WO2018223501A1 - 一种无水合成有机硅氧烷树脂的方法及产品与应用 - Google Patents

一种无水合成有机硅氧烷树脂的方法及产品与应用 Download PDF

Info

Publication number
WO2018223501A1
WO2018223501A1 PCT/CN2017/094002 CN2017094002W WO2018223501A1 WO 2018223501 A1 WO2018223501 A1 WO 2018223501A1 CN 2017094002 W CN2017094002 W CN 2017094002W WO 2018223501 A1 WO2018223501 A1 WO 2018223501A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
silane
tetramethyl
trimethyl
dimethyldisiloxane
Prior art date
Application number
PCT/CN2017/094002
Other languages
English (en)
French (fr)
Inventor
伍锦枢
黄振宏
陈贤惠
麦克亚当布鲁克
陈扬
Original Assignee
广东标美硅氟新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东标美硅氟新材料有限公司 filed Critical 广东标美硅氟新材料有限公司
Publication of WO2018223501A1 publication Critical patent/WO2018223501A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature

Definitions

  • the present invention relates to a siloxane and an organosiloxane resin thereof, and more particularly to a method, product and application of an anhydrous synthetic organosiloxane resin.
  • silicone resin is an important commercial material, which is widely used in coatings, electronics, construction, industrial chemicals, personal care, medical equipment, etc. because of its high temperature resistance, hydrophobicity and insulation properties. Many fields [1] . It can distinguish the ability to form a network by different silane units.
  • MQ type of silicone that is mainly studied in this paper is composed of a monofunctional unit (R 3 SiO 1/2 , called M unit) and a tetrafunctional unit (SiO 4/). 2 , called Q unit) composition
  • MT type silicone resin consists of a monofunctional unit (R 3 SiO 1/2 , called M unit) and a trifunctional unit (RSiO 3/2 , referred to as T unit).
  • MQ silicone resin is mainly obtained by kinetic control of the orthosilicate (TEOS) and the blocking agent, acid catalysis and cohydrolysis condensation.
  • TEOS orthosilicate
  • MT silicone resin poly polyhedral silsesquioxane POSS
  • the highly crosslinked amorphous structure formed can be cage, dendritic, branched and/or Ladder.
  • the patent for the synthesis of MQ silicones originated from the Daudt, Taylor and Goodwin methods reported in the 1950s, where the Daudt/Taylor method involves the preparation of silica gels using acidified water glass and trimethylchlorosilane, while the Goodwin process is via alkoxysilanes. And the related trimethylsiloxane co-hydrolysis synthesis of MQ silicone resin [2] .
  • the later research directions are mainly for the continuous process of synthesis and precise engineering control.
  • the synthesis of silicone resin mainly revolves around the co-hydrolysis polycondensation method: by adding water to provide hydroxyl groups and further condensation into a resin, the method generally has a complicated process, a long production cycle, poor environmental performance, easy gelation, and production. Low rate, poor process reproducibility, and high energy consumption. More importantly, it is not possible to prepare a silicone resin having a narrow molecular weight distribution and related structures.
  • the "Method for Preparing an Organopolysiloxane Resin [10]" (CN 1015906810 A) disclosed in the latest application describes an alternative strategy in which an alkoxysilane (Q and/or T is converted using an acid catalyzed transesterification reaction).
  • the group) and the capping (M group) are converted into MT, MTQ and MQ resins and the like.
  • This method yields several advantages, including enhanced environmental characteristics, better reproducibility and high efficiency, but the product is a resin with a high molecular weight polydispersity index (PDI) having a molecular weight of from about 2,000 to about 6,000 g/mol. It has a multimodal distribution.
  • PDI polydispersity index
  • an object of the present invention to provide a product of an anhydrous synthetic organosiloxane resin having a narrow molecular weight distribution.
  • Another object of the present invention is to provide a method of synthesizing the above products.
  • An anhydrous synthetic organosiloxane resin product prepared by reacting an alkoxysilane, a blocking agent and an acidic compound in a molar ratio of 1:(0-2):(2-10), an alkoxysilane Trifunctional and/or tetrafunctional alkane
  • the oxysilane, the acidic compound includes an organic carboxylic acid and an acidic catalyst.
  • the product has a PDI ⁇ 1.8.
  • a method for synthesizing anhydrous synthetic organosiloxane resin comprising:
  • the alkoxysilane is a trifunctional and/or tetrafunctional alkoxy organosilane, and the acidic compound comprises an organic carboxylic acid and an acidic catalyst;
  • the alkoxy group in the alkoxysilane includes, but is not limited to, a methoxy group, an ethoxy group, a n-propoxy group, an isopropoxy group, a n-butoxy group, an isobutoxy group.
  • Ethylene glycol monomethyl ether and ethylene glycol monoethyl ether the alkoxysilane being an alkoxysilane and/or a condensate thereof.
  • T-links and/or Q-links obtained by commercially available routes, as well as their polycondensed forms.
  • the specific alkoxysilane may be selected from, but not limited to, methyl orthosilicate, ethyl orthosilicate, methyl polysilicate, polyethyl silicate; triethoxy silane, which may be selected from trimethoxy silane.
  • the blocking agent may be a blocking agent of the formula M a M b , wherein M a and M b may be the same or different.
  • Blocking agents include, but are not limited to, 1,1,1,3,3,3-hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, 1-hydrogen-1, 1,3,3,3-pentamethyldisiloxane, 1-vinyl-1,1,3,3,3-pentamethyldisiloxane, 1,1,3,3-tetramethyl -1,3-divinyldisiloxane, 1-phenyl-1,1,3,3,3-pentamethyldisiloxane, 1,1,3,3-tetramethyl-1, 3-diphenyldisiloxane, 1,3-dimethyl-1,1,3,3-tetraphenyldisiloxane, 1,1,1,3,3,5,5,7, 7,7-decamethyltetrasiloxane, 1,1,1,3,5,5,5-heptamethyltrisiloxane, 1,3,3-trimethyl-1,3,3- Trivinyldisiloxane, 1,1,3,3-te
  • the blocking agent may also be a terminal blocking agent of M a OR, and the blocking agent includes but is not limited to methoxy (vinyl dimethyl) silane, ethoxy (allyldimethyl) silane, Oxy (allyldimethyl)silane, ethoxy (trifluoropropyldimethyl)silane, methoxy (trifluoropropyldimethyl)silane, ethoxy (acryloxypropyl) Dimethyl) silane, methoxy (acryloxypropyl dimethyl) silane, ethoxy (methacryloxypropyl dimethyl) silane, methoxy (methacryloyloxy) Propyl dimethyl silane, ethoxy (diphenylmethyl) silane, methoxy (diphenylmethyl) silane, ethoxy (phenyl dimethyl) silane, methoxy (phenyl Dimethyl) silane, ethoxy ( ⁇ -chloromethyl dimethyl) silane, methoxy ( ⁇ -ch
  • the organic carboxylic acid in the acidic compound includes, but not limited to, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, oxalic acid, benzoic acid, C6-C26 monocarboxylic acid, succinic acid, maleic acid, fumaric acid, One or more of adipic acid, phthalic acid, and terephthalic acid.
  • the organic carboxylic acid in the acidic compound can participate in the reaction and can effectively reduce the alkoxy group content in the product.
  • the molar ratio of the carboxyl group in the organic carboxylic acid to the alkoxy group of the silane is selected to be a carboxyl group: the alkoxy group is equal to (0.5 - 2.5): 1.
  • the acidic compound further includes an acidic catalyst including, but not limited to, sulfuric acid, hydrochloric acid, trifluoromethanesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, acid halide, solid super acid, acid clay, and cation exchange resin.
  • an acidic catalyst including, but not limited to, sulfuric acid, hydrochloric acid, trifluoromethanesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, acid halide, solid super acid, acid clay, and cation exchange resin.
  • an acidic catalyst including, but not limited to, sulfuric acid, hydrochloric acid, trifluoromethanesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, acid halide, solid super acid, acid clay, and cation exchange resin.
  • sulfuric acid hydrochloric acid
  • step 1) stirring at 50-80 ° C for 2-4 h.
  • the molar ratio of the alkoxysilane, the terminal blocking agent and the acidic compound is 1: (0.7 - 1.2): (4-6).
  • step 2) sodium hydroxide, potassium hydroxide, sodium carbonate, carbon is used to adjust the pH.
  • step 2) the pH is adjusted to 5-9, and in the step 3), the distillation is carried out under reduced pressure at 20-60 °C.
  • a third object of the present invention is to provide the use of the product in silicone rubbers, adhesives, lubricants, release agents and personal care products.
  • the silicone resin provided by the present invention prepares a higher quality MQ silicone resin and a related reticulated resin by avoiding the use of water during the synthesis, for example, having a narrower molecular weight distribution and molecular weight than the cohydrolysis polycondensation method. Controllable MT resin, MQ and MTQ resin.
  • the present invention uses a one-step, solvent-free reaction under acidic conditions to produce a silicone resin without additional water addition, and the resulting silicone resin GPC has a narrow molecular weight distribution, PDI ⁇ 1.8.
  • PDI ⁇ 1.8 a narrow molecular weight distribution
  • the method provided by the present invention can effectively avoid the gelation accompanying the conventional conventional method by adopting mild reaction conditions which are easy to control, thereby achieving product yield and quality of up to 95%.
  • the introduction of acidic compounds and blocking groups from the outset makes the synthesis more reproducible and reduces the residual of silanol groups in the product.
  • Figure 1 is a view showing an example of a reaction formula of the present invention
  • Figure 3 is a graph showing the molecular weight change of the silicone resin of Example 5;
  • the curves of the molecular weight of MQ silicone resin under different vacuum distillation temperatures are: 22 ° C ⁇ 0 h (Example 5a), 22 ° C ⁇ 3 h ( Example 5b), 60 ° C ⁇ 3 h (Example 5c), 80 ° C ⁇ 3 h (Example 5d), 100 ° C ⁇ 3 h (Example 5e), 120 ° C ⁇ 3h (Example 5f), 150 ° C ⁇ 3 h (Example 5g), 180 ° C ⁇ 3 h (Example 5h) and Wacker 803.
  • the information for some of the reagents is as follows: tetraethyl orthosilicate (TEOS) (>99%) and polysilicate (>99%), technical grade; hexamethyldisiloxane ( MM) (>99%), technical grade; n-octyltriethoxysilane (>98%), industrial grade; aluminum chloride (99%), industrial grade; trimethylchlorosilane (97%), industrial Grade; trifluoromethanesulfonic acid (>99.5%), chemically pure; glacial acetic acid (99%), chemically pure; 98% concentrated sulfuric acid, chemically pure; ferric chloride (97%), chemically pure; sodium carbonate, industrial Grade; sodium sulfate, technical grade; ⁇ , ⁇ -divinylpolydimethylsiloxane, 2000mPa ⁇ s, vinyl content: 0.23wt%, standard silicon fluoride; side hydrogen silicone oil, 40mPa ⁇ s, hydrogen Content: 0.5wt
  • the characterization methods include nuclear magnetic resonance and gel chromatography.
  • Nuclear magnetic resonance 1 H NMR spectra were recorded at room temperature on a Bruker Avance 600 MHz nuclear magnetic resonance spectrometer using deuterated solvent (CDCl 3 ).
  • Infrared spectra were recorded on a Bruker Tensor 27 FTIR infrared spectrometer.
  • Molecular weight and polydispersity index (PDI) were measured by gel permeation chromatography on an Agilent 1260 GPC using an Agilent G1362 RI detector and a PLgel 5 ⁇ M IXED-D column. The column was filled with polystyrene-divinylbenzene gel and the sample was run in toluene.
  • the invention discloses a product of an anhydrous synthetic organosiloxane resin, which is prepared by reacting an alkoxysilane, a blocking agent and an acidic compound in a molar ratio of 1:(0-2):(2-10),
  • the alkoxysilane is a trifunctional and/or tetrafunctional alkoxysilane
  • the acidic compound includes an organic carboxylic acid and an acidic compound.
  • An example of the reaction formula of the silicone resin is shown in FIG. Wherein the organic carboxylic acid participates in the reactants to promote the esterification of the alkoxysilane.
  • the silicone resin may be an MT resin, an MTQ resin or an MQ resin depending on the alkoxysilane. Since the silicone resin is prepared by a one-step anhydrous method, it has few impurities and high quality.
  • the silicone resin has a low molecular weight polydispersity and a PDI of ⁇ 1.8.
  • the organic resin has a high network structure, high regularity and low PDI, and has good properties in lubrication, moisturizing, etc., and can be applied to silicone rubber, adhesives, lubricants, release agents and personal care products. in.
  • the invention provides a method for synthesizing the product, comprising:
  • the alkoxysilane is a trifunctional and/or tetrafunctional alkoxy organosilane, and the acidic compound comprises an organic carboxylic acid and an acidic catalyst;
  • the method produces higher quality silicone by avoiding the use of water during the synthesis, as opposed to Hydrolysis polycondensation method, the silicone resin prepared by the method has a narrower molecular weight distribution and a more controllable molecular weight, and the method can be applied to the synthesis of MT resin, MQ and MTQ resin.
  • the method uses a one-step solventless reaction under acidic conditions to produce a silicone resin, and the obtained silicone resin GPC has a narrow molecular weight distribution, PDI ⁇ 1.8.
  • the molar ratio of the alkoxysilane, the terminal blocking agent and the acidic compound in the step 1) is preferably 1: (0.6-1.5): (3.2-8), more preferably 1: (0.7-1.2): (4-6).
  • step 2) during the cooling process, the polymerization is quenched.
  • the pH adjustment of the step 2) and the vacuum distillation temperature in the step 3) have a good linear correlation with the molecular weight and component distribution of the final silicone resin.
  • the organic phase was separated by decantation, and the organic solvent was removed under reduced pressure at 80 ° C to give a viscous liquid resin.
  • Example 2 provides a method for synthesizing methacryloxypropyl MTQ silicone resin, as follows: tetraethoxysilane (10.42 g, 0.05 mol), hexamethyldisiloxane (4.06 g, 0.025 mol) , 3-methacryloxypropyltrimethoxysilane (3.72 g, 0.015 mol), glacial acetic acid (14.70 g, 0.245 mol) and 98 wt% sulfuric acid (0.18 g, 110 ul) were stirred in a round bottom flask. Heat to 50 ° C for 4 hours.
  • Example 3 provides a method for synthesizing methyl MQ silicone resin, and the specific operation is as follows:
  • Tetraethyl orthosilicate (TEOS) 52.00 g, 0.25 mol
  • hexamethyldisiloxane (16.20 g, 0.10 mol)
  • carboxylic acid H 3 CCOOH 66.00 g, 1.10 mol
  • sulfuric acid 0.53
  • the mixture of g, 5.3 mmol) was refluxed at 78 ° C for 4 hours.
  • the organic phase was separated from the aqueous phase, and the organic solvent was removed by heating under reduced pressure (-0.1 MPa), and then distilled under reduced pressure at a high temperature of 80 ° C for 3 hours to obtain a solid powder methyl MQ silicone resin.
  • Example 4 conditions were adjusted for the pH adjustment and vacuum distillation treatment steps of Example 3, and the specific operations were as follows:
  • the mixture was neutralized to 5-9 with an aqueous sodium carbonate solution, and distilled under reduced pressure at 22-180 ° C.
  • the molecular weight, polydispersity and mode of the obtained silicone resin are shown in the following table.
  • Example 5 provides the effect of different vacuum distillation temperatures and times on the molecular weight parameters of the final silicone resin, as follows:
  • Tetraethyl orthosilicate (TEOS) 52.00 g, 0.25 mol
  • hexamethyldisiloxane (16.20 g, 0.10 mol)
  • carboxylic acid H 3 CCOOH 66.00 g, 1.10 mol
  • sulfuric acid 0.53
  • the mixture of g, 5.3 mmol) was refluxed at 78 ° C for 4 hours.
  • an aqueous solution of sodium carbonate (15 wt%, 109.75 g) was added to the mixture to obtain a solution of silanol in ethyl acetate.
  • the organic phase was separated from the aqueous phase, and the organic solvent was removed by heating under reduced pressure (-0.1 MPa), and then the time shown in the following table was distilled under reduced pressure at the temperature shown in the table below to obtain a solid powder MQ silicone resin.
  • the molecular weight parameters of the silicone resin are shown in the following table, and the molecular weight change curve is shown in Fig. 3.
  • Example 6 provides catalysis based on the method provided herein using an acid catalyst as shown in the following table, as follows:
  • the preparation of the silicone resin of the invention has a production process with less environmental pollution, low energy consumption, short cycle time and high product yield. More importantly, the present invention innovatively produces a low polydispersity silicone resin in high yield, which is superior in performance to resins produced by conventional routes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明公开了一种无水合成有机硅氧烷树脂的产品,该产品是由烷氧基硅烷、封端剂和酸性化合物以1:(0-2):(2-10)的摩尔比反应制成,所述烷氧基硅烷为三官能和/或四官能烷氧基硅烷,所述酸性化合物包括有机羧酸和酸性催化剂。该硅树脂具有较高的规整性、更窄分子量分布,其PDI<1.8。本发明同时提供了该硅树脂的制备方法,该方法采用的是无水一步合成法,可以通过控制淬灭时的pH值和减压蒸馏的温度,以预测性地来诱导聚合物分子量参数的变化。本发明还提供该产品的应用,因其较好的规整性,该硅树脂在硅橡胶、胶粘剂、润滑剂、脱膜剂和个人洗护产品中具有较好的应用前景。

Description

一种无水合成有机硅氧烷树脂的方法及产品与应用 技术领域
本发明涉及一种硅氧烷及其有机硅氧烷树脂,尤其涉及一种无水合成有机硅氧烷树脂的方法及产品与应用。
背景技术
目前,有机硅树脂是一种重要的商业材料,因其具有良好的耐高温性、疏水性、绝缘性等性能而被广泛应用于涂料、电子、建筑、工业化学品、个人护理、医疗器械等许多领域[1]。其可以通过不同的硅烷单元来区分形成网络的能力,例如本文重点研究的MQ类型的硅树脂是由单官能单元(R3SiO1/2,称为M单元)和四官能单元(SiO4/2,称为Q单元)组成;MT类型的硅树脂由单官能单元(R3SiO1/2,称为M单元)和三官能单元(RSiO3/2,简称T单元)组成。
目前,MQ硅树脂的制备主要是通过对正硅酸酯(TEOS)和封端剂的动力学控制,酸催化和共水解缩合而得。当反应原料替换为倍半氧硅烷时,能得到MT硅树脂(聚多面体硅倍半氧烷POSS),形成的高度交联的无定形结构可以是笼状,枝状,支链状和/或梯状。
MQ硅树脂的合成研究专利起源于1950年代报告的Daudt,Taylor和Goodwin方法,其中Daudt/Taylor方法涉及采用酸化水玻璃和三甲基氯硅烷制备硅凝胶,而Goodwin方法是通过烷氧基硅烷和相关的三甲基硅氧烷共水解合成MQ硅树脂[2]。后期的研究方向主要是针对合成的连续化工序和精确的工程控制,相关的专利有Method for Making Substantially Silanol-Free Silicone Resin Powder,Product and Use[3](U.S.Patent 7951895);Continuous process for producing a silicon  resin[4](European Patent 1113036)和Process for Preparing a Silicone Resin[5](U.S.Patent 7951895)。
国内合成有机硅树脂一般也采用共水解缩合的方法,氯硅烷共水解缩合法如吴连斌等的“一种甲基苯基硅树脂制备方法[6]”(CN 101508776A),采用氯硅烷为单体原料,通过调节原料配比,控制适宜的反应温度及聚合时间进行水解反应、缩聚反应等过程来制得甲基苯基硅树脂;Sol-Gel法如王云英,孟江燕的“高性能硅树脂的制备方法[7]”(CN 101531760A),采用在浓盐酸和无水乙醇条件下滴加硅酸钠水溶液单体原料进行反应,最后用六甲基二硅氧烷封端的方法制备纯MQ硅树脂;硅酸酯水解缩聚法如唐正华等的“一种环保无溶剂液体硅树脂的制备方法[8]”(CN 103242532B)。
对于MT硅树脂的发展研究始于1930年代的康宁玻璃和通用电气公司,基于F.S.Kipping的学术工作。它们的制备和应用在Ronald H.Baney,Maki Itoh,Akihito Sakakibara,and Toshio Suzuki的Silsesquioxanese[9]有详细的论述。
综上所述,有机硅树脂的合成主要围绕共水解缩聚方法:通过添加水来提供羟基再进一步缩合为树脂,该方法普遍存在工艺复杂、生产周期长、环保性能差、易凝胶化、产率低、工艺重现性差、能耗大等问题。更重要的是,无法制备具有窄分子量分布和相关结构的硅树脂。
最新申请公开的“一种有机聚硅氧烷树脂的制备方法[10]”(CN 1015906810A)描述了一种替代策略,其中使用酸催化的酯交换反应转化烷氧基硅烷(Q和/或T基团)和封端(M基团)转化成MT,MTQ和MQ树脂等。该方法产生了几个优点,包括增强的环境特性,更好的再现性和高效率,但是,产品是具有高分子量多分散指数(PDI)的树脂,分子量约2000至约6000g/mol,分布一般呈多峰分布。
参考文献
[1]M.A.Brook,Silicon in Organic,Organometallic,and Polymer Chemistry,Wiley,New York,2000.
[2]D.H.Flagg,T.J.McCarthy,Rediscovering Silicones:MQ Copolymers,Macromolecules 49(22)(2016)8581-8592.
[3]Wengrovius,J.H.;Burnell,T.B.;Zumbrum,M.A.Method for Making Substantially Silanol-Free Silicone Resin Powder,Product and Use.U.S.Patent 5,319,040,June 7,1994.
[4]Wengrovius,J.H.;Green,R.W.;Capuano,C.F.Continuous process for producing a silicon resin.European Patent 1,113,036,Dec 21,2005.
[5]Ramdani,K.;Bossy,H.;Lomel,S.;Durand,N.Process for Preparing a Silicone Resin.U.S.Patent 7,951,895,May 31,2011.
[6]吴连斌,陈利民,陈遒等.一种甲基苯基硅树脂制备方法.中国发明专利,CN 101508776 A,2009.8.19.
[7]王云英,孟江燕.高性能硅树脂的制备方法.中国发明专利,CN 101531760 A,2009.9.16.
[8]唐正华,李良,戴如勇.一种环保无溶剂液体硅树脂的制备方法,中国发明专利,CN 103242532 B,2015.03.25.
[9]Ronald H.Baney,Maki Itoh,Akihito Sakakibara,and Toshio Suzuki.Silsesquioxanese.Chem.Rev.1995,95,1409-1430.
[10]黄振宏等.一种有机聚硅氧烷树脂的制备方法.中国发明专利,CN 105906810 A,2016.08.31.
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供一种具有较窄分子量分布的无水合成有机硅氧烷树脂的产品。
本发明的目的之二在于提供上述产品的合成方法。
本发明的目的之一采用如下技术方案实现:
一种无水合成有机硅氧烷树脂的产品,由烷氧基硅烷、封端剂和酸性化合物以1:(0-2):(2-10)的摩尔比反应制成,烷氧基硅烷为三官能和/或四官能烷 氧基硅烷,酸性化合物包括有机羧酸和酸性催化剂。
进一步地,该产品的PDI<1.8。
本发明的目的之二采用如下技术方案实现:
一种无水合成有机硅氧烷树脂的合成方法,包括:
1)按1:(0-2):(2-10)的摩尔比取烷氧基硅烷、封端剂和酸性化合物,混合搅拌均匀,于40-100℃下搅拌0.3-20h;
所述烷氧基硅烷为三官能和/或四官能烷氧基有机硅烷,所述酸性化合物包括有机羧酸和酸性催化剂;
2)冷却,调pH至1-12,静置分层,除去水相;
3)干燥、过滤后于20-180℃减压蒸馏得到有机硅树脂。
进一步地,步骤1)中,所述烷氧基硅烷中的烷氧基包括但不限于甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、乙二醇单甲醚和乙二醇单乙醚,所述烷氧基硅烷为烷氧基硅烷和/或其缩合物。例如通过市售途径获得的T链节和/或Q链节,以及它们的缩聚形式。
具体的烷氧基硅烷可以选自但不限于正硅酸甲酯,正硅酸乙酯,聚硅酸甲酯,聚硅酸乙酯;三乙氧基硅烷,其可以选自三甲氧基硅烷,甲基三甲氧基硅烷,乙基三甲氧基硅烷,甲基三乙氧基硅烷,乙基三乙氧基硅烷,烯丙基三甲氧基硅烷,烯丙基三乙氧基硅烷,三氟丙基三甲氧基硅烷,三氟丙基三乙氧基硅烷,环己基三乙氧基硅烷,环己基三甲氧基硅烷,三甲氧基乙烯基硅烷,三乙氧基乙烯基硅烷,三甲氧基苯基硅烷,三乙氧基苯基硅烷,丙烯酰氧丙基三乙氧基硅烷,丙烯酰氧丙基三甲氧基硅烷,甲基丙烯酰氧丙基三乙氧基硅烷,甲基丙烯酰氧丙基三甲氧基硅烷,苯基三乙氧基硅烷,苯基三甲氧基硅烷,C4-C20烷基三乙氧基硅烷,C4-C20烷基三甲氧基硅烷,γ-氯甲基三甲氧基硅烷,γ-氯 甲基三乙氧基硅烷,γ-氯丙基三甲氧基硅烷,γ-氯丙基三乙氧基硅烷,γ-巯基丙基三甲氧基硅烷,γ-巯基丙基三乙氧基硅烷的一种或两种以上。
进一步地,封端剂可以是通式为MaMb的封端剂,其中,Ma与Mb可以相同或不同。
封端剂包括但不限于1,1,1,3,3,3-六甲基二硅氧烷、1,1,3,3-四甲基二硅氧烷、1-氢基-1,1,3,3,3-五甲基二硅氧烷、1-乙烯基-1,1,3,3,3-五甲基二硅氧烷、1,1,3,3-四甲基-1,3-二乙烯基二硅氧烷、1-苯基-1,1,3,3,3-五甲基二硅氧烷、1,1,3,3-四甲基-1,3-二苯基二硅氧烷、1,3-二甲基-1,1,3,3-四苯基二硅氧烷、1,1,1,3,3,5,5,7,7,7-十甲基四硅氧烷、1,1,1,3,5,5,5-七甲基三硅氧烷、1,3,3-三甲基-1,3,3-三乙烯基二硅氧烷、1,1,3,3-四乙烯基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-二烯丙基二硅氧烷、1,3,3-三甲基-1,3,3,3-三烯丙基二硅氧烷、1,1,3,3-四烯丙基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-双三氟丙基二硅氧烷、1,3,3-三甲基-1,3,3,3-三-三氟丙基二硅氧烷、1,1,3,3-四-三氟丙基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-二丙烯酰氧基丙基二硅氧烷、1,3,3-三甲基-1,3,3-三丙烯酰氧基丙基二硅氧烷、1,1,3,3-四丙烯酰氧基丙基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-二甲基丙烯酰氧基丙基二硅氧烷、1,3,3-三甲基-1,3,3-三甲基丙烯酰氧基丙基二硅氧烷、1,3,3-四甲基丙烯酰氧基丙基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-二苯基二硅氧烷、1,3,3-三甲基-1,3,3-三苯基二硅氧烷、1,1,3,3-四苯基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-γ-氯甲基二硅氧烷、1,3,3-三甲基-1,3,3-三-α-氯甲基二硅氧烷、1,1,3,3-四-α-氯甲基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-γ-氯丙基二硅氧烷、1,3,3-三甲基-1,3,3-三-γ-氯丙基二硅氧烷、1,1,3,3-四-γ-氯丙基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-α-氯甲基二硅氧烷、1,3,3-三甲基-1,3,3-三-α-氯甲基二硅氧烷、1,1,3,3-四-α-氯甲基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-二-γ-巯基丙基二硅 氧烷、1,3,3-三甲基-1,3,3-三-γ-巯基丙基二硅氧烷、1,1,3,3-四-γ-巯基丙基-1,3-二甲基二硅氧烷中的一种或两种以上。
进一步地,封端剂还可以是MaOR的封端剂,封端剂包括但不限于甲氧基(乙烯基二甲基)硅烷、乙氧基(烯丙基二甲基)硅烷、甲氧基(烯丙基二甲基)硅烷、乙氧基(三氟丙基二甲基)硅烷、甲氧基(三氟丙基二甲基)硅烷、乙氧基(丙烯酰氧基丙基二甲基)硅烷、甲氧基(丙烯酰氧基丙基二甲基)硅烷、乙氧基(甲基丙烯酰氧基丙基二甲基)硅烷、甲氧基(甲基丙烯酰氧基丙基二甲基)硅烷、乙氧基(二苯基甲基)硅烷、甲氧基(二苯基甲基)硅烷、乙氧基(苯基二甲基)硅烷、甲氧基(苯基二甲基)硅烷、乙氧基(γ-氯甲基二甲基)硅烷、甲氧基(γ-氯甲基二甲基)硅烷、乙氧基(γ-巯基丙基二甲基)硅烷、甲氧基(γ-巯基丙基二甲基)硅烷中的一种或两种以上。
进一步地,酸性化合物中的有机羧酸包括但不限于甲酸、乙酸、丙酸、丁酸、戊酸、草酸、苯甲酸、C6-C26单羧酸、琥珀酸、马来酸、富马酸、己二酸、邻苯二甲酸和对苯二甲酸中的一种或两种以上。酸性化合物中的有机羧酸能参与反应且能有效降低产物中烷氧基团含量。有机羧酸中的羧基和与硅烷的烷氧基的摩尔比选择为羧基:烷氧基等于(0.5-2.5):1。
进一步地,酸性化合物还包括酸性催化剂,酸性催化剂包括但不限于硫酸、盐酸、三氟甲磺酸、甲磺酸、对甲苯磺酸、酰卤、固体超强酸、酸性粘土和阳离子交换树脂中的一种或两种以上。
进一步地,步骤1)中,于50-80℃下搅拌2-4h。
进一步地,步骤1)中,所述烷氧基硅烷、封端剂和酸性化合物的摩尔比为1:(0.7-1.2):(4-6)。
进一步地,步骤2)中,调节pH时采用氢氧化钠、氢氧化钾、碳酸钠、碳 酸氢钠、乙二胺、乙醇胺、三乙胺、阴离子树脂和负载碱中的一种或两种以上。
进一步地,步骤2)中,调节pH至5-9,步骤3)中,20-60℃减压蒸馏。
本发明的第三个目的在于提供该产品在硅橡胶、胶粘剂、润滑剂、脱膜剂和个人洗护产品中的应用。
相比现有技术,本发明的有益效果在于:
1)本发明提供的有机硅树脂,在合成过程中,通过避免使用水,所制备更高质量的MQ硅树脂及相关网状树脂,例如制备具有比共水解缩聚法更窄分子量分布和分子量更可控的MT树脂、MQ和MTQ树脂。
2)本发明采用在酸性条件下一锅一步无溶剂的反应中生产有机硅树脂,过程中无需额外加入水,所得有机硅树脂GPC测定的分子量分布窄,PDI<1.8。同时,可以通过控制淬灭时的pH值和减压蒸馏的温度,从而预测性地诱导聚合物增加分子量。
3)本发明提供的方法,采用易于控制的温和反应条件,可以有效地避免常规的传统方法伴随的凝胶化,从而可以达到高达95%的产品产率和质量。从一开始就引入酸性化合物和封端基团使得合成的再现性更高和减少产物中硅烷醇基团的残留。
附图说明
图1为本发明的反应式示例图;
图2为实施例1-3的有机硅树脂的GPC分子量分布图谱示例;
图3为实施例5的硅树脂分子量变化曲线;
图3中,为不同减压蒸馏温度下对MQ硅树脂分子量的变化曲线,曲线沿箭头方向从上往下依次代表的样品分别为:22℃×0h(实施例5a),22℃×3h(实施例5b),60℃×3h(实施例5c),80℃×3h(实施例5d),100℃×3h(实施例5e),120℃ ×3h(实施例5f),150℃×3h(实施例5g),180℃×3h(实施例5h)和Wacker 803。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
以下具体实施例中使用到的试剂如未特殊说明,均可通过市售或常规试验手段获得。
以下具体实施方式中,部分试剂的信息如下所示:正硅酸四乙酯(TEOS)(>99%)和聚硅酸盐(>99%),工业级;六甲基二硅氧烷(MM)(>99%),工业级;正辛基三乙氧基硅烷(>98%),工业级;氯化铝(99%),工业级;三甲基氯硅烷(97%),工业级;三氟甲磺酸(>99.5%),化学纯;冰醋酸(99%),化学纯;98%浓硫酸,化学纯;三氯化铁(97%),化学纯;碳酸钠,工业级;硫酸钠,工业级;α,ω-二乙烯基聚二甲基硅氧烷,2000mPa·s,乙烯基含量:0.23wt%,标美硅氟;侧含氢硅油,40mPa·s,氢含量:0.5wt%,标美硅氟;MQ树脂(M/Q=0.8,Mn=2660,Mw=4425,PDI=1.6635),标美硅氟;Wacker MQ Resin 803(M/Q=0.67,Mn=2862,Mw=6339,PDI=2.2149)。所有化学品按原样使用,除非另有说明。水溶液在使用反渗透离子交换膜制备的去离子水中制成。
以下具体实施方式中,表征方法包括核磁共振和凝胶色谱。核磁共振使用氘代溶剂(CDCl3)在BrukerAvance 600MHz核磁共振光谱仪的室温下记录1H NMR光谱。在Bruker Tensor 27FTIR红外光谱仪上记录红外光谱。分子量和多分散指数(PDI)通过凝胶渗透色谱法在Agilent 1260GPC上使用Agilent G1362RI检测器和PLgel5μmMIXED-D柱进行测量。该柱用聚苯乙烯-二乙烯基苯凝胶填充,并将样品在甲苯中运行。
使用Tack测试仪测试粘性,型号:BLD-1007东莞市博莱德设备有限公司将一块厚度为厚2mmx宽50mm×长250mm的MQ树脂固化弹性体(见表2)放置在试验台(角度为30°)比球落位置以下100mm。选择不同直径的钢球滚动到板坯上,并通过GB/T 4852-2002测定粘性。
本发明公开了一种无水合成有机硅氧烷树脂的产品,由烷氧基硅烷、封端剂和酸性化合物以1:(0-2):(2-10)的摩尔比反应制成,烷氧基硅烷为三官能和/或四官能烷氧基硅烷,酸性化合物包括有机羧酸和酸性化合物。该有机硅树脂的反应式示例如图1所示。其中有机羧酸参与到反应物中,促进烷氧基硅烷的酯化。
该有机硅树脂可以根据烷氧基硅烷的不同,可以是MT树脂、MTQ树脂或MQ树脂。该有机硅树脂因为是通过一步无水法制备的,所以杂质少,品质高。该有机硅树脂的分子量的多分散性低,PDI<1.8。
该有机树脂具有高度网状结构、具有高的规整性和低的PDI,其在润滑、保湿等方面具有良好的性能,可以应用在硅橡胶、胶粘剂、润滑剂、脱膜剂和个人洗护产品中。
本发明提供该产品的合成方法,包括:
1)按1:(0-2):(2-10)的摩尔比取烷氧基硅烷、封端剂和酸性化合物,混合搅拌均匀,于40-100℃下搅拌0.3-20h;
烷氧基硅烷为三官能和/或四官能烷氧基有机硅烷,酸性化合物包括有机羧酸和酸性催化剂;
2)冷却,调pH至1-12,静置分层,除去水相;
3)干燥、过滤后于20-180℃减压蒸馏得到有机硅树脂。
该方法通过避免在合成过程中使用水来制备更高质量的硅树脂,相对于共 水解缩聚法,该法制得的硅树脂具有更窄分子量分布、更可控的分子量,该法可适用于MT树脂、MQ和MTQ树脂的合成。该方法采用在酸性条件下一锅一步无溶剂反应中生产有机硅树脂,所得有机硅树脂GPC测定的分子量分布窄,PDI<1.8。
需要说明的是,本申请提供的方法中,步骤1)中,烷氧基硅烷、封端剂和酸性化合物的摩尔比优选为1:(0.6-1.5):(3.2-8),更优选为1:(0.7-1.2):(4-6)。步骤2)中,冷却过程中,聚合反应淬灭。
进一步地,本发明中,步骤2)的调节pH和步骤3)中的减压蒸馏温度,与最终硅树脂的分子量大小和分量分布具有较好的线性相关性。
实施例1:
实施例1提供甲基丙烯酰氧基丙基MT硅树脂的合成方法,具体操作如下:将辛基三乙氧基硅烷(138.25g,0.5mol),六甲基二硅氧烷(4.06g,0.025mol),冰乙酸(99.08g,1.65mol)和98wt%硫酸(1.4g)加入圆底烧瓶搅拌均匀,加热至78℃回流反应4小时。冷却至室温后,将所得反应混合物用碳酸钠水溶液(15wt%,198.29g)中和至pH=7。通过倾析分离有机相,并在80℃下减压除去有机溶剂,得到粘稠液体树脂。GPC测定显示,树脂的Mn=1554,Mw=1829,PDI=1.1770。
实施例2:
实施例2提供甲基丙烯酰氧基丙基MTQ硅树脂的合成方法,具体操作如下:将四乙氧基硅烷(10.42g,0.05mol),六甲基二硅氧烷(4.06g,0.025mol),3-甲基丙烯酰氧基丙基三甲氧基硅烷(3.72g,0.015mol),冰乙酸(14.70g,0.245mol)和98wt%硫酸(0.18g,110ul)在圆底烧瓶中搅拌,加热至50℃保持4小时。冷却至室温后,将所得混合物用碳酸钠水溶液(20wt%,3.42g)中和至pH=7。 通过倾析分离有机相,并在60℃下减压除去有机溶剂,得到粘稠液体树脂。产物的Mn=1462,Mw=2328,PDI=1.59。
实施例3
实施例3提供甲基MQ硅树脂的合成方法,具体操作如下:
将正硅酸四乙酯(TEOS)(52.00g,0.25mol),六甲基二硅氧烷(16.20g,0.10mol),羧酸H3CCOOH(66.00g,1.10mol),和硫酸(0.53g,5.3mmol)的混合物在78℃下回流4小时。冷却后,将碳酸钠水溶液(15wt%,109.75g)加入到混合物中至pH=7,得到硅烷醇的乙酸乙酯溶液。将有机相与水相分离,加热减压(-0.1MPa)除去有机溶剂,然后在高温80℃下减压蒸馏3小时,得到固体粉末甲基MQ硅树脂。产物的Mn=1247,Mw=1793,PDI=1.4379。
采用实施例1-3的方法得到的有机硅树脂的分子量变化曲线示例如图2所示。
实施例4
实施例4对实施例3的调节pH及减压蒸馏处理步骤进行条件优化,具体操作如下:
用碳酸钠水溶液中和至5-9,且在22-180℃减压蒸馏,所得的硅树脂的分子量、多分散性和模态如下表所示。
表1 pH及减压蒸馏温度对硅树脂的结构影响
Figure PCTCN2017094002-appb-000001
Figure PCTCN2017094002-appb-000002
注:a用于淬灭反应的pH;b M=多模态,U=单峰;c未中和
实施例5
实施例5提供了不同的减压蒸馏温度和时间,对最终硅树脂的分子量参数的影响,具体操作如下:
将正硅酸四乙酯(TEOS)(52.00g,0.25mol),六甲基二硅氧烷(16.20g,0.10mol),羧酸H3CCOOH(66.00g,1.10mol),和硫酸(0.53g,5.3mmol)的混合物在78℃下回流4小时。冷却后,将碳酸钠水溶液(15wt%,109.75g)加入到混合物中,得到硅烷醇的乙酸乙酯溶液。将有机相与水相分离,加热减压(-0.1MPa)除去有机溶剂,然后在下表所示温度下减压蒸馏下表所记载的时间,得到固体粉末MQ硅树脂。硅树脂的分子量参数如下表所示,分子量变化曲线如图3所示。
表2减压蒸馏条件对硅树脂分子量参数的影响
Figure PCTCN2017094002-appb-000003
Figure PCTCN2017094002-appb-000004
实施例6
实施例6提供了在本申请提供的方法的基础上,使用如下表所示的酸催化剂进行催化,具体操作如下:
在配有强力搅拌、冷凝回流管和温度计的三口圆底烧瓶中,加入正硅酸乙酯(104.00克,0.5摩尔)、六甲基二硅氧烷(32.40克,0.20摩尔)和冰乙酸(132.00克,2.2摩尔),搅拌并升温至30℃,缓慢加入如下表所示的酸催化剂(3.12g),搅拌60分钟后升温至回流温度(78℃)反应4小时,冷却至室温后,加入12wt%的碳酸钠水溶液中和中性,转移至分液漏斗分层,去除水层,得到上层硅醇的乙酸乙酯溶液,该溶液经无水硫酸钠干燥,过滤得到无色透明液体,滤液于150℃下减压(-0.1MPa)蒸馏,去掉溶剂后得到白色粉末固体,即硅树脂,其分子量参数如下表所示。
表3不同的酸催化剂对应的影响
Figure PCTCN2017094002-appb-000005
由上表可知,通过对比了不同酸催化剂对树脂分子量及其分布的影响,发现所研究的酸催化剂都能得到性能较好的硅树脂,PDI<1.8,说明该发明的适用性强。
性能检测与评价
检测例1
将通过实施例3提供的方法,得到的MQ树脂(Mn=2660,Mw=4425, PDI=1.6635)与商业MQ树脂(Wacker 803,Mn=2862,Mw=6339,PDI=2.2149)之间做直接比较。
在单独的实验中,在由α,ω-二乙烯基聚二甲基硅氧烷(Mw=45392,42.00g)和侧链含氢官能硅氧烷([Me2SiO]/[MeHSiO]=65:35,7.00g)组成的弹性体制剂中,树脂以如下表所示的不同的重量百分比掺杂,加入Karstedt催化剂,复合树脂固化,测试粘度,具体操作如下:按以1:3的比例将MQ树脂与石油醚混合制备含有MQ树脂的弹性体样品,然后混合部分A:α,ω-二乙烯基聚二甲基硅氧烷(42份)和铂催化剂(0.05份),减压除去溶剂,然后将B部分:含氢硅油(7份)加入混合,制成2mm厚的板坯在120℃下固化10分钟,安装样品并测定粘性,结果如下表所示。
表4树脂填充量对弹性体的粘性影响
Figure PCTCN2017094002-appb-000006
注:a球尺寸#4:3.175mm;#8:6.350mm;#15:11.906mm;#26:20.638mm
本发明的有机硅树脂的制备具有环境污染少,能耗低,循环时间短,产品收率高的生产工艺。更重要的是,本发明创新地以高产率制成低多分散性的有机硅树脂,其性能优于传统路线生产的树脂。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (13)

  1. 一种无水合成有机硅氧烷树脂的产品,该产品是由烷氧基硅烷、封端剂和酸性化合物以1:(0-2):(2-10)的摩尔比反应制成,所述烷氧基硅烷为三官能和/或四官能烷氧基硅烷,所述酸性化合物包括有机羧酸和酸性催化剂。
  2. 如权利要求1所述的产品,其特征在于,其PDI<1.8。
  3. 一种如权利要求1或2的产品的制备方法,包括以下步骤:
    1)按1:(0-2):(2-10)的摩尔比取烷氧基硅烷、封端剂和酸性化合物,混合搅拌均匀,于40-100℃下搅拌0.3-20h;
    所述烷氧基硅烷为三官能和/或四官能烷氧基有机硅烷,所述酸性化合物包括有机羧酸和酸性催化剂;
    2)冷却,调pH至1-12,静置分层,除去水相;
    3)干燥、过滤后于20-180℃减压蒸馏得到有机硅树脂。
  4. 如权利要求3所述的方法,其特征在于,步骤1)中,所述烷氧基硅烷中的烷氧基包括但不限于甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、乙二醇单甲醚和乙二醇单乙醚,所述烷氧基硅烷为烷氧基硅烷和/或其缩合物。
  5. 如权利要求3所述的方法,其特征在于,步骤1)中,所述封端剂包括1,1,1,3,3,3-六甲基二硅氧烷、1,1,3,3-四甲基二硅氧烷、1-氢基-1,1,3,3,3-五甲基二硅氧烷、1-乙烯基-1,1,3,3,3-五甲基二硅氧烷、1,1,3,3-四甲基-1,3-二乙烯基二硅氧烷、1-苯基-1,1,3,3,3-五甲基二硅氧烷、1,1,3,3-四甲基-1,3-二苯基二硅氧烷、1,3-二甲基-1,1,3,3-四苯基二硅氧烷、1,1,1,3,3,5,5,7,7,7-十甲基四硅氧烷、1,1,1,3,5,5,5-七甲基三硅氧烷、1,3,3-三甲基-1,3,3-三乙烯基二硅氧烷、1,1,3,3-四乙烯基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-二烯丙基二硅氧烷、1,3,3-三甲 基-1,3,3,3-三烯丙基二硅氧烷、1,1,3,3-四烯丙基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-双三氟丙基二硅氧烷、1,3,3-三甲基-1,3,3,3-三-三氟丙基二硅氧烷、1,1,3,3-四-三氟丙基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-二丙烯酰氧基丙基二硅氧烷、1,3,3-三甲基-1,3,3-三丙烯酰氧基丙基二硅氧烷、1,1,3,3-四丙烯酰氧基丙基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-二甲基丙烯酰氧基丙基二硅氧烷、1,3,3-三甲基-1,3,3-三甲基丙烯酰氧基丙基二硅氧烷、1,3,3-四甲基丙烯酰氧基丙基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-二苯基二硅氧烷、1,3,3-三甲基-1,3,3-三苯基二硅氧烷、1,1,3,3-四苯基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-γ-氯甲基二硅氧烷、1,3,3-三甲基-1,3,3-三-α-氯甲基二硅氧烷、1,1,3,3-四-α-氯甲基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-γ-氯丙基二硅氧烷、1,3,3-三甲基-1,3,3-三-γ-氯丙基二硅氧烷、1,1,3,3-四-γ-氯丙基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-α-氯甲基二硅氧烷、1,3,3-三甲基-1,3,3-三-α-氯甲基二硅氧烷、1,1,3,3-四-α-氯甲基-1,3-二甲基二硅氧烷、1,1,3,3-四甲基-1,3-二-γ-巯基丙基二硅氧烷、1,3,3-三甲基-1,3,3-三-γ-巯基丙基二硅氧烷、1,1,3,3-四-γ-巯基丙基-1,3-二甲基二硅氧烷中的一种或两种以上。
  6. 如权利要求3所述的方法,其特征在于,步骤1)中,所述封端剂包括甲氧基(乙烯基二甲基)硅烷、乙氧基(烯丙基二甲基)硅烷、甲氧基(烯丙基二甲基)硅烷、乙氧基(三氟丙基二甲基)硅烷、甲氧基(三氟丙基二甲基)硅烷、乙氧基(丙烯酰氧基丙基二甲基)硅烷、甲氧基(丙烯酰氧基丙基二甲基)硅烷、乙氧基(甲基丙烯酰氧基丙基二甲基)硅烷、甲氧基(甲基丙烯酰氧基丙基二甲基)硅烷、乙氧基(二苯基甲基)硅烷、甲氧基(二苯基甲基)硅烷、乙氧基(苯基二甲基)硅烷、甲氧基(苯基二甲基)硅烷、乙氧基(γ-氯甲基二甲基)硅烷、甲氧基(γ-氯甲基二甲基)硅烷、乙氧基(γ-巯基丙基 二甲基)硅烷、甲氧基(γ-巯基丙基二甲基)硅烷中的一种或两种以上。
  7. 如权利要求3所述的方法,其特征在于,步骤1)中,所述有机羧酸包括但不限于甲酸、乙酸、丙酸、丁酸、戊酸、草酸、苯甲酸、C6-C26单羧酸、琥珀酸、马来酸、富马酸、己二酸、邻苯二甲酸和对苯二甲酸中的一种或两种以上。
  8. 如权利要求7所述的方法,其特征在于,步骤1)中,所述酸性催化剂还包括硫酸、盐酸、三氟甲磺酸、甲磺酸、对甲苯磺酸、酰卤、固体超强酸、酸性粘土和阳离子交换树脂中的一种或两种以上。
  9. 如权利要求3所述的方法,其特征在于,步骤1)中,于50-80℃下搅拌2-4h。
  10. 如权利要求3所述的方法,其特征在于,步骤1)中,所述烷氧基硅烷、封端剂和酸性化合物的摩尔比为1:(0.7-1.2):(4-6)。
  11. 如权利要求3所述的方法,其特征在于,步骤2)中,调节pH时采用包括但不限于氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠、乙二胺、乙醇胺、三乙胺、阴离子树脂和负载碱中的一种或两种以上。
  12. 如权利要求3所述的方法,其特征在于,步骤2)中,调节pH至5-9,步骤3)中,20-60℃减压蒸馏。
  13. 如权利要求1或2所述的产品在硅橡胶、胶粘剂、润滑剂、脱膜剂和个人洗护产品中的应用。
PCT/CN2017/094002 2017-06-07 2017-07-24 一种无水合成有机硅氧烷树脂的方法及产品与应用 WO2018223501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710423023.7A CN107226907B (zh) 2017-06-07 2017-06-07 一种无水合成有机硅氧烷树脂的方法及产品与应用
CN201710423023.7 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018223501A1 true WO2018223501A1 (zh) 2018-12-13

Family

ID=59934833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094002 WO2018223501A1 (zh) 2017-06-07 2017-07-24 一种无水合成有机硅氧烷树脂的方法及产品与应用

Country Status (2)

Country Link
CN (1) CN107226907B (zh)
WO (1) WO2018223501A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745505A (zh) * 2020-12-28 2021-05-04 广东标美硅氟新材料有限公司 一种烃基改性mdq型硅树脂及其制备方法和应用
US11168226B2 (en) * 2017-03-31 2021-11-09 Sumitomo Chemical Company, Limited Composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320720B (zh) * 2018-09-15 2021-05-04 深圳市广业电子科技有限公司 一种mq型有机硅树脂的无水合成制备方法
CN109650770B (zh) * 2018-12-20 2021-08-13 科之杰新材料集团(贵州)有限公司 一种有机硅混凝土减胶剂及其制备方法和应用
CN109824838B (zh) * 2018-12-29 2021-08-06 宁波特粒科技有限公司 一种基于mq树脂的有机硅表面活性剂及其制备方法
CN111153922A (zh) * 2020-01-03 2020-05-15 吉林奥来德光电材料股份有限公司 化合物、光电器件封装用组合物、制备方法、封装薄膜、电子器件、封装方法
CN111592766A (zh) * 2020-05-20 2020-08-28 宿迁市同创化工科技股份有限公司 一种复合绝缘子用高绝缘无溶剂硅树脂的制备方法
CN112940260A (zh) * 2021-03-01 2021-06-11 陈亚荣 一种低粘度高折光率苯甲基硅油的生产方法
CN113999395A (zh) * 2021-12-14 2022-02-01 浙江新安化工集团股份有限公司 一种低烷氧基聚硅氧烷及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1020501A (en) * 1961-11-13 1966-02-16 Midland Silicones Ltd Novel organosilicon polymers and compositions prepared therefrom
EP0755963A2 (en) * 1995-07-24 1997-01-29 Dow Corning Corporation Method for producing alkoxysilalkylene terminated siloxane polymers
KR20030031799A (ko) * 2001-10-16 2003-04-23 주식회사 금강고려화학 실리콘 중합체의 제조방법
CN101717512A (zh) * 2009-11-20 2010-06-02 苏州大学 一种甲基苯基乙烯基硅树脂的制备方法
CN104277222A (zh) * 2013-07-10 2015-01-14 成都大蓉新材料有限责任公司 一种led封装用苯基含氢硅树脂及其制备方法
CN104974349A (zh) * 2014-04-07 2015-10-14 马凤国 一种硅树脂的制备方法
CN105906810A (zh) * 2016-04-26 2016-08-31 广东标美硅氟新材料有限公司 一种有机聚硅氧烷树脂的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102888001B (zh) * 2012-10-25 2014-12-24 浙江润禾有机硅新材料有限公司 乙烯基苯基硅树脂
CN104629056B (zh) * 2015-02-13 2017-05-10 北京天山新材料技术有限公司 一种苯基乙烯基硅树脂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1020501A (en) * 1961-11-13 1966-02-16 Midland Silicones Ltd Novel organosilicon polymers and compositions prepared therefrom
EP0755963A2 (en) * 1995-07-24 1997-01-29 Dow Corning Corporation Method for producing alkoxysilalkylene terminated siloxane polymers
KR20030031799A (ko) * 2001-10-16 2003-04-23 주식회사 금강고려화학 실리콘 중합체의 제조방법
CN101717512A (zh) * 2009-11-20 2010-06-02 苏州大学 一种甲基苯基乙烯基硅树脂的制备方法
CN104277222A (zh) * 2013-07-10 2015-01-14 成都大蓉新材料有限责任公司 一种led封装用苯基含氢硅树脂及其制备方法
CN104974349A (zh) * 2014-04-07 2015-10-14 马凤国 一种硅树脂的制备方法
CN105906810A (zh) * 2016-04-26 2016-08-31 广东标美硅氟新材料有限公司 一种有机聚硅氧烷树脂的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168226B2 (en) * 2017-03-31 2021-11-09 Sumitomo Chemical Company, Limited Composition
US11608444B2 (en) 2017-03-31 2023-03-21 Sumitomo Chemical Company, Limited Composition
CN112745505A (zh) * 2020-12-28 2021-05-04 广东标美硅氟新材料有限公司 一种烃基改性mdq型硅树脂及其制备方法和应用

Also Published As

Publication number Publication date
CN107226907B (zh) 2019-04-26
CN107226907A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2018223501A1 (zh) 一种无水合成有机硅氧烷树脂的方法及产品与应用
EP3448918B1 (en) A method for preparing organopolysiloxane resins
TWI389994B (zh) Surface flatness insulating film forming coating solution, surface flatness insulating film coated substrate, and surface flatness insulating film coated substrate
JP6526417B2 (ja) 樹脂−直鎖状オルガノシロキサンブロックコポリマー硬化性組成物
TWI424005B (zh) A compound containing silicon, a hardened composition and a hardened product
Takamura et al. Preparation and properties of polysilsesquioxanes: Polysilsesquioxanes and flexible thin films by acid‐catalyzed controlled hydrolytic polycondensation of methyl‐and vinyltrimethoxysilane
TWI544665B (zh) Silicon oxide compositions for semiconductor encapsulation
US11203668B2 (en) Polysiloxane and method for producing same
JPS62230828A (ja) 半導体用絶縁膜形成塗布液
TW574319B (en) Film forming composition, porous film and their preparation
US20150031826A1 (en) Compositions of resin-linear organosiloxane block copolymers
CN110698679A (zh) 一种主链掺锆的绿色环保耐高温杂化有机硅树脂及其制备方法
CN102459423A (zh) 聚硅氧烷缩合反应物
JP2009059651A (ja) シルセスキオキサン系絶縁材料
JPH07300528A (ja) 有機改質熱硬化性シリコーン樹脂の製造方法及びこれにより得られた樹脂
JP3801208B2 (ja) 硬化性ポリメチルシルセスキオキサン組成物
JP5930826B2 (ja) ポリシロキサン化合物および湿気硬化性樹脂組成物
JP6930242B2 (ja) 半導体装置及びその製造方法
JPH07278497A (ja) 被覆用塗料組成物
TWI447148B (zh) 含矽聚合物、其製造方法及可固化聚合物組合物
JP4996832B2 (ja) シリカ系コーティング剤、それを用いたシリカ系薄膜および構造体
JP2009108109A (ja) 熱硬化性樹脂組成物、当該硬化物、およびこれらから誘導される発光ダイオード
WO2016106939A1 (zh) 玻璃防碎胶组合物及玻璃制品及应用
JP4035892B2 (ja) コーティング用組成物
JP2002020489A (ja) オルガノポリシロキサン樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912768

Country of ref document: EP

Kind code of ref document: A1