WO2020016998A1 - 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置 - Google Patents

表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置 Download PDF

Info

Publication number
WO2020016998A1
WO2020016998A1 PCT/JP2018/027136 JP2018027136W WO2020016998A1 WO 2020016998 A1 WO2020016998 A1 WO 2020016998A1 JP 2018027136 W JP2018027136 W JP 2018027136W WO 2020016998 A1 WO2020016998 A1 WO 2020016998A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole transport
transport layer
sub
display device
color
Prior art date
Application number
PCT/JP2018/027136
Other languages
English (en)
French (fr)
Inventor
優人 塚本
時由 梅田
博司 土屋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2018/027136 priority Critical patent/WO2020016998A1/ja
Priority to US17/259,330 priority patent/US20210305533A1/en
Priority to CN201880095750.8A priority patent/CN112424968A/zh
Publication of WO2020016998A1 publication Critical patent/WO2020016998A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • the present invention relates to a display device provided with a light emitting element.
  • Patent Document 1 describes a display device including a light emitting element including a hole transport layer common to sub-pixels.
  • JP 2013-157225 Japanese Unexamined Patent Publication
  • a display device of the present invention includes a plurality of sub-pixels that emit light of different colors, and is provided for each of the plurality of sub-pixels, and emits light of a color corresponding to the sub-pixel.
  • a light emitting layer a display device comprising a stack of an anode and a cathode on one side and the other side of the light emitting layer, wherein a common hole transport layer is provided between the anode and the light emitting layer.
  • a second individual hole transport layer formed of a first hole transport layer material, wherein a first individual hole transport layer included in a sub-pixel of a first color among the plurality of sub-pixels is different from the first hole transport layer material.
  • a sub-pixel of a second color different from the first color is provided using a hole transport layer material.
  • a second discrete hole transport layer is formed using a mixed material of the first hole transport layer material and the second hole transport layer material.
  • a method for manufacturing a display device includes a plurality of sub-pixels that emit light of different colors, provided for each of the plurality of sub-pixels, and corresponding to the sub-pixel.
  • a method for manufacturing a display device comprising a light-emitting layer that emits light of a color, and an anode and a cathode on each of one side and the other side of the light-emitting layer, the method comprising: A common hole transport layer is formed in common for the plurality of sub-pixels, and an individual hole transport layer between the common hole transport layer and the light emitting layer is individually formed for each of the plurality of sub-pixels A hole transport layer forming step, wherein in the hole transport layer forming step, the common hole transport layer is formed by vapor deposition of a first hole transport layer material; A first individual hole transport layer included in a color sub-pixel, A second individual hole transport layer formed by vapor deposition of a second hole transport layer material different from the first layer material
  • the display device manufacturing apparatus of the present invention includes a plurality of sub-pixels that emit light of different colors, provided for each of the plurality of sub-pixels, corresponding to the sub-pixels A light-emitting layer that emits light of a color, and a display device manufacturing apparatus including a stack of the respective anodes and cathodes on one side and the other side of the light-emitting layer, wherein a gap between the anode and the light-emitting layer A common hole transport layer is formed in common for the plurality of sub-pixels, and an individual hole transport layer between the common hole transport layer and the light emitting layer is individually formed for each of the plurality of sub-pixels
  • the common hole transport layer is formed by vapor deposition of a first hole transport layer material, and the first color sub-pixel of the plurality of sub-pixels is provided by a first color sub-pixel.
  • a second hole different from the material of the first hole transport layer Forming a second individual hole transport layer provided by a sub-pixel of a second color different from the first color, by forming the second hole transport layer material by the first hole transport layer material and the second hole transport layer material. Is formed by co-evaporation.
  • a display device with reduced crosstalk can be realized.
  • FIG. 2 is a schematic top view and a schematic cross-sectional view of the display device according to the first embodiment of the present invention.
  • FIG. 9 is a schematic top view and a schematic cross-sectional view of a display device according to a comparative embodiment. 4 is a graph illustrating a relationship between a voltage applied to a light emitting element of a display device according to Embodiment 1 of the present invention and a comparative example, and a current density of a current flowing through the light emitting element.
  • FIG. 4 is a schematic sectional view of a display device according to a second embodiment of the present invention.
  • FIG. 9 is a schematic sectional view of a display device according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic sectional view of a display device according to Embodiment 4 of the present invention. It is a block diagram of a manufacturing device of a display device concerning each embodiment of the present invention.
  • FIG. 1A is a schematic top view of a display device 1 according to the present embodiment.
  • FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A.
  • the display device 1 includes a display area DA contributing to display and a frame area NA surrounding the display area DA.
  • a terminal T to which a signal for driving a light emitting element of the display device 1 described later in detail may be formed.
  • the display device 1 At a position overlapping the display area DA in plan view, as shown in FIG. 1B, the display device 1 according to the present embodiment includes the light emitting element layer 2 and the array substrate 3.
  • the display device 1 has a structure in which each layer of the light emitting element layer 2 is laminated on an array substrate 3 on which a TFT (Thin Film Transistor) (not shown) is formed.
  • TFT Thin Film Transistor
  • the light-emitting element layer 2 includes, on the anode 4, a hole transport layer 6, a light-emitting layer 8, an electron transport layer 10, and a cathode 12, which are sequentially stacked from the lower layer.
  • the anode 4 of the light emitting element layer 2 formed on the array substrate 3 is electrically connected to the TFT of the array substrate 3.
  • the hole transport layer 6 includes a common hole transport layer 6C and an individual hole transport layer 6P.
  • each of the anode 4, the individual hole transport layer 6P, and the light emitting layer 8 is separated by the bank 14.
  • the anode 4 is separated by the bank 14 into a first anode 4R, a second anode 4G, and a third anode 4B.
  • the bank 14 separates the individual hole transport layer 6P into the first hole transport layer 6R (second individual hole transport layer / third individual hole transport layer) and the second hole transport layer 6G (second individual hole transport layer). It is separated into a hole transport layer / third individual hole transport layer) and a third hole transport layer 6B (first individual hole transport layer).
  • the light emitting layer 8 is separated by the bank 14 into a first light emitting layer 8R, a second light emitting layer 8G, and a third light emitting layer 8B.
  • the common hole transport layer 6C, the electron transport layer 10, and the cathode 12 are not separated by the bank 14, but are formed in common.
  • the light emitting element layer 2 includes a first light emitting element 2R, a second light emitting element 2G, and a third light emitting element 2B as a plurality of light emitting elements.
  • the first light emitting element 2R includes a first anode 4R, a common hole transport layer 6C, a first hole transport layer 6R, a first light emitting layer 8R, an electron transport layer 10, and a cathode 12.
  • the second light emitting element 2G includes a second anode 4G, a common hole transport layer 6C, a second hole transport layer 6G, a second light emitting layer 8G, an electron transport layer 10, and a cathode 12. .
  • the third light emitting element 2B includes a third anode 4B, a common hole transport layer 6C, a third hole transport layer 6B, a third light emitting layer 8B, an electron transport layer 10, and a cathode 12. . Therefore, each of the anode 4, the individual hole transport layer 6P, and the light emitting layer 8 is individually formed in the first light emitting element 2R, the second light emitting element 2G, and the third light emitting element 2B.
  • the first light emitting layer 8R, the second light emitting layer 8G, and the third light emitting layer 8B emit red light, green light, and blue light, respectively. That is, the first light emitting element 2R, the second light emitting element 2G, and the third light emitting element 2B are light emitting elements that emit red light, green light, and blue light, which are lights of different colors, respectively. .
  • the first light emitting element 2R, the second light emitting element 2G, and the third light emitting element 2B are red (second color / third color) and green (second color / third color).
  • the red, green, and blue sub-pixels each include a light-emitting layer 8 that emits light of a corresponding color for each sub-pixel.
  • the blue light is light having a light emission center wavelength in a wavelength band of 400 nm or more and 500 nm or less.
  • the green light is light having a light emission center wavelength in a wavelength band of more than 500 nm and 600 nm or less.
  • the red light is light having a light emission center wavelength in a wavelength band of more than 600 nm and 780 nm or less.
  • the anode 4 and the cathode 12 include a conductive material, and are electrically connected to the common hole transport layer 6C and the electron transport layer 10, respectively.
  • the cathode 12 which is an electrode close to the display surface of the display device 1 is a translucent electrode, for example, ITO, IZO, AZO, GZO, or the like is used.
  • the film may be formed by a method or the like.
  • the anode 4 contains a metal material.
  • the metal material Al, Cu, Au, Ag, or the like having high visible light reflectance is preferable.
  • the light emitting layer 8 is a layer that emits light when recombination of holes transported from the anode 4 and electrons transported from the cathode 12 occurs.
  • the material of the light emitting layer 8 an organic fluorescent material, a phosphorescent material, a semiconductor nanoparticle (quantum dot) material, or the like may be adopted.
  • the hole transport layer 6 is a layer that transports the charge from the anode 4 to the light emitting layer 8.
  • the hole transport layer 6 may have a function of inhibiting the transport of electrons from the cathode 12.
  • the common hole transport layer 6C in the hole transport layer 6 is electrically connected to each of the first hole transport layer 6R, the second hole transport layer 6G, and the third hole transport layer 6B. Further, each of the first hole transport layer 6R, the second hole transport layer 6G, and the third hole transport layer 6B, and each of the first light emitting layer 8R, the second light emitting layer 8G, and the third light emitting layer 8B And are electrically connected.
  • the common hole transport layer 6C is configured using the first hole transport layer material.
  • the third hole transport layer 6B included in the third light emitting element 2B constituting the blue sub-pixel is formed using a second hole transport layer material different from the first hole transport layer material.
  • the first hole transport layer 6R included in the first light emitting element 2R that constitutes the red sub-pixel is configured using a mixed material of the first hole transport layer material and the second hole transport layer material.
  • the second hole transport layer 6G included in the second light emitting element 2G that forms the green sub-pixel is configured using the same first hole transport layer material as the common hole transport layer 6C.
  • the mixing ratio of the material of the second hole transport layer in the first hole transport layer 6R is 10% or more and 50% or less based on the entire first hole transport layer 6R.
  • the energy level of the highest occupied orbit of the first hole transport layer material that is, the absolute value of HOMO is smaller than the absolute value of HOMO of the second hole transport layer material.
  • the absolute value of HOMO of the first hole transport layer material is HOMO1 (eV)
  • the absolute value of HOMO of the second hole transport layer material is HOMO2 (eV).
  • HOMO1 + 0.2 eV ⁇ HOMO2 (1) is satisfied.
  • the first hole transport layer material is, for example, ⁇ -NPD (HOMO: ⁇ 5.40 eV) or TAPC (HOMO: ⁇ 5.43 eV).
  • the material of the second hole transport layer is, for example, TCTA (HOMO: -5.83 eV), mCP (HOMO: -5.90 eV), or mCBP (HOMO: -6.00 eV).
  • the absolute value of the HOMO of the material of the third light emitting layer 8B emitting blue light is larger than the absolute value of the HOMO of the material of the first light emitting layer 8R emitting red light and the material of the second light emitting layer 8G emitting green light.
  • a material having an absolute value of HOMO larger than that of the first hole transport layer material is used. It is preferable to employ a two-hole transport layer material.
  • the electron transport layer 10 is a layer that transports electrons from the cathode 12 to the light emitting layer 8.
  • the electron transport layer 10 may have a function of inhibiting transport of holes from the anode 4.
  • the hole transport layer 6, the light emitting layer 8, and the electron transport layer 10 may be formed by a conventionally known method, for example, may be formed by vapor deposition using a vapor deposition mask.
  • the common hole transport layer 6C and the second hole transport layer 6G are formed by vapor deposition of the first hole transport layer material
  • the third hole transport layer 6B is formed by the second hole transport layer. It is formed by vapor deposition of a transport layer material.
  • the first hole transport layer 6R is formed by co-evaporation of the first hole transport layer material and the second hole transport layer material.
  • the display device 1 controls the injection of charges from the electrodes into the charge transport layer between the anode 4 and the hole transport layer 6 and between the cathode 12 and the electron transport layer 10.
  • a supporting hole injection layer and an electron injection layer may be provided.
  • the hole injection layer and the electron injection layer may be formed by the same method as the hole transport layer 6 and the electron transport layer 10.
  • the thickness of the individual hole transport layer 6P and the light emitting layer 8 may be different depending on the light emitting element.
  • the first hole transport layer 6R, the second hole transport layer 6G, and the third hole transport layer 6B have a thickness in this order. Become smaller. Thereby, the distance between the light emitting layer 8 and the anode 4 serving as the reflective electrode can be adjusted for each sub-pixel, so that optical settings suitable for each sub-pixel can be made.
  • the individual hole transport layer 6P and the light emitting layer 8 are shown with the same film thickness for all. Also, in FIGS. 2, 4, 5, and 6 described later, the total thickness of the individual hole transport layer 6P and the light emitting layer 8 is set to the same thickness regardless of the light emitting element. Is shown.
  • the first light emitting layer 8R, the second light emitting layer 8G, and the third light emitting layer 8B increase in thickness in this order.
  • the total thickness of the individual hole transport layer 6P and the light emitting layer 8 may be substantially constant depending on the light emitting element.
  • the total thickness of the individual hole transport layer 6P and the light emitting layer 8 differs depending on the light emitting element as long as there is no problem in forming the common electron transport layer 10 on the light emitting layer 8. May be.
  • FIG. 2 is a cross-sectional view of the display device according to the comparative embodiment, corresponding to FIG.
  • the configuration of the display device according to the comparative embodiment is different from that of the display device 1 according to the present embodiment only in that the material of the first hole transport layer 6R is different.
  • the first hole transport layer 6R is configured using the first hole transport layer material, like the common hole transport layer 6C of the display device 1 according to the present embodiment.
  • FIG. 3 is a graph showing a relationship between a voltage applied to a light emitting element of a display device and a current density of a current flowing through the light emitting element.
  • the horizontal axis represents a voltage (V) applied to one light emitting element constituting a certain sub-pixel of the display device
  • the vertical axis represents a current density of a current flowing through the light emitting element to which the voltage is applied. (MA / cm 2 ).
  • a graph of “B” indicated by a solid line is a graph of the voltage applied to the third light emitting element 2B and the current flowing through the third light emitting element 2B to which the voltage is applied in the present embodiment and the comparative example. Indicates the current density.
  • the graph of “R-0%” indicated by the dashed line indicates the voltage applied to the first light emitting element 2R and the voltage applied to the first light emitting element 2R in the comparative embodiment. This shows the current density of the flowing current.
  • a light-emitting element having a light-emitting layer that emits red or green light has higher charge injection efficiency than a light-emitting element having a light-emitting layer that emits blue light.
  • the current density of the current flowing therethrough also increases. For example, as shown in FIG. 3, when a voltage of 2 V is applied to the first light emitting element 2R and the third light emitting element 2B in the comparative embodiment, the current density of the current flowing through the first light emitting element 2R is It is about 100 times larger than the current density of the current flowing through 2B.
  • the first hole transport layer 6R may reach the first hole transport layer 6R via the common hole transport layer 6C having a high hole mobility.
  • the first hole transport layer 6R is configured using the same first hole transport layer material as the common hole transport layer 6C having a high hole mobility.
  • the holes from the third anode 4B recombine with the electrons from the cathode 12, which is the common electrode, in the first light emitting layer 8R via the common hole transport layer 6C and the first hole transport layer 6R.
  • the first light emitting element 2R may emit light. Therefore, in the comparative embodiment, light emission from the first light emitting element 2R different from the driven third light emitting element 2B, that is, so-called crosstalk may occur.
  • the graphs of “R-10%” and “R-30%” indicated by the dotted line and the broken line indicate the voltage applied to the first light emitting element 2R and the applied voltage in the present embodiment.
  • the current density of the current flowing through the first light emitting element 2R is shown.
  • the first hole transport layer 6R of the first light emitting element 2R uses the second hole transport layer material at 10% or The case where 30% is included is shown.
  • the current density of the current flowing through the first light emitting element 2R to which a voltage of 2 V is applied is the same as the comparative example. Is reduced to about 1/2 compared to the first light emitting element 2R.
  • the difference in the ease of current flow between the first light emitting element 2R and the third light emitting element 2B in the present embodiment is smaller than that in the comparative example. This is because, as compared to the first hole transport layer 6R in the comparative embodiment, the first hole transport layer 6R in the present embodiment partially includes the second hole transport layer material and the first hole transport layer 6R This is because the hole mobility of the sample was lowered.
  • the display device 1 when a voltage is applied to the third light emitting element 2B, the first light emitting element 2R through which current flows easily is driven via the common hole transport layer 6C and the first hole transport layer 6R. Can be reduced. That is, the display device 1 according to the present embodiment can reduce the crosstalk from the blue sub-pixel to the red sub-pixel. This effect is remarkable when a material having a high hole mobility is used as the common hole transport layer 6C.
  • the current density of the current flowing through the first light emitting element 2R to which a voltage of 2V is applied is: This is reduced to about 1/10 compared to the first light emitting element 2R of the comparative embodiment. That is, in the first light emitting element 2R and the third light emitting element 2B in the present embodiment, the difference in the ease of current flow is further smaller than in the comparative example.
  • the first hole transport layer 6R when the first hole transport layer 6R includes 30% of the second hole transport layer material, the first hole transport layer 6R includes the second hole transport layer material as a whole.
  • the crosstalk described above can be more efficiently reduced as compared with the case where 10% is included.
  • the first hole transport layer 6R when the first hole transport layer 6R contains the material of the second hole transport layer at 10% or more of the whole, the above-described effects can be sufficiently obtained.
  • the first hole transport layer 6R preferably contains the second hole transport layer material by 50% or less of the whole.
  • the first hole transport layer 6R contains the second hole transport layer material in an amount of more than 50% of the whole
  • the first light emitting element increases as the content of the second hole transport layer material increases.
  • the luminance of 2R decreases. Therefore, by setting the content of the second hole transport layer material of the first hole transport layer 6R to 50% or less of the entirety, the above-described second layer having high luminance can be efficiently reduced while the crosstalk described above is efficiently reduced.
  • the light emitting element 2R can be easily configured.
  • the common hole transport layer 6C may be composed of only the first hole transport layer material, and similarly, the third hole transport layer 6B is composed of only the second hole transport layer material. It may be. Thereby, the effect of reducing the crosstalk described above can be exhibited more efficiently.
  • the absolute value of the HOMO of the first hole transport layer material is smaller than the absolute value of the HOMO of the second hole transport layer material, and satisfies the above expression (1).
  • the display device 1 according to the present embodiment does not need to have a new layer structure as compared with the existing display device. For this reason, the display device 1 according to the present embodiment can reduce the increase in the total film thickness as compared with the conventional display device.
  • the first hole transport layer 6R is composed of the first hole transport layer material used for the common hole transport layer 6C and the second hole transport layer material used for the third hole transport layer 6B. , By co-evaporation. Therefore, it is not necessary to separately prepare the material of the first hole transport layer 6R. Therefore, the display device 1 according to the present embodiment can be manufactured while reducing the increase in the tact time and the manufacturing cost.
  • FIG. 4 is a cross-sectional view of the display device 1 according to the present embodiment, corresponding to FIG.
  • the configuration of the display device 1 according to the present embodiment is different from that of the display device 1 according to the previous embodiment only in that the materials of the first hole transport layer 6R and the second hole transport layer 6G are different.
  • the first hole transport layer 6R is configured using the first hole transport layer material, like the common hole transport layer 6C.
  • the second hole transport layer 6G is configured using a mixed material of the first hole transport layer material and the second hole transport layer material.
  • the mixing ratio of the second hole transport layer material in the second hole transport layer 6G is 10% or more and 50% or less based on the whole.
  • the mixture ratio of the material of the second hole transport layer is 10% or more and 50% or less, similarly to the first hole transport layer 6R in the first embodiment. This makes it possible to easily configure the high-brightness second light emitting element 2G while efficiently reducing the above-described crosstalk.
  • the characteristics of the current density and applied voltage of the second hole transport layer 6G when the mixing ratio of the material of the second hole transport layer is 10% or 30% of the whole in the second hole transport layer 6G. are similar to the characteristics shown in “R ⁇ 10%” and “R ⁇ 30%” in FIG. 3, respectively.
  • the display device 1 when a voltage is applied to the third light emitting element 2B, charges move to the second light emitting element 2G through which the current flows easily via the common hole transport layer 6C. Can be reduced. That is, the display device 1 according to the present embodiment can reduce the crosstalk from the blue sub-pixel to the green sub-pixel.
  • FIG. 5 is a cross-sectional view of the display device 1 according to the present embodiment, corresponding to FIG.
  • the display device 1 according to the present embodiment is different from the display device 1 according to the previous embodiment in the material of the first hole transport layer 6R. Furthermore, the display device 1 according to the present embodiment is different from the display device 1 according to the previous embodiment in that the first hole transport layer 6R, the second hole transport layer 6G, the first light emitting layer 8R, and the second The thickness of the light emitting layer 8G is different. Except for the above points, the display device 1 according to the present embodiment has the same configuration as the display device 1 according to the previous embodiment.
  • the first hole transport layer 6R is formed using a mixed material of the first hole transport layer material and the second hole transport layer material.
  • the mixing ratio of the material of the second hole transport layer in the first hole transport layer 6R is 10% or more and 50% or less based on the entire first hole transport layer 6R.
  • the first hole transport layer 6R and the second hole transport layer 6G have the same film thickness, and the first light emitting layer 8R and the second light emitting layer 8G Are equal.
  • the first hole transport layer 6R and the second hole transport layer 6G may have the same thickness d6.
  • the first light emitting layer 8R and the second light emitting layer 8G may have the same thickness d8.
  • the first hole transport layer 6R and the second hole transport layer 6G have the same mixing ratio of the second hole transport layer material, so that the first hole transport layer 6R and the second hole transport layer 6G have the same mixing ratio.
  • the hole transport layer 6G can be formed simultaneously with the above-described co-evaporation.
  • the present embodiment is not limited to this, and the first hole transport layer 6R and the second hole transport layer 6G may have different thicknesses. Further, the mixing ratio of the second hole transport layer material in the first hole transport layer 6R and the second hole transport layer 6G may be different.
  • the display device 1 according to the same principle as described above, when a voltage is applied to the third light-emitting element 2B, the first light-emitting element 2R and the second light-emitting element through which a current easily flows through the common hole transport layer 6C. Transfer of electric charge to 2G can be reduced. That is, the display device 1 according to the present embodiment can reduce crosstalk from the blue sub-pixel to the red and green sub-pixels.
  • FIG. 6 is a cross-sectional view of the display device 1 according to the present embodiment, corresponding to FIG.
  • the display device 1 according to the present embodiment is different from the display device 1 according to the previous embodiment in that a fourth hole transport layer 6Ra (fourth individual hole) is provided between the anode 4 and the first hole transport layer 6R.
  • the configuration is different only in further including a transport layer).
  • the fourth hole transport layer 6Ra is in contact with and electrically connected to the common hole transport layer 6C and the first hole transport layer 6R.
  • the fourth hole transport layer 6Ra is made of the first hole transport layer material, like the common hole transport layer 6C. As shown in FIG. 6, the total thickness of the first hole transport layer 6R and the fourth hole transport layer 6Ra has the same thickness d6 as the thickness of the second hole transport layer 6G. May be.
  • the efficiency of hole transport from the first anode 4R to the first light-emitting layer 8R in the first light-emitting element 2R is improved while maintaining the effect of reducing crosstalk to the red sub-pixel. Can be improved.
  • the display device 1 is not particularly limited as long as it has a flexible and flexible display element having a display element.
  • the display elements include a display element whose luminance and transmittance are controlled by a current, and a display element whose luminance and transmittance are controlled by a voltage.
  • the display device 1 according to each of the above embodiments may include an organic light emitting diode (OLED) as a current control display element.
  • OLED organic light emitting diode
  • the display device 1 according to each of the embodiments described above may be an organic EL (Electro Luminescence) display.
  • the display device 1 according to each of the above embodiments may include an inorganic light emitting diode as a current control display element.
  • the display device 1 according to each of the above-described embodiments may be a QLED display including an EL display QLED (Quantum Dot Light Emitting Diode) such as an inorganic EL display.
  • QLED Quantum Dot Light Emitting Diode
  • the voltage control display element there is a liquid crystal display element or the like.
  • FIG. 7 is a block diagram showing a display device manufacturing apparatus 50 used in the manufacturing process of the display device 1 in each of the above-described embodiments.
  • the display device manufacturing apparatus 50 includes a controller 52, a vapor deposition apparatus 54, and a film forming apparatus 56.
  • the controller 52 may control the vapor deposition device 54 and the film formation device 56.
  • the vapor deposition device 54 may form at least a part of each layer of the display device 1 including the hole transport layer 6 by vapor deposition.
  • the vapor deposition device 54 converts the individual hole transport layer 6P, which is formed using a mixed material of the first hole transport layer material and the second hole transport layer material, to the first hole transport layer material. It may be formed by co-evaporation of the first hole transport layer material and the second hole transport layer material.
  • the film forming device 56 may execute film formation of each layer of the display device 1 that is not formed by the vapor deposition device 54.
  • the display device of Embodiment 1 includes a plurality of sub-pixels that emit light of different colors from each other, and is provided for each of the plurality of sub-pixels, and a light-emitting layer that emits light of a color corresponding to the sub-pixel;
  • a display device comprising a stacked anode and a cathode on one side and the other side, wherein a common hole transport layer is shared by the plurality of sub-pixels between the anode and the light emitting layer.
  • An individual hole transport layer is separately provided for each of the plurality of sub-pixels between the common hole transport layer and the light emitting layer, and the common hole transport layer is formed of a first hole transport layer material.
  • the first individual hole transport layer included in the sub-pixel of the first color among the plurality of sub-pixels is formed using a second hole transport layer material different from the first hole transport layer material.
  • a second individual hole transport layer provided for a sub-pixel of a second color different from the first color It is constructed using a 1 hole transport layer material a mixed material of the second hole transport layer material.
  • the common hole transport layer is made of only the first hole transport layer material
  • the first individual hole transport layer is made of only the second hole transport layer material.
  • the absolute value of the energy level of the highest occupied orbit of the first hole transport layer material is smaller than the absolute value of the energy level of the highest occupied orbit of the second hole transport layer material.
  • the absolute value of the energy level of the highest occupied orbit of the first hole transport layer material is HOMO1 (eV)
  • the absolute value of the energy level of the highest occupied orbit of the second hole transport layer material is HOMO1 (eV).
  • HOMO2 eV
  • HOMO1 + 0.2 eV ⁇ HOMO2 is satisfied.
  • the mixture ratio of the material of the second hole transport layer is 10% or more and 50% or less of the whole.
  • the first color is blue and the second color is red.
  • the first color is blue and the second color is green.
  • the plurality of sub-pixels further include a third-color sub-pixel, and the third color is green.
  • the plurality of sub-pixels further include a third-color sub-pixel, and the third color is red.
  • the third individual hole transport layer provided in the third color sub-pixel is configured using the first hole transport layer material.
  • the third individual hole transport layer included in the sub-pixel of the third color is configured using the mixed material.
  • the mixing ratio of the material of the second hole transport layer is 10% or more and 50% or less of the whole.
  • the thickness of the second individual hole transport layer is the same as the thickness of the third individual hole transport layer.
  • the fourth subpixel of the second color is formed using a first hole transport layer material between the second individual hole transport layer and the common hole transport layer. It further includes an individual hole transport layer.
  • the individual hole transport layer formed using the mixed material is in contact with the light emitting layer.
  • the method for manufacturing a display device comprising a plurality of sub-pixels emitting light of different colors, provided for each of the plurality of sub-pixels, and a light emitting layer emitting light of a color corresponding to the sub-pixel;
  • a method of manufacturing a display device comprising a light emitting layer and a positive electrode and a negative electrode on one side and the other side of the light emitting layer, the common hole transport layer between the anode and the light emitting layer, Formed in common to the sub-pixels, the hole transport layer between the common hole transport layer and the light emitting layer, a hole transport layer forming step of individually forming each of the plurality of sub-pixels, In the hole transport layer forming step, the common hole transport layer is formed by vapor deposition of a first hole transport layer material, and a first individual positive electrode included in a sub-pixel of a first color among the plurality of sub-pixels.
  • a second individual hole transport layer formed by vapor deposition of a material and provided in a sub-pixel of a second color different from the first color is formed by combining the first hole transport layer material and the second hole transport layer material. It is formed by vapor deposition.
  • the display device manufacturing apparatus further comprising a plurality of sub-pixels that emit light of different colors, provided for each of the plurality of sub-pixels, and a light-emitting layer that emits light of a color corresponding to the sub-pixel;
  • An apparatus for manufacturing a display device comprising an anode and a cathode on one side and the other side of a light-emitting layer, the common hole transport layer between the anode and the light-emitting layer, A common hole transport layer formed in common to the sub-pixels, an individual hole transport layer between the common hole transport layer and the light emitting layer, comprising a vapor deposition device individually formed for each of the plurality of sub-pixels, the vapor deposition device is Forming the common hole transport layer by vapor deposition of a first hole transport layer material, and, among the plurality of sub-pixels, a first individual hole transport layer provided in a sub-pixel of a first color,
  • the second hole transport layer material different from the hole transport layer material is formed

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

表示デバイス(1)は、陽極(4)と発光層(8R・8G・8B)との間に、共通正孔輸送層(6C)を複数の副画素(2R・2G・2B)に共通して備え、該共通正孔輸送層と前記発光層との間に、個別正孔輸送層(6P)を前記複数の副画素ごとに個別に備える。前記共通正孔輸送層は、第1正孔輸送層材料を用いて構成されている。第1色の副画素(2B)が備える第1個別正孔輸送層(6B)は、第2正孔輸送層材料を用いて構成されている。第2色の副画素(2R・2G)が備える第2個別正孔輸送層(6R・6G)は、前記第1正孔輸送層材料と前記第2正孔輸送層材料との混合材料を用いて構成されている。

Description

表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
 本発明は、発光素子を備えた表示デバイスに関する。
 特許文献1には、副画素に共通の正孔輸送層を含む発光素子を備えた表示装置が記載されている。
日本国公開特許公報「特開2013-157225号」
 特許文献1に記載の発光素子において、副画素に共通の正孔輸送層を介して、ある副画素に注入された正孔が他の副画素へと輸送されることにより、駆動されていない副画素が点灯する、いわゆるクロストークが発生する問題がある。
 上記課題を解決するために、本発明の表示デバイスは、互いに異なる色の光を発する複数の副画素を備え、前記複数の副画素ごとに設けられ、当該副画素に対応した色の光を発する発光層と、前記発光層の一方側および他方側のそれぞれの陽極および陰極とを積層して備えた表示デバイスであって、前記陽極と前記発光層との間に、共通正孔輸送層を前記複数の副画素に共通して備え、該共通正孔輸送層と前記発光層との間に、個別正孔輸送層を前記複数の副画素ごとに個別に備え、前記共通正孔輸送層が、第1正孔輸送層材料を用いて構成され、前記複数の副画素のうち、第1色の副画素が備える第1個別正孔輸送層が、前記第1正孔輸送層材料と異なる第2正孔輸送層材料を用いて構成され、前記第1色と異なる第2色の副画素が備える第2個別正孔輸送層が、前記第1正孔輸送層材料と前記第2正孔輸送層材料との混合材料を用いて構成されている。
 また、上記課題を解決するために、本発明の表示デバイスの製造方法は、互いに異なる色の光を発する複数の副画素を備え、前記複数の副画素ごとに設けられ、当該副画素に対応した色の光を発する発光層と、前記発光層の一方側および他方側のそれぞれの陽極および陰極とを積層して備えた表示デバイスの製造方法であって、前記陽極と前記発光層との間の共通正孔輸送層を、前記複数の副画素に共通して形成し、該共通正孔輸送層と前記発光層との間の個別正孔輸送層を、前記複数の副画素ごとに個別に形成する正孔輸送層形成工程を備え、前記正孔輸送層形成工程において、前記共通正孔輸送層を、第1正孔輸送層材料の蒸着によって形成し、前記複数の副画素のうち、第1色の副画素が備える第1個別正孔輸送層を、前記第1正孔輸送層材料と異なる第2正孔輸送層材料の蒸着によって形成し、前記第1色と異なる第2色の副画素が備える第2個別正孔輸送層を、前記第1正孔輸送層材料と前記第2正孔輸送層材料との共蒸着によって形成する。
 また、上記課題を解決するために、本発明の表示デバイスの製造装置は、互いに異なる色の光を発する複数の副画素を備え、前記複数の副画素ごとに設けられ、当該副画素に対応した色の光を発する発光層と、前記発光層の一方側および他方側のそれぞれの陽極および陰極とを積層して備えた表示デバイスの製造装置であって、前記陽極と前記発光層との間の共通正孔輸送層を、前記複数の副画素に共通して形成し、該共通正孔輸送層と前記発光層との間の個別正孔輸送層を、前記複数の副画素ごとに個別に形成する蒸着装置を備え、前記蒸着装置は、前記共通正孔輸送層を、第1正孔輸送層材料の蒸着によって形成し、前記複数の副画素のうち、第1色の副画素が備える第1個別正孔輸送層を、前記第1正孔輸送層材料と異なる第2正孔輸送層材料の蒸着によって形成し、前記第1色と異なる第2色の副画素が備える第2個別正孔輸送層を、前記第1正孔輸送層材料と前記第2正孔輸送層材料との共蒸着によって形成する。
 本発明によれば、クロストークを低減した表示デバイスを実現できる。
本発明の実施形態1に係る表示デバイスの概略上面図および概略断面図である。 比較形態に係る表示デバイスの概略上面図および概略断面図である。 本発明の実施形態1および比較形態に係る表示デバイスの発光素子に印加される電圧と、当該発光素子を流れる電流の電流密度との関係を示すグラフである。 本発明の実施形態2に係る表示デバイスの概略断面図である。 本発明の実施形態3に係る表示デバイスの概略断面図である。 本発明の実施形態4に係る表示デバイスの概略断面図である。 本発明の各実施形態に係る表示デバイスの製造装置のブロック図である。
 〔実施形態1〕
 図1の(a)は、本実施形態に係る表示デバイス1の概略上面図である。図1の(b)は、図1の(a)における、A-A線矢視断面図である。
 図1の(a)に示すように、本実施形態に係る表示デバイス1は、表示に寄与する表示領域DAと、当該表示領域DAの周囲を囲う額縁領域NAとを備える。額縁領域NAにおいては、後に詳述する表示デバイス1の発光素子を駆動するための信号が入力される端子Tが形成されていてもよい。
 平面視において表示領域DAと重畳する位置において、図1の(b)に示すように、本実施形態に係る表示デバイス1は、発光素子層2とアレイ基板3とを備える。表示デバイス1は、図示しないTFT(Thin Film Transistor)が形成されたアレイ基板3上に、発光素子層2の各層が積層された構造を備える。なお、本明細書においては、表示デバイス1の発光素子層2からアレイ基板3への方向を「下方向」、表示デバイス1のアレイ基板3から発光素子層2への方向を「上方向」として記載する。
 発光素子層2は、陽極4上に、正孔輸送層6と、発光層8と、電子輸送層10と、陰極12とを、下層から順次積層して備える。アレイ基板3の上層に形成された発光素子層2の陽極4は、アレイ基板3のTFTと電気的に接続されている。本実施形態において、正孔輸送層6は、共通正孔輸送層6Cと個別正孔輸送層6Pとを含む。
 ここで、陽極4、個別正孔輸送層6P、および発光層8のそれぞれは、バンク14によって分離されている。特に、本実施形態においては、陽極4は、バンク14によって、第1陽極4R、第2陽極4G、および第3陽極4Bに分離されている。また、個別正孔輸送層6Pは、バンク14によって、第1正孔輸送層6R(第2個別正孔輸送層・第3個別正孔輸送層)、第2正孔輸送層6G(第2個別正孔輸送層・第3個別正孔輸送層)、および第3正孔輸送層6B(第1個別正孔輸送層)に分離されている。さらに、発光層8は、バンク14によって、第1発光層8R、第2発光層8G、および第3発光層8Bに分離されている。なお、共通正孔輸送層6Cと、電子輸送層10と、陰極12とは、バンク14によって分離されず、共通して形成されている。
 本実施形態において、発光素子層2は、第1発光素子2Rと、第2発光素子2Gと、第3発光素子2Bとを複数の発光素子として備える。第1発光素子2Rは、第1陽極4Rと、共通正孔輸送層6Cと、第1正孔輸送層6Rと、第1発光層8Rと、電子輸送層10と、陰極12とからなる。また、第2発光素子2Gは、第2陽極4Gと、共通正孔輸送層6Cと、第2正孔輸送層6Gと、第2発光層8Gと、電子輸送層10と、陰極12とからなる。さらに、第3発光素子2Bは、第3陽極4Bと、共通正孔輸送層6Cと、第3正孔輸送層6Bと、第3発光層8Bと、電子輸送層10と、陰極12とからなる。したがって、陽極4、個別正孔輸送層6P、および発光層8のそれぞれは、第1発光素子2Rと、第2発光素子2Gと、第3発光素子2Bとに個別に形成されている。
 本実施形態においては、第1発光層8Rと、第2発光層8Gと、第3発光層8Bとは、それぞれ、赤色光と、緑色光と、青色光とを発する。すなわち、第1発光素子2Rと、第2発光素子2Gと、第3発光素子2Bとは、それぞれ、互いに異なる色の光である、赤色光と、緑色光と、青色光と発する発光素子である。
 すなわち、第1発光素子2Rと、第2発光素子2Gと、第3発光素子2Bとは、表示デバイス1において、赤色(第2色・第3色)と、緑色(第2色・第3色)と、青色(第1色)との複数の副画素をそれぞれ構成する。また、赤色と、緑色と、青色との副画素は、対応する色の光を発する発光層8を副画素ごとに備える。
 ここで、青色光とは、400nm以上500nm以下の波長帯域に発光中心波長を有する光である。また、緑色光とは、500nm超600nm以下の波長帯域に発光中心波長を有する光のことである。また、赤色光とは、600nm超780nm以下の波長帯域に発光中心波長を有する光のことである。
 陽極4および陰極12は導電性材料を含み、それぞれ、共通正孔輸送層6Cおよび電子輸送層10と電気的に接続されている。本実施形態において、陽極4と陰極12とのうち、表示デバイス1の表示面に近い電極である陰極12は半透明電極であり、例えば、ITO、IZO、AZO、またはGZO等が用いられ、スパッタ法等によって成膜されてもよい。また、本実施形態においては、陽極4は金属材料を含む。金属材料としては、可視光の反射率の高いAl、Cu、Au、またはAg等が好ましい。
 発光層8は、陽極4から輸送された正孔と、陰極12から輸送された電子との再結合が発生することにより、光を発する層である。本実施形態においては、発光層8の材料として、有機蛍光材料、りん光材料、または、半導体ナノ粒子(量子ドット)材料等を採用してもよい。
 正孔輸送層6は、陽極4からの電荷を発光層8へと輸送する層である。正孔輸送層6は、陰極12からの電子の輸送を阻害する機能を有していてもよい。正孔輸送層6における共通正孔輸送層6Cと第1正孔輸送層6R、第2正孔輸送層6G、および第3正孔輸送層6Bの各々とは、電気的に接続している。さらに、第1正孔輸送層6R、第2正孔輸送層6G、および第3正孔輸送層6Bの各々と、第1発光層8R、第2発光層8G、および第3発光層8Bの各々とは、電気的に接続している。
 本実施形態においては、共通正孔輸送層6Cは第1正孔輸送層材料を用いて構成されている。また、青色の副画素を構成する、第3発光素子2Bが備える第3正孔輸送層6Bは、第1正孔輸送層材料とは異なる第2正孔輸送層材料を用いて構成されている。さらに、赤色の副画素を構成する、第1発光素子2Rが備える第1正孔輸送層6Rは、第1正孔輸送層材料と第2正孔輸送層材料との混合材料を用いて構成されている。加えて、緑色の副画素を構成する、第2発光素子2Gが備える第2正孔輸送層6Gは、共通正孔輸送層6Cと同じ第1正孔輸送層材料を用いて構成されている。第1正孔輸送層6Rにおける、第2正孔輸送層材料の混合比率は、第1正孔輸送層6Rの全体に対して、10%以上50%以下である。
 本実施形態において、第1正孔輸送層材料の最高被占軌道のエネルギー準位、すなわちHOMOの絶対値は、第2正孔輸送層材料のHOMOの絶対値よりも小さい。第1正孔輸送層材料のHOMOの絶対値をHOMO1(eV)、第2正孔輸送層材料のHOMOの絶対値をHOMO2(eV)とおく。この場合、本実施形態においては、HOMO1+0.2eV<HOMO2・・・(1)が成立する。
 本実施形態において、第1正孔輸送層材料は、例えば、α-NPD(HOMO:-5.40eV)、または、TAPC(HOMO:-5.43eV)である。また、第2正孔輸送層材料は、例えば、TCTA(HOMO:-5.83eV)、mCP(HOMO:-5.90eV)、または、mCBP(HOMO:-6.00eV)である。
 本実施形態においては、陽極から発光層への正孔輸送の効率を考慮して、共通正孔輸送層6Cの材料として、ホール移動度の高い第1正孔輸送層材料を採用することが好ましい。また、一般に、青色を発する第3発光層8Bの材料のHOMOの絶対値が、赤色を発する第1発光層8Rおよび緑色を発する第2発光層8Gの材料のHOMOの絶対値より大きい。このため、第3正孔輸送層6Bへの正孔注入の効率を考慮して、第3正孔輸送層6Bの材料として、第1正孔輸送層材料よりも、HOMOの絶対値が大きい第2正孔輸送層材料を採用することが好ましい。
 電子輸送層10は、陰極12からの電子を発光層8へと輸送する層である。電子輸送層10は、陽極4からの正孔の輸送を阻害する機能を有していてもよい。
 正孔輸送層6と、発光層8と、電子輸送層10とは、従来公知の手法によって形成されてもよく、例えば、蒸着マスクを使用した蒸着によって形成してもよい。特に、本実施形態においては、共通正孔輸送層6Cおよび第2正孔輸送層6Gを、第1正孔輸送層材料の蒸着によって形成し、第3正孔輸送層6Bを、第2正孔輸送層材料の蒸着によって形成する。また、本実施形態においては、第1正孔輸送層6Rを、第1正孔輸送層材料と第2正孔輸送層材料との共蒸着によって形成する。
 なお、本実施形態において、表示デバイス1は、陽極4と正孔輸送層6との間、および、陰極12と電子輸送層10との間に、電極からの電荷輸送層への電荷の注入を補助する、正孔注入層および電子注入層を備えていてもよい。正孔注入層および電子注入層は、正孔輸送層6および電子輸送層10と同一の方法によって形成されてもよい。
 なお、本実施形態において、個別正孔輸送層6Pと発光層8との膜厚は、発光素子によって異なっていてもよい。例えば、図1の(b)に示すように、本実施形態においては、第1正孔輸送層6R、第2正孔輸送層6G、および第3正孔輸送層6Bは、この順に膜厚が小さくなる。これにより、発光層8と反射電極である陽極4との距離を、副画素ごとに調節できるため、それぞれの副画素に適した光学設定が可能である。
 なお、図1の(b)においては、図面の簡略化のために、第1発光素子2R、第2発光素子2G、および第3発光素子2Bにおいて、個別正孔輸送層6Pと発光層8との合計膜厚を全ての同じ膜厚にて示している。また、後掲の、図2、図4、図5、および図6においても、個別正孔輸送層6Pと発光層8との合計膜厚を、発光素子によらず、全ての同じ膜厚にて示している。
 また、図1の(b)に示すように、本実施形態においては、第1発光層8R、第2発光層8G、および第3発光層8Bは、この順に膜厚が大きくなる。本実施形態においては、図1の(b)に示すように、個別正孔輸送層6Pと発光層8との膜厚の合計は、発光素子によって略一定であってもよい。なお、これに限られず、発光層8上に共通の電子輸送層10を形成することに支障がない限り、個別正孔輸送層6Pと発光層8との膜厚の合計は、発光素子によって異なっていてもよい。
 図2は、比較形態に係る表示デバイスの、図1の(b)に対応する断面図である。比較形態に係る表示デバイスは、本実施形態に係る表示デバイス1と比較して、第1正孔輸送層6Rの材料が異なる点においてのみ、構成が異なる。比較形態において、第1正孔輸送層6Rは、本実施形態に係る表示デバイス1の共通正孔輸送層6Cと同じく、第1正孔輸送層材料を用いて構成されている。
 図3は、表示デバイスの発光素子に印加される電圧と、当該発光素子を流れる電流の電流密度との関係を示すグラフである。図3は、横軸に、表示デバイスのある副画素を構成する1つの発光素子に印加される電圧(V)をとり、縦軸に、当該電圧を印加された発光素子に流れる電流の電流密度(mA/cm)を示す。
 図3において、実線にて示す「B」のグラフは、本実施形態および比較形態における、第3発光素子2Bに印加される電圧、および当該電圧を印加された第3発光素子2Bに流れる電流の電流密度を示す。対して、図3において、一点鎖線にて示す「R-0%」のグラフは、比較形態における、第1発光素子2Rに印加される電圧、および当該電圧を印加された第1発光素子2Rに流れる電流の電流密度を示す。
 一般に、赤色または緑色を発する発光層を備えた発光素子は、青色を発する発光層を備えた発光素子と比較して、電荷の注入効率が高くなり、これに伴い、同電圧を印加された場合において流れる電流の電流密度も高くなる。例えば、図3に示すように、2Vの電圧を、比較形態における第1発光素子2Rおよび第3発光素子2Bに印加した場合、第1発光素子2Rを流れる電流の電流密度は、第3発光素子2Bを流れる電流の電流密度よりも、100倍程度大きい。
 このため、図2に、正孔の動きを示す矢印h+に示すように、第3発光素子2Bが駆動された場合に、第3陽極4Bから共通正孔輸送層6Cに注入された正孔が、ホール移動度の高い共通正孔輸送層6Cを介して、第1正孔輸送層6Rに到達する場合がある。比較形態において、第1正孔輸送層6Rは、ホール移動度の高い共通正孔輸送層6Cと同じ第1正孔輸送層材料を用いて構成されている。
 したがって、第3陽極4Bからの正孔が、共通正孔輸送層6Cおよび第1正孔輸送層6Rを介して、共通電極である陰極12からの電子と、第1発光層8Rにおいて再結合し、第1発光素子2Rが発光する可能性がある。ゆえに、比較形態においては、駆動した第3発光素子2Bとは異なる第1発光素子2Rからの発光が生じる、いわゆるクロストークが発生する可能性がある。
 一方、図3において、点線および破線にて示す「R-10%」および「R-30%」のグラフは、本実施形態における、第1発光素子2Rに印加される電圧、および当該電圧を印加された第1発光素子2Rに流れる電流の電流密度を示す。ここで、「R-10%」あるいは「R-30%」のグラフにおいては、第1発光素子2Rの第1正孔輸送層6Rが、第2正孔輸送層材料を、全体の10%あるいは30%含む場合をそれぞれ示す。
 本実施形態における第1正孔輸送層6Rが、第2正孔輸送層材料を全体の10%含む場合、2Vの電圧を印加された第1発光素子2Rに流れる電流の電流密度は、比較形態の第1発光素子2Rと比較しておおよそ1/2程度に低減される。
 すなわち、本実施形態における第1発光素子2Rと第3発光素子2Bとは、比較形態と比較して、電流の流れやすさの差が小さくなる。これは、比較形態における第1正孔輸送層6Rと比較して、本実施形態における第1正孔輸送層6Rが、第2正孔輸送層材料を一部含み、第1正孔輸送層6Rのホール移動度が低下したためである。
 したがって、本実施形態においては、第3発光素子2Bに電圧を印加した場合に、共通正孔輸送層6Cおよび第1正孔輸送層6Rを介して、電流の流れやすい第1発光素子2Rが駆動されることを低減できる。すなわち、本実施形態に係る表示デバイス1は、青色の副画素から赤色の副画素へのクロストークを低減することができる。当該効果は、共通正孔輸送層6Cとして、ホール移動度の高い材料を採用した場合において顕著となる。
 また、本実施形態における第1正孔輸送層6Rが、第2正孔輸送層材料を全体の30%含む場合、2Vの電圧を印加された第1発光素子2Rに流れる電流の電流密度は、比較形態の第1発光素子2Rと比較しておおよそ1/10程度に低減される。すなわち、本実施形態における第1発光素子2Rと第3発光素子2Bとは、比較形態と比較して、電流の流れやすさの差がさらに小さくなる。
 したがって、本実施形態において、第1正孔輸送層6Rが、第2正孔輸送層材料を全体の30%含む場合、第1正孔輸送層6Rが、第2正孔輸送層材料を全体の10%含む場合と比較して、上述のクロストークをより効率的に低減することができる。
 本実施形態において、第1正孔輸送層6Rが、第2正孔輸送層材料を全体の10%以上含むことにより、上述の効果を十分に得ることができる。なお、第1発光素子2Rにおける正孔注入の効率を確保するため、第1正孔輸送層6Rは、第2正孔輸送層材料を全体の50%以下だけ含むことが好ましい。
 すなわち、第1正孔輸送層6Rが、第2正孔輸送層材料を全体の50%を超えて含む場合には、当該第2正孔輸送層材料の含有量が増えるにつれて、第1発光素子2Rの輝度が低下する。それゆえ、第1正孔輸送層6Rの第2正孔輸送層材料の含有量を、全体の50%以下とすることにより、上述のクロストークを効率的に低減しつつ、高輝度な第2発光素子2Rを容易に構成することができる。
 なお、本実施形態においては、共通正孔輸送層6Cが第1正孔輸送層材料のみからなっていてもよく、同様に、第3正孔輸送層6Bが第2正孔輸送層材料のみからなっていてもよい。これにより、上述したクロストークを低減する効果を、さらに効率的に奏することができる。
 本実施形態においては、第1正孔輸送層材料のHOMOの絶対値が、第2正孔輸送層材料のHOMOの絶対値よりも小さく、上記式(1)を満たす。これにより、第1発光素子2Rにおける電流の流れやすさを効率よく低減できるため、上述のクロストークをより効率的に低減できる。
 本実施形態に係る表示デバイス1は、既存の表示デバイスと比較して、新たな層構造を備える必要が無い。このため、本実施形態に係る表示デバイス1は、従来の表示デバイスと比較して、総膜厚の増加を低減できる。また、第1正孔輸送層6Rは、共通正孔輸送層6Cに使用される第1正孔輸送層材料と、第3正孔輸送層6Bに使用される第2正孔輸送層材料とを、共蒸着することにより得られる。このため、個別に第1正孔輸送層6Rの材料を用意する必要が無い。したがって、本実施形態に係る表示デバイス1は、タクトタイムおよび製造コストの増加を低減しつつ、製造することができる。
 〔実施形態2〕
 図4は、本実施形態に係る表示デバイス1の、図1の(b)に対応する断面図である。本実施形態に係る表示デバイス1は、前実施形態に係る表示デバイス1と比較して、第1正孔輸送層6Rおよび第2正孔輸送層6Gの材料が異なる点においてのみ、構成が異なる。
 本実施形態において、第1正孔輸送層6Rは、共通正孔輸送層6Cと同じく、第1正孔輸送層材料を用いて構成されている。一方、第2正孔輸送層6Gは、第1正孔輸送層材料と第2正孔輸送層材料との混合材料を用いて構成されている。第2正孔輸送層6Gにおける、第2正孔輸送層材料の混合比率は、その全体に対して、10%以上50%以下である。
 すなわち、第2正孔輸送層6Gにおいて、実施形態1における第1正孔輸送層6Rと同様に、第2正孔輸送層材料の混合比率を10%以上50%以下とする。このことにより、上述のクロストークを効率的に低減しつつ、高輝度な第2発光素子2Gを容易に構成することができる。
 なお、第2正孔輸送層6Gにおいて、第2正孔輸送層材料の混合比率を全体の10%あるいは30%とした場合における、第2正孔輸送層6Gの電流密度と印加電圧との特性は、図3の「R-10%」および「R-30%」にそれぞれ示す特性と同様となる。
 本実施形態においては、上述と同様の原理により、第3発光素子2Bに電圧を印加した場合に、共通正孔輸送層6Cを介して、電流の流れやすい第2発光素子2Gに電荷が移動することを低減できる。すなわち、本実施形態に係る表示デバイス1は、青色の副画素から緑色の副画素へのクロストークを低減することができる。
 〔実施形態3〕
 図5は、本実施形態に係る表示デバイス1の、図1の(b)に対応する断面図である。本実施形態に係る表示デバイス1は、前実施形態に係る表示デバイス1と比較して、第1正孔輸送層6Rの材料が異なる。さらに、本実施形態に係る表示デバイス1は、前実施形態に係る表示デバイス1と比較して、第1正孔輸送層6R、第2正孔輸送層6G、第1発光層8R、および第2発光層8Gの膜厚が異なる。上記点を除いて、本実施形態に係る表示デバイス1は、前実施形態に係る表示デバイス1と同一の構成を備える。
 本実施形態において、第1正孔輸送層6Rは、第1正孔輸送層材料と第2正孔輸送層材料との混合材料を用いて構成されている。第1正孔輸送層6Rにおける、第2正孔輸送層材料の混合比率は、第1正孔輸送層6Rの全体に対して、10%以上50%以下である。
 さらに、本実施形態においては、図5に示すように、第1正孔輸送層6Rと、第2正孔輸送層6Gとの膜厚が等しく、第1発光層8Rと、第2発光層8Gとの膜厚が等しい。例えば、第1正孔輸送層6Rと、第2正孔輸送層6Gとは、同一の膜厚d6を有していてもよい。さらに、第1発光層8Rと、第2発光層8Gとは、同一の膜厚d8を有していてもよい。この場合、第1正孔輸送層6Rと、第2正孔輸送層6Gとにおける、第2正孔輸送層材料の混合比率を同一とすることにより、第1正孔輸送層6Rと、第2正孔輸送層6Gとを、上述の共蒸着によって、同時形成することができる。
 しかしながら、本実施形態においては、これに限られず、第1正孔輸送層6Rと、第2正孔輸送層6Gとの膜厚は異なっていてもよい。さらに、第1正孔輸送層6Rと、第2正孔輸送層6Gとにおける、第2正孔輸送層材料の混合比率が異なっていてもよい。
 本実施形態においては、上述と同様の原理により、第3発光素子2Bに電圧を印加した場合に、共通正孔輸送層6Cを介して、電流の流れやすい第1発光素子2Rおよび第2発光素子2Gに電荷が移動することを低減できる。すなわち、本実施形態に係る表示デバイス1は、青色の副画素から赤色および緑色の副画素へのクロストークを低減することができる。
 〔実施形態4〕
 図6は、本実施形態に係る表示デバイス1の、図1の(b)に対応する断面図である。本実施形態に係る表示デバイス1は、前実施形態に係る表示デバイス1と比較して、陽極4と第1正孔輸送層6Rとの間に第4正孔輸送層6Ra(第4個別正孔輸送層)をさらに備える点においてのみ、構成が異なる。
 第4正孔輸送層6Raは、共通正孔輸送層6Cと、第1正孔輸送層6Rとに接し、電気的に接続されている。第4正孔輸送層6Raは、共通正孔輸送層6Cと同じく、第1正孔輸送層材料を用いて構成されている。なお、図6に示すように、第1正孔輸送層6Rと第4正孔輸送層6Raとの合計膜厚が、第2正孔輸送層6Gの膜厚と同一の膜厚d6を有していてもよい。
 本実施形態においては、共通正孔輸送層6Cから第4正孔輸送層6Raへの正孔輸送の障壁がほぼ存在しない。したがって、本実施形態においては、赤色の副画素へのクロストークを低減する効果を維持しつつ、第1発光素子2Rにおける、第1陽極4Rから第1発光層8Rへの正孔輸送の効率を向上することができる。
 上述の各実施形態に係る表示デバイス1は、柔軟性を有し、屈曲可能な表示素子を備えた表示パネルを備えていれば、特に限定されるものではない。上記表示素子は、電流によって輝度や透過率が制御される表示素子と、電圧によって輝度や透過率が制御される表示素子とがある。
 例えば、上述の各実施形態に係る表示デバイス1は、電流制御の表示素子として、OLED(Organic Light Emitting Diode:有機発光ダイオード)を備えていてもよい。この場合、上述の各実施形態に係る表示デバイス1は、有機EL(Electro Luminescence:エレクトロルミネッセンス)ディスプレイであってもよい。
 または、上述の各実施形態に係る表示デバイス1は、電流制御の表示素子として、無機発光ダイオードを備えていてもよい。この場合、上述の各実施形態に係る表示デバイス1は、無機ELディスプレイ等のELディスプレイQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えた、QLEDディスプレイであってもよい。
 また、電圧制御の表示素子としては、液晶表示素子等がある。
 図7は、上述の各実施形態における表示デバイス1の製造工程において使用される、表示デバイスの製造装置50を示すブロック図である。表示デバイスの製造装置50は、コントローラ52と蒸着装置54と成膜装置56とを備える。コントローラ52は、蒸着装置54と成膜装置56とを制御してもよい。
 蒸着装置54は、正孔輸送層6を含む、表示デバイス1の各層の少なくとも一部を、蒸着によって形成してもよい。ここで、上述の各実施形態において、蒸着装置54は、第1正孔輸送層材料と第2正孔輸送層材料との混合材料を用いて構成されている個別正孔輸送層6Pを、第1正孔輸送層材料と第2正孔輸送層材料との共蒸着によって形成してもよい。成膜装置56は、蒸着装置54によって形成されない、表示デバイス1の各層の成膜を実行してもよい。
 〔まとめ〕
 様態1の表示デバイスは、互いに異なる色の光を発する複数の副画素を備え、前記複数の副画素ごとに設けられ、当該副画素に対応した色の光を発する発光層と、前記発光層の一方側および他方側のそれぞれの陽極および陰極とを積層して備えた表示デバイスであって、前記陽極と前記発光層との間に、共通正孔輸送層を前記複数の副画素に共通して備え、該共通正孔輸送層と前記発光層との間に、個別正孔輸送層を前記複数の副画素ごとに個別に備え、前記共通正孔輸送層が、第1正孔輸送層材料を用いて構成され、前記複数の副画素のうち、第1色の副画素が備える第1個別正孔輸送層が、前記第1正孔輸送層材料と異なる第2正孔輸送層材料を用いて構成され、前記第1色と異なる第2色の副画素が備える第2個別正孔輸送層が、前記第1正孔輸送層材料と前記第2正孔輸送層材料との混合材料を用いて構成されている。
 様態2においては、前記共通正孔輸送層が前記第1正孔輸送層材料のみからなり、前記第1個別正孔輸送層が前記第2正孔輸送層材料のみからなる。
 様態3においては、前記第1正孔輸送層材料の最高被占軌道のエネルギー準位の絶対値が、前記第2正孔輸送層材料の最高被占軌道のエネルギー準位の絶対値よりも小さい。
 様態4においては、前記第1正孔輸送層材料の最高被占軌道のエネルギー準位の絶対値をHOMO1(eV)、前記第2正孔輸送層材料の最高被占軌道のエネルギー準位の絶対値をHOMO2(eV)とすると、HOMO1+0.2eV<HOMO2を満たす。
 様態5においては、前記第2個別正孔輸送層において、前記第2正孔輸送層材料の混合比率が、全体の10%以上50%以下である。
 様態6においては、前記第1色が青色であり、前記第2色が赤色である。
 様態7においては、前記第1色が青色であり、前記第2色が緑色である。
 様態8においては、前記複数の副画素が、第3色の副画素をさらに備え、前記第3色が緑色である。
 様態9においては、前記複数の副画素が、第3色の副画素をさらに備え、前記第3色が赤色である。
 様態10においては、前記第3色の副画素が備える第3個別正孔輸送層が、前記第1正孔輸送層材料を用いて構成されている。
 様態11においては、前記第3色の副画素が備える第3個別正孔輸送層が、前記混合材料を用いて構成されている。
 様態12においては、前記第3個別正孔輸送層において、前記第2正孔輸送層材料の混合比率が、全体の10%以上50%以下である。
 様態13においては、前記第2個別正孔輸送層の膜厚と前記第3個別正孔輸送層の膜厚とが同一である。
 様態14においては、前記第2色の副画素が、前記第2個別正孔輸送層と前記共通正孔輸送層との間に、第1正孔輸送層材料を用いて構成されている第4個別正孔輸送層をさらに備える。
 様態15においては、前記混合材料を用いて構成されている前記個別正孔輸送層が、前記発光層と接する。
 様態16の表示デバイスの製造方法は、互いに異なる色の光を発する複数の副画素を備え、前記複数の副画素ごとに設けられ、当該副画素に対応した色の光を発する発光層と、前記発光層の一方側および他方側のそれぞれの陽極および陰極とを積層して備えた表示デバイスの製造方法であって、前記陽極と前記発光層との間の共通正孔輸送層を、前記複数の副画素に共通して形成し、該共通正孔輸送層と前記発光層との間の個別正孔輸送層を、前記複数の副画素ごとに個別に形成する正孔輸送層形成工程を備え、前記正孔輸送層形成工程において、前記共通正孔輸送層を、第1正孔輸送層材料の蒸着によって形成し、前記複数の副画素のうち、第1色の副画素が備える第1個別正孔輸送層を、前記第1正孔輸送層材料と異なる第2正孔輸送層材料の蒸着によって形成し、前記第1色と異なる第2色の副画素が備える第2個別正孔輸送層を、前記第1正孔輸送層材料と前記第2正孔輸送層材料との共蒸着によって形成する。
 様態17の表示デバイスの製造装置は、互いに異なる色の光を発する複数の副画素を備え、前記複数の副画素ごとに設けられ、当該副画素に対応した色の光を発する発光層と、前記発光層の一方側および他方側のそれぞれの陽極および陰極とを積層して備えた表示デバイスの製造装置であって、前記陽極と前記発光層との間の共通正孔輸送層を、前記複数の副画素に共通して形成し、該共通正孔輸送層と前記発光層との間の個別正孔輸送層を、前記複数の副画素ごとに個別に形成する蒸着装置を備え、前記蒸着装置は、前記共通正孔輸送層を、第1正孔輸送層材料の蒸着によって形成し、前記複数の副画素のうち、第1色の副画素が備える第1個別正孔輸送層を、前記第1正孔輸送層材料と異なる第2正孔輸送層材料の蒸着によって形成し、前記第1色と異なる第2色の副画素が備える第2個別正孔輸送層を、前記第1正孔輸送層材料と前記第2正孔輸送層材料との共蒸着によって形成する。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
1      表示デバイス
2      発光素子層
2R・G・B 第1~3発光素子
4      陽極
6      正孔輸送層
6C     共通正孔輸送層
6P     個別正孔輸送層
6R・G・B 第1~3正孔輸送層
6Ra    第4正孔輸送層
8      発光層
8R・G・B 第1~3発光層
12     陰極
50     表示デバイスの製造装置

Claims (17)

  1.  互いに異なる色の光を発する複数の副画素を備え、
     前記複数の副画素ごとに設けられ、当該副画素に対応した色の光を発する発光層と、前記発光層の一方側および他方側のそれぞれの陽極および陰極とを積層して備えた表示デバイスであって、
     前記陽極と前記発光層との間に、共通正孔輸送層を前記複数の副画素に共通して備え、該共通正孔輸送層と前記発光層との間に、個別正孔輸送層を前記複数の副画素ごとに個別に備え、
     前記共通正孔輸送層が、第1正孔輸送層材料を用いて構成され、
     前記複数の副画素のうち、第1色の副画素が備える第1個別正孔輸送層が、前記第1正孔輸送層材料と異なる第2正孔輸送層材料を用いて構成され、前記第1色と異なる第2色の副画素が備える第2個別正孔輸送層が、前記第1正孔輸送層材料と前記第2正孔輸送層材料との混合材料を用いて構成されている表示デバイス。
  2.  前記共通正孔輸送層が前記第1正孔輸送層材料のみからなり、前記第1個別正孔輸送層が前記第2正孔輸送層材料のみからなる請求項1に記載の表示デバイス。
  3.  前記第1正孔輸送層材料の最高被占軌道のエネルギー準位の絶対値が、前記第2正孔輸送層材料の最高被占軌道のエネルギー準位の絶対値よりも小さい請求項1または2に記載の表示デバイス。
  4.  前記第1正孔輸送層材料の最高被占軌道のエネルギー準位の絶対値をHOMO1(eV)、前記第2正孔輸送層材料の最高被占軌道のエネルギー準位の絶対値をHOMO2(eV)とすると、HOMO1+0.2eV<HOMO2を満たす請求項3に記載の表示デバイス。
  5.  前記第2個別正孔輸送層において、前記第2正孔輸送層材料の混合比率が、全体の10%以上50%以下である請求項1から4の何れか1項に記載の表示デバイス。
  6.  前記第1色が青色であり、前記第2色が赤色である請求項1から5の何れか1項に記載の表示デバイス。
  7.  前記第1色が青色であり、前記第2色が緑色である請求項1から5の何れか1項に記載の表示デバイス。
  8.  前記複数の副画素が、第3色の副画素をさらに備え、前記第3色が緑色である請求項6に記載の表示デバイス。
  9.  前記複数の副画素が、第3色の副画素をさらに備え、前記第3色が赤色である請求項7に記載の表示デバイス。
  10.  前記第3色の副画素が備える第3個別正孔輸送層が、前記第1正孔輸送層材料を用いて構成されている請求項8または9に記載の表示デバイス。
  11.  前記第3色の副画素が備える第3個別正孔輸送層が、前記混合材料を用いて構成されている請求項8または9に記載の表示デバイス。
  12.  前記第3個別正孔輸送層において、前記第2正孔輸送層材料の混合比率が、全体の10%以上50%以下である請求項11に記載の表示デバイス。
  13.  前記第2個別正孔輸送層の膜厚と前記第3個別正孔輸送層の膜厚とが同一である請求項11または12に記載の表示デバイス。
  14.  前記第2色の副画素が、前記第2個別正孔輸送層と前記共通正孔輸送層との間に、第1正孔輸送層材料を用いて構成されている第4個別正孔輸送層をさらに備えた請求項1から13の何れか1項に記載の表示デバイス。
  15.  前記混合材料を用いて構成されている前記個別正孔輸送層が、前記発光層と接する請求項1から14の何れか1項に記載の表示デバイス。
  16.  互いに異なる色の光を発する複数の副画素を備え、
     前記複数の副画素ごとに設けられ、当該副画素に対応した色の光を発する発光層と、前記発光層の一方側および他方側のそれぞれの陽極および陰極とを積層して備えた表示デバイスの製造方法であって、
     前記陽極と前記発光層との間の共通正孔輸送層を、前記複数の副画素に共通して形成し、該共通正孔輸送層と前記発光層との間の個別正孔輸送層を、前記複数の副画素ごとに個別に形成する正孔輸送層形成工程を備え、
     前記正孔輸送層形成工程において、前記共通正孔輸送層を、第1正孔輸送層材料の蒸着によって形成し、前記複数の副画素のうち、第1色の副画素が備える第1個別正孔輸送層を、前記第1正孔輸送層材料と異なる第2正孔輸送層材料の蒸着によって形成し、前記第1色と異なる第2色の副画素が備える第2個別正孔輸送層を、前記第1正孔輸送層材料と前記第2正孔輸送層材料との共蒸着によって形成する表示デバイスの製造方法。
  17.  互いに異なる色の光を発する複数の副画素を備え、
     前記複数の副画素ごとに設けられ、当該副画素に対応した色の光を発する発光層と、前記発光層の一方側および他方側のそれぞれの陽極および陰極とを積層して備えた表示デバイスの製造装置であって、
     前記陽極と前記発光層との間の共通正孔輸送層を、前記複数の副画素に共通して形成し、該共通正孔輸送層と前記発光層との間の個別正孔輸送層を、前記複数の副画素ごとに個別に形成する蒸着装置を備え、
     前記蒸着装置は、前記共通正孔輸送層を、第1正孔輸送層材料の蒸着によって形成し、前記複数の副画素のうち、第1色の副画素が備える第1個別正孔輸送層を、前記第1正孔輸送層材料と異なる第2正孔輸送層材料の蒸着によって形成し、前記第1色と異なる第2色の副画素が備える第2個別正孔輸送層を、前記第1正孔輸送層材料と前記第2正孔輸送層材料との共蒸着によって形成する表示デバイスの製造装置。
PCT/JP2018/027136 2018-07-19 2018-07-19 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置 WO2020016998A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/027136 WO2020016998A1 (ja) 2018-07-19 2018-07-19 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
US17/259,330 US20210305533A1 (en) 2018-07-19 2018-07-19 Display device, display device manufacturing method, display device manufacturing apparatus
CN201880095750.8A CN112424968A (zh) 2018-07-19 2018-07-19 显示设备、显示设备的制造方法、显示设备的制造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027136 WO2020016998A1 (ja) 2018-07-19 2018-07-19 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置

Publications (1)

Publication Number Publication Date
WO2020016998A1 true WO2020016998A1 (ja) 2020-01-23

Family

ID=69163809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027136 WO2020016998A1 (ja) 2018-07-19 2018-07-19 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置

Country Status (3)

Country Link
US (1) US20210305533A1 (ja)
CN (1) CN112424968A (ja)
WO (1) WO2020016998A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952014A (zh) * 2021-04-14 2021-06-11 北京京东方技术开发有限公司 发光二极管及其制备方法、显示面板及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004031A (ja) * 2008-06-19 2010-01-07 Samsung Mobile Display Co Ltd 有機発光表示装置
JP2011216778A (ja) * 2010-04-01 2011-10-27 Toshiba Mobile Display Co Ltd 有機el表示装置およびその製造方法
JP2012186021A (ja) * 2011-03-04 2012-09-27 Sony Corp 有機el表示装置およびその製造方法
US20130001526A1 (en) * 2011-06-30 2013-01-03 Samsung Mobile Display Co., Ltd. Organic light emitting diode and method for manufacturing the same
KR20150036872A (ko) * 2013-09-30 2015-04-08 엘지디스플레이 주식회사 유기전계발광소자 및 그 제조방법
JP2018093196A (ja) * 2016-11-30 2018-06-14 エルジー ディスプレイ カンパニー リミテッド 有機発光表示パネル

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101950836B1 (ko) * 2012-05-22 2019-02-22 엘지디스플레이 주식회사 유기 발광 소자 및 그의 제조 방법
KR102016072B1 (ko) * 2012-12-28 2019-08-30 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
WO2016199743A1 (ja) * 2015-06-11 2016-12-15 保土谷化学工業株式会社 アリールアミン化合物および有機エレクトロルミネッセンス素子
CN106653803B (zh) * 2016-11-21 2019-06-14 上海天马有机发光显示技术有限公司 一种有机发光显示面板和有机发光显示装置
KR20180061850A (ko) * 2016-11-30 2018-06-08 엘지디스플레이 주식회사 유기발광 표시장치와 그의 제조방법
CN106674026B (zh) * 2016-12-28 2019-06-21 上海天马有机发光显示技术有限公司 一种空穴传输材料、包含其的oled显示面板和电子设备
CN107275362B (zh) * 2016-12-28 2020-10-09 上海天马有机发光显示技术有限公司 一种oled显示面板及包含其的电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004031A (ja) * 2008-06-19 2010-01-07 Samsung Mobile Display Co Ltd 有機発光表示装置
JP2011216778A (ja) * 2010-04-01 2011-10-27 Toshiba Mobile Display Co Ltd 有機el表示装置およびその製造方法
JP2012186021A (ja) * 2011-03-04 2012-09-27 Sony Corp 有機el表示装置およびその製造方法
US20130001526A1 (en) * 2011-06-30 2013-01-03 Samsung Mobile Display Co., Ltd. Organic light emitting diode and method for manufacturing the same
KR20150036872A (ko) * 2013-09-30 2015-04-08 엘지디스플레이 주식회사 유기전계발광소자 및 그 제조방법
JP2018093196A (ja) * 2016-11-30 2018-06-14 エルジー ディスプレイ カンパニー リミテッド 有機発光表示パネル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952014A (zh) * 2021-04-14 2021-06-11 北京京东方技术开发有限公司 发光二极管及其制备方法、显示面板及其制备方法
CN112952014B (zh) * 2021-04-14 2024-04-19 北京京东方技术开发有限公司 发光二极管及其制备方法、显示面板及其制备方法

Also Published As

Publication number Publication date
CN112424968A (zh) 2021-02-26
US20210305533A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
US10461131B2 (en) Quantum dot LED and OLED integration for high efficiency displays
CN108023023B (zh) 有机发光装置及使用该有机发光装置的有机发光显示装置
US11342527B2 (en) Light-emitting element having commonly formed hole transport layer and anode electrode and light-emitting device
US7091936B1 (en) Color display device
KR101094282B1 (ko) 유기 발광 장치
KR101429537B1 (ko) 유기발광소자
KR101866393B1 (ko) 유기 발광 소자 및 이의 제조 방법
US20050242712A1 (en) Multicolor electroluminescent display
JP2007503093A (ja) マイクロキャビティ・ガモット・サブ画素を有するoledデバイス
US20130207085A1 (en) Organic light emitting diode display and method for manufacturing the same
WO2020059143A1 (ja) 発光素子、発光デバイス、及び発光素子の製造方法
US8674598B2 (en) Polychromatic electronic display device with electroluminescent screen
JP4032733B2 (ja) 有機el素子
CN107527942B (zh) 有机发光显示面板及其制备方法
WO2020089999A1 (ja) 発光素子、発光素子の製造方法
KR20180079057A (ko) 유기 발광 표시 장치
WO2021117076A1 (ja) 発光装置、および、発光装置の製造方法
WO2020194411A1 (ja) 発光素子、発光デバイス
JP2014197466A (ja) 表示装置
KR101816425B1 (ko) 유기 발광 표시 장치
WO2020016998A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
JP2006202685A (ja) 自発光表示装置
WO2021059472A1 (ja) 発光装置
KR100864758B1 (ko) 풀 컬러 유기 전기 발광 소자
KR100571004B1 (ko) 적층형 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP