WO2018218714A1 - 锂离子电池非水电解液和锂离子电池 - Google Patents

锂离子电池非水电解液和锂离子电池 Download PDF

Info

Publication number
WO2018218714A1
WO2018218714A1 PCT/CN2017/089664 CN2017089664W WO2018218714A1 WO 2018218714 A1 WO2018218714 A1 WO 2018218714A1 CN 2017089664 W CN2017089664 W CN 2017089664W WO 2018218714 A1 WO2018218714 A1 WO 2018218714A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
compound
ion battery
nonaqueous electrolyte
formula
Prior art date
Application number
PCT/CN2017/089664
Other languages
English (en)
French (fr)
Inventor
邓朝晖
胡时光
林木崇
石桥
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Priority to EP17911418.6A priority Critical patent/EP3633780A4/en
Priority to JP2019558398A priority patent/JP6936337B2/ja
Priority to KR1020197031111A priority patent/KR102412568B1/ko
Priority to US16/610,905 priority patent/US11398642B2/en
Publication of WO2018218714A1 publication Critical patent/WO2018218714A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium ion batteries, and in particular relates to a lithium ion battery non-aqueous electrolyte and a lithium ion battery.
  • the fluorocarboxylic acid ester improves the cycle performance of the battery
  • the compatibility of the fluorocarboxylic acid ester with the carbon negative electrode material is problematic, which causes an increase in the gas expansion of the battery during high temperature circulation, which poses a safety hazard and deteriorates the battery performance.
  • the object of the present invention is to provide a lithium ion battery non-aqueous electrolyte with high temperature cycle characteristics and low gas production in high-temperature storage, and aims to solve the high-temperature cycle performance of the existing fluorine-containing solvent-free lithium ion battery non-aqueous electrolyte. It causes severe inflation and affects the high temperature safety performance of the battery.
  • An object of the present invention is to provide a lithium ion battery comprising the above nonaqueous electrolyte of a lithium ion battery.
  • the present invention is achieved by a lithium ion battery non-aqueous electrolyte comprising Compound A and Compound B, wherein the compound A is at least one of the following compounds of the formula I, Formula II and Formula III, the compound B is a compound represented by the following structural formula IV,
  • R 1 is a hydrogen atom, a C1-C5 hydrocarbon group or a C1-C5 fluorohydrocarbon group
  • R 2 is a C1-C5 hydrocarbon group or a C1-C5 fluorohydrocarbon group, and R 1 and R 2 are At least one of which contains a fluorine atom
  • R 3 and R 4 are each independently selected from a C1-C5 hydrocarbon group or a C1-C5 fluorohydrocarbon group, and at least one of R 3 and R 4 contains a fluorine atom;
  • R 5 , R 6 , R 7 and R 8 are each independently selected from a hydrogen atom, a fluorine atom, a C1-C4 hydrocarbon group or a C1-C4 fluorohydrocarbon group, and R 5 , R 6 , R 7 At least one of R 8 contains a fluorine atom;
  • R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are each independently selected from one of a hydrogen atom, a fluorine atom or a C1-C5 group.
  • the C1-C5 group in the formula IV is selected from the group consisting of a hydrocarbon group, a fluorohydrocarbon group, an oxygen-containing hydrocarbon group, a silicon-containing hydrocarbon group, and a cyano-substituted hydrocarbon group.
  • the R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are each independently selected from the group consisting of a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, a methoxy group, an ethoxy group, and a trimethyl group. Silyloxy, cyano, or trifluoromethyl.
  • the compound B is selected from one of the compounds 1-9 shown by the following structure or a variety,
  • the compound B has a mass percentage of 0.1 to 5% based on 100% of the total mass of the lithium ion battery nonaqueous electrolyte.
  • the compound of formula I is selected from the group consisting of H 3 CCOOCH 2 CF 2 H,
  • the compound of formula II is selected from the group consisting of CH 3 OCOOCH 2 CF 2 H,
  • the compound of the formula III is selected from one or more of the compounds 10-13 shown in the following structure.
  • the mass percentage of the compound A is 80% or less based on 100% of the total mass of the nonaqueous electrolyte of the lithium ion battery.
  • the total mass of the lithium ion battery non-aqueous electrolyte is 100%,
  • the mass percentage of the compound A is more than 5 and less than or equal to 80%.
  • the compound A is at least one of the compounds of the formula I, the formula II and the formula III, and in the formula III, R 5 is a fluorine element, and R 6 , R 7 and R 8 are each independently selected from a hydrogen atom. a fluorine atom, a C1-C4 hydrocarbon group or fluoro C1-C4 hydrocarbon group, and R6, R7, R8 are not simultaneously a hydrogen atom; R 5 is fluorine or a C1-C4 hydrocarbon group, R6, R7, R8 are each independently selected from A hydrogen atom, a fluorine atom, a C1-C4 hydrocarbon group or a C1-C4 fluorohydrocarbon group.
  • the compound A is a fluoroethylene carbonate, and the mass percentage of the compound A is greater than 5 and equal to 80%, based on 100% of the total mass of the nonaqueous electrolyte of the lithium ion battery.
  • the compound A has a mass percentage of 10-80% based on 100% of the total mass of the lithium ion battery non-aqueous electrolyte.
  • the lithium ion non-aqueous electrolyte solution comprises a solvent; the solvent of the mysterious vinyl carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate At least one of them.
  • the lithium ion battery nonaqueous electrolyte further includes at least one of an unsaturated cyclic carbonate compound and a sultone compound.
  • the unsaturated cyclic carbonate compound includes at least one of vinylene carbonate (abbreviated as VC) and ethylene carbonate (abbreviated as VEC).
  • VC vinylene carbonate
  • VEC ethylene carbonate
  • the sultone compound comprises 1,3-propane sultone (PS), 1,4-butane sultone (BS), and 1,3-propene sultone (PST). At least one.
  • PS 1,3-propane sultone
  • BS 1,4-butane sultone
  • PST 1,3-propene sultone
  • the total mass of the non-aqueous electrolyte of the lithium ion battery is 100%, not The content of the saturated cyclic carbonate compound is 0.1 to 5%; and the mass percentage of the sultone compound is 0.1 to 5% based on 100% of the total mass of the nonaqueous electrolyte of the lithium ion battery .
  • the lithium ion non-aqueous electrolyte solution includes a lithium salt; the lithium salt may be selected from one or more of LiPF 6 , LiBOB, and LiBF 4 .
  • the content of the lithium salt is 0.1-15%.
  • the lithium ion non-aqueous electrolyte solution includes a solvent; at least at least one of a solvent such as a vinyl carbonate, a propylene carbonate, a butylene carbonate, a dimethyl carbonate, a diethyl carbonate, a methyl ethyl carbonate or a methyl propyl carbonate; One.
  • a solvent such as a vinyl carbonate, a propylene carbonate, a butylene carbonate, a dimethyl carbonate, a diethyl carbonate, a methyl ethyl carbonate or a methyl propyl carbonate
  • a lithium ion battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte solution, wherein the electrolyte solution is the lithium ion battery non-aqueous electrolyte solution described above.
  • the positive electrode comprises a positive active material
  • the active material of the positive electrode is LiNi x Co y Mn z L (1-xyz) O 2 , LiCo x' L (1-x') O 2 , LiNi x" L At least one of ' y ' Mn (2-x"-y') O 4 , Li z ' MPO 4 , wherein L is in Al, Sr, Mg, Ti, Ca, Zr, Zn, Si or Fe At least one, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ x + y + z ⁇ 1, 0 ⁇ x' ⁇ 1, 0.3 ⁇ x" ⁇ 0.6, 0.01 ⁇ y' ⁇ 0.2, L' is at least one of Co, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, Fe; 0.5 ⁇ z' ⁇ 1, M is at least one of Fe
  • the non-aqueous electrolyte of the lithium ion battery provided by the invention simultaneously contains the compound A and the compound B, and the two synergistically ensure the thermal stability (high temperature safety performance) of the negative passivation film, and effectively improve the high temperature cycle and high temperature storage performance of the battery. At the same time, you can also take care of the battery Low temperature performance.
  • the lithium ion battery containing the nonaqueous electrolyte has excellent high temperature cycle performance, high temperature storage performance and good low temperature performance.
  • the lithium ion battery provided by the embodiment of the present invention has good high temperature cycle performance, high temperature storage performance and low temperature performance because it contains the above nonaqueous electrolyte.
  • FEC fluoroethylene carbonate
  • DFEC 1,2-difluoroethylene carbonate
  • PC propylene carbonate
  • the present invention provides a lithium ion battery non-aqueous electrolyte comprising Compound A and Compound B, wherein the compound A is at least one of the following compounds of the formula I, II, and III, the compound B. Is a compound of the formula IV below,
  • R 1 is a hydrogen atom, a C1-C5 hydrocarbon group or a C1-C5 fluorohydrocarbon group
  • R 2 is a C1-C5 hydrocarbon group or a C1-C5 fluorohydrocarbon group, and R 1 and R 2 are At least one of which contains a fluorine atom
  • R 3 and R 4 are each independently selected from a C1-C5 hydrocarbon group or a C1-C5 fluorohydrocarbon group, and at least one of R 3 and R 4 contains a fluorine atom;
  • R 5 , R 6 , R 7 and R 8 are each independently selected from a hydrogen atom, a fluorine atom, a C1-C4 hydrocarbon group or a C1-C4 fluorohydrocarbon group, and R 5 , R 6 , R 7 At least one of R 8 contains a fluorine atom;
  • R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are each independently selected from one of a hydrogen atom, a fluorine atom or a C1-C5 group.
  • C1-C5 means that the number of carbon atoms is 1-5, and similarly, C1-C4 means that the number of carbon atoms is 1-4.
  • the compound of formula I is selected from the group consisting of H 3 CCOOCH 2 CF 2 H,
  • One or more of CH 3 COOCH 2 CF 2 CF 2 H is not limited thereto.
  • the compound of formula II is selected from the group consisting of CH 3 OCOOCH 2 CF 2 H,
  • One or more of CF 3 CH 2 OCOOCH 2 CH 3 is not limited thereto.
  • R 5 , R 6 , R 7 and R 8 are each independently selected from a hydrogen atom, a fluorine atom, a C1-C4 hydrocarbon group or a C1-C4 fluorohydrocarbon group, and R 5 , R 6 , R 7 At least one of R 8 contains a fluorine atom;
  • the compound represented by the formula III may be a fluoroethylene carbonate, or R 5 in the formula III is a fluorine element, and R 6 , R 7 and R 8 are each independently selected from a hydrogen atom, a fluorine atom, a C 1 -C 4 hydrocarbon group or fluoroalkyl of C1-C4 hydrocarbon group, and R6, R7, R8 are not simultaneously a hydrogen atom; R 5 is fluorine or a C1-C4 hydrocarbon group, R6, R7, R8 are each independently selected from a hydrogen atom, a fluorine atom, C1-C4 Hydrocarbyl or C1-C4 fluorohydrocarbyl.
  • the compound of the formula III is selected from one or more of the compounds 10-13 shown in the following structure.
  • the content of the above compound A can be varied within a wide range.
  • the mass percentage of the compound A is 80% or less based on 100% of the total mass of the nonaqueous electrolyte of the lithium ion battery.
  • it may be 1%, 2%, 5%, 6%, 8%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%.
  • the compound A has a mass percentage of more than 5 and less than or equal to 80%, and more preferably, the compound A has a mass percentage of 10 to 80%.
  • R 5 in the formula III is a fluorine element
  • R 6 , R 7 , and R 8 are each independently selected from a hydrogen atom, a fluorine atom, a C 1 -C 4 hydrocarbon group or a C 1 -C 4 a fluorohydrocarbon group, and R6, R7, R8 are not simultaneously a hydrogen atom; or R 5 is a C1-C4 fluorine-containing hydrocarbon group, and R6, R7, and R8 are each independently selected from a hydrogen atom, a fluorine atom, a C1-C4 hydrocarbon group or When the fluorohydrocarbon group of C1-C4 is used, the content thereof may vary within a wide range, and is not particularly limited.
  • the mass percentage of the compound A is 80% or less based on 100% of the total mass of the nonaqueous electrolyte of the lithium ion battery; for example, it may be 1%, 2%, 5%, 6%. 8%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%. Further preferably, the compound A has a mass percentage of more than 5 and less than or equal to 80%, and more preferably, the compound A has a mass percentage of 10 to 80%.
  • the mass percentage of the compound A is more than 5 and less than or equal to 80% based on 100% of the total mass of the nonaqueous electrolyte of the lithium ion battery.
  • the content is the content of the one substance; when the lithium ion battery non-aqueous electrolyte contains a plurality of the above substances; The content is the sum of the contents of various substances.
  • the lithium ion battery non-aqueous electrolyte solution provided by the embodiment of the present invention contains the compound A (fluorine solvent), and the compound A has higher oxidation resistance than the carbonate, and can increase the oxidative decomposition potential of the electrolyte. Further, the compound A (fluorocarbonate and fluorocarboxylic acid ester) can form a passivation film on the surface of the negative electrode, suppressing the decomposition reaction of the electrolytic solution.
  • the high voltage (4.5 to 5 V) of the compound A the battery is severely produced during the formation, high temperature storage, and high temperature circulation, which deteriorates the performance of the battery and poses a safety hazard.
  • the fluorocarbonate solvent represented by Formula II and Formula III is not ideal in the high-temperature storage process of the battery, and the heat stability of the passivation film is not ideal, and a large amount of gas is generated, which lowers the high-temperature storage performance of the battery.
  • the fluorocarboxylic acid ester solvent of the formula I is decomposed on the surface of the negative electrode during the first charging of the battery to generate a large amount The gas causes the contact between the electrode sheets to deteriorate, thereby degrading the performance of the lithium ion battery.
  • the compound B represented by the above formula IV is added on the basis of the above compound A, and the two are synergistically combined to improve the high-temperature storage and high-temperature cycle performance of the lithium ion battery.
  • Low temperature performance Specifically, the compound B forms a dense passivation film on the negative electrode during the formation of the battery, prevents decomposition of the fluorosolvent molecule (the compound A), inhibits gas generation by the fluorinated solvent, and improves the heat of the negative passivation film. Stability, effectively improve the high temperature cycle and high temperature storage performance of the battery, ensuring the high temperature performance of the lithium ion battery.
  • the passivation film formed by the decomposition of the compound B has a small impedance and a small influence on the impedance growth, so that the low-temperature performance of the lithium ion battery can be considered.
  • the compound A and the compound B are used at the same time. Since the compound A undergoes a film formation reaction on the surface of the negative electrode, the compound B also participates in the positive and negative film forming reaction, so that positive and negative
  • the polar passivation layer component contains both the decomposition product of the compound A and the decomposition product of the compound B, which effectively improves the interface between the positive and negative electrodes. The synergy between the two results in a simple superposition of the effects of the two alone.
  • the C1-C5 group is selected from the group consisting of a hydrocarbon group, a fluorohydrocarbon group, an oxygen-containing hydrocarbon group, a silicon-containing hydrocarbon group, and a cyano-substituted hydrocarbon group.
  • the R 9 , R 10 , R 11 , R 12 , R 13 and R 14 are each independently selected from a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, a methoxy group, an ethoxy group, and Trimethylsiloxy, cyano, or trifluoromethyl.
  • the compound B is selected from one or more of the compounds 1-9 shown by the following structures.
  • the compound B is better coordinated with the compound A to impart a better overall performance (high temperature cycle performance, high temperature storage performance and low temperature performance) to the lithium ion battery.
  • the synthesis method of the compound B represented by the above formula IV is conventional.
  • the compound B may be a polyol (such as erythritol, xylitol, etc.) and a carbonate (such as dimethyl carbonate, diethyl carbonate or ethylene carbonate).
  • Etc. transesterification occurs under the action of a basic catalyst, and then heavy It is prepared by crystallization or column chromatography purification.
  • An example of its synthetic route is as follows:
  • the preparation of the fluorine-containing compound in the compound B is carried out by fluorinating a mixture of the corresponding carbonate and F 2 /N 2 , followed by purification by recrystallization or column chromatography.
  • An example of its synthetic route is as follows:
  • the preparation of the cyano group-containing compound in the compound B is carried out by reacting the corresponding carbonate with a sulfonyl chloride, reacting with NaCN or KCN, and purifying by recrystallization or column chromatography.
  • An example of its synthetic route is as follows:
  • the preparation of the trimethylsiloxy compound in the compound B is carried out by subjecting the corresponding hydroxycarbonate to a substitution reaction with a nitrogen silane, followed by recrystallization or column chromatography.
  • An example of its synthetic route is as follows:
  • the compound B has a mass percentage of 0.1 to 5% based on 100% of the total mass of the lithium ion battery nonaqueous electrolyte.
  • the mass percentage of the compound B may be 0.1%, 0.2%, 0.4%, 0.5%, 0.6%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, 2.5%, 3 %, 3.5%, 4%, 4.5%, 5%.
  • the mass percentage of the compound B is less than 0.1%, it is disadvantageous for the film formation in the negative electrode, and the effect of improving the cycle performance is lowered; when the mass percentage of the compound B is more than 5%, it is not suitable for uniform dissolution.
  • the film formation at the electrode interface is thick, which increases the battery impedance and deteriorates the battery performance.
  • the lithium ion nonaqueous electrolytic solution further includes at least one of an unsaturated cyclic carbonate compound and a sultone compound.
  • the unsaturated cyclic carbonate compound includes at least one of vinylene carbonate (VC) and ethylene carbonate (VEC).
  • the sultone compound is at least one selected from the group consisting of 1,3-propane sultone (PS), 1,4-butane sultone (BS), and 1,3-propene sultone (PST). kind.
  • the content of the unsaturated cyclic carbonate compound is from 0.1 to 5% based on 100% by mass of the total mass of the nonaqueous electrolyte of the lithium ion battery.
  • the sulfonate lactone compound has a mass percentage of 0.1 to 5% based on 100% by mass of the total mass of the lithium ion battery nonaqueous electrolyte.
  • the lithium ion non-aqueous electrolyte solution includes a lithium salt.
  • the lithium salt is not particularly limited in the present invention, and various types of the existing ones may be used.
  • the lithium salt may be selected from one of LiPF 6 , LiBOB, and LiBF 4 or A variety.
  • the content of the lithium salt may vary within a wide range.
  • the lithium ion battery has a lithium salt content of 0.1-15% in the nonaqueous electrolyte.
  • the lithium ion battery nonaqueous electrolyte further includes at least one of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate.
  • the non-aqueous electrolyte of the lithium ion battery provided by the embodiment of the invention simultaneously contains the compound A and the compound B, and the two synergistically ensure the thermal stability (high temperature safety performance) of the negative passivation film, and effectively improve the high temperature cycle and high temperature of the battery. Storage performance, at the same time, can also balance the low temperature performance of the battery.
  • the lithium ion battery containing the nonaqueous electrolyte has excellent high temperature cycle performance, high temperature storage performance and good low temperature performance.
  • the embodiment of the present invention further provides a lithium ion battery, comprising: a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is a lithium ion battery Electrolyte.
  • the positive electrode comprises a positive active material
  • the active material of the positive electrode is LiNi x Co y Mn z L (1-xyz) O 2 , LiCo x' L (1-x') O 2 , LiNi x" L At least one of ' y ' Mn (2-x"-y') O 4 , Li z ' MPO 4 , wherein L is in Al, Sr, Mg, Ti, Ca, Zr, Zn, Si or Fe At least one, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ x + y + z ⁇ 1, 0 ⁇ x' ⁇ 1, 0.3 ⁇ x" ⁇ 0.6, 0.01 ⁇ y' ⁇ 0.2, L' is at least one of Co, Al, Sr, Mg, Ti, Ca, Zr, Zn, Si, Fe; 0.5 ⁇ z' ⁇ 1, M is at least one of Fe
  • the positive electrode, the negative electrode, and the separator are not specifically limited, and a positive electrode, a negative electrode, and a separator which are conventional in the art can be used.
  • the lithium ion battery provided by the embodiment of the present invention has good high temperature cycle performance, high temperature storage performance and low temperature performance because it contains the above nonaqueous electrolyte.
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • the liquid, and the component containing the mass percentage shown in Example 1 of Table 1 and the conventional lithium salt not shown, and the content thereof, are 100% by weight based on the total weight of the nonaqueous electrolytic solution.
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • the liquid, and the content of the mass percentage shown in Example 2 of Table 1, and the conventional lithium salt not shown, and the content thereof, are 100% by weight based on the total weight of the non-aqueous electrolyte.
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • the liquid, and the content of the mass percentage shown in Example 5 of Table 1, and the conventional lithium salt not shown, and the content thereof, are 100% by weight based on the total weight of the nonaqueous electrolytic solution.
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • the liquid, and the content of the mass percentage shown in Example 6 of Table 1, and the conventional lithium salt not shown, and the content thereof, are 100% by weight based on the total weight of the non-aqueous electrolyte.
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • the liquid, and the content of the mass percentage shown in Example 7 of Table 1, and the conventional lithium salt not shown, and the content thereof, are 100% by weight based on the total weight of the non-aqueous electrolyte.
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • the liquid, and the component containing the mass percentage shown in Example 9 of Table 1, and the conventional lithium salt not shown, and the content thereof, are 100% by weight based on the total weight of the non-aqueous electrolyte.
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • the liquid, and the content of the mass percentage shown in Example 11 of Table 1, and the conventional lithium salt not shown, and the content thereof, are 100% by weight based on the total weight of the nonaqueous electrolytic solution.
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.2V LiNi 0.8 Co 0.15 Al 0.05 O 2 /silicon carbon battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.2V LiNi 0.8 Co 0.15 Al 0.05 O 2 /silicon carbon battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.2V LiNi 0.8 Co 0.15 Al 0.05 O 2 /silicon carbon battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.2V LiNi 0.8 Co 0.15 Al 0.05 O 2 /silicon carbon battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • the liquid, and containing 100% by weight of the total weight of the non-aqueous electrolyte contained the component of the mass percentage shown in Comparative Example 1 of Table 1, as well as the conventional lithium salt not shown and its content.
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • the liquid, and containing 100% by mass of the total weight of the non-aqueous electrolyte contained the components of the mass percentage shown in Comparative Example 6 of Table 1, as well as the conventional lithium salt not shown and its content.
  • a 4.4V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.2V LiNi 0.8 Co 0.15 Al 0.05 O 2 /silicon carbon battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.2V LiNi 0.8 Co 0.15 Al 0.05 O 2 /silicon carbon battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.2V LiNi 0.8 Co 0.15 Al 0.05 O 2 /silicon carbon battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • a 4.2V LiNi 0.8 Co 0.15 Al 0.05 O 2 /silicon carbon battery comprising a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte, wherein the electrolyte is non-aqueous electrolysis
  • the Nth cycle capacity retention ratio (%) (the Nth cycle discharge capacity / the first cycle discharge capacity) ⁇ 100%.
  • the off current is 0.01C, and then discharged to 3.0V with 1C constant current, measure the initial discharge capacity of the battery, and then use 1C Constant current and constant voltage charging to 4.4V, the current is 0.01C, the initial thickness of the battery is measured, and then the battery is stored at 60 ° C for 30 days, the thickness of the battery is measured, and then discharged at a constant current of 1 C to 3.0 V to measure the battery retention.
  • the capacity was then charged to 3.0 V with a constant current of 1 C, the current was 0.01 C, and then discharged to 3.0 V with a constant current of 1 C, and the recovery capacity was measured.
  • the formula for calculating the capacity retention rate and capacity recovery rate is as follows:
  • Battery capacity retention rate (%) retention capacity / initial capacity ⁇ 100%;
  • Battery capacity recovery rate (%) recovery capacity / initial capacity ⁇ 100%;
  • Battery thickness expansion ratio (%) (thickness after 30 days - initial thickness) / initial thickness ⁇ 100%.
  • 1C constant current is charged to 4.4V (LiNi 0.5 Co 0.2 Mn 0.3 O 2 / artificial graphite battery) / 4.2V (LiNi 0.8 Co 0.15 Al 0.05 O 2 / silicon carbon battery), and then constant voltage charging until the current drops to 0.01C
  • the battery was placed in an environment of -20 ° C for 12 h, and then discharged at a constant current of 0.2 C to 3.0 V, and a discharge capacity of -20 ° C was recorded.
  • the combined use of the compound A and the compound B has no significant influence on the battery impedance, so that the battery made of the lithium ion non-aqueous electrolyte can have better low-temperature performance.
  • the compound B is in the range of 0.5 to 4%, and its high-temperature cycle performance and high-temperature storage property are superior as the mass percentage is increased.
  • Example 10 and Comparative Example 4 in Example 10 and Comparative Example 4, the addition composition of Compound A and the ratio thereof were the same in the lithium ion nonaqueous electrolytic solution.
  • the °C cycle was as high as 73.2% for 400 weeks (compared with 45.2% for document 4), and the capacity retention rate, capacity recovery rate, and thickness expansion ratio at 60 °C for 30 days were 77.7% (compared with 44.1% for document 4) and 83.2% ( Comparative document 4 was 50.2%), 30.5% (comparative document 4 was 76.2%), and -20 ° C, 0.2 C discharge efficiency was 73.8% (comparative document 4 was 74%). It can be seen that the compound A and the compound B act synergistically, and can significantly improve the high temperature cycle performance and high temperature storage performance of the battery. Meanwhile, the combined use of the compound A and the compound B has no significant influence on the battery impedance, so that the battery made of the lithium ion non-aqueous electrolyte can have better low-temperature performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种锂离子电池非水电解液,其特征在于,包括化合物A和化合物B,所述化合物A为如下结构式Ⅰ、式Ⅱ、式Ⅲ所示化合物中的至少一种,所述化合物B为如下结构式Ⅳ所示化合物,式Ⅰ:R1-COO-R2;式Ⅱ:R3-OCOO-R4;所述式Ⅰ中,R1为氢原子、C1-C5的烃基或C1-C5的氟代烃基,R2为C1-C5的烃基或C1-C5的氟代烃基,且R1、R2中的至少一个含有氟原子;所述式Ⅱ中,R3、R4各自独立地选自C1-C5的烃基或C1-C5的氟代烃基,且R3、R4中的至少一个含有氟原子;所述式Ⅲ中,R5、R6、R7、R8分别独立选自氢原子、氟原子、C1-C4的烃基或C1-C4的氟代烃基,且R5、 R6、R7、R8中的至少一个含有氟原子;所述式Ⅳ中,R9、R 10、R11、R12、R13、R14各自独立地选自氢原子、氟原子或C1-C5基团中的一种。含有该非水电解液的锂离子电池兼具优异的高温循环性能、高温存储性能和较好的低温性能。

Description

锂离子电池非水电解液和锂离子电池 技术领域
本发明属于锂离子电池领域,尤其涉及一种锂离子电池非水电解液和锂离子电池。
背景技术
随着新能源汽车、动力储能的发展,人们对锂离子动力电池的性能有了更高的要求,这就需要开发更能满足需求的锂离子电池。提高电池的工作电压是提高电池能量密度的有效方法,但是与此同时,电池工作电压的提高往往也会劣化电池的性能。因为,现有的常见商业化电解液(如碳酸酯类电解液)在4.5~5V的电压下工作时会发生氧化分解,一方面,电解液的部分氧化产物会沉积在电极表面,增加了电池的阻抗,严重恶化电池的电化学性能;另一方面,电解液氧化分解产生的气体会导致电池鼓胀,带来安全隐患。
为提高碳酸酯类电解液在高电压(4.5~5V)条件下的稳定性,目前一种实用的方法是在该类电解液中加入氟代溶剂来抑制电解液在高电压环境下的过快分解。据文献报道(Electrochemistry Communications 44(2014)34-37),氟代碳酸酯能够明显改善高电压锂离子电池的高温循环性能。但经本领域研究人员反复试验研究发现,单独使用氟代碳酸酯的电池高温储存产气严重,具有安全隐患。 另有专利WO2016/02589 A1公开了加入氟代羧酸酯作为电解液溶剂,来提高高电压锂离子电池的高温循环性能。然而,氟代羧酸酯在改善电池循环性能的同时,氟代羧酸酯与碳负极材料相容性存在问题,会造成电池在高温循环时气胀增加,带来安全隐患,劣化电池性能。
发明内容
本发明的目的在于提供一种高温循环特性好且高温存储中产气少的锂离子电池非水电解液,旨在解决现有的含氟代溶剂的锂离子电池非水电解液在提高高温循环性能时产生严重气胀,影响电池高温安全性能的问题。
本发明的目的在于提供一种含有上述锂离子电池非水电解液的锂离子电池。
本发明是这样实现的,一种锂离子电池非水电解液,包括化合物A和化合物B,所述化合物A为如下结构式Ⅰ、式Ⅱ、式Ⅲ所示化合物中的至少一种,所述化合物B为如下结构式Ⅳ所示化合物,
式Ⅰ:R1-COO-R2
式Ⅱ:R3-OCOO-R4
Figure PCTCN2017089664-appb-000001
所述式Ⅰ中,R1为氢原子、C1-C5的烃基或C1-C5的氟代烃基,R2为C1-C5的烃基或C1-C5的氟代烃基,且R1、R2中的至少一个含有氟原子;
所述式Ⅱ中,R3、R4各自独立地选自C1-C5的烃基或C1-C5的氟代烃基,且R3、R4中的至少一个含有氟原子;
所述式Ⅲ中,R5、R6、R7、R8分别独立选自氢原子、氟原子、C1-C4的烃基或C1-C4的氟代烃基,且R5、R6、R7、R8中的至少一个含有氟原子;
所述式Ⅳ中,R9、R10、R11、R12、R13、R14各自独立地选自氢原子、氟原子或C1-C5基团中的一种。
优选的,所述结构式Ⅳ中C1-C5基团选自烃基、氟代烃基、含氧烃基、含硅烃基、氰基取代的烃基。
优选的,所述R9、R10、R11、R12、R13、R14各自独立地选自氢原子、氟原子、甲基、乙基、甲氧基、乙氧基、三甲基硅氧基、氰基、或三氟甲基。
优选的,所述化合物B选自下述结构所示化合物1-9中的一种或 多种,
Figure PCTCN2017089664-appb-000002
优选的,以所述锂离子电池非水电解液的总质量为100%计,所述化合物B的质量百分含量为0.1-5%。
优选的,所述式Ⅰ所示化合物选自H3CCOOCH2CF2H、
H3CH2CCOOCH2CF2H、HF2CH2CCOOCH3
HF2CH2CCOOCH2CH3、HF2CH2CH2CCOOCH2CH3
H3CCOOCH2CH2CF2H、H3CH2CCOOCH2CH2CF2H、
CH3COOCH2CF3、HCOOCH2CHF2、HCOOCH2CF3
CH3COOCH2CF2CF2H中的一种或多种。
优选的,所述式Ⅱ所示化合物选自CH3OCOOCH2CF2H、
CH3OCOOCH2CF3、CH3OCOOCH2CF2CF2H、HCF2CH2OCOOCH2CH3
CF3CH2OCOOCH2CH3中的一种或多种。
优选的,所述式Ⅲ所示化合物选自下述结构所示化合物10-13中的一种或多种,
Figure PCTCN2017089664-appb-000003
优选的,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为80%以下。
优选的,以所述锂离子电池非水电解液的总质量为100%计,所 述化合物A的质量百分含量大于5小于等于80%。
优选的,所述化合物A为结构式Ⅰ、式Ⅱ、式Ⅲ所示化合物中的至少一种,并且,所述式Ⅲ中R5为氟元素,R6、R7、R8分别独立选自氢原子、氟原子、C1-C4的烃基或C1-C4的氟代烃基,并且R6、R7、R8不同时为氢原子;或者R5为C1-C4的含氟烃基,R6、R7、R8分别独立选自氢原子、氟原子、C1-C4的烃基或C1-C4的氟代烃基。
优选的,所述化合物A为氟代碳酸乙烯酯,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为大于5小于等于80%。
优选的,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为10-80%。
优选的,所述锂离子非水电解液包括溶剂;所述溶剂玄子碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯中的至少一种。
优选的,所述锂离子电池非水电解液还包括不饱和环状碳酸酯类化合物、磺酸内酯类化合物中的至少一种。
优选的,所述不饱和环状碳酸酯类化合物包括碳酸亚乙烯酯(缩写为VC)、碳酸乙烯亚乙酯(缩写为VEC)中的至少一种。
优选的,所述磺酸内酯类化合物包括1,3-丙烷磺内酯(PS)、1,4-丁烷磺内酯(BS)、1,3-丙烯磺内酯(PST)中的至少一种。
优选的,以所述锂离子电池非水电解液的总质量为100%计,不 饱和环状碳酸酯类化合物含量为0.1-5%;以所述锂离子电池非水电解液的总质量为100%计,所述磺酸内酯类化合物的质量百分含量为0.1-5%。
优选的,所述锂离子非水电解液包括锂盐;所述锂盐可选自LiPF6、LiBOB、LiBF4中的一种或多种。
优选的,所述锂离子电池非水电解液中,锂盐的含量为0.1-15%。
所述锂离子非水电解液包括溶剂;所述溶剂玄子碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯中的至少一种。
以及,一种锂离子电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,所述电解液为上述的锂离子电池非水电解液。
优选的,所述正极包括正极活性材料,所述正极的活性物质为LiNixCoyMnzL(1-x-y-z)O2、LiCox’L(1-x’)O2、LiNix”L’y’Mn(2-x”-y’)O4、Liz’MPO4中的至少一种,其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种,0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2,L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe中的至少一种;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。
本发明提供的锂离子电池非水电解液同时含有化合物A和化合物B,两者协同作用,保证了负极钝化膜的热稳定性(高温安全性能),有效改善电池的高温循环和高温存储性能,同时,还可以兼顾电池的 低温性能。含有该非水电解液的锂离子电池兼具优异的高温循环性能、高温存储性能和较好的低温性能。
本发明实施例提供的锂离子电池,由于含有上述非水电解液,因此,同时兼具较好的高温循环性能、高温存储性能和低温性能。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例中,各英文简写的中文名称如下:
FEC:氟代碳酸乙烯酯;
DFEC:1,2-二氟代碳酸乙烯酯;
PC:碳酸丙烯酯;
EC:碳酸乙烯酯;
DEC:碳酸二乙酯。
本发明实施例提供了一种锂离子电池非水电解液,包括化合物A和化合物B,所述化合物A为如下结构式Ⅰ、式Ⅱ、式Ⅲ所示化合物中的至少一种,所述化合物B为如下结构式Ⅳ所示化合物,
式Ⅰ:R1-COO-R2
式Ⅱ:R3-OCOO-R4
Figure PCTCN2017089664-appb-000004
所述式Ⅰ中,R1为氢原子、C1-C5的烃基或C1-C5的氟代烃基,R2为C1-C5的烃基或C1-C5的氟代烃基,且R1、R2中的至少一个含有氟原子;
所述式Ⅱ中,R3、R4各自独立地选自C1-C5的烃基或C1-C5的氟代烃基,且R3、R4中的至少一个含有氟原子;
所述式Ⅲ中,R5、R6、R7、R8分别独立选自氢原子、氟原子、C1-C4的烃基或C1-C4的氟代烃基,且R5、R6、R7、R8中的至少一个含有氟原子;
所述式Ⅳ中,R9、R10、R11、R12、R13、R14各自独立地选自氢原子、氟原子或C1-C5基团中的一种。
本发明实施例中,C1-C5是指碳原子数为1-5,同理,C1-C4是指碳原子数为1-4。
具体优选的,所述式Ⅰ所示化合物选自H3CCOOCH2CF2H、
H3CH2CCOOCH2CF2H、HF2CH2CCOOCH3
HF2CH2CCOOCH2CH3、HF2CH2CH2CCOOCH2CH3
H3CCOOCH2CH2CF2H、H3CH2CCOOCH2CH2CF2H、
CH3COOCH2CF3、HCOOCH2CHF2、HCOOCH2CF3
CH3COOCH2CF2CF2H中的一种或多种,但不限于此。
具体优选的,所述式Ⅱ所示化合物选自CH3OCOOCH2CF2H、
CH3OCOOCH2CF3(甲基2,2,2–三氟乙基碳酸酯)、
CH3OCOOCH2CF2CF2H、HCF2CH2OCOOCH2CH3
CF3CH2OCOOCH2CH3中的一种或多种,但不限于此。
所述式Ⅲ中,R5、R6、R7、R8分别独立选自氢原子、氟原子、C1-C4的烃基或C1-C4的氟代烃基,且R5、R6、R7、R8中的至少一个含有氟原子;
具体所述式Ⅲ所示化合物可以为氟代碳酸乙烯酯,或者,所述式Ⅲ中R5为氟元素,R6、R7、R8分别独立选自氢原子、氟原子、C1-C4的烃基或C1-C4的氟代烃基,并且R6、R7、R8不同时为氢原子;或者R5为C1-C4的含氟烃基,R6、R7、R8分别独立选自氢原子、氟原子、C1-C4的烃基或C1-C4的氟代烃基。
优选的,所述式Ⅲ所示化合物选自下述结构所示化合物10-13中的一种或多种,
Figure PCTCN2017089664-appb-000005
不限于此。
上述优选结构的式Ⅰ、式Ⅱ、式Ⅲ,提高电解液的氧化分解电位的效果更佳,且与所述化合物B更有效地协同,改善电解液的高温循环和高温存储性能,同时,还可以兼顾电池的低温性能。
上述化合物A的含量可以在较大范围内变动。优选的,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为80%以下。例如,可以为1%、2%、5%、6%、8%、10%、15%、20%、30%、40%、50%、60%、70%、80%。进一步优选为所述化合物A的质量百分含量为大于5小于等于80%,更优选为,所述化合物A的质量百分含量为10-80%。
当化合物A为式Ⅲ所示化合物,且非FEC(即所述式Ⅲ中R5为氟元素,R6、R7、R8分别独立选自氢原子、氟原子、C1-C4的烃基或C1-C4的氟代烃基,并且R6、R7、R8不同时为氢原子;或者R5 为C1-C4的含氟烃基,R6、R7、R8分别独立选自氢原子、氟原子、C1-C4的烃基或C1-C4的氟代烃基)时,其含量可以在较大范围内变动,没有特殊限制。优选的,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为80%以下;例如,可以为1%、2%、5%、6%、8%、10%、15%、20%、30%、40%、50%、60%、70%、80%。进一步优选为,所述化合物A的质量百分含量为大于5小于等于80%,更优选为,所述化合物A的质量百分含量为10-80%。
当化合物A为FEC时,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为大于5小于等于80%。
应当理解,当所述锂离子电池非水电解液含有上述物质中的一种时,含量即为该一种物质的含量;当所述锂离子电池非水电解液含有上述物质中的多种时,含量为多种物质的含量之和。
本发明实施例提供的锂离子电池非水电解液中含有化合物A(氟代溶剂),所述化合物A耐氧化性比碳酸酯高,能够提高电解液的氧化分解电位。此外,所述化合物A(氟代碳酸酯和氟代羧酸酯)能够在负极表面形成钝化膜,抑制了电解液的分解反应。但是,所述化合物A在高电压(4.5~5V)条件下,电池在化成、高温储存、高温循环时产气严重,劣化电池性能,带来安全隐患。具体的,式Ⅱ、式Ⅲ所示的氟代碳酸酯溶剂在电池高温储存过程中,钝化膜的热稳定性不够理想,产生大量的气体,降低了电池的高温储存性能。式Ⅰ所示的氟代羧酸酯溶剂在电池首次充电过程中,在负极表面分解产生大量 的气体,导致电极片之间的接触变差,从而降低锂离子电池的性能。
本发明实施例中,所述锂离子电池非水电解液中在上述化合物A的基础上,添加了上述结构式Ⅳ所示化合物B,两者协同配合,改善锂离子电池高温存储、高温循环性能和低温性能。具体的,所述化合物B在电池化成过程中在负极形成致密的钝化膜,阻止氟代溶剂分子(所述化合物A)的分解,抑制氟代溶剂产气,可以提高负极钝化膜的热稳定性,有效改善电池的高温循环和高温储存性能,保证了锂离子电池高温性能。同时,所述化合物B分解形成的钝化膜阻抗较小,对阻抗增长影响也较小,因此可以兼顾锂离子电池的低温性能。本发明实施例中,将所述化合物A和所述化合物B同时使用,由于所述化合物A在负极表面发生成膜反应时,所述化合物B也会参与正负极成膜反应,使得正负极钝化层成分既包含所述化合物A的分解产物也包含所述化合物B的分解产物,有效改善了正负极界面情况。两者协同作用得到的效果超出了两者单独使用效果的简单叠加。
所述化合物B中,C1-C5基团选自烃基、氟代烃基、含氧烃基、含硅烃基、氰基取代的烃基。
所述化合物B中,所述R9、R10、R11、R12、R13、R14各自独立地选自氢原子、氟原子、甲基、乙基、甲氧基、乙氧基、三甲基硅氧基、氰基、或三氟甲基。
具体优选的,所述化合物B选自下述结构所示化合物1-9中的一种或多种,
Figure PCTCN2017089664-appb-000006
优选的所述化合物B能更好地与所述化合物A协同,赋予锂离子电池更好的综合性能(高温循环性能、高温存储性能和低温性能)。
上述结构式Ⅳ所示化合物B的合成方法为常规的,例如化合物B可采用多元醇(如赤藓醇、木糖醇等)与碳酸酯(如碳酸二甲酯、碳酸二乙酯、碳酸乙烯酯等)在碱性催化剂作用下发生酯交换反应,再经重 结晶或柱层析纯化制备得到。其合成路线示例如下:
Figure PCTCN2017089664-appb-000007
化合物B中含氟化合物的制备采用对应的碳酸酯与F2/N2的混合气氟化后,再经重结晶或柱层析纯化而得。其合成路线示例如下:
Figure PCTCN2017089664-appb-000008
化合物B中含氰基化合物的制备采用对应的碳酸酯与磺酰氯发生氯代反应后,再与NaCN或KCN反应,经重结晶或柱层析纯化而得。其合成路线示例如下:
Figure PCTCN2017089664-appb-000009
化合物B中含三甲基硅氧基化合物的制备采用对应的羟基碳酸酯与氮硅烷发生取代反应后,经重结晶或柱层析纯化而得。其合成路线示例如下:
Figure PCTCN2017089664-appb-000010
优选的,以所述锂离子电池非水电解液的总质量为100%计,所述化合物B的质量百分含量为0.1-5%。例如,所述化合物B的质量百分含量可以为0.1%、0.2%、0.4%、0.5%、0.6%、0.8%、1%、1.2%、1.5%、1.8%、2%、2.5%、3%、3.5%、4%、4.5%、5%。所述化合物B的质量百分含量小于0.1%时,不利于在负极的成膜,改善循环性能的作用下降;当所述化合物B的质量百分含量大于5%时,不利于均匀的溶解于电解液中,且在电极界面的成膜偏厚,会增大电池阻抗,劣化电池性能。
在上述实施例的基础上,优选的,所述锂离子非水电解液还包括不饱和环状碳酸酯类化合物、磺酸内酯类化合物中的至少一种。
所述不饱和环状碳酸酯类化合物包括碳酸亚乙烯酯(VC)、碳酸乙烯亚乙酯(VEC)中的至少一种。所述磺酸内酯类化合物选自1,3-丙烷磺内酯(PS)、1,4-丁烷磺内酯(BS)、1,3-丙烯磺内酯(PST)中的至少一种。
以所述锂离子电池非水电解液的总质量为100%计,不饱和环状碳酸酯类化合物含量为0.1-5%。
以所述锂离子电池非水电解液的总质量为100%计,所述磺酸内酯类化合物的质量百分含量为0.1-5%。
所述锂离子非水电解液包括锂盐,本发明中对锂盐没有特殊限制,可采用现有的各种,例如所述锂盐可选自LiPF6、LiBOB、LiBF4中的一种或多种。所述锂盐的含量可在较大范围内变动,优选情况下,所述锂离子电池非水电解液中,锂盐的含量为0.1-15%。
所述锂离子电池非水电解液还包括碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯中的至少一种。
本发明实施例提供的锂离子电池非水电解液同时含有化合物A和化合物B,两者协同作用,保证了负极钝化膜的热稳定性(高温安全性能),有效改善电池的高温循环和高温存储性能,同时,还可以兼顾电池的低温性能。含有该非水电解液的锂离子电池兼具优异的高温循环性能、高温存储性能和较好的低温性能。
以及,本发明实施例还提供了一种锂离子电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,所述电解液为上述的锂离子电池非水电解液。
优选的,所述正极包括正极活性材料,所述正极的活性物质为LiNixCoyMnzL(1-x-y-z)O2、LiCox’L(1-x’)O2、LiNix”L’y’Mn(2-x”-y’)O4、Liz’MPO4中的至少一种,其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种,0≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2,L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe中的至少一种;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。
所述正极、负极、隔膜没有明确限定,均可采用本领域常规的正极、负极、隔膜。
本发明实施例提供的锂离子电池,由于含有上述非水电解液,因此,同时兼具较好的高温循环性能、高温存储性能和低温性能。
下面结合具体实施例进行说明。
实施例1
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1实施例1所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例2
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1实施例2所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例3
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1实施例3所示质量百分含量的组分以及未示出的常规锂盐及其含 量。
实施例4
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1实施例4所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例5
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1实施例5所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例6
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1实施例6所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例7
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电 解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1实施例7所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例8
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1实施例8所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例9
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1实施例9所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例10
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1实施例10所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例11
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1实施例11所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例12
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1实施例12所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例13
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1实施例13所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例14
一种4.2V LiNi0.8Co0.15Al0.05O2/硅碳电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表3实施例14所示质量百分含量的组分以及未示出的常规锂盐及其含 量。
实施例15
一种4.2V LiNi0.8Co0.15Al0.05O2/硅碳电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表3实施例145所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例16
一种4.2V LiNi0.8Co0.15Al0.05O2/硅碳电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表3实施例16所示质量百分含量的组分以及未示出的常规锂盐及其含量。
实施例17
一种4.2V LiNi0.8Co0.15Al0.05O2/硅碳电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表3实施例17所示质量百分含量的组分以及未示出的常规锂盐及其含量。
对比例1
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、 设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1对比例1所示质量百分含量的组分以及未示出的常规锂盐及其含量。
对比例2
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1对比例2所示质量百分含量的组分以及未示出的常规锂盐及其含量。
对比例3
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1对比例3所示质量百分含量的组分以及未示出的常规锂盐及其含量。
对比例4
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1对比例4所示质量百分含量的组分以及未示出的常规锂盐及其含量。
对比例5
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1对比例5所示质量百分含量的组分以及未示出的常规锂盐及其含量。
对比例6
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1对比例6所示质量百分含量的组分以及未示出的常规锂盐及其含量。
对比例7
一种4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表1对比例7所示质量百分含量的组分以及未示出的常规锂盐及其含量。
对比例8
一种4.2V LiNi0.8Co0.15Al0.05O2/硅碳电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表3 对比例8所示质量百分含量的组分以及未示出的常规锂盐及其含量。
对比例9
一种4.2V LiNi0.8Co0.15Al0.05O2/硅碳电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表3对比例9所示质量百分含量的组分以及未示出的常规锂盐及其含量。
对比例10
一种4.2V LiNi0.8Co0.15Al0.05O2/硅碳电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表3对比例10所示质量百分含量的组分以及未示出的常规锂盐及其含量。
对比例11
一种4.2V LiNi0.8Co0.15Al0.05O2/硅碳电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其中,所述电解液为非水电解液,且以所述非水电解液的总重量为100%计,含有表3对比例11所示质量百分含量的组分以及未示出的常规锂盐及其含量。
将本发明实施例1-13、对比例1-7(4.4V LiNi0.5Co0.2Mn0.3O2/人造石墨电池)及实施例14-17、对比例8-11(4.2V LiNi0.8Co0.15Al0.05O2/硅碳电池)进行性能测试,测试指标及测试方法如下:
(1)高温循环性能,通过测试45℃1C循环N次容量保持率体 现,具体方法为:在45℃下,将化成后的电池用1C恒流恒压充至4.4V(LiNi0.5Co0.2Mn0.3O2/人造石墨电池)/4.2V(LiNi0.8Co0.15Al0.05O2/硅碳电池),截至电流为0.01C,然后用1C恒流放电至3.0V。如此充/放电N次循环后,计算第400次循环后容量的保持率,以评估其高温循环性能。
45℃1C循环400次容量保持率计算公式如下:
第N次循环容量保持率(%)=(第N次循环放电容量/第1次循环放电容量)×100%。
(2)60℃下存储30天后的容量保持率、容量恢复率和厚度膨胀率的测试方法:将化成后的电池在常温下用1C恒流恒压充至4.4V(LiNi0.5Co0.2Mn0.3O2/人造石墨电池)/4.2V(LiNi0.8Co0.15Al0.05O2/硅碳电池),截至电流为0.01C,再用1C恒流放电至3.0V,测量电池初始放电容量,再用1C恒流恒压充电至4.4V,截至电流为0.01C,测量电池的初始厚度,然后将电池在60℃储存30天后,测量电池的厚度,再以1C恒流放电至3.0V,测量电池的保持容量,再用1C恒流恒压充电至3.0V,截至电流为0.01C,然后用1C恒流放电至3.0V,测量恢复容量。容量保持率、容量恢复率的计算公式如下:
电池容量保持率(%)=保持容量/初始容量×100%;
电池容量恢复率(%)=恢复容量/初始容量×100%;
电池厚度膨胀率(%)=(30天后的厚度-初始厚度)/初始厚度×100%。
(3)低温放电性能,在25℃下,将化成后的电池用1C恒流恒 压充至4.4V,然后恒压充电至电流下降至0.01C,然后用1C恒流放电至3.0V,记录常温放电容量。然后1C恒流充至4.4V(LiNi0.5Co0.2Mn0.3O2/人造石墨电池)/4.2V(LiNi0.8Co0.15Al0.05O2/硅碳电池),再恒压充电至电流下降至0.01C,将电池置于-20℃的环境中搁置12h后,再0.2C恒流放电至3.0V,记录-20℃放电容量。
-20℃的低温放电效率=0.2C放电容量(-20℃)/1C放电容量(25℃)×100%。
表1
Figure PCTCN2017089664-appb-000011
Figure PCTCN2017089664-appb-000012
实施例1-13、对比例1-7的测试结果如下表2所示。
表2
Figure PCTCN2017089664-appb-000013
结合表1,比较实施例1-4和对比例1,实施例1-4和对比例1锂离子非水电解液中,化合物A的添加组成及其比例均相同
(FEC/PC/DEC=2/1/1),但对比例1中没有添加有化合物B,实施例1-4中添加有化合物B。结果显示,与只添加有化合物A的对比例1相比,同时含有化合物A、化合物B的锂离子非水电解液制成的电池,其高温循环性能和高温存储性能有了明显的提高,45℃循环300周高达85.1%(对比文件1为51.4%),60℃高温储存30天的容量保持率、容量恢复率、厚度膨胀率分别达到85.4%(对比文件1为45.5%)、90.5%(对比文件1为52.1%)、17.8%(对比文件1为52.4%),-20℃,0.2C放电效率在75.0-76%之间(对比文件1为75.1%)。可见,所述化合物A和所述化合物B协同作用,能够显著提高电池的高温循环性能和高温存储性能。且所述化合物A和所述化合物B的复合使用,对电池阻抗没有明显影响,使采用该锂离子非水电解液制成的电池,能够具有较好的低温性能。同时,所述化合物B在0.5-4%的范围内,随着质量百分含量的增加,其高温循环性能和高温存储性能越优异。
比较实施例5-7和对比例2,实施例5-7和对比例2锂离子非水电解液中,化合物A的添加组成及其比例均相同
(DFEA/PC/DEC/EC=1/1/1/1),但对比例2中没有添加有化合物B,实施例5-7中添加有化合物B。结果显示,与只添加有化合物A的对比例2相比,同时含有化合物A、化合物B的锂离子非水电解液制成的电池,其高温循环性能和高温存储性能有了明显的提高,45℃循环400周高达75.4%(对比文件2为34.7%),60℃高温储存30天的容量保持率、容量恢复率、厚度膨胀率分别达到78.8%(对比文件2为 35.9%)、84.2%(对比文件2为41.2%)、28.8%(对比文件2为72.4%),-20℃,0.2C放电效率在74.2-76.7%之间(对比文件2为77%)。可见,所述化合物A和所述化合物B协同作用,能够显著提高电池的高温循环性能和高温存储性能。同时,所述化合物A和所述化合物B的复合使用,对电池阻抗没有明显影响,使采用该锂离子非水电解液制成的电池,能够具有较好的低温性能。
比较实施例8-9和对比例3,实施例8-9和对比例3锂离子非水电解液中,化合物A的添加组成及其比例均相同
(FEC/PC/DFEA=2/1/1),但对比例3中没有添加有化合物B,实施例8-9中添加有化合物B。结果显示,与只添加有化合物A的对比例3相比,同时含有化合物A、化合物B的锂离子非水电解液制成的电池,其高温循环性能和高温存储性能有了明显的提高,45℃循环400周高达86.5%(对比文件3为54.5%),60℃高温储存30天的容量保持率、容量恢复率、厚度膨胀率分别达到86.2%(对比文件3为51.5%)、91.1%(对比文件3为55.3%)、17.4%(对比文件3为65.4%),-20℃,0.2C放电效率在74.4-75.1%之间(对比文件3为75.3%)。可见,所述化合物A和所述化合物B协同作用,能够显著提高电池的高温循环性能和高温存储性能。同时,所述化合物A和所述化合物B的复合使用,对电池阻抗没有明显影响,使采用该锂离子非水电解液制成的电池,能够具有较好的低温性能。
比较实施例10和对比例4,实施例10和对比例4锂离子非水电解液中,化合物A的添加组成及其比例均相同
(DFEA/PC/DEC/EC=1/1/1/1),但对比例4中没有添加有化合物B,实施例11中添加有化合物B。结果显示,与只添加有化合物A的对比例4相比,同时含有化合物A、化合物B的锂离子非水电解液制成的电池,其高温循环性能和高温存储性能有了明显的提高,45℃循环400周高达73.2%(对比文件4为45.2%),60℃高温储存30天的容量保持率、容量恢复率、厚度膨胀率分别达到77.7%(对比文件4为44.1%)、83.2%(对比文件4为50.2%)、30.5%(对比文件4为76.2%),-20℃,0.2C放电效率在73.8%之间(对比文件4为74%)。可见,所述化合物A和所述化合物B协同作用,能够显著提高电池的高温循环性能和高温存储性能。同时,所述化合物A和所述化合物B的复合使用,对电池阻抗没有明显影响,使采用该锂离子非水电解液制成的电池,能够具有较好的低温性能。
比较实施例11-13和对比例5-7,实施例11-13和对比例5-7锂离子非水电解液中,化合物A的添加组成及其比例均相同
(DFEA/PC/DEC/EC=1/1/1/1),且同时分别添加了等量的LiBOB,VC,PS。但对比例5-7中没有添加有化合物B,实施例11-13中添加有化合物B。结果显示,与对比例5-7相比,实施例10锂离子非水电解液制成的电池,其高温循环性能和高温存储性能有了明显的提高。45℃循环400周高达80.1%(对比文件5为65.4%),60℃高温储存30天的容量保持率、容量恢复率、厚度膨胀率分别达到82.5%(对比文件5为63.5%)、87.6%(对比文件5为66.6%)、17.8%(对比文件5为48.5%),-20℃,0.2C放电效率在74.4%之间(对比文 件5为73.4%)。可见,所述化合物A和所述化合物B协同作用,能够显著提高电池的高温循环性能和高温存储性能。同时,所述化合物A和所述化合物B的复合使用,对电池阻抗没有明显影响,使采用该锂离子非水电解液制成的电池,能够具有较好的低温性能。
表3
Figure PCTCN2017089664-appb-000014
实施例14-17、对比例8-1的测试结果如下表4所示。
表4
Figure PCTCN2017089664-appb-000015
结合表3,比较实施例14-17和对比例8-11,实施例14-17和对比例8-11锂离子非水电解液中,化合物A的添加组分别为
FEC/PC/DEC=2/1/1、DFEA/PC/DEC/EC=1/1/1/1、
FEC/PC/DFEA=2/1/1、FEC/PC/甲基2,2,2–三氟乙基碳酸酯=2/1/1,但对比例8-11中没有添加有化合物B,实施例14-17中添加有化合物B。结果显示,与只添加有化合物A的对比例8-11相比,同时含有化合物A、化合物B的锂离子非水电解液制成的电池,其高温循环性能和高温存储性能有了明显的提高,45℃循环200周高达84.3%(对比文件10为64.3%),60℃高温储存14天的容量保持率、容量恢复率、厚度膨胀率分别达到75.3%(对比文件10为55.5%)、80.5%(对比文件10为60.3%)、30.3%(对比文件10为54.4%),-20℃,0.2C放电效率在78.0-79%之间(对比文件10为77.3%)。可见,所述化合物A和所述化合物B协同作用,能够显著提高电池的高温循环性能和高温存储性能。且所述化合物A和所述化合物B的复合使用,对电池阻抗没有明显影响,使采用该锂离子非水电解液制成的电池,能够具有较好的低温性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种锂离子电池非水电解液,其特征在于,包括化合物A和化合物B,所述化合物A为如下结构式Ⅰ、式Ⅱ、式Ⅲ所示化合物中的至少一种,所述化合物B为如下结构式Ⅳ所示化合物,
    式Ⅰ:R1-COO-R2
    式Ⅱ:R3-OCOO-R4
    Figure PCTCN2017089664-appb-100001
    所述式Ⅰ中,R1为氢原子、C1-C5的烃基或C1-C5的氟代烃基,R2为C1-C5的烃基或C1-C5的氟代烃基,且R1、R2中的至少一个含有氟原子;
    所述式Ⅱ中,R3、R4各自独立地选自C1-C5的烃基或C1-C5的氟代烃基,且R3、R4中的至少一个含有氟原子;
    所述式Ⅲ中,R5、R6、R7、R8分别独立选自氢原子、氟原子、C1-C4的烃基或C1-C4的氟代烃基,且R5、R6、R7、R8中的至少一个含有氟原子;
    所述式Ⅳ中,R9、R10、R11、R12、R13、R14各自独立地选自氢原 子、氟原子或C1-C5基团中的一种。
  2. 如权利要求1所述的锂离子电池非水电解液,其特征在于,所述结构式Ⅳ中C1-C5基团选自烃基、氟代烃基、含氧烃基、含硅烃基、氰基取代的烃基。
  3. 如权利要求1所述的锂离子电池非水电解液,其特征在于,所述R9、R10、R11、R12、R13、R14各自独立地选自氢原子、氟原子、甲基、乙基、甲氧基、乙氧基、三甲基硅氧基、氰基、或三氟甲基。
  4. 如权利要求1所述的锂离子电池非水电解液,其特征在于,所述化合物B选自下述结构所示化合物1-9中的一种或多种,
    Figure PCTCN2017089664-appb-100002
  5. 如权利要求1-4中任意一项所述的锂离子电池非水电解液,其特征在于,以所述锂离子电池非水电解液的总质量为100%计,所述化合物B的质量百分含量为0.1-5%。
  6. 如权利要求1所述的锂离子电池非水电解液,其特征在于,所述式Ⅰ所示化合物选自H3CCOOCH2CF2H、 H3CH2CCOOCH2CF2H、HF2CH2CCOOCH3、HF2CH2CCOOCH2CH3、HF2CH2CH2CCOOCH2CH3、H3CCOOCH2CH2CF2H、H3CH2CCOOCH2CH2CF2H、CH3COOCH2CF3、HCOOCH2CHF2、HCOOCH2CF3、CH3COOCH2CF2CF2H中的一种或多种。
  7. 如权利要求1所述的锂离子电池非水电解液,其特征在于,所述式Ⅱ所示化合物选自CH3OCOOCH2CF2H、CH3OCOOCH2CF3、CH3OCOOCH2CF2CF2H、HCF2CH2OCOOCH2CH3、CF3CH2OCOOCH2CH3中的一种或多种。
  8. 如权利要求1所述的锂离子电池非水电解液,其特征在于,所述式Ⅲ所示化合物选自下述结构所示化合物10-13中的一种或多种,
    Figure PCTCN2017089664-appb-100003
  9. 如权利要求1-4、6-8中任意一项所述的锂离子电池非水电解液,其特征在于,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为80%以下。
  10. 如权利要求9所述的锂离子电池非水电解液,其特征在于,所述化合物A为结构式Ⅰ、式Ⅱ、式Ⅲ所示化合物中的至少一种,并且,所述式Ⅲ中R5为氟元素,R6、R7、R8分别独立选自氢原子、氟原子、C1-C4的烃基或C1-C4的氟代烃基,并且R6、R7、R8不同时为氢原子;或者R5为C1-C4的含氟烃基,R6、R7、R8分别独立选自氢原子、氟原子、C1-C4的烃基或C1-C4的氟代烃基。
  11. 如权利要求9所述的锂离子电池非水电解液,其特征在于,所述化合物A为氟代碳酸乙烯酯,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为大于5小于等于80%。
  12. 如权利要求9所述的锂离子电池非水电解液,其特征在于,以所述锂离子电池非水电解液的总质量为100%计,所述化合物A的质量百分含量为10-80%。
  13. 如权利要求1所述的锂离子电池非水电解液,其特征在于,所述锂离子非水电解液还包括不饱和环状碳酸酯类化合物、磺酸内酯类化合物中的至少一种。
  14. 如权利要求13所述的锂离子电池非水电解液,其特征在于,所述不饱和环状碳酸酯类化合物包括碳酸亚乙烯酯、碳酸乙烯亚乙酯中的至少一种;
    所述磺酸内酯类化合物包括1,3-丙烷磺内酯、1,4-丁烷磺内酯、1,3-丙烯磺内酯中的至少一种。
  15. 如权利要求13或14所述的锂离子电池非水电解液,其特征在于,以所述锂离子电池非水电解液的总质量为100%计,不饱和环状碳酸酯类化合物含量为0.1-5%;以所述锂离子电池非水电解液的总质量为100%计,所述磺酸内酯类化合物的质量百分含量为0.1-5%。
  16. 如权利要求1所述的锂离子电池非水电解液,其特征在于,所述锂离子非水电解液包括锂盐;所述锂盐可选自LiPF6、LiBOB、LiBF4中的一种或多种。
  17. 如权利要求1所述的锂离子电池非水电解液,其特征在于,所述锂离子电池非水电解液中,锂盐的含量为0.1-15%。
  18. 如权利要求1所述的锂离子电池非水电解液,其特征在于,所述锂离子非水电解液包括溶剂;所述溶剂玄子碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯中的至少一种。
  19. 一种锂离子电池,包括正极、负极、设置在所述正极和所述负极之间的隔膜、以及电解液,其特征在于,所述电解液为权利要求1-18任一所述的锂离子电池非水电解液。
  20. 如权利要求19所述的锂离子电池,其特征在于,所述正极包括正极活性材料,所述正极的活性物质为LiNixCoyMnzL(1-x-y-z)O2、LiCox’L(1-x’)O2、LiNix”L’y’Mn(2-x”-y’)O4、Liz’MPO4中的至少一种,其中,L为Al、Sr、Mg、Ti、Ca、Zr、Zn、Si或Fe中的至少一种,0 ≤x≤1,0≤y≤1,0≤z≤1,0<x+y+z≤1,0<x’≤1,0.3≤x”≤0.6,0.01≤y’≤0.2,L’为Co、Al、Sr、Mg、Ti、Ca、Zr、Zn、Si、Fe中的至少一种;0.5≤z’≤1,M为Fe、Mn、Co中的至少一种。
PCT/CN2017/089664 2017-05-27 2017-06-23 锂离子电池非水电解液和锂离子电池 WO2018218714A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17911418.6A EP3633780A4 (en) 2017-05-27 2017-06-23 NON-AQUEOUS ELECTROLYTE FOR LITHIUM-ION BATTERY AND LITHIUM-ION BATTERY
JP2019558398A JP6936337B2 (ja) 2017-05-27 2017-06-23 リチウムイオン電池非水電解液およびリチウムイオン電池
KR1020197031111A KR102412568B1 (ko) 2017-05-27 2017-06-23 리튬이온 배터리 비수전해액 및 리튬이온 배터리
US16/610,905 US11398642B2 (en) 2017-05-27 2017-06-23 Non-aqueous electrolyte for lithium ion battery and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710393438.4 2017-05-27
CN201710393438.4A CN108933292B (zh) 2017-05-27 2017-05-27 锂离子电池非水电解液和锂离子电池

Publications (1)

Publication Number Publication Date
WO2018218714A1 true WO2018218714A1 (zh) 2018-12-06

Family

ID=64448205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089664 WO2018218714A1 (zh) 2017-05-27 2017-06-23 锂离子电池非水电解液和锂离子电池

Country Status (6)

Country Link
US (1) US11398642B2 (zh)
EP (1) EP3633780A4 (zh)
JP (1) JP6936337B2 (zh)
KR (1) KR102412568B1 (zh)
CN (1) CN108933292B (zh)
WO (1) WO2018218714A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110994027B (zh) * 2019-12-25 2022-05-13 湖州昆仑亿恩科电池材料有限公司 具有良好高温循环特性的锂离子电池电解液和锂离子电池
CN111883832A (zh) * 2020-07-24 2020-11-03 香河昆仑化学制品有限公司 一种锂离子电池电解液以及电池负极和电化学储能器件
CN113620923B (zh) * 2021-07-16 2023-03-14 扬州工业职业技术学院 一种低温电解液添加剂的制备方法及应用
CN114899494B (zh) * 2022-04-22 2023-06-27 远景动力技术(江苏)有限公司 锂硫电池用电解液及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1147540A (en) * 1966-04-19 1969-04-02 Grace W R & Co Butanetetrol dicarbonates and their production
US6174629B1 (en) * 1999-09-10 2001-01-16 Wilson Greatbatch Ltd. Dicarbonate additives for nonaqueous electrolyte rechargeable cells
US20130089778A1 (en) * 2011-10-07 2013-04-11 Sony Corporation Electrolytic solution, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device
WO2016002589A1 (ja) 2014-06-30 2016-01-07 シチズンホールディングス株式会社 工作機械およびワーク加工システム
CN105633461A (zh) * 2009-12-07 2016-06-01 索尼公司 二次电池、电解液、电池组、电子装置和电动车辆

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663569A (en) 1969-09-02 1972-05-16 Atlas Chem Ind Process for preparing cyclic carbonates from polyhydric alcohols
JPH11176470A (ja) * 1997-10-07 1999-07-02 Hitachi Maxell Ltd 有機電解液二次電池
JP3867756B2 (ja) * 1999-03-08 2007-01-10 三洋化成工業株式会社 非水電解液およびそれを用いた二次電池
JP4033074B2 (ja) 2002-08-29 2008-01-16 日本電気株式会社 二次電池用電解液およびそれを用いた二次電池
JP5055536B2 (ja) * 2005-02-09 2012-10-24 国立大学法人宇都宮大学 二酸化炭素の高度固定化物
KR100814827B1 (ko) * 2007-04-05 2008-03-20 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
JP5461883B2 (ja) * 2008-08-05 2014-04-02 三洋電機株式会社 二次電池用非水電解液及び非水電解液二次電池
JP5369589B2 (ja) * 2008-10-02 2013-12-18 ダイキン工業株式会社 含フッ素蟻酸エステル溶媒を含む非水電解液
US20110159382A1 (en) * 2009-05-08 2011-06-30 Toru Matsui Nonaqueous solvent, and nonaqueous electrolyte solution and nonaqueous secondary battery using the same
JP5431218B2 (ja) 2010-03-18 2014-03-05 三洋電機株式会社 非水電解液二次電池
GB201009519D0 (en) * 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
WO2012108505A1 (ja) 2011-02-10 2012-08-16 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5120513B2 (ja) 2011-03-31 2013-01-16 ダイキン工業株式会社 リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液
JP6178317B2 (ja) * 2011-09-02 2017-08-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company リチウムイオン電池
US9570778B2 (en) * 2012-04-17 2017-02-14 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
JP6085994B2 (ja) * 2012-04-27 2017-03-01 日産自動車株式会社 非水電解質二次電池の製造方法
JP5978787B2 (ja) * 2012-06-11 2016-08-24 ソニー株式会社 非水二次電池用電解液、非水二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN103515650A (zh) * 2012-06-26 2014-01-15 华中科技大学 一种锂离子电池用非水电解液及其应用
WO2014050877A1 (ja) * 2012-09-28 2014-04-03 ダイキン工業株式会社 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
CN103151559A (zh) 2013-02-05 2013-06-12 深圳新宙邦科技股份有限公司 一种锂离子电池用非水电解液及其相应的锂离子电池
KR20170078860A (ko) 2013-03-15 2017-07-07 와일드캣 디스커버리 테크놀로지스 인크. 고에너지 캐소드 물질용 전해질 용액 및 사용 방법
JP6062297B2 (ja) * 2013-03-19 2017-01-18 旭化成株式会社 非水電気化学デバイス用電解液及びリチウムイオン二次電池
CN103441304B (zh) 2013-09-11 2017-09-12 宁德新能源科技有限公司 锂离子二次电池及其电解液
EP3051618B1 (en) 2013-09-26 2018-11-14 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
JP2015092476A (ja) * 2013-10-04 2015-05-14 旭化成株式会社 非水電解液、リチウムイオン二次電池用電解液、及び非水電解液電池
JP2015072863A (ja) * 2013-10-04 2015-04-16 旭化成株式会社 非水電解液、リチウムイオン二次電池用電解液、及びリチウムイオン二次電池
JP6320876B2 (ja) * 2013-10-29 2018-05-09 パナソニック株式会社 非水電解質二次電池
CN103594729B (zh) 2013-11-28 2015-11-18 深圳新宙邦科技股份有限公司 一种用于锂离子电池的电解液
EP3086396B1 (en) 2013-12-19 2019-06-05 UBE Industries, Ltd. Nonaqueous electrolyte with carboxylic acid ester compound and energy storage device using same
WO2015170561A1 (ja) * 2014-05-07 2015-11-12 エリーパワー株式会社 非水電解質二次電池用正極、非水電解質二次電池
KR20190027957A (ko) 2014-08-14 2019-03-15 솔베이(소시에떼아노님) 술톤 및 플루오린화된 용매를 포함하는 비수성 전해질 조성물
CN104300174A (zh) 2014-10-11 2015-01-21 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
JPWO2016151983A1 (ja) * 2015-03-26 2018-01-18 三洋電機株式会社 非水電解質二次電池
JP6403278B2 (ja) 2015-06-30 2018-10-10 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
CN105161763A (zh) 2015-08-03 2015-12-16 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池
CN106410272A (zh) 2016-01-30 2017-02-15 东莞市凯欣电池材料有限公司 一种高电压锂离子电池用电解液及高电压锂离子电池
CN107591557B (zh) * 2016-07-08 2019-05-21 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及使用该电解液的锂离子电池
CN106058317B (zh) 2016-08-12 2019-04-23 联想(北京)有限公司 锂离子电池电解液以及锂离子电池和电子设备
CN106252639A (zh) 2016-10-17 2016-12-21 广州天赐高新材料股份有限公司 一种兼顾高低温性能的高容量锂离子电池电解液、制备方法及锂离子电池
CN108808065B (zh) * 2017-04-28 2020-03-27 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108808066B (zh) * 2017-04-28 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108808086B (zh) * 2017-04-28 2020-03-27 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN109950621B (zh) * 2017-12-21 2022-05-03 深圳新宙邦科技股份有限公司 一种锂离子电池非水电解液及锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1147540A (en) * 1966-04-19 1969-04-02 Grace W R & Co Butanetetrol dicarbonates and their production
US6174629B1 (en) * 1999-09-10 2001-01-16 Wilson Greatbatch Ltd. Dicarbonate additives for nonaqueous electrolyte rechargeable cells
CN105633461A (zh) * 2009-12-07 2016-06-01 索尼公司 二次电池、电解液、电池组、电子装置和电动车辆
US20130089778A1 (en) * 2011-10-07 2013-04-11 Sony Corporation Electrolytic solution, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device
WO2016002589A1 (ja) 2014-06-30 2016-01-07 シチズンホールディングス株式会社 工作機械およびワーク加工システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELECTROCHEMISTRY COMMUNICATIONS, vol. 44, 2014, pages 34 - 37
See also references of EP3633780A4

Also Published As

Publication number Publication date
US20200161704A1 (en) 2020-05-21
JP2020518110A (ja) 2020-06-18
EP3633780A1 (en) 2020-04-08
JP6936337B2 (ja) 2021-09-15
CN108933292A (zh) 2018-12-04
KR102412568B1 (ko) 2022-06-23
KR20190134668A (ko) 2019-12-04
US11398642B2 (en) 2022-07-26
CN108933292B (zh) 2020-04-21
EP3633780A4 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
CN108808066B (zh) 锂离子电池非水电解液和锂离子电池
CN105140564B (zh) 一种高电压三元正极材料体系锂离子电池电解液
WO2021109687A1 (zh) 一种高温型锂二次电池电解液及电池
CN108539267A (zh) 一种锂离子电池电解液用功能添加剂、电解液及锂离子电池
CN109326824B (zh) 锂离子电池非水电解液及锂离子电池
WO2018218714A1 (zh) 锂离子电池非水电解液和锂离子电池
WO2019024408A1 (zh) 锂离子电池非水电解液及锂离子电池
CN108933291B (zh) 锂离子电池非水电解液和锂离子电池
WO2020238191A1 (zh) 一种降低电池阻抗的锂二次电池电解液及锂二次电池
CN108110322A (zh) 一种用于锂离子电池的非水电解液及锂离子电池
WO2023015791A1 (zh) 一种电解液及包含该电解液的电池
CN108808065B (zh) 锂离子电池非水电解液和锂离子电池
WO2023087536A1 (zh) 电解液添加剂组合物、电解液及锂二次电池
WO2018196142A1 (zh) 锂离子电池非水电解液和锂离子电池
CN110416611A (zh) 一种锂离子电池非水电解液及使用该电解液的锂离子电池
CN108963336B (zh) 锂离子电池非水电解液及锂离子电池
WO2024099053A1 (zh) 电解液及锂离子电池
WO2024114142A1 (zh) 甲基三氟乙基碳酸酯的用途、电解液、抑制锰溶出的方法和电池
WO2023088234A1 (zh) 一种锂离子电池电解液及锂离子电池
WO2018196145A1 (zh) 锂离子电池非水电解液和锂离子电池
CN111883828B (zh) 一种锂离子电池非水电解液和锂离子电池
CN114142085A (zh) 一种锂离子电池非水电解液、锂离子电池及其制备方法
WO2024113440A1 (zh) 一种二次电池电解液及添加剂
CN117650274A (zh) 钠离子电池电解液及钠离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197031111

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019558398

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017911418

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017911418

Country of ref document: EP

Effective date: 20200102