WO2023088234A1 - 一种锂离子电池电解液及锂离子电池 - Google Patents

一种锂离子电池电解液及锂离子电池 Download PDF

Info

Publication number
WO2023088234A1
WO2023088234A1 PCT/CN2022/131898 CN2022131898W WO2023088234A1 WO 2023088234 A1 WO2023088234 A1 WO 2023088234A1 CN 2022131898 W CN2022131898 W CN 2022131898W WO 2023088234 A1 WO2023088234 A1 WO 2023088234A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
additive
electrolyte
carbonate
ion battery
Prior art date
Application number
PCT/CN2022/131898
Other languages
English (en)
French (fr)
Inventor
马国强
徐冲
严红
徐宁
沈方烈
周荧
Original Assignee
浙江省化工研究院有限公司
浙江中蓝新能源材料有限公司
中化蓝天集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江省化工研究院有限公司, 浙江中蓝新能源材料有限公司, 中化蓝天集团有限公司 filed Critical 浙江省化工研究院有限公司
Publication of WO2023088234A1 publication Critical patent/WO2023088234A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of battery electrolytes, in particular to lithium ion battery electrolytes, in particular to a lithium ion battery electrolyte containing a difluorophosphate-based lithium trifluoroborate electrolyte additive.
  • High energy density is the development trend of lithium batteries.
  • the commonly used ways to improve it include increasing the working voltage or increasing the nickel content in the positive electrode material, but both of these methods will pose new challenges to the cycle performance and safety performance of the battery cell. Therefore, for lithium batteries with high nickel and high voltage systems, it is particularly important to build a more stable positive and negative electrode interface and improve the high temperature performance and cycle performance of the battery.
  • Sulfonate compounds can form a film on the positive and negative electrodes to form an interfacial film rich in sulfonate components, which can effectively inhibit the redox reaction of the solvent on the surface of the positive and negative electrodes, thereby Effectively improve the gas production during high-temperature storage and increase the recovery rate of high-temperature storage capacity.
  • most sulfonate compounds have high film-forming resistance, low temperature and low rate performance, and the continuous modification of the interfacial film during cycling leads to a rapid increase in DCR resistance, active lithium loss, and rapid cycle life decay.
  • the existing technology often uses carbonate additives, sulfate additives, etc. in combination to improve the film-forming performance of the negative electrode, but it still cannot Solve the problem of insufficient cycle life due to the continuous increase of DCR during high-pressure high-temperature storage and cycle process.
  • Sulfate compounds such as vinyl sulfate (abbreviated as DTD) and its derivatives, can form an effective interfacial film on the negative electrode, and the film forming resistance is relatively low, which can improve cycle performance and high temperature storage capacity recovery rate.
  • DTD vinyl sulfate
  • Sulfate compounds due to the weak film-forming effect of sulfuric acid ester compounds on the positive electrode interface, they cannot effectively inhibit storage and gas production. The improvement of battery performance is limited, and the storage and cycle performance under high temperature and high voltage are weak.
  • positive electrode film-forming additives are often used to form an effective protective film on the surface of the positive electrode, which can inhibit the side reaction between the electrolyte and the positive electrode interface and improve the stability of the interface, thereby improving the storage and cycle stability under high temperature and high voltage.
  • positive film-forming additives such as 1,3-propane sultone (PS for short), 1,3-propene sultone (PST), etc., have high impedance, and the interface The impedance continues to grow, seriously affecting the low temperature, power characteristics and long-term cycle stability of the battery.
  • An electrolyte additive or an electrolyte additive composition that can improve the low temperature and rate performance while improving the high temperature storage performance and high temperature cycle performance of the battery in a high voltage and high temperature environment, and suppress the impedance growth during storage and cycle, and improve the cycle life of the battery cell.
  • the present invention provides a lithium-ion battery electrolyte and a lithium-ion battery that improve the storage and cycle performance of the battery under high-voltage and high-temperature conditions while ensuring better low-temperature and rate performance.
  • a lithium ion battery electrolyte comprising: main lithium salt, organic solvent, and:
  • the first additive is selected from difluorophosphate lithium trifluoroborate represented by the following formula (A):
  • x+y 4, x ⁇ 0, y ⁇ 1, and x and y are positive integers;
  • the second additive is a sulfonic acid ester compound or a sulfuric acid ester compound
  • the sulfonic acid ester compound includes: a chain sulfonic acid ester compound shown in the following formula (B-1) and/or the following formula ( Cyclic sulfonic acid ester compound shown in B-2);
  • the sulfuric acid ester compound comprises: the chain sulfuric acid ester compound shown in following formula (C-1) and/or the ring shown in following formula (C-2) like sulfuric acid ester compounds;
  • R 1 , R 2 , R 4 , R 5 are independently selected from C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 haloalkenyl, C2-C6 alkynyl or C2-C6 At least one of the haloalkynyl groups;
  • R 3 and R 6 are independently selected from at least one of C1-C6 alkylene, C1-C6 haloalkylene, C2-C6 alkenylene or C2-C6 haloalkenylene.
  • R 1 , R 2 , R 4 , and R 5 are independently selected from C1-C3 alkyl, C1-C3 haloalkyl, C2-C3 alkenyl, C2-C3 haloalkenyl, C2-C3 alkynyl or At least one of C2-C3 haloalkynyl;
  • R 3 and R 6 are independently selected from at least one of C1-C3 alkylene, C1-C3 haloalkylene, C2-C3 alkenylene or C2-C3 haloalkenylene.
  • the first additive is selected from at least one of the following structures:
  • the second additive is selected from at least one of the structures shown below:
  • the amount of the first additive accounts for 0.1-10.0% of the total mass of the electrolyte, and the amount of the second additive accounts for 0.05-5.0% of the total mass of the electrolyte.
  • the amount of the first additive accounts for 0.1-2.0% of the total mass of the electrolyte, and the amount of the second additive accounts for 0.1-2.0% of the total mass of the electrolyte.
  • the electrolyte solution also includes a third additive, the third additive is selected from at least one of carbonate additives and derivatives thereof, and fluorine-containing lithium salt additives, and the dosage accounts for 1% of the electrolyte solution. 0.01-5.0% of the total mass.
  • the third additive is selected from the group consisting of vinylene carbonate, fluoroethylene carbonate, lithium difluorophosphate, lithium bisfluorosulfonyl imide, lithium bistrifluoromethylsulfonyl imide, bisoxalic acid difluorophosphoric acid At least one of lithium, lithium difluorooxalate borate or lithium tetrafluoroborate is used in an amount of 0.1-5.0% of the total mass of the electrolyte, and the third additive is different from the main lithium salt.
  • the main lithium salt can be selected from the main lithium salt commonly used in the electrolyte.
  • the main lithium salt is selected from at least one of lithium hexafluorophosphate, lithium bisfluorosulfonyl imide, or lithium bistrifluoromethylsulfonyl imide, and the molar concentration in the electrolyte is 0.4 to 1.6 mol/ L; more preferably, the main lithium salt is lithium hexafluorophosphate, and the molar concentration in the electrolyte is 0.6-1.2 mol/L.
  • the organic solvent of the present invention may be a non-aqueous solvent commonly used in the electrolyte.
  • the organic solvent is selected from at least one of the organic solvents selected from C3-C6 carbonate compounds, C3-C8 carboxylate compounds, sulfone compounds, and ether compounds.
  • the C3-C6 carbonate compounds are selected from ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, dipropyl carbonate, methylpropyl carbonate At least one of ester, ethylene propyl carbonate, fluoroethylene carbonate or difluoroethylene carbonate;
  • the C3 ⁇ C8 carboxylate compound is selected from ⁇ -butyrolactone, methyl acetate, methyl propionate, methyl butyrate, ethyl acetate, ethyl propionate, ethyl butyrate, propyl acetate, At least one of propyl propionate, ethyl fluoroacetate, and (2,2-difluoroethyl) acetate;
  • the sulfone compound is selected from at least one of sulfolane, dimethyl sulfoxide, dimethyl sulfone or diethyl sulfone;
  • the ether compound is selected from triglyme, tetraglyme or 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether A sort of.
  • the present invention also provides a lithium ion battery, comprising a positive electrode, a negative electrode, a diaphragm, and any of the lithium ion battery electrolytes described above.
  • the active material of the negative electrode is graphite, silicon carbon, silicon oxide, silicon, tin, metal lithium or composite materials thereof.
  • the beneficial effects of the present invention include:
  • the first additive of the present invention is a new type of lithium salt additive, which can form a film on the positive and negative electrodes, and has a low film forming resistance, has a modification effect on the interface film, improves the stability of the positive and negative electrode interface, and can effectively inhibit the battery cell from Gas production during high temperature and high voltage storage and circulation.
  • the second additive is a sulfonate compound
  • the synergistic effect of the first additive and the sulfonate compound it can overcome the rapid growth of DCR, high-temperature storage and high-temperature cycle performance of the sulfonate compound during high-temperature storage and high-temperature cycle Insufficient problems, effectively improve the storage performance and cycle performance of the battery under high voltage and high temperature, improve the cycle life of the battery cell, and at the same time ensure that the battery has better low temperature and rate characteristics.
  • the second additive is a sulfuric acid ester compound
  • the second additive through the synergistic effect of the first additive and the sulfuric acid ester compound, it can overcome the problems of insufficient positive electrode protection and serious gas production under high temperature and high pressure in the sulfonic acid ester compound, and effectively improve the performance of the battery under high voltage and high temperature conditions.
  • Excellent storage performance and cycle performance ensure that the battery has good low temperature and rate characteristics.
  • Example 1 Add 0.5% by weight of the first additive A1 and 1.0% by weight of the second additive B1 to the basic electrolyte to obtain the electrolyte of this embodiment.
  • Embodiment 2 Add 1.0% by mass of the first additive A1 and 1.0% by mass of the second additive B1 to the basic electrolyte to obtain the electrolyte of this embodiment.
  • Embodiment 3 Add 1.0% by weight of the first additive A1 and 2.0% by weight of the second additive B1 to the basic electrolyte to obtain the electrolyte of this embodiment.
  • Embodiment 4 In the base electrolyte, add the first additive A1 of 1.0% mass content, the second additive B1 of 1.0% mass content and the vinylene carbonate (VC) of 1.0% mass content, obtain the electrolysis of this embodiment liquid.
  • Embodiment 5 In the basic electrolyte, add the first additive A2 of 1.0% mass content, the second additive B1 of 1.0% mass content and the vinylene carbonate (VC) of 1.0% mass content, obtain the electrolysis of this embodiment liquid.
  • Embodiment 6 Add 1.0% by mass of the first additive A2 and 1.0% by mass of the second additive B4 to the basic electrolyte to obtain the electrolyte of this embodiment.
  • Embodiment 7 In the base electrolyte, add the first additive A2 of 1.0% mass content, the second additive B4 of 1.0% mass content and the fluoroethylene carbonate (FEC) of 1.0% mass content, obtain the present embodiment electrolyte.
  • first additive A2 of 1.0% mass content
  • second additive B4 of 1.0% mass content
  • fluoroethylene carbonate (FEC) of 1.0% mass content
  • Example 8 In the basic electrolyte, add 1.0% by mass of the first additive A2, 1.0% by mass of the second additive B5 and 1.0% by mass of lithium difluorooxalate phosphate (LiDFOP), to obtain this example of electrolyte.
  • LiDFOP lithium difluorooxalate phosphate
  • Embodiment 9 In the base electrolyte, add the first additive A1 of 0.5% mass content and the first additive A2 of 0.5% mass content, the second additive B1 of 1.0% mass content and the vinylene carbonate of 1.0% mass content (VC), obtain the electrolytic solution of the present embodiment.
  • Example 10 In the base electrolyte, add 0.5% mass content of the first additive A1 and 0.5% mass content of the first additive A2, 1.0% mass content of the second additive B4 and 1.0% mass content of fluoroethylene carbonate ester (FEC) to obtain the electrolyte solution of this embodiment.
  • FEC fluoroethylene carbonate ester
  • Example 11 In the basic electrolyte, add 0.5% by mass of the first additive A1 and 0.5% by mass of the first additive A2, 1.0% by mass of the second additive B5 and 1.0% by mass of difluorobisoxalate Lithium phosphate (LiDFOP) was used to obtain the electrolyte solution of this embodiment.
  • LiDFOP difluorobisoxalate Lithium phosphate
  • Example 12 Add 0.5% by mass of the first additive A1 and 1.0% by mass of the second additive C2 to the basic electrolyte to obtain the electrolyte of this embodiment.
  • Embodiment 13 Add 1.0% by mass of the first additive A1 and 1.0% by mass of the second additive C2 to the basic electrolyte to obtain the electrolyte of this embodiment.
  • Embodiment 14 Add 1.0% by mass of the first additive A1 and 2.0% by mass of the second additive C2 to the basic electrolyte to obtain the electrolyte of this embodiment.
  • Example 15 In the basic electrolyte, add 1.0% by mass of the first additive A1, 1.0% by mass of the second additive C2 and 1.0% by mass of vinylene carbonate (VC), to obtain the electrolytic solution of this embodiment liquid.
  • VC vinylene carbonate
  • Example 16 In the basic electrolyte, add 1.0% by mass of the first additive A2, 1.0% by mass of the second additive C2 and 1.0% by mass of vinylene carbonate (VC), to obtain the electrolytic solution of this embodiment liquid.
  • VC vinylene carbonate
  • Example 17 Add 1.0% by weight of the first additive A2 and 1.0% by weight of the second additive C4 to the basic electrolyte to obtain the electrolyte of this embodiment.
  • Example 18 In the basic electrolyte, add 1.0% by mass of the first additive A2, 1.0% by mass of the second additive C4 and 1.0% by mass of fluoroethylene carbonate (FEC), to obtain the electrolyte.
  • FEC fluoroethylene carbonate
  • Example 19 In the basic electrolyte, add 1.0% by mass of the first additive A2, 1.0% by mass of the second additive C5 and 1.0% by mass of lithium difluorooxalate phosphate (LiDFOP), to obtain this example of electrolyte.
  • LiDFOP lithium difluorooxalate phosphate
  • Example 20 In the base electrolyte, add 0.5% by mass of the first additive A1 and 0.5% by mass of the first additive A2, 1.0% by mass of the second additive C2 and 1.0% by mass of vinylene carbonate (VC), obtain the electrolytic solution of the present embodiment.
  • VC vinylene carbonate
  • Example 21 In the base electrolyte, add 0.5% by mass of the first additive A1 and 0.5% by mass of the first additive A2, 1.0% by mass of the second additive C4 and 1.0% by mass of fluoroethylene carbonate ester (FEC) to obtain the electrolyte solution of this embodiment.
  • FEC fluoroethylene carbonate ester
  • Example 22 In the basic electrolyte, add 0.5% by mass of the first additive A1 and 0.5% by mass of the first additive A2, 1.0% by mass of the second additive C5 and 1.0% by mass of difluorobisoxalate Lithium phosphate (LiDFOP) was used to obtain the electrolyte solution of this embodiment.
  • Comparative example 1 This comparative example is consistent with the basic electrolyte.
  • Comparative example 2 In the basic electrolyte, only 1.0% by mass of the third additive fluoroethylene carbonate (FEC) was added to obtain the electrolyte of this comparative example.
  • FEC fluoroethylene carbonate
  • Comparative example 3 In the base electrolyte, only 1.0% by mass of the second additive B4 was added to obtain the electrolyte of this comparative example.
  • Comparative example 4 In the basic electrolyte, only 1.0% by mass of the first additive A2 was added to obtain the electrolyte of this comparative example.
  • Comparative example 5 Add 1.0% by weight of the second additive B4 and 1.0% by weight of the third additive fluoroethylene carbonate (FEC) to the basic electrolyte to obtain the electrolyte of this comparative example.
  • FEC fluoroethylene carbonate
  • Comparative example 6 Add 1.0% by mass of the first additive A2 and 1.0% by mass of the third additive fluoroethylene carbonate (FEC) to the basic electrolyte to obtain the electrolyte of this comparative example.
  • FEC fluoroethylene carbonate
  • Comparative example 7 In the basic electrolyte, only 1.0% by mass of the second additive C4 was added to obtain the electrolyte of this comparative example.
  • Comparative Example 8 In the base electrolyte, 1.0% by mass of the second additive C4 and 1.0% by mass of the third additive fluoroethylene carbonate (FEC) were added to obtain the electrolyte of this comparative example.
  • FEC fluoroethylene carbonate
  • the lithium-ion battery electrolytes of the above-mentioned examples and comparative examples were respectively made into a lithium-ion power battery with a soft pack capacity of 1500mAh.
  • the positive electrode active material is a nickel-cobalt-manganese ternary material or a nickel-cobalt-aluminum ternary material or a lithium cobalt oxide material or a lithium iron phosphate material; wherein the positive electrode active material is a high-nickel ternary positive electrode LiNi 0.83 Co 0.07 Mn 0.2 O 2 , and the negative electrode
  • the active material is high capacity graphite.
  • the preparation process is as follows: the positive pole piece, the diaphragm and the negative pole piece are wound together into a core, sealed with aluminum-plastic film and then baked to make the electrode moisture meet the requirements. After baking, the battery core is injected with electrolyte solution. The finished soft-packed battery cells are obtained through the processes of setting, forming, dividing, and aging.
  • 60°C high-temperature storage test Charge the battery to 100% SOC, store in an oven at 60 ⁇ 2°C for 28 days, test the volume before and after storage, and obtain the volume expansion rate of the single battery before and after storage at 60°C; at room temperature, Discharge the single battery with a current of 0.5C to the cut-off voltage; repeat twice, use the second discharge capacity as the recovery capacity after storage, and calculate the percentage value with the initial capacity, which is recorded as the capacity recovery rate;
  • Example 6 and Comparative Examples 3 and 4 in Table 1 above it can be found that: using the combination of the first additive and the second additive, compared with the simple use of the first additive or the second additive, the recovery rate of high-temperature storage capacity, gas production The efficiency and long-term stability of high-temperature cycling have been significantly improved.
  • Examples 2 and 4, and Examples 6 and 7, it is found that on the basis of the combination of the first additive and the second additive, the third additive is added, and the high-temperature storage and high-temperature cycle stability are further improved.
  • Example 17 and Comparative Examples 4 and 7 in Table 1 above it can be found that: the use of the first additive and the second additive in combination, compared with the simple use of the first additive or the second additive, the high temperature storage volume expansion rate, capacity recovery The efficiency and high-temperature cycle stability have been effectively improved.
  • Examples 13 and 15, and Examples 17 and 18, it is found that on the basis of the combination of the first additive and the second additive, the third additive is added, and the high-temperature storage and high-temperature cycle stability are further improved without affecting the initial Impedance, thereby ensuring low temperature and power characteristics.
  • the combined use of the three additives has the best effect.
  • the combined use of the three additives can exert their respective advantages At the same time, it can effectively suppress the negative effects of inferior functions, realize the synergistic effect between additives, and effectively improve the overall performance of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开一种锂离子电池电解液及含有该电解液的锂离子电池,所述电解液包括主锂盐、有机溶剂,以及:第一添加剂,所述第一添加剂选自下式(A)所示的二氟磷酸基三氟硼酸锂:式中,x+y=4,x≥0,y≥1,且x、y为正整数;第二添加剂,所述第二添加剂为磺酸酯化合物或硫酸酯化合物。本发明的电解液能有效提高电池高电压高温下的高温存储及高温循环性能,同时保证电池具有较好的低温及倍率特性。

Description

一种锂离子电池电解液及锂离子电池 技术领域
本发明涉及电池电解液领域,尤其是锂离子电池电解液,特别涉及一种含二氟磷酸基三氟硼酸锂电解液添加剂的锂离子电池电解液。
背景技术
高能量密度是锂电池的发展趋势,常用的提升方法包括提高工作电压或提高正极材料中的镍含量,但这两种方式均会对电芯的循环性能和安全性能造成新的挑战。因此,对于高镍、高电压体系的锂电池而言,构建更加稳固的正负极界面,改善电池高温性能和循环性能就尤为重要。
磺酸酯类化合物(如PS、PST及其衍生物等)可在正负极成膜,形成富含磺酸盐成分的界面膜,在正负极表面可有效抑制溶剂发生氧化还原反应,从而有效改善高温存储过程中的产气、提高高温存储容量恢复率。但是,磺酸酯类化合物大多具有较高的成膜阻抗,低温和倍率性能不足,且在循环过程中由于不断修饰界面膜导致DCR阻抗增长较快,活性锂损耗,循环寿命衰减较快。
为了解决磺酸酯类化合物成膜阻抗高,低温倍率以及循环性能不足的问题,现有技术常采用与碳酸酯类添加剂、硫酸酯类添加剂等联用,以改善负极成膜性能,但仍无法解决高压高温存储及循环过程中DCR持续增长,导致循环寿命不足的问题。
硫酸酯类化合物,如硫酸乙烯酯(简称DTD)及其衍生物,其 可在负极形成有效的界面膜,且成膜阻抗相对不高,可以改善循环性能和高温存储容量恢复率。但由于硫酸酯类化合物在正极界面成膜效果较弱,不能有效抑制存储产气,尤其在高电压下,对正极界面膜的保护作用不足,不能有效抑制正极电解液界面的副反应,因此对电池性能的改善有限,高温高电压下存储及循环性能较弱。
现有技术中常采用正极成膜添加剂在正极表面形成一层有效的保护膜,抑制电解液与正极界面的副反应,提高界面的稳定性,从而提升高温及高电压的下的存储和循环稳定性。但,大多数正极成膜添加剂,如1,3-丙烷磺内酯(简称PS),1,3-丙烯磺内酯(PST)等都具有较高的阻抗,且在存储和循环过程中界面阻抗持续增长,严重影响电池的低温、功率特性以及长期循环稳定性。
因此,需要寻求一种在高电压高温环境下,改善低温、倍率性能的同时提高电池的高温存储性能及高温循环性能,并抑制存储及循环过程中的阻抗增长,提升电芯的循环寿命的新型电解液添加剂或电解液添加剂组合物。
发明内容
为了解决上述技术问题,本发明提供一种提高电池高电压高温下的存储及循环性能,同时保证较好的低温及倍率性能的锂离子电池电解液及锂离子电池。
本发明的目的是通过以下技术方案实现的:
一种锂离子电池电解液,包括:主锂盐、有机溶剂,以及:
第一添加剂,所述第一添加剂选自下式(A)所示的二氟磷酸基 三氟硼酸锂:
Figure PCTCN2022131898-appb-000001
式中,x+y=4,x≥0,y≥1,且x、y为正整数;
第二添加剂,所述第二添加剂为磺酸酯化合物或硫酸酯化合物,所述磺酸酯类化合物包括:下式(B-1)所示的链状磺酸酯化合物和/或下式(B-2)所示的环状磺酸酯化合物;所述硫酸酯化合物包括:下式(C-1)所示的链状硫酸酯化合物和/或下式(C-2)所示的环状硫酸酯化合物;
Figure PCTCN2022131898-appb-000002
其中:
R 1、R 2、R 4、R 5独立地选自C1-C6烷基、C1-C6卤代烷基、C2-C6烯基、C2-C6卤代烯基、C2-C6炔基或C2-C6卤代炔基中的至少一种;
R 3、R 6独立地选自C1-C6亚烷基、C1-C6卤代亚烷基、C2-C6亚烯基或C2-C6卤代亚烯基中的至少一种。
进一步地,R 1、R 2、R 4、R 5独立地选自C1-C3烷基、C1-C3卤代烷基、C2-C3烯基、C2-C3卤代烯基、C2-C3炔基或C2-C3卤代炔基中的至少一种;
R 3、R 6独立地选自C1-C3亚烷基、C1-C3卤代亚烷基、C2-C3亚烯基或C2-C3卤代亚烯基中的至少一种。
更优选地,所述第一添加剂选自以下所示结构中的至少一种:
Figure PCTCN2022131898-appb-000003
所述第二添加剂选自以下所示结构中的至少一种:
Figure PCTCN2022131898-appb-000004
Figure PCTCN2022131898-appb-000005
在本发明所述电解液中,所述第一添加剂的用量占电解液总质量的0.1~10.0%,第二添加剂的用量占电解液总质量的0.05~5.0%。作为优选,所述第一添加剂的用量占电解液总质量的0.1~2.0%,第二添加剂的用量占电解液总质量的0.1~2.0%。
为提高电池的综合性能,进一步地,所述电解液还包括第三添加剂,所述第三添加剂选自碳酸酯类添加剂及其衍生物、含氟锂盐添加剂中至少一种,用量占电解液总质量的0.01~5.0%。优选地,所述第三添加剂选自碳酸亚乙烯酯、氟代碳酸乙烯酯、二氟磷酸锂、双氟磺酰亚胺锂、双三氟甲基磺酰亚胺锂、双草酸二氟磷酸锂、二氟草酸硼酸锂或四氟硼酸锂中的至少一种,用量占电解液总质量的0.1~5.0%,且所述第三添加剂不同于所述主锂盐。
所述主锂盐选用电解液中常用主锂盐即可。作为优选,所述主锂盐选自六氟磷酸锂、双氟磺酰亚胺锂或双三氟甲基磺酰亚胺锂中的至少一种,且在电解液中的摩尔浓度为0.4~1.6mol/L;更为优选地,所述主锂盐为六氟磷酸锂,且在电解液中的摩尔浓度为0.6~1.2mol/L。
本发明所述有机溶剂选用电解液中常用非水溶剂即可。作为优选,所述有机溶剂选自所述有机溶剂选自C3~C6碳酸酯类化合物、C3~C8羧酸酯类化合物、砜类化合物、醚类化合物中的至少一种。
进一步地,所述C3~C6碳酸酯类化合物选自碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、氟代碳酸乙烯酯或二氟代碳酸乙烯酯中的至少一种;
所述C3~C8羧酸酯类化合物选自γ-丁内酯、乙酸甲酯、丙酸甲酯、丁酸甲酯、乙酸乙酯、丙酸乙酯、丁酸乙酯、乙酸丙酯、丙酸丙酯、氟代乙酸乙酯、乙酸(2,2-二氟乙基)酯中的至少一种;
所述砜类化合物选自环丁砜、二甲基亚砜、二甲基砜或二乙基砜中的至少一种;
所述醚类化合物选自三甘醇二甲醚、四甘醇二甲醚或1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚中的至少一种。
本发明还提供一种锂离子电池,包括正极、负极、隔膜,以及上述任一所述的锂离子电池电解液。
所述正极的活性材料选自镍钴锰三元材料或镍钴铝三元材料或钴酸锂材料或磷酸铁锂材料;其中,所述镍钴锰三元材料为Li(Ni xCo yMn z)O 2,x≥0.5,y>0,z>0,x+y+z=1;所述镍钴铝三元材料为Li(Ni xCo yAl z)O 2,x≥0.8,y>0,z>0,x+y+z=1。
所述负极的活性材料为石墨、硅碳、氧化亚硅、硅、锡、金属锂或其复合材料材料。
与现有技术相比,本发明具有的有益效果包括:
本发明的第一添加剂为新型锂盐添加剂,其可在正负极成膜,且成膜阻抗较低,对界面膜有修饰作用,改善正负极界面的稳定性,能 有效抑制电芯在高温高电压存储及循环过程中的产气。
当第二添加剂为磺酸酯化合物时,通过第一添加剂和磺酸酯化合物的协同作用,可以克服磺酸酯化合物高温存储及高温循环过程中存在的DCR增长较快、高温存储及高温循环性能不足的问题,有效提高电池高电压高温下的存储性能及循环性能,提高电芯循环寿命,同时保证电池具有较好的低温及倍率特性。
当第二添加剂为硫酸酯化合物时,通过第一添加剂与硫酸酯化合物的协同作用,可以克服磺酸酯化合物存在的正极保护不足、高温高压下产气严重的问题,有效提高电池高电压高温下的存储性能及循环性能,保证电池具有较好的低温及倍率特性。
具体实施方式
下面结合具体实施例来对本发明进行进一步说明,但并不将本发明局限于这些具体实施方式。本领域技术人员应该认识到,本发明涵盖了权利要求书范围内所可能包括的所有备选方案、改进方案和等效方案。
一、电解液的制备
基础电解液的制备:在充满氩气的手套箱(水分<5ppm,氧分<10ppm)中,将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按质量比为EC:EMC:DEC=3:5:2均匀混合,向混合溶液中缓慢加入六氟磷酸锂(LiPF6)至LiPF6的摩尔浓度为1.2mol/L,得到基础电解液。
实施例1:在基础电解液中,添加0.5%质量含量的第一添加剂 A1、1.0%质量含量的第二添加剂B1,获得本实施例的电解液。
实施例2:在基础电解液中,添加1.0%质量含量的第一添加剂A1、1.0%质量含量的第二添加剂B1,获得本实施例的电解液。
实施例3:在基础电解液中,添加1.0%质量含量的第一添加剂A1、2.0%质量含量的第二添加剂B1,获得本实施例的电解液。
实施例4:在基础电解液中,添加1.0%质量含量的第一添加剂A1、1.0%质量含量的第二添加剂B1以及1.0%质量含量的碳酸亚乙烯酯(VC),获得本实施例的电解液。
实施例5:在基础电解液中,添加1.0%质量含量的第一添加剂A2、1.0%质量含量的第二添加剂B1以及1.0%质量含量的碳酸亚乙烯酯(VC),获得本实施例的电解液。
实施例6:在基础电解液中,添加1.0%质量含量的第一添加剂A2、1.0%质量含量的第二添加剂B4,获得本实施例的电解液。
实施例7:在基础电解液中,添加1.0%质量含量的第一添加剂A2、1.0%质量含量的第二添加剂B4以及1.0%质量含量的氟代碳酸乙烯酯(FEC),获得本实施例的电解液。
实施例8:在基础电解液中,添加1.0%质量含量的第一添加剂A2、1.0%质量含量的第二添加剂B5以及1.0%质量含量的双草酸二氟磷酸锂(LiDFOP),获得本实施例的电解液。
实施例9:在基础电解液中,添加0.5%质量含量的第一添加剂A1以及0.5%质量含量的第一添加剂A2,1.0%质量含量的第二添加剂B1以及1.0%质量含量的碳酸亚乙烯酯(VC),获得本实施例的电 解液。
实施例10:在基础电解液中,添加0.5%质量含量的第一添加剂A1以及0.5%质量含量的第一添加剂A2,1.0%质量含量的第二添加剂B4以及1.0%质量含量的氟代碳酸乙烯酯(FEC),获得本实施例的电解液。
实施例11:在基础电解液中,添加0.5%质量含量的第一添加剂A1以及0.5%质量含量的第一添加剂A2,1.0%质量含量的第二添加剂B5以及1.0%质量含量的双草酸二氟磷酸锂(LiDFOP),获得本实施例的电解液。
实施例12:在基础电解液中,添加0.5%质量含量的第一添加剂A1、1.0%质量含量的第二添加剂C2,获得本实施例的电解液。
实施例13:在基础电解液中,添加1.0%质量含量的第一添加剂A1、1.0%质量含量的第二添加剂C2,获得本实施例的电解液。
实施例14:在基础电解液中,添加1.0%质量含量的第一添加剂A1、2.0%质量含量的第二添加剂C2,获得本实施例的电解液。
实施例15:在基础电解液中,添加1.0%质量含量的第一添加剂A1、1.0%质量含量的第二添加剂C2以及1.0%质量含量的碳酸亚乙烯酯(VC),获得本实施例的电解液。
实施例16:在基础电解液中,添加1.0%质量含量的第一添加剂A2、1.0%质量含量的第二添加剂C2以及1.0%质量含量的碳酸亚乙烯酯(VC),获得本实施例的电解液。
实施例17:在基础电解液中,添加1.0%质量含量的第一添加剂 A2、1.0%质量含量的第二添加剂C4,获得本实施例的电解液。
实施例18:在基础电解液中,添加1.0%质量含量的第一添加剂A2、1.0%质量含量的第二添加剂C4以及1.0%质量含量的氟代碳酸乙烯酯(FEC),获得本实施例的电解液。
实施例19:在基础电解液中,添加1.0%质量含量的第一添加剂A2、1.0%质量含量的第二添加剂C5以及1.0%质量含量的双草酸二氟磷酸锂(LiDFOP),获得本实施例的电解液。
实施例20:在基础电解液中,添加0.5%质量含量的第一添加剂A1以及0.5%质量含量的第一添加剂A2,1.0%质量含量的第二添加剂C2以及1.0%质量含量的碳酸亚乙烯酯(VC),获得本实施例的电解液。
实施例21:在基础电解液中,添加0.5%质量含量的第一添加剂A1以及0.5%质量含量的第一添加剂A2,1.0%质量含量的第二添加剂C4以及1.0%质量含量的氟代碳酸乙烯酯(FEC),获得本实施例的电解液。
实施例22:在基础电解液中,添加0.5%质量含量的第一添加剂A1以及0.5%质量含量的第一添加剂A2,1.0%质量含量的第二添加剂C5以及1.0%质量含量的双草酸二氟磷酸锂(LiDFOP),获得本实施例的电解液。对比例1:本对比例与基础电解液一致。
对比例2:在基础电解液中,仅加入1.0%质量含量的第三添加剂氟代碳酸乙烯酯(FEC),获得本对比例的电解液。
对比例3:在基础电解液中,仅加入1.0%质量含量的第二添加 剂B4,获得本对比例的电解液。
对比例4:在基础电解液中,仅加入1.0%质量含量的第一添加剂A2获得本对比例的电解液。
对比例5:在基础电解液中,加入1.0%质量含量的第二添加剂B4以及1.0%质量含量的第三添加剂氟代碳酸乙烯酯(FEC),获得本对比例的电解液。
对比例6:在基础电解液中,加入1.0%质量含量的第一添加剂A2以及1.0%质量含量的第三添加剂氟代碳酸乙烯酯(FEC),获得本对比例的电解液。
对比例7:在基础电解液中,仅加入1.0%质量含量的第二添加剂C4,获得本对比例的电解液。
对比例8:在基础电解液中,加入1.0%质量含量的第二添加剂C4以及1.0%质量含量的第三添加剂氟代碳酸乙烯酯(FEC),获得本对比例的电解液。
二、性能测试
将上述实施例和对比例的锂离子电池电解液分别制作成软包容量1500mAh锂离子动力电池,所述锂离子动力电池包括正极极片、负极极片、隔膜、电解液以及电池辅料,所述正极活性材料为镍钴锰三元材料或镍钴铝三元材料或钴酸锂材料或磷酸铁锂材料;其中所述正极活性材料为高镍三元正极LiNi 0.83Co 0.07Mn 0.2O 2,负极活性材料为高容量石墨。制备过程如下:将正极极片、隔膜和负极极片一起卷绕成卷芯,用铝塑膜进行密封后进行烘烤使得电极水分满足要求,烘烤后 电芯进行电解液注液,经静置、化成、分容、老化工序得成品软包电芯。
对制备获得的锂离子动力电池(软包电芯)进行性能测试,具体测试项目及方法如下:
(1)电池放电DCR测试:0.2C恒流调节电芯SOC至50%,搁置30min,测试搁置结束后的开路电压OCV1;按照电池制造商规定的最大脉冲电流(3I1(A))放电10s,采集大电流放电终止瞬间的电压OCV2;按照公式DCIR=(OCV1-OCV2)/3C计算DCR。
(2)60℃高温存储测试:将电池充电至100%SOC,在60±2℃烘箱中存储28天,测试存储前后的体积,得到单体电池60℃存储前后的体积膨胀率;室温下,将单体电池以0.5C电流放电至终止电压;重复2次,以第2次放电容量作为存储结束后的恢复容量,并计算与初始容量的百分比值,记为容量恢复率;
(3)45℃高温循环测试:电池在45±1℃烘箱中以1C/1C的充放电电流进行循环,计算每周的放电容量,循环至500周,循环停止,并测试结束后的DCR值,计算循环后的容量保持率及DCR增长率。
测试结果如下表1所示:
表1电池性能测试结果
Figure PCTCN2022131898-appb-000006
Figure PCTCN2022131898-appb-000007
通过比较上表1中实施例6与对比例3、4可以发现:采用第一添加剂和第二添加剂联用,相比于单纯使用第一添加剂或第二添加剂, 高温存储容量恢复率、产气率以及高温循环长期的稳定性都得到了明显的改善。通过比较实施例2和4,以及实施例6和7发现,在第一添加剂和第二添加剂联用的基础上,增加第三添加剂,高温存储和高温循环稳定性得到进一步提升。
通过比较上表1中实施例17与对比例4、7可以发现:采用第一添加剂和第二添加剂联用,相比于单纯使用第一添加剂或第二添加剂,高温存储体积膨胀率、容量恢复率以及高温循环稳定性都得到了有效改善。通过比较实施例13和15,以及实施例17和18发现,在第一添加剂和第二添加剂联用的基础上,增加第三添加剂,高温存储和高温循环稳定性得到进一步提升,同时不影响初始阻抗,进而保证低温和功率特性。
总体上,相比单一使用第一添加剂、第二添加剂或第三添加剂,以及三种添加剂的两两组合,三种添加剂联用具有最佳的效果,三种添加剂联合使用,在发挥各自优势功能的同时有效抑制劣势功能的消极作用,实现添加剂之间的协同效应,有效提高电池的综合性能。

Claims (10)

  1. 一种锂离子电池电解液,包括:主锂盐、有机溶剂,其特征在于:所述电解液还包括:
    第一添加剂,所述第一添加剂选自下式(A)所示的二氟磷酸基三氟硼酸锂:
    Figure PCTCN2022131898-appb-100001
    式中,x+y=4,x≥0,y≥1,且x、y为正整数;
    第二添加剂,所述第二添加剂为磺酸酯化合物或硫酸酯化合物,所述磺酸酯类化合物包括:下式(B-1)所示的链状磺酸酯化合物和/或下式(B-2)所示的环状磺酸酯化合物;所述硫酸酯化合物包括:下式(C-1)所示的链状硫酸酯化合物和/或下式(C-2)所示的环状硫酸酯化合物;
    Figure PCTCN2022131898-appb-100002
    其中:
    R 1、R 2、R 4、R 5独立地选自C1-C6烷基、C1-C6卤代烷基、C2-C6 烯基、C2-C6卤代烯基、C2-C6炔基或C2-C6卤代炔基中的至少一种;
    R 3、R 6独立地选自C1-C6亚烷基、C1-C6卤代亚烷基、C2-C6亚烯基或C2-C6卤代亚烯基中的至少一种。
  2. 根据权利要求1所述的锂离子电池电解液,其特征在于:
    R 1、R 2、R 4、R 5独立地选自C1-C3烷基、C1-C3卤代烷基、C2-C3烯基、C2-C3卤代烯基、C2-C3炔基或C2-C3卤代炔基中的至少一种;
    R 3、R 6独立地选自C1-C3亚烷基、C1-C3卤代亚烷基、C2-C3亚烯基或C2-C3卤代亚烯基中的至少一种。
  3. 根据权利要求1所述的锂离子电池电解液,其特征在于:
    所述第一添加剂选自以下所示结构中的至少一种:
    Figure PCTCN2022131898-appb-100003
    所述第二添加剂选自以下所示结构中的至少一种:
    Figure PCTCN2022131898-appb-100004
    Figure PCTCN2022131898-appb-100005
  4. 根据权利要求1所述的锂离子电池电解液,其特征在于:所述第一添加剂的用量占电解液总质量的0.1~10.0%,第二添加剂的用量占电解液总质量的0.05~5.0%。
  5. 根据权利要求1所述的锂离子电池电解液,其特征在于:所述第一添加剂的用量占电解液总质量的0.1~2.0%,第二添加剂的用量占电解液总质量的0.1~2.0%。
  6. 根据权利要求1所述的锂离子电池电解液,其特征在于:所述电解液还包括第三添加剂,所述第三添加剂选自碳酸酯类添加剂及其衍生物、含氟锂盐添加剂中至少一种,用量占电解液总质量的0.01~5.0%。
  7. 根据权利要求6所述的锂离子电池电解液,其特征在于:所 述第三添加剂选自碳酸亚乙烯酯、氟代碳酸乙烯酯、二氟磷酸锂、双氟磺酰亚胺锂、双三氟甲基磺酰亚胺锂、双草酸二氟磷酸锂、二氟草酸硼酸锂或四氟硼酸锂中的至少一种,用量占电解液总质量的0.1~5.0%,且所述第三添加剂不同于所述主锂盐。
  8. 根据权利要求1所述的锂离子电池电解液,其特征在于:所述主锂盐选自六氟磷酸锂、双氟磺酰亚胺锂或双三氟甲基磺酰亚胺锂中的至少一种,且在电解液中的摩尔浓度为0.4~1.6mol/L;
    所述有机溶剂选自C3~C6碳酸酯类化合物、C3~C8羧酸酯类化合物、砜类化合物、醚类化合物中的至少一种。
  9. 根据权利要求8所述的锂离子电池电解液,其特征在于:所述主锂盐为六氟磷酸锂,且在电解液中的摩尔浓度为0.6~1.2mol/L;
    所述C3~C6碳酸酯类化合物选自碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、氟代碳酸乙烯酯或二氟代碳酸乙烯酯中的至少一种;
    所述C3~C8羧酸酯类化合物选自γ-丁内酯、乙酸甲酯、丙酸甲酯、丁酸甲酯、乙酸乙酯、丙酸乙酯、丁酸乙酯、乙酸丙酯、丙酸丙酯、氟代乙酸乙酯、乙酸(2,2-二氟乙基)酯中的至少一种;
    所述砜类化合物选自环丁砜、二甲基亚砜、二甲基砜或二乙基砜中的至少一种;
    所述醚类化合物选自三甘醇二甲醚、四甘醇二甲醚或1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚中的至少一种。
  10. 一种锂离子电池,包括正极、负极、隔膜,其特征在于:所述锂离子电池还包括权利要求1-9任一所述的锂离子电池电解液。
PCT/CN2022/131898 2021-11-19 2022-11-15 一种锂离子电池电解液及锂离子电池 WO2023088234A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111392128.3 2021-11-19
CN202111392128.3A CN116154282A (zh) 2021-11-19 2021-11-19 一种锂离子电池电解液及锂离子电池

Publications (1)

Publication Number Publication Date
WO2023088234A1 true WO2023088234A1 (zh) 2023-05-25

Family

ID=86356921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131898 WO2023088234A1 (zh) 2021-11-19 2022-11-15 一种锂离子电池电解液及锂离子电池

Country Status (2)

Country Link
CN (1) CN116154282A (zh)
WO (1) WO2023088234A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118040059A (zh) * 2024-04-12 2024-05-14 瑞浦兰钧能源股份有限公司 一种电解液及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102414902A (zh) * 2009-04-22 2012-04-11 中央硝子株式会社 电化学设备用电解质、使用其的电解液及非水电解液电池
WO2019013140A1 (ja) * 2017-07-14 2019-01-17 三井化学株式会社 フルオロリン酸ホウ素リチウム錯化合物、フルオロリン酸ホウ素リチウム含有組成物、フルオロリン酸ホウ素リチウム、リチウム二次電池用添加剤、電池用非水電解液、及びリチウム二次電池
CN110957530A (zh) * 2019-12-02 2020-04-03 东莞维科电池有限公司 一种高电压锂离子电池电解液及高电压锂离子电池
CN115441052A (zh) * 2021-06-03 2022-12-06 浙江省化工研究院有限公司 一种电解液添加剂组合物的制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102414902A (zh) * 2009-04-22 2012-04-11 中央硝子株式会社 电化学设备用电解质、使用其的电解液及非水电解液电池
WO2019013140A1 (ja) * 2017-07-14 2019-01-17 三井化学株式会社 フルオロリン酸ホウ素リチウム錯化合物、フルオロリン酸ホウ素リチウム含有組成物、フルオロリン酸ホウ素リチウム、リチウム二次電池用添加剤、電池用非水電解液、及びリチウム二次電池
CN110957530A (zh) * 2019-12-02 2020-04-03 东莞维科电池有限公司 一种高电压锂离子电池电解液及高电压锂离子电池
CN115441052A (zh) * 2021-06-03 2022-12-06 浙江省化工研究院有限公司 一种电解液添加剂组合物的制备方法及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118040059A (zh) * 2024-04-12 2024-05-14 瑞浦兰钧能源股份有限公司 一种电解液及其应用

Also Published As

Publication number Publication date
CN116154282A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
CN106505249B (zh) 一种锂离子电池电解液及含该电解液的锂离子电池
WO2021110165A1 (zh) 一种低内阻的锂二次电池电解液及锂二次电池
WO2022134254A1 (zh) 一种电解液及其制备方法和锂离子电池
CN105470571B (zh) 锂离子二次电池及其电解液
CN112928332B (zh) 一种高电压锂离子电池非水电解液及锂离子电池
US20220109191A1 (en) Non-aqueous electrolyte for a lithium ion battery and lithium ion battery
CN109687026B (zh) 一种高压三元锂离子电池电解液及含该电解液的锂离子电池
WO2022160464A1 (zh) 一种锂离子电解液及其制备方法和应用
WO2021093265A1 (zh) 一种电解液和电化学装置
US20190372166A1 (en) Electrolyte and lithium-ion battery
CN108390098B (zh) 一种高电压锂离子电池电解液及高电压锂离子电池
CN111900471B (zh) 一种高电压电解液及含有该电解液的锂离子电池
WO2024104049A1 (zh) 电解液及锂离子电池
CN114024030B (zh) 一种非水电解液及含有该非水电解液的电池
WO2023088234A1 (zh) 一种锂离子电池电解液及锂离子电池
WO2024099053A1 (zh) 电解液及锂离子电池
CN111697265A (zh) 一种lncm锰系三元锂离子电池电解液、锂电池及其制备方法
CN113871712B (zh) 锂离子电池电解液及其制备方法和锂离子电池
WO2020135667A1 (zh) 一种非水电解液及锂离子电池
CN113964385B (zh) 电解液及其制备方法和用途
CN111384438A (zh) 一种锂离子电池非水电解液及锂离子电池
WO2022099542A1 (zh) 一种电解液、电化学装置以及电子装置
WO2022095772A1 (zh) 一种锂离子电池非水电解液及锂离子电池
CN114284556A (zh) 一种锂离子电池电解液及锂离子快充电池
CN114709481B (zh) 一种非水电解液及其锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022894768

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022894768

Country of ref document: EP

Effective date: 20240516