WO2020059143A1 - 発光素子、発光デバイス、及び発光素子の製造方法 - Google Patents
発光素子、発光デバイス、及び発光素子の製造方法 Download PDFInfo
- Publication number
- WO2020059143A1 WO2020059143A1 PCT/JP2018/035192 JP2018035192W WO2020059143A1 WO 2020059143 A1 WO2020059143 A1 WO 2020059143A1 JP 2018035192 W JP2018035192 W JP 2018035192W WO 2020059143 A1 WO2020059143 A1 WO 2020059143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- emitting layer
- pixel
- layer
- light
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims description 50
- 239000003086 colorant Substances 0.000 claims abstract description 40
- 239000002096 quantum dot Substances 0.000 claims description 129
- 230000005525 hole transport Effects 0.000 claims description 66
- 239000002245 particle Substances 0.000 claims description 29
- 238000002347 injection Methods 0.000 claims description 25
- 239000007924 injection Substances 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 20
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 230000001174 ascending effect Effects 0.000 claims 1
- 238000000059 patterning Methods 0.000 abstract description 34
- 230000032258 transport Effects 0.000 description 82
- 230000015572 biosynthetic process Effects 0.000 description 16
- 230000004888 barrier function Effects 0.000 description 14
- 239000010408 film Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 238000012546 transfer Methods 0.000 description 9
- 238000000206 photolithography Methods 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- 238000004070 electrodeposition Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 3
- 239000011258 core-shell material Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000009500 colour coating Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- -1 for example Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
- H10K59/352—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
- H10K50/13—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
- H10K59/353—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/40—Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/321—Inverted OLED, i.e. having cathode between substrate and anode
Definitions
- the present invention relates to a light-emitting element having a light-emitting layer of each color, a light-emitting device having the light-emitting element, and a method for manufacturing the light-emitting element.
- a color display method for the organic EL element for example, there is a three-color coating method in which light-emitting materials of red (R), green (G), and blue (B) are formed.
- red (R), green (G), and blue (B) luminescent materials are thermally deposited using a metal shadow mask that is precisely patterned.
- the red light emitting layer 134R and the green light emitting layer 134G are provided in a stacked manner, and the red subpixel R and the green subpixel G are provided as a common layer.
- the process can be simplified by using the metal shadow mask four times.
- Japanese Unexamined Patent Publication Japanese Unexamined Patent Publication "Japanese Patent Application Laid-Open No. 2011-155004"
- the light-emitting layer is separated at least three times of the red subpixel R, the green subpixel G, and the blue subpixel B. And the process steps become longer.
- the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a light-emitting element, a light-emitting device, and a method for manufacturing a light-emitting element that can reduce the number of times of patterning of a light-emitting layer of each color. is there.
- a light-emitting element includes a pixel electrode provided for each of sub-pixels of at least three colors, a common electrode provided to face each of the pixel electrodes,
- a light-emitting element including a light-emitting layer of each color provided between each pixel electrode and the common electrode one of the pixel electrode and the common electrode is a cathode, and the other is an anode
- the light emitting layer of the color having the largest electron affinity among the light emitting layers of the at least three colors is extended in a state of being stacked also between each light emitting layer of another color and the cathode. It is characterized by having.
- a light-emitting device includes the light-emitting element in order to solve the above problem.
- a method for manufacturing a light-emitting element includes a pixel electrode provided for each of sub-pixels of at least three colors, and a common electrode provided to face each of the pixel electrodes. And a method of manufacturing a light-emitting element including a light-emitting layer of each color provided between the pixel electrode and the common electrode, wherein one of the pixel electrode and the common electrode is formed as a cathode.
- an extending step of extending in an extended state is
- a light-emitting element it is possible to provide a light-emitting element, a light-emitting device, and a method for manufacturing the light-emitting element, which can reduce the number of times of patterning the light-emitting layers of each color.
- FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device including a light emitting element according to Embodiment 1 of the present invention.
- A is an energy band diagram showing an electron affinity and an ionization potential in each of a red pixel light emitting layer, a green pixel light emitting layer, and a blue pixel light emitting layer of the light emitting element in the present embodiment, and (b) and (c).
- (D) is an energy band diagram showing an example of electron affinity and ionization potential in each layer of a red sub-pixel, a green sub-pixel, and a blue sub-pixel of a general light emitting element using an example of a material used in the present embodiment. .
- (A) is a sectional view showing the luminous efficiency when the light emitting layer is a red quantum dot
- (b) is a sectional view showing the luminous efficiency when the light emitting layer is a blue quantum dot
- (c) is It is sectional drawing which shows the luminous efficiency when a red quantum dot and a blue quantum dot are laminated
- (A) to (e) are cross-sectional views illustrating respective steps in a method for manufacturing a light-emitting element according to the present embodiment.
- (A) (b) is sectional drawing which shows the method of forming the quantum dot light emitting layer of each color in the manufacturing method of the light emitting element in this Embodiment.
- (A) is a plan view showing a method of forming a quantum dot light emitting layer of each color in the simple stripe pixel array of Embodiment 1, and is a plan view showing an example of a pixel array, and (b) is a pixel array of (a). It is a top view which shows the formation pattern of the blue quantum dot light emitting layer for obtaining, and (c) is a top view which shows the formation pattern of the green quantum dot light emitting layer for obtaining the pixel arrangement of (a), (d) (A) is a plan view showing a formation pattern of a red quantum dot light emitting layer for obtaining the pixel arrangement of (a).
- (A) is a plan view showing a method of forming a quantum dot light emitting layer of each color other than the simple stripe pixel arrangement of Embodiment 1, and is a plan view showing an example of the pixel arrangement
- (b) is a pixel diagram of (a). It is a top view which shows the formation pattern of the blue quantum dot light emitting layer for obtaining arrangement
- (c) is a top view which shows the formation pattern of the green quantum dot light emission layer for obtaining pixel arrangement of (a)
- (d) is a plan view showing a formation pattern of a red quantum dot light emitting layer for obtaining the pixel arrangement of (a).
- (A)-(d) is a top view showing other various pixel arrangements different from the above.
- FIG. 4 is a cross-sectional view showing luminous efficiency when a light emitting layer is laminated.
- (A) is a plan view showing a method of forming a quantum dot light emitting layer of each color in the simple stripe pixel array of Embodiment 2, and is a plan view showing an example of a pixel array, and (b) is a pixel array of (a).
- (A) is a plan view showing a formation pattern of a red quantum dot light emitting layer for obtaining the pixel arrangement of (a).
- (A) is a plan view showing a method of forming a quantum dot light emitting layer of each color other than the simple stripe pixel arrangement of Embodiment 2, and is a plan view showing an example pixel arrangement, and (b) is a plan view showing a pixel of (a).
- FIG. 9 is a cross-sectional view illustrating a configuration of a light emitting device including a light emitting element according to a third embodiment of the present invention.
- (A) to (e) are cross-sectional views illustrating respective steps in a method for manufacturing a light-emitting element according to the present embodiment.
- FIG. 9 is a cross-sectional view illustrating a configuration of a light emitting device including a light emitting element according to a fourth embodiment of the present invention.
- FIG. 11 is a cross-sectional view illustrating a configuration of an example of a conventional light emitting device.
- FIG. 1 is a cross-sectional view illustrating a basic configuration of a light emitting device 1A including a light emitting element 2A according to the present embodiment.
- a light emitting device 1A including a light emitting element 2A having a basic configuration has a structure in which each layer of the light emitting element 2A is laminated on an array substrate on which a TFT (Thin Film Transistor) (not shown) is formed. It is equipped with a structure.
- TFT Thin Film Transistor
- the direction from the light emitting element 2A of the light emitting device 1A to the array substrate is described as “downward”, and the direction from the array substrate of the light emitting device 1A to the light emitting element 2A is described as “upward”. I do.
- the light emitting element 2A includes, on the anode (anode electrode) 4, a hole transport layer 6, a light emitting layer 8, an electron transport layer 10, and a cathode (cathode electrode) 12 in this order.
- the anode 4 of the light emitting element 2A formed on the upper layer of the array substrate (not shown) is electrically connected to the TFT of the array substrate.
- the light emitting element 2A having the basic configuration of the present embodiment is a light emitting element having a so-called normal structure.
- the anode 4 is separated into a red sub-pixel RP, a green sub-pixel GP, and a blue sub-pixel BP by an edge cover 16 made of an insulating layer.
- the anode 4 is separated by the edge cover 16 into a red pixel anode 4R, a green pixel anode 4G, and a blue pixel anode 4B.
- the hole transport layer 6 is formed so as to cover the edge cover 16.
- the light emitting layer 8 includes a red pixel light emitting layer 8R as a red quantum dot light emitting layer, a green pixel light emitting layer 8G as a green quantum dot light emitting layer, and a blue pixel light emitting layer 8B as a blue quantum dot light emitting layer.
- the compartments are separated by location. However, they are not separated by the edge cover 16.
- the electron transport layer 10 and the cathode 12 are not separated by the edge cover 16 but are formed in common.
- the edge cover 16 may be formed at a position covering the side surface of the anode 4 and the vicinity of the peripheral edge of the upper surface.
- the red sub-pixel RP is formed by the island-shaped red pixel anode 4R, the common hole transport layer 6, the electron transport layer 10, and the cathode 12. I do.
- the green sub-pixel GP is formed by the island-shaped green pixel anode 4G, the common hole transport layer 6, the electron transport layer 10, and the cathode 12.
- the blue sub-pixel BP is formed by the island-shaped blue pixel anode 4B and the common hole transport layer 6, electron transport layer 10, and cathode 12.
- a red pixel light emitting layer 8R is formed between the red pixel anode 4R and the cathode 12 and a green pixel light emitting layer 8G is formed between the green pixel anode 4G and the cathode 12.
- a red pixel light emitting layer 8R are laminated, and between the blue pixel anode 4B and the cathode 12, a blue pixel light emitting layer 8B and a red pixel light emitting layer 8R are laminated and formed.
- the light-emitting element 2A of the present embodiment includes three color sub-pixels of the red sub-pixel RP, the green sub-pixel GP, and the blue sub-pixel BP.
- the red pixel light emitting layer 8R included in the red sub pixel RP emits red light
- the green pixel light emitting layer 8G included in the green sub pixel GP emits green light
- the blue sub pixel BP emits red light
- the included blue pixel light emitting layer 8B emits blue light. That is, the light-emitting element 2A includes a sub-pixel for each emission wavelength of the emission layer 8. However, as described above, the light emitting element 2A includes the hole transport layer 6, the electron transport layer 10, and the cathode 12 in common for all sub-pixels.
- the red light is light having a light emission center wavelength in a wavelength band of more than 600 nm and 780 nm or less.
- the green light is light having a light emission center wavelength in a wavelength band of more than 500 nm and not more than 600 nm.
- the blue light is light having a light emission center wavelength in a wavelength band of 400 nm or more and 500 nm or less.
- a group including one red sub pixel RP, one green sub pixel GP, and one blue sub pixel BP is one pixel in the light emitting element 2A.
- the sub-pixels are at least three colors of the red sub-pixel RP, the green sub-pixel GP, and the blue sub-pixel BP, but may include sub-pixels of other colors. That is, in one embodiment of the present invention, at least three colors of red, green, and blue sub-pixels may be included.
- the anode 4 and the cathode 12 include a conductive material, and are electrically connected to the hole transport layer 6 and the electron transport layer 10, respectively.
- One of the anode 4 and the cathode 12 is a transparent electrode.
- the cathode 12 is a transparent electrode, for example, ITO, IZO, AZO, GZO, In 2 O 3 , thin Ag, a thin alloy containing Ag, Ag nanowire or carbon nanotube, graphene, or the like is used.
- the cathode 12 can be formed by, for example, a sputtering method, vacuum deposition, solution coating, or the like. Either the anode 4 or the cathode 12 may include a metal material having high reflectance.
- anode 4 contains a metal material.
- the metal material Al, Cu, Au, Ag, Mg, Pt, Pd, Ni, Nd, Ir, Cr, an alloy thereof or the like having a high visible light reflectance, or a multilayer film containing these is preferable.
- the light emitting element 2A can extract light from the electrode side including the transparent electrode. Therefore, in the present embodiment, light emitting element 2A can extract light from cathode 12 side.
- the light emitting layer 8 emits light when recombination of the holes h + transported from the anode 4 and the electrons e ⁇ transported from the cathode 12 occurs.
- a plurality of quantum dots that emit light of the same color are provided in each subpixel as a light emitting material.
- the emission color of the quantum dot differs depending on the particle diameter even with the same material, and the light wavelength becomes shorter as the particle diameter becomes smaller. Therefore, a quantum dot that emits light in the same color means a quantum dot made of the same material and having the same particle size.
- the “particle size” of the quantum dot shown here is a design value, and actually refers to the median particle size measured by a dynamic light scattering method or a transmission electron microscope.
- the particle size of each quantum dot includes variation, and may vary by about 20%.
- the light emitting layer 8 includes a red quantum dot QDR in a red pixel light emitting layer 8R, a green quantum dot QDG in a green pixel light emitting layer 8G, and a blue quantum dot QDB in a blue pixel light emitting layer 8B. It has. That is, the light emitting layer 8 includes a plurality of types of quantum dots.
- the light-emitting layer 8 can be formed by using a dispersion liquid in which quantum dots are dispersed in a solvent such as hexane or toluene, and performing coating separately for each sub-pixel by a spin coating method, an inkjet method, or the like.
- the dispersion may be mixed with a dispersion material such as thiol or amine.
- the red quantum dot QDR, the green quantum dot QDG, and the blue quantum dot QDB have a valence band level of V.I. B. (Equal to the ionization potential) and the conduction band level C.I. B. (Equal to the electron affinity), and the valence band level V. B. And the conduction band level of C.I. B. Is a light-emitting material that emits light by recombination with electrons.
- the light emitted from the red quantum dot QDR, the green quantum dot QDG, and the blue quantum dot QDB has a narrow spectrum due to the quantum confinement effect, so that light emission of relatively deep chromaticity can be obtained.
- Red quantum dots QDR, green quantum dots QDG, and blue quantum dots QDB are, for example, Cd, S, Te, Se, Zn, In, N, P, As, Sb, Al, Ga, Pb, Si, Ge, Mg, And one or more semiconductor materials selected from the group including these compounds.
- the red quantum dot QDR, the green quantum dot QDG, and the blue quantum dot QDB may be a two-component core type, a three-component core type, a four-component core type, a core-shell type, or a core multi-shell type.
- the red quantum dots QDR, the green quantum dots QDG, and the blue quantum dots QDB may include doped nanoparticles, or may have a composition-graded structure.
- the red quantum dots QDR, the green quantum dots QDG, and the blue quantum dots QDB have a core-shell structure in which CdSe is provided in the core and ZnS or ZnS is provided in the shell.
- the particle size of the quantum dots includes the shell portion, and is apparently larger than the particle size of the core that contributes to the emission wavelength.
- the “particle size” of the quantum dot in one embodiment of the present invention indicates the particle size of the core that contributes to the emission wavelength.
- the hole transport layer 6 transports holes h + from the anode 4 to the light emitting layer 8.
- the hole transport layer 6 may have a function of inhibiting transport of electrons e ⁇ .
- the hole transport layer 6 is made of an inorganic material, for example, NiO.
- the hole transport layer 6 may be formed by a sputtering method.
- the electron transport layer 10 transports electrons e ⁇ from the cathode 12 to the light emitting layer 8.
- the electron transport layer 10 may have a function of inhibiting transport of holes h + .
- the electron transport layer 10 may include, for example, ZnO, TiO 2 , MgZnO, Ta 2 O 3 , SrTiO 3 , or Mg x Zn (1-x) O, or include a plurality of materials among these. You may go out.
- the electron transport layer 10 may be formed by a sputtering method or by applying colloid particles made of the electron transport layer material.
- FIG. 2A is an energy band diagram illustrating an example of an electron affinity and an ionization potential of a material used for each of the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B.
- FIGS. 2A, 2B, 2C, and 2D are energy band diagrams illustrating an example of an electron affinity and an ionization potential of a material used for each of the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B.
- FIGS. 2B, 2C, and 2D are energy bands showing an example of electron affinity and ionization potential in each layer of a red sub-pixel, a green sub-pixel, and a blue sub-pixel of a general quantum dot light emitting device.
- FIGS. 2B, 2C, and 2D the energy bands of the anode, the hole transport layer, the light emitting layer, the electron transport layer, and the cathode in each sub-pixel are shown from left to right. Represents.
- the Fermi level of each electrode is shown in eV.
- the ionization potential of each layer with respect to the vacuum level is shown in units of eV.
- the electron affinity of each layer with respect to the vacuum level is shown in units of eV.
- Valence band level of quantum dot B (Equal to the ionization potential) are substantially the same regardless of the wavelength of light emitted from the quantum dot in the case of the same material system. This is because the smaller the atomic number of the element that constitutes the core of the quantum dot, the smaller the number of closed shell orbits, and the more difficult it is for the nucleus to be shielded by the closed shell orbit, so the valence electrons are easily affected by the electric field created by the nucleus. This is because they tend to remain at the energy level. Therefore, the valence level is constant regardless of the emission color of the quantum dot.
- the atomic numbers of Cd and Zn are smaller than that of Hg. Therefore, in CdSe or ZnSe, the valence level is constant regardless of the emission color.
- the conduction band level of the quantum dot C.I. B. (Equal to the electron affinity) depends on the wavelength of light emitted by the quantum dot.
- the conduction band level of the quantum dot C.I. B. The energy level becomes deeper as the wavelength of light emitted from the quantum dot becomes longer, and the energy level becomes shallower as the wavelength of light emitted from the quantum dot becomes shorter. This is because the valence band level V.V. B. Is small, the quantum dot having a smaller band gap has a higher conduction band level C.I. B. Because it becomes deeper.
- the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B have an ionization potential of 5.9 eV as shown in FIG. , Respectively, and have substantially the same value between different sub-pixels.
- the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B have 3.9 eV, 3.5 eV, and 3 eV, respectively, as shown in FIG. .2 eV. That is, the red pixel light emitting layer 8R has the highest electron affinity.
- a case where the anode 4 is made of Al and a case where the cathode 12 is made of ITO are shown.
- the Fermi level of the anode 4 is 4.3 eV
- the Fermi level of the cathode 12 is 4.6 eV.
- a red pixel hole transport layer contains, for example, NiO, and a red pixel of NiO is used.
- the hole transport layer has an ionization potential of 5.5 eV and an electron affinity of 1.8 eV.
- the green pixel hole transport layer contains, for example, NiO, and the green pixel hole transport layer of NiO has an ionization potential of 5.5 eV and 1.8 eV. Electron affinity.
- the blue pixel hole transport layer contains, for example, NiO, and the blue pixel hole transport layer of NiO has an ionization potential of 5.5 eV; Has an electron affinity of 8 eV.
- light is emitted from the anode by applying a potential difference between the anode and the cathode.
- the holes h + are injected toward the layer, and the electrons e ⁇ are injected from the cathode toward the light emitting layer.
- holes h + reach the light emitting layer from the anode via the hole transport layer, and electrons e ⁇ reach the light emitting layer from the cathode via the electron transport layer.
- the holes h + and the electrons e ⁇ arriving at the light-emitting layer recombine in the quantum dots QDR, QDG, and QDB in each sub-pixel, and emit light.
- Light emitted from the quantum dots QDR, QDG, and QDB may be reflected by, for example, an anode that is a metal electrode, transmitted through a cathode that is a transparent electrode, and emitted outside the light emitting device.
- the barrier of the hole transport from the first layer to the second layer different from the first layer is indicated by the energy obtained by subtracting the ionization potential of the first layer from the ionization potential of the second layer.
- the hole injection barriers indicated by arrows HR1, HG1, and HB1 are each 1.2 eV.
- the barrier of electron transport from the first layer to the second layer different from the first layer is indicated by energy obtained by subtracting the electron affinity of the second layer from the electron affinity of the first layer.
- barriers for electron injection indicated by arrows ER1, EG1, and EB1 are each 0.6 V.
- the holes h + injected into the hole transport layer are transported to the light emitting layer in each sub-pixel.
- the hole injection barriers indicated by arrows HR2, HG2, and HB2 are each 0.4 eV.
- the electron transport barriers indicated by arrows ER2, EG2, and EB2 are 0.1 eV, 0.5 eV, and 0.8 eV, respectively.
- the red pixel light emitting layer has the lowest barrier from the electron transport layer to the light emitting layer, electrons e ⁇ are easily transported, and the blue pixel light emitting layer has the highest barrier, so that electrons e ⁇ are difficult to transport.
- the holes h + and the electrons e ⁇ transported to the light emitting layer 8 are recombined in the quantum dots QDR, QDG, and QDB.
- a light-emitting element including a light-emitting layer in which quantum dots are stacked
- FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device 1A including a light emitting element 2A according to the present embodiment.
- FIG. 3A is a cross-sectional view showing luminous efficiency when the light emitting layer 8 is a red pixel light emitting layer 8R.
- FIG. 3B is a cross-sectional view showing luminous efficiency when the light emitting layer 8 is a blue pixel light emitting layer 8B.
- FIG. 3C is a cross-sectional view showing the luminous efficiency when the red pixel light emitting layer 8R and the blue pixel light emitting layer 8B are stacked in the light emitting layer 8.
- the light-emitting element 2A in the light-emitting device 1A of the present embodiment includes a sub-pixel electrode that is provided for each sub-pixel in a pixel including at least three-color sub-pixels and applies a voltage,
- a cathode 12 is provided as a common electrode provided to face each other, and a quantum dot light emitting layer of each color is provided between each sub-pixel electrode and the cathode 12.
- the pixels include sub-pixels of at least three colors, three quantum dot light emitting layers of each color are required for each color. For this reason, in forming the pattern of the quantum dot light emitting layer of each color, at least three types of pattern masks are required, and the patterning step is repeated at least three times, so that the process step becomes longer. Further, since the pattern mask is not inexpensive, the cost increases.
- the electron transport layer 10 is provided in common between the quantum dot light emitting layer of each color and the cathode 12.
- the red pixel light emitting layer 8R of the color having the highest electron affinity among the three color quantum dot light emitting layers is provided between the other color quantum dot light emitting layer and the electron transport layer 10, that is, the other color quantum dot. It also extends between the light emitting layer and the cathode 12 in a laminated state.
- the sub-pixels of the three colors are a red sub-pixel RP, a green sub-pixel GP, and a blue sub-pixel BP
- the quantum dot light emitting layers of each color are a red pixel light emitting layer 8R, a green pixel light emitting layer 8G, and a blue light emitting layer.
- the red pixel light emitting layer 8R having the largest electron affinity is extended between the electron transport layer 10 and the green and blue pixel light emitting layers 8G and 8B of other colors.
- the cathode (cathode electrode) 12 which is a common electrode, is formed in common for a plurality of pixels as shown in FIG.
- the red pixel light emitting layer 8R is not patterned and covers all the pixels.
- the green pixel light emitting layer 8G is patterned but does not cover the red sub-pixel RP and the blue sub-pixel BP.
- the blue pixel light emitting layer 8B is patterned without covering the red sub-pixel RP and the green sub-pixel GP.
- the anode 4 is divided into a red sub-pixel RP, a green sub-pixel GP, and a blue sub-pixel BP, so that different voltages can be applied to adjacent sub-pixels.
- Either the anode 4 or the cathode 12 has visible light transmittance.
- the work functions of the anode 4 and the cathode 12 are different.
- the anode 4 is connected to a TFT (Thin Film Transistor) provided on an array substrate (not shown).
- TFT Thin Film Transistor
- one electron transport layer 10 is provided between the light emitting layer 8 and the cathode 12.
- An electron injection layer (not shown) may be provided between the electron transport layer 10 and the cathode 12.
- the electron transport layer 10 is provided commonly to all pixels, and the electron transport layer 10 covers all the light emitting layers 8.
- the edge cover 16 made of an insulating layer covers up to each edge of the sub-pixel of the anode 4, but the edge cover 16 does not have to cover up to each edge of the sub-pixel.
- the mobility of the holes h + (holes) in the light emitting layer 8 is lower than the mobility of the electrons e ⁇ . Therefore, in the light emitting element 2A, light is emitted on the anode (anode electrode) 4 side of the light emitting layer 8. That is, light is emitted at the boundary between the light emitting layer 8 and the hole transport layer 6 in the light emitting layer 8.
- the green pixel light emitting layer 8G and the blue pixel light emitting layer 8B which are different from the red pixel light emitting layer 8R of the color having the highest electron affinity among the quantum dot light emitting layers of at least three colors, are formed by pattern formation. Is done.
- the red pixel light emitting layer 8R of the color having the highest electron affinity among the three color quantum dot light emitting layers covers the entire surface of the red sub pixel RP, the green sub pixel GP, and the blue sub pixel BP without pattern formation. Is formed.
- the patterning step is not required for the red pixel light emitting layer 8R having the highest electron affinity among the three color quantum dot light emitting layers. Therefore, the entire patterning process only needs to be performed twice for the two colors of the green pixel light emitting layer 8G and the blue pixel light emitting layer 8B. For this reason, it is possible to suppress the process steps from being lengthened, and to reduce the cost associated with the pattern mask.
- the red pixel light emitting layer 8R having the highest electron affinity among the three color quantum dot light emitting layers is the green pixel light emitting layer 8G and the blue pixel light emitting layer 8G of the other colors. Since it is formed in a state of being laminated on the pixel light emitting layer 8B, it becomes a problem whether or not a desired color can be emitted.
- the light emitting layer 8 close to the hole transport layer 6 has Light is emitted only in a region of about 5 quantum dots or less in the thickness direction near the interface with the quantum dot 6. Therefore, if the thickness of the light emitting layer 8 close to the hole transport layer 6 is five or more quantum dots, the red pixel light emitting layer 8R is formed on the green sub pixel GP and the blue sub pixel BP on the electron transport layer 10 side. However, there is no emission from the red pixel light emitting layer 8R, and there is generally no problem with the emission of the green sub-pixel GP and the blue sub-pixel BP.
- the light emitting element 2A capable of reducing the number of times of patterning the light emitting layer 8.
- each of the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B is small, a problem may occur. That is, light is emitted at the interface between the light emitting layer 8 and the hole transport layer 6, and for example, the red pixel light emitting layer 8R and the green pixel light emitting layer 8G, and the red pixel light emitting layer 8R and the blue pixel light emitting layer 8B In the case where the layers are stacked, if the respective film thicknesses are small, there is a possibility that the emission colors may be mixed.
- the quantum dots QDR, QDG, and QDB when each film thickness is one layer of the particles of the quantum dots QDR, QDG, and QDB, the light emitting layer 8 and the red pixel light emitting layer that are stacked by the red pixel light emitting layer 8R and the green pixel light emitting layer 8G There is a possibility that the color of the light emitted from the light emitting layer 8 that is stacked by the 8R and the blue pixel light emitting layer 8B may be mixed.
- the quantum dots QDR, QDG, and QDB preferably have, for example, five or more layers.
- each of the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B is preferably, for example, 7.5 nm or more. Thereby, it is possible to prevent color mixture of the emission colors.
- the red pixel light emitting layer 8R is intended to have the same thickness in all the red sub-pixels RP, but is not necessarily limited thereto, and the red pixel light emitting layer 8R and the blue pixel light emitting layer 8B May be thinner than the red sub-pixel RP.
- the thickness t8Rr of the red pixel emission layer 8R of the red sub-pixel RP> the thickness t8Rg of the red pixel emission layer 8R of the green sub-pixel GP the thickness t8Rb of the red pixel emission layer 8R of the blue sub-pixel BP. Is also good.
- the film becomes thinner at a place where a step is high than at a place where a step is low. That is, the light emitting layer formed on the patterned light emitting layer has a different thickness depending on the pixel, and may be thinner in the pixel on which the light emitting layer is stacked. By reducing the thickness, it is possible to suppress an increase in voltage due to an increase in film thickness.
- the electron affinity is determined by the electron transport layer 10, the red pixel light emitting layer 8R, and the green pixel.
- the light emitting layer 8G and the blue pixel light emitting layer 8B are larger in this order.
- the electron transport efficiency between the electron transport layer 10 and the red pixel light-emitting layer 8R, the green pixel light-emitting layer 8G, and the blue pixel light-emitting layer 8B is determined by the red pixel light-emitting layer 8R, the green pixel light-emitting layer 8G, and the blue pixel light-emitting layer with respect to the electron transport layer 10.
- the electron transport efficiency decreases as the electron injection barrier increases.
- the valence band level (VB: equivalent to ionization potential) of the II-VI group semiconductor quantum dot has a small change in emission wavelength (emission color), but the conduction band level (C B. (equivalent to the electron affinity) greatly changes with the emission wavelength (emission color).
- the electron injection barrier from the electron transport layer 10 to the red pixel light emitting layer 8R is small, but as shown in FIG.
- the barrier against electron injection into the pixel light emitting layer 8B is large. Therefore, the luminous efficiency of the blue pixel light emitting layer 8B is lower than that of the red pixel light emitting layer 8R.
- the red pixel light emitting layer 8R and the other green pixel light emitting layer 8G or the blue pixel light emitting layer 8B are stacked.
- the red pixel light emitting layer 8R and the other green pixel light emitting layer 8G or the blue pixel light emitting layer 8B are stacked.
- the electron transport layer 10 and the blue pixel light emitting layer 8B The barrier of the electron affinity between them becomes smaller, and the electron injection efficiency becomes higher.
- the electron affinity is measured by the electron transport layer, the red quantum dot light emitting layer, the green quantum dot light emitting layer, If the blue quantum dot light emitting layer is larger in order, the electron transport efficiency from the electron transport layer to the blue quantum dot light emitting layer is the worst. This is because the difference in electron affinity between the electron transport layer and the blue quantum dot light-emitting layer is the largest, so that the electron transfer energy is the largest.
- the red pixel light emitting layer 8R faces the electron transport layer 10 over the entire surface of the light emitting layer 8, so that the green pixel light emitting layer 8G and the blue pixel light emitting layer 8B transfer electrons.
- the electrons e ⁇ move to the green pixel light emitting layer 8G and the blue pixel light emitting layer 8B via the red pixel light emitting layer 8R having the smallest energy.
- This means that electrons also move stepwise through the red pixel light emitting layer 8R having a small electron affinity difference with respect to the green pixel light emitting layer 8G and the blue pixel light emitting layer 8B, so that the electron transport efficiency can be improved. .
- the electron affinity difference between the blue pixel light emitting layer 8B and the hole transport layer 6 is smaller than the electron affinity difference between the electron transport layer 10 and the red pixel light emitting layer 8R or between the red pixel light emitting layer 8R and the blue pixel light emitting layer 8B. Is big. As a result, the effect of blocking electrons e ⁇ at the interface of the hole transport layer 6 can be kept high.
- FIGS. 4 (a) to 4 (e) and FIGS. 4A to 4E are cross-sectional views illustrating respective steps in a method for manufacturing the light-emitting element 2A according to the present embodiment.
- FIGS. 5A and 5B show a method of forming any one of the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B in the method of manufacturing a light emitting device in the present embodiment. It is sectional drawing.
- a hole transport layer 6 is formed on an anode 4 which is a pixel electrode electrically connected to an array substrate (not shown). It is formed by coating, vapor deposition or the like without patterning.
- the blue pixel light emitting layer 8B is formed only on the blue sub-pixel BP.
- the forming method is, for example, photolithography, inkjet, electrodeposition, lift-off, transfer, and the like.
- a QD resist which is a photosensitive resin containing blue quantum dots QDB is applied to the hole transport layer 6.
- the thickness of the QD resist is, for example, 20 to 100 nm.
- the QD resist is pre-baked. Specifically, the solvent is evaporated at 80 to 120 ° C., and the coating film is dried. Next, the dried QD resist is exposed to UV light. In the UV exposure, for example, exposure is performed through a mask using irradiation energy of 10 to 1000 mJ / cm 2 . Next, as shown in FIG. 5B, development is performed using an alkaline solution, an organic solvent or water.
- the UV irradiation part dissolves.
- the UV non-irradiated portion is dissolved.
- main firing is performed at 100 to 200 ° C.
- main baking release of gas during operation of the QLED element from the UV photosensitive resin is suppressed as necessary.
- the blue pixel light emitting layer 8B thus formed contains the blue quantum dots QDB, the ligand, and the photosensitive resin.
- the conductivity of the photosensitive resin is low.
- the green pixel light emitting layer 8G is formed only on the green sub-pixel GP.
- the formation method can be performed by, for example, photolithography, inkjet, electrodeposition, lift-off, transfer, or the like, similarly to the blue pixel light emitting layer 8B.
- a red pixel light emitting layer 8R is formed on all the pixels without patterning.
- the forming method is, for example, application of a colloid solution.
- the thickness of the red pixel light emitting layer 8R over the green sub-pixel GP and the blue sub pixel BP can be formed smaller than the thickness of the red pixel light-emitting layer 8R over the red sub-pixel RP.
- the thickness of the light emitting layer 8 of the green sub-pixel GP and the blue sub-pixel BP can be reduced. Therefore, it is possible to suppress an increase in drive voltage.
- the electron transport layer 10 is formed on all the pixels without patterning.
- the forming method is, for example, coating, vapor deposition, or the like.
- a cathode 12 as a common electrode is formed on the electron transport layer 10 without patterning.
- the forming method is, for example, coating, vapor deposition, or the like.
- the light emitting element 2A can be formed, and the light emitting device 1A is completed.
- the light-emitting element includes a light-emitting element having a normal structure as in this embodiment and an invert structure shown in Embodiments 3 and 4 described later.
- a comparison between the light emitting element having the normal structure and the light emitting element having the inverted structure shows that, in the normal structure, the first patterned layer is damaged once by the patterning step (development step or the like) of the layer to be patterned next. The layer to be patterned the last time and the final solid film do not suffer additional patterning damage.
- the inverted structure the first solid film is damaged by two patterning steps, the second layer is damaged by one patterning, and only the third layer is not damaged by patterning.
- the light emitting layer 8 is considered to be less damaged in the normal structure than in the inverted structure.
- FIGS. 6A, 6B, 6C and 6D are plan views showing a simple stripe pixel array of the present embodiment and a method of forming a quantum dot light emitting layer of each color.
- FIGS. 7A, 7B, 7C, and 7D are plan views showing a method of forming a quantum dot light-emitting layer of each color other than the simple stripe pixel arrangement of the present embodiment.
- (A), (b), (c), and (d) of FIG. 8 are plan views showing other various pixel arrangements different from the above.
- the red sub-pixel RP As a simple stripe pixel array of the red sub-pixel RP, the green sub-pixel GP, and the blue sub-pixel BP, for example, as shown in FIG. And the blue sub-pixels BP.
- the pattern shape in one pixel of the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B has the same periodic arrangement.
- the blue pixel light emitting layer 8B is patterned and then adjacent to the blue pixel light emitting layer 8B. Then, the green pixel light emitting layer 8G can be formed in a pattern, and finally, the red pixel light emitting layer 8R can be formed on the entire surface of the pixel without a pattern.
- a red pixel light emitting layer 8R and a blue pixel light emitting layer 8B are arranged next to a row of thin green pixel light emitting layers 8G.
- the pixels are alternately arranged in the vertical direction, a row of thin green pixel light emitting layers 8G is again arranged next to the row, and the blue pixel light emitting layers 8B and the red pixel light emitting layers 8R are alternately arranged next to the rows. They can be arranged vertically.
- the pattern shapes in one pixel of the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B have different periodic arrangements.
- a blue pixel light emitting layer 8B is first formed in a pattern, and then a green pixel light emitting layer 8G is formed in a pattern. After the formation, finally, the red pixel light emitting layer 8R can be formed on the entire surface of the pixel without a pattern.
- the other pixels are arranged as shown in FIGS. 8A, 8B, 8C and 8D as an example of the arrangement.
- the light emitting element 2A of the present embodiment includes the red pixel anode 4R, the green pixel anode 4G, the blue pixel anode 4B, and the red pixel anode 4R as the pixel electrodes provided for at least three sub-pixels.
- red pixel light emitting layer 8R It includes a red pixel light emitting layer 8R, a green pixel light emitting layer 8G, and a blue pixel light emitting layer 8B as light emitting layers of each color.
- the red pixel light emitting layer 8R, green pixel light emitting layer 8G, and blue pixel light emitting layer 8B of at least three colors the red pixel light emitting layer 8R of the color having the largest electron affinity has a green pixel light emitting layer 8G of another color and a blue pixel light emitting layer. It also extends between the layer 8B and the cathode 12 in a laminated state.
- the light emitting element 2A capable of reducing the number of times of patterning of the red pixel light emitting layer 8R.
- the sub-pixels of at least three colors are a red sub-pixel RP, a green sub-pixel GP, and a blue sub-pixel BP.
- the red pixel light emitting layer 8R having the highest electron affinity is extended in a state of being stacked on the green pixel light emitting layer 8G and the blue pixel light emitting layer 8B.
- the red pixel light emitting layer 8R having the largest electron affinity among the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B of at least three colors does not require a patterning step. Twice for the green pixel light emitting layer 8G and the blue pixel light emitting layer 8B is sufficient. For this reason, it is possible to suppress the process steps from being lengthened, and to reduce the cost associated with the pattern mask.
- the red pixel light-emitting layer 8R having the lowest energy of the conduction band level (CB: equal to the electron affinity) is connected to the cathode 12 It is provided between.
- the energy gap of the conduction band level (CB: equal to the electron affinity) at the interface between the electron transport layer 10 and the red pixel light emitting layer 8R is smaller than that. For this reason, the injection efficiency of the electrons e ⁇ can be improved.
- the electron affinity increases in the order of the electron transport layer 10, the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B.
- electrons move stepwise through the light emitting layer having a small electron affinity difference, so that the electron transport efficiency can be improved.
- each of the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B contains quantum dot particles, and the stacked red pixel light emitting layer 8R and green light In the pixel light emitting layer 8G, the red pixel light emitting layer 8R, and the blue pixel light emitting layer 8B, the particle diameter of the quantum dot particles included in the red pixel light emitting layer 8R located closer to the cathode 12 than to the anode 4 is larger.
- a light emitting layer having a large particle size of quantum dot particles emits a longer wavelength than a light emitting layer having a small particle size of quantum dot particles. For this reason, when the light emitting layers of each color are stacked, the red pixel light emitting layer 8R that emits the longest wavelength among the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B is located on the cathode 12 side. Will do.
- the light emitting layer closest to the anode 4 has five or more quantum dot particles.
- the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B are formed at the interface between the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, the blue pixel light emitting layer 8B, and the hole transport layer 6.
- a color corresponding to the red pixel light emitting layer 8R / green pixel light emitting layer 8G / blue pixel light emitting layer 8B is emitted.
- the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B are thin, that is, when the number of quantum dot particles is less than 5, the red pixel light emission near the stacked cathode 12 is performed. Since the layer 8R also exists near the interface with the hole transport layer 6, the red pixel light emitting layer 8R on the side closer to the stacked cathode 12 may emit light. As a result, color mixing can occur due to light emission of the green pixel light emitting layer 8G or blue pixel light emitting layer 8B closest to the hole transport layer 6 and light emission of the red pixel light emitting layer 8R near the stacked cathode 12. There is.
- the light emitting layer closest to the anode 4 has five or more quantum dot particles.
- the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B in contact with the hole transport layer 6 have five or more quantum dot particles. For this reason, even if the red pixel light emitting layer 8R is stacked on the green pixel light emitting layer 8G and the blue pixel light emitting layer 8B, the possibility of color mixture is small.
- the red pixel light emitting layer 8R which is the light emitting layer 8 formed on the patterned green pixel light emitting layer 8G and blue pixel light emitting layer 8B, includes the red sub-pixel RP
- the film thickness is different for each of the green sub-pixel GP and the blue sub-pixel BP.
- the thickness of the upper red pixel light emitting layer 8R in the green sub pixel GP and the blue sub pixel BP on which the light emitting layer 8 is laminated is the same as the thickness of the red pixel in the red sub pixel RP on which the light emitting layer 8 is not laminated.
- the thickness is smaller than the thickness of the light emitting layer 8R.
- the red pixel light emitting layer 8R of the green sub pixel GP and the blue sub pixel BP is thinner than the red pixel light emitting layer 8R of the red sub pixel RP, a voltage increase due to an increase in film thickness can be suppressed.
- the red pixel anode 4R, the green pixel anode 4G, and the blue pixel anode 4B which are the anodes 4, the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B And the common electrode of the cathode 12 are stacked in this order.
- the light-emitting layer 8 is stacked in the order of the blue pixel light-emitting layer 8B, the green pixel light-emitting layer 8G, and the red pixel light-emitting layer 8R in order of decreasing electron affinity.
- the light emitting element 2A having a so-called normal structure, the light emitting element 2A capable of reducing the number of times of patterning the red pixel light emitting layer 8R can be provided.
- the stacked light emitting layers for example, between the red pixel light emitting layer 8R and the green pixel light emitting layer 8G, or between the red pixel light emitting layer 8R and the blue pixel light emitting layer 8B, for example.
- the red pixel light emitting layer 8R and the green pixel light emitting layer are provided between the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, the blue pixel light emitting layer 8B, and the electron transport layer 10. It can be assumed that a charge transport stopper layer (not shown) having a larger band gap than the 8G blue pixel light emitting layer 8B is provided.
- the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B may contain a photosensitive resin.
- the green pixel light emitting layer 8G and the blue pixel light emitting layer 8B can be patterned by exposure and development. .
- the planar shapes of the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B are the same as those shown in FIGS. 8A, 8B, 8C, and 8D. As shown, each color is different. Thereby, sub-pixels of various patterns can be formed.
- light emitting element 2A of the present embodiment between light emitting layer 8 and cathode 12, or between electron transporting layer 10 and cathode 12, which is a common electrode bonded to electron transporting layer 10, is not shown.
- An electron injection layer which is a charge injection layer can be provided.
- electron e ⁇ is transported between the cathode 12 and the electron transport layer 10 via the electron injection layer.
- the electron transport efficiency between the cathode 12 and the electron transport layer 10 can be improved.
- a hole injection layer (not shown) serving as a charge injection layer is provided between the light-emitting layer 8 and the anode 4 or between the hole transport layer 6 and the anode 4. It can be said that. Thereby, the transport of the holes h + between the anode 4 and the hole transport layer 6 is performed via the hole injection layer. As a result, the hole transport efficiency between the anode 4 and the hole transport layer 6 can be improved.
- the electron transport layer 10, the hole transport layer 6, the electron injection layer, and the hole injection layer include at least three color red pixel light emitting layers 8R, green pixel light emitting layers 8G, Regardless of the blue pixel light emitting layer 8B, each is formed of a common material.
- the electron transport between the sub-pixel electrode or the common electrode and the electron transport layer is performed under the same conditions for the three color sub-pixels via the electron injection layer. It is possible to do.
- an edge cover 16 is provided between each of the red sub-pixel RP, the green sub-pixel GP, and the blue sub-pixel BP as an insulating layer separating the sub-pixels. Also, between the edge cover 16 and the cathode 12 serving as a common electrode, a red pixel light emitting layer of a color having the largest electron affinity among the three color red pixel light emitting layers 8R, green pixel light emitting layers 8G, and blue pixel light emitting layers 8B. 8R are formed.
- the red sub-pixel RP, the green sub-pixel GP, and the blue sub-pixel BP are surely separated by the edge cover 16, and the red pixel light emitting layer 8 ⁇ / b> R of the color having the highest electron affinity is provided regardless of the presence or absence of the edge cover 16. It is formed.
- the red pixel light emitting layer 8R of the color having the highest electron affinity can be formed between the pixel electrodes. Therefore, in the process of forming the red sub-pixel RP, the presence or absence of the edge cover 16 is not affected.
- the light emitting device 1A according to the present embodiment includes the light emitting element 2A according to the present embodiment. Accordingly, it is possible to provide a light emitting device 1A including the light emitting element 2A that can reduce the number of times of patterning of the red sub-pixel RP, the green sub-pixel GP, and the blue sub-pixel BP.
- the method for manufacturing the light emitting element 2A includes a cathode anode forming step of forming the pixel electrode as the anode 4 and the common electrode as the cathode 12.
- the red pixel light emitting layer 8R of the color having the largest electron affinity among the red pixel light emitting layers 8R, green pixel light emitting layers 8G, and blue pixel light emitting layers 8B of at least three colors is replaced with the green pixel light emitting layers 8G and blue of the other colors.
- An extending step of extending the pixel emitting layer 8B and the cathode 12 in a stacked state is also included.
- the red pixel light emitting layer 8R of the color having the largest electron affinity among the three color red pixel light emitting layer 8R, green pixel light emitting layer 8G, and blue pixel light emitting layer 8B is replaced with the green pixel light emitting layer 8G and the blue pixel of the other colors.
- the sub-pixels are three color sub-pixels RP, green sub-pixels GP, and blue sub-pixels BP.
- the number of colors is not limited to three, and sub-pixels of other colors can be added.
- the light-emitting layer 8 includes a green pixel light-emitting layer 8G and a blue pixel light-emitting layer 8B arranged side by side in a pattern, and the red pixel light-emitting layer 8R All over the pixel without patterning.
- the green pixel light emitting layer 8G is also patterned. The difference is that they are arranged without being converted.
- FIG. 9A is a cross-sectional view illustrating a configuration of a light emitting device 1B including a light emitting element 2B according to the present embodiment.
- FIG. 9B is a cross-sectional view showing the light emission efficiency when the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B are stacked as the light emitting layer 8.
- the light emitting element 2B of the light emitting device 1B has a green pixel light emitting layer 8G of a color having the second largest electron affinity among the quantum dot light emitting layers of three colors.
- the red pixel light emitting layer 8R of the color having the largest electron affinity and the blue pixel light emitting layer 8B of the remaining color also extend in a stacked state.
- the cathode (cathode electrode) 12 which is a common electrode, is formed in common for a plurality of pixels.
- the red pixel light emitting layer 8R is not patterned and covers the anodes 4 of all the pixels.
- the green pixel light emitting layer 8G is patterned and covers the green pixel anode 4G and the blue pixel anode 4B, but does not cover the red pixel anode 4R.
- the blue pixel light emitting layer 8B is patterned without covering the red pixel anode 4R and the green pixel anode 4G.
- the thickness of the green pixel light emitting layer 8G is different between the green pixel anode 4G and the blue pixel anode 4B. It may be thicker than on the green pixel anode 4G and on the blue pixel anode 4B. Specifically, the thickness t8Gg of the green pixel light emitting layer 8G above the green pixel anode 4G may be larger than the thickness t8Gb of the green pixel light emitting layer 8G above the blue pixel anode 4B.
- the thickness of the red pixel light emitting layer 8R is different on each pixel electrode, and the thickness of the red pixel light emitting layer 8R is on the red pixel anode 4R, on the green pixel anode 4G and on the blue pixel anode 4B.
- the thickness of the red pixel light emitting layer 8R may be greater on the green pixel anode 4G than on the blue pixel anode 4B.
- the thickness t8Rb may be 8R.
- the anode 4 is divided into a red sub-pixel RP, a green sub-pixel GP, and a blue sub-pixel BP, so that different voltages can be applied to adjacent sub-pixels.
- the green pixel light emitting layer 8G and the blue pixel light emitting layer 8B which are different from the red pixel light emitting layer 8R of the color having the highest electron affinity among the quantum dot light emitting layers of at least three colors, are patterned.
- the red pixel light emitting layer 8R of the color having the largest electron affinity among the three color quantum dot light emitting layers is formed on the entire surface of the light emitting layer 8 without forming a pattern.
- the red pixel light emitting layer 8R having the highest electron affinity among the three color quantum dot light emitting layers does not require a patterning step, the entire patterning step is performed by the green pixel light emitting layer 8G and the blue pixel light emitting layer 8B. Two times for color is enough. For this reason, it is possible to suppress the process steps from being lengthened, and to reduce the cost associated with the pattern mask.
- the electron affinity increases in the order of the electron transport layer 10, the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B.
- the electron transport efficiency between the electron transport layer 10, the red pixel light-emitting layer 8R, the green pixel light-emitting layer 8G, and the blue pixel light-emitting layer 8B is determined by the electron transport layer 10, the red pixel light-emitting layer 8R, the green pixel light-emitting layer 8G, and the blue. It is determined by the magnitude of each electron affinity of the pixel light emitting layer 8B.
- the valence band level V.I. B. (Equivalent to the ionization potential) has a small change in the particle size (emission color), but the conduction band level C.I. B. (Equivalent to electron affinity) varies with particle size (emission color).
- the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B are stacked in three stages. As a result, as shown in FIG.
- the red pixel light emitting layer 8R which is the light emitting layer having the highest electron affinity
- the green pixel light emitting layer which is the light emitting layer having the second highest electron affinity. It is provided between the layer 8G and the electron transport layer 10.
- the red pixel light emitting layer 8R and the green pixel light emitting layer 8G are provided between the blue pixel light emitting layer 8B having the smallest electron affinity and the electron transport layer 10.
- FIG. 10 are plan views showing a simple stripe pixel array of this embodiment and a method of forming a quantum dot light emitting layer of each color.
- FIG. 11 are plan views showing a method of forming a quantum dot light emitting layer of each color other than the simple stripe pixel arrangement and the color of the present embodiment.
- the pattern shape in one pixel of the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B has the same periodic arrangement.
- a blue pixel light emitting layer 8B is pattern-formed, and then the green pixel light emitting layer 8G is It is possible to form a pattern by overlapping the pixel light emitting layer 8B, and finally, to form a red pixel light emitting layer 8R without a pattern on the entire surface of the pixel.
- a red pixel light emitting layer 8R and a blue pixel light emitting layer 8B are provided next to a row of thin green pixel light emitting layers 8G.
- the pixels are alternately arranged in the vertical direction, a row of thin green pixel light emitting layers 8G is again arranged next to the row, and the blue pixel light emitting layers 8B and the red pixel light emitting layers 8R are alternately arranged next to the rows. They can be arranged vertically.
- the pattern shapes in one pixel of the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B have different periodic arrangements.
- a blue pixel light emitting layer 8B is pattern-formed, and then a green pixel light emitting layer 8G is formed as shown in FIGS.
- a pattern can be formed in the area of the green pixel light emitting layer 8G and the area of the blue pixel light emitting layer 8B, and finally, a red pixel light emitting layer 8R can be formed on the entire surface of the pixel without a pattern.
- FIGS. 8A, 8B, 8C and 8D are examples of an array.
- the light-emitting element 2B of the light-emitting device 1B has the green color of the second largest electron affinity among the three-color red pixel light-emitting layer 8R, green pixel light-emitting layer 8G, and blue pixel light-emitting layer 8B.
- the pixel light emitting layer 8G extends in a state of being stacked between the red pixel light emitting layer 8R of the color having the highest electron affinity and the blue pixel light emitting layer 8B of the remaining color.
- the green pixel light emitting layer 8G having the second highest electron affinity is extended in a state of being stacked on the blue pixel light emitting layer 8B having the third highest electron affinity, that is, the lowest electron affinity.
- the red pixel light emitting layer 8R having the highest electron affinity is extended from above on the green pixel light emitting layer 8G having the second highest electron affinity.
- the blue pixel light emitting layer 8B, the green pixel light emitting layer 8G, and the red pixel light emitting layer 8R are stacked in three stages.
- the patterning step of the red pixel light emitting layer 8R is not required in this embodiment, so that the entire patterning step is performed twice for one color. Therefore, it is possible to further suppress the lengthening of the process steps and further reduce the cost associated with the pattern mask.
- the light emitting element 2A of the light emitting device 1A according to the first embodiment and the light emitting element 2B of the light emitting device 1B according to the second embodiment are composed of light emitting elements 2A and 2B having a so-called normal structure.
- the light emitting element 2C of the light emitting device 1C of the present embodiment is different from the light emitting element 2C in that the light emitting element 2C has a so-called inverted structure.
- FIG. 12 is a cross-sectional view illustrating a configuration of a light emitting device 1C including a light emitting element 2C according to the present embodiment.
- the light emitting element 2C of the light emitting device 1C of the present embodiment is composed of a so-called inverted light emitting element 2C, and a cathode (cathode electrode) 12 is provided on the array substrate (not shown).
- a red pixel cathode 12R, a green pixel cathode 12G, a blue pixel cathode 12B comprising a cathode (cathode electrode) 12, an electron transport layer 10, A light-emitting layer 8, a hole transport layer 6, and a common electrode composed of an anode (anode electrode) 4 are stacked in this order.
- a red pixel light emitting layer 8R is formed on the electron transport layer 10, and a green pixel light emitting layer 8G and a blue pixel light emitting layer 8R are formed in a part of the red pixel light emitting layer 8R.
- the light emitting layer 8B is stacked, and the hole transport layer 6 is provided on the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B.
- the red pixel light emitting layer 8R is formed between the red pixel cathode 12R and the anode 4.
- the red pixel light emitting layer 8R and the green pixel light emitting layer 8G are stacked between the green pixel cathode 12G and the anode 4.
- a red pixel light emitting layer 8R and a blue pixel light emitting layer 8B are stacked between the blue pixel cathode 12B and the anode 4.
- the light-emitting element 2C having a so-called inverted structure capable of reducing the number of times of patterning the light-emitting layer 8 can be provided.
- FIGS. (A) to (e) of FIG. 13 are cross-sectional views illustrating respective steps in a method for manufacturing the light-emitting element 2C in the present embodiment.
- the electron transport layer 10 is patterned on a cathode 12 which is a pixel electrode electrically connected to an array substrate (not shown). Without it, it is formed by coating, vapor deposition, printing, transfer and the like.
- a red pixel light emitting layer 8R is formed over the entire pixel.
- the forming method is, for example, photolithography, inkjet, electrodeposition, lift-off, printing, transfer, and the like.
- a green pixel light emitting layer 8G is formed by patterning only on the green sub-pixel GP.
- the formation method can be performed by, for example, photolithography, inkjet, electrodeposition, lift-off, printing, transfer, and the like.
- a blue pixel light emitting layer 8B is formed adjacent to the green pixel light emitting layer 8G by patterning only the blue sub-pixel BP.
- the formation method can be performed by, for example, photolithography, inkjet, electrodeposition, lift-off, printing, transfer, and the like.
- the hole transport layer 6 is formed on all the pixels without patterning.
- the forming method is, for example, coating, vapor deposition, printing, transfer, or the like.
- the anode 4 as a common electrode is formed on the hole transport layer 6 so as to cover the cathode 12 as a sub-pixel electrode of each color.
- the forming method is, for example, coating, vapor deposition, printing, transfer, or the like.
- the light emitting element 2C can be formed, and the light emitting device 1C is completed.
- the light-emitting element 2C of the light-emitting device 1C includes the sub-pixel electrode of the cathode 12, the electron transport layer 10, the red pixel light-emitting layer 8R, the green pixel light-emitting layer 8G, and the blue pixel light-emitting layer 8B.
- the hole transport layer 6 and the common electrode of the anode 4 are stacked in this order.
- a red pixel light emitting layer 8R and a green pixel light emitting layer 8G are stacked in this order between the green pixel cathode 12G and the anode 4.
- a red pixel light emitting layer 8R and a blue pixel light emitting layer 8B are stacked in this order between the blue pixel cathode 12B and the anode 4.
- a light emitting element 2C capable of reducing the number of times of patterning of the red pixel light emitting layer 8R, the green pixel light emitting layer 8G, and the blue pixel light emitting layer 8B in the light emitting element 2C having a so-called inverted structure.
- the light-emitting element 2D of the light-emitting device 1D includes a light-emitting element 2D having a so-called inverted structure, and a stack of a red pixel light-emitting layer 8R, a green pixel light-emitting layer 8G, and a blue pixel light-emitting layer 8B of the light-emitting layer 8.
- the state is the same as in the second embodiment, except that the green pixel light emitting layer 8G is also stacked on the blue pixel light emitting layer 8B.
- FIG. 14 is a cross-sectional view illustrating a configuration of a light emitting device 1D including the light emitting element 2D according to the present embodiment.
- the light emitting element 2D of the light emitting device 1D includes a light emitting element 2D having a so-called inverted structure, a red pixel light emitting layer 8R is stacked on a green pixel cathode 12G and a blue pixel cathode 12B, and The pixel light emitting layer 8G is also stacked on the blue pixel cathode 12B.
- a red pixel cathode 12R, a green pixel cathode 12G, a blue pixel cathode 12B comprising a cathode (cathode electrode) 12, an electron transport layer 10,
- the light emitting layer 8, the hole transport layer 6, and the common electrode including the anode 4 are stacked in this order.
- the red pixel light emitting layer 8R is formed on the electron transport layer 10 without patterning the entire pixel.
- a green pixel light emitting layer 8G is pattern-formed in a region of the green sub-pixel GP and a region of the blue sub-pixel BP.
- the blue pixel light emitting layer 8B is pattern-formed on a part of the green pixel light emitting layer 8G.
- the hole transport layer 6 is provided on the light emitting layer 8.
- the red pixel light emitting layer 8R is formed between the red pixel cathode 12R and the anode 4.
- the red pixel light emitting layer 8R and the green pixel light emitting layer 8G are stacked between the green pixel cathode 12G and the anode 4.
- a red pixel light emitting layer 8R, a green pixel light emitting layer 8G, and a blue pixel light emitting layer 8B are stacked between the blue pixel cathode 12B and the anode 4.
- the light-emitting element 2D having a so-called inverted structure capable of reducing the number of times of patterning the light-emitting layer 8 can be provided.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
各色の発光層のパターニング回数を低減し得る発光素子、発光デバイス、及び発光素子の製造方法を提供する。発光素子(2A)は、少なくとも3色のサブ画素毎に設けられた赤色画素陽極(4R)・緑色画素陽極(4G)・青色画素陽極(4B)と、陰極(12)と、赤色画素陽極(4R)・緑色画素陽極(4G)・青色画素陽極(4B)と陰極(12)との間にそれぞれ設けられた赤色画素発光層(8R)・緑色画素発光層(8G)・青色画素発光層(8B)とを備える。赤色画素発光層(8R)・緑色画素発光層(8G)・青色画素発光層(8B)のうち電子親和力の最も大きい色の赤色画素発光層(8R)は、緑色画素発光層(8G)及び青色画素発光層(8B)と陰極(12)との間にも積層された状態で延設されている。
Description
本発明は、各色の発光層を備えた発光素子、該発光素子を備えた発光デバイス、発光素子の製造方法に関するものである。
有機EL素子におけるカラー表示の方式として、例えば、赤色(R)、緑色(G)、青色(B)の各色の発光材料を成膜する3色塗り分け方式がある。この方式では、赤色(R)、緑色(G)、青色(B)それぞれの発光材料を、精巧にパターニングされているメタルシャドーマスクを使用して熱蒸着をする。
この場合、メタルシャドーマスクは高価であるので、使用回数を低減する開発が進められている。
例えば、特許文献1に開示されたる有機発光ディスプレイ装置100では、図15に示すように、基板101の上部の赤色サブピクセルR、緑色サブピクセルG及び青色サブピクセルBに備えられた各第1電極120と、各第1電極120を覆うように基板101の上部に備えられた正孔注入層131と、正孔注入層131の上部に備えられた正孔輸送層133と、赤色サブピクセルRにおける正孔注入層131と正孔輸送層133との間に備えられた補助層132Rと、赤色サブピクセルRの正孔輸送層133及び緑色サブピクセルGの正孔輸送層133と電子輸送層135との間にそれぞれ順次形成された赤色発光層134R及び緑色発光層134Gと、青色サブピクセルBにおける正孔輸送層133と電子輸送層135との間に備えられた青色発光層134Bとを備えている。
この構成では、赤色発光層134Rと緑色発光層134Gとを積層方式で備えると共に、赤色サブピクセルRと緑色サブピクセルGとを共通層として備えている。その結果、緑色サブピクセルGに補助層132Rを形成するためのさらなるメタルシャドーマスクの使用が不要になる。このため、4回のメタルシャドーマスクの使用により、工程を単純化させることができるようになっている。
しかしながら、上記従来の特許文献1に開示された有機発光ディスプレイ装置等の塗分け型の発光素子では、発光層の塗分けは少なくとも赤色サブピクセルR、緑色サブピクセルG及び青色サブピクセルBの3回必要となり、プロセス工程も長くなるという課題がある。
本発明は、前記従来の問題点に鑑みなされたものであって、その目的は、各色の発光層のパターニング回数を低減し得る発光素子、発光デバイス、及び発光素子の製造方法を提供することにある。
本発明の一態様における発光素子は、前記の課題を解決するために、少なくとも3色のサブ画素毎に設けられた画素電極と、前記各画素電極に対向して設けられた共通電極と、前記各画素電極と前記共通電極との間にそれぞれ設けられた各色の発光層とを備えた発光素子において、前記画素電極又は前記共通電極のうちいずれか一方が陰極となっており、かつ他方が陽極となっていると共に、前記少なくとも3色の発光層のうち電子親和力の最も大きい色の発光層は、他の色の各発光層と前記陰極との間にも積層された状態で延設されていることを特徴としている。
本発明の一態様における発光デバイスは、前記の課題を解決するために、前記発光素子を備えていることを特徴としている。
本発明の一態様における発光素子の製造方法は、前記の課題を解決するために、少なくとも3色のサブ画素毎に設けられた画素電極と、前記各画素電極に対向して設けられた共通電極と、前記各画素電極と前記共通電極との間にそれぞれ設けられた各色の発光層とを備えた発光素子の製造方法において、前記画素電極又は前記共通電極のうちいずれか一方を陰極として形成し、かつ他方を陽極として形成する陰極陽極形成工程と、前記少なくとも3色の発光層のうち電子親和力の最も大きい色の発光層を、他の色の各発光層と前記陰極との間にも積層した状態で延設する延設工程とを含むことを特徴としている。
本発明の一態様によれば、各色の発光層のパターニング回数を低減し得る発光素子、発光デバイス、及び発光素子の製造方法を提供するという効果を奏する。
〔実施の形態1〕
本発明の一実施形態について図1~図8に基づいて説明すれば、以下のとおりである。
本発明の一実施形態について図1~図8に基づいて説明すれば、以下のとおりである。
(発光素子の基本構成)
本実施の形態の発光素子は、量子ドットを含む発光素子について適用される。最初に、本発明の実施の形態における発光素子2Aを備えた発光デバイス1Aの基本構成について、図1に基づいて説明する。図1は、本実施の形態における発光素子2Aを備えた発光デバイス1Aの基本構成を示す断面図である。
本実施の形態の発光素子は、量子ドットを含む発光素子について適用される。最初に、本発明の実施の形態における発光素子2Aを備えた発光デバイス1Aの基本構成について、図1に基づいて説明する。図1は、本実施の形態における発光素子2Aを備えた発光デバイス1Aの基本構成を示す断面図である。
本実施の形態における基本構成の発光素子2Aを備えた発光デバイス1Aは、図1に示すように、図示しないTFT(Thin Film Transistor)が形成されたアレイ基板上に、発光素子2Aの各層が積層された構造を備えている。尚、本明細書においては、発光デバイス1Aの発光素子2Aからアレイ基板への方向を「下方向」として記載し、発光デバイス1Aのアレイ基板から発光素子2Aへの方向を「上方向」として記載する。
発光素子2Aは、陽極(アノード電極)4上に、正孔輸送層6と、発光層8と、電子輸送層10と、陰極(カソード電極)12とをこの順に備えている。図示しないアレイ基板の上層に形成された発光素子2Aの陽極4は、アレイ基板のTFTと電気的に接続されている。この結果、本実施の形態の基本構成の発光素子2Aは、所謂、ノーマル構造の発光素子となっている。
ここで、本実施の形態においては、陽極4は、絶縁層からなるエッジカバー16によって、赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPに分離されている。この結果、陽極4は、エッジカバー16によって、赤色画素陽極4R、緑色画素陽極4G及び青色画素陽極4Bに分離されている。正孔輸送層6は、エッジカバー16を覆うように形成されている。発光層8は、赤色量子ドット発光層としての赤色画素発光層8R、緑色量子ドット発光層としての緑色画素発光層8G、及び青色量子ドット発光層としての青色画素発光層8Bに、エッジカバー16の位置で区画が分離されている。ただし、エッジカバー16によって分離されているのではない。
電子輸送層10と陰極12とは、エッジカバー16によっては分離されず、共通して形成されている。エッジカバー16は、図1に示すように、陽極4の側面と上面の周囲端部付近とを覆う位置に形成されていてもよい。
前記構成の結果、本実施の形態における発光素子2Aにおいては、島状の赤色画素陽極4Rと、共通の正孔輸送層6、電子輸送層10及び陰極12とによって、前記赤色サブ画素RPを形成する。同様に、島状の緑色画素陽極4Gと、共通の正孔輸送層6、電子輸送層10及び陰極12とによって、前記緑色サブ画素GPを形成する。同様に、島状の青色画素陽極4Bと、共通の正孔輸送層6、電子輸送層10及び陰極12とによって、前記青色サブ画素BPを形成する。発光層8においては、本実施の形態では、赤色画素陽極4Rと陰極12の間には赤色画素発光層8Rが形成されており、緑色画素陽極4Gと陰極12の間には緑色画素発光層8Gと赤色画素発光層8Rとが積層されて形成されており、青色画素陽極4Bと陰極12の間には青色画素発光層8Bと赤色画素発光層8Rとが積層されて形成されている。尚、本実施の形態の発光素子2Aは、前述したように、赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPの3色のサブ画素からなっている。
本実施の形態においては、赤色サブ画素RPに含まれる赤色画素発光層8Rは赤色光を発光し、緑色サブ画素GPに含まれる緑色画素発光層8Gは緑色光を発光し、青色サブ画素BPに含まれる青色画素発光層8Bは青色光を発光する。すなわち、発光素子2Aは、発光層8の発光波長毎に、サブ画素を備えている。ただし、発光素子2Aは、前述したように、正孔輸送層6、電子輸送層10及び陰極12を、全てのサブ画素に共通して備えている。
ここで、赤色光とは、600nmを越え780nm以下の波長帯域に発光中心波長を有する光のことである。また、緑色光とは、500nmを越え600nm以下の波長帯域に発光中心波長を有する光のことである。さらに、青色光とは、400nm以上500nm以下の波長帯域に発光中心波長を有する光である。
本実施の形態における発光素子2Aにおいては、赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPをそれぞれ1つずつ含む一群が、発光素子2Aにおける1つの画素となっている。尚、本実施の形態では、赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPの少なくとも3色のサブ画素となっているが、他の色のサブ画素を含んでいてもよい。すなわち、本発明の一態様においては、少なくとも赤色、緑色及び青色の少なくとも3色のサブ画素を含んでいればよい。
陽極4及び陰極12は導電性材料を含み、それぞれ、正孔輸送層6及び電子輸送層10と電気的に接続されている。陽極4と陰極12とのいずれか一方は、透明電極である。本実施の形態においては、陰極12が透明電極であり、例えば、ITO、IZO、AZO、GZO、In2O3、薄いAg、Agを含む薄い合金、Agナノワイヤ又はカーボンナノチューブ、グラフェン等が用いられている。陰極12は、例えばスパッタ法、真空蒸着、溶液塗布等によって成膜することも可能である。陽極4又は陰極12のいずれか一方は、反射率の高い金属材料を含んでいてもよい。本実施の形態においては、陽極4は金属材料を含む。金属材料としては、可視光の反射率の高いAl、Cu、Au、Ag、Mg、Pt、Pd、Ni、Nd、Ir、Cr又はこれらの合金等やこれらを含む多層膜が好ましい。発光素子2Aは、透明電極を備えた電極側から、光を取り出すことが可能である。したがって、本実施の形態においては、発光素子2Aは、陰極12側から光を取り出すことが可能である。
発光層8は、陽極4から輸送された正孔h+と、陰極12から輸送された電子e-との再結合が発生することにより光を発する。本実施の形態においては、発光材料として、複数の同色に発光する量子ドット(半導体ナノ粒子)を、各サブ画素に備えている。量子ドットは同じ材料でも粒径によって発光色が異なり、粒径が小さくなるに伴って光波長は短くなる。したがって、同色で発光する量子ドットとは、同じ材料の同じ粒径の量子ドットを意味する。ここで示した量子ドットの「粒径」は、設計値であり、実際には動的光散乱法や透過型電子顕微鏡により測定した中央粒径を指すものとする。量子ドット個々の粒径は、ばらつきを含むものであり、20%程度のばらつきがあってもよい。
図1に示すように、発光層8は、赤色画素発光層8Rに赤色量子ドットQDRを備え、緑色画素発光層8Gに緑色量子ドットQDGを備え、さらに、青色画素発光層8Bに青色量子ドットQDBを備えている。すなわち、発光層8は、複数種の量子ドットを備えている。
発光層8は、ヘキサン又はトルエン等の溶媒に量子ドットを分散させた分散液を用いて、スピンコート法又はインクジェット法等によって、サブ画素毎の塗り分けを行うことにより、成膜することができる。分散液にはチオール又はアミン等の分散材料を混合してもよい。
前記赤色量子ドットQDR・緑色量子ドットQDG・青色量子ドットQDBは、価電子帯準位V.B.(イオン化ポテンシャルに等しい)と伝導帯準位C.B.(電子親和力に等しい)とのエネルギーをそれぞれ有し、価電子帯準位V.B.の正孔と伝導帯準位C.B.の電子との再結合によって発光する発光材料である。赤色量子ドットQDR・緑色量子ドットQDG・青色量子ドットQDBからの発光は、量子閉じ込め効果によって狭いスペクトルを有するため、比較的深い色度の発光を得ることが可能である。
赤色量子ドットQDR・緑色量子ドットQDG・青色量子ドットQDBは、例えば、Cd、S、Te、Se、Zn、In、N、P、As、Sb、Al、Ga、Pb、Si、Ge、Mg、及びこれらの化合物を含む群から選択される1又は複数の半導体材料を含んでもよい。また、赤色量子ドットQDR・緑色量子ドットQDG・青色量子ドットQDBは、二成分コア型、三成分コア型、四成分コア型、コアシェル型又はコアマルチシェル型であってもよい。さらに、赤色量子ドットQDR・緑色量子ドットQDG・青色量子ドットQDBは、ドープされたナノ粒子を含んでいてもよく、又は組成傾斜した構造を備えていてもよい。本実施の形態においては、赤色量子ドットQDR・緑色量子ドットQDG・青色量子ドットQDBは、CdSeをコアに備え、かつZnSやZnSをシェルに備えたコアシェル型構造を有している。尚、上述したコアシェル型及びコアマルチシェル型の場合は、量子ドットの粒径がシェル部分を含んだものとなり、発光波長に寄与するコアの粒径よりも見かけ上大きくなる。本発明の一態様における量子ドットの「粒径」とは、発光波長に寄与するコアの粒径を指すものとする。
正孔輸送層6は、陽極4からの正孔h+を発光層8へと輸送する。正孔輸送層6は、電子e-の輸送を阻害する機能を有していてもよい。正孔輸送層6は、無機材料からなり、例えばNiOからなっている。正孔輸送層6は、スパッタ法によって、成膜されていてもよい。
電子輸送層10は、陰極12からの電子e-を発光層8へと輸送する。電子輸送層10は、正孔h+の輸送を阻害する機能を有していてもよい。電子輸送層10は、例えば、ZnO、TiO2、MgZnO、Ta2O3、SrTiO3、又はMgxZn(1-x)Oを含んでいてもよく、又はこれらの内の複数の材料を含んでいてもよい。電子輸送層10は、スパッタ法又は前記電子輸送層材料からなるコロイド粒子を塗布することによって、成膜されていてもよい。
次に、本実施の形態における発光素子2Aに用いる各層における価電子帯準位V.B.(イオン化ポテンシャルに等しい)と伝導帯準位C.B.(電子親和力に等しい)との一例を示すエネルギーについて、図2の(a)(b)(c)(d)に基づいて説明する。図2の(a)は、赤色画素発光層8R、緑色画素発光層8G、及び青色画素発光層8Bのそれぞれに用いる材料の、電子親和力及びイオン化ポテンシャルの一例を示すエネルギーバンド図である。図2の(b)(c)(d)は、一般的な量子ドット発光素子の赤色サブ画素、緑色サブ画素、及び青色サブ画素の、各層における電子親和力とイオン化ポテンシャルとの一例を示すエネルギーバンド図である。つまり、図2の(a)(b)(c)(d)は、各色の発光層がそれぞれ一層からなっている場合の量子ドット発光素子について例示している。尚、図2の(b)(c)(d)においては、左から右に向かって、それぞれのサブ画素における、陽極、正孔輸送層、発光層、電子輸送層及び陰極のエネルギーバンド図を表している。また、陽極及び陰極においては、それぞれの電極のフェルミ準位を、eVを単位に示す。正孔輸送層、発光層、及び電子輸送層の下方においては、真空準位を基準とした、それぞれの層のイオン化ポテンシャルを、eVを単位に示す。また、正孔輸送層、発光層、及び電子輸送層の上方においては、真空準位を基準としたそれぞれの層の電子親和力を、eVを単位に示す。以下、本明細書において、単にイオン化ポテンシャル又は電子親和力を説明する場合、いずれも真空準位を基準としたものとして説明を行う。
量子ドットの価電子帯準位V.B.(イオン化ポテンシャルに等しい)は、同じ材料系の場合、量子ドットの発する光の波長によらず実質的に同値である。これは、量子ドットのコアを構成する元素の原子番号が小さい方が、閉殻軌道が少なく、閉殻軌道によって原子核が遮蔽され難いため、価電子が、原子核の作る電場の影響を受け易く、一定のエネルギー準位にとどまる傾向にあるためである。したがって、価電子準位に関しても、量子ドットの発光色に関わらず一定となる。例えば、コアの材料として、HgSe、CdSe、ZnSeを比較すると、HgよりもCd、さらにはZnの方が、原子番号が小さい。このため、CdSe、又はZnSeにおいては、価電子準位が発光色によらず一定になる。
一方、量子ドットの伝導帯準位C.B.(電子親和力に等しい)は、量子ドットの発する光の波長によって異なる。特に、量子ドットの伝導帯準位C.B.は、量子ドットの発する光の波長が長いほど、エネルギー準位が深くなり、量子ドットの発する光の波長が短いほど、エネルギー準位が浅くなる。これは、量子ドットの価電子帯準位V.B.の変化が小さいため、バンドギャップが小さい量子ドットの方が、より伝導帯準位C.B.が深くなるためである。
例えば、本実施の形態に用いる発光層材料において、赤色画素発光層8R、緑色画素発光層8G、及び青色画素発光層8Bは、図2の(a)に示すように、5.9eVのイオン化ポテンシャルをそれぞれ有し、異なるサブ画素間においても実質的に同値である。一方、本実施の形態において、赤色画素発光層8R、緑色画素発光層8G、及び青色画素発光層8Bは、図2の(a)に示すように、それぞれ、3.9eV、3.5eV及び3.2eVの電子親和力を有する。すなわち、赤色画素発光層8Rが、電子親和力が最も大きい。
本実施の形態に用いる材料構成の一例として、陽極4がAlからなる場合、及び陰極12がITOからなる場合を示している。この場合、陽極4のフェルミ準位は4.3eVであり、陰極12のフェルミ準位は4.6eVである。
本実施の形態に用いる材料を用いた一般的な発光素子においては、図2の(b)に示すように、赤色サブ画素において、赤色画素正孔輸送層が例えばNiOを含み、NiOの赤色画素正孔輸送層は、5.5eVのイオン化ポテンシャルと、1.8eVの電子親和力とを有する。また、図2の(c)に示すように、緑色サブ画素において、緑色画素正孔輸送層が例えばNiOを含み、NiOの緑色画素正孔輸送層は5.5eVのイオン化ポテンシャルと、1.8eVの電子親和力とを有する。さらに、図2の(d)に示すように、青色サブ画素において、青色画素正孔輸送層が例えばNiOを含み、NiOの青色画素正孔輸送層は、5.5eVのイオン化ポテンシャルと、1.8eVの電子親和力とを有する。
図2の(b)(c)(d)に示すように、本実施の形態で使用する材料の一例を用いた発光デバイスにおいて、陽極と陰極との間に電位差をかけることにより、陽極から発光層に向かって正孔h+が注入されると共に、陰極からは発光層に向かって電子e-が注入される。詳細には、正孔h+は陽極から正孔輸送層を介して発光層に到達すると共に、電子e-は陰極から電子輸送層を介して発光層に到達する。
発光層に到達した正孔h+と電子e-とは、それぞれのサブ画素における量子ドットQDR・QDG・QDBにおいて再結合し、発光する。量子ドットQDR・QDG・QDBからの発光は、例えば、金属電極である陽極によって反射され、透明電極である陰極を透過して、発光デバイスの外部に放射されてもよい。
発光素子の各層において、正孔h+及び電子e-が輸送される様子を、図2の(b)(c)(d)に基づいて説明する。
陽極と陰極との間に電位差が発生すると、図2の(b)(c)(d)において矢印HR1・HG1・HB1にてそれぞれ示すように、陽極からそれぞれのサブ画素における正孔輸送層6へと正孔h+が注入される。同様に、図2の(b)(c)(d)において矢印ER1・EG1・EB1にて示すように、陰極から電子輸送層へと電子e-が注入される。
ここで、例えば、第1層から、第1層とは異なる第2層への正孔輸送の障壁は、第2層のイオン化ポテンシャルから第1層のイオン化ポテンシャルを差し引いたエネルギーによって示される。このため、矢印HR1・HG1・HB1に示す正孔注入の障壁は、それぞれ1.2eVである。
また、例えば、第1層から、第1層とは異なる第2層への電子輸送の障壁は、第1層の電子親和力から第2層の電子親和力を差し引いたエネルギーによって示される。このため、矢印ER1・EG1・EB1に示す電子注入の障壁は、それぞれ0.6Vである。
次いで、図2の(b)(c)(d)において、矢印HR2・HG2・HB2に示すように、正孔輸送層に注入された正孔h+は、それぞれのサブ画素における発光層に輸送される。ここで、矢印HR2・HG2・HB2に示す正孔注入の障壁は、それぞれ0.4eVである。また、矢印ER2・EG2・EB2に示す電子輸送の障壁は、それぞれ0.1eV、0.5eV、0.8eVである。すなわち、電子輸送層から発光層へは、赤色画素発光層が最も障壁が低いので、電子e-が輸送され易く、青色画素発光層が最も障壁が高いので、電子e-が輸送され難い。
このようにして、発光層8に輸送された正孔h+と電子e-とが、量子ドットQDR・QDG・QDBにおいて再結合する。
一般に、量子ドットが積層された発光層を備える発光素子においては、量子ドットは厚み方向に5個から10個積層することが好ましい。すなわち、量子ドットにおける電子と正孔との再結合が、発光層の陽極側の端面付近の量子ドット5個以下程度の厚みで多く発生し、中央付近よりも陰極側においては発生し難い傾向がある。したがって、発光層における量子ドットの積層数が多くなり過ぎると、電気抵抗が高くなり、駆動電圧の上昇や発光効率の低下等が問題となる。
(発光層の形態)
本実施の形態の発光素子2Aの発光層の形態について、図1及び図3の(a)(b)(c)に基づいて説明する。図1は、本実施の形態における発光素子2Aを備えた発光デバイス1Aの構成を示す断面図である。図3の(a)は、発光層8が赤色画素発光層8Rである場合の発光効率を示す断面図である。図3の(b)は、発光層8が青色画素発光層8Bである場合の発光効率を示す断面図である。図3の(c)は、発光層8において赤色画素発光層8Rと青色画素発光層8Bとが積層された場合の発光効率を示す断面図である。
本実施の形態の発光素子2Aの発光層の形態について、図1及び図3の(a)(b)(c)に基づいて説明する。図1は、本実施の形態における発光素子2Aを備えた発光デバイス1Aの構成を示す断面図である。図3の(a)は、発光層8が赤色画素発光層8Rである場合の発光効率を示す断面図である。図3の(b)は、発光層8が青色画素発光層8Bである場合の発光効率を示す断面図である。図3の(c)は、発光層8において赤色画素発光層8Rと青色画素発光層8Bとが積層された場合の発光効率を示す断面図である。
前述したように、本実施の形態の発光デバイス1Aにおける発光素子2Aは、少なくとも3色のサブ画素を含む画素におけるサブ画素毎に設けられて電圧を印加するサブ画素電極と、各サブ画素電極に対向して設けられた共通電極としての陰極12と、各サブ画素電極と陰極12との間にそれぞれ設けられた各色の量子ドット発光層とを備えている。
この種の発光素子2Aでは、画素が少なくとも3色のサブ画素を含むので、各色の量子ドット発光層も色毎に3つが必要となる。このため、各色の量子ドット発光層のパターン形成においては、少なくとも3種類のパターンマスクが必要となり、パターニング工程が少なくとも3回繰り返されることにより、プロセス工程が長くなる。また、パターンマスクも安価ではないので、コストの増加となる。
そこで、本実施の形態では、図1に示すように、各色の量子ドット発光層と陰極12との間には電子輸送層10が共通して設けられている。また、3色の色量子ドット発光層のうち電子親和力の最も大きい色の赤色画素発光層8Rは、他の色の量子ドット発光層と電子輸送層10との間、つまり他の色の量子ドット発光層と陰極12との間にも積層された状態で延設されている。
具体的には、3色のサブ画素は、赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPであり、各色の量子ドット発光層は、赤色画素発光層8R、緑色画素発光層8G及び青色画素発光層8Bである。そして、電子親和力の最も大きい赤色画素発光層8Rが、他の色である緑色画素発光層8G及び青色画素発光層8Bと電子輸送層10との間に積層された状態で延設されている。
共通電極である陰極(カソード電極)12は、図1に示すように、複数の画素に共通して形成されている。
また、発光層8について、赤色画素発光層8Rは、パターニングされておらず、全画素を覆っている。緑色画素発光層8Gは、パターニングされているが、赤色サブ画素RP及び青色サブ画素BPを覆っていない。青色画素発光層8Bは、赤色サブ画素RP及び緑色サブ画素GPを覆っていない状態でパターニングされている。
陽極4について、赤色サブ画素RP・緑色サブ画素GP・青色サブ画素BPに区分けされており、それぞれ隣接するサブ画素と異なる電圧を印加することができるようになっている。
陽極4又は陰極12のいずれか一方は、可視光透過性を有している。また、陽極4と陰極12との仕事関数は異なっている。陽極4は、図示しないアレイ基板に設けられたTFT(Thin Film Transistor:薄膜トランジスタ)に接続されている。本実施の形態では、発光層8と陰極12との間に電子輸送層10が一層設けられている。電子輸送層10と陰極12との間に図示しない電子注入層が設けられていてもよい。本実施の形態では、電子輸送層10は全ての画素に共通して設けられており、電子輸送層10は全ての発光層8を覆っている。図1では、絶縁層からなるエッジカバー16が陽極4のサブ画素の各端縁部まで覆っているが、エッジカバー16がサブ画素の各端縁部まで覆っていなくてもよい。
ここで、量子ドットを含む発光素子2Aでは、発光層8内での正孔h+(ホール)の移動度が電子e-の移動度に比べて低い。このため、発光素子2Aにおいては、発光層8の陽極(アノード電極)4側で発光する。つまり、発光層8における該発光層8と正孔輸送層6との境界で発光する。
前述した構成の発光素子2Aでは、少なくとも3色の量子ドット発光層のうち電子親和力の最も大きい色の赤色画素発光層8Rとは異なる、緑色画素発光層8G及び青色画素発光層8Bは、パターン形成される。一方、3色の量子ドット発光層のうち電子親和力の最も大きい色の赤色画素発光層8Rは、パターン形成することなく、赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPの全面を覆うように形成されている。したがって、3色の量子ドット発光層のうち電子親和力の最も大きい赤色画素発光層8Rは、パターニング工程が不要となる。このため、全体のパターニング工程は緑色画素発光層8Gと青色画素発光層8Bとの2色分の2回で足りる。このため、プロセス工程が長くなるのを抑制すると共に、パターンマスクに伴う費用も削減することができる。
ところで、発光層8をこのような積層構造の形態にした場合、3色の量子ドット発光層のうち電子親和力の最も大きい赤色画素発光層8Rは、他の色である緑色画素発光層8G及び青色画素発光層8Bに積層された状態で形成されるので、所望の色を発光できるか否かが問題となる。この問題に関しては、前述したように、各色の量子ドット発光層を有する発光素子2Aでは、正孔h+の移動度が低いので、正孔輸送層6に近い発光層8において、正孔輸送層6との界面近傍の厚み方向で量子ドット5個以下程度の領域でのみ発光する。このため、正孔輸送層6に近い発光層8の厚みが量子ドット5個以上であれば、電子輸送層10側で赤色画素発光層8Rが緑色サブ画素GP及び青色サブ画素BPに形成されていても、赤色画素発光層8Rから発光することはなく、緑色サブ画素GP及び青色サブ画素BPの発光について一般的には問題となることはない。
それゆえ、発光層8のパターニング回数を低減し得る発光素子2Aを提供することができる。
ところで、前記においては、一般的には問題となることはないと記載した。この理由は、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bの各膜厚が薄い場合には、問題となることがあるためである。すなわち、発光は、発光層8と正孔輸送層6との界面で発光するが、例えば、赤色画素発光層8Rと緑色画素発光層8G、及び赤色画素発光層8Rと青色画素発光層8Bとが積層されている場合に、各膜厚が薄い場合、発光色が混色される虞がある。例えば、各膜厚が量子ドットQDR・QDG・QDBの粒子の1層ずつであった場合に、赤色画素発光層8Rと緑色画素発光層8Gとで積層された発光層8、及び赤色画素発光層8Rと青色画素発光層8Bとで積層された発光層8の発色光が混色される虞がある。この点で、量子ドットQDR・QDG・QDBは例えば5層以上であることが好ましい。或いは、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bのそれぞれの膜厚が例えば7.5nm以上であることが好ましい。これにより、発光色の混色を防止することができる。
また、図1では、赤色画素発光層8Rは赤色サブ画素RPの全てにおいて同じ厚みとなっていること意図しているが、必ずしもこれに限らず、緑色画素発光層8G・青色画素発光層8B上では赤色サブ画素RPよりも薄くなっていてもよい。例えば、赤色サブ画素RPの赤色画素発光層8Rの膜厚t8Rr>緑色サブ画素GPの赤色画素発光層8Rの膜厚t8Rg=青色サブ画素BPの赤色画素発光層8Rの膜厚t8Rbとなっていてもよい。
すなわち、段差のある下地上に膜を塗布形成すると段差の高い所では、段差の低い所に比べて膜は薄くなる。つまり、パターン化された発光層の上に形成される発光層は画素によって膜厚が異なっており、発光層が積層される画素では薄くなっていてもよい。薄くなることにより、膜厚増加による電圧上昇を抑制することが可能となる。
ここで、本実施の形態の発光素子2Aでは、図2の(a)(b)(c)(d)に示すように、電子親和力は、電子輸送層10、赤色画素発光層8R、緑色画素発光層8G、青色画素発光層8Bの順に大きい。
電子輸送層10と赤色画素発光層8R、緑色画素発光層8G及び青色画素発光層8Bとの電子輸送効率は、電子輸送層10に対する赤色画素発光層8R、緑色画素発光層8G、青色画素発光層8Bのそれぞれとの電子親和力の差、すなわち電子注入障壁の大きさに依存し、電子注入障壁が大きくなると電子輸送効率は低下する。
具体的には、II-VI族系半導体量子ドットの価電子帯準位(V.B.:イオン化ポテンシャルに等しい)は発光波長(発光色)での変化が小さいが、伝導帯準位(C.B.:電子親和力に等しい)は発光波長(発光色)で大きく変化する。この結果、図3の(a)に示すように、電子輸送層10から赤色画素発光層8Rへの電子注入障壁は小さいが、図3の(b)に示すように、電子輸送層10から青色画素発光層8Bへの電子注入障壁は大きい。このため、青色画素発光層8Bの発光効率は、赤色画素発光層8Rの発光効率よりも悪い。
これに対して、本実施の形態の発光素子2Aでは、赤色画素発光層8Rと他の緑色画素発光層8G又は青色画素発光層8Bとを積層している。この結果、図3の(c)に示すように、赤色画素発光層8Rを青色画素発光層8Bと電子輸送層10との間に挿入することにより、電子輸送層10と青色画素発光層8Bとの間の電子親和力の障壁が小さくなり、電子注入効率が高くなっている。
ここで、従来の赤色量子ドット発光層、緑色量子ドット発光層、青色量子ドット発光層が併設された発光層では、電子親和力を、電子輸送層、赤色量子ドット発光層、緑色量子ドット発光層、青色量子ドット発光層の順に大きいとした場合、電子輸送層から青色量子ドット発光層への電子輸送効率が最も悪い。電子輸送層と青色量子ドット発光層との電子親和力との差が最も大きいので、電子の移動エネルギーが最も大きくなるためである。
この点、本実施の形態においては、発光層8の全面において、赤色画素発光層8Rが電子輸送層10に直面しているので、緑色画素発光層8G及び青色画素発光層8Bでは、電子の移動エネルギーが最も小さい赤色画素発光層8Rを介して緑色画素発光層8G及び青色画素発光層8Bに電子e-が移動することになる。このことは、緑色画素発光層8G及び青色画素発光層8Bに対しても、電子親和力差が小さい赤色画素発光層8Rを介して段階的に電子が移動するので電子輸送効率を向上することができる。また、電子輸送層10と赤色画素発光層8R、又は赤色画素発光層8Rと青色画素発光層8Bとの電子親和力差に比べて、青色画素発光層8Bと正孔輸送層6との電子親和力差は大きい。この結果、電子e-の正孔輸送層6界面でのブロッキング効果を高く保つことができる。
前記構成の発光素子2Aの製造方法について、図4の(a)~(e)及び図5の(a)(b)に基づいて説明する。図4の(a)~(e)は、本実施の形態における発光素子2Aの製造方法における各工程を示す断面図である。図5の(a)(b)は、本実施の形態における発光素子の製造方法において赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bのいずれか1つを形成する方法を示す断面図である。
本実施の形態の発光素子2Aを製造する場合には、図4の(a)に示すように、図示しないアレイ基板と電気的に接続した画素電極である陽極4上に正孔輸送層6をパターニング無しで、塗布、蒸着等にて形成する。次いで、図4の(b)に示すように、青色画素発光層8Bを青色サブ画素BP上にのみ形成する。形成方法は、例えば、フォトリソ、インクジェット、電着、リフトオフ、転写等である。ここで、例えば、フォトリソにより形成する場合には、図5の(a)に示すように、青色量子ドットQDBを含有した感光性樹脂であるQDレジストを正孔輸送層6に塗布する。QDレジストの厚さは例えば20~100nmである。次いで、QDレジストをプリベークする。具体的には、80~120℃で溶媒を蒸発し、塗膜を乾燥させる。次いで、乾燥したQDレジストを、UV露光する。UV露光においては、例えば10~1000mJ/cm2の照射エネルギーを用いてマスクを介して露光する。次いで、図5の(b)に示すように、アルカリ溶液、有機溶媒又は水を用いて現像する。ここで、ポジ型レジストの場合はUV照射部が溶解する。一方、ネガ型レジストの場合は、UV非照射部が溶解する。
最後に、100~200℃にて本焼成を行う。尚、本焼成を行う際には、必要に応じて、UV感光性樹脂からのQLED素子動作時のガス放出を抑制する。
このようにして形成された例えば青色画素発光層8Bには、青色量子ドットQDB、リガンド及び感光性樹脂が含有されている。尚、駆動電圧において、感光性樹脂の導電率は低い。
次に、図4の(c)に示すように、緑色画素発光層8Gを緑色サブ画素GP上にのみ形成する。形成方法は、青色画素発光層8Bと同様に、例えば、フォトリソ、インクジェット、電着、リフトオフ、転写等にて行うことができる。
次に、図4の(d)に示すように、赤色画素発光層8Rを全画素上にパターニング無しで形成する。形成方法は、例えば、コロイド溶液の塗布等である。塗布形成した場合、緑色サブ画素GP及び青色サブ画素BPの上の赤色画素発光層8Rの膜厚を、赤色サブ画素RP上の赤色画素発光層8Rの膜厚よりも薄く形成することが可能となり、その結果、緑色サブ画素GP及び青色サブ画素BPの発光層8の膜厚を薄くすることが可能となる。したがって、駆動電圧の上昇を抑制することが可能となる。
次に、図4の(e)に示すように、電子輸送層10を全画素上にパターニング無しで形成する。形成方法は、例えば、塗布、蒸着等である。
最後に、図示しないが、電子輸送層10上に、共通電極である陰極12をパターニング無しで形成する。形成方法は、例えば、塗布、蒸着等である。
前記一連の工程により、発光素子2Aを形成することができ、発光デバイス1Aが完成する。
尚、発光素子には、本実施の形態のような、ノーマル構造のものと、後述する実施の形態3・4で示すインバート構造のものがある。ノーマル構造の発光素子とインバート構造の発光素子とを比較すると、ノーマル構造では、最初にパターニングされた層は次にパターニングされる層のパターニング工程のダメージ(現像工程等)を1回受けるが、2回目にパターニングされる層と最後のベタ膜は、追加のパターニングのダメージを受けない。一方、インバート構造では、最初のベタ膜は2回のパターニング工程のダメージを受け、2層目の膜は1回のパターニングダメージを受け、3層目のみパターニングのダメージを受けない。この結果、ノーマル構造の方がインバート構造に比べて、発光層8はダメージが少なくなると考えられる。
ここで、赤色サブ画素RP・緑色サブ画素GP・青色サブ画素BPの画素配列の一例について、図6の(a)(b)(c)(d)~図8の(a)(b)(c)(d)に基づいて説明する。図6の(a)(b)(c)(d)は本実施の形態の単純ストライプ画素配列及びその各色の量子ドット発光層の形成方法を示す平面図である。図7の(a)(b)(c)(d)は本実施の形態の単純ストライプ画素配列以外及びその各色の量子ドット発光層の形成方法を示す平面図である。図8の(a)(b)(c)(d)は、前記とは異なる他の種々の画素配列を示す平面図である。
赤色サブ画素RP・緑色サブ画素GP・青色サブ画素BPの単純ストライプ画素配列として、例えば、図6の(a)に示すように、列毎に、左から順に赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPを並べることができる。この単純ストライプ画素配列では、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bの1画素内のパターン形状は、同じ周期配列となっている。
この配列の場合、発光層8では、図6の(b)(c)(d)に示すように、例えば、最初に青色画素発光層8Bをパターン形成し、次いで、青色画素発光層8Bに隣接して緑色画素発光層8Gをパターン形成し、最後に、画素の全面に赤色画素発光層8Rをパターン無しで形成することが可能である。
また、例えば、単純ストライプ画素配列以外としては、図7の(a)に示すように、細い形状の緑色画素発光層8Gの列の横に、赤色画素発光層8Rと青色画素発光層8Bとを交互に縦方向に配列し、その列の横に、再び細い形状の緑色画素発光層8Gの列を配列し、さらに、その横に、青色画素発光層8Bと赤色画素発光層8Rとを交互に縦方向に配列することができる。この単純ストライプ画素配列以外では、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bの1画素内のパターン形状は、異なる周期配列となっている。
この配列の場合、発光層8では、図7の(b)(c)(d)に示すように、例えば、最初に青色画素発光層8Bをパターン形成し、次いで、緑色画素発光層8Gをパターン形成し、最後に、画素の全面に赤色画素発光層8Rをパターン無しで形成することが可能である。
尚、その他の画素は配列の一例としては、図8の(a)(b)(c)(d)に示すものが一例として挙げられる。
このように、本実施の形態の発光素子2Aは、少なくとも3色のサブ画素毎に設けられた画素電極としての赤色画素陽極4R・緑色画素陽極4G・青色画素陽極4Bと、各赤色画素陽極4R・緑色画素陽極4G・青色画素陽極4Bに対向して設けられた共通電極としての陰極12と、赤色画素陽極4R・緑色画素陽極4G・青色画素陽極4Bと陰極12との間にそれぞれ設けられた各色の発光層としての赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bとを備える。少なくとも3色の赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bのうち電子親和力の最も大きい色の赤色画素発光層8Rは、他の色の緑色画素発光層8G及び青色画素発光層8Bと陰極12との間にも積層された状態で延設されている。
これにより、赤色画素発光層8Rのパターニング回数を低減し得る発光素子2Aを提供することができる。
また、本実施の形態における発光素子2Aは、少なくとも3色のサブ画素は、赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPである。この結果、電子親和力の最も大きい赤色画素発光層8Rが、緑色画素発光層8G及び青色画素発光層8Bに積層された状態で延設される。
したがって、少なくとも3色の赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bのうち電子親和力の最も大きい赤色画素発光層8Rは、パターニング工程が不要となるので、全体のパターニング工程は緑色画素発光層8G及び青色画素発光層8Bのための2回で足りる。このため、プロセス工程が長くなるのを抑制すると共に、パターンマスクに伴う費用も削減することができる。
また、本実施の形態では、緑色サブ画素GP及び青色サブ画素BPにおいては、伝導帯準位(C.B.:電子親和力に等しい)のエネルギーが最も低い赤色画素発光層8Rが、陰極12との間に設けられている。この結果、電子輸送層10と緑色画素発光層8Gとの界面、及び電子輸送層10と青色画素発光層8Bとの界面における伝導帯準位(C.B.:電子親和力に等しい)のエネルギーギャップよりも電子輸送層10と赤色画素発光層8Rとの界面における伝導帯準位(C.B.:電子親和力に等しい)のエネルギーギャップの方が小さくなる。このため、電子e-の注入効率を改善することが可能となる。
また、本実施の形態における発光素子2Aでは、電子親和力は、電子輸送層10、赤色画素発光層8R、緑色画素発光層8G、青色画素発光層8Bの順に大きい。これにより、電子親和力差が小さい発光層を介して段階的に電子が移動するので電子輸送効率を向上することができる。
また、本実施の形態における発光素子2Aでは、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bは、いずれも量子ドット粒子を含み、積層されている赤色画素発光層8Rと緑色画素発光層8G、及び赤色画素発光層8Rと青色画素発光層8Bにおいて、陽極4側よりも陰極12側に位置する赤色画素発光層8Rに含まれる量子ドット粒子の粒径が大きい。
すなわち、量子ドット粒子の粒径が大きい発光層は、量子ドット粒子の粒径が小さい発光層に比べて、長い波長を出射する。このため、各色の発光層が積層された場合、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bのうち、最も長い波長を出射する赤色画素発光層8Rが陰極12側に位置することになる。
また、本実施の形態における発光素子2Aでは、陽極4に最も近い発光層は、量子ドット粒子が5層以上となっている。
すなわち、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bは、該赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bと正孔輸送層6との界面で該赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bに応じた色を発光する。ここで、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bが薄い場合、つまり量子ドット粒子が5層未満である場合には、積層された陰極12に近い側の赤色画素発光層8Rも正孔輸送層6との界面に近いところに存在することになるので、該積層された陰極12に近い側の赤色画素発光層8Rも発光する虞がある。この結果、正孔輸送層6に最も近い緑色画素発光層8G又は青色画素発光層8Bの発光と、積層された陰極12に近い側の赤色画素発光層8Rの発光とにより、混色が発生する可能性がある。
これに対して、本実施の形態においては、陽極4に最も近い発光層は、量子ドット粒子が5層以上になっている。具体的には、正孔輸送層6と接する赤色画素発光層8R、緑色画素発光層8G及び青色画素発光層8Bは、量子ドット粒子が5層以上になっている。このため、緑色画素発光層8G及び青色画素発光層8Bの上に赤色画素発光層8Rが積層されていたとしても混色が発生する可能性が小さい。
また、本実施の形態における発光素子2Aでは、パターン化された緑色画素発光層8G及び青色画素発光層8Bの上に形成される発光層8である赤色画素発光層8Rは、赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BP毎に膜厚が異なっている。具体的には、発光層8が積層されている緑色サブ画素GP及び青色サブ画素BPにおける上層の赤色画素発光層8Rの膜厚は、発光層8が積層されていない赤色サブ画素RPにおける赤色画素発光層8Rの膜厚よりも薄くなっている。
上述のように、緑色サブ画素GP及び青色サブ画素BPの赤色画素発光層8Rが赤色サブ画素RPの赤色画素発光層8Rよりも薄くなることにより、膜厚増加による電圧上昇を抑制することが可能となる。
また、本実施の形態における発光素子2Aでは、陽極4である赤色画素陽極4R・緑色画素陽極4G・青色画素陽極4Bと、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bと、陰極12の共通電極とがこの順に積層されている。また、発光層8は、青色サブ画素BPにおいて、電子親和力の小さな順である青色画素発光層8B、緑色画素発光層8G、赤色画素発光層8Rの順に積層されている。
これにより、所謂ノーマル構造の発光素子2Aにおいて、赤色画素発光層8Rのパターニング回数を低減し得る発光素子2Aを提供することができる。
また、本実施の形態における発光素子2Aでは、積層された発光層である例えば赤色画素発光層8Rと緑色画素発光層8Gとの間、又は例えば赤色画素発光層8Rと青色画素発光層8Bとの間の電子親和力の差よりも、正孔輸送層6と該正孔輸送層6に接する発光層である赤色画素発光層8R、緑色画素発光層8G、青色画素発光層8Bとの間の電親和力の差の方が大きい。これにより、電子e-の正孔輸送層6界面でのブロッキング効果を高く保つことができる。
また、本実施の形態における発光素子2Aでは、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bと電子輸送層10との間には、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bよりもバンドギャップの大きい図示しない電荷輸送ストッパ層が設けられているとすることができる。
これにより、陰極12から電子輸送層10を経て発光層8に到達した電子e-が発光せずにさらに正孔輸送層6に流出されるのを防止することができる。また、陽極4から正孔輸送層6を経て発光層8に到達した正孔h+が発光せずにさらに電子輸送層10に流出されるのを防止することができる。
また、本実施の形態における発光素子2Aは、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bには、感光性樹脂が含まれているとすることができる。
これにより、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bのパターニング工程において、露光及び現像により、緑色画素発光層8G・青色画素発光層8Bをパターニング形成することが可能となる。
また、本実施の形態における発光素子2Aは、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bの平面形状が、図8の(a)(b)(c)(d)に示すように、各色によって異なっている。これにより、種々の模様のサブ画素を形成することができる。
また、本実施の形態における発光素子2Aでは、発光層8と陰極12との間、又は電子輸送層10と該電子輸送層10に接合する共通電極である陰極12との間には、図示しない電荷注入層である電子注入層が設けられているとすることができる。これにより、陰極12と電子輸送層10との電子e-の輸送が電子注入層を介して行われる。この結果、陰極12と電子輸送層10との電子輸送効率を向上させることができる。
また、本実施の形態における発光素子2Aでは、発光層8と陽極4との間、又は正孔輸送層6と陽極4との間には、図示しない電荷注入層である正孔注入層が設けられているとすることができる。これにより、陽極4と正孔輸送層6との正孔h+の輸送が正孔注入層を介して行われる。この結果、陽極4と正孔輸送層6との正孔輸送効率を向上させることができる。
また、本実施の形態における発光素子2Aは、電子輸送層10、正孔輸送層6、電子注入層、及び正孔注入層は、少なくとも3色の赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bを問わず、それぞれが共通の材料で形成されている。
これにより、3色のサブ画素において、サブ画素電極又は前記共通電極とのいずれか一方と電子輸送層との電子の輸送を、3色のサブ画素に対して同一条件で電子注入層を介して行うことが可能となる。
また、本実施の形態における発光素子2Aでは、赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPの各間には、各サブ画素を仕切る絶縁層としてのエッジカバー16が設けられていると共に、エッジカバー16と共通電極である陰極12との間にも、3色の赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bのうち電子親和力の最も大きい色の赤色画素発光層8Rが形成されている。
これにより、エッジカバー16にて赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPを確実に仕切ると共に、電子親和力の最も大きい色の赤色画素発光層8Rは、エッジカバー16の有無に関わらず形成される。この結果、赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPを仕切るエッジカバー16の有無に関わらず、電子親和力の最も大きい色の赤色画素発光層8Rを画素電極間に形成することができるので、赤色サブ画素RPの形成工程において、エッジカバー16の有無に支障を来すことがなくなる。
また、本実施の形態における発光デバイス1Aは、本実施の形態の発光素子2Aを備えている。これにより、赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPのパターニング回数を低減し得る発光素子2Aを備えた発光デバイス1Aを提供することができる。
また、本実施の形態における発光素子2Aの製造方法では、画素電極を陽極4とし、共通電極を陰極12として形成する陰極陽極形成工程を含む。また、少なくとも3色の赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bのうち電子親和力の最も大きい色の赤色画素発光層8Rを、他の色の緑色画素発光層8G・青色画素発光層8Bと陰極12との間にも積層した状態で延設する延設工程を含む。すなわち、3色の赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bのうち電子親和力の最も大きい色の赤色画素発光層8Rを、他の色の緑色画素発光層8G及び青色画素発光層8Bと陰極12との間にも積層した状態で延設する延設工程とを含む。
これにより、発光層8のパターニング回数を低減し得る発光素子2Aの製造方法を提供することができる。
尚、本実施の形態においては、サブ画素は、3色からなる色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPとしていた。しかし、本発明の一態様においては、必ずしも3色に限らず、さらに他の色のサブ画素を加えることも可能である。
〔実施の形態2〕
本発明の他の実施の形態について図9~11に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1と同じである。また、説明の便宜上、前記の実施の形態1の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
本発明の他の実施の形態について図9~11に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1と同じである。また、説明の便宜上、前記の実施の形態1の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
前記実施の形態1の発光デバイス1Aの発光素子2Aでは、発光層8は、緑色画素発光層8G・青色画素発光層8Bが並んでパターンして配列されていると共に、赤色画素発光層8Rは、パターン化せずに画素の全体に配されていた。これに対して、本実施の形態の発光デバイス1Bの発光素子2Bは、青色画素発光層8Bのみがパターンして配列されていると共に、赤色画素発光層8Rに加えて緑色画素発光層8Gもパターン化せずに配されている点が異なっている。
本実施の形態における発光デバイス1Bの発光素子2Bの構成について、図9の(a)(b)に基づいて説明する。図9の(a)は、本実施の形態における発光素子2Bを備えた発光デバイス1Bの構成を示す断面図である。図9の(b)は、発光層8として赤色画素発光層8Rと緑色画素発光層8Gと青色画素発光層8Bとを積層した場合の発光効率を示す断面図である。
図9の(a)に示すように、本実施の形態の発光デバイス1Bの発光素子2Bは、3色の量子ドット発光層のうち電子親和力の2番目に大きい色の緑色画素発光層8Gが、電子親和力の最も大きい色の赤色画素発光層8Rと、残りの色の青色画素発光層8Bとの間にも積層された状態で延設されている。
具体的には、共通電極である陰極(カソード電極)12は、複数の画素に共通して形成されている。
また、発光層8について、赤色画素発光層8Rは、パターニングされておらず、全画素の陽極4の上を覆っている。緑色画素発光層8Gは、パターニングされて、緑色画素陽極4Gと青色画素陽極4Bとの上を覆っているが、赤色画素陽極4Rの上を覆っていない。青色画素発光層8Bは、赤色画素陽極4R及び緑色画素陽極4Gの上を覆っていない状態でパターニングされている。
図9の(a)では図示していないが、緑色画素発光層8Gの膜厚が緑色画素陽極4Gの上と青色画素陽極4Bの上とで異なっており、緑色画素発光層8Gの膜厚が緑色画素陽極4Gの上と青色画素陽極4Bの上よりも厚くなっていてもよい。具体的には、緑色画素陽極4Gの上の緑色画素発光層8Gの膜厚t8Gg>青色画素陽極4Bの上の緑色画素発光層8Gの膜厚t8Gbとなっていてもよい。
また、赤色画素発光層8Rの膜厚が各画素電極の上で異なっており、赤色画素発光層8Rの膜厚が赤色画素陽極4Rの上では、緑色画素陽極4Gの上及び青色画素陽極4Bの上よりも厚くなっており、さらに赤色画素発光層8Rの膜厚が緑色画素陽極4Gの上では、青色画素陽極4Bの上よりも厚くなっていてもよい。具体的には、赤色画素陽極4Rの上の赤色画素発光層8Rの膜厚t8Rr>緑色画素陽極4Gの上の赤色画素発光層8Rの膜厚t8Rg>青色画素陽極4Bの上の赤色画素発光層8Rの膜厚t8Rbとなっていてもよい。
陽極4については、赤色サブ画素RP・緑色サブ画素GP・青色サブ画素BP毎に区分けされており、それぞれ隣接するサブ画素と異なる電圧を印加することができるようになっている。
その他の構成については、前記図1と同様であるので、説明を省略する。
前記構成の発光素子2Bでは、少なくとも3色の量子ドット発光層のうち電子親和力の最も大きい色の赤色画素発光層8Rとは異なる、緑色画素発光層8G及び青色画素発光層8Bは、パターン形成される。一方、3色の量子ドット発光層のうち電子親和力の最も大きい色の赤色画素発光層8Rは、パターン形成することなく、発光層8の全面に形成されている。したがって、3色の量子ドット発光層のうち電子親和力の最も大きい赤色画素発光層8Rは、パターニング工程が不要となるので、全体のパターニング工程は緑色画素発光層8Gと青色画素発光層8Bとの2色分の2回で足りる。このため、プロセス工程が長くなるのを抑制すると共に、パターンマスクに伴う費用も削減することができる。
本実施の形態の発光素子2Bでは、電子親和力は、電子輸送層10、赤色画素発光層8R、緑色画素発光層8G、青色画素発光層8Bの順に大きい。
ここで、電子輸送層10と赤色画素発光層8R、緑色画素発光層8G、青色画素発光層8Bとの電子輸送効率は、電子輸送層10、赤色画素発光層8R、緑色画素発光層8G、青色画素発光層8Bの各電子親和力の大きさによって決定される。
具体的には、II-VI半導体量子ドットの価電子帯準位V.B.(イオン化ポテンシャルに等しい)は粒径(発光色)での変化が小さいが、伝導帯準位C.B.(電子親和力に等しい)は粒径(発光色)で変化する。ここで、本実施の形態の発光素子2Bでは、赤色画素発光層8Rと緑色画素発光層8Gと青色画素発光層8Bとを3段に積層している。この結果、図9の(b)に示すように、青色サブ画素BPでは、電子親和力の最も大きな発光層である赤色画素発光層8Rを、電子親和力の2番目に大きな発光層である緑色画素発光層8Gと電子輸送層10との間に設けることになる。また、赤色画素発光層8Rと緑色画素発光層8Gとを、電子親和力の最も小さな青色画素発光層8Bと電子輸送層10との間に設けることになる。その結果、電子輸送層10と青色画素発光層8Bとの間の電子親和力の障壁が小さくなり、電子注入効率が高くなる。
ここで、本実施の形態の赤色サブ画素RP・緑色サブ画素GP・青色サブ画素BPの画素配列の一例について、図10の(a)(b)(c)(d)及び図11の(a)(b)(c)(d)に基づいて説明する。図10の(a)(b)(c)(d)は本実施の形態の単純ストライプ画素配列及びその各色の量子ドット発光層の形成方法を示す平面図である。図11の(a)(b)(c)(d)は本実施の形態の単純ストライプ画素配列以外及びその各色の量子ドット発光層の形成方法を示す平面図である。
赤色サブ画素RP・緑色サブ画素GP・青色サブ画素BPの単純ストライプ画素配列として、例えば、図10の(a)に示すように、列毎に、左から順に赤色サブ画素RP、緑色サブ画素GP及び青色サブ画素BPを並べることができる。この単純ストライプ画素配列では、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bの1画素内のパターン形状は、同じ周期配列となっている。
この配列の場合、発光層8では、図10の(b)(c)(d)に示すように、例えば、最初に青色画素発光層8Bをパターン形成し、次いで、緑色画素発光層8Gを青色画素発光層8Bに重ねてパターン形成し、最後に、画素の全面に赤色画素発光層8Rをパターン無しで形成することが可能である。
また、例えば、単純ストライプ画素配列以外としては、図11の(a)に示すように、細い形状の緑色画素発光層8Gの列の横に、赤色画素発光層8Rと青色画素発光層8Bとを交互に縦方向に配列し、その列の横に、再び細い形状の緑色画素発光層8Gの列を配列し、さらに、その横に、青色画素発光層8Bと赤色画素発光層8Rとを交互に縦方向に配列することができる。この単純ストライプ画素配列以外では、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bの1画素内のパターン形状は、異なる周期配列となっている。
この配列の場合、発光層8では、図11の(b)(c)(d)に示すように、例えば、最初に青色画素発光層8Bをパターン形成し、次いで、緑色画素発光層8Gを、該緑色画素発光層8Gの領域と青色画素発光層8Bの領域とにパターン形成し、最後に、画素の全面に赤色画素発光層8Rをパターン無しで形成することが可能である。
尚、本実施の形態においても、その他の画素は配列の一例として、前述した図8の(a)(b)(c)(d)に示すものを形成することが可能である。
このように、本実施の形態における発光デバイス1Bの発光素子2Bは、3色の赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bのうち電子親和力の2番目に大きい色の緑色画素発光層8Gは、電子親和力の最も大きい色の赤色画素発光層8Rと、残りの色の青色画素発光層8Bとの間にも積層された状態で延設されている。
これにより、電子親和力の2番目に大きい緑色画素発光層8Gは、電子親和力の3番目に大きい、つまり電子親和力の最も小さい青色画素発光層8Bに積層された状態で延設される。
次いで、その上から、電子親和力の最も大きい赤色画素発光層8Rが、電子親和力の2番目に大きい緑色画素発光層8Gに積層された状態で延設される。この結果、青色画素発光層8Bと緑色画素発光層8Gと赤色画素発光層8Rとは3段に積層されることになる。
この結果、この形態によっても、赤色画素発光層8Rのパターニング工程が不要となるので、全体のパターニング工程は1色分の2回で足りる。このため、プロセス工程が長くなるのをさらに抑制すると共に、パターンマスクに伴う費用もさらに削減することができる。
〔実施の形態3〕
本発明のさらに他の実施の形態について図12及び図13に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1・2と同じである。また、説明の便宜上、前記の実施の形態1・2の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
本発明のさらに他の実施の形態について図12及び図13に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1・2と同じである。また、説明の便宜上、前記の実施の形態1・2の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
前記実施の形態1の発光デバイス1Aの発光素子2A、及び前記実施の形態2の発光デバイス1Bの発光素子2Bは、所謂ノーマル構造の発光素子2A・2Bからなっていた。これに対して、本実施の形態の発光デバイス1Cの発光素子2Cは、所謂インバート構造の発光素子2Cからなっている点が異なっている。
本実施の形態における発光デバイス1Cの発光素子2Cの構成について、図12に基づいて説明する。図12は、本実施の形態における発光素子2Cを備えた発光デバイス1Cの構成を示す断面図である。
本実施の形態の発光デバイス1Cの発光素子2Cは、所謂インバート構造の発光素子2Cからなっており、図示しないアレイ基板側に陰極(カソード電極)12が設けられている。
具体的には、図示しないアレイ基板の上に、図12に示すように、陰極(カソード電極)12からなる赤色画素陰極12R・緑色画素陰極12G・青色画素陰極12Bと、電子輸送層10と、発光層8と、正孔輸送層6と、陽極(アノード電極)4からなる共通電極とがこの順に積層されている。
そして、本実施の形態では、発光層8においては、電子輸送層10の上に赤色画素発光層8Rが形成されており、該赤色画素発光層8Rの一部に緑色画素発光層8Gと青色画素発光層8Bとが積層されており、さらに、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bの上に正孔輸送層6が設けられている。
この結果、赤色サブ画素RPでは、赤色画素陰極12Rと陽極4との間に、赤色画素発光層8Rが形成されている。また、緑色サブ画素GPでは、緑色画素陰極12Gと陽極4との間に、赤色画素発光層8R及び緑色画素発光層8Gが積層されている。また、青色サブ画素BPでは、青色画素陰極12Bと陽極4との間に、赤色画素発光層8R及び青色画素発光層8Bが積層されている。
これにより、所謂インバート構造の発光素子2Cにおいて、発光層8のパターニング回数を低減し得る発光素子2Cを提供することができる。
前記構成の発光素子2Cの製造方法について、図13の(a)~(e)に基づいて説明する。図13の(a)~(e)は、本実施の形態における発光素子2Cの製造方法における各工程を示す断面図である。
本実施の形態の発光素子2Cを製造する場合には、図13の(a)に示すように、図示しないアレイ基板と電気的に接続した画素電極である陰極12上に電子輸送層10をパターニング無しで、塗布、蒸着、印刷、転写等にて形成する。次いで、図13の(b)に示すように、画素全体に赤色画素発光層8Rを形成する。形成方法は、例えば、フォトリソ、インクジェット、電着、リフトオフ、印刷、転写等である。
次に、図13の(c)に示すように、緑色画素発光層8Gを前記緑色サブ画素GP上にのみパターニングして形成する。形成方法は、例えば、フォトリソ、インクジェット、電着、リフトオフ、印刷、転写等にて行うことができる。
次に、図13の(d)に示すように、前記緑色画素発光層8Gに隣接して青色画素発光層8Bを青色サブ画素BPにのみパターニングして形成する。形成方法は、例えば、フォトリソ、インクジェット、電着、リフトオフ、印刷、転写等にて行うことができる。
次に、図13の(e)に示すように、正孔輸送層6を全画素上にパターニング無しで形成する。形成方法は、例えば、塗布、蒸着、印刷、転写等である。
最後に、図示しないが、正孔輸送層6上に、共通電極である陽極4を各色のサブ画素電極である陰極12上を覆うように形成する。形成方法は、例えば、塗布、蒸着、印刷、転写等である。
前記一連の工程により、発光素子2Cを形成することができ、発光デバイス1Cが完成する。
このように、本実施の形態における発光デバイス1Cの発光素子2Cは、陰極12のサブ画素電極と、電子輸送層10と、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bと、正孔輸送層6と、陽極4の共通電極とがこの順に積層されている。そして、緑色発光画素GPでは、緑色画素陰極12Gと陽極4との間に、赤色画素発光層8Rと緑色画素発光層8Gとがこの順に積層されている。また、青色発光画素BPでは、青色画素陰極12Bと陽極4との間に、赤色画素発光層8Rと青色画素発光層8Bとがこの順に積層されている。
これにより、所謂インバート構造の発光素子2Cにおいて、赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bのパターニング回数を低減し得る発光素子2Cを提供することができる。
〔実施の形態4〕
本発明のさらに他の実施の形態について図14に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態2・3と同じである。また、説明の便宜上、前記の実施の形態2・3の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
本発明のさらに他の実施の形態について図14に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態2・3と同じである。また、説明の便宜上、前記の実施の形態2・3の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
本実施の形態の発光デバイス1Dの発光素子2Dは、所謂インバート構造の発光素子2Dからなっていると共に、発光層8の赤色画素発光層8R・緑色画素発光層8G・青色画素発光層8Bの積層状態が、実施の形態2と同様に、緑色画素発光層8Gも青色画素発光層8Bに積層されている点が異なっている。
本実施の形態における発光デバイス1Dの発光素子2Dの構成について、図14に基づいて説明する。図14は、本実施の形態における発光素子2Dを備えた発光デバイス1Dの構成を示す断面図である。
本実施の形態における発光デバイス1Dの発光素子2Dは、所謂インバート構造の発光素子2Dからなっていると共に、赤色画素発光層8Rが緑色画素陰極12G及び青色画素陰極12Bにおいて積層されていると共に、緑色画素発光層8Gも青色画素陰極12Bにおいて積層されている。
具体的には、図14に示すように、図示しないアレイ基板の上に、陰極(カソード電極)12からなる赤色画素陰極12R・緑色画素陰極12G・青色画素陰極12Bと、電子輸送層10と、発光層8と、正孔輸送層6と、陽極4からなる共通電極とがこの順に積層されている。
そして、本実施の形態では、発光層8においては、電子輸送層10の上に赤色画素発光層8Rが画素の全体にパターン形成することなく形成されている。また、赤色画素発光層8Rの一部の上には、緑色サブ画素GPの領域及び青色サブ画素BPの領域に緑色画素発光層8Gがパターン形成されている。さらに、青色サブ画素BPの領域では、緑色画素発光層8Gの一部の上に青色画素発光層8Bがパターン形成されている。
さらに、発光層8の上に正孔輸送層6が設けられている。
この結果、赤色サブ画素RPでは、赤色画素陰極12Rと陽極4との間に、赤色画素発光層8Rが形成されている。また、緑色サブ画素GPでは、緑色画素陰極12Gと陽極4との間に、赤色画素発光層8R及び緑色画素発光層8Gが積層されている。さらに、青色サブ画素BPでは、青色画素陰極12Bと陽極4との間に、赤色画素発光層8R、緑色画素発光層8G及び青色画素発光層8Bが積層されている。
これにより、所謂インバート構造の発光素子2Dにおいて、発光層8のパターニング回数を低減し得る発光素子2Dを提供することができる。
尚、本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
1A~1D 発光デバイス
2A~2D 発光素子
4 陽極
4R・4G・4B 赤色・緑色・青色画素陽極(画素電極)
6 正孔輸送層
6R・6G・6B 赤色・緑色・青色画素正孔輸送層
8 発光層
8R・8G・8B 赤色・緑色・青色画素発光層(3色の発光層)
10 電子輸送層
12 陰極
12R・12G・12B 赤色・緑色・青色画素陰極
16 エッジカバー(絶縁層)
e- 電子(電荷)
h+ 正孔(電荷)
QDR・QDG・QDB 赤色・緑色・青色量子ドット
2A~2D 発光素子
4 陽極
4R・4G・4B 赤色・緑色・青色画素陽極(画素電極)
6 正孔輸送層
6R・6G・6B 赤色・緑色・青色画素正孔輸送層
8 発光層
8R・8G・8B 赤色・緑色・青色画素発光層(3色の発光層)
10 電子輸送層
12 陰極
12R・12G・12B 赤色・緑色・青色画素陰極
16 エッジカバー(絶縁層)
e- 電子(電荷)
h+ 正孔(電荷)
QDR・QDG・QDB 赤色・緑色・青色量子ドット
Claims (22)
- 少なくとも3色のサブ画素毎に設けられた画素電極と、前記各画素電極に対向して設けられた共通電極と、前記各画素電極と前記共通電極との間にそれぞれ設けられた各色の発光層とを備えた発光素子において、
前記画素電極又は前記共通電極のうちいずれか一方が陰極となっており、かつ他方が陽極となっていると共に、
前記少なくとも3色の発光層のうち電子親和力の最も大きい色の発光層は、他の色の各発光層と前記陰極との間にも積層された状態で延設されていることを特徴とする発光素子。 - 前記各色の発光層のうち電子親和力の2番目に大きい色の前記発光層は、前記電子親和力の最も大きい色の前記発光層と、残りの色の前記発光層との間にも積層された状態で延設されていることを特徴とする請求項1に記載の発光素子。
- 前記少なくとも3色のサブ画素は、赤色サブ画素、緑色サブ画素及び青色サブ画素であり、
前記各色の発光層である赤色発光層、緑色発光層及び青色発光層のうち前記電子親和力の最も大きい赤色発光層が、他の色である緑色発光層及び青色発光層と前記陰極との間に積層された状態で延設されていることを特徴とする請求項1に記載の発光素子。 - 前記少なくとも3色のサブ画素は、赤色サブ画素、緑色サブ画素及び青色サブ画素であり、
前記各色の発光層である赤色発光層、緑色発光層及び青色発光層のうち前記電子親和力の2番目に大きい色の前記緑色発光層は、前記電子親和力の最も大きい色の前記赤色発光層と、残りの色の前記青色発光層との間にも積層された状態で延設されていることを特徴とする請求項2に記載の発光素子。 - 前記赤色発光層、前記緑色発光層及び前記青色発光層は、いずれも量子ドット粒子を含み、積層されている前記各色の発光層において、陽極側よりも陰極側に位置する前記各色の発光層に含まれる量子ドット粒子の粒径が大きいことを特徴とする請求項3又は4に記載の発光素子。
- 前記陽極に最も近い発光層は、量子ドット粒子が5層以上となっていることを特徴とする請求項5に記載の発光素子。
- パターン化された発光層の上に形成される発光層は前記サブ画素毎に膜厚が異なっており、
発光層が積層されているサブ画素における上層の発光層の膜厚は、発光層が積層されていないサブ画素における発光層の膜厚よりも薄くなっていることを特徴とする請求項1~6のいずれか1項に記載の発光素子。 - 陽極の前記画素電極と、各色の発光層と、陰極の前記共通電極とがこの順に積層されていると共に、
積層される各色の発光層は、前記陽極と前記陰極との間に、電子親和力の小さな順に積層されていることを特徴とする請求項1~7のいずれか1項に記載の発光素子。 - 陰極の前記画素電極と、各色の発光層と、陽極の前記共通電極とがこの順に積層されていると共に、
積層される各色の発光層は、前記陰極と前記陽極との間に、電子親和力の大きな順に積層されていることを特徴とする請求項1~7のいずれか1項に記載の発光素子。 - 前記各色の発光層と前記陰極との間には、電子輸送層が設けられていると共に、
前記各色の発光層と前記陽極との間には、正孔輸送層が設けられていることを特徴とする請求項1~9のいずれか1項に記載の発光素子。 - 電子親和力は、電子輸送層、赤色発光層、緑色発光層、青色発光層の順に大きいことを特徴とする請求項10に記載の発光素子。
- 前記積層された各色の発光層のうち、正孔輸送層側に存在する色の発光層よりも前記陰極側に存在する色の発光層の方が、電子親和力が大きいことを特徴とする請求項10に記載の発光素子。
- 積層された発光層間の電子親和力の差よりも、前記正孔輸送層と該正孔輸送層に接する発光層との電親和力の差の方が大きいことを特徴とする請求項10~12のいずれか1項に記載の発光素子。
- 前記各色の発光層と前記電子輸送層との間には、前記各色の発光層よりもバンドギャップの大きい電荷輸送ストッパ層が設けられていることを特徴とする請求項10~13のいずれか1項に記載の発光素子。
- 前記各色の発光層には、感光性樹脂が含まれていることを特徴とする請求項1~14のいずれか1項に記載の発光素子。
- 前記各色の発光層の平面形状が、各色によって互いに異なっていることを特徴とする請求項1~15のいずれか1項に記載の発光素子。
- 前記発光層と前記陰極との間、若しくは前記発光層と前記陽極との間、又は前記電子輸送層と前記陰極との間、若しくは前記正孔輸送層と前記陽極との間には、電荷注入層が設けられていることを特徴とする請求項10~14のいずれか1項に記載の発光素子。
- 前記電子輸送層、前記正孔輸送層、及び前記電荷注入層は、前記少なくとも3色のサブ画素を問わず、それぞれが共通の材料で形成されていることを特徴とする請求項17に記載の発光素子。
- 前記各サブ画素の間には、各サブ画素を仕切る絶縁層が設けられていると共に、
前記絶縁層と前記共通電極との間にも少なくとも3色の発光層のうち電子親和力の最も大きい色の前記発光層が形成されていることを特徴とする請求項1~18のいずれか1項に記載の発光素子。 - 発光領域全面にわたって、少なくとも3色の発光層のうち電子親和力の最も大きい色の前記発光層が、前記少なくとも3色のサブ画素を覆うように形成されていることを特徴とする請求項1~19のいずれか1項に記載の発光素子。
- 請求項1~20のいずれか1項に記載の発光素子を備えていることを特徴とする発光デバイス。
- 少なくとも3色のサブ画素毎に設けられた画素電極と、前記各画素電極に対向して設けられた共通電極と、前記各画素電極と前記共通電極との間にそれぞれ設けられた各色の発光層とを備えた発光素子の製造方法において、
前記画素電極又は前記共通電極のうちいずれか一方を陰極として形成し、かつ他方を陽極として形成する陰極陽極形成工程と、
前記少なくとも3色の発光層のうち電子親和力の最も大きい色の発光層を、他の色の各発光層と前記陰極との間にも積層した状態で延設する延設工程とを含むことを特徴とする発光素子の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880097822.2A CN112740834B (zh) | 2018-09-21 | 2018-09-21 | 发光元件以及发光器件 |
PCT/JP2018/035192 WO2020059143A1 (ja) | 2018-09-21 | 2018-09-21 | 発光素子、発光デバイス、及び発光素子の製造方法 |
US17/277,627 US11903287B2 (en) | 2018-09-21 | 2018-09-21 | Light emitting element, light emitting device, and method for manufacturing light emitting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/035192 WO2020059143A1 (ja) | 2018-09-21 | 2018-09-21 | 発光素子、発光デバイス、及び発光素子の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020059143A1 true WO2020059143A1 (ja) | 2020-03-26 |
Family
ID=69886808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/035192 WO2020059143A1 (ja) | 2018-09-21 | 2018-09-21 | 発光素子、発光デバイス、及び発光素子の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11903287B2 (ja) |
CN (1) | CN112740834B (ja) |
WO (1) | WO2020059143A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022018858A1 (ja) * | 2020-07-22 | 2022-01-27 | シャープ株式会社 | 発光装置 |
WO2022059152A1 (ja) * | 2020-09-17 | 2022-03-24 | シャープ株式会社 | 表示装置及び表示装置の製造方法 |
EP4300577A4 (en) * | 2021-09-14 | 2024-08-07 | Boe Technology Group Co Ltd | LIGHT-EMITTING SUBSTRATE AND PREPARATION METHOD THEREOF, AND LIGHT-EMITTING APPARATUS |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021070236A1 (ja) * | 2019-10-08 | 2021-04-15 | シャープ株式会社 | 発光デバイス |
CN113921742A (zh) * | 2020-07-09 | 2022-01-11 | 京东方科技集团股份有限公司 | 量子点层图案化的方法、发光器件的制作方法及相关装置 |
CN116261356A (zh) * | 2021-12-08 | 2023-06-13 | 纳晶科技股份有限公司 | 发光装置及其制备方法、包括发光装置的电子设备 |
CN116825910B (zh) * | 2023-08-29 | 2023-11-10 | 季华实验室 | 阵列基板的制备方法、阵列基板、显示面板及显示装置 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003317968A (ja) * | 2002-04-19 | 2003-11-07 | Hitachi Maxell Ltd | 有機電界発光素子 |
JP2006032757A (ja) * | 2004-07-20 | 2006-02-02 | Canon Inc | 有機el素子 |
JP2008282957A (ja) * | 2007-05-10 | 2008-11-20 | Sumitomo Chemical Co Ltd | 有機発光素子 |
WO2011148791A1 (ja) * | 2010-05-24 | 2011-12-01 | 株式会社 村田製作所 | 発光素子、及び発光素子の製造方法、並びに表示装置 |
US20110291071A1 (en) * | 2010-05-25 | 2011-12-01 | Young-Mi Kim | Quantum dot light emitting diode device and display device therewith |
JP2013051161A (ja) * | 2011-08-31 | 2013-03-14 | Canon Inc | 表示装置 |
JP2013056412A (ja) * | 2011-09-06 | 2013-03-28 | Samsung Electronics Co Ltd | 量子ドット層製造方法及び量子ドット層を含む量子ドット光電子素子 |
KR20140082551A (ko) * | 2012-12-24 | 2014-07-02 | 엘지디스플레이 주식회사 | 유기 발광 표시 장치 및 그 제조 방법 |
CN105185919A (zh) * | 2015-09-02 | 2015-12-23 | Tcl集团股份有限公司 | 混合型qled及其制备方法 |
KR20160035561A (ko) * | 2014-09-23 | 2016-03-31 | 엘지디스플레이 주식회사 | 유기 발광 소자 |
JP2016197748A (ja) * | 2006-07-04 | 2016-11-24 | 株式会社半導体エネルギー研究所 | 発光素子 |
US20170271605A1 (en) * | 2016-03-17 | 2017-09-21 | Apple Inc. | Quantum dot spacing for high efficiency quantum dot led displays |
US20180108872A1 (en) * | 2016-05-03 | 2018-04-19 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Self-luminous display device and manufacturing method thereof |
US20180108842A1 (en) * | 2016-01-13 | 2018-04-19 | Boe Technology Group Co., Ltd. | Crosslinkable Quantum Dot And Preparing Method Thereof, Array Substrate And Preparing Method Thereof |
JP2018091924A (ja) * | 2016-11-30 | 2018-06-14 | 東京応化工業株式会社 | 感光性組成物、硬化膜、発光表示素子用の発光層、発光表示素子、及び発光層の形成方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002260858A (ja) * | 2001-02-28 | 2002-09-13 | Matsushita Electric Ind Co Ltd | 発光素子及びその製造方法 |
KR101182442B1 (ko) | 2010-01-27 | 2012-09-12 | 삼성디스플레이 주식회사 | 유기 발광 디스플레이 장치 및 그의 제조 방법 |
KR101137392B1 (ko) * | 2010-03-31 | 2012-04-20 | 삼성모바일디스플레이주식회사 | 유기 발광 표시 장치 |
KR101777136B1 (ko) * | 2011-07-13 | 2017-09-12 | 엘지디스플레이 주식회사 | 양자 발광 소자 및 이의 제조 방법 |
KR101945930B1 (ko) * | 2012-01-05 | 2019-02-11 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
JP2013157225A (ja) * | 2012-01-31 | 2013-08-15 | Canon Inc | 表示装置 |
JP2014049179A (ja) * | 2012-08-29 | 2014-03-17 | Seiko Epson Corp | 有機el装置、有機el装置の製造方法、電子機器 |
KR102075524B1 (ko) * | 2013-03-21 | 2020-02-11 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR102081723B1 (ko) * | 2013-08-09 | 2020-02-27 | 엘지디스플레이 주식회사 | 유기 발광 소자 및 그 제조방법 |
KR102104978B1 (ko) * | 2013-12-02 | 2020-04-27 | 엘지디스플레이 주식회사 | 유기 발광 표시 장치 및 그 제조 방법 |
JP2016195070A (ja) * | 2015-04-01 | 2016-11-17 | ソニー株式会社 | 表示装置、表示装置の製造方法、及び、電子機器 |
TWI565095B (zh) * | 2015-11-09 | 2017-01-01 | 錼創科技股份有限公司 | 發光模組 |
KR20180038112A (ko) * | 2016-10-05 | 2018-04-16 | 삼성디스플레이 주식회사 | 헤드 마운티드 디스플레이 장치 |
WO2018070348A1 (ja) * | 2016-10-13 | 2018-04-19 | シャープ株式会社 | 表示装置およびその製造方法 |
US20180143469A1 (en) * | 2016-11-24 | 2018-05-24 | Wuhan China Star Optoelectronics Technology Co., Ltd. | Quantum dot film and backlight module |
WO2019064333A1 (ja) * | 2017-09-26 | 2019-04-04 | シャープ株式会社 | 有機el表示装置およびその製造方法並びにその発光方法 |
WO2019186896A1 (ja) * | 2018-03-29 | 2019-10-03 | シャープ株式会社 | 発光素子、発光デバイス、発光素子の製造方法、発光素子の製造装置 |
-
2018
- 2018-09-21 WO PCT/JP2018/035192 patent/WO2020059143A1/ja active Application Filing
- 2018-09-21 US US17/277,627 patent/US11903287B2/en active Active
- 2018-09-21 CN CN201880097822.2A patent/CN112740834B/zh active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003317968A (ja) * | 2002-04-19 | 2003-11-07 | Hitachi Maxell Ltd | 有機電界発光素子 |
JP2006032757A (ja) * | 2004-07-20 | 2006-02-02 | Canon Inc | 有機el素子 |
JP2016197748A (ja) * | 2006-07-04 | 2016-11-24 | 株式会社半導体エネルギー研究所 | 発光素子 |
JP2008282957A (ja) * | 2007-05-10 | 2008-11-20 | Sumitomo Chemical Co Ltd | 有機発光素子 |
WO2011148791A1 (ja) * | 2010-05-24 | 2011-12-01 | 株式会社 村田製作所 | 発光素子、及び発光素子の製造方法、並びに表示装置 |
US20110291071A1 (en) * | 2010-05-25 | 2011-12-01 | Young-Mi Kim | Quantum dot light emitting diode device and display device therewith |
JP2013051161A (ja) * | 2011-08-31 | 2013-03-14 | Canon Inc | 表示装置 |
JP2013056412A (ja) * | 2011-09-06 | 2013-03-28 | Samsung Electronics Co Ltd | 量子ドット層製造方法及び量子ドット層を含む量子ドット光電子素子 |
KR20140082551A (ko) * | 2012-12-24 | 2014-07-02 | 엘지디스플레이 주식회사 | 유기 발광 표시 장치 및 그 제조 방법 |
KR20160035561A (ko) * | 2014-09-23 | 2016-03-31 | 엘지디스플레이 주식회사 | 유기 발광 소자 |
CN105185919A (zh) * | 2015-09-02 | 2015-12-23 | Tcl集团股份有限公司 | 混合型qled及其制备方法 |
US20180108842A1 (en) * | 2016-01-13 | 2018-04-19 | Boe Technology Group Co., Ltd. | Crosslinkable Quantum Dot And Preparing Method Thereof, Array Substrate And Preparing Method Thereof |
US20170271605A1 (en) * | 2016-03-17 | 2017-09-21 | Apple Inc. | Quantum dot spacing for high efficiency quantum dot led displays |
US20180108872A1 (en) * | 2016-05-03 | 2018-04-19 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Self-luminous display device and manufacturing method thereof |
JP2018091924A (ja) * | 2016-11-30 | 2018-06-14 | 東京応化工業株式会社 | 感光性組成物、硬化膜、発光表示素子用の発光層、発光表示素子、及び発光層の形成方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022018858A1 (ja) * | 2020-07-22 | 2022-01-27 | シャープ株式会社 | 発光装置 |
WO2022059152A1 (ja) * | 2020-09-17 | 2022-03-24 | シャープ株式会社 | 表示装置及び表示装置の製造方法 |
EP4300577A4 (en) * | 2021-09-14 | 2024-08-07 | Boe Technology Group Co Ltd | LIGHT-EMITTING SUBSTRATE AND PREPARATION METHOD THEREOF, AND LIGHT-EMITTING APPARATUS |
Also Published As
Publication number | Publication date |
---|---|
US20210351244A1 (en) | 2021-11-11 |
US11903287B2 (en) | 2024-02-13 |
CN112740834A (zh) | 2021-04-30 |
CN112740834B (zh) | 2024-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020059143A1 (ja) | 発光素子、発光デバイス、及び発光素子の製造方法 | |
CN111902957B (zh) | 发光元件及发光器件 | |
US12120901B2 (en) | Light-emitting element for efficiently emitting light in different colors | |
WO2021100104A1 (ja) | 発光素子、発光デバイス | |
CN112640579B (zh) | 显示设备 | |
KR101591743B1 (ko) | 전자발광 스크린을 갖는 다색 전자 디스플레이 장치 | |
CN111903189B (zh) | 发光元件以及发光元件的制造方法 | |
WO2021117076A1 (ja) | 発光装置、および、発光装置の製造方法 | |
WO2021033257A1 (ja) | 発光素子および発光デバイス | |
US20230337455A1 (en) | Light-emitting element, light-emitting device, method for manufacturing light-emitting element, and method for driving light-emitting element | |
JPH11135257A (ja) | 有機エレクトロルミネッセンス素子の製造方法 | |
WO2020261347A1 (ja) | 発光素子 | |
WO2020041993A1 (zh) | 一种采用混合型发光二极管的显示屏幕及其制备方法 | |
CN114430934B (zh) | 发光装置 | |
WO2020016998A1 (ja) | 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置 | |
CN115210896A (zh) | 显示装置 | |
WO2021053787A1 (ja) | 発光素子および表示デバイス | |
CN114695689A (zh) | 显示器件 | |
WO2022113179A1 (ja) | 表示装置の製造方法 | |
WO2022074751A1 (ja) | 発光素子の製造方法および発光素子 | |
US20240114747A1 (en) | Display device and method for manufacturing display device | |
US20240206215A1 (en) | Method for manufacturing display device and display device | |
WO2023032109A1 (ja) | 表示装置、表示装置の製造方法 | |
WO2023276085A1 (ja) | 表示装置及び表示装置の製造方法 | |
US20240057394A1 (en) | Display device and method for manufacturing display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18934223 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18934223 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |