合成)
 シクロヘキシルメタクリレート(CHMA)30質量部、2-ヒドロキシエチルメタクリレート(HEMA)25質量部、t-ブチルメタクリレート(t-BMA)25質量部、メチルメタクリレート(MMA)20質量部の混合液を作成した。この混合液に対して、パーブチルOを2質量部、n-ドデシルメルカプタンを10質量部添加し、BCAを168質量部入れた重合槽中に、窒素気流下、100℃で3時間かけて滴下した。滴下終了後、更に100℃で3時間加熱し、重合体であるバインダーアクリル樹脂Aを含有する重合体溶液を得た。この重合体溶液中の固形分は40質量%、バインダーアクリル樹脂Aの重量平均分子量は13000であった。
(製造例3-1:バインダーアクリル樹脂Bの合成)
 シクロヘキシルメタクリレート(CHMA)48質量部、メチルメタクリレート(MMA)20質量部、メタクリル酸(MAA)12質量部、及びアゾビスイソブチロニトリル(AIBN)3質量部の混合液を、BCA 155質量部を入れた重合槽中に、窒素気流下、100℃で、3時間かけて滴下した。滴下終了後、更に100℃で、3時間加熱し、重合体溶液を得た。この重合体溶液の重量平均分子量は、7000であった。
 次に、得られた重合体溶液に、グリシジルメタクリレート(GMA)20質量部、トリエチルアミン0.2質量部、及びp-メトキシフェノール0.05質量部を添加し、110℃で10時間加熱し、反応溶液中に、空気をバブリングさせて、バインダーアクリル樹脂B溶液を得た。得られたバインダーアクリル樹脂Bは、CHMA、MMA、MAAの共重合により形成された主鎖にGMAを用いてエチレン性二重結合を有する側鎖を導入した樹脂であり、バインダーアクリル樹脂B溶液は、固形分40質量%、酸価3mgKOH/gであった。また、バインダーアクリル樹脂Bは重量平均分子量12000であった。
(製造例4-1:バインダーアクリル樹脂Cの合成)
 製造例3-1のバインダーアクリル樹脂Bの合成において、CHMAを40質量部、MMAを15質量部、MAAを25質量部にした以外は同様にしてバインダーアクリル樹脂C溶液を得た。得られたバインダーアクリル樹脂Cは、CHMA、MMA、MAAの共重合により形成された主鎖にGMAを用いてエチレン性二重結合を有する側鎖を導入した樹脂であり、バインダーアクリル樹脂Cは、固形分40質量%、酸価74mgKOH/gであった。また、バインダーアクリル樹脂Cは重量平均分子量12500であった。
(製造例5-1:バインダーアクリル樹脂Dの合成)
 スチレン質量部64質量部、メタクリル酸(MAA)6質量部、及びアゾビスイソブチロニトリル(AIBN)3質量部の混合液を、BCA 125質量部を入れた重合槽中に、窒素気流下、100℃で、3時間かけて滴下した。滴下終了後、更に100℃で、3時間加熱し、重合体溶液を得た。この重合体溶液の重量平均分子量は、7000であった。
 次に、得られた重合体溶液に、グリシジルメタクリレート(GMA)10質量部、トリエチルアミン0.2質量部、及びp-メトキシフェノール0.05質量部を添加し、110℃で10時間加熱し、反応溶液中に、空気をバブリングさせて、バインダーアクリル樹脂D溶液を得た。得られたバインダーアクリル樹脂Dは、スチレン、MAAの共重合により形成された主鎖にGMAを用いてエチレン性二重結合を有する側鎖を導入した樹脂であり、バインダーアクリル樹脂D溶液は、固形分40質量%であった。また、バインダーアクリル樹脂Dは重量平均分子量10000であった。
(製造例6-1:バインダーアクリル樹脂Eの合成)
 製造例3-1のバインダーアクリル樹脂Bの製造において、CHMAを34質量部、MMAを22質量部、MAAを22質量部、グリシジルメタクリレート(GMA)を22質量部にした以外は同様にしてバインダーアクリル樹脂E溶液を得た。得られたバインダーアクリル樹脂Eは、CHMA、MMA、MAAの共重合により形成された主鎖にGMAを用いてエチレン性二重結合を有する側鎖を導入した樹脂であり、バインダーアクリル樹脂Eは、固形分40質量%、酸価64mgKOH/gであった。また、バインダーアクリル樹脂Eは重量平均分子量8700であった。
(製造例7-1:バインダーアクリル樹脂Fの合成)
 製造例2-1のバインダーアクリル樹脂Aの製造において、CHMAを30質量部、HEMAを25質量部、t-BMAを25質量部、MMAを8.7質量部、メタクリル酸(MAA)を11.3質量部用いた以外は同様にして、重合体であるバインダーアクリル樹脂Fを含有する重合体溶液を得た。この重合体溶液中の固形分は40質量%、酸価74mgKOH/gであった。また、バインダーアクリル樹脂Fの重量平均分子量は13000であった。
(製造例8-1:バインダーアクリル樹脂Gの合成)
 製造例2-1のバインダーアクリル樹脂Aの製造において、CHMAを9質量部、ジメチルアミノエチルメタクリレート(DMMA)を21質量部、HEMAを25質量部、t-BMAを25質量部、MMAを20質量部用いた以外は同様にして、重合体であるバインダーアクリル樹脂Gを含有する重合体溶液を得た。この重合体溶液中の固形分は40質量%、アミン価75mgKOH/gであった。また、バインダーアクリル樹脂Gの重量平均分子量は13000であった。
 (製造例2-2~8-2:バインダーアクリル樹脂H~Nの合成)
 前記製造例2-1~8-1において、BCAに代えて、PGMEAを用いた以外は、前記製造例2-1~8-1と同様にして表7に記載の特性を有するバインダーアクリル樹脂H~Nを得た。
(製造例9-1:ブロック化カルボン酸硬化剤Aの合成)
 温度計、還流冷却器および攪拌機を備えた4つ口フラスコに、表2に示す配合割合に従って各成分を仕込み、攪拌しながら加熱し70℃に昇温した。次いで、その温度を保ちながら攪拌し続け、混合物の酸価が3.0mgKOH/g以下になったところで反応を終了することにより、表2に記載の特性を有するブロック化カルボン酸硬化剤Aを得た。
(製造例9-2:ブロック化カルボン酸硬化剤Bの合成)
 前記製造例9-1において、PGMEAに代えてBCAを用いた以外は、前記製造例9-1と同様にして、表2記載の特性を有するブロック化カルボン酸硬化剤Bを得た。
Figure JPOXMLDOC01-appb-T000008
(実施例1)
(1)バインダー組成物の調製
 サンプル瓶にテフロン(登録商標)被覆した回転子を入れ、マグネチックスターラーに設置した。このサンプル瓶の中に、下記の割合に従って前記製造例1-1に記載のエポキシ基含有共重合体A、多官能エポキシ樹脂等を加え、室温で十分に攪拌溶解し、次いで、粘度調整のために固形分が40質量%になるように希釈溶剤を加えて攪拌溶解した後、これを濾過してバインダー組成物を得た。
 [バインダー組成物の配合割合]
・製造例1-1のエポキシ基含有共重合体A(PGMEA中固形分40質量%):75質量部
・多官能エポキシ樹脂(商品名jER154、三菱ケミカル株式会社製):20質量部
・ネオペンチルグリコールグリシジルエーテル:10質量部
・製造例9-1のブロック化カルボン酸硬化剤A(PGMEA中固形分70.8質量%):42質量部
・希釈溶剤(PGMEA):77.3質量部
(2)量子ドット含有硬化性組成物の調製
 量子ドット(748056-25MG Merck社製)0.2質量部、前記で得られたバインダー組成物49.51質量部、及び第一溶剤のBCA50.29質量部を充分に混合し、表3に示す配合割合を有する実施例1の量子ドット含有硬化性組成物を得た。
(3)光学部材の作製
 厚み0.7mmで10cm×10cmのガラス基板(旭硝子(株)製)上に、ブラックマトリックス用硬化性樹脂組成物を用いてフォトリソグラフィー法により線幅20μm、膜厚5.0μmのブラックマトリックスパターンを形成した。
 上記基板上のブラックマトリックスにより形成された区画内に、得られた量子ドット含有硬化性組成物をインクジェット方式によって付着させた。
 その後、120秒間10Torrで減圧乾燥を行い、更に、80℃のホットプレート上で10分間プリベークを行った。その後、クリーンオーブン内で、200℃で30分加熱してポストベークを行い、更に230℃で30分加熱してポストベークを行って、基板上に乾燥硬化後の平均膜厚が2.0μmの量子ドット含有硬化層(量子ドット含有硬化物)を形成し、光学部材を得た。
(実施例2~6及び比較例1~2、4)
 実施例1の(2)量子ドット含有硬化性組成物の調製において、BCAに代えて、量子ドット含有硬化性組成物中の溶剤の配合が表3に示す配合となるように、表3に示す各溶剤を用いた以外は、実施例1と同様にして、実施例2~6及び比較例1~2、4の量子ドット含有硬化性組成物及び光学部材を得た。
(実施例7、8)
 実施例1の(1)バインダー組成物の調製において、バインダー成分の組成が表3に示す組成となるように変更し、量子ドット含有硬化性組成物中の溶剤の配合が表3に示す配合となるように、バインダー組成物に用いる希釈溶剤として、PGMEAに代えて、PGMEAとBCAとの混合溶剤を用いた以外は、実施例1と同様にして、実施例7、8の量子ドット含有硬化性組成物及び光学部材を得た。
(比較例3)
 実施例1の(1)バインダー組成物の調製において、バインダー成分の組成が、実施例7のバインダー成分と同じ組成となるように変更し、バインダー組成物に用いる希釈溶剤として、PGMEAに代えて、BCAを用いた以外は、実施例1と同様にして、比較例3の量子ドット含有硬化性組成物及び光学部材を得た。
(比較例5)
 実施例1の(1)バインダー組成物の調製において、バインダー成分の組成が実施例7のバインダー成分と同じ組成となるように変更し、バインダー組成物に用いる希釈溶剤として、PGMEAに代えて、BCAを用い、実施例1の(2)量子ドット含有硬化性組成物の調製において、BCAに代えて、酢酸エチルを用いた以外は、実施例1と同様にして、比較例3の量子ドット含有硬化性組成物及び光学部材を得た。
(実施例9~11)
 実施例1の(2)量子ドット含有硬化性組成物の調製において、量子ドット含有硬化性組成物中の溶剤の配合が表3に示す配合となるように、BCAに代えて、PGMEAとBCAとの混合溶剤を用いた以外は、実施例1と同様にして、実施例9~11の量子ドット含有硬化性組成物及び光学部材を得た。
(実施例12)
 実施例1の(1)バインダー組成物の調製において、バインダー成分の組成が実施例7のバインダー成分と同じ組成となるように変更し、量子ドット含有硬化性組成物中の溶剤の配合が表3に示す配合となるように、希釈溶剤として、PGMEAに代えて、PGMEAとBCAとの混合溶剤を用いた以外は、実施例1と同様にして、実施例12の量子ドット含有硬化性組成物及び光学部材を得た。
(実施例13~16)
 実施例1の(1)バインダー組成物の調製において、バインダー成分の組成が表4に示す組成となるように変更し、実施例1の(3)光学部材の作製において、量子ドット含有硬化層(量子ドット含有硬化性組成物)の形成方法を下記方法に変更した以外は、実施例1と同様にして、実施例13~16の量子ドット含有硬化性組成物及び光学部材を得た。
<実施例13~16における光学部材の作製>
 厚み0.7mmで10cm×10cmのガラス基板(旭硝子(株)製)上に、ブラックマトリックス用硬化性樹脂組成物を用いてフォトリソグラフィー法により線幅20μm、膜厚5.0μmのブラックマトリックスパターンを形成した。
 上記基板上のブラックマトリックスにより形成された区画内に、得られた量子ドット含有硬化性組成物をインクジェット方式によって付着させた。
 その後、120秒間10Torrで減圧乾燥を行い、更に、80℃のホットプレート上で10分間プリベークを行った。その後、搬送式UV照射機(GSユアサ製)を用いて、高出力低圧水銀ランプにて、1000mm/minの搬送速度で1000mJ/cm照射し、その後、クリーンオーブン内で、200℃で30分加熱してポストベークを行い、更に230℃で30分加熱してポストベークを行って、基板上に乾燥硬化後の平均膜厚が2.0μmの量子ドット含有硬化層(量子ドット含有硬化物)を形成し、光学部材を得た。
(実施例17~19、24、29)
 実施例1の(1)バインダー組成物の調製において、バインダー成分の組成が表4に示す組成となるように変更し、実施例1の(2)量子ドット含有硬化性組成物の調製において、量子ドット含有硬化性組成物の組成が表4に示す組成となるように各材料及びその配合を変更した以外は、実施例1と同様にして、実施例17~19、24、29の量子ドット含有硬化性組成物及び光学部材を得た。
(実施例20~23、25~28、30~33)
 実施例1の(1)バインダー組成物の調製において、バインダー成分の組成が表4に示す組成となるように変更し、実施例1の(2)量子ドット含有硬化性組成物の調製において、量子ドット含有硬化性組成物の組成が表4に示す組成となるように各材料及びその配合を変更し、実施例1の(3)光学部材の作製において、量子ドット含有硬化層(量子ドット含有硬化性組成物)の形成方法を実施例13と同様の方法に変更した以外は、実施例1と同様にして、実施例20~23、25~28、30~33の量子ドット含有硬化性組成物及び光学部材を得た。
(実施例34~37)
 実施例1の(1)バインダー組成物の調製において、バインダー成分の組成が表5に示す組成となるように変更し、実施例1の(2)量子ドット含有硬化性組成物の調製において、量子ドット含有硬化性組成物の組成が表5に示す組成となるように各材料及びその配合を変更した以外は、実施例1と同様にして、実施例34~37の量子ドット含有硬化性組成物及び光学部材を得た。なお、実施例37のMEK(メチルエチルケトン)は全量、ウレタン樹脂(ニッポラン5253)に含まれていたものである。
(実施例38~44)
 実施例1の(1)バインダー組成物の調製において、バインダー成分の組成が表5に示す組成となるように変更し、実施例1の(2)量子ドット含有硬化性組成物の調製において、量子ドット含有硬化性組成物の組成が表5に示す組成となるように各材料及びその配合を変更し、実施例1の(3)光学部材の作製において、量子ドット含有硬化層(量子ドット含有硬化性組成物)の形成方法を実施例13と同様の方法に変更した以外は、実施例1と同様にして、実施例38~44の量子ドット含有硬化性組成物及び光学部材を得た。
(実施例45)
(1)分散液の調製
 225mLマヨネーズ瓶中に、PGMEA 65質量部、アクリルブロック樹脂(商品名、BYK-LPN6919、アミン価120mgKOH/g、ビックケミージャパン)(固形分60%)を 33質量部を入れ攪拌した。
 そこへ量子ドット(748056-25MG Merck社製)2質量部、粒径2.0mmジルコニアビーズ100質量部を入れ、予備解砕としてペイントシェーカー(浅田鉄工社製)で1時間振とうし、次いで粒径0.1mmのジルコニアビーズ200部に変更し本解砕としてペイントシェーカーで4時間分散を行い、量子ドット分散液を得た。
(2)量子ドット含有硬化性組成物の調製
 実施例1の(1)バインダー組成物の調製において、バインダー成分の組成が前記アクリルブロック樹脂を除き表5に示す組成となるように変更した以外は同様にしてバインダー組成物を調製した。前記量子ドット分散液10質量部、前記で得られたバインダー組成物(固形分40%) 4.95質量部、及び第一溶剤のBCA 47.32質量部、第2溶剤のPGMEA 21.89質量部、多官能モノマーDPHA 13.86質量部、光重合開始剤Irg184 1.98質量部を充分に混合し、表5に示す配合割合を有する実施例45の量子ドット含有硬化性組成物を得た。
(3)光学部材の作製
 光学素子の製造において、量子ドット含有硬化層(量子ドット含有硬化性組成物)の形成方法を実施例13と同様にして、実施例45の光学部材を得た。
(実施例46~49)
 実施例1の(1)バインダー組成物の調製において、バインダー成分の組成が表6に示す組成となるように変更し、更に、実施例1の(2)量子ドット含有硬化性組成物の調製において、量子ドット含有硬化性組成物の組成が表6に示す組成となるようにBCAの代わりにEEPを用いた以外は、実施例1と同様にして、実施例46~49の量子ドット含有硬化性組成物を得た。
 得られた各量子ドット含有硬化性組成物を用い、ポストベークの温度を150℃に変更した以外は実施例1と同様にして、光学部材を得た。
(実施例50~60)
 実施例1の(1)バインダー組成物の調製において、バインダー成分の組成が表6に示す組成となるように変更し、更に、実施例1の(2)量子ドット含有硬化性組成物の調製において、量子ドット含有硬化性組成物の組成が表6に示す組成となるようにBCAの代わりにEEPに変更した以外は、実施例1と同様にして、実施例50~60の量子ドット含有硬化性組成物を得た。
 また、光学素子の製造において、量子ドット含有硬化層(量子ドット含有硬化性組成物)の形成方法を実施例13と同様にして、実施例50~60の光学部材を得た。
(実施例61)
 実施例45において、表6に示す組成となるようにBCAの代わりにEEPに変更した以外は、実施例45と同様にして、表6に示す配合割合を有する実施例61の量子ドット含有硬化性組成物を得た。
 光学素子の製造において、量子ドット含有硬化層(量子ドット含有硬化性組成物)の形成方法を実施例13と同様にして、実施例61の光学部材を得た。
[評価]
(1)インクジェット吐出性
 上記で得られた各実施例及び各比較例の量子ドット含有硬化性組成物について、下記方法によりインクジェット吐出性の評価を行った。評価結果を表3~6に示す。
 インクジェットヘッドにインク(量子ドット含有硬化性組成物)を充填し当該ヘッドから吐出して、隔壁を設けて所定のパターン状に画成されたガラス製透明基板上の量子ドット含有硬化層形成領域の中心部に、ドロップ径30μmで滴下した。さらに、初期吐出を停止してヘッドを30分間静止させた後、同じヘッドから別の量子ドット含有硬化層形成領域の中心部に、ドロップ径30μmで滴下した。このような間歇吐出において、最初に吐出動作を行った時の吐出性(初期吐出性)と、その後に再吐出を行った時の吐出性(間歇吐出安定性)を観察し、下記基準に従って評価した。
 [初期吐出性の評価基準]
AA:ヘッドの全部の穴からインクを吐出することが可能である。
A:ヘッドにインクの出ない穴が少しある。
B:ヘッドにインクの出ない穴が半分程度ある。
C:ヘッドのほとんどの穴からインクが出ない。
 [間歇吐出安定性の評価基準]
AA:ヘッドの全部の穴からインクを再吐出することが可能である。
A:ヘッドにインクの出ない穴が少しある。
B:ヘッドにインクの出ない穴が半分程度ある。
C:ヘッドのほとんどの穴からインクが出ない。
(2)ムラ
 上記で得られた各実施例及び各比較例の光学部材が有する量子ドット含有硬化層を撮像し、下記評価基準によりムラの評価を行った。すなわち、図6に示すように、Blue LEDをカメラ20の撮像光軸が光学部材100の撮像領域を貫いて延長する位置(カメラ20の対向位置)に配置して、Blue LEDによって裏側から量子ドット含有硬化層を照射した状態で、カメラ20により光学部材100の全面を撮像した。カメラ20は光学部材の基板に対して垂直な方向から70~80度傾斜させて撮像した。光源としてはBlue LEDを用い、カメラとしてはモノクロラインセンサカメラを用いた。
評価結果を表3~6に示す。
[ムラの評価基準]
AA:完全にムラが見えない
A:一部に軽度なムラが見える
B:一部にムラが見える
C:全面にムラが見える
D:全面に著しいムラが見える
(3)量子ドット分散性
 上記で得られた各実施例及び各比較例の光学部材を100nm幅に切断した切片を用意し、当該切片が有する量子ドット含有硬化層の切断面を、透過型電子顕微鏡:TEM(transmission electron microscopy)型番Tecnai G2 spirits、FEI社製)を用いて5万倍で観察した。視野500nm×500nmにおいて量子ドットの凝集状態を観察し、下記評価基準により評価した。評価結果を表3~6に示す。
[量子ドット分散性の評価基準]
AA:凝集が観察されない
A:軽度な凝集が観察される
B:一部凝集が観察される
C:凝集物が多く観察される
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 なお、表中、溶剤以外の各成分の含有割合(質量比)の数値は、固形分換算値を示している。
 また、表中の各略号は以下の通りである。
 748056-25MG:量子ドット、Merck社製
 776750-5ML:量子ドット溶液、Merck社製
 790192-25MG:量子ドット、Merck社製
 776777-5ML:量子ドット溶液、Merck社製
 jER1001:多官能エポキシ樹脂、商品名、三菱ケミカル株式会社製
 jER157S70:多官能エポキシ樹脂、商品名、三菱ケミカル株式会社製
 ニッポラン5253:ウレタン樹脂、商品名、東ソー株式会社製
 コロネートL:イソシアネート硬化剤、商品名、東ソー株式会社製
 バイロン200:ポリエステル樹脂、商品名、東洋紡株式会社製
 バイロン802:ポリエステル樹脂、商品名、東洋紡株式会社製
 マルキードNo.1:マレイン酸樹脂、商品名、荒川化学株式会社製
 マルキードNo.31:マレイン酸樹脂、商品名、荒川化学株式会社製
 BYK6919:アクリルブロック樹脂、商品名、BYK-LPN6919、ビックケミージャパン
 DPPA:ジペンタエリスリトールペンタアクリレート
 Irg184:1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、BASF社製、イルガキュア184
 BCA:ジエチレングリコールモノブチルエーテルアセテート
 ソルフィットAC:3-メトキシ-3-メチルブチルアセテート
 ソルフィット:3-メトキシ-3-メチル-1-ブタノール
 EEP:3-エトキシプロピオン酸エチル
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
 MEK:メチルエチルケトン
[結果のまとめ]
 表3~6に示す結果から、沸点が165℃以上260℃以下の第一溶剤と、沸点が100℃以上165℃未満の第二溶剤とを含有する混合溶剤を用いた実施例1~61においては、量子ドット含有硬化性組成物が、インクジェット方式における吐出安定性に優れるため、形成した量子ドット含有硬化層は、量子ドットの凝集が抑制されたものであり、ムラが低減されたものであった。
 一方で、比較例1、2は、溶剤として第二溶剤のみを用い、第一溶剤を用いなかったため、インクジェット方式における吐出安定性に劣り、硬化層に量子ドットの凝集及びムラが観察された。
 比較例3は、溶剤として第一溶剤のみを用い、第二溶剤を用いなかったため、硬化層に量子ドットの凝集及びムラが観察された。
 比較例4は、第二溶剤と、第一溶剤及び第二溶剤のいずれにも該当しない高沸点溶剤との混合溶剤を用いたため、硬化層に量子ドットの凝集及びムラが観察された。
 比較例5は、第一溶剤と、第一溶剤及び第二溶剤のいずれにも該当しない低沸点溶剤との混合溶剤を用いたため、インクジェット方式における吐出安定性に劣り、硬化層に量子ドットの凝集及びムラが観察された。
 また、実施例1~6の対比から、第一溶剤として、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、3-メトキシ-3-メチルブチルアセテート、3-メトキシブチルアセテート及び3-エトキシプロピオン酸エチルよりなる群から選択される1種以上である第一溶剤を用いると、量子ドットの分散性がより優れ、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、3-メトキシ-3-メチルブチルアセテート及び3-メトキシブチルアセテートよりなる群から選択される1種以上である第一溶剤を用いると、量子ドットの分散性が更に向上することが示された。
 また、実施例1、9~11の対比、及び、実施例7、8、12の対比から、全溶剤中において、第一溶剤の割合が30質量%以上80質量%以下であり、第二溶剤の割合が20質量%以上70質量%以下であると、量子ドットの分散性がより優れ、ムラが低減されることが示された。
 また、実施例13~16から、光硬化性バインダー成分を用いても、インクジェット方式における吐出安定性に優れ、量子ドットの分散性に優れ、ムラが低減されることが示された。中でも、熱潜在性(メタ)アクリル系共重合体を用いた実施例13、及びスチレン-(メタ)アクリル系共重合体を用いた実施例16では、量子ドットの分散性が優れていた。
 また、実施例17及び18から、量子ドット含有硬化性組成物中の量子ドットの含有量を増やしても、インクジェット方式における吐出安定性に優れ、量子ドットの分散性に優れ、ムラが低減されることが示された。
 また、実施例19~33から、量子ドット含有硬化性組成物中の量子ドットの種類や、第二溶剤の種類を変えても、インクジェット方式における吐出安定性に優れ、量子ドットの分散性に優れ、ムラが低減されることが示された。
 また、実施例34~61から、量子ドット含有硬化性組成物中のバインダー成分の種類や、第一溶剤の種類をより沸点が低く低温でポストベーク可能な溶剤(EEP)に変えても、インクジェット方式における吐出安定性に優れ、量子ドットの分散性に優れ、ムラが低減されることが示された。バインダー成分にアミン価を有する重合体を含むと量子ドットの分散性がより良好になる傾向が見られた。
 1 基板
 2 隔壁
 3 撥インク性凸部
 4 量子ドット含有層形成領域
 5 インクジェットヘッド
 6 量子ドット含有層
 7 量子ドット含有硬化層
 8 機能層
 9 オーバーコート層
 10R、10G、10B サブピクセル
 11 対向基板
 12 対向基板
 13 液晶層
 20 カメラ
 21 Blue LED
 40 カラーフィルタ
 50 有機保護層
 60 無機酸化膜
 71 透明陽極
 72 正孔注入層
 73 正孔輸送層
 74、74’ 光学部材
 75 電子注入層
 76 陰極
 80 発光体
 81 有機発光体
 100、101 光学部材
 200 マイクロLED表示装置
 300 量子ドット発光表示装置
 400 液晶表示装置
 500 有機発光表示装置

Claims (12)

  1.  硬化性バインダー成分と、量子ドットと、溶剤とを含有し、
     前記溶剤が、第一溶剤として、沸点が165℃以上260℃以下の溶剤成分を含有し、更に第二溶剤として、沸点が100℃以上165℃未満の溶剤成分を含有する、量子ドット含有硬化性組成物。
  2.  前記溶剤が、前記第一溶剤を30質量%以上80質量%以下の割合で含有し、前記第二溶剤を20質量%以上70質量%以下の割合で含有する、請求項1に記載の量子ドット含有硬化性組成物。
  3.  前記硬化性バインダー成分が、熱硬化性バインダー成分及び光硬化性バインダー成分の少なくとも1種を含有する、請求項1又は2に記載の量子ドット含有硬化性組成物。
  4.  前記第一溶剤が、グリコールエーテル類、グリコールエーテルエステル類、脂肪族カルボン酸類、脂肪族エステル類、芳香族エステル類、ジカルボン酸ジエステル類、アルコキシカルボン酸エステル類、ケトカルボン酸エステル類、ハロゲン化カルボン酸類、アルコール類、フェノール類、脂肪族エーテル類、アルコキシアルコール類、グリコールオリゴマー類、アミノアルコール類、アルコキシアルコールエステル類、ケトン類、モルホリン類、脂肪族アミン類、芳香族アミン類、ハロゲン化芳香族炭化水素類及びアルカン類よりなる群から選択される1種以上である、請求項1乃至3のいずれか1項に記載の量子ドット含有硬化性組成物。
  5.  前記第二溶剤が、グリコールエーテル類、グリコールエステル類、脂肪族エステル類、脂肪族カルボン酸類、脂肪族カルボン酸無水物、アルコール類、ケトン類、アルカン類、芳香族炭化水素類、芳香族エーテル類及び脂肪族エーテル類よりなる群から選択される1種以上である、請求項1乃至4のいずれか1項に記載の量子ドット含有硬化性組成物。
  6.  前記第一溶剤が、3-メトキシ-3-メチル-1-ブタノール、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、3-メトキシ-3-メチルブチルアセテート、ジエチレングリコールジブチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールメチルエチルエーテル、ジプロピレングリコールジメチルエーテル、ジイソアミルエーテル、1、8-シネオール、アジピン酸ジエチル、シュウ酸ジブチル、マロン酸ジメチル、マロン酸ジエチル、コハク酸ジメチル、コハク酸ジエチル、3-メトキシブチルアセテート、アセト酢酸メチル、酢酸シクロヘキシル、3-エトキシプロピオン酸エチル、デカン、ウンデカン、ドデカン、トリデカン及びテトラデカンよりなる群から選択される1種以上である、請求項1乃至5のいずれか1項に記載の量子ドット含有硬化性組成物。
  7.  前記第二溶剤が、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、蟻酸ヘキシル、乳酸エチル、プロピオン酸イソアミル、プロピオン酸ブチル、酪酸ブチル、シュウ酸ジメチル、1-ブタノール、1,4-ジオキサン、オクタン、ノナン、トルエン、キシレン、エチルベンゼン及びアニソールよりなる群から選択される1種以上である、請求項1乃至6のいずれか1項に記載の量子ドット含有硬化性組成物。
  8.  前記請求項1乃至7のいずれか1項に記載の量子ドット含有硬化性組成物の硬化物である、量子ドット含有硬化物。
  9.  基板上の所定領域に、前記請求項1乃至7のいずれか1項に記載の量子ドット含有硬化性組成物を、インクジェット方式によって選択的に付着させて量子ドット含有層を形成する工程と、
     前記量子ドット含有層を硬化させて量子ドット含有硬化層を形成する工程と、
    を有する、光学部材の製造方法。
  10.  前記量子ドット含有層を形成する工程の前に、更に、
     前記基板表面の所定領域内の濡れ性を選択的に変化させて、周囲と比べて前記量子ドット含有硬化性組成物との親和性の高い量子ドット含有層形成領域を形成する工程を含み、
     前記量子ドット含有層を形成する工程において、前記量子ドット含有層形成領域に、前記量子ドット含有硬化性組成物をインクジェット方式によって選択的に付着させて前記量子ドット含有層を形成する、請求項9に記載の光学部材の製造方法。
  11.  前記量子ドット含有層を減圧乾燥する工程を更に含む、請求項9又は10に記載の光学部材の製造方法。
  12.  前記請求項9乃至11のいずれか1項に記載の光学部材の製造方法により光学部材を製造する工程と、
     前記製造された光学部材を搭載する工程とを有する、表示装置の製造方法。
PCT/JP2018/021692 2017-06-08 2018-06-06 量子ドット含有硬化性組成物、量子ドット含有硬化物、光学部材の製造方法、及び表示装置の製造方法 WO2018225782A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019523942A JP7216642B2 (ja) 2017-06-08 2018-06-06 量子ドット含有硬化性組成物、量子ドット含有硬化物、光学部材の製造方法、及び表示装置の製造方法
CN201880037151.0A CN110709736A (zh) 2017-06-08 2018-06-06 含量子点固化性组合物、含量子点固化物、光学构件的制造方法及显示设备的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-113828 2017-06-08
JP2017113828 2017-06-08

Publications (1)

Publication Number Publication Date
WO2018225782A1 true WO2018225782A1 (ja) 2018-12-13

Family

ID=64565915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021692 WO2018225782A1 (ja) 2017-06-08 2018-06-06 量子ドット含有硬化性組成物、量子ドット含有硬化物、光学部材の製造方法、及び表示装置の製造方法

Country Status (4)

Country Link
JP (1) JP7216642B2 (ja)
CN (1) CN110709736A (ja)
TW (1) TW201905117A (ja)
WO (1) WO2018225782A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052242A (ja) * 2017-09-14 2019-04-04 Dic株式会社 インク組成物、光変換層及びカラーフィルタ
JP2019052240A (ja) * 2017-09-14 2019-04-04 Dic株式会社 インク組成物、光変換層及びカラーフィルタ
JP2019052241A (ja) * 2017-09-14 2019-04-04 Dic株式会社 インク組成物、光変換層及びカラーフィルタ
JP2019131758A (ja) * 2018-02-02 2019-08-08 Dic株式会社 インク組成物、光変換層及びカラーフィルタ
JP2020063409A (ja) * 2018-10-12 2020-04-23 東洋インキScホールディングス株式会社 インク組成物及び波長変換層
WO2020162552A1 (ja) * 2019-02-07 2020-08-13 Dic株式会社 カラーフィルタ用インクジェットインク、光変換層及びカラーフィルタ
JP2020128457A (ja) * 2019-02-07 2020-08-27 Dic株式会社 インク組成物、光変換層、カラーフィルタ及び発光性画素部の形成方法
CN112349856A (zh) * 2020-11-30 2021-02-09 河南工程学院 一种基于电晕放电界面修饰的量子点发光二极管及其制备方法
JP2021024946A (ja) * 2019-08-05 2021-02-22 Dic株式会社 インク組成物、光変換層、光変換部材及びバックライトユニット
WO2021130868A1 (ja) * 2019-12-24 2021-07-01 シャープ株式会社 発光層の作製方法
CN114105803A (zh) * 2021-11-12 2022-03-01 南京工业大学 一种环氧树脂固化剂的合成方法
WO2022059152A1 (ja) * 2020-09-17 2022-03-24 シャープ株式会社 表示装置及び表示装置の製造方法
WO2022075309A1 (ja) * 2020-10-05 2022-04-14 シャープ株式会社 表示装置、表示装置の製造方法
CN115427461A (zh) * 2020-03-31 2022-12-02 住友化学株式会社 固化性树脂组合物和显示装置
US11997911B2 (en) * 2018-12-29 2024-05-28 Tcl Technology Group Corporation Method for preparing quantum dots light-emitting diode

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500108A (zh) * 2020-05-23 2020-08-07 恩利克(浙江)智能装备有限公司 一种热固化量子点油墨及其制备方法、使用方法
KR20220017357A (ko) * 2020-08-04 2022-02-11 동우 화인켐 주식회사 광변환 잉크 조성물, 이를 이용하여 제조된 광변환 적층기판 및 광변환 화소기판

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193968A (ja) * 2006-01-17 2007-08-02 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルの製造方法
JP2009087781A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd エレクトロルミネッセンス素子およびその製造方法
JP2012177100A (ja) * 2011-01-31 2012-09-13 Toray Ind Inc 蛍光体ペーストおよびディスプレイ用部材の製造方法
JP2014077046A (ja) * 2012-10-10 2014-05-01 Konica Minolta Inc 発光層形成用インク組成物、発光素子の作製方法及びエレクトロルミネッセンスデバイス
WO2016104401A1 (ja) * 2014-12-26 2016-06-30 Nsマテリアルズ株式会社 波長変換部材及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102165338B (zh) 2008-09-30 2014-03-26 大日本印刷株式会社 滤色片用喷墨墨液组合物、滤色片、滤色片的制造方法以及液晶显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193968A (ja) * 2006-01-17 2007-08-02 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルの製造方法
JP2009087781A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd エレクトロルミネッセンス素子およびその製造方法
JP2012177100A (ja) * 2011-01-31 2012-09-13 Toray Ind Inc 蛍光体ペーストおよびディスプレイ用部材の製造方法
JP2014077046A (ja) * 2012-10-10 2014-05-01 Konica Minolta Inc 発光層形成用インク組成物、発光素子の作製方法及びエレクトロルミネッセンスデバイス
WO2016104401A1 (ja) * 2014-12-26 2016-06-30 Nsマテリアルズ株式会社 波長変換部材及びその製造方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052242A (ja) * 2017-09-14 2019-04-04 Dic株式会社 インク組成物、光変換層及びカラーフィルタ
JP2019052240A (ja) * 2017-09-14 2019-04-04 Dic株式会社 インク組成物、光変換層及びカラーフィルタ
JP2019052241A (ja) * 2017-09-14 2019-04-04 Dic株式会社 インク組成物、光変換層及びカラーフィルタ
JP7035400B2 (ja) 2017-09-14 2022-03-15 Dic株式会社 インク組成物、光変換層及びカラーフィルタ
JP7020014B2 (ja) 2017-09-14 2022-02-16 Dic株式会社 インク組成物、光変換層及びカラーフィルタ
JP7020015B2 (ja) 2017-09-14 2022-02-16 Dic株式会社 インク組成物、光変換層及びカラーフィルタ
JP2019131758A (ja) * 2018-02-02 2019-08-08 Dic株式会社 インク組成物、光変換層及びカラーフィルタ
JP7040072B2 (ja) 2018-02-02 2022-03-23 Dic株式会社 インク組成物、光変換層及びカラーフィルタ
JP2020063409A (ja) * 2018-10-12 2020-04-23 東洋インキScホールディングス株式会社 インク組成物及び波長変換層
US11997911B2 (en) * 2018-12-29 2024-05-28 Tcl Technology Group Corporation Method for preparing quantum dots light-emitting diode
JPWO2020162552A1 (ja) * 2019-02-07 2021-09-09 Dic株式会社 カラーフィルタ用インクジェットインク、光変換層及びカラーフィルタ
JP2020128457A (ja) * 2019-02-07 2020-08-27 Dic株式会社 インク組成物、光変換層、カラーフィルタ及び発光性画素部の形成方法
CN113286866A (zh) * 2019-02-07 2021-08-20 Dic株式会社 彩色滤光片用喷墨墨水、光转换层及彩色滤光片
WO2020162552A1 (ja) * 2019-02-07 2020-08-13 Dic株式会社 カラーフィルタ用インクジェットインク、光変換層及びカラーフィルタ
KR20210104870A (ko) * 2019-02-07 2021-08-25 디아이씨 가부시끼가이샤 컬러 필터용 잉크젯 잉크, 광변환층 및 컬러 필터
KR102632511B1 (ko) 2019-02-07 2024-01-31 디아이씨 가부시끼가이샤 컬러 필터용 잉크젯 잉크, 광변환층 및 컬러 필터
JP7238445B2 (ja) 2019-02-07 2023-03-14 Dic株式会社 インク組成物、光変換層、カラーフィルタ及び発光性画素部の形成方法
JP2021024946A (ja) * 2019-08-05 2021-02-22 Dic株式会社 インク組成物、光変換層、光変換部材及びバックライトユニット
WO2021130868A1 (ja) * 2019-12-24 2021-07-01 シャープ株式会社 発光層の作製方法
CN115427461A (zh) * 2020-03-31 2022-12-02 住友化学株式会社 固化性树脂组合物和显示装置
WO2022059152A1 (ja) * 2020-09-17 2022-03-24 シャープ株式会社 表示装置及び表示装置の製造方法
WO2022075309A1 (ja) * 2020-10-05 2022-04-14 シャープ株式会社 表示装置、表示装置の製造方法
CN112349856B (zh) * 2020-11-30 2022-05-20 河南工程学院 一种基于电晕放电界面修饰的量子点发光二极管及其制备方法
CN112349856A (zh) * 2020-11-30 2021-02-09 河南工程学院 一种基于电晕放电界面修饰的量子点发光二极管及其制备方法
CN114105803B (zh) * 2021-11-12 2023-06-13 南京工业大学 一种环氧树脂固化剂的合成方法
CN114105803A (zh) * 2021-11-12 2022-03-01 南京工业大学 一种环氧树脂固化剂的合成方法

Also Published As

Publication number Publication date
JPWO2018225782A1 (ja) 2020-04-09
TW201905117A (zh) 2019-02-01
JP7216642B2 (ja) 2023-02-01
CN110709736A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2018225782A1 (ja) 量子ドット含有硬化性組成物、量子ドット含有硬化物、光学部材の製造方法、及び表示装置の製造方法
KR101983426B1 (ko) 감광성 수지 조성물 및 표시장치
KR101895356B1 (ko) 자발광 감광성 수지 조성물, 이로부터 제조된 컬러필터 및 상기 컬러필터를 포함하는 화상표시장치
JP2008304766A (ja) カラーフィルター用着色樹脂組成物、カラーフィルター、有機elディスプレイおよび液晶表示装置
JPWO2010013654A1 (ja) 隔壁と画素が形成された基板を製造する方法
JP2016071360A (ja) 自発光感光性樹脂組成物、それにより製造された色変換層を含む表示装置
TWI478950B (zh) 非水系分散劑,色材分散液及其製造方法,著色樹脂組成物及其製造方法,彩色濾光片,暨液晶顯示裝置及有機發光顯示裝置
TW201202758A (en) Partition repair method
TWI786364B (zh) 量子點、可固化組成物、固化層、濾色器以及顯示裝置
JP2012083411A (ja) カラーフィルタ用樹脂組成物、カラーフィルタ、並びに、有機発光表示装置及び液晶表示装置
JP4527489B2 (ja) カラーフィルター用熱硬化性樹脂組成物、カラーフィルター、液晶パネル、及びカラーフィルターの製造方法
CN114127226A (zh) 量子点、包括其的可固化组成物、使用所述组成物的固化层以及包括所述固化层的彩色滤光片
CN112285999A (zh) 无溶剂型可固化组合物、固化膜、滤色器及显示装置
JP5286657B2 (ja) 顔料分散液、カラーフィルター用インクジェットインク及びその製造方法、カラーフィルター、並びに液晶表示装置
KR20170109762A (ko) 감광성 수지 조성물, 이를 이용하여 제조된 컬러필터 및 화상표시장치
JP2014071440A (ja) 顔料分散液及びその製造方法、カラーフィルタ用着色樹脂組成物及びその製造方法、カラーフィルタ、並びに、液晶表示装置及び有機発光表示装置
KR102279562B1 (ko) 착색 감광성 수지 조성물, 이로부터 제조된 컬러필터 및 이를 구비한 액정표시장치
KR20180110497A (ko) 흑색 감광성 수지 조성물, 이를 이용하여 제조된 표시 장치
CN114096640A (zh) 量子点、包括其的可固化组成物、使用所述组成物的固化层以及包括所述固化层的彩色滤光片
JP2012211266A (ja) 黄色顔料分散液、カラーフィルタ用黄色樹脂組成物、カラーフィルタ、液晶表示装置及び有機発光装置
KR20210098211A (ko) 색변환 소자, 이를 포함하는 컬러필터 및 화상표시장치
JP5849392B2 (ja) 白色発光ダイオード光源用カラーフィルタ及び表示装置
JP2010085767A (ja) カラーフィルター用緑色硬化性樹脂組成物、カラーフィルター、及び表示装置
WO2021162024A1 (ja) 波長変換基板の製造方法、波長変換基板、およびディスプレイ
TWI756819B (zh) 無溶劑的硬化性組成物、硬化層及彩色濾光片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18812594

Country of ref document: EP

Kind code of ref document: A1