WO2022059152A1 - 表示装置及び表示装置の製造方法 - Google Patents
表示装置及び表示装置の製造方法 Download PDFInfo
- Publication number
- WO2022059152A1 WO2022059152A1 PCT/JP2020/035335 JP2020035335W WO2022059152A1 WO 2022059152 A1 WO2022059152 A1 WO 2022059152A1 JP 2020035335 W JP2020035335 W JP 2020035335W WO 2022059152 A1 WO2022059152 A1 WO 2022059152A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- emitting layer
- display device
- forming step
- bank
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 89
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 239000000463 material Substances 0.000 claims abstract description 122
- 239000011347 resin Substances 0.000 claims abstract description 17
- 229920005989 resin Polymers 0.000 claims abstract description 17
- 239000010410 layer Substances 0.000 claims description 500
- 239000002346 layers by function Substances 0.000 claims description 59
- 239000002096 quantum dot Substances 0.000 claims description 39
- 238000000206 photolithography Methods 0.000 claims description 38
- 239000000758 substrate Substances 0.000 claims description 29
- 239000003446 ligand Substances 0.000 claims description 21
- 238000000638 solvent extraction Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 2
- 239000010408 film Substances 0.000 description 111
- 238000010586 diagram Methods 0.000 description 31
- 230000004048 modification Effects 0.000 description 29
- 238000012986 modification Methods 0.000 description 29
- 238000005192 partition Methods 0.000 description 17
- 238000007740 vapor deposition Methods 0.000 description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 238000007789 sealing Methods 0.000 description 7
- 239000011257 shell material Substances 0.000 description 7
- 239000004925 Acrylic resin Substances 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000005525 hole transport Effects 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 239000003595 mist Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 239000009719 polyimide resin Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 238000007736 thin film deposition technique Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 3
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 2
- 229910020068 MgAl Inorganic materials 0.000 description 2
- 241001478412 Zizania palustris Species 0.000 description 2
- 229910007709 ZnTe Inorganic materials 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- -1 Cs2O3 Chemical compound 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910003363 ZnMgO Inorganic materials 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/122—Pixel-defining structures or layers, e.g. banks
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
- H10K59/351—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
- H10K59/352—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
- H10K59/353—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80515—Anodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/13—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
- H10K71/135—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/20—Changing the shape of the active layer in the devices, e.g. patterning
- H10K71/211—Changing the shape of the active layer in the devices, e.g. patterning by selective transformation of an existing layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/60—Forming conductive regions or layers, e.g. electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/621—Providing a shape to conductive layers, e.g. patterning or selective deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/123—Connection of the pixel electrodes to the thin film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8052—Cathodes
- H10K59/80521—Cathodes characterised by their shape
Definitions
- This disclosure relates to a display device and a method for manufacturing the display device.
- Patent Document 1 describes forming a light emitting layer of a light emitting element provided in a display device by using only an inkjet method (ink dropping method) in order to efficiently form the light emitting layer. ..
- Japanese Patent Publication Japanese Patent Laid-Open No. 2004-198486 (published on July 15, 2004)
- Patent Document 1 describes a configuration in which a light emitting layer of each color provided in each of all the sub-pixels constituting one pixel is formed by using only the inkjet method.
- the configuration described in Patent Document 1 since all the light emitting layers are formed by the inkjet method, the light emitting layers can be efficiently formed, but the banks (bulkheads) having a relatively high height in all the sub-pixels. Need to be prepared. Since the bank is formed to have a wider width due to its higher height, the area of the bank covering the island-shaped electrodes provided for each sub-pixel increases. Therefore, there arises a problem that the light emitting region of the light emitting layer is narrowed in all the sub pixels.
- One aspect of the present disclosure has been made in view of the above-mentioned problems, and an object of the present disclosure is to provide a display device and a method for manufacturing the display device, which realizes an expansion of the light emitting region of the light emitting layer.
- the display device of the present invention is used to solve the above-mentioned problems.
- the method for manufacturing a display device of the present invention is to solve the above-mentioned problems.
- the second light emitting layer is not formed in the plurality of first regions, but in a plurality of second regions on the one side surface different from the plurality of first regions. It comprises a second light emitting layer forming step of forming only.
- the first light emitting layer since the first light emitting layer is provided outside the first bank or is provided by a photolithography method that does not require a bank, the first light emitting layer emits light. It is possible to provide a display device that realizes an expansion of the area and a method for manufacturing the display device.
- FIG. (A) to (f) are diagrams showing a part of the manufacturing process of the display device of the first embodiment. It is a figure which shows an example of the active board provided in the display device of Embodiment 1.
- FIG. (A) is a plan view showing one pixel of the display device of the first embodiment, and (b) is a cross-sectional view taken along the line AA'of the display device of the first embodiment shown in FIG. 3A.
- Is. (A) is a diagram showing a first modification of the display device of the first embodiment, and (b) is a diagram showing a second modification of the display device of the first embodiment.
- (A) is a diagram showing a third modification of the display device of the first embodiment
- (b) is a diagram showing a fourth modification of the display device of the first embodiment.
- (A) is a diagram showing a fifth modification of the display device of the first embodiment
- (b) is a diagram showing a sixth modification of the display device of the first embodiment.
- (A) is a diagram showing a third modification of the display device of the first embodiment shown in FIG. 5 (a)
- (b) is a diagram showing a seventh modification of the display device of the first embodiment.
- (C) is a diagram showing an eighth modification of the display device of the first embodiment.
- (A) to (c) are diagrams showing a part of the manufacturing process of the eighth modification of the display device of the first embodiment illustrated in FIG.
- (A) to (c) are diagrams showing a part of the manufacturing process of the display device of the second embodiment.
- (A) is a diagram showing a first modification of the display device of the second embodiment
- (b) is a diagram showing a second modification of the display device of the second embodiment.
- (A) and (b) are diagrams for explaining the schematic configuration of the display device of the third embodiment
- (c) is a diagram showing a first modification of the display device of the third embodiment.
- d) is a diagram showing a second modification of the display device of the third embodiment.
- FIG. 12 (a) is a plan view showing the display device of the fourth embodiment
- (b) is a cross-sectional view taken along the line BB'of the display device of the fourth embodiment shown in (a) of FIG.
- (A) and (b) are plan views showing a schematic configuration of a mask used in the manufacturing process of the display device of the fourth embodiment shown in FIG. 12 (a).
- (A) and (b) are diagrams showing a part of the manufacturing process of the display device of the fifth embodiment, and (c) is a plan view showing one pixel of the display device of the fifth embodiment.
- (A) to (f) are diagrams showing a part of the manufacturing process of the display device of the sixth embodiment.
- FIG. 2 is a diagram showing an example of an active substrate 11 provided in the display device 30 of the first embodiment.
- the active substrate 11 provided in the display device 30 of the first embodiment includes a substrate 10, and a resin film 12, a barrier layer 3, and a thin film transistor layer 4 are provided on the substrate 10.
- the first electrode 22 is provided in this order from the substrate 10 side.
- a substrate having heat resistance that can withstand the process temperature of the post-process for forming various films can be used, and for example, a glass substrate or the like can be used.
- the resin film 12 for example, a polyimide resin, an epoxy resin, a polyamide resin, or the like can be used.
- the barrier layer 3 is a layer that prevents moisture and impurities from reaching the transistors TR1 and TR2 and the light emitting device, and is, for example, a silicon oxide film, a silicon nitride film, or a silicon nitride film formed by CVD, or a silicon nitride film. It can be composed of these laminated films.
- the transistors TR1 and TR2 and the capacitive element are provided on the upper layer of the barrier layer 3.
- the thin film transistor layer 4 including the transistors TR1 and TR2 and the capacitive element includes a semiconductor film 15, an inorganic insulating film (gate insulating film) 16 above the semiconductor film 15, and a gate electrode GE and capacitance above the inorganic insulating film 16.
- the insulating film (second insulating film) 20 layers SE1 to SE4 forming the source electrode, drain electrode and wiring, and layers SE1 to SE4 forming the source electrode, drain electrode and wiring above the inorganic insulating film 20.
- a flattening film (interlayer insulating film) 21 on the upper layer is included.
- the capacitive element is the same layer as the counter electrode CE of the capacitive element formed directly above the inorganic insulating film 18, the inorganic insulating film 18, and the layer formed directly below the inorganic insulating film 18 and forming the gate electrode GE. It is composed of a capacitive electrode GE'formed so as to overlap with the counter electrode CE of the capacitive element.
- Transistors (thin film transistor (TFT)) TR1 and TR2 are configured to include a semiconductor film 15, an inorganic insulating film 16, a gate electrode GE, an inorganic insulating film 18, an inorganic insulating film 20, a source electrode and a drain electrode.
- TFT thin film transistor
- the semiconductor film 15 is composed of, for example, low temperature polysilicon (LTPS) or an oxide semiconductor.
- LTPS low temperature polysilicon
- oxide semiconductor oxide semiconductor
- the layers SE1 to SE4 forming the source electrode, drain electrode and wiring, the gate electrode GE, the capacitive electrode GE'and the counter electrode CE are, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta). , Chromium (Cr), Tungsten (Ti), Copper (Cu), and Silver (Ag).
- the inorganic insulating films 16/18/20 can be formed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, a silicon nitride film, or a laminated film thereof formed by a CVD method.
- the flattening film 21 can be made of a coatable organic material such as a polyimide resin or an acrylic resin, and is preferably formed by using a photosensitive organic material.
- the first electrode 22 is formed in an island shape.
- the first electrode 22 is a reflecting electrode and a cathode, a case where the first electrode 22 is formed of aluminum (Al) will be described as an example, but the present invention is not limited to this.
- the first electrode 22 may be an anode or a transmission electrode having visible light transmittance.
- the first electrode 22 is a reflective electrode, for example, Ag, Al, MgAl, MgAg, or the like may be used as the first electrode 22, and the first metal oxide layer having conductivity is visible.
- a laminate in which a metal layer that reflects light and a second metal oxide layer that is a layer that transmits visible light and has conductivity may be laminated in this order may be used.
- the first metal oxide layer and the second metal oxide layer are metal oxides selected from indium tin oxide (ITO (Indium Tin Oxide)) and indium zinc oxide (IZO (Indium Zinc Oxide)). It may be a layer, and the metal layer may be Ag, Al, or the like.
- the first electrode 22 is a transmission electrode
- Ag, Al, MgAl, MgAg, or the like formed with a film thickness sufficient to transmit visible light may be used as the first electrode 22, and indium tin oxide may be used.
- Oxides (ITO), indium zinc oxide (IZO), zinc oxide (eg ZnO), tin oxide (eg SnO 2 ), titanium oxide (eg TiO 2 ), graphene and the like may be used.
- the first electrode 22 is provided for each of a plurality of sub-pixels constituting one pixel, and is driven for each sub-pixel by transistors TR1 and TR2 provided for each sub-pixel.
- FIGS. 1A to 1F are views showing a part of the manufacturing process of the display device 30 of the first embodiment. Note that, in FIGS. 1A to 1F, only the flattening film 21 and the first electrode 22 of the active substrate 11 shown in FIG. 2 are shown, and the other parts are omitted. There is.
- the steps of forming the first light emitting layer 26R shown in FIGS. 1A and 1B and the second light emitting layer 26B shown in FIG. 1E are shown.
- the edge cover forming step of forming the edge covers 23L and 23S and the bank 24 are formed.
- the bank forming step and the forming step of the functional layer 25 on the first electrode 22 side are performed.
- the edge cover forming step the island-shaped first electrodes 22 formed in the first electrode forming step are filled with each other, and edge covers 23L / 23S covering the edges of the plurality of first electrodes 22 are formed. do.
- the edge cover 23L is formed to have a relatively wide width because a bank 24 having a high height is formed at the upper portion thereof, and the edge cover 23L and the edge cover 23L are formed to have a relatively wide width.
- the area on which the first electrode 22 overlaps is large.
- the bank 24 is not formed on the upper portion of the edge cover 23S, the width thereof is relatively narrow, and the area where the edge cover 23S and the first electrode 22 overlap is small.
- the edge covers 23L and 23S can be formed of, for example, a coatable photosensitive organic material such as a polyimide resin or an acrylic resin.
- the bank 24 can be formed of a coatable photosensitive organic material such as a polyimide resin or an acrylic resin.
- the edge cover forming step and the bank forming step may be one step using the same material.
- a photosensitive organic material containing an acrylic resin is used, and an exposure step using a mask (for example, a halftone mask or a shadow mask) for making a difference in the exposure amount in the exposure region, and a development step.
- a mask for example, a halftone mask or a shadow mask
- the edge cover 23L / 23S and the bank 24 were formed at the same time, but the present invention is not limited to this.
- the functional layer 25 on the first electrode 22 side formed in the process of forming the functional layer 25 on the first electrode 22 side is at least a hole injection layer and a hole transport layer.
- the first electrode 22 is the cathode, it is at least one of the electron injection layer and the electron transport layer.
- the functional layer 25 on the first electrode 22 side may be formed, for example, by coating or by a thin-film deposition method. In the step of forming the functional layer 25, a mask may or may not be used, if necessary.
- the functional layer 25 on the first electrode 22 side for example, nanoparticles such as ZnO and NiO doped with Al, Mg, Li, Ga and the like or nanoparticles such as non-doped ZnO may be used, and the nanoparticles may be used.
- the functional layer 25 on the first electrode 22 side may be patterned and formed by mixing the particles and the photosensitive material and exposing and developing them.
- the functional layer 25 on the first electrode 22 side is the electron transport layer (ETL) Alq3, BCP, Cs2O3 , ZnO, SnO2, In . 2 O 3 or ZnMgO or the like can be used.
- ETL electron transport layer
- BCP BCP
- Cs2O3 ZnO
- SnO2 In . 2 O 3 or ZnMgO
- a hole transport layer (HTL) such as TFB, TAPC, CBP, PVK, or NiO can be used as the functional layer 25 on the first electrode 22 side.
- the film thickness of the functional layer 25 on the first electrode 22 side is preferably 200 nm or less, for example.
- first for example, a first quantum dot (first light emitting material) containing a ligand that emits red light and a photosensitive resin (for example, a photosensitive resin).
- a photosensitive resin for example, a photosensitive resin
- An epoxy resin, an acrylic resin, etc.), a photoinitiator, and a resist material 26RO for forming a first light emitting layer were formed on the entire surface of the functional layer 25 on the first electrode 22 side.
- the method for forming the resist material 26RO is not particularly limited, but may be formed by using a coater such as a spin coater, a slit coater, or a bar coater, or may be formed by a spray method or the like.
- the resist material 26RO is a negative type
- the resist material 26RO may be a positive type
- the first light emitting layer 26R is a light emitting layer that emits red
- the second light emitting layer 26B is a light emitting layer that emits blue
- the third light emitting layer 26G is a light emitting layer that emits green. Will be described as an example, but the present invention is not limited to this.
- the first light emitting layer 26R, the second light emitting layer 26B and the third light emitting layer 26G are both light emitting layers including quantum dots.
- the quantum dot for example, a quantum dot having a structure having a core and a shell can be used.
- the core material for example, CdSe, InP, ZnSe, ZnS, ZnTe, a mixed system thereof, CIGS, Si-based material, or the like can be used.
- the shell material for example, ZnSe, ZnS, ZnTe, CdS, or a mixed system thereof (ZnSeS) or the like can be used.
- an organic ligand or an inorganic ligand is arranged on the quantum dots.
- the outer diameter of the quantum dot shell may be about 1 to 15 nm.
- the outside of the quantum dot shell The diameters may be different, or different types of quantum dots may be used.
- the outer diameter of the shell of the second quantum dot that emits blue light contained in the second light emitting layer 26B is the outer diameter of the shell of the first quantum dot that emits red light contained in the first light emitting layer 26R.
- the outer diameter of the shell of the third quantum dot that emits green light contained in the third light emitting layer 26G is not limited to this.
- prebaking is performed at a temperature of 50 ° C. or higher and 120 ° C. or lower for a predetermined time to evaporate the solvent, and the resist material is formed. 26 RO is dried.
- the resist material 26RO is exposed to the resist material 26RO by using a photomask PM1 including an opening PMRK through which the exposure light L passes and a light-shielding portion PMR that shields the exposure light L. rice field.
- the exposure intensity is not particularly limited, but for example, exposure can be performed with an exposure intensity of 10 mJ / cm 2 or more and 1000 mJ / cm 2 or less.
- the post-baking step of the first light emitting layer 26R can be appropriately omitted.
- post-baking for example, before or after the step of forming the second light emitting layer 26B described later by the inkjet method, for example, at a temperature of 80 ° C. or higher and 200 ° C. or lower, baking is performed for a predetermined time. , Post-baking may be done.
- the film thickness of the first quantum dot (first light emitting material) containing a ligand and the first light emitting layer 26R containing a resin is formed to be 1 nm or more and 100 nm or less, but the film thickness is not limited to this. , The film thickness of the first light emitting layer 26R can be appropriately determined.
- the first light emitting layer 26R is a layer formed of a positive resist material 26RO, it is preferable to perform post-baking after the developing step. Further, depending on the positive resist material, it may be preferable to perform full exposure after the developing step and before the post-baking step.
- the first light emitting layer 26R can be formed by a photolithography method.
- a third quantum dot (third light emitting material) containing a ligand that emits green light and a photosensitive resin first, for example, a third quantum dot (third light emitting material) containing a ligand that emits green light and a photosensitive resin.
- a resist material 26GO for forming a third light emitting layer containing for example, an epoxy resin or an acrylic resin, etc.
- a photoinitiator, and a solvent is provided as a functional layer 25 on the first light emitting layer 26R and the first electrode 22 side. Formed on the entire surface above.
- the method for forming the resist material 26GO is not particularly limited, and may be formed by using a coater such as a spin coater, a slit coater, or a bar coater, or may be formed by a spray method or the like.
- a coater such as a spin coater, a slit coater, or a bar coater
- a spray method or the like may be formed by a spray method or the like.
- the resist material 26GO is a negative type will be described as an example, but the present invention is not limited to this, and the resist material 26GO may be a positive type.
- prebaking is performed at a temperature of 50 ° C. or higher and 120 ° C. or lower for a predetermined time to obtain a solvent. To evaporate and dry the resist material 26GO.
- the resist material 26GO is exposed to the resist material 26GO using a photomask PM2 including an opening PMGK through which the exposure light L passes and a light-shielding portion PMG that shields the exposure light L. rice field.
- the exposure intensity is not particularly limited, but for example, exposure can be performed with an exposure intensity of 10 mJ / cm 2 or more and 1000 mJ / cm 2 or less.
- the post-baking step of the third light emitting layer 26G can be appropriately omitted.
- post-baking for example, before or after the step of forming the second light emitting layer 26B described later by the inkjet method, for example, at a temperature of 80 ° C. or higher and 200 ° C. or lower, baking is performed for a predetermined time. , Post-baking may be done.
- the film thickness of the third quantum dot (third light emitting material) containing the ligand and the third light emitting layer 26G containing the resin is formed to be 1 nm or more and 100 nm or less, but the film thickness is not limited to this. , The film thickness of the third light emitting layer 26G can be appropriately determined.
- the third light emitting layer 26G is a layer formed of a positive resist material 26GO, it is preferable to perform post-baking after the developing step. Further, depending on the positive resist material, it may be preferable to perform full exposure after the developing step and before the post-baking step.
- the third light emitting layer 26G can be formed by a photolithography method.
- the second quantum dot (second light emitting material) containing a ligand that emits blue light and the second light emitting material containing a solvent are included.
- the inkjet material IJB for layer formation is dropped onto the inside of the bank 24 formed in a frame shape so as to surround a predetermined region (second region) using the inkjet device IJ.
- the first light emitting layer 26R and the third light emitting layer 26G are formed on the outside of the bank 24 formed in a frame shape.
- a second light emitting layer 26B made of a second quantum dot (second light emitting material) containing a ligand is subjected to heat treatment at a temperature of 50 degrees or more and 200 degrees or less for a predetermined time to evaporate the solvent. It was formed with a film thickness of 1 nm or more and 100 nm or less so as to be in contact with the inner side surface of the bank 24.
- the film thickness of the second light emitting layer 26B is formed to be 1 nm or more and 100 nm or less, but the film thickness is not limited to this, and the film thickness of the second light emitting layer 26B can be appropriately determined.
- the second light emitting layer 26B can be formed by an inkjet method (ink dropping method).
- the functional layer 27 on the second electrode 28 side was formed on the first light emitting layer 26R, the second light emitting layer 26B, and the third light emitting layer 26G.
- the film thickness of the functional layer 27 on the side of the second electrode 28 is preferably formed to be, for example, 300 nm or less.
- a second electrode 28, which is an electrode common to all sub-pixels, was formed to manufacture a display device 30.
- a translucent sealing layer is provided on the second electrode 28.
- the sealing layer is, for example, a first inorganic sealing film that covers the second electrode 28, an organic sealing layer formed above the first inorganic sealing film, and a first that covers the organic sealing layer. 2 It may be composed of an inorganic sealing film.
- the second electrode 28 is a transmissive electrode having visible light transmittance and is an anode, and is therefore formed of indium tin oxide (ITO), but is not limited thereto. ..
- the functional layer 27 on the second electrode 28 side is at least one of the hole injection layer and the hole transport layer, for example, on the second electrode 28 side.
- a hole transport layer such as TFB, TAPC, CBP, PVK or NiO can be used.
- FIG. 3A is a plan view showing one pixel of the display device 30 of the first embodiment
- FIG. 3B is A of the display device 30 of the first embodiment shown in FIG. 3A. It is sectional drawing of -A'line.
- one pixel of the display device 30 includes three adjacent sub-pixels, a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
- the first light emitting layer 26R is formed so as to overlap the first electrode 22 of a part of the plurality of first electrodes 22 in a plan view
- the second light emitting layer 26B is formed so as to overlap with the plurality of first electrodes 22.
- the third light emitting layer 26G is formed so as to overlap with the first electrode 22 of the other part of the 22 in a plan view
- the third light emitting layer 26G is the first of the other part of the plurality of first electrodes 22. It is formed so as to overlap with the electrode 22 in a plan view.
- the bank 24 for forming the first light emitting layer 26R and the third light emitting layer 26G is not required.
- the total number of banks 24 can be reduced.
- the width of the edge cover 23 (23S) in which the bank 24 is not formed can be formed relatively narrow, and the area where the edge cover 23 (23S) and the first electrode 22 overlap can be reduced.
- the area where the edge cover 23 (23S) and the first electrode 22 overlap each other becomes smaller, the area where the first electrode 22 and the functional layer 25 on the first electrode 22 side come into direct contact with each other increases, so that the light emission of the first light emitting layer 26R
- the light emitting region GSGH of the region RSGH and the third light emitting layer 26G can be expanded.
- the light emitting region BSGH of the second light emitting layer 26B is smaller than the light emitting region RSGH of the first light emitting layer 26R and the light emitting region GSGH of the third light emitting layer 26G.
- the edge cover 23 provides contact holes CH1, CH2, and CH3 provided for each sub-pixel of each color. It is formed to cover, but is not limited to this.
- the rising voltage of the display device 30 can be reduced and displayed. It is possible to improve the brightness of the device 30.
- the first light emitting layer 26R and the third light emitting layer 26G are formed by the photolithography method and the second light emitting layer 26B is formed by the inkjet method, all the light emitting layers are formed by the vapor deposition method.
- the light emitting layer can be formed more efficiently than in the case of forming.
- the first light emitting layer 26R and the third light emitting layer 26G are formed first by the photolithography method and the second light emitting layer 26B is formed later by the inkjet method, the first light emitting layer 26R is formed. And the damage that the third light emitting layer 26G receives during the photolithography process can be reduced. Specifically, after the formation of the first light emitting layer 26R, there is only one photolithography step, and after the formation of the third light emitting layer 26G, there is no photolithography step. When the light emitting layers of all colors are formed by the photolithography method, since there are at least two photolithography steps after the light emitting layer of the first formed color, the damage received during the photolithography step is large.
- an inkjet method is performed using a second quantum dot containing a ligand that emits blue light with poor carrier injection efficiency and low EQE, and an inkjet material IJB for forming a second light emitting layer containing a solvent.
- a second light emitting layer 26B made of a second quantum dot (second light emitting material) containing a ligand is formed.
- a carrier flow such as a resin component contained in the resist material, such as the first light emitting layer 26R and the third light emitting layer 26G, flows. Since it does not contain a component that inhibits the above, it is possible to suppress a decrease in the emission luminance of the second light emitting layer 26B and a decrease in the injection efficiency of the carrier.
- the first light emitting material contained in the first light emitting layer 26R is the first quantum dot containing the ligand
- the second light emitting material contained in the second light emitting layer 26B contains the ligand.
- the case where the third quantum dot is a second quantum dot and the third light emitting material contained in the third light emitting layer 26G is a third quantum dot containing a ligand will be described as an example, but the present invention is not limited to this, and for example, At least one of the first light emitting material, the second light emitting material, and the third light emitting material may be a quantum dot containing a ligand, and the first light emitting material, the second light emitting material, and the third light emitting material. It may be a light emitting material that does not contain quantum dots, all of which contain a ligand. Examples of the light emitting material containing no quantum dots include organic light emitting materials used in organic EL devices.
- the case where the second light emitting layer 26B, which is a blue light emitting layer, is formed by an inkjet method has been described as an example, but the present invention is not limited to this, and the first light emitting layer is a red light emitting layer.
- the light emitting layer 26R or the third light emitting layer 26G which is a green light emitting layer may be formed by an inkjet method.
- the case where the first light emitting layer 26R, which is a red light emitting layer, is formed before the third light emitting layer 26G, which is a green light emitting layer, has been described as an example, but the present invention is limited to this. Instead, the third light emitting layer 26G, which is a green light emitting layer, may be formed before the first light emitting layer 26R, which is a red light emitting layer.
- one pixel of the display device 30 is formed of three adjacent sub-pixels, a red sub-pixel, a green sub-pixel, and a blue sub-pixel, has been described as an example.
- the present invention is not limited to this, and one pixel of the display device 30 may further include sub-pixels of other colors.
- the display device 30 is a flexible display device.
- the substrate 10 may be peeled from the resin film 12 by a Laser Lift Off step (LLO step) to form a flexible display device. Further, after the substrate 10 is peeled from the resin film 12 by the LLO step, the film may be attached to the resin film 12 via the adhesive layer to form a flexible display device.
- LLO step Laser Lift Off step
- FIG. 4A is a diagram showing a display device 31 which is a first modification of the first embodiment
- FIG. 4B is a diagram showing a display device 32 which is a second modification of the first embodiment. It is a figure.
- the second electrode 28 is not shown.
- the first light emitting layer 26R and the third light emitting layer 26G formed by the photolithography method are provided adjacent to each other and face each other.
- One end of the layer 26R and one end of the third light emitting layer 26G are separated by a predetermined distance R1.
- the unintended third light emitting layer 26G emits light when the first light emitting layer 26R emits light.
- the first light emitting layer 26R will emit light unintentionally when the third light emitting layer 26G is made to emit light.
- one end of the first light emitting layer 26R facing each other and one end of the third light emitting layer 26G are separated by a predetermined distance R1, so that an unintended adjacent light emitting layer as described above is used. Unintended light emission can be suppressed.
- one end 26RA of the first light emitting layer 26R formed by the photolithography method is formed thicker than the other parts of the first light emitting layer 26R.
- the one end 26GA of the third light emitting layer 26G formed by the photolithography method is formed thicker than the other parts of the third light emitting layer 26G.
- the end portion of the light emitting layer formed by the photolithography method is formed in a tapered shape, so that the film thickness of the end portion is thin and current concentration may occur.
- one end portion 26RA of the first light emitting layer 26R is formed thicker than the other portion of the first light emitting layer 26R, and one end portion 26GA of the third light emitting layer 26G is formed from the other portion of the third light emitting layer 26G. Since it is formed thicker than the portion, it is possible to suppress the possibility of current concentration occurring at the edge portion of the first light emitting layer 26R and the edge portion of the third light emitting layer 26G.
- the one end 26RA of the first light emitting layer 26R and the one end 26GA of the third light emitting layer 26G are exposed using a mask (for example, a halftone mask or a shadow mask) for making a difference in the exposure amount of the exposed area. By doing so, it can be formed.
- a mask for example, a halftone mask or a shadow mask
- FIG. 5A is a diagram showing a display device 33 which is a third modification of the first embodiment
- FIG. 5B is a diagram showing a display device 34 which is a fourth modification of the first embodiment. It is a figure.
- the second electrode 28 is not shown.
- a first thick film portion 26RGA is provided which is in contact with and overlaps a part of the above.
- the first thick film portion 26RGA superimposes on at least a part between the first electrode 22 superimposing on the first light emitting layer 26R and the first electrode 22 superimposing on the third light emitting layer 26G.
- the first thick film portion 26RGA is, for example, at the time of exposure in the step of first forming the first light emitting layer 26R by the photolithography method and then forming the third light emitting layer 26G by the photolithography method. It can be formed by exposing a part of the third light emitting layer 26G that overlaps with the above.
- a common functional layer 25 on the first electrode 22 side is provided for all the sub-pixels, but the display device 34 shown in FIG. 5 (b) is provided.
- the functional layers 25R, 25G, and 25B on the first electrode 22 side are provided for each sub-pixel of each color.
- Each of the functional layers 25R, 25G, and 25B on the first electrode 22 side may be formed in one photolithography step using one material, for example, three times using three different materials. It may be formed by a lithography process.
- the first thick film portion 26RGA' is provided, and the first thick film portion 26RGA'is provided with the first thick film portion 26RGA' because the resistance becomes high and the current does not easily flow. Therefore, it is possible to suppress the color mixing between the first light emitting layer 26R and the third light emitting layer 26G. Further, by providing the first thick film portion 26RGA', it is possible to suppress the concentration of current at the edge portion of the first electrode 22.
- FIG. 6A is a diagram showing a display device 35 which is a fifth modification of the first embodiment
- FIG. 6B is a diagram showing a display device 36 which is a sixth modification of the first embodiment. It is a figure.
- the second electrode 28 is not shown.
- a first thick film portion 26GRA is provided in the display device 35 shown in FIG. 6A.
- the first thick film portion 26GRA is superimposed on the third light emitting layer 26G at the time of exposure in the step of first forming the third light emitting layer 26G by the photolithography method and then forming the first light emitting layer 26R by the photolithography method. It can be formed by exposing a part of the first light emitting layer 26R to be exposed.
- the first thick film portion 26GRA is provided, and in the first thick film portion 26GRA, the resistance becomes high and it becomes difficult for the current to flow. It is possible to suppress the color mixing between the 1 light emitting layer 26R and the 3rd light emitting layer 26G. Further, by providing the first thick film portion 26GRA, it is possible to suppress the concentration of current at the edge portion of the first electrode 22.
- a functional layer 25G on the electrode 22 side and a functional layer 25B on the first electrode 22 side superimposing on the second light emitting layer 26B are provided.
- the display device 36 is further provided with a second thick film portion 25 RGA in addition to the first thick film portion 26 RGA shown in FIG. 5 (a).
- the second thick film portion 25RGA is a first electrode 22 that overlaps a part of the edge of the functional layer (first functional layer) 25R'on the first electrode 22 side that overlaps with the first light emitting layer 26R and the third light emitting layer 26G. It is a portion where a part of the edge of the functional layer (second functional layer) 25G on the side is in contact with and overlaps.
- the second thick film portion 25RGA is superimposed on at least a part between the first electrode 22 superimposed on the first light emitting layer 26R and the first electrode 22 superimposed on the third light emitting layer 26G.
- the second thick film portion 25RGA first forms a functional layer (first functional layer) 25R'on the first electrode 22 side by a photolithography method, and then forms a functional layer (first functional layer) 25R'on the first electrode 22 side by a photolithography method.
- the second thick film portion 25RGA is provided, and in the second thick film portion 25RGA, the resistance becomes high and the current becomes difficult to flow. It is possible to suppress the color mixing between the 1 light emitting layer 26R and the 3rd light emitting layer 26G. Further, by providing the second thick film portion 25RGA, it is possible to suppress the concentration of current at the edge portion of the first electrode 22.
- a part of the edge of the functional layer (first functional layer) 25R'on the first electrode 22 side and the functional layer on the first electrode 22 side (second functional layer) superimposed on the third light emitting layer 26G a part of the edge of the functional layer (first functional layer) 25R'on the first electrode 22 side and the functional layer on the first electrode 22 side (second functional layer) superimposed on the third light emitting layer 26G.
- the display device 36 is provided with the second thick film portion 25RGA by forming the display device 36 so as to be in contact with and overlap with a part of the edge of the 25G will be described as an example, but the present invention is not limited thereto.
- the functional layer 27 on the second electrode 28 side is provided for each sub-pixel of each color, and the functional layer (first functional layer) on the second electrode 28 side superimposed on the first light emitting layer 26R.
- a part of the edge and a part of the edge of the functional layer (second functional layer) on the second electrode 28 side overlapping with the third light emitting layer 26G may be
- FIG. 7A is a diagram showing a display device 33 which is a third modification of the first embodiment shown in FIG. 5A
- FIG. 7B is a seventh embodiment of the first embodiment. It is a figure which shows the display device 37 which is a modification
- (c) of FIG. 7 is a figure which shows the display device 38 which is the 8th modification of Embodiment 1.
- the second electrode 28 and the functional layer 27 on the second electrode 28 side are not shown.
- the display device 37 shown in FIG. 7B is provided with a first thick film portion 26RGA'', and the first thick film portion 26RGA'' is attached to the display device 33 shown in FIG. 7A. Its thickness is thicker than that of the provided first thick film portion 26RGA.
- the first thick film portion 26RGA'' is, for example, first formed by a photolithography method so that one end portion 26RA of the first light emitting layer 26R is thicker than the other portions of the first light emitting layer 26R, and then a photolithography method. It can be formed by exposing a part of the third light emitting layer 26G that overlaps with one end portion 26RA of the first light emitting layer 26R at the time of exposure in the step of forming the third light emitting layer 26G. In the step of forming the third light emitting layer 26G by the photolithography method, one end portion 26GA of the third light emitting layer 26G is formed thicker than the other parts of the third light emitting layer 26G, and the first thick film portion 26RGA'' is formed. , One end 26RA of the first light emitting layer 26R and one end 26GA of the third light emitting layer 26G.
- the display device 38 shown in FIG. 7 (c) has the same layer formed of the same material as the first light emitting layer 26R and the same layer formed of the same material as the third light emitting layer 26G on the bank 24.
- the formed upper bank 24U is provided.
- the upper bank 24U is formed by using both the same layer formed of the same material as the first light emitting layer 26R and the same layer formed of the same material as the third light emitting layer 26G.
- the upper bank 24U is formed of the same layer made of the same material as the first light emitting layer 26R and the same material as the third light emitting layer 26G. It may be formed on at least one of the same layers.
- the height of the bank can be increased and the external light absorption effect of the upper bank 24U can be obtained.
- FIG. 8 (a) to 8 (c) are views showing a part of the manufacturing process of the display device 38 which is the eighth modification of the first embodiment shown in FIG. 7 (c).
- FIG. 8C the second electrode 28 and the functional layer 27 on the second electrode 28 side are not shown.
- FIG. 8A an opening PMRK through which the exposure light L is passed, a light-shielding portion PMR that shields the exposure light L, and an exposure light L that is less than the opening PMRK and more than the light-shielding portion PMR are transmitted.
- a photomask PM3 containing a halftone portion (shadow portion) PMRH to pass through, the resist material 26RO formed on the entire surface was exposed, then developed and heat-treated, and one end formed thicker than the other portions.
- a state in which the first light emitting layer 26R including the portion 26RA is formed in a predetermined region (first region) is shown. Further, a first light emitting layer 26R for forming the upper bank 24U is also formed on the bank 24.
- an opening PMGK through which the exposure light L is passed a light-shielding portion PMG that blocks the exposure light L, and an exposure light L that passes through less exposure light L than the opening PMGK and has more exposure light L than the light-shielding portion PMG.
- a photomask PM4 including a halftone portion (shadow portion) PMGH to be passed through, the resist material 26GO formed on the entire surface is exposed, then developed and heat-treated, and one end formed thicker than the other portions.
- a state in which the third light emitting layer 26G including the portion 26GA is formed in a predetermined region (third region) is shown. Further, a third light emitting layer 26G for forming the upper bank 24U is also formed on the bank 24.
- the third light emitting layer 26R overlaps with the one end portion 26RA at the time of exposure in the step of forming the third light emitting layer 26G.
- the exposure is performed including a part of the light emitting layer 26G.
- the display device 38 provided with the first thick film portion 26RGA ′′ and the upper bank 24U can be manufactured.
- the bank 24' is the same layer 26RB formed of the same material as the first light emitting layer 26R and the same layer 26GB formed of the same material as the third light emitting layer 26G. It differs from the first embodiment in that it is formed at least on one side, and the others are as described in the first embodiment.
- the members having the same functions as the members shown in the drawings of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
- 9 (a) to 9 (c) are views showing a part of the manufacturing process of the display device 39 of the second embodiment.
- FIG. 9C the second electrode 28 and the functional layer 27 on the second electrode 28 side are not shown.
- FIG. 9A an opening PMGK that allows the exposure light L to pass through, a light-shielding portion PMG that shields the exposure light L, and an exposure light L that passes through less exposure light L than the opening PMGK and has more exposure light L than the light-shielding portion PMG.
- FIG. 9B shows the process of exposing the resist material 26GO formed on the whole surface using the photomask PM5 including the halftone part (shadow part) PMGH to pass through. After exposure, it is developed and heat-treated, and as shown in FIG. 9B, the third light emitting layer 26G and the third light emitting layer which becomes a part of the bank 24'formed thicker than the third light emitting layer 26G.
- the same layer 26GB formed of the same material as the layer 26G was formed in a predetermined region (third region).
- FIG. 9B shows an opening PMRK that allows the exposure light L to pass through, a light-shielding portion PMR that shields the exposure light L, and an exposure light L that passes through less exposure light L than the opening PMRK and has more exposure light L than the light-shielding portion PMR.
- the same layer 26RB formed of the same material as the layer 26R was formed in a predetermined region (first region).
- FIG. 9 (c) shows the formation of the second light emitting layer 26B in which the second light emitting layer 26B is formed only in a predetermined region (second region) after the step of forming the third light emitting layer 26G and the first light emitting layer 26R.
- a second quantum dot (second light emitting material) containing a ligand that emits blue light and an inkjet material IJB for forming a second light emitting layer containing a solvent are formed in a frame shape so as to surround a predetermined region (second region).
- the ink jet device IJ is used to drop the inside of the bank 24'.
- the first light emitting layer 26R and the third light emitting layer 26G are formed on the outside of the bank 24'formed in a frame shape.
- a second light emitting layer 26B made of a second quantum dot (second light emitting material) containing a ligand is subjected to heat treatment at a temperature of 50 degrees or more and 200 degrees or less for a predetermined time to evaporate the solvent. It was formed with a film thickness of 1 nm or more and 100 nm or less so as to be in contact with the inner side surface of the bank 24'.
- the bank 24' is the same layer 26RB formed of the same material as the first light emitting layer 26R and the same layer 26GB formed of the same material as the third light emitting layer 26G. Since it is formed by the above, it is not necessary to use another material for forming the bank, so that it is possible to shorten the manufacturing process and reduce the material cost. Further, since the bank 24'is formed by using two layers of the same layer 26RB formed of the same material as the first light emitting layer 26R and the same layer 26GB formed of the same material as the third light emitting layer 26G. Banks can be formed high.
- the bank 24' is formed of the same layer 26RB formed of the same material as the first light emitting layer 26R and the same layer 26GB formed of the same material as the third light emitting layer 26G.
- the present invention is not limited to this, and the bank 24'is formed of the same material as the same layer 26RB and the third light emitting layer 26G formed of the same material as the first light emitting layer 26R. It may be formed on at least one of the same layer 26 GB.
- FIG. 10A is a diagram showing a display device 40 which is a first modification of the second embodiment
- FIG. 10B is a diagram showing a display device 41 which is a second modification of the second embodiment. It is a figure.
- the illustration of the second electrode 28 and the functional layer 27 on the second electrode 28 side is omitted.
- the same layer 26RB formed of the same material as the first light emitting layer 26R and the same layer 26GB formed of the same material as the third light emitting layer 26G are formed.
- the bank 24' is provided, and the first thick film portion 26GRA' described above in the first embodiment is further provided.
- the same layer 26RB formed of the same material as the first light emitting layer 26R and the same layer 26GB formed of the same material as the third light emitting layer 26G are formed.
- the bank 24' is provided, and the first thick film portion 26GRA'' described above in the first embodiment is further provided.
- the first thick film portion 26GRA'shown in FIG. 10 (a) and the first thick film portion 26GRA'shown in FIG. 10 (b) are not formed in a frame shape, the first thick film portion 26GRA' Even if 26GRA'' is provided, the light emitting region of the first light emitting layer 26R and the third light emitting layer 26G can be expanded.
- Embodiment 3 of the present invention will be described with reference to FIG.
- the light emitting regions of the first light emitting layer 26R, the second light emitting layer 26B, and the third light emitting layer 26G are expanded by reducing the area forming the bank 24.
- the others are as described in the first and second embodiments.
- the members having the same functions as the members shown in the drawings of the first and second embodiments are designated by the same reference numerals, and the description thereof will be omitted.
- FIG. 11A and 11B are diagrams for explaining the schematic configuration of the display device 42 of the third embodiment, and FIG. 11C is a first modification of the third embodiment. It is a figure which shows the display device 43, and (d) of FIG. 11 is a figure which shows the display device 44 which is the 2nd modification of Embodiment 3.
- the plurality of first electrodes 22 are arranged in a matrix and are formed in a line shape by a photolithography method.
- the first light emitting layer 26R and the third light emitting layer 26G are respectively superposed on a row of first electrode groups in which the first electrode 22 is arranged along the first direction D1, and are formed in a line shape by an inkjet method.
- the resulting second light emitting layer 26B is superimposed on, for example, two rows of first electrode groups in which the first electrode 22 is arranged along the first direction D1.
- the two first electrodes 22 superposed on the second light emitting layer 26B each belong to different pixels GASO.
- the pixel GASO includes, for example, three first electrodes 22 that are adjacent to each other in the second direction D2 and overlap with different light emitting layers.
- the banks 24 and 24' are formed in a frame shape for each sub-pixel, but in the display device 42, the banks 24 are formed in a line shape by an inkjet method.
- the two light emitting layers 26B are composed of two facing partition walls surrounding the left side and the right side. That is, as shown in FIG. 11A, the bank 24 is composed of two facing partition walls that partition the inner region and the outer region, and the second light emitting layer 26B is formed in the inner region of the two facing partition walls.
- the first light emitting layer 26R and the third light emitting layer 26G are formed in the outer regions of the two facing partition walls. Therefore, the area forming the bank 24 can be reduced, and the light emitting regions of the first light emitting layer 26R, the second light emitting layer 26B, and the third light emitting layer 26G can be expanded.
- the first light emitting layer 26R, the second light emitting layer 26B, and the third light emitting layer 26R are mounted on a large substrate before obtaining the individualized display device 42 as shown in (a) of FIG. 11 and (b) of FIG.
- the bank 24 may be formed in a frame shape or may be formed so as to include two facing partition walls that partition the inner region and the outer region.
- the large-sized substrate means a substrate having a size such that a plurality of display devices 42 can be obtained by division.
- the bank 24 When the bank 24 is formed in a frame shape on the large substrate for each size of the display device 42, for example, the upper side and the lower side of the bank 24 formed in the frame shape are cut off in the individualization step.
- the bank 24 As in the individualized display device 42 shown in (a) and 11 (b) of FIG. 11, the bank 24 is composed of two facing partition walls that partition the inner region and the outer region. You may.
- the present invention is not limited to this, and in the individualization step, only one of the upper side and the lower side of the bank 24 formed in a frame shape may be cut off, and the upper side and the lower side of the bank 24 formed in a frame shape may be cut off. You do not have to cut off the bottom edge.
- the bank 24 when the bank 24 is formed in a frame shape having a size straddling between the plurality of display devices 42 on the large substrate, or the bank 24 is opposed to partition the inner region and the outer region straddling the plurality of display devices 42. When it is formed so as to include two partition walls, a large substrate is cut in the individualization step, and the individualized display device shown in FIG. 11A and FIG. 11B is shown. As in the case of 42, the bank 24 may be composed of two facing partition walls separating the inner region and the outer region.
- the first light emitting layer 26R and the third light emitting layer 26G formed by the photolithography method surround the second light emitting layer 26B formed by the inkjet method. As such, it is provided.
- the second light emitting layer 26B of the four adjacent pixels GASO is formed by using one frame-shaped bank 24, the area forming the bank 24 can be reduced, and the first light emitting layer can be reduced.
- the light emitting area of 26R, the second light emitting layer 26B and the third light emitting layer 26G can be expanded.
- each of the first light emitting layer 26R and the third light emitting layer 26G is provided in an island shape for each pixel GASO, but the present invention is not limited to this.
- the first light emitting layer 26R and the third light emitting layer 26G formed by the photolithography method surround the second light emitting layer 26B formed by the inkjet method. As such, it is provided.
- each of the first light emitting layer 26R and the third light emitting layer 26G is provided across two adjacent pixels GASO, but is not limited thereto. .. It should be noted that the group of pixel GASOs as shown in FIG. 11C or FIG. 11D may be repeatedly arranged or arranged like a delta arrangement.
- Embodiment 4 of the present invention will be described with reference to FIGS. 12 and 13.
- the display device 45 of the present embodiment is different from the first to third embodiments in that the first electrodes 22R, 22G, and 22B are arranged in a pentile, and the others are as described in the first to third embodiments. ..
- the members having the same functions as the members shown in the drawings of the first to third embodiments are designated by the same reference numerals, and the description thereof will be omitted.
- FIG. 12A is a plan view showing the display device 45 of the fourth embodiment
- FIG. 12B is the BB of the display device 45 of the fourth embodiment shown in FIG. 12A
- 'It is a cross-sectional view of a line.
- the bank 24'formed by the third light emitting layer 26G and the same layer 26GB formed of the same material is provided, and the first thick film portion 26GRA'''is further provided.
- the light emitting region of the light emitting layer 26G can be expanded.
- FIG. 13A and 13B are plan views showing a schematic configuration of the photomasks PM7 and PM8 used in the manufacturing process of the display device 45 of the fourth embodiment shown in FIG. 12A. be.
- the photo mask PM7 shown in FIG. 13A passes through an opening PMGK that allows the exposure light L to pass through, a light-shielding portion PMG that shields the exposure light L, and an exposure light L that is less than the opening PMGK, and is more than the light-shielding portion PMG. It includes a halftone portion (shadow portion) PMGH through which a large amount of exposure light L is passed.
- the photomask PM7 is made of the same material as the third light emitting layer 26G shown in FIG. 12B and the third light emitting layer 26G which is a part of the bank 24'formed thicker than the third light emitting layer 26G.
- a predetermined region is the same layer 26GB and the same layer 26GA formed of the same material as the third light emitting layer 26G which is a part of the first thick film portion 26GRA'' which is formed thicker than the third light emitting layer 26G. It is a photomask for forming in (third region).
- the photomask PM8 shown in FIG. 13B passes through an opening PMRK that allows the exposure light L to pass through, a light-shielding portion PMR that shields the exposure light L, and an exposure light L that is less than the opening PMRK, and is more than the light-shielding portion PMR. It includes a halftone portion (shadow portion) PMRH through which a large amount of exposure light L is passed.
- the photomask PM8 is made of the same material as the first light emitting layer 26R shown in FIG. 12B and the first light emitting layer 26R which is a part of the bank 24'formed thicker than the first light emitting layer 26R.
- a predetermined region is the same layer 26RB and the same layer 26RC formed of the same material as the first light emitting layer 26R which is a part of the first thick film portion 26GRA'' which is formed thicker than the first light emitting layer 26R. It is a photomask for forming in (the first region).
- Embodiment 5 of the present invention will be described with reference to FIG.
- the display device 46 of the present embodiment is different from the first to fourth embodiments in that not only the second light emitting layer 26B but also the third light emitting layer 26G'is formed by the inkjet method, and the other embodiments are the same. As described in 1 to 4.
- the members having the same functions as the members shown in the drawings of the first to fourth embodiments are designated by the same reference numerals, and the description thereof will be omitted.
- FIG. 14A and 14B are views showing a part of the manufacturing process of the display device 46 of the fifth embodiment
- FIG. 14C is the display device 46 of the fifth embodiment. It is a top view which shows one pixel.
- a third quantum dot containing a ligand that emits green light (third quantum dot).
- An inkjet device IJ is used inside a bank 24 formed in a frame shape so as to surround a predetermined region (third region) of an inkjet material IJG for forming a third light emitting layer containing (3 light emitting materials) and a solvent. And dropped.
- the first light emitting layer 26R is formed on the outside of the bank 24 formed in a frame shape.
- the third light emitting layer 26G'made of the third quantum dot (third light emitting material) is placed in the bank 24. It was formed with a film thickness of 1 nm or more and 100 nm or less so as to be in contact with the inner side surface of the above.
- the second light emitting layer 26B was formed by an inkjet method.
- the display device 46 since the bank 24 is not formed in a frame shape so as to surround the first light emitting layer 26R, the light emitting region RSGH of the first light emitting layer 26R is expanded. can.
- the bank 24 when the bank 24 is formed of a light emitting layer, the bank is formed of the same layer made of the same material as the first light emitting layer 26R. Also, when forming the upper bank, the upper bank is formed of the same layer made of the same material as the first light emitting layer 26R.
- the inkjet material IJG for forming the third light emitting layer is formed inside the bank 24 formed in a frame shape
- the inkjet material IJB for forming the second light emitting layer is formed in a frame shape.
- the bank 24 is formed inside the bank 24 has been described as an example, but the present invention is not limited to this.
- the inkjet material IJG for forming the third light emitting layer is formed in the inner region of the bank 24 including the two facing partition walls that partition the inner region and the outer region, and the inkjet material IJB for forming the second light emitting layer is formed. It may be formed in the inner region of the bank 24 including two opposing partition walls that partition the inner region and the outer region.
- one of the inkjet material IJG for forming the third light emitting layer and the inkjet material IJB for forming the second light emitting layer is formed inside the bank 24 formed in a frame shape, and the inkjet for forming the third light emitting layer is formed.
- the other of the material IJG and the inkjet material IJB for forming the second light emitting layer may be formed in the inner region of the bank 24 including two facing partition walls separating the inner region and the outer region.
- the first light emitting layer 26R, the second light emitting layer 26B'and the third light emitting layer 26G are formed by using a photolithography method and a thin film deposition method without using an inkjet method. In that respect, it is different from the first to fifth embodiments, and the others are as described in the first to fifth embodiments.
- the members having the same functions as the members shown in the drawings of the first to fifth embodiments are designated by the same reference numerals, and the description thereof will be omitted.
- 15 (a) to 15 (f) are views showing a part of the manufacturing process of the display device 47 of the sixth embodiment.
- the second light emitting layer 26B' is set to a predetermined region (second region) by using the vapor deposition mask VM1 including the opening VMK through which the vapor deposition particles BVS pass and the blocking portion VMB through which the vapor deposition particles BVS do not pass.
- VM1 including the opening VMK through which the vapor deposition particles BVS pass and the blocking portion VMB through which the vapor deposition particles BVS do not pass.
- the second light emitting layer 26B' is formed by a vapor deposition method using a vapor deposition mask VM1, it can be formed only in a predetermined region (second region). Further, since the second light emitting layer 26B'is formed by a vapor deposition method using a vapor deposition mask VM1, it is made of a light emitting material (second light emitting material) that emits blue light.
- the display device 47 since the display device 47 is not provided with the bank 24, the light emitting regions of the first light emitting layer 26R, the second light emitting layer 26B'and the third light emitting layer 26G can be expanded. ..
- the present invention is not limited to this, and the second light emitting layer 26B'and the third light emitting layer 26G are used.
- the first light emitting layer 26R is formed by the photolithography method first
- the first light emitting layer 26R can be formed by the thin film deposition method.
- the third light emitting layer 26G can be formed by the thin film deposition method.
- the second light emitting layer 26B' is formed in a predetermined region (second region) by a vapor deposition method using a vapor deposition mask VM1.
- the present invention is not limited to this.
- the second light emitting layer 26B' may be formed by using a mask and a mist spray method.
- the inkjet material IJB for forming the second light emitting layer already described in the first embodiment is formed at the opening of the mask. Can be sprayed through.
- the second light emitting layer 26B' is formed by the vapor deposition method
- the energy used in the manufacturing process is compared with the case where the second light emitting layer 26B'is formed by the inkjet method or the mist spray method. Therefore, when energy saving is taken into consideration, the second light emitting layer 26B'is preferably formed by an inkjet method or a mist spray method.
- the present invention can be used for a display device and a method for manufacturing a display device.
- Active board (board) 22 1st electrode 22R, 22G, 22B 1st electrode 23, 23S, 23L Edge cover 24, 24'Bank 24U Upper bank 25, 27 Functional layer 25R, 25G, 25B Functional layer 25R'Functional layer 25RGA 2nd film thickness part 26R 1st light emitting layer 26B, 26B' 2nd light emitting layer 26G, 26G' 3rd light emitting layer 26RGA 1st film thickness part 26RGA' 1st film thickness part 26RGA'' 1st film thickness part 26RGA'' 1st film thickness part 26GRA', 26GRA'' 1st film thickness part 26GRA'' 1st film thickness part 28 2nd electrode 30-47 Display device
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
表示装置(30)は、島状の複数の第1電極(22)と、複数の第1電極(22)のうちの一部の第1電極(22)と重畳するように形成された第1発光材料及び樹脂を含む第1発光層(26R)と、複数の第1電極(22)のうちの他の一部の第1電極(22)と重畳するように形成された第2発光材料からなる第2発光層(26B)と、枠状または、内側領域と外側領域を区画する対向する2つの隔壁を含むように形成されたバンク(24)と、を備え、第2発光層(26B)は、バンク(24)の内側側面と接するように、バンク(24)の内側に設けられ、第1発光層(26R)は、バンク(24)の外側に設けられている。
Description
本開示は、表示装置及び表示装置の製造方法に関する。
近年、発光素子を備えた様々な表示装置が開発されており、特に、QLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)または、OLED(Organic Light Emitting Diode:有機発光ダイオード)などを備えた表示装置は、低消費電力化、薄型化および高画質化などを実現できる点から、高い注目を浴びている。
しかしながら、例えば、OLEDを備えた表示装置の場合、全ての発光層を蒸着法で形成した場合に、発光層の形成工程において時間や費用などがかかることから、発光層を効率的に形成できない。したがって、QLEDまたは、OLEDを備えた表示装置の発光層の形成方法について開発が活発に行われている。
例えば、下記特許文献1には、発光層を効率的に形成するため、表示装置に備えられた発光素子の発光層をインクジェット法(インク滴下法)のみを用いて形成することについて記載されている。
上記特許文献1には、1画素を構成する全てのサブ画素のそれぞれに備えられる各色の発光層をインクジェット法のみを用いて形成した構成について記載されている。上記特許文献1に記載の構成の場合、インクジェット法で全ての発光層を形成しているので、発光層を効率的に形成できるが、全てのサブ画素に比較的高さが高いバンク(隔壁)を備える必要がある。前記バンクは、高さが高い分、幅も広く形成されるため、前記バンクがサブ画素毎に備えられた島状の電極を覆う面積が増加してしまう。したがって、全てのサブ画素において発光層の発光領域が狭くなってしまうという問題が生じる。
本開示の一態様は、前記の問題点に鑑みてなされたものであり、発光層の発光領域の拡大を実現した表示装置及び表示装置の製造方法を提供することを目的とする。
本発明の表示装置は、前記の課題を解決するために、
基板と、
前記基板の一方側の面上に形成された島状の複数の第1電極と、
前記複数の第1電極のうちの一部の第1電極と重畳するように前記一方側の面上に形成された、第1発光材料及び樹脂を含む第1発光層と、
前記複数の第1電極のうちの他の一部の第1電極と重畳するように前記一方側の面上に形成された、第2発光材料からなる第2発光層と、
枠状または、内側領域と外側領域を区画する対向する2つの隔壁を含むように形成された第1バンクと、を備え、
前記第2発光層は、前記第1バンクの内側側面と接するように、前記第1バンクの内側に設けられ、
前記第1発光層は、前記第1バンクの外側に設けられている。
基板と、
前記基板の一方側の面上に形成された島状の複数の第1電極と、
前記複数の第1電極のうちの一部の第1電極と重畳するように前記一方側の面上に形成された、第1発光材料及び樹脂を含む第1発光層と、
前記複数の第1電極のうちの他の一部の第1電極と重畳するように前記一方側の面上に形成された、第2発光材料からなる第2発光層と、
枠状または、内側領域と外側領域を区画する対向する2つの隔壁を含むように形成された第1バンクと、を備え、
前記第2発光層は、前記第1バンクの内側側面と接するように、前記第1バンクの内側に設けられ、
前記第1発光層は、前記第1バンクの外側に設けられている。
本発明の表示装置の製造方法は、前記の課題を解決するために、
フォトリソグラフィ法によって、基板の一方側の面上の複数の第1領域に第1発光層を形成する、第1発光層形成工程と、
前記第1発光層形成工程の後に、第2発光層を、前記複数の第1領域には形成せず、前記複数の第1領域とは異なる前記一方側の面上の複数の第2領域にのみ形成する、第2発光層形成工程と、を含む。
フォトリソグラフィ法によって、基板の一方側の面上の複数の第1領域に第1発光層を形成する、第1発光層形成工程と、
前記第1発光層形成工程の後に、第2発光層を、前記複数の第1領域には形成せず、前記複数の第1領域とは異なる前記一方側の面上の複数の第2領域にのみ形成する、第2発光層形成工程と、を含む。
本開示の一態様によれば、前記第1発光層は、前記第1バンクの外側に設けられているか、バンクを必要としないフォトリソグラフィ法によって設けられているので、前記第1発光層の発光領域の拡大を実現した表示装置及び表示装置の製造方法を提供できる。
本開示の実施の形態について、図1から図15に基づいて説明すれば、次の通りである。以下、説明の便宜上、特定の実施形態にて説明した構成と同一の機能を有する構成については、同一の符号を付記し、その説明を省略する場合がある。
〔実施形態1〕
図2は、実施形態1の表示装置30に備えられたアクティブ基板11の一例を示す図である。
図2は、実施形態1の表示装置30に備えられたアクティブ基板11の一例を示す図である。
図2に示すように、実施形態1の表示装置30に備えられたアクティブ基板11は、基板10を備えており、基板10上に、樹脂膜12と、バリア層3と、薄膜トランジスタ層4と、第1電極22とを、基板10側からこの順に備えている。
基板10としては、各種膜を形成する後工程の工程温度に耐えられる耐熱性を有する基板を用いることができ、例えば、ガラス基板などを用いることができる。
樹脂膜12としては、例えば、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂等を用いることができる。
バリア層3は、水分や不純物が、トランジスタTR1・TR2や発光素子に到達することを防ぐ層であり、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。
トランジスタTR1・TR2及び容量素子は、バリア層3の上層に設けられている。トランジスタTR1・TR2及び容量素子を含む薄膜トランジスタ層4は、半導体膜15と、半導体膜15よりも上層の無機絶縁膜(ゲート絶縁膜)16と、無機絶縁膜16よりも上層のゲート電極GE及び容量電極GE’と、ゲート電極GE及び容量電極GE’よりも上層の無機絶縁膜(第1絶縁膜)18と、無機絶縁膜18よりも上層の対向電極CEと、対向電極CEよりも上層の無機絶縁膜(第2絶縁膜)20と、無機絶縁膜20よりも上層の、ソース電極、ドレイン電極及び配線を形成する層SE1~SE4と、ソース電極、ドレイン電極及び配線を形成する層SE1~SE4よりも上層の平坦化膜(層間絶縁膜)21と、を含む。
なお、容量素子は、無機絶縁膜18の直上に形成された容量素子の対向電極CEと、無機絶縁膜18と、無機絶縁膜18の直下に形成され、ゲート電極GEを形成する層と同一層で、容量素子の対向電極CEと重畳するように形成された容量電極GE’と、で構成される。
半導体膜15、無機絶縁膜16、ゲート電極GE、無機絶縁膜18、無機絶縁膜20、ソース電極及びドレイン電極を含むように、トランジスタ(薄膜トランジスタ(TFT))TR1・TR2が構成される。
半導体膜15は、例えば、低温ポリシリコン(LTPS)あるいは酸化物半導体で構成される。
ソース電極、ドレイン電極及び配線を形成する層SE1~SE4、ゲート電極GE、容量電極GE’及び対向電極CEは、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)、及び銀(Ag)の少なくとも1つを含む金属の単層膜あるいは積層膜によって構成することができる。
無機絶縁膜16・18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜、窒化シリコン(SiNx)膜あるいは酸窒化シリコン膜またはこれらの積層膜によって構成することができる。
平坦化膜21は、例えば、ポリイミド樹脂または、アクリル樹脂等の塗布可能な有機材料によって構成することができ、感光性有機材料を用いて形成することが好ましい。
図2に示すように、本実施形態の表示装置30に備えられたアクティブ基板11においては、第1電極22は、島状に形成されている。なお、本実施形態においては、第1電極22が、反射電極であり、カソードであるので、アルミニウム(Al)で形成した場合を一例に挙げて説明するが、これに限定されることはなく、第1電極22は、アノードであってもよく、可視光透過性を有する透過電極であってもよい。
第1電極22が反射電極である場合には、第1電極22としては、例えば、Ag、Al、MgAlまたは、MgAgなどを用いてもよく、導電性を有する第1金属酸化物層と、可視光を反射する金属層と、可視光を透過する層であり、かつ、導電性を有する第2金属酸化物層とを、この順に積層した積層体を用いてもよい。前記第1金属酸化物層と前記第2金属酸化物層とは、インジウムスズ酸化物(ITO(Indium Tin Oxide))及びインジウム亜鉛酸化物(IZO(Indium Zinc Oxide))から選択される金属酸化物層であってもよく、前記金属層は、AgまたはAlなどであってもよい。
第1電極22が透過電極である場合には、第1電極22としては、可視光を透過させる程度の膜厚で形成されたAg、Al、MgAlまたは、MgAgなどを用いてもよく、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(例えば、ZnO)、酸化スズ(例えば、SnO2)、酸化チタン(例えば、TiO2)または、グラフェンなどを用いてもよい。
なお、第1電極22は、1画素を構成する複数のサブ画素毎に備えられており、サブ画素毎に備えられたトランジスタTR1・TR2などによって、サブ画素毎に駆動される。
図1の(a)から図1の(f)は、実施形態1の表示装置30の製造工程の一部を示す図である。なお、図1の(a)から図1の(f)では、図2に示すアクティブ基板11のうち、平坦化膜21及び第1電極22のみを図示し、他の部分の図示は省略している。
図2に示すアクティブ基板11に対しては、図1の(a)及び図1の(b)に示す第1発光層26Rの形成工程と、図1の(e)に示す第2発光層26B形成工程と、図1の(c)及び図1の(d)に示す第3発光層26Gの形成工程との前に、エッジカバー23L・23Sを形成するエッジカバー形成工程と、バンク24を形成するバンク形成工程と、第1電極22側の機能層25の形成工程とが行われる。
前記エッジカバー形成工程では、第1電極形成工程で形成された島状の複数の第1電極22それぞれの間を埋めるとともに、複数の第1電極22それぞれの縁を覆うエッジカバー23L・23Sを形成する。図1の(a)から図1の(f)に示すように、エッジカバー23Lは、上部に高さの高いバンク24が形成されるため、その幅が比較的広く形成され、エッジカバー23Lと第1電極22とが重畳する面積が大きい。一方、エッジカバー23Sは、上部にバンク24が形成されないため、その幅が比較的狭く形成され、エッジカバー23Sと第1電極22とが重畳する面積が小さい。
エッジカバー23L・23Sは、例えば、ポリイミド樹脂、アクリル樹脂等の塗布可能な感光性有機材料によって形成することができる。
バンク24は、例えば、ポリイミド樹脂、アクリル樹脂等の塗布可能な感光性有機材料によって形成することができる。
前記エッジカバー形成工程と前記バンク形成工程とは、同一材料を用いた一つの工程であってもよい。本実施形態においては、アクリル樹脂を含む感光性有機材料を用いるとともに、露光領域の露光量に差を付けるためのマスク(例えば、ハーフトーンマスクまたはシャドウマスク)を用いた露光工程と、現像工程とを行い、エッジカバー23L・23S及びバンク24を同時に形成したが、これに限定されることはない。
第1電極22側の機能層25の形成工程で形成される第1電極22側の機能層25は、第1電極22がアノードである場合には、正孔注入層及び正孔輸送層の少なくとも一方であり、第1電極22がカソードである場合には、電子注入層及び電子輸送層の少なくとも一方である。第1電極22側の機能層25は、例えば、塗布して形成してもよく、蒸着法で形成してもよい。なお、機能層25の形成工程においては、必要に応じて、マスクを用いてもよく、マスクを用いなくてもよい。また、第1電極22側の機能層25としては、例えば、Al、Mg、Li、Ga等がドープされたZnO、NiO等のナノ粒子やノンドープのZnO等のナノ粒子を用いてもよく、ナノ粒子と感光性材料とを混合し、露光・現像をすることで、第1電極22側の機能層25をパターニングして形成してもよい。
本実施形態においては、第1電極22がカソードであるので、第1電極22側の機能層25として、電子輸送層(ETL)であるAlq3、BCP、Cs2O3、ZnO、SnO2,In2O3またはZnMgO等を用いることができる。なお、第1電極22がアノードである場合には、第1電極22側の機能層25として、正孔輸送層(HTL)であるTFB、TAPC、CBP、PVKまたはNiO等を用いることができる。なお、第1電極22側の機能層25の膜厚は、例えば、200nm以下で形成することが好ましい。
図1の(a)に示すように、第1発光層26Rの形成工程においては、先ず、例えば、赤色を発光するリガンドを含む第1量子ドット(第1発光材料)と、感光性樹脂(例えば、エポキシ系樹脂またはアクリル系樹脂等)と、光開始剤と、溶媒とを含む第1発光層形成用のレジスト材料26ROを、第1電極22側の機能層25上の全面に形成した。レジスト材料26ROの形成方法は、特に限定されないが、例えば、スピンコーター、スリットコーター及びバーコーターなどのコーターを用いて形成してもよく、スプレー法などを用いて形成してもよい。なお、本実施形態においては、レジスト材料26ROがネガ型である場合を一例に挙げて説明するが、これに限定されることはなく、レジスト材料26ROはポジ型であってもよい。なお、本実施形態においては、第1発光層26Rが赤色を発する発光層であり、第2発光層26Bが青色を発する発光層であり、第3発光層26Gが緑色を発する発光層である場合を一例に挙げて説明するが、これに限定されることはない。
本実施形態において、第1発光層26Rと、後述する第2発光層26B及び第3発光層26Gとは、何れも、量子ドットを含む発光層である。量子ドットとしては、例えば、コアとシェルを有する構造の量子ドットを用いることができる。コア材料としては、例えば、CdSe、InP、ZnSe、ZnS、ZnTe、これらの混合系、CIGSまたは、Si系材料などを用いることができる。また、シェル材料としては、例えば、ZnSe、ZnS、ZnTe、CdS、またはこれらの混合系(ZnSeS)等を用いることができる。また、前記量子ドットには、有機リガンドまたは、無機リガンドが配置されている。量子ドットのシェルの外径は1~15nm程度であってもよい。なお、第1発光層26Rと、第2発光層26Bと、第3発光層26Gとで、互いに発光する光の中心波長を異なるようにするため、それぞれの発光層において、量子ドットのシェルの外径を異なるようにしてもよく、互いに異なる種類の量子ドットを用いてもよい。本実施形態においては、第2発光層26Bに含まれる青色を発光する第2量子ドットのシェルの外径は、第1発光層26Rに含まれる赤色を発光する第1量子ドットのシェルの外径及び第3発光層26Gに含まれる緑色を発光する第3量子ドットのシェルの外径より小さいが、これに限定されることはない。
レジスト材料26ROを第1電極22側の機能層25上の全面に形成した後には、例えば、50度以上120度以下の温度で、所定時間の間、プリベークを行い、溶媒を蒸発させ、レジスト材料26ROを乾燥させる。
その後、図1の(a)に示すように、露光光Lを通す開口部PMRKと露光光Lを遮光する遮光部PMRとを含むフォトマスクPM1を用いて、レジスト材料26ROに対して露光を行った。なお、露光強度は、特に限定されないが、例えば、10mJ/cm2以上1000mJ/cm2以下の露光強度で露光を行うことができる。
露光を行った後には、例えば、アルカリ溶液、有機溶媒、水等で現像を行い、図1の(b)に示すように、第1発光層26Rを所定の領域(第1領域)に形成することができる。なお、本実施形態のように、第1発光層26Rがネガ型のレジスト材料26ROから形成された層である場合には、適宜、第1発光層26Rのポストベーク工程を省くことができる。ポストベークを行う場合には、例えば、後述する第2発光層26Bをインクジェット法で形成する工程の前または後で、例えば、80度以上200度以下の温度で、所定時間の間、焼成して、ポストベークを行ってもよい。本実施形態においては、リガンドを含む第1量子ドット(第1発光材料)及び樹脂を含む第1発光層26Rの膜厚を、1nm以上100nm以下で形成したが、これに限定されることはなく、第1発光層26Rの膜厚は適宜決定することができる。一方、第1発光層26Rがポジ型のレジスト材料26ROから形成された層である場合には、前記現像工程後に、ポストベークを行うことが好ましい。また、ポジ型のレジスト材料によっては、前記現像工程の後であって、前記ポストベーク工程の前に、全面露光を行うことが好ましい場合もある。
以上のように、第1発光層26Rをフォトリソグラフィ法によって形成することができる。
その後、図1の(c)に示すように、第3発光層26Gの形成工程においては、先ず、例えば、緑色を発光するリガンドを含む第3量子ドット(第3発光材料)と、感光性樹脂(例えば、エポキシ系樹脂またはアクリル系樹脂等)と、光開始剤と、溶媒とを含む第3発光層形成用のレジスト材料26GOを、第1発光層26R及び第1電極22側の機能層25上の全面に形成した。レジスト材料26GOの形成方法は、特に限定されないが、例えば、スピンコーター、スリットコーター及びバーコーターなどのコーターを用いて形成してもよく、スプレー法などを用いて形成してもよい。なお、本実施形態においては、レジスト材料26GOがネガ型である場合を一例に挙げて説明するが、これに限定されることはなく、レジスト材料26GOはポジ型であってもよい。
レジスト材料26GOを第1発光層26R及び第1電極22側の機能層25上の全面に形成した後には、例えば、50度以上120度以下の温度で、所定時間の間、プリベークを行い、溶媒を蒸発させ、レジスト材料26GOを乾燥させる。
その後、図1の(c)に示すように、露光光Lを通す開口部PMGKと露光光Lを遮光する遮光部PMGとを含むフォトマスクPM2を用いて、レジスト材料26GOに対して露光を行った。なお、露光強度は、特に限定されないが、例えば、10mJ/cm2以上1000mJ/cm2以下の露光強度で露光を行うことができる。
露光を行った後には、例えば、アルカリ溶液、有機溶媒、水等で現像を行い、図1の(d)に示すように、第3発光層26Gを所定の領域(第3領域)に形成することができる。なお、本実施形態のように、第3発光層26Gがネガ型のレジスト材料26GOから形成された層である場合には、適宜、第3発光層26Gのポストベーク工程を省くことができる。ポストベークを行う場合には、例えば、後述する第2発光層26Bをインクジェット法で形成する工程の前または後で、例えば、80度以上200度以下の温度で、所定時間の間、焼成して、ポストベークを行ってもよい。本実施形態においては、リガンドを含む第3量子ドット(第3発光材料)及び樹脂を含む第3発光層26Gの膜厚を、1nm以上100nm以下で形成したが、これに限定されることはなく、第3発光層26Gの膜厚は適宜決定することができる。一方、第3発光層26Gがポジ型のレジスト材料26GOから形成された層である場合には、前記現像工程後に、ポストベークを行うことが好ましい。また、ポジ型のレジスト材料によっては、前記現像工程の後であって、前記ポストベーク工程の前に、全面露光を行うことが好ましい場合もある。
以上のように、第3発光層26Gをフォトリソグラフィ法によって形成することができる。
その後、図1の(e)に示すように、第2発光層26Bの形成工程においては、青色を発光するリガンドを含む第2量子ドット(第2発光材料)と、溶媒とを含む第2発光層形成用のインクジェット材料IJBを、所定領域(第2領域)を取り囲むように枠状に形成されたバンク24の内側に、インクジェット装置IJを用いて、滴下する。なお、第1発光層26R及び第3発光層26Gは、枠状に形成されたバンク24の外側に形成されている。
その後、例えば、50度以上200度以下の温度で、所定時間の間、熱処理を行い、溶媒を蒸発させ、リガンドを含む第2量子ドット(第2発光材料)からなる第2発光層26Bを、バンク24の内側側面と接するように、1nm以上100nm以下の膜厚で形成した。本実施形態においては、第2発光層26Bの膜厚を、1nm以上100nm以下で形成したが、これに限定されることはなく、第2発光層26Bの膜厚は適宜決定することができる。
以上のように、第2発光層26Bをインクジェット法(インク滴下法)によって形成することができる。
その後、図1の(f)に示すように、第1発光層26R、第2発光層26B及び第3発光層26G上に、第2電極28側の機能層27を形成した。なお、第2電極28側の機能層27の膜厚は、例えば、300nm以下で形成することが好ましい。その後、全てのサブ画素において共通する電極である第2電極28を形成し、表示装置30を製造した。なお、図示してないが、第2電極28上には、透光性の封止層が設けられていることが好ましい。前記封止層は、例えば、第2電極28を覆う第1無機封止膜と、前記第1無機封止膜よりも上側に形成される有機封止層と、前記有機封止層を覆う第2無機封止膜とで構成されていてもよい。
本実施形態においては、第2電極28は、可視光透過性を有する透過電極であり、アノードであるので、インジウムスズ酸化物(ITO)で形成しているが、これに限定されることはない。本実施形態においては、第2電極28がアノードであるので、第2電極28側の機能層27は、正孔注入層及び正孔輸送層の少なくとも一方であり、例えば、第2電極28側の機能層27として、正孔輸送層(HTL)であるTFB、TAPC、CBP、PVKまたはNiO等を用いることができる。
図3(a)は、実施形態1の表示装置30の1画素を示す平面図であり、図3の(b)は、図3の(a)に図示する実施形態1の表示装置30のA-A’線の断面図である。
図3の(a)に示すように、表示装置30の1画素は、3つの隣接するサブ画素である、赤色サブ画素と、緑色サブ画素と、青色サブ画素とを含む。なお、第1発光層26Rは、複数の第1電極22のうちの一部の第1電極22と平面視において重畳するように形成されており、第2発光層26Bは、複数の第1電極22のうちの他の一部の第1電極22と平面視において重畳するように形成されており、第3発光層26Gは、複数の第1電極22のうちのさらに他の一部の第1電極22と平面視において重畳するように形成されている。
表示装置30においては、第1発光層26R及び第3発光層26Gをフォトリソグラフィ法によって形成しているので、第1発光層26R及び第3発光層26Gを形成するためのバンク24は必要なく、バンク24の全体数を減らすことができる。上部にバンク24が形成されないエッジカバー23(23S)は、その幅を比較的狭く形成することができ、エッジカバー23(23S)と第1電極22とが重畳する面積を小さくすることができる。エッジカバー23(23S)と第1電極22とが重畳する面積が小さくなると、第1電極22と第1電極22側の機能層25とが直接接する面積が増えるので、第1発光層26Rの発光領域RSGH及び第3発光層26Gの発光領域GSGHを拡大することができる。一方、第2発光層26Bの発光領域BSGHは、第1発光層26Rの発光領域RSGH及び第3発光層26Gの発光領域GSGHより小さい。これは、上部にバンク24が形成されるエッジカバー23(23L)と第1電極22とが重畳する面積が比較的大きいので、第1電極22と第1電極22側の機能層25とが直接接する面積が減るからである。
図3の(a)及び図3の(b)に示すように、本実施形態の表示装置30においては、エッジカバー23が、各色のサブ画素毎に設けられたコンタクトホールCH1・CH2・CH3を覆うように形成しているが、これに限定されることはない。
上述したように、表示装置30においては、第1発光層26Rの発光領域RSGH及び第3発光層26Gの発光領域GSGHを拡大することができるので、表示装置30の立ち上がり電圧の低電圧化及び表示装置30の輝度の向上を実現できる。
また、表示装置30においては、第1発光層26R及び第3発光層26Gをフォトリソグラフィ法によって形成し、第2発光層26Bをインクジェット法によって形成しているので、全ての発光層を蒸着法で形成する場合と比較して、発光層を効率的に形成することができる。
また、表示装置30においては、第1発光層26R及び第3発光層26Gをフォトリソグラフィ法によって先に形成し、第2発光層26Bをインクジェット法によって後に形成しているので、第1発光層26R及び第3発光層26Gがフォトリソグラフィ工程中に受けるダメージを減らすことができる。具体的に、第1発光層26Rの形成後には、1回のフォトリソグラフィ工程があるのみであり、第3発光層26Gの形成後には、フォトリソグラフィ工程はない。全ての色の発光層をフォトリソグラフィ法によって形成する場合、最初に形成した色の発光層の後には、少なくとも2回のフォトリソグラフィ工程があるので、フォトリソグラフィ工程中に受けるダメージが大きい。
さらに、本実施形態においては、キャリアの注入効率が悪くEQEが低い青色を発光するリガンドを含む第2量子ドットと、溶媒とを含む第2発光層形成用のインクジェット材料IJBを用いて、インクジェット法で、リガンドを含む第2量子ドット(第2発光材料)からなる第2発光層26Bを形成している。リガンドを含む第2量子ドット(第2発光材料)からなる第2発光層26Bには、第1発光層26R及び第3発光層26Gのように、レジスト材料に含まれる樹脂成分などのキャリアの流れを阻害する成分が含まれていないので、第2発光層26Bの発光輝度の低下やキャリアの注入効率の低下を抑制することができる。
以上のように、本実施形態においては、第1発光層26Rに含まれる第1発光材料がリガンドを含む第1量子ドットであり、第2発光層26Bに含まれる第2発光材料がリガンドを含む第2量子ドットであり、第3発光層26Gに含まれる第3発光材料がリガンドを含む第3量子ドットである場合を一例に挙げて説明するが、これに限定されることはなく、例えば、前記第1発光材料、前記第2発光材料及び前記第3発光材料の少なくとも一つがリガンドを含む量子ドットであってもよく、前記第1発光材料、前記第2発光材料及び前記第3発光材料の全てがリガンドを含む量子ドットを含まない発光材料であってもよい。量子ドットを含まない発光材料としては、有機EL素子に用いられる有機系の発光材料が挙げられる。
また、本実施形態においては、青色発光層である第2発光層26Bをインクジェット法で形成した場合を一例に挙げて説明したが、これに限定されることはなく、赤色発光層である第1発光層26Rまたは緑色発光層である第3発光層26Gをインクジェット法で形成してもよい。
また、本実施形態においては、赤色発光層である第1発光層26Rを緑色発光層である第3発光層26Gより先に形成した場合を一例に挙げて説明したが、これに限定されることはなく、緑色発光層である第3発光層26Gを赤色発光層である第1発光層26Rより先に形成してもよい。
なお、本実施形態においては、表示装置30の1画素が、3つの隣接するサブ画素である、赤色サブ画素と、緑色サブ画素と、青色サブ画素で形成される場合を一例に挙げて説明したが、これに限定されることはなく、表示装置30の1画素は、さらに他の色のサブ画素を含んでいてもよい。
本実施形態においては、図2に示すように、基板10としてガラス基板を用いた場合を一例に挙げて説明したが、これに限定されることはなく、表示装置30をフレキシブル表示装置化する場合には、Laser Lift Off工程(LLO工程)により、基板10を樹脂膜12から剥離しフレキシブル表示装置としてもよい。また、LLO工程により、基板10を樹脂膜12から剥離した後、樹脂膜12に接着層を介してフィルムを貼り付けてフレキシブル表示装置としてもよい。
図4の(a)は、実施形態1の第1変形例である表示装置31を示す図であり、図4の(b)は、実施形態1の第2変形例である表示装置32を示す図である。なお、図4の(a)及び図4の(b)においては、第2電極28の図示は省略している。
図4の(a)に示すように、表示装置31においては、フォトリソグラフィ法によって形成される第1発光層26Rと第3発光層26Gとは、隣接して設けられ、互いに対向する第1発光層26Rの一端部と第3発光層26Gの一端部とは、所定距離R1離れている。例えば、第1発光層26Rと第3発光層26Gとが接する程度に隣接して形成されている場合、第1発光層26Rを発光させる際に、意図していない第3発光層26Gが発光してしまう可能性や、第3発光層26Gを発光させる際に、意図していない第1発光層26Rが発光してしまう可能性がある。
表示装置31の場合、互いに対向する第1発光層26Rの一端部と第3発光層26Gの一端部とを、所定距離R1離しているので、上述したような意図していない隣接する発光層での意図していない発光を抑制することができる。
図4の(b)に示すように、表示装置32においては、フォトリソグラフィ法によって形成される第1発光層26Rの一端部26RAは、第1発光層26Rの他の部分より厚く形成されており、フォトリソグラフィ法によって形成される第3発光層26Gの一端部26GAは、第3発光層26Gの他の部分より厚く形成されている。一般的に、フォトリソグラフィ法によって形成される発光層の端部は、テーパー形状に形成されるため、その端部の膜厚は薄く、電流の集中が生じる可能性がある。
表示装置32の場合、第1発光層26Rの一端部26RAを、第1発光層26Rの他の部分より厚く形成し、第3発光層26Gの一端部26GAを、第3発光層26Gの他の部分より厚く形成しているので、第1発光層26Rのエッジ部分及び第3発光層26Gのエッジ部分で、電流の集中が生じる可能性を抑制できる。
なお、第1発光層26Rの一端部26RA及び第3発光層26Gの一端部26GAは、露光領域の露光量に差を付けるためのマスク(例えば、ハーフトーンマスクまたはシャドウマスク)を用いて露光することで、形成することができる。
図5の(a)は、実施形態1の第3変形例である表示装置33を示す図であり、図5の(b)は、実施形態1の第4変形例である表示装置34を示す図である。なお、図5の(a)及び図5の(b)においては、第2電極28の図示は省略している。
図5の(a)に示すように、表示装置33においては、フォトリソグラフィ法によって形成される第1発光層26Rの縁の一部と、フォトリソグラフィ法によって形成される第3発光層26Gの縁の一部とが接して重なる第1厚膜部26RGAが設けられている。第1厚膜部26RGAは、第1発光層26Rと重畳する第1電極22と第3発光層26Gと重畳する第1電極22との間の少なくとも一部と重畳する。
第1厚膜部26RGAでは、抵抗が高くなり、電流が流れにくくなるので、第1厚膜部26RGAを備えることで、第1発光層26Rと第3発光層26Gとの混色を抑制することができる。さらに、第1厚膜部26RGAを備えることで、第1電極22のエッジ部での電流の集中も抑制することができる。
なお、第1厚膜部26RGAは、例えば、先ず、フォトリソグラフィ法によって第1発光層26Rを形成した後、フォトリソグラフィ法によって第3発光層26Gを形成する工程における露光時に、第1発光層26Rと重畳する第3発光層26Gの一部領域を含めて露光することで形成することができる。
上述した表示装置30・31・32・33では、全てのサブ画素に対して、共通する第1電極22側の機能層25が設けられているが、図5の(b)に示す表示装置34においては、各色のサブ画素毎に第1電極22側の機能層25R・25G・25Bが設けられている。第1電極22側の機能層25R・25G・25Bのそれぞれは、例えば、一つの材料を用いて1回のフォトリソグラフィ工程で形成してもよく、3種類の異なる材料を用いて3回のフォトリソグラフィ工程で形成してもよい。
表示装置34においては、第1厚膜部26RGA’が設けられており、第1厚膜部26RGA’では、抵抗が高くなり、電流が流れにくくなるので、第1厚膜部26RGA’を備えることで、第1発光層26Rと第3発光層26Gとの混色を抑制することができる。さらに、第1厚膜部26RGA’を備えることで、第1電極22のエッジ部での電流の集中も抑制することができる。
図6の(a)は、実施形態1の第5変形例である表示装置35を示す図であり、図6の(b)は、実施形態1の第6変形例である表示装置36を示す図である。なお、図6の(a)及び図6の(b)においては、第2電極28の図示は省略している。
図6の(a)に示す表示装置35においては、第1厚膜部26GRAが設けられている。なお、第1厚膜部26GRAは、先ず、フォトリソグラフィ法によって第3発光層26Gを形成した後、フォトリソグラフィ法によって第1発光層26Rを形成する工程における露光時に、第3発光層26Gと重畳する第1発光層26Rの一部領域を含めて露光することで形成することができる。
表示装置35においては、第1厚膜部26GRAが設けられており、第1厚膜部26GRAでは、抵抗が高くなり、電流が流れにくくなるので、第1厚膜部26GRAを備えることで、第1発光層26Rと第3発光層26Gとの混色を抑制することができる。さらに、第1厚膜部26GRAを備えることで、第1電極22のエッジ部での電流の集中も抑制することができる。
図6の(b)に示す表示装置36には、各色のサブ画素毎に第1発光層26Rと重畳する第1電極22側の機能層25R’と、第3発光層26Gと重畳する第1電極22側の機能層25Gと、第2発光層26Bと重畳する第1電極22側の機能層25Bと、が備えられている。
表示装置36には、図5の(a)に示す第1厚膜部26RGAに加え、さらに、第2厚膜部25RGAが設けられている。第2厚膜部25RGAは、第1発光層26Rと重畳する第1電極22側の機能層(第1機能層)25R’の縁の一部と第3発光層26Gと重畳する第1電極22側の機能層(第2機能層)25Gの縁の一部とが接して重なる部分である。なお、第2厚膜部25RGAは、第1発光層26Rと重畳する第1電極22と第3発光層26Gと重畳する第1電極22との間の少なくとも一部と重畳する。
第2厚膜部25RGAは、例えば、先ず、フォトリソグラフィ法によって第1電極22側の機能層(第1機能層)25R’を形成した後、フォトリソグラフィ法によって第1電極22側の機能層(第2機能層)25Gを形成する工程における露光時に、第1電極22側の機能層(第1機能層)25R’と重畳する第1電極22側の機能層(第2機能層)25Gの一部領域を含めて露光することで形成することができる。
表示装置36においては、第2厚膜部25RGAが設けられており、第2厚膜部25RGAでは、抵抗が高くなり、電流が流れにくくなるので、第2厚膜部25RGAを備えることで、第1発光層26Rと第3発光層26Gとの混色を抑制することができる。さらに、第2厚膜部25RGAを備えることで、第1電極22のエッジ部での電流の集中も抑制することができる。
本実施形態においては、第1電極22側の機能層(第1機能層)25R’の縁の一部と第3発光層26Gと重畳する第1電極22側の機能層(第2機能層)25Gの縁の一部とが接して重なるように形成することで、表示装置36に第2厚膜部25RGAを設けた場合を一例に挙げて説明するが、これに限定されることはない。例えば、第2厚膜部は、第2電極28側の機能層27を各色のサブ画素毎に設け、第1発光層26Rと重畳する第2電極28側の機能層(第1機能層)の縁の一部と第3発光層26Gと重畳する第2電極28側の機能層(第2機能層)の縁の一部とが接して重なるように形成して設けてもよい。
図7の(a)は、図5の(a)に図示した実施形態1の第3変形例である表示装置33を示す図であり、図7の(b)は、実施形態1の第7変形例である表示装置37を示す図であり、図7の(c)は、実施形態1の第8変形例である表示装置38を示す図である。なお、図7の(a)、図7の(b)及び図7の(c)においては、第2電極28及び第2電極28側の機能層27の図示は省略している。
図7の(b)に示す表示装置37には、第1厚膜部26RGA’’が設けられており、第1厚膜部26RGA’’は、図7の(a)に示す表示装置33に備えられた第1厚膜部26RGAよりその厚さが厚い。
第1厚膜部26RGA’’は、例えば、先ず、フォトリソグラフィ法によって第1発光層26Rの一端部26RAが、第1発光層26Rの他の部分より厚くなるように形成した後、フォトリソグラフィ法によって第3発光層26Gを形成する工程における露光時に、第1発光層26Rの一端部26RAと重畳する第3発光層26Gの一部領域を含めて露光することで形成することができる。なお、フォトリソグラフィ法によって第3発光層26Gを形成する工程では、第3発光層26Gの一端部26GAは第3発光層26Gの他の部分より厚く形成され、第1厚膜部26RGA’’は、第1発光層26Rの一端部26RAと第3発光層26Gの一端部26GAとを含む。
第1厚膜部26RGA’’では、抵抗が高くなり、電流が流れにくくなるので、第1厚膜部26RGA’’を備えることで、第1発光層26Rと第3発光層26Gとの混色を抑制することができる。さらに、第1厚膜部26RGA’’を備えることで、第1電極22のエッジ部での電流の集中も抑制することができる。
図7の(c)に示す表示装置38には、バンク24上に、第1発光層26Rと同一材料で形成された同一層と第3発光層26Gと同一材料で形成された同一層とで形成された上部バンク24Uが設けられている。
本実施形態においては、上部バンク24Uを、第1発光層26Rと同一材料で形成された同一層と第3発光層26Gと同一材料で形成された同一層との両方の層を用いて形成した場合を一例に挙げて説明するが、これに限定されることはなく、上部バンク24Uは、第1発光層26Rと同一材料で形成された同一層及び第3発光層26Gと同一材料で形成された同一層の少なくとも一方で形成されてもよい。
バンク24上に上部バンク24Uを設けることで、バンクの高さを高くすることができるとともに、上部バンク24Uによる外光吸収効果を得ることができる。
図8の(a)から図8の(c)は、図7の(c)に図示した実施形態1の第8変形例である表示装置38の製造工程の一部を示す図である。なお、図8の(c)においては、第2電極28及び第2電極28側の機能層27の図示は省略している。
図8の(a)は、露光光Lを通す開口部PMRKと、露光光Lを遮光する遮光部PMRと、開口部PMRKより少ない露光光Lを通し、遮光部PMRよりは多い露光光Lを通すハーフトーン部(シャドウ部)PMRHとを含むフォトマスクPM3を用いて、全面に形成されたレジスト材料26ROに対して露光を行った後、現像及び熱処理し、他の部分より厚く形成された一端部26RAを含む第1発光層26Rを所定領域(第1領域)に形成した状態を示す。さらに、バンク24上にも、上部バンク24Uを形成するための第1発光層26Rが形成されている。
図8の(b)は、露光光Lを通す開口部PMGKと、露光光Lを遮光する遮光部PMGと、開口部PMGKより少ない露光光Lを通し、遮光部PMGよりは多い露光光Lを通すハーフトーン部(シャドウ部)PMGHとを含むフォトマスクPM4を用いて、全面に形成されたレジスト材料26GOに対して露光を行った後、現像及び熱処理し、他の部分より厚く形成された一端部26GAを含む第3発光層26Gを所定領域(第3領域)に形成した状態を示す。さらに、バンク24上にも、上部バンク24Uを形成するための第3発光層26Gが形成されている。なお、図8の(c)に示す第1厚膜部26RGA’’を形成するため、第3発光層26Gを形成する工程における露光時には、第1発光層26Rの一端部26RAと重畳する第3発光層26Gの一部領域を含めて露光をしている。
以上のようにして、図8の(c)に示すように、第1厚膜部26RGA’’と上部バンク24Uとを備えた表示装置38を製造することができる。
〔実施形態2〕
次に、図9及び図10に基づき、本発明の実施形態2について説明する。本実施形態の表示装置39・40・41においては、バンク24’が第1発光層26Rと同一材料で形成された同一層26RB及び第3発光層26Gと同一材料で形成された同一層26GBの少なくとも一方で形成されている点において、実施形態1とは異なり、その他については実施形態1において説明したとおりである。説明の便宜上、実施形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
次に、図9及び図10に基づき、本発明の実施形態2について説明する。本実施形態の表示装置39・40・41においては、バンク24’が第1発光層26Rと同一材料で形成された同一層26RB及び第3発光層26Gと同一材料で形成された同一層26GBの少なくとも一方で形成されている点において、実施形態1とは異なり、その他については実施形態1において説明したとおりである。説明の便宜上、実施形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
図9の(a)から図9の(c)は、実施形態2の表示装置39の製造工程の一部を示す図である。なお、図9の(c)においては、第2電極28及び第2電極28側の機能層27の図示は省略している。
図9の(a)は、露光光Lを通す開口部PMGKと、露光光Lを遮光する遮光部PMGと、開口部PMGKより少ない露光光Lを通し、遮光部PMGよりは多い露光光Lを通すハーフトーン部(シャドウ部)PMGHとを含むフォトマスクPM5を用いて、全面に形成されたレジスト材料26GOに対して露光を行う工程を示す図である。露光を行った後、現像及び熱処理し、図9の(b)に示すように、第3発光層26Gと、第3発光層26Gより厚く形成されたバンク24’の一部となる第3発光層26Gと同一材料で形成された同一層26GBとを所定領域(第3領域)に形成した。
図9の(b)は、露光光Lを通す開口部PMRKと、露光光Lを遮光する遮光部PMRと、開口部PMRKより少ない露光光Lを通し、遮光部PMRよりは多い露光光Lを通すハーフトーン部(シャドウ部)PMRHとを含むフォトマスクPM6を用いて、全面に形成されたレジスト材料26ROに対して露光を行う工程を示す図である。露光を行った後、現像及び熱処理し、図9の(c)に示すように、第1発光層26Rと、第1発光層26Rより厚く形成されたバンク24’の一部となる第1発光層26Rと同一材料で形成された同一層26RBとを所定領域(第1領域)に形成した。
図9の(c)は、第3発光層26G及び第1発光層26Rの形成工程の後に、第2発光層26Bを、所定領域(第2領域)にのみ形成する第2発光層26Bの形成工程を示す。青色を発光するリガンドを含む第2量子ドット(第2発光材料)と、溶媒とを含む第2発光層形成用のインクジェット材料IJBを、所定領域(第2領域)を取り囲むように枠状に形成されたバンク24’の内側に、インクジェット装置IJを用いて、滴下する。なお、第1発光層26R及び第3発光層26Gは、枠状に形成されたバンク24’の外側に形成されている。
その後、例えば、50度以上200度以下の温度で、所定時間の間、熱処理を行い、溶媒を蒸発させ、リガンドを含む第2量子ドット(第2発光材料)からなる第2発光層26Bを、バンク24’の内側側面と接するように、1nm以上100nm以下の膜厚で形成した。
図9の(c)に示す表示装置39においては、バンク24’を、第1発光層26Rと同一材料で形成された同一層26RBと第3発光層26Gと同一材料で形成された同一層26GBとで形成しているので、バンクを形成するための別材料を用いる必要がないので、製造工程の短縮や材料コストの低減を実現することができる。また、第1発光層26Rと同一材料で形成された同一層26RBと第3発光層26Gと同一材料で形成された同一層26GBとの2層を用いてバンク24’を形成しているので、バンクを高く形成することができる。
なお、本実施形態においては、バンク24’を第1発光層26Rと同一材料で形成された同一層26RBと第3発光層26Gと同一材料で形成された同一層26GBとで形成している場合を一例に挙げて説明したが、これに限定されることはなく、バンク24’は、第1発光層26Rと同一材料で形成された同一層26RB及び第3発光層26Gと同一材料で形成された同一層26GBの少なくとも一方で形成されていてもよい。
図10の(a)は、実施形態2の第1変形例である表示装置40を示す図であり、図10の(b)は、実施形態2の第2変形例である表示装置41を示す図である。なお、図10の(a)及び図10の(b)においては、第2電極28及び第2電極28側の機能層27の図示は省略している。
図10の(a)に示す表示装置40においては、第1発光層26Rと同一材料で形成された同一層26RBと第3発光層26Gと同一材料で形成された同一層26GBとで形成しているバンク24’を備えているとともに、実施形態1で上述した第1厚膜部26GRA’をさらに備えている。
図10の(b)に示す表示装置41においては、第1発光層26Rと同一材料で形成された同一層26RBと第3発光層26Gと同一材料で形成された同一層26GBとで形成しているバンク24’を備えているとともに、実施形態1で上述した第1厚膜部26GRA’’をさらに備えている。
なお、図10の(a)に示す第1厚膜部26GRA’及び図10の(b)に示す第1厚膜部26GRA’’は、枠状に形成されないので、第1厚膜部26GRA’・26GRA’’が備えられていても第1発光層26R及び第3発光層26Gの発光領域を拡大できる。
〔実施形態3〕
次に、図11に基づき、本発明の実施形態3について説明する。本実施形態の表示装置42・43・44においては、バンク24を形成する面積を減らすことで、第1発光層26R、第2発光層26B及び第3発光層26Gの発光領域を拡大している点において、実施形態1及び2とは異なり、その他については実施形態1及び2において説明したとおりである。説明の便宜上、実施形態1及び2の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
次に、図11に基づき、本発明の実施形態3について説明する。本実施形態の表示装置42・43・44においては、バンク24を形成する面積を減らすことで、第1発光層26R、第2発光層26B及び第3発光層26Gの発光領域を拡大している点において、実施形態1及び2とは異なり、その他については実施形態1及び2において説明したとおりである。説明の便宜上、実施形態1及び2の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
図11の(a)及び図11の(b)は、実施形態3の表示装置42の概略構成を説明するための図であり、図11の(c)は、実施形態3の第1変形例である表示装置43を示す図であり、図11の(d)は、実施形態3の第2変形例である表示装置44を示す図である。
図11の(a)及び図11の(b)に示すように、表示装置42においては、複数の第1電極22は、マトリックス状に配置されており、フォトリソグラフィ法によってライン状に形成された第1発光層26R及び第3発光層26Gは、それぞれ、例えば、第1方向D1に沿って第1電極22が配置された1列の第1電極群と重畳し、インクジェット法によってライン状に形成された第2発光層26Bは、例えば、第1方向D1に沿って第1電極22が配置された2列の第1電極群と重畳する。第1方向D1と直交する第2方向D2において、第2発光層26Bと重畳する2つの第1電極22は、それぞれ、異なる画素GASOに属する。なお、画素GASOは、例えば、第2方向D2において隣接し、異なる発光層と重畳する3つの第1電極22を含む。
上述した実施形態1及び2においては、バンク24・24’は、サブ画素毎に枠状に形成されていたが、表示装置42においては、バンク24は、インクジェット法によってライン状に形成された第2発光層26Bの左辺及び右辺を囲む対向する2つの隔壁で構成されている。すなわち、図11の(a)に示すように、バンク24は、内側領域と外側領域を区画する対向する2つの隔壁で構成され、対向する2つの隔壁の内側領域に第2発光層26Bが形成されており、対向する2つの隔壁の外側領域に第1発光層26R及び第3発光層26Gが形成されている。したがって、バンク24を形成する面積を減らすことができ、第1発光層26R、第2発光層26B及び第3発光層26Gの発光領域を拡大できる。
なお、図11の(a)及び図11の(b)に示すような個片化された表示装置42を得る前である、大型基板に第1発光層26R、第2発光層26B及び第3発光層26Gを形成する工程においては、バンク24は、枠状に形成されていても、内側領域と外側領域を区画する対向する2つの隔壁を含むように形成されていてもよい。大型基板とは、分断によって、表示装置42を複数個得られる程度の大きさの基板をいう。
大型基板上に、表示装置42のサイズ毎に、バンク24が枠状に形成されている場合には、個片化工程において、例えば、枠状に形成されたバンク24の上辺及び下辺を切り落とし、図11の(a)及び図11の(b)に示す個片化された表示装置42のように、バンク24が、内側領域と外側領域を区画する対向する2つの隔壁で構成されるようにしてもよい。これに限定されることはなく、個片化工程においては、枠状に形成されたバンク24の上辺及び下辺の何れか一方のみを切り落としてもよく、枠状に形成されたバンク24の上辺及び下辺を切り落とさなくてもよい。
また、大型基板上に、バンク24が複数の表示装置42間に跨るサイズの枠状に形成されている場合または、バンク24が複数の表示装置42間に跨る内側領域と外側領域を区画する対向する2つの隔壁を含むように形成されている場合には、個片化工程において、大型基板を切断し、図11の(a)及び図11の(b)に示す個片化された表示装置42のように、バンク24が、内側領域と外側領域を区画する対向する2つの隔壁で構成されるようにしてもよい。
図11の(c)に示すように、表示装置43においては、フォトリソグラフィ法によって形成された第1発光層26R及び第3発光層26Gは、インクジェット法によって形成された第2発光層26Bを取り囲むように、設けられている。表示装置43においては、隣接する4つの画素GASOの第2発光層26Bを一つの枠状バンク24を用いて形成しているので、バンク24を形成する面積を減らすことができ、第1発光層26R、第2発光層26B及び第3発光層26Gの発光領域を拡大できる。なお、本実施形態の表示装置43においては、第1発光層26R及び第3発光層26Gのそれぞれは、画素GASO毎に島状に設けられているが、これに限定されることはない。
図11の(d)に示すように、表示装置44においては、フォトリソグラフィ法によって形成された第1発光層26R及び第3発光層26Gは、インクジェット法によって形成された第2発光層26Bを取り囲むように、設けられている。なお、本実施形態の表示装置44においては、第1発光層26R及び第3発光層26Gのそれぞれは、隣接する2つの画素GASOに跨って設けられているが、これに限定されることはない。なお、図11の(c)または、図11の(d)に示すような画素GASOの群が繰り返し並んでいても、デルタ配列のように並んでいてもよい。
〔実施形態4〕
次に、図12及び図13に基づき、本発明の実施形態4について説明する。本実施形態の表示装置45においては、第1電極22R・22G・22Bがペンタイル配置されている点において、実施形態1から3とは異なり、その他については実施形態1から3において説明したとおりである。説明の便宜上、実施形態1から3の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
次に、図12及び図13に基づき、本発明の実施形態4について説明する。本実施形態の表示装置45においては、第1電極22R・22G・22Bがペンタイル配置されている点において、実施形態1から3とは異なり、その他については実施形態1から3において説明したとおりである。説明の便宜上、実施形態1から3の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
図12の(a)は、実施形態4の表示装置45を示す平面図であり、図12の(b)は、図12の(a)に図示する実施形態4の表示装置45のB-B’線の断面図である。
図12の(a)及び図12の(b)に示す第1電極22R・22G・22Bがペンタイル配置されている表示装置45においては、第1発光層26Rと同一材料で形成された同一層26RBと第3発光層26Gと同一材料で形成された同一層26GBとで形成しているバンク24’を備えているとともに、第1厚膜部26GRA’’’をさらに備えている。
なお、図12の(b)に示す第1厚膜部26GRA’’’は、枠状に形成されないので、第1厚膜部26GRA’’’が備えられていても第1発光層26R及び第3発光層26Gの発光領域を拡大できる。
図13の(a)及び図13の(b)は、図12の(a)に図示する実施形態4の表示装置45の製造工程において用いられるフォトマスクPM7・PM8の概略構成を示す平面図である。
図13の(a)に示すフォトマスクPM7は、露光光Lを通す開口部PMGKと、露光光Lを遮光する遮光部PMGと、開口部PMGKより少ない露光光Lを通し、遮光部PMGよりは多い露光光Lを通すハーフトーン部(シャドウ部)PMGHとを含む。フォトマスクPM7は、図12の(b)に示す、第3発光層26Gと、第3発光層26Gより厚く形成されたバンク24’の一部となる第3発光層26Gと同一材料で形成された同一層26GBと、第3発光層26Gより厚く形成された第1厚膜部26GRA’’’の一部となる第3発光層26Gと同一材料で形成された同一層26GAと、を所定領域(第3領域)に形成するためのフォトマスクである。
図13の(b)に示すフォトマスクPM8は、露光光Lを通す開口部PMRKと、露光光Lを遮光する遮光部PMRと、開口部PMRKより少ない露光光Lを通し、遮光部PMRよりは多い露光光Lを通すハーフトーン部(シャドウ部)PMRHとを含む。フォトマスクPM8は、図12の(b)に示す、第1発光層26Rと、第1発光層26Rより厚く形成されたバンク24’の一部となる第1発光層26Rと同一材料で形成された同一層26RBと、第1発光層26Rより厚く形成された第1厚膜部26GRA’’’の一部となる第1発光層26Rと同一材料で形成された同一層26RCと、を所定領域(第1領域)に形成するためのフォトマスクである。
〔実施形態5〕
次に、図14に基づき、本発明の実施形態5について説明する。本実施形態の表示装置46においては、第2発光層26Bのみでなく、第3発光層26G’もインクジェット法によって形成している点において、実施形態1から4とは異なり、その他については実施形態1から4において説明したとおりである。説明の便宜上、実施形態1から4の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
次に、図14に基づき、本発明の実施形態5について説明する。本実施形態の表示装置46においては、第2発光層26Bのみでなく、第3発光層26G’もインクジェット法によって形成している点において、実施形態1から4とは異なり、その他については実施形態1から4において説明したとおりである。説明の便宜上、実施形態1から4の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
図14の(a)及び図14の(b)は、実施形態5の表示装置46の製造工程の一部を示す図であり、図14の(c)は、実施形態5の表示装置46の1画素を示す平面図である。
第1発光層26Rをフォトリソグラフィ法によって形成した後、図14の(a)に示すように、第3発光層26G’の形成工程においては、緑色を発光するリガンドを含む第3量子ドット(第3発光材料)と、溶媒とを含む第3発光層形成用のインクジェット材料IJGを、所定領域(第3領域)を取り囲むように枠状に形成されたバンク24の内側に、インクジェット装置IJを用いて、滴下した。なお、第1発光層26Rは、枠状に形成されたバンク24の外側に形成されている。
その後、例えば、50度以上200度以下の温度で、所定時間の間、熱処理を行い、溶媒を蒸発させ、第3量子ドット(第3発光材料)からなる第3発光層26G’を、バンク24の内側側面と接するように、1nm以上100nm以下の膜厚で形成した。
その後、図14の(b)に示すように、第2発光層26Bをインクジェット法によって形成した。
図14の(c)に示すように、表示装置46においては、バンク24は、第1発光層26Rを取り囲むように枠状に形成されていないので、第1発光層26Rの発光領域RSGHを拡大できる。
なお、表示装置46においては、バンク24を発光層で形成する場合には、バンクは第1発光層26Rと同一材料で形成された同一層で形成される。また、上部バンクを形成する場合にも、上部バンクは第1発光層26Rと同一材料で形成された同一層で形成される。
なお、本実施形態においては、第3発光層形成用のインクジェット材料IJGを、枠状に形成されたバンク24の内側に形成し、第2発光層形成用のインクジェット材料IJBを、枠状に形成されたバンク24の内側に形成する場合を、一例に挙げて説明したが、これに限定されることはない。例えば、第3発光層形成用のインクジェット材料IJGを、内側領域と外側領域を区画する対向する2つの隔壁を含むバンク24の内側領域に形成し、第2発光層形成用のインクジェット材料IJBを、内側領域と外側領域を区画する対向する2つの隔壁を含むバンク24の内側領域に形成してもよい。さらには、第3発光層形成用のインクジェット材料IJG及び第2発光層形成用のインクジェット材料IJBの一方は、枠状に形成されたバンク24の内側に形成し、第3発光層形成用のインクジェット材料IJG及び第2発光層形成用のインクジェット材料IJBの他方は、内側領域と外側領域を区画する対向する2つの隔壁を含むバンク24の内側領域に形成してもよい。
〔実施形態6〕
次に、図15に基づき、本発明の実施形態6について説明する。本実施形態の表示装置47においては、インクジェット法を用いずに、フォトリソグラフィ法と蒸着法とを用いて第1発光層26R、第2発光層26B’及び第3発光層26Gを形成している点において、実施形態1から5とは異なり、その他については実施形態1から5において説明したとおりである。説明の便宜上、実施形態1から5の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
次に、図15に基づき、本発明の実施形態6について説明する。本実施形態の表示装置47においては、インクジェット法を用いずに、フォトリソグラフィ法と蒸着法とを用いて第1発光層26R、第2発光層26B’及び第3発光層26Gを形成している点において、実施形態1から5とは異なり、その他については実施形態1から5において説明したとおりである。説明の便宜上、実施形態1から5の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
図15の(a)から図15の(f)は、実施形態6の表示装置47の製造工程の一部を示す図である。
図15の(a)から図15の(d)については、バンク24が備えられていない点以外は、実施形態1において、既に説明しているので、ここではその説明を省略する。
図15の(e)は、蒸着粒子BVSを通す開口部VMKと、蒸着粒子BVSを通さない遮断部VMBとを含む蒸着マスクVM1を用いて、第2発光層26B’を所定領域(第2領域)に形成する工程を説明するための図である。
第2発光層26B’は、蒸着マスクVM1を用いた蒸着法で形成されるので、所定領域(第2領域)のみに形成することができる。また、第2発光層26B’は、蒸着マスクVM1を用いた蒸着法で形成されるので、青色を発光する発光材料(第2発光材料)からなる。
図15の(f)に示すように、表示装置47においては、バンク24が備えられていないので、第1発光層26R、第2発光層26B’及び第3発光層26Gの発光領域を拡大できる。
本実施形態においては、第2発光層26B’を蒸着法で形成する場合を一例に挙げて説明したが、これに限定されることはなく、第2発光層26B’及び第3発光層26Gを先にフォトリソグラフィ法で形成した場合には、第1発光層26Rを蒸着法で形成することができる。また、第1発光層26R及び第2発光層26B’を先にフォトリソグラフィ法で形成した場合には、第3発光層26Gを蒸着法で形成することができる。
なお、本実施形態においては、図15の(e)に示すように、蒸着マスクVM1を用いた蒸着法で、第2発光層26B’を所定領域(第2領域)に形成する場合を一例に挙げて説明したが、これに限定されることはない。例えば、第2発光層26B’は、マスクとミスト・スプレー法とを用いて、形成してもよい。第2発光層26B’を、マスクとミスト・スプレー法とを用いて、形成する場合には、例えば、実施形態1で既に説明した第2発光層形成用のインクジェット材料IJBを、マスクの開口部を介して、スプレーすることができる。
なお、蒸着法で、第2発光層26B’を形成する場合には、インクジェット法やミスト・スプレー法で、第2発光層26B’を形成する場合と比較して、製造工程で使用されるエネルギーが大きいので、省エネルギーを考慮した場合、第2発光層26B’は、インクジェット法やミスト・スプレー法で、形成することが好ましい。
〔付記事項〕
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
本発明は、表示装置及び表示装置の製造方法に利用することができる。
11 アクティブ基板(基板)
22 第1電極
22R、22G、22B 第1電極
23、23S、23L エッジカバー
24、24’ バンク
24U 上部バンク
25、27 機能層
25R、25G、25B 機能層
25R’ 機能層
25RGA 第2膜厚部
26R 第1発光層
26B、26B’ 第2発光層
26G、26G’ 第3発光層
26RGA 第1膜厚部
26RGA’ 第1膜厚部
26RGA’’ 第1膜厚部
26RGA’’’ 第1膜厚部
26GRA’、26GRA’’ 第1膜厚部
26GRA’’’ 第1膜厚部
28 第2電極
30~47 表示装置
22 第1電極
22R、22G、22B 第1電極
23、23S、23L エッジカバー
24、24’ バンク
24U 上部バンク
25、27 機能層
25R、25G、25B 機能層
25R’ 機能層
25RGA 第2膜厚部
26R 第1発光層
26B、26B’ 第2発光層
26G、26G’ 第3発光層
26RGA 第1膜厚部
26RGA’ 第1膜厚部
26RGA’’ 第1膜厚部
26RGA’’’ 第1膜厚部
26GRA’、26GRA’’ 第1膜厚部
26GRA’’’ 第1膜厚部
28 第2電極
30~47 表示装置
Claims (29)
- 基板と、
前記基板の一方側の面上に形成された島状の複数の第1電極と、
前記複数の第1電極のうちの一部の第1電極と重畳するように前記一方側の面上に形成された、第1発光材料及び樹脂を含む第1発光層と、
前記複数の第1電極のうちの他の一部の第1電極と重畳するように前記一方側の面上に形成された、第2発光材料からなる第2発光層と、
枠状または、内側領域と外側領域を区画する対向する2つの隔壁を含むように形成された第1バンクと、を備え、
前記第2発光層は、前記第1バンクの内側側面と接するように、前記第1バンクの内側に設けられ、
前記第1発光層は、前記第1バンクの外側に設けられている、表示装置。 - 前記複数の第1電極のうちのさらに他の一部の第1電極と重畳するように前記一方側の面上に形成された、第3発光材料及び樹脂を含む第3発光層を、さらに備え、
前記第3発光層は、前記第1バンクの外側に設けられている、請求項1に記載の表示装置。 - 前記複数の第1電極のうちのさらに他の一部の第1電極と重畳するように前記一方側の面上に形成された、第3発光材料からなる第3発光層と、
枠状または、内側領域と外側領域を区画する対向する2つの隔壁を含むように形成された第2バンクと、をさらに備え、
前記第1発光層は、前記第2バンクの外側に設けられ
前記第3発光層は、前記第2バンクの内側側面と接するように、前記第2バンクの内側に設けられている、請求項1に記載の表示装置。 - 前記第1バンクは、前記第1発光層と同一材料で形成された同一層及び前記第3発光層と同一材料で形成された同一層の少なくとも一方で形成されている、請求項2に記載の表示装置。
- 前記第1バンクは、前記第1発光層及び前記第3発光層とは異なる樹脂材料で形成されている、請求項2に記載の表示装置。
- 前記第1バンク及び前記第2バンクは、前記第1発光層と同一材料で形成された同一層で形成されている、請求項3に記載の表示装置。
- 前記第1バンク及び前記第2バンクは、前記第1発光層とは異なる樹脂材料で形成されている、請求項3に記載の表示装置。
- 前記第1バンク上には、前記第1発光層と同一材料で形成された同一層及び前記第3発光層と同一材料で形成された同一層の少なくとも一方で形成された上部バンクが設けられている、請求項5に記載の表示装置。
- 前記第1バンク及び前記第2バンクの少なくとも一方の上には、前記第1発光層と同一材料で形成された同一層で形成された上部バンクが設けられている、請求項7に記載の表示装置。
- 前記第1発光層の縁の一部と前記第3発光層の縁の一部とが接して重なる第1厚膜部がさらに設けられ、
前記第1厚膜部は、前記第1発光層と重畳する前記第1電極と前記第3発光層と重畳する前記第1電極との間の少なくとも一部と重畳する、請求項2、4、5、8の何れか1項に記載の表示装置。 - 前記第1発光層と前記第3発光層とは、隣接して設けられ、
互いに対向する前記第1発光層の一端部と前記第3発光層の一端部とは、離れている、請求項2、4、5、8の何れか1項に記載の表示装置。 - 前記第1発光層の一端部は、前記第1発光層の他の部分より厚く形成され、
前記第3発光層の一端部は、前記第3発光層の他の部分より厚く形成されている、請求項2、4、5、8、11の何れか1項に記載の表示装置。 - 前記第1発光層と重畳する第1機能層と、前記第3発光層と重畳する第2機能層とをさらに備え、
前記第1機能層の縁の一部と前記第2機能層の縁の一部とが接して重なる第2厚膜部がさらに設けられ、
前記第2厚膜部は、前記第1発光層と重畳する前記第1電極と前記第3発光層と重畳する前記第1電極との間の少なくとも一部と重畳する、請求項2、4、5、8、10、11、12の何れか1項に記載の表示装置。 - 前記複数の第1電極は、マトリックス状に配置され、
前記第1発光層及び前記第3発光層は、それぞれ、第1方向に沿って前記第1電極が配置された1列の第1電極群と重畳し、
前記第2発光層は、前記第1方向に沿って前記第1電極が配置された2列の第1電極群と重畳し、
前記第1方向と直交する第2方向において、前記第2発光層と重畳する2つの第1電極は、それぞれ、異なる画素に属する、請求項2、4、5、8、10~13の何れか1項に記載の表示装置。 - 前記第1発光層及び前記第3発光層は、前記第2発光層を取り囲むように、設けられている、請求項2、4、5、8、10~13の何れか1項に記載の表示装置。
- 前記第2発光層が発光する光の中心波長は、前記第1発光層が発光する光の中心波長及び前記第3発光層が発光する光の中心波長より短い、請求項2、4、5、8、10~15の何れか1項に記載の表示装置。
- 前記第1発光層が発光する光の中心波長は、前記第2発光層が発光する光の中心波長及び前記第3発光層が発光する光の中心波長より長い、請求項3、6、7、9の何れか1項に記載の表示装置。
- 前記第1発光材料は、リガンドを含む第1量子ドットであり、
前記第2発光材料は、リガンドを含む第2量子ドットであり、
前記第3発光材料は、リガンドを含む第3量子ドットである、請求項2から17の何れか1項に記載の表示装置。 - 前記第2量子ドットのシェルの外径は、前記第1量子ドットのシェルの外径及び前記第3量子ドットのシェルの外径より小さい、請求項18に記載の表示装置。
- 前記第2量子ドットは、青色を発光する、請求項19に記載の表示装置。
- 前記複数の第1電極それぞれの間を埋めるとともに、前記複数の第1電極それぞれの縁を覆うエッジカバーをさらに備える、請求項1から20の何れか1項に記載の表示装置。
- フォトリソグラフィ法によって、基板の一方側の面上の複数の第1領域に第1発光層を形成する、第1発光層形成工程と、
前記第1発光層形成工程の後に、第2発光層を、前記複数の第1領域には形成せず、前記複数の第1領域とは異なる前記一方側の面上の複数の第2領域にのみ形成する、第2発光層形成工程と、を含む、表示装置の製造方法。 - フォトリソグラフィ法によって、前記複数の第1領域及び前記複数の第2領域とは異なる前記一方側の面上の複数の第3領域に第3発光層を形成する、第3発光層形成工程を、さらに含み、
前記第3発光層形成工程は、前記第2発光層形成工程より前に行われる、請求項22に記載の表示装置の製造方法。 - 前記第1発光層形成工程の後に、第3発光層を、前記複数の第1領域及び前記複数の第2領域には形成せず、前記複数の第1領域及び前記複数の第2領域とは異なる前記一方側の面上の複数の第3領域にのみ形成する、第3発光層形成工程を、さらに含む、請求項22に記載の表示装置の製造方法。
- 前記第1発光層形成工程、前記第2発光層形成工程及び前記第3発光層形成工程の前に行われる、
前記基板の一方側の面上に島状の複数の第1電極を形成する、第1電極形成工程と、
前記複数の第1電極それぞれの間を埋めるとともに、前記複数の第1電極それぞれの縁を覆うエッジカバーを形成する、エッジカバー形成工程と、
前記エッジカバー上の一部に、前記複数の第2領域それぞれを取り囲む複数の第1バンクを形成する、バンク形成工程と、をさらに含み、
前記第1発光層形成工程及び前記第3発光層形成工程のそれぞれにおいては、前記第1発光層及び前記第3発光層を前記複数の第1バンクそれぞれの外側に形成し、
前記第2発光層形成工程においては、前記第2発光層を前記複数の第1バンクそれぞれの内側側面と接するように、前記複数の第1バンクそれぞれの内側に形成する、請求項23に記載の表示装置の製造方法。 - 前記第1発光層形成工程、前記第2発光層形成工程及び前記第3発光層形成工程の前に行われる、
前記基板の一方側の面上に島状の複数の第1電極を形成する、第1電極形成工程と、
前記複数の第1電極それぞれの間を埋めるとともに、前記複数の第1電極それぞれの縁を覆うエッジカバーを形成する、エッジカバー形成工程と、
前記エッジカバー上の一部に、前記複数の第2領域それぞれを取り囲む複数の第1バンクと、前記複数の第3領域それぞれを取り囲む複数の第2バンクとを形成する、バンク形成工程と、をさらに含み、
前記第1発光層形成工程においては、前記第1発光層を前記複数の第1バンク及び前記複数の第2バンクそれぞれの外側に形成し、
前記第2発光層形成工程においては、前記第2発光層を前記複数の第1バンクそれぞれの内側側面と接するように、前記複数の第1バンクそれぞれの内側に形成し、
前記第3発光層形成工程においては、前記第3発光層を前記複数の第2バンクそれぞれの内側側面と接するように、前記複数の第2バンクそれぞれの内側に形成する、請求項24に記載の表示装置の製造方法。 - 前記エッジカバー形成工程と、前記バンク形成工程とは、一つの工程である、請求項25または26に記載の表示装置の製造方法。
- 前記第1発光層形成工程、前記第2発光層形成工程及び前記第3発光層形成工程の前に行われる、
前記基板の一方側の面上に島状の複数の第1電極を形成する、第1電極形成工程と、
前記複数の第1電極それぞれの間を埋めるとともに、前記複数の第1電極それぞれの縁を覆うエッジカバーを形成する、エッジカバー形成工程と、をさらに含み、
前記第1発光層形成工程及び前記第3発光層形成工程のそれぞれにおいては、前記第1発光層及び前記第3発光層を形成するとともに、前記エッジカバー上の一部に、前記複数の第2領域それぞれを取り囲む複数の第1バンクを形成し、
前記第2発光層形成工程においては、前記第2発光層を前記複数の第1バンクそれぞれの内側側面と接するように、前記複数の第1バンクそれぞれの内側に形成する、請求項23に記載の表示装置の製造方法。 - 前記第1発光層形成工程、前記第2発光層形成工程及び前記第3発光層形成工程の前に行われる、
前記基板の一方側の面上に島状の複数の第1電極を形成する、第1電極形成工程と、
前記複数の第1電極それぞれの間を埋めるとともに、前記複数の第1電極それぞれの縁を覆うエッジカバーを形成する、エッジカバー形成工程と、をさらに含み、
前記第1発光層形成工程においては、前記第1発光層を形成するとともに、前記エッジカバー上の一部に、前記複数の第2領域それぞれを取り囲む複数の第1バンクと、前記複数の第3領域それぞれを取り囲む複数の第2バンクとを形成し、
前記第2発光層形成工程においては、前記第2発光層を前記複数の第1バンクそれぞれの内側側面と接するように、前記複数の第1バンクそれぞれの内側に形成し、
前記第3発光層形成工程においては、前記第3発光層を前記複数の第2バンクそれぞれの内側側面と接するように、前記複数の第2バンクそれぞれの内側に形成する、請求項24に記載の表示装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/026,343 US20230354648A1 (en) | 2020-09-17 | 2020-09-17 | Display device and method for manufacturing display device |
PCT/JP2020/035335 WO2022059152A1 (ja) | 2020-09-17 | 2020-09-17 | 表示装置及び表示装置の製造方法 |
CN202080105283.XA CN116194979A (zh) | 2020-09-17 | 2020-09-17 | 显示装置及显示装置的制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/035335 WO2022059152A1 (ja) | 2020-09-17 | 2020-09-17 | 表示装置及び表示装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022059152A1 true WO2022059152A1 (ja) | 2022-03-24 |
Family
ID=80776598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/035335 WO2022059152A1 (ja) | 2020-09-17 | 2020-09-17 | 表示装置及び表示装置の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230354648A1 (ja) |
CN (1) | CN116194979A (ja) |
WO (1) | WO2022059152A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009533810A (ja) * | 2006-04-12 | 2009-09-17 | ケンブリッジ ディスプレイ テクノロジー リミテッド | 光電子ディスプレイ及びその製造方法 |
JP2011216250A (ja) * | 2010-03-31 | 2011-10-27 | Sumitomo Chemical Co Ltd | 有機el素子用基板の製造方法 |
JP2013089401A (ja) * | 2011-10-17 | 2013-05-13 | Seiko Epson Corp | 電気光学装置の製造方法、及びカラーフィルター基板の製造方法、電子機器 |
JP2016115747A (ja) * | 2014-12-12 | 2016-06-23 | 株式会社Joled | 表示装置およびその製造方法、ならびに電子機器 |
US20180108842A1 (en) * | 2016-01-13 | 2018-04-19 | Boe Technology Group Co., Ltd. | Crosslinkable Quantum Dot And Preparing Method Thereof, Array Substrate And Preparing Method Thereof |
WO2018225782A1 (ja) * | 2017-06-08 | 2018-12-13 | 株式会社Dnpファインケミカル | 量子ドット含有硬化性組成物、量子ドット含有硬化物、光学部材の製造方法、及び表示装置の製造方法 |
WO2020059143A1 (ja) * | 2018-09-21 | 2020-03-26 | シャープ株式会社 | 発光素子、発光デバイス、及び発光素子の製造方法 |
WO2020065963A1 (ja) * | 2018-09-28 | 2020-04-02 | シャープ株式会社 | 表示装置及び表示装置の製造方法 |
-
2020
- 2020-09-17 WO PCT/JP2020/035335 patent/WO2022059152A1/ja active Application Filing
- 2020-09-17 CN CN202080105283.XA patent/CN116194979A/zh active Pending
- 2020-09-17 US US18/026,343 patent/US20230354648A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009533810A (ja) * | 2006-04-12 | 2009-09-17 | ケンブリッジ ディスプレイ テクノロジー リミテッド | 光電子ディスプレイ及びその製造方法 |
JP2011216250A (ja) * | 2010-03-31 | 2011-10-27 | Sumitomo Chemical Co Ltd | 有機el素子用基板の製造方法 |
JP2013089401A (ja) * | 2011-10-17 | 2013-05-13 | Seiko Epson Corp | 電気光学装置の製造方法、及びカラーフィルター基板の製造方法、電子機器 |
JP2016115747A (ja) * | 2014-12-12 | 2016-06-23 | 株式会社Joled | 表示装置およびその製造方法、ならびに電子機器 |
US20180108842A1 (en) * | 2016-01-13 | 2018-04-19 | Boe Technology Group Co., Ltd. | Crosslinkable Quantum Dot And Preparing Method Thereof, Array Substrate And Preparing Method Thereof |
WO2018225782A1 (ja) * | 2017-06-08 | 2018-12-13 | 株式会社Dnpファインケミカル | 量子ドット含有硬化性組成物、量子ドット含有硬化物、光学部材の製造方法、及び表示装置の製造方法 |
WO2020059143A1 (ja) * | 2018-09-21 | 2020-03-26 | シャープ株式会社 | 発光素子、発光デバイス、及び発光素子の製造方法 |
WO2020065963A1 (ja) * | 2018-09-28 | 2020-04-02 | シャープ株式会社 | 表示装置及び表示装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN116194979A (zh) | 2023-05-30 |
US20230354648A1 (en) | 2023-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022042059A1 (zh) | Oled显示面板及其制备方法、显示装置 | |
US9209231B2 (en) | Array substrate, method for fabricating the same, and OLED display device | |
CN108922916B (zh) | 发光装置以及电子设备 | |
JP5459142B2 (ja) | 有機el装置、有機el装置の製造方法、及び電子機器 | |
EP3021363B1 (en) | Organic light-emitting diode display having high aperture ratio and method for manufacturing the same | |
KR101333612B1 (ko) | 유기전계 발광소자 및 그 제조 방법 | |
KR20150111544A (ko) | 표시 장치, 이의 제조 방법 및 리페어 방법 | |
KR20150042367A (ko) | 유기전계 발광소자 및 이의 제조 방법 | |
KR101456402B1 (ko) | 유기 발광 다이오드 디스플레이 패널 및 그 제조방법 | |
KR102016070B1 (ko) | 플렉서블 유기전계 발광소자 및 그의 제조방법 | |
US11800772B2 (en) | Display apparatus | |
KR20080061675A (ko) | 유기 발광 소자 및 그의 제조방법 | |
KR101071712B1 (ko) | 유기전계발광 소자 및 그의 제조 방법 | |
KR20180021286A (ko) | 표시 장치 및 그 제조방법 | |
WO2020065963A1 (ja) | 表示装置及び表示装置の製造方法 | |
US11145836B2 (en) | OLED display device and manufacturing method for the same | |
CN114450802A (zh) | 一种显示面板、掩膜组件和显示装置 | |
KR100725493B1 (ko) | 디스플레이장치 및 그 제조방법 | |
JP2011138634A (ja) | 有機el装置及びその製造方法 | |
KR20100000405A (ko) | 발광 표시 패널 및 그의 제조 방법 | |
JP2004134356A (ja) | エレクトロルミネッセンス表示装置 | |
WO2022059152A1 (ja) | 表示装置及び表示装置の製造方法 | |
JP4502661B2 (ja) | カラー発光表示装置 | |
CN110911457A (zh) | 显示面板及其制备方法 | |
JP2007265859A (ja) | 有機el表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20954137 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20954137 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |