WO2021033257A1 - 発光素子および発光デバイス - Google Patents

発光素子および発光デバイス Download PDF

Info

Publication number
WO2021033257A1
WO2021033257A1 PCT/JP2019/032410 JP2019032410W WO2021033257A1 WO 2021033257 A1 WO2021033257 A1 WO 2021033257A1 JP 2019032410 W JP2019032410 W JP 2019032410W WO 2021033257 A1 WO2021033257 A1 WO 2021033257A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
region
layer
hole transport
transport layer
Prior art date
Application number
PCT/JP2019/032410
Other languages
English (en)
French (fr)
Inventor
吐田 真一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US17/617,276 priority Critical patent/US20220328778A1/en
Priority to PCT/JP2019/032410 priority patent/WO2021033257A1/ja
Publication of WO2021033257A1 publication Critical patent/WO2021033257A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Definitions

  • the present invention relates to a light emitting element and a light emitting device.
  • Patent Document 1 discloses a light emitting device containing a semiconductor nanocrystal. Then, it is described that the light emitting device includes a light emitting element including a hole transport layer made of NiO, which is an inorganic material. In addition, it is described that the configuration can provide a light emitting device having a long device life.
  • the light emitting element includes a cathode, an anode, a light emitting layer containing quantum dots provided between the cathode and the anode, the anode and the light emitting. It has a hole transport layer provided between the layers, and the hole transport layer is provided on the first region provided on the anode side and on the light emitting layer side of the first region. It has a second region adjacent to the light emitting layer, and the ionization potential of the first region is larger than the ionization potential of the second region and larger than the ionization potential of the light emitting layer.
  • the light emitting element includes an anode, a cathode, a light emitting layer containing quantum dots provided between the anode and the cathode, the anode and the light emitting. It has a hole transport layer provided between the layers, and the hole transport layer contains a metal oxide containing Ni, and from the first region provided on the anode side and the first region. Is also provided on the light emitting layer side and has a second region adjacent to the light emitting layer, and the ratio of O to Ni in the first region is larger than the ratio of O to Ni in the second region.
  • the hole transport efficiency from the hole transport layer to the light emitting layer is improved.
  • the carrier balance between holes and electrons is improved in the light emitting layer, so that the luminous efficiency of the light emitting device can be improved while maintaining the reliability of the light emitting device.
  • FIG. 1 is a schematic cross-sectional view of the light emitting device 1 according to the first embodiment.
  • the light emitting device 1 is used, for example, in a display device such as a display.
  • the light emitting device 1 of the present embodiment includes an array substrate 2 and a light emitting element 3.
  • the light emitting device 1 has a structure in which each layer of the light emitting element 3 is laminated on an array substrate 2 on which a TFT (not shown) which is a thin film transistor for driving the light emitting element 3 is formed.
  • the light emitting device 3 of the present embodiment has an anode 4, a hole transport layer 5, a light emitting layer 6, an electron transport layer 7, and a cathode 8.
  • the anode 4 is formed on the upper layer of the array substrate 2 and is electrically connected to the TFT of the array substrate 2.
  • a metal containing Al, Cu, Au, Ag, etc. which has a high reflectance of visible light
  • a transparent material such as ITO, IZO, ZnO, AZO, or BZO are placed on the array substrate 2. It has a structure in which they are laminated in order.
  • the anode 4 is formed by, for example, a sputtering method, a vapor deposition method, or the like.
  • the hole transport layer 5 further transports the holes injected from the anode 4 to the light emitting layer 6.
  • the hole transport layer 5 is formed on the anode 4 and is electrically connected to the anode 4.
  • the hole transport layer 5 is made of, for example, a material containing a metal oxide.
  • the metal oxide contained in the hole transport layer 5 include magnesium nickelate MgNiO (compound containing Mg, Ni and O), lanthanum nickelate LaNiO (compound containing La, Ni and O), and Mg X.
  • Ni 1-X O where X is 0 ⁇ X ⁇ 1
  • (NiO) 1-X (LaNiO 3 ) X (where X is 0 ⁇ X ⁇ 1)
  • the hole transport layer 5 is formed by, for example, a sputtering method, a vapor deposition method, a spin coating method, an inkjet method, or the like.
  • the hole transport layer 5 may be made of nanoparticles, crystals, polycrystalline, or amorphous.
  • the thickness (film thickness) of the hole transport layer 5 is preferably 5 nm or more and 50 nm or less.
  • the light emitting layer 6 is provided between the anode 4 and the cathode 8. Specifically, the light emitting layer 6 of the present embodiment is provided between the hole transport layer 5 and the electron transport layer 7. Further, the light emitting layer 6 of the present embodiment includes quantum dots (semiconductor nanoparticles) 61. Specifically, the light emitting layer 6 is configured by stacking one or more quantum dots 61.
  • the light emitting layer 6 is formed by a spin coating method, an inkjet method, or the like from a dispersion liquid in which quantum dots 61 are dispersed in a solvent such as hexane or toluene. A dispersion material such as thiol or amine may be mixed with the dispersion liquid.
  • the thickness (film thickness) of the light emitting layer 6 is preferably 5 nm or more and 50 nm or less from the viewpoint that a uniform film can be formed and efficient light emission can be obtained.
  • the quantum dot 61 is a light emitting material that has a valence band level and a conduction band level, and emits light by recombination of holes in the valence band level and electrons in the conduction band level. Since the light emitted from the quantum dots 61 has a narrow spectrum due to the quantum confinement effect, it is possible to obtain light emission with a relatively deep chromaticity.
  • the quantum dot 61 may be, for example, a semiconductor nanoparticle having a core / shell structure having CdSe in the core and ZnS in the shell.
  • the quantum dot 61 may have CdSe / CdS, InP / ZnS, ZnSe / ZnS, CIGS / ZnS, or the like as a core / shell structure.
  • a ligand composed of an organic substance such as thiol or amine may be coordinate-bonded to the outer peripheral portion of the shell.
  • the particle size of the quantum dots 61 is about 3 nm to 15 nm.
  • the wavelength of light emitted from the quantum dots 61 can be controlled by the particle size of the quantum dots 61. Therefore, by controlling the particle size of the quantum dots 61, the wavelength of the light emitted by the light emitting device 1 can be controlled.
  • the electron transport layer 7 further transports the electrons injected from the cathode 8 to the light emitting layer 6.
  • the electron transport layer 7 may have a function of suppressing holes from being transported to the cathode 8 (hole blocking function).
  • the electron transport layer 7 is provided on the light emitting layer 6.
  • the thickness (thickness) of the electron transport layer 7 is preferably 10 nm or more and 100 nm or less from the viewpoint that a uniform film can be formed and electrons can be efficiently transported to the light emitting layer 6.
  • the cathode 8 is provided on the electron transport layer 7 and is electrically connected to the electron transport layer 7.
  • the cathode 8 is made of, for example, a metal thinned to a degree of light transmission or a transparent material.
  • the metal constituting the cathode 8 include metals containing Al, Ag, Mg and the like.
  • the transparent material constituting the cathode 8 include ITO, IZO, ZnO, AZO, BZO and the like.
  • the cathode 8 is formed by, for example, a sputtering method or a thin-film deposition method.
  • the holes injected from the anode 4 (arrow h + in FIG. 1) and the electrons injected from the cathode 8 (arrow e ⁇ in FIG. 1) pass through the hole transport layer 5 and the electron transport layer 7, respectively. Transported to 6. Then, the holes and electrons transported to the light emitting layer 6 are recombined in the quantum dots 61 to generate excitons. Then, when the exciton returns from the excited state to the ground state, the quantum dot 61 emits light.
  • a top emission type in which the light emitted from the light emitting layer 6 is taken out from the side opposite to the array substrate 2 (upper in FIG. 1) is illustrated.
  • the light emitting device 1 may be a bottom emission type that extracts light from the array substrate 2 side (lower side in FIG. 1).
  • the cathode 8 may be composed of a reflective electrode
  • the anode 4 may be composed of a transparent electrode.
  • the anode 4, the hole transport layer 5, the light emitting layer 6, the electron transport layer 7, and the cathode 8 are laminated in this order from the array substrate 2.
  • the light emitting device 1 may have a so-called invert structure in which the cathode 8, the electron transport layer 7, the light emitting layer 6, the hole transport layer 5, and the anode 4 are laminated in this order from the array substrate 2.
  • FIG. 2 is an energy diagram showing the relationship between the Fermi level, the electron affinity and the ionization potential in each layer of the light emitting device 3 according to the first embodiment.
  • the anode 4 the hole transport layer 5, the light emitting layer 6, the electron transport layer 7, and the cathode 8 are shown from left to right.
  • the anode 4, the hole transport layer 5, the light emitting layer 6, the electron transport layer 7, and the cathode 8 are also shown as Anode, HTL, EML, ETL, and Cathode, respectively.
  • the anode 4 and the cathode 8 are shown at the Fermi level.
  • the hole transport layer 5 the light emitting layer 6 and the electron transport layer 7, the ionization potential of each layer is shown with reference to the vacuum level.
  • the electron affinity of each layer is shown based on the vacuum level.
  • the unit of Fermi level, ionization potential and electron affinity is eV, respectively.
  • the case where the anode 4 is made of ITO and the cathode 8 is made of Al is shown.
  • the Fermi level of the anode 4 is 4.6 eV
  • the Fermi level of the cathode 8 is 4.3 eV.
  • the case where the electron transport layer 7 is made of ZnO is shown.
  • the ionization potential of the electron transport layer 7 is 7.4 eV
  • the electron affinity of the electron transport layer 7 is 4.0 eV.
  • the ionization potential of the light emitting layer 6 is 6.0 to 7.0 eV, and the electron affinity of the light emitting layer 6 is 3.5 to 4.0 eV.
  • the ionization potential of the light emitting layer 6 is 5.5 eV, 5.6 eV, or 5.7 eV, respectively, when the quantum dots 61 included in the light emitting layer 6 are, for example, CdSe, InP, or ZnSe.
  • the ionization potential and electron affinity of the light emitting layer 6 can be adjusted by controlling the particle size and material of the quantum dots 61.
  • the hole transport layer 5 of the present embodiment is provided in the first region A1 provided on the anode 4 side and on the light emitting layer 6 side of the first region A1. It has a second region A2 adjacent to the light emitting layer 6.
  • the first region A1 of the present embodiment is provided between the anode 4 and the second region A2, and is adjacent to the anode 4 and the second region A2.
  • the second region A2 of the present embodiment is provided between the first region A1 and the light emitting layer 6 and is adjacent to the first region A1 and the light emitting layer 6. That is, the hole transport layer 5 of the present embodiment is composed of only the first region A1 and the second region A2.
  • the hole transport layer 5 may further have different regions between the anode 4 and the first region A1, and may further have different regions between the first region A1 and the second region A2.
  • another different region may be further provided between the second region A2 and the light emitting layer 6.
  • the other different region is preferably a region where holes are transported from the anode 4 side to the light emitting layer 6 side by tunneling.
  • the ionization potential of the first region A1 is larger than the ionization potential of the second region A2 and larger than the ionization potential of the light emitting layer 6.
  • the ionization potential of the hole transport layer 5 of the present embodiment gradually decreases from the anode 4 side of the first region A1 to the light emitting layer 6 side of the second region A2. .. More specifically, the ionization potential of the hole transport layer 5 of the present embodiment gradually decreases from the anode 4 side to the light emitting layer 6 side.
  • the ionization potential of the second region A2 of the present embodiment may be smaller than the ionization potential of the light emitting layer 6 as long as it is smaller than the ionization potential of the first region A1. Further, by making the ionization potential of the second region A2 larger than the ionization potential of the light emitting layer 6, the energy barrier for transporting holes between the hole transport layer 5 and the light emitting layer 6 becomes low. .. Therefore, the holes are more easily transported to the light emitting layer 6. In addition, the holes are more likely to reach the inside of the light emitting layer 6. Therefore, the luminous efficiency of the light emitting device 1 can be further improved.
  • IP A2 and IP EML are IP A2- IP EML from the viewpoint of improving the light emission efficiency in the light emitting device 1. It is preferable to satisfy the relationship of ⁇ ⁇ 0.3 eV. Further, it is more preferable that the ionization potential of the second region A2 is larger than the ionization potential of the light emitting layer 6 from the viewpoint of improving the luminous efficiency in the light emitting device 1. Further, the value of the ionization potential of the first region A1 is preferably 6.5 eV or less from the viewpoint of efficient hole injection from the anode 4.
  • the hole transport layer 5 of the present embodiment includes a first layer 51 including the first region A1 and a second layer 52 including the second region A2.
  • the thickness of the first layer 51 and the second layer 52 is preferably 5 nm or more and 15 nm or less, respectively.
  • the electron affinity of the first region A1 is smaller than the electron affinity of the second region A2.
  • the electron affinity of the hole transport layer 5 of the present embodiment gradually increases from the anode 4 side of the first region A1 to the light emitting layer 6 side of the second region A2. More specifically, the electron affinity of the hole transport layer 5 gradually increases from the anode 4 side to the light emitting layer 6 side.
  • the barrier for electrons to conduct from the light emitting layer 6 to the anode 4 becomes large. Therefore, the electrons are suppressed from being conducted to the anode 4, and are more likely to be accumulated in the light emitting layer 6. Therefore, the electrons injected from the cathode 8 can be more efficiently recombined with the holes in the light emitting layer 6, and the luminous efficiency in the light emitting device 1 can be further improved.
  • the hole transport layer 5 of the present embodiment is, for example, Mg X Ni 1-X O (where X is 0 ⁇ X ⁇ 1), (NiO) 1-X (LaNiO 3 ) X (however, where). , X is 0 ⁇ X ⁇ 1.), and (Cu Y O) 1-X (LaNiO 3) X ( provided that, X is 0 ⁇ X ⁇ 1, Y is 1 ⁇ Y ⁇ 2. ) Etc., it is composed of metal oxides.
  • FIG. 3 is a diagram showing the relationship between the ionization potential and the electron affinity with respect to the composition of Mg X Ni 1-X O.
  • the ionization potential and the electron affinity can be controlled by using Mg X Ni 1-X O having a changed composition. Therefore, in the hole transport layer 5, by making the value of X in the first region A1 larger than the value of X in the second region A2, the ionization potential of the first region A1 can be changed to the ionization potential of the second region A2. Can be larger than. Then, by making the value of X in the first region A1 larger than the value of X in the second region A2, the electron affinity of the first region A1 can be made smaller than the electron affinity of the second region A2. .
  • the quantum dots 61 included in the light emitting layer 6 are, for example, CdSe, InP or ZnSe
  • the ionization potential of the light emitting layer 6 is 5.5 eV, 5.6 eV or 5.7 eV, respectively. Is.
  • the hole transport layer 5 can be made larger than the ionization potential of the light emitting layer 6 by using Mg X Ni 1-X O having an X value of 1 to 0.5.
  • holes are formed by gradually reducing the value of X in Mg X Ni 1-X O from the anode 4 side of the first region A1 to the light emitting layer 6 side of the second region A2.
  • the ionization potential of the transport layer 5 can be gradually reduced from the anode 4 side of the first region A1 to the light emitting layer 6 side of the second region A2.
  • the ionization potential of the hole transport layer 5 is increased from the anode 4 side to the light emitting layer 6 side by gradually reducing the value of X from the anode 4 side to the light emitting layer 6 side. It can be made smaller gradually.
  • the hole is gradually reduced from the anode 4 side of the first region A1 to the light emitting layer 6 side of the second region A2 by gradually reducing the value of X in Mg X Ni 1-X O.
  • the electron affinity of the transport layer 5 can be gradually increased from the anode 4 side of the first region A1 to the light emitting layer 6 side of the second region A2.
  • the electron affinity of the hole transport layer 5 is increased from the anode 4 side to the light emitting layer 6 side by gradually reducing the value of X from the anode 4 side to the light emitting layer 6 side. It can be gradually increased.
  • FIG. 4 is a diagram showing the relationship between the ionization potential and the electron affinity with respect to the composition of (NiO) 1-X (LaNiO 3 ) X.
  • FIG. 5 is a diagram showing the relationship between the ionization potential and the electron affinity with respect to the composition of (Cu 2 O) 1-X (LaNiO 3 ) X.
  • FIG. 6 is a diagram showing the relationship between the ionization potential and the electron affinity with respect to the composition of (CuO) 1-X (LaNiO 3 ) X.
  • the ionization potential can be controlled to decrease by gradually reducing the ratio of O to Ni. That is, when a metal oxide containing Ni is used for the hole transport layer 5, the ratio of O to Ni is larger in the first region A1 than in the second region A2.
  • metal oxide having a changed composition in the hole transport layer 5 By using the metal oxide having a changed composition in the hole transport layer 5 in this way, the luminous efficiency of the light emitting device 1 can be improved.
  • metal oxide is a material that is stable to oxygen and water. Therefore, by using the metal oxide as described above for the hole transport layer 5, the reliability of the light emitting device 1 can be improved.
  • the ionization potential and electron affinity as described above can be measured by, for example, photoelectron spectroscopy.
  • FIG. 7 is a schematic cross-sectional view of the light emitting device 1 according to the second embodiment.
  • FIG. 8 is an energy diagram showing an example of electron affinity and ionization potential in each layer of the light emitting device 3 according to the second embodiment.
  • the light emitting device 1 of the present embodiment includes an array substrate 2 and a light emitting element 3. Further, the light emitting device 3 of the present embodiment has an anode 4, a hole transport layer 5, a light emitting layer 6, an electron transport layer 7, and a cathode 8.
  • the hole transport layer 5 of the present embodiment includes a first region A1 provided on the anode 4 side and a second region A2 provided on the light emitting layer 6 side of the first region A1 and adjacent to the light emitting layer 6. , A third region A3 provided between the first region A1 and the second region A2.
  • the ionization potential of the third region A3 is larger than the ionization potential of the second region A2 and smaller than the ionization potential of the first region A1.
  • the ionization potential of the hole transport layer 5 of the present embodiment gradually decreases in the first region A1, the third region A3, and the second region A2. More specifically, the ionization potential of the hole transport layer 5 of the present embodiment gradually decreases from the anode 4 side to the light emitting layer 6 side. More specifically, the ionization potential of the hole transport layer 5 of the present embodiment decreases stepwise from the anode 4 side to the light emitting layer 6 side.
  • the holes injected from the anode 4 can be efficiently recombined with the electrons in the light emitting layer 6, and the luminous efficiency in the light emitting device 1 can be improved.
  • the hole transport layer 5 of the present embodiment includes a first layer 51 (HTL1 in FIG. 8) including the first region A1 and a second layer 52 (HTL2 in FIG. 8) including the second region A2.
  • a third layer 53 (HTL3 in FIG. 8) containing the three regions A3 is included.
  • the thickness of the first layer 51, the second layer 52, and the third layer 53 is preferably 5 nm or more and 15 nm or less, respectively.
  • the first layer 51, the second layer 52, and the third layer 53 can be uniformly formed, and holes are stably and efficiently transported to the light emitting layer 6 while suppressing the influence of unexpected tunnel injection or the like. it can.
  • the hole transport layer 5 can be formed by simply laminating materials having different ionization potentials, the hole transport layer 5 can be easily formed.
  • the electron affinity of the third region A3 is larger than the electron affinity of the first region A1 and more than the electron affinity of the second region A2. Is also small. Specifically, the electron affinity of the hole transport layer 5 of the present embodiment gradually increases in the first region A1, the third region A3, and the second region A2. Specifically, the electron affinity of the hole transport layer 5 gradually increases from the anode 4 side to the light emitting layer 6 side. As a result, the barrier for electrons to conduct from the light emitting layer 6 to the anode 4 becomes large. Therefore, the electrons are suppressed from being conducted to the anode 4, and are more likely to be accumulated in the light emitting layer 6. Therefore, even with such a configuration, the electrons injected from the cathode 8 can be more efficiently recombined with the holes in the light emitting layer 6, and the luminous efficiency in the light emitting device 1 is further improved. be able to.
  • the ionization potential of the hole transport layer 5 was linearly reduced from the anode 4 side to the light emitting layer 6 side.
  • the ionization potential of the hole transport layer 5 may be reduced stepwise from the anode 4 side to the light emitting layer 6 side, or may be curvedly reduced. Even with such a configuration, the luminous efficiency of the light emitting device 1 can be improved.
  • the hole transport layer 5 is composed of the first region A1 and the second region A2.
  • the hole transport layer 5 may include other regions between the first region A1 and the anode 4.
  • the ionization potential of the other region may be larger or smaller than the ionization potential of the first region A1.
  • the hole transport layer 5 is formed by three layers, the first layer 51, the second layer 52, and the third layer 53, and the ionization potential of the hole transport layer 5 is further increased. It gradually became smaller from the anode 4 side to the light emitting layer 6 side.
  • the hole transport layer 5 may be formed of four or more layers, and the ionization potential of the hole transport layer 5 may gradually decrease from the anode 4 side to the light emitting layer 6 side.
  • the region between the second region A2 and the light emitting layer 6 may contain an inorganic material such as Al 2 O 3 , SiO 2 , or SiN, such as PVK, TFB, or poly-TPD. It may contain an organic material.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

発光素子において、陰極と、陽極と、前記陰極および前記陽極の間に設けられた、量子ドットを含む発光層と、前記陽極および前記発光層の間に設けられた正孔輸送層と、を有し、前記正孔輸送層は、前記陽極側に設けられた第1領域と、前記第1領域よりも前記発光層側に設けられ、前記発光層と隣接する第2領域と、を有し、前記第1領域のイオン化ポテンシャルは、前記第2領域のイオン化ポテンシャルよりも大きく、かつ、前記発光層のイオン化ポテンシャルよりも大きい。

Description

発光素子および発光デバイス
 本発明は、発光素子および発光デバイスに関する。
 例えば、特許文献1には、半導体ナノクリスタルを含む発光デバイスが開示されている。そして、当該発光デバイスは、無機材料であるNiOからなる正孔輸送層を含む発光素子を備える旨が記載されている。また、当該構成により、長いデバイス寿命を有する発光デバイスを提供できる旨が記載されている。
特開2012-23388号公報
 量子ドットを発光層に備える発光デバイスにおいて、正孔輸送層の構成を改善することで、より発光効率を向上させることが要求されている。
 上記課題を解決するために、本発明の一態様に係る発光素子は、陰極と、陽極と、前記陰極および前記陽極の間に設けられた、量子ドットを含む発光層と、前記陽極および前記発光層の間に設けられた正孔輸送層と、を有し、前記正孔輸送層は、前記陽極側に設けられた第1領域と、前記第1領域よりも前記発光層側に設けられ、前記発光層と隣接する第2領域と、を有し、前記第1領域のイオン化ポテンシャルは、前記第2領域のイオン化ポテンシャルよりも大きく、かつ、前記発光層のイオン化ポテンシャルよりも大きい。
 上記課題を解決するために、本発明の一態様に係る発光素子は、陽極と、陰極と、前記陽極および前記陰極の間に設けられた、量子ドットを含む発光層と、前記陽極および前記発光層の間に設けられた正孔輸送層と、を有し、前記正孔輸送層は、Niを含む金属酸化物を含み、前記陽極側に設けられた第1領域と、前記第1領域よりも前記発光層側に設けられ、前記発光層と隣接する第2領域と、を有し、前記第1領域におけるNiに対するOの比率は、前記第2領域におけるNiに対するOの比率よりも大きい。
 上記構成により、量子ドットを発光層に含む発光素子において、正孔輸送層から発光層への正孔の輸送効率が改善する。これにより、発光層において、正孔と電子とのキャリアバランスが改善されるため、発光デバイスの信頼性を維持しつつ、発光デバイスの発光効率を向上させることができる。
第1実施形態に係る発光デバイスの概略断面図である。 第1実施形態に係る発光素子の各層における、電子親和力およびイオン化ポテンシャルを示すエネルギー図である。 MgNi1-XOの組成に対する、イオン化ポテンシャルおよび電子親和力の関係を示す図である。 (NiO)1-X(LaNiOの組成に対する、イオン化ポテンシャルおよび電子親和力の関係を示す図である。 (CuO)1-x(LaNiOの組成に対する、イオン化ポテンシャルおよび電子親和力の関係を示す図である。 (CuO)1-x(LaNiOの組成に対する、イオン化ポテンシャルおよび電子親和力の関係を示す図である。 第2実施形態に係る発光デバイスの概略断面図である。 第2実施形態に係る発光素子の各層における、電子親和力およびイオン化ポテンシャルの例を示すエネルギー図である。
 以下、本発明の例示的な実施形態について図面を参照しつつ説明する。なお、以下においては、発光デバイス1の発光素子3からアレイ基板2への方向を「下」、発光デバイス1のアレイ基板2から発光素子3への方向を「上」として記載する。また、各図面において、同様の構成については同一の符号を付してその説明を省略する。
<第1実施形態>
 図1は、第1実施形態に係る発光デバイス1の概略断面図である。発光デバイス1は、例えば、ディスプレイ等の表示装置に用いられる。図1に示すように、本実施形態の発光デバイス1は、アレイ基板2および発光素子3を有する。発光デバイス1は、発光素子3を駆動させるための薄膜トランジスタであるTFT(図示を省略)が形成されたアレイ基板2上に、発光素子3の各層が積層された構造を備える。また、本実施形態の発光素子3は、陽極4、正孔輸送層5、発光層6、電子輸送層7および陰極8を有する。
 陽極4は、アレイ基板2の上層に形成され、アレイ基板2のTFTと電気的に接続される。陽極4は、例えば、可視光の反射率の高いAl、Cu、Au、またはAg等を含む金属と、透明材料であるITO、IZO、ZnO、AZO、またはBZO等が、アレイ基板2上にこの順に積層された構造を備える。陽極4は、例えば、スパッタ法や蒸着法等により形成される。
 正孔輸送層5は、陽極4から注入された正孔を、さらに発光層6へと輸送する。正孔輸送層5は、陽極4上に形成され、陽極4と電気的に接続される。正孔輸送層5は、例えば、金属酸化物を含む材料により構成される。そして、正孔輸送層5に含まれる金属酸化物としては、例えば、ニッケル酸マグネシウムMgNiO(Mg、NiおよびOを含む化合物)、ニッケル酸ランタンLaNiO(La、NiおよびOを含む化合物)、MgNi1-XO(ただし、Xは0≦X≦1である。)、(NiO)1-X(LaNiO(ただし、Xは0≦X≦1である。)、や(CuO)1-X(LaNiO(ただし、Xは0≦X≦1であり、Yは1≦Y≦2である。)等があげられる。正孔輸送層5は、例えば、スパッタ法、蒸着法、スピンコート法、インクジェット法等により形成される。なお、正孔輸送層5は、ナノ粒子、結晶、多結晶、またはアモルファスにより構成されてもよい。
 また、正孔輸送層5の厚み(膜厚)は、5nm以上50nm以下であることが好ましい。正孔輸送層5の厚みをこのように設けることで、正孔輸送層5を均一に形成でき、さらに、予期せぬトンネル注入等による影響を抑制しつつ、安定的かつ効率的に正孔を発光層6へ輸送できる。なお、正孔輸送層5のより詳細な構成については、後述する。
 発光層6は、陽極4および陰極8の間に設けられる。具体的には、本実施形態の発光層6は、正孔輸送層5および電子輸送層7の間に設けられる。また、本実施形態の発光層6は量子ドット(半導体ナノ粒子)61を含む。具体的には、発光層6は、量子ドット61が1層以上積層されて構成される。発光層6は、ヘキサンまたはトルエン等の溶媒に量子ドット61を分散させた分散液から、スピンコート法、またはインクジェット法等により形成される。分散液にはチオール、アミン等の分散材料を混合してもよい。発光層6の厚み(膜厚)は、均一な膜を形成でき、かつ、効率的な発光を得ることができる観点から、5nm以上50nm以下であることが好ましい。
 量子ドット61は、価電子帯準位と伝導帯準位とを有し、価電子帯準位の正孔と伝導帯準位の電子との再結合により発光する発光材料である。量子ドット61からの発光は、量子閉じ込め効果により狭いスペクトルを有するため、比較的深い色度の発光を得ることができる。
 量子ドット61としては、例えば、コアにCdSe、シェルにZnSを備えた、コア/シェル構造を有する半導体ナノ粒子であってもよい。この他、量子ドット61は、CdSe/CdS、InP/ZnS、ZnSe/ZnSまたはCIGS/ZnS等をコア/シェル構造として有してもよい。また、シェルの外周部には、例えば、チオールやアミン等の有機物により構成される、リガンドが配位結合していてもよい。
 量子ドット61の粒径は、3nmから15nm程度である。量子ドット61からの発光の波長は、量子ドット61の粒径により制御できる。このため、量子ドット61の粒径を制御することにより、発光デバイス1が発する光の波長を制御できる。
 電子輸送層7は、陰極8から注入された電子を、さらに発光層6へと輸送する。電子輸送層7は、正孔が陰極8へと輸送されることを抑制する機能(正孔ブロック機能)を有してもよい。本実施形態では、電子輸送層7は、発光層6上に設けられる。電子輸送層7は、例えば、ZnO、TiO、Ta、またはSrTiO等を含んでもよく、スパッタ法により形成されてもよい。電子輸送層7の厚み(膜厚)は、均一な膜を形成でき、かつ、効率的に発光層6へと電子を輸送できる観点で、10nm以上100nm以下であることが好ましい。
 陰極8は、電子輸送層7上に設けられ、電子輸送層7と電気的に接続される。陰極8は、例えば、光透過性を有する程度に薄膜化させた金属や、透明材料により構成される。陰極8を構成する金属としては、例えば、Al、Ag、Mg等を含む金属があげられる。また、陰極8を構成する透明材料としては、例えば、ITO、IZO、ZnO、AZO、またはBZO等があげられる。陰極8は、例えば、スパッタ法や蒸着法により形成される。
 陽極4から注入された正孔(図1において矢印h)および陰極8から注入された電子(図1において矢印e)は、それぞれ正孔輸送層5および電子輸送層7を介して発光層6へと輸送される。そして、発光層6へ輸送された正孔および電子が、量子ドット61内で再結合することで、励起子が生じる。そして、当該励起子が励起状態から基底状態へと戻ることにより、量子ドット61は発光する。なお、本実施形態の発光デバイス1では、発光層6から出射される光をアレイ基板2とは逆側(図1において上方)から取り出す、トップエミッション型について例示している。しかしながら、発光デバイス1は、光をアレイ基板2側(図1において下方)から取り出す、ボトムエミッション型であってもよい。この場合、陰極8を、反射電極により構成し、陽極4を、透明電極により構成すればよい。
 また、本実施形態の発光デバイス1では、アレイ基板2から順に、陽極4、正孔輸送層5、発光層6、電子輸送層7および陰極8が積層されている。しかしながら、発光デバイス1は、アレイ基板2から順に、陰極8、電子輸送層7、発光層6、正孔輸送層5および陽極4が積層される、いわゆるインバート構造であってもよい。
 次に、本実施形態の発光素子3の構成について、各層のエネルギーの関係から説明する。図2は、第1実施形態に係る発光素子3の各層におけるフェルミ準位、電子親和力およびイオン化ポテンシャルの関係を示すエネルギー図である。なお、図2においては、左から右にかけて、陽極4、正孔輸送層5、発光層6、電子輸送層7および陰極8を表している。なお、図2においては、陽極4、正孔輸送層5、発光層6、電子輸送層7および陰極8を、それぞれ、Anode、HTL、EML、ETLおよびCathodeとも示している。
 図2の例では、陽極4および陰極8は、フェルミ準位で示している。正孔輸送層5、発光層6および電子輸送層7の下方においては、真空準位を基準とした、それぞれの層のイオン化ポテンシャルを示している。正孔輸送層5、発光層6および電子輸送層7の上方においては、真空準位を基準とした、それぞれの層の電子親和力を示している。フェルミ準位、イオン化ポテンシャルおよび電子親和力の単位は、それぞれeVである。なお、以下の明細書において、単にイオン化ポテンシャルまたは電子親和力を説明する場合、何れも、真空準位を基準としたものとして説明を行う。
 また、図2の例では、陽極4がITOからなり、陰極8がAlからなる場合を示している。この場合、陽極4のフェルミ準位は4.6eVであり、陰極8のフェルミ準位は4.3eVである。また、図2の例では、電子輸送層7がZnOからなる場合を示している。この場合、電子輸送層7のイオン化ポテンシャルは7.4eVであり、電子輸送層7の電子親和力は4.0eVである。また、図2の例では、発光層6のイオン化ポテンシャルは、6.0~7.0eVであり、発光層6の電子親和力は、3.5~4.0eVである。発光層6のイオン化ポテンシャルは、発光層6に含まれる量子ドット61が、例えば、CdSe、InPまたはZnSeである場合、それぞれ、5.5eV、5.6eVまたは5.7eVである。なお、発光層6のイオン化ポテンシャルおよび電子親和力は、量子ドット61の粒径や材料を制御することにより、調整することができる。
 発光素子3において、陽極4と陰極8との間に電位差が発生すると、図2の矢印H1に示すように、陽極4から正孔輸送層5へと正孔が注入される。同様に、図2の矢印E1に示すように、陰極8から電子輸送層7へと電子が注入される。次に、図2の矢印H2に示すように、正孔輸送層5から発光層6へと正孔が輸送される。同様に、図2の矢印E2に示すように、電子輸送層7から発光層6へと電子が輸送される。このようにして、発光層6に輸送された正孔と電子とが、量子ドット61において再結合する。
 また、図1および図2に示すように、本実施形態の正孔輸送層5は、陽極4側に設けられた第1領域A1と、第1領域A1よりも発光層6側に設けられ、発光層6と隣接する第2領域A2とを有する。具体的には、本実施形態の第1領域A1は、陽極4および第2領域A2の間に設けられ、陽極4および第2領域A2と隣接する。そして、本実施形態の第2領域A2は、第1領域A1および発光層6の間に設けられ、第1領域A1および発光層6と隣接する。すなわち、本実施形態の正孔輸送層5は、第1領域A1および第2領域A2のみから構成される。ただし、正孔輸送層5は、陽極4および第1領域A1の間に、異なる領域をさらに有してもよく、第1領域A1および第2領域A2の間に、異なる領域をさらに有してもよく、第2領域A2と発光層6の間に別の異なる領域をさらに有していてもよい。当該別の異なる領域は、正孔を陽極4側から発光層6側にトンネリングにより輸送する領域であることが好ましい。
 また、第1領域A1のイオン化ポテンシャルは、第2領域A2のイオン化ポテンシャルよりも大きく、かつ、発光層6のイオン化ポテンシャルよりも大きい。具体的には、図2に示すように、本実施形態の正孔輸送層5のイオン化ポテンシャルは、第1領域A1の陽極4側から第2領域A2の発光層6側にかけて、徐々に小さくなる。より具体的には、本実施形態の正孔輸送層5のイオン化ポテンシャルは、陽極4側から発光層6側にかけて、徐々に小さくなる。
 これにより、正孔輸送層5から発光層6へと輸送されやすくなる。このため、発光層6において、電子に対して十分な正孔が供給され、正孔および電子のキャリアバランスが改善し、発光デバイス1における発光効率を向上させることができる。また、正孔は、正孔輸送層5内において、発光層6へ向けて加速されやすくなる。そして、加速された正孔は、発光層6の、より内部へと到達しやすくなる。このため、正孔輸送層5および発光層6の界面において、発光に寄与しない再結合が生じることが抑制される。よって、陽極4から注入された正孔は、発光層6内で効率的に電子と再結合することができ、発光デバイス1における発光効率を向上させることができる。
 また、本実施形態の第2領域A2のイオン化ポテンシャルは、第1領域A1のイオン化ポテンシャルよりも小さければ、発光層6のイオン化ポテンシャルよりも小さくてもよい。また、第2領域A2のイオン化ポテンシャルは、発光層6のイオン化ポテンシャルよりも大きくすることで、正孔輸送層5および発光層6の間において、正孔が輸送されるためのエネルギー障壁が低くなる。したがって、正孔は、より発光層6へと輸送されやすくなる。また、正孔は、発光層6のより内部へと、より到達しやすくなる。よって、発光デバイス1における発光効率を、より向上させることができる。
 なお、第2領域A2のイオン化ポテンシャルをIPA2として、発光層6のイオン化ポテンシャルをIPEMLとすると、発光デバイス1における発光効率の向上の観点から、IPA2およびIPEMLは、IPA2-IPEML≧-0.3eVの関係を満たすことが好ましい。また、第2領域A2のイオン化ポテンシャルは、発光デバイス1における発光効率の向上の観点から、発光層6のイオン化ポテンシャルよりも大きいことが、より好ましい。また、第1領域A1のイオン化ポテンシャルの値は、陽極4からの効率的な正孔注入の観点から、6.5eV以下であるが好ましい。
 また、本実施形態の正孔輸送層5は、第1領域A1を含む第1層51と、第2領域A2を含む第2層52を含む。そして、第1層51および第2層52の厚みは、それぞれ5nm以上15nm以下であることが好ましい。これにより、第1層51および第2層52を均一に形成でき、さらに、予期せぬトンネル注入等による影響を抑制しつつ安定的かつ効率的に正孔を発光層6へ輸送できる。
 また、図2に示すように、本実施形態の正孔輸送層5において、第1領域A1の電子親和力は、第2領域A2の電子親和力よりも小さい。具体的には、本実施形態の正孔輸送層5の電子親和力は、第1領域A1の陽極4側から第2領域A2の発光層6側にかけて、徐々に大きくなる。より具体的には、正孔輸送層5の電子親和力は、陽極4側から発光層6側にかけて、徐々に大きくなる。これにより、電子が発光層6から陽極4へと伝導する障壁が大きくなる。このため、電子は、陽極4へと伝導することが抑制され、より発光層6内で蓄積されやすくなる。よって、陰極8から注入された電子は、発光層6内でより効率的に正孔と再結合することができ、発光デバイス1における発光効率を、より向上させることができる。
 次に、正孔輸送層5の具体的な構成について説明する。上述したように、本実施形態の正孔輸送層5は、例えば、MgNi1-XO(ただし、Xは0≦X≦1)、(NiO)1-X(LaNiO(ただし、Xは0≦X≦1である。)、や(CuO)1-X(LaNiO(ただし、Xは0≦X≦1であり、Yは1≦Y≦2である。)等の、金属酸化物により構成される。
 先ず、正孔輸送層5に含まれる金属酸化物が、MgNi1-XOである場合について説明する。図3は、MgNi1-XOの組成に対する、イオン化ポテンシャルおよび電子親和力の関係を示す図である。
 図3に示すように、MgNi1-XOにおいて、Xを1から0へと減少させるにつれ、イオン化ポテンシャルは、8.2eVから5.4eVへと減少し、電子親和力は、0.4eVから2.0eVへと増加する。このように、正孔輸送層5において、組成を変化させたMgNi1-XOを用いることで、イオン化ポテンシャルおよび電子親和力を制御することができる。したがって、正孔輸送層5において、第1領域A1におけるXの値を、第2領域A2におけるXの値よりも大きくすることで、第1領域A1のイオン化ポテンシャルを、第2領域A2のイオン化ポテンシャルよりも大きくすることができる。そして、第1領域A1におけるXの値を、第2領域A2におけるXの値よりも大きくすることで、第1領域A1の電子親和力を、第2領域A2の電子親和力よりも小さくすることができる。
 また、上述したように、発光層6に含まれる量子ドット61が、例えば、CdSe、InPまたはZnSeである場合、発光層6のイオン化ポテンシャルは、それぞれ、5.5eV、5.6eVまたは5.7eVである。この場合、正孔輸送層5において、Xの値が1~0.5のMgNi1-XOを用いることで、発光層6のイオン化ポテンシャルよりも大きくすることができる。
 また、正孔輸送層5において、第1領域A1の陽極4側から第2領域A2の発光層6側にかけて、MgNi1-XOにおけるXの値を徐々に小さくすることで、正孔輸送層5のイオン化ポテンシャルを、第1領域A1の陽極4側から第2領域A2の発光層6側にかけて、徐々に小さくすることができる。また、正孔輸送層5において、陽極4側から発光層6側にかけて、Xの値を徐々に小さくすることで、正孔輸送層5のイオン化ポテンシャルを、陽極4側から発光層6側にかけて、徐々に小さくすることができる。
 さらに、正孔輸送層5において、第1領域A1の陽極4側から第2領域A2の発光層6側にかけて、MgNi1-XOにおけるXの値を徐々に小さくすることで、正孔輸送層5の電子親和力を、第1領域A1の陽極4側から第2領域A2の発光層6側にかけて、徐々に大きくすることができる。また、正孔輸送層5において、陽極4側から発光層6側にかけて、Xの値を徐々に小さくすることで、正孔輸送層5の電子親和力を、陽極4側から発光層6側にかけて、徐々に大きくすることができる。
 次に、正孔輸送層5に含まれる金属酸化物が、(NiO)1-X(LaNiO、および(CuO)1-X(LaNiOである場合について、説明する。図4は、(NiO)1-X(LaNiOの組成に対する、イオン化ポテンシャルおよび電子親和力の関係を示す図である。図5は、(CuO)1-X(LaNiOの組成に対する、イオン化ポテンシャルおよび電子親和力の関係を示す図である。図6は、(CuO)1-X(LaNiOの組成に対する、イオン化ポテンシャルおよび電子親和力の関係を示す図である。
 図4に示すように、(NiO)1-X(LaNiOにおいて、Xを1から0へと減少させるにつれ、イオン化ポテンシャルは、6.0eVから5.4eVへと減少する。また、図5および図6に示すように、(CuO)1-X(LaNiOにおいて、Xを1から0へと減少させるにつれ、イオン化ポテンシャルは、6.0eVから5.5eVへと減少する。したがって、正孔輸送層5において、組成を変化させた(NiO)1-X(LaNiOや(CuO)1-X(LaNiOを用いた場合であっても、上記のMgNi1-XOと同様に、イオン化ポテンシャルを制御することができる。上記の例に示したように、Niを含む金属酸化物の組成において、Niに対するOの比率を徐々に小さくすることで、イオン化ポテンシャルが減少するように制御することができる。つまり、正孔輸送層5にNiを含む金属酸化物を用いる場合は、Niに対するOの比率は、第1領域A1の方が第2領域A2よりも大きい。
 このように、組成を変化させた金属酸化物を正孔輸送層5に用いることで、発光デバイス1の発光効率を向上させることができる。また、金属酸化物は、酸素や水に対して安定な材料である。したがって、上記のような金属酸化物を正孔輸送層5に用いることで、発光デバイス1における信頼性を向上させることができる。
 なお、上述したようなイオン化ポテンシャルや電子親和力は、例えば、光電子分光法により測定することができる。
<第2実施形態>
 次に、第2実施形態について説明する。なお、第1実施形態と異なる点を中心に説明し、第1実施形態と重複する内容については説明を省略する。なお、第1実施形態および第2実施形態では、発光素子3における正孔輸送層5の構成が異なる。
 図7は、第2実施形態に係る発光デバイス1の概略断面図である。図8は、第2実施形態に係る発光素子3の各層における、電子親和力およびイオン化ポテンシャルの例を示すエネルギー図である。図7および図8に示すように、本実施形態の発光デバイス1は、アレイ基板2および発光素子3を有する。また、本実施形態の発光素子3は、陽極4、正孔輸送層5、発光層6、電子輸送層7および陰極8を有する。
 また、本実施形態の正孔輸送層5は、陽極4側に設けられた第1領域A1と、第1領域A1よりも発光層6側に設けられ発光層6と隣接する第2領域A2と、第1領域A1および第2領域A2の間に設けられた第3領域A3とを有する。
 そして、第3領域A3のイオン化ポテンシャルは、第2領域A2のイオン化ポテンシャルよりも大きく、かつ、第1領域A1のイオン化ポテンシャルよりも小さい。具体的には、図8に示すように、本実施形態の正孔輸送層5のイオン化ポテンシャルは、第1領域A1、第3領域A3、第2領域A2にかけて、徐々に小さくなる。より具体的には、本実施形態の正孔輸送層5のイオン化ポテンシャルは、陽極4側から発光層6側にかけて、徐々に小さくなる。より具体的には、本実施形態の正孔輸送層5のイオン化ポテンシャルは、陽極4側から発光層6側にかけて、階段状に小さくなる。
 このような構成であっても、発光層6において、電子に対して十分な正孔が供給され、正孔および電子のキャリアバランスが改善し、発光デバイス1における発光効率を向上させることができる。また、正孔は、正孔輸送層5内において、発光層6へ向けて加速されやすくなる。そして、加速された正孔は、発光層6の内部へと到達しやすくなる。このため、正孔輸送層5および発光層6の界面において、発光に寄与しない再結合が生じることが抑制される。よって、陽極4から注入された正孔は、発光層6内で効率的に電子と再結合することができ、発光デバイス1における発光効率を向上させることができる。
 また、本実施形態の正孔輸送層5は、第1領域A1を含む第1層51(図8においてHTL1)と、第2領域A2を含む第2層52(図8においてHTL2)と、第3領域A3を含む第3層53(図8においてHTL3)を含む。そして、第1層51、第2層52および第3層53の厚みは、それぞれ5nm以上15nm以下であることが好ましい。これにより、第1層51第2層52および第3層53を均一に形成でき、さらに、予期せぬトンネル注入等による影響を抑制しつつ安定的かつ効率的に正孔を発光層6へ輸送できる。さらに、正孔輸送層5は、イオン化ポテンシャルの異なる材料を、単純に積層させるだけで形成できるため、正孔輸送層5を容易に形成できる。
 また、図8に示すように、本実施形態の正孔輸送層5において、第3領域A3の電子親和力は、第1領域A1の電子親和力よりも大きく、かつ、第2領域A2の電子親和力よりも小さい。具体的には、本実施形態の正孔輸送層5の電子親和力は、第1領域A1、第3領域A3、第2領域A2にかけて、徐々に大きくなる。具体的には、正孔輸送層5の電子親和力は、陽極4側から発光層6側にかけて、徐々に大きくなる。これにより、電子が発光層6から陽極4へと伝導する障壁が大きくなる。このため、電子は、陽極4へと伝導することが抑制され、より発光層6内で蓄積されやすくなる。よって、このような構成であっても、陰極8から注入された電子は、発光層6内でより効率的に正孔と再結合することができ、発光デバイス1における発光効率を、より向上させることができる。
<変形例>
 以上、本発明の主たる実施形態について説明したが、本発明は、上記の実施形態に限定されるものではない。
 上記の第1実施形態の図2の例では、正孔輸送層5のイオン化ポテンシャルは、陽極4側から発光層6側にかけて直線状に小さくなっていた。しかしながら、正孔輸送層5のイオン化ポテンシャルは、陽極4側から発光層6側にかけて階段状に小さくなるものであってもよく、曲線的に小さくなるものであってもよい。このような構成であっても、発光デバイス1の発光効率を向上させることができる。
 また、上記の第1実施形態では、正孔輸送層5は、第1領域A1および第2領域A2により構成されていた。しかしながら、正孔輸送層5は、第1領域A1および陽極4の間に、他の領域が含まれてもよい。そして、当該他の領域のイオン化ポテンシャルは、第1領域A1のイオン化ポテンシャルよりも大きくてもよく、小さくてもよい。
 また、上記の第2実施形態では、正孔輸送層5は、第1層51、第2層52および第3層53の三つの層により形成され、さらに、正孔輸送層5のイオン化ポテンシャルは陽極4側から発光層6側にかけて、徐々に小さくなっていた。しかしながら、正孔輸送層5は、四つ以上の層により形成され、さらに、正孔輸送層5のイオン化ポテンシャルは陽極4側から発光層6側にかけて、徐々に小さくなるものであってもよい。
 また、上記実施形態の第2領域A2と発光層6の間には、電子ブロック機能を有する領域があってもよい。この場合、第2領域A2と発光層6の間の領域は、例えば、Al、SiO、またはSiN等の無機材料を含んでいてもよく、PVK、TFB、またはpoly-TPD等の有機材料を含んでいてもよい。これにより、発光層6への正孔の効率的な輸送を実現しつつ、さらに、電子の陽極4側へのリークを抑制できる。よって、発光デバイス1の発光効率を向上させることができる。
 また、上記の実施形態や変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。
1 発光デバイス
2 アレイ基板
3 発光素子
4 陽極
5 正孔輸送層
6 発光層
7 電子輸送層
8 陰極
51 第1層
52 第2層
53 第3層
61 量子ドット

Claims (21)

  1.  陽極と、
     陰極と、
     前記陽極および前記陰極の間に設けられた、量子ドットを含む発光層と、
     前記陽極および前記発光層の間に設けられた正孔輸送層と、
    を有し、
     前記正孔輸送層は、前記陽極側に設けられた第1領域と、前記第1領域よりも前記発光層側に設けられ、前記発光層と隣接する第2領域と、を有し、
     前記第1領域のイオン化ポテンシャルは、前記第2領域のイオン化ポテンシャルよりも大きく、かつ、前記発光層のイオン化ポテンシャルよりも大きい、発光素子。
  2.  前記正孔輸送層は、金属酸化物を含む、請求項1に記載の発光素子。
  3.  陽極と、
     陰極と、
     前記陽極および前記陰極の間に設けられた、量子ドットを含む発光層と、
     前記陽極および前記発光層の間に設けられた正孔輸送層と、
    を有し、
     前記正孔輸送層は、Niを含む金属酸化物を含み、
     前記陽極側に設けられた第1領域と、前記第1領域よりも前記発光層側に設けられ、前記発光層と隣接する第2領域と、を有し、
     前記第1領域におけるNiに対するOの比率は、前記第2領域におけるNiに対するOの比率よりも大きい、発光素子。
  4.  前記金属酸化物は、ニッケル酸マグネシウムを含む、請求項2または3に記載の発光素子。
  5.  前記金属酸化物は、ニッケル酸ランタンを含む、請求項2または3に記載の発光素子。
  6.  前記金属酸化物は、MgNi1-XO(ただし、Xは0≦X≦1である。)であり、前記第1領域におけるXの値は、前記第2領域におけるXの値よりも大きい、請求項4に記載の発光素子。
  7.  前記金属酸化物は、(NiO)1-X(LaNiO(ただし、Xは0≦X≦1である。)であり、前記第1領域におけるXの値は、前記第2領域におけるXの値よりも大きい、請求項5に記載の発光素子。
  8.  前記金属酸化物は、(CuO)1-X(LaNiO(ただし、Xは0≦X≦1であり、Yは1≦Y≦2である。)であり、前記第1領域におけるXの値は、前記第2領域におけるXの値よりも大きい、請求項5に記載の発光素子。
  9.  前記正孔輸送層の厚みは、5nm以上50nm以下である、請求項1から請求項8までの何れか1項に記載の発光素子。
  10.  前記正孔輸送層は、前記第1領域を含む第1層と、前記第2領域を含む第2層と、を含む、請求項1から請求項9までの何れか1項に記載の発光素子。
  11.  前記第1層および前記第2層の厚みは、それぞれ5nm以上15nm以下である、請求項10に記載の発光素子。
  12.  前記正孔輸送層は、前記第1層および前記第2層の間に設けられた、一つ以上の層をさらに有する、請求項10または請求項11に記載の発光素子。
  13.  前記正孔輸送層のイオン化ポテンシャルは、前記第1領域の前記陽極側から前記第2領域の前記発光層側にかけて、徐々に小さくなる、請求項1から請求項12までの何れか1項に記載の発光素子。
  14.  前記正孔輸送層のイオン化ポテンシャルは、前記陽極側から前記発光層側にかけて、徐々に小さくなる、請求項1から請求項13までの何れか1項に記載の発光素子。
  15.  前記第2領域のイオン化ポテンシャルをIPA2として、前記発光層のイオン化ポテンシャルをIPEMLとすると、前記IPA2および前記IPEMLは、IPA2-IPEML≧-0.3eVの関係を満たす、請求項1から請求項14までの何れか1項に記載の発光素子。
  16.  前記第2領域のイオン化ポテンシャルは、前記発光層のイオン化ポテンシャルよりも大きい、請求項1から請求項15までの何れか1項に記載の発光素子。
  17.  前記第1領域のイオン化ポテンシャルの値は、6.5eV以下である、請求項1から請求項16までの何れか1項に記載の発光素子。
  18.  前記第1領域の電子親和力は、前記第2領域の電子親和力よりも小さい、請求項1または請求項2に記載の発光素子。
  19.  前記正孔輸送層の電子親和力は、前記第1領域の前記陽極側から前記第2領域の前記発光層側にかけて、徐々に大きくなる、請求項18に記載の発光素子。
  20.  前記正孔輸送層の電子親和力は、前記陽極側から前記発光層側にかけて、徐々に大きくなる、請求項18または請求項19に記載の発光素子。
  21.  薄膜トランジスタと、
     前記薄膜トランジスタと電気的に接続された、請求項1から請求項20までの何れか1項に記載の発光素子と、
    を有する発光デバイス。
PCT/JP2019/032410 2019-08-20 2019-08-20 発光素子および発光デバイス WO2021033257A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/617,276 US20220328778A1 (en) 2019-08-20 2019-08-20 Light-emitting element and light-emitting device
PCT/JP2019/032410 WO2021033257A1 (ja) 2019-08-20 2019-08-20 発光素子および発光デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032410 WO2021033257A1 (ja) 2019-08-20 2019-08-20 発光素子および発光デバイス

Publications (1)

Publication Number Publication Date
WO2021033257A1 true WO2021033257A1 (ja) 2021-02-25

Family

ID=74659863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032410 WO2021033257A1 (ja) 2019-08-20 2019-08-20 発光素子および発光デバイス

Country Status (2)

Country Link
US (1) US20220328778A1 (ja)
WO (1) WO2021033257A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152972A1 (ja) * 2022-02-14 2023-08-17 シャープディスプレイテクノロジー株式会社 発光デバイスおよびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210013437A1 (en) * 2018-09-29 2021-01-14 Tcl Technology Group Corporation Quantum dot light-emitting diode
WO2020261347A1 (ja) * 2019-06-24 2020-12-30 シャープ株式会社 発光素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023388A (ja) * 2005-02-16 2012-02-02 Massachusetts Inst Of Technol <Mit> 半導体ナノクリスタルを含む発光デバイス
CN106252529A (zh) * 2016-09-14 2016-12-21 Tcl集团股份有限公司 一种掺杂的NiO、发光二极管及其制备方法
CN106848079A (zh) * 2017-02-20 2017-06-13 纳晶科技股份有限公司 发光‑电荷传输复合物、含有其的墨水、其制备方法及qled器件
CN107240624A (zh) * 2017-05-08 2017-10-10 上海大学 NiO复合薄膜、量子点发光器件及其制备和应用
US20180019371A1 (en) * 2016-03-17 2018-01-18 Apple Inc. Quantum dot spacing for high efficiency quantum dot led displays

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023388A (ja) * 2005-02-16 2012-02-02 Massachusetts Inst Of Technol <Mit> 半導体ナノクリスタルを含む発光デバイス
US20180019371A1 (en) * 2016-03-17 2018-01-18 Apple Inc. Quantum dot spacing for high efficiency quantum dot led displays
CN106252529A (zh) * 2016-09-14 2016-12-21 Tcl集团股份有限公司 一种掺杂的NiO、发光二极管及其制备方法
CN106848079A (zh) * 2017-02-20 2017-06-13 纳晶科技股份有限公司 发光‑电荷传输复合物、含有其的墨水、其制备方法及qled器件
CN107240624A (zh) * 2017-05-08 2017-10-10 上海大学 NiO复合薄膜、量子点发光器件及其制备和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023152972A1 (ja) * 2022-02-14 2023-08-17 シャープディスプレイテクノロジー株式会社 発光デバイスおよびその製造方法

Also Published As

Publication number Publication date
US20220328778A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
US10756285B2 (en) Display panel, electroluminescent panel and manufacturing method thereof
WO2019186896A1 (ja) 発光素子、発光デバイス、発光素子の製造方法、発光素子の製造装置
KR101777136B1 (ko) 양자 발광 소자 및 이의 제조 방법
US11417851B2 (en) Light-emitting element, light-emitting device, and device for producing light-emitting element
WO2021033257A1 (ja) 発光素子および発光デバイス
WO2021100104A1 (ja) 発光素子、発光デバイス
US11342524B2 (en) Light emitting element, light emitting device, and apparatus for producing light emitting element
CN112740834B (zh) 发光元件以及发光器件
KR102081101B1 (ko) 양자 발광 소자
WO2020208810A1 (ja) 発光素子、表示装置および発光素子の製造方法
WO2020134147A1 (zh) 一种量子点发光二极管
US20230041812A1 (en) Light-emitting element and display device
WO2020134161A1 (zh) 一种量子点发光二极管及其制备方法
WO2020134163A1 (zh) 一种量子点发光二极管及其制备方法
US20220393130A1 (en) Electroluminescent element and electroluminescent device
CN209912898U (zh) 量子点发光二极管
US20220285644A1 (en) Light-emitting element and display device
US20220359845A1 (en) Light-emitting element, light-emitting device, and method for manufacturing light-emitting element
WO2019159216A1 (ja) 発光デバイス
WO2021053787A1 (ja) 発光素子および表示デバイス
WO2020261347A1 (ja) 発光素子
US20240155858A1 (en) Light-emitting element and light-emitting device
CN114430934B (zh) 发光装置
US20230413589A1 (en) Light-emitting element
US20220158115A1 (en) Light-emitting element and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP