WO2018216240A1 - テンプレート、窒化物半導体紫外線発光素子及びテンプレートの製造方法 - Google Patents

テンプレート、窒化物半導体紫外線発光素子及びテンプレートの製造方法 Download PDF

Info

Publication number
WO2018216240A1
WO2018216240A1 PCT/JP2017/035559 JP2017035559W WO2018216240A1 WO 2018216240 A1 WO2018216240 A1 WO 2018216240A1 JP 2017035559 W JP2017035559 W JP 2017035559W WO 2018216240 A1 WO2018216240 A1 WO 2018216240A1
Authority
WO
WIPO (PCT)
Prior art keywords
aln
aln layer
main surface
template
crystal
Prior art date
Application number
PCT/JP2017/035559
Other languages
English (en)
French (fr)
Inventor
平野 光
長澤 陽祐
Original Assignee
創光科学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創光科学株式会社 filed Critical 創光科学株式会社
Priority to US16/066,414 priority Critical patent/US11049999B2/en
Priority to EP17872879.6A priority patent/EP3432369A4/en
Priority to KR1020187019169A priority patent/KR102054094B1/ko
Priority to JP2018502026A priority patent/JP6483913B1/ja
Priority to RU2018119215A priority patent/RU2702948C1/ru
Priority to CN201780005631.4A priority patent/CN109314159B/zh
Priority to TW107107259A priority patent/TWI703742B/zh
Publication of WO2018216240A1 publication Critical patent/WO2018216240A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a template provided with a sapphire substrate, a manufacturing method thereof, and a nitride semiconductor ultraviolet light-emitting device provided with the template.
  • the present invention relates to a template for a nitride semiconductor ultraviolet light emitting device having a peak emission wavelength in the ultraviolet region, a method for producing the same, and the nitride semiconductor ultraviolet light emitting device.
  • a template of a nitride semiconductor ultraviolet light emitting device using an AlGaN-based nitride semiconductor as an active layer a template obtained by epitaxially growing an AlN layer on the main surface of a sapphire substrate is often used.
  • the crystallinity of the underlying semiconductor layer greatly affects the crystallinity of the semiconductor layer thereon. Therefore, the crystallinity of the template surface is particularly important because it affects the overall crystallinity of the semiconductor light emitting device.
  • the better the crystallinity of the surface of the template the better the crystallinity of each semiconductor layer (especially the active layer) provided in the semiconductor light emitting device, and the recombination of electrons and holes that generate light emission is caused by crystal defects. Since it becomes difficult to be inhibited, characteristics such as luminous efficiency are improved.
  • a template produced by epitaxially growing an AlN layer on the main surface of a sapphire substrate can obtain an AlN layer with good crystallinity because of lattice mismatch between sapphire and AlN, and difficulty in migration of Al atoms. There is a problem that is difficult.
  • Patent Documents 1 and 2 and Non-Patent Document 1 propose a template manufacturing method in which the crystallinity of the AlN layer is improved by devising the supply timing of the source gas during the growth of the AlN layer.
  • FIG. 14 is a schematic diagram showing a conventional template manufacturing method, and is a feature article by Hideki Hirayama, one of the inventors of Patent Documents 1 and 2 and one of the authors of Non-Patent Document 1. This is a part of FIG. 3 described in RIKEN NEWS June 2011, pages 2 to 5.
  • Patent Documents 1 and 2 and Non-Patent Document 1 do not greatly change the growth mode of AlN crystals from the past, and cause the crystallinity of the AlN layer to decrease in the past.
  • the crystallinity of the AlN layer is not dramatically improved because it only reduces threading dislocations.
  • the present invention provides a template in which the crystallinity of the AlN layer is dramatically improved by greatly changing the growth mode of the AlN crystal, a manufacturing method thereof, and a nitride semiconductor ultraviolet light emitting device including the template.
  • the purpose is to do.
  • the present invention is formed directly on a sapphire substrate having a (0001) plane or a plane inclined by a predetermined angle with respect to the (0001) plane, and the main surface of the sapphire substrate.
  • An AlN layer composed of an AlN crystal having an epitaxial crystal orientation relationship with respect to the main surface, and an average particle diameter of the AlN crystal at a thickness of 20 nm from the main surface of the AlN layer, A template characterized by being 100 nm or less is provided.
  • the average particle diameter of the AlN crystal at a thickness of 20 nm from the main surface of the AlN layer may be 75 nm or less, or 70 nm or less.
  • an average particle diameter of the AlN crystal at a thickness of 300 nm from the main surface of the AlN layer may be 300 nm or less.
  • the main surface of the sapphire substrate may be a surface inclined by 0.2 ° or more with respect to the (0001) plane. According to this template, it is possible to easily obtain an AlN crystal having a small average particle diameter as described above.
  • the AlN crystal having a thickness of 300 nm from the main surface of the AlN layer may be + C-axis oriented toward the upper side of the sapphire substrate. According to this template, the crystallinity of the AlN layer can be further improved.
  • the present invention also provides a nitride semiconductor ultraviolet light emitting device comprising the above template and an element structure portion including a plurality of AlGaN-based semiconductor layers stacked on the template.
  • the present invention provides a process of forming an AlN layer by directly epitaxially growing an AlN crystal on the main surface of a sapphire substrate whose main surface is a (0001) plane or a plane inclined by a predetermined angle with respect to the (0001) plane. And in the step, the AlN crystal is epitaxially grown under growth conditions such that an average grain size of the AlN crystal on the surface of the AlN layer epitaxially grown from the main surface to a thickness of 20 nm is 100 nm or less.
  • a template manufacturing method is provided.
  • the present invention provides a process of forming an AlN layer by directly epitaxially growing an AlN crystal on the main surface of a sapphire substrate whose main surface is a (0001) plane or a plane inclined by a predetermined angle with respect to the (0001) plane.
  • the AlN layer is grown under a growth condition in which an average grain size of the AlN crystal on the surface of the AlN layer epitaxially grown from the main surface to a thickness of 300 nm is 300 nm or less. May be epitaxially grown.
  • the RMS value of the surface roughness of the AlN layer epitaxially grown to a thickness of 20 nm from the main surface is the AlN epitaxially grown to a thickness of 300 nm from the main surface.
  • the AlN layer may be epitaxially grown under growth conditions that are equal to or less than the RMS value of the surface roughness of the layer.
  • the AlN layer may be epitaxially grown under a growth condition in which the RMS value of the surface roughness of the AlN layer epitaxially grown from the main surface to a thickness of 20 nm is 5 nm or less, or a thickness of 300 nm from the main surface.
  • the AlN layer may be epitaxially grown under a growth condition in which the RMS value of the surface roughness of the AlN layer epitaxially grown is 10 nm or less.
  • the AlN layer is epitaxially grown under a growth condition in which the AlN crystal on the surface of the AlN layer epitaxially grown from the main surface to a thickness of 300 nm is + C-axis oriented. Also good. According to this template manufacturing method, the crystallinity of the AlN layer can be further improved.
  • the growth temperature of the AlN layer may be 1150 ° C. or higher and 1300 ° C. or lower.
  • the AlN crystal can be suitably epitaxially grown on the main surface of the sapphire substrate.
  • the crystallinity of the AlN layer epitaxially grown on the main surface of the sapphire substrate can be dramatically improved.
  • the nitride semiconductor ultraviolet light-emitting device using this template can improve the crystallinity of the device structure portion, and thus improve the characteristics such as light emission efficiency.
  • the principal part sectional view showing typically an example of the structure of the nitride semiconductor ultraviolet light emitting element concerning the embodiment of the present invention.
  • the top view which showed typically an example of the structure at the time of seeing the nitride semiconductor ultraviolet light emitting element shown in FIG. 1 from the upper side of FIG.
  • FIG. 9 is a table showing the measurement results of the AlN crystal grain size shown in FIGS.
  • the table shown. The AFM image of a 300 nm thick AlN layer grown on the main surface of a sapphire substrate with an off angle of 0.2 °, and the RMS value of the AlN crystal grain size and AlN layer surface roughness measured by the AFM apparatus. The table shown.
  • FIG. The table
  • a template including a sapphire substrate and an element structure portion having a plurality of AlGaN-based semiconductor layers stacked on the template and having a peak emission wavelength of 365 nm or less by energization
  • a nitride semiconductor ultraviolet light-emitting element that is a light-emitting diode that emits light (ultraviolet light) and a manufacturing method thereof will be exemplified.
  • an AlGaN-based semiconductor that is a material constituting each of the AlGaN-based semiconductor layers included in the element structure portion includes AlGaN, AlN, or GaN, or a small amount of impurities (for example, Si, Mg, In, etc.).
  • the relative composition ratio of Al and Ga is expressed by using subscripts with respect to Al and Ga as needed (for example, Al X Ga 1-X N).
  • the structure of the element structure portion on the template may be any structure, and is limited to the structure exemplified in the following ⁇ nitride semiconductor ultraviolet light emitting element>. It is not something.
  • FIG. 1 is a cross-sectional view of an essential part schematically showing an example of the structure of a nitride semiconductor ultraviolet light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a plan view schematically showing an example of the structure of the nitride semiconductor ultraviolet light-emitting device shown in FIG. 1 when viewed from the upper side of FIG. In FIG.
  • the thicknesses of the substrate, the AlGaN-based semiconductor layer, and the electrodes are schematically shown, and therefore do not necessarily match the actual dimensional ratio.
  • an AlGaN-based semiconductor that does not describe both p-type and n-type is undoped, but even if it is undoped, a trace amount of impurities that are inevitably mixed may be included.
  • the nitride semiconductor ultraviolet light emitting device 1 includes a template 10 including a sapphire substrate 11, a plurality of AlGaN-based semiconductor layers 21 to 24, and electrodes 25 and 26.
  • the element structure part 20 is included.
  • the nitride semiconductor ultraviolet light emitting element 1 is mounted (flip-chip mounted) with the element structure 20 side (upper side in FIG. 1) facing the mounting base.
  • the take-out direction is the template 10 side (the lower side in the drawing in FIG. 1).
  • the template 10 includes a sapphire substrate 11 whose main surface is a (0001) plane or a plane inclined by a predetermined angle (off angle) with respect to the (0001) plane, and an AlN layer directly formed on the main surface of the sapphire substrate 11.
  • the AlN layer 12 is composed of an AlN crystal epitaxially grown from the main surface of the sapphire substrate 11, and the AlN crystal has an epitaxial crystal orientation relationship with respect to the main surface of the sapphire substrate 11. Specifically, for example, the AlN crystal grows so that the C-axis direction ( ⁇ 0001> direction) of the sapphire substrate 11 and the C-axis direction of the AlN crystal are aligned.
  • the AlN crystal constituting the AlN layer 12 may contain a trace amount of Ga and other impurities. Further, a layer made of an Al ⁇ Ga 1- ⁇ N (1> ⁇ > 0) based semiconductor may be further formed on the upper surface of the AlN layer 12.
  • the element structure unit 20 has a structure in which an n-type cladding layer 21, an active layer 22, an electron blocking layer 23, and a p-type contact layer 24 are sequentially epitaxially grown from the template 10 side.
  • the n-type cladding layer 21 is composed of an n-type Al X Ga 1-X N (1 ⁇ X> 0) based semiconductor.
  • the active layer 22 includes a well layer made of Al Y1 Ga 1-Y1 N-based semiconductor (X> Y1 ⁇ 0), a barrier layer made of Al Y2 Ga 1-Y2 N (X ⁇ Y2> Y1), and Each has a single or multiple quantum well structure in which one or more layers are alternately stacked.
  • the electron block layer 23 is composed of a p-type Al Z Ga 1-Z N (1 ⁇ Z ⁇ Y2) based semiconductor.
  • the p-type contact layer 24 is composed of a p-type Al Q Ga 1-Q N (Z> Q ⁇ 0) based semiconductor.
  • the element structure 20 includes, for example, a p-electrode 25 made of Ni / Au and formed on the upper surface of the p-type contact layer 24, and an n-type cladding layer 21 made of, for example, Ti / Al / Ti / Au.
  • An n electrode 26 formed on the upper surface of the n-type cladding layer 21 is provided in a part of the exposed region.
  • the AlN layer 11 included in the template 10 and the AlGaN-based semiconductor layers 21 to 21 included in the element structure 20 are formed by a known epitaxial growth method such as an organic metal compound vapor phase growth (MOVPE) method or a molecular beam epitaxy (MBE) method.
  • MOVPE organic metal compound vapor phase growth
  • MBE molecular beam epitaxy
  • 24 are sequentially epitaxially grown on the sapphire substrate 11 and stacked.
  • the n-type layer is doped with, for example, Si as a donor impurity
  • the p-type layer is doped with, for example, Mg as an acceptor impurity.
  • a partial region of the semiconductor layer laminated as described above is selectively etched by a known etching method such as reactive ion etching to expose the n-type cladding layer 21 in the region.
  • the p-electrode 25 is formed on the p-type contact layer 24 in the unetched region and the n-type cladding layer 21 in the etched region by a known film forming method such as an electron beam evaporation method.
  • An n-electrode 26 is formed.
  • heat treatment may be performed by a known heat treatment method such as RTA (instantaneous thermal annealing).
  • the template 10 described above is characterized by the AlN layer 12 formed on the main surface of the sapphire substrate 11, and the sapphire substrate 11 can epitaxially grow the AlN layer 12 (particularly in the C-axis direction). Any material can be used as long as it can grow.
  • the template 10 according to the embodiment of the present invention is a template proposed in Patent Documents 1 and 2 and Non-Patent Document 1 in that the grain size of the AlN crystal formed on the main surface of the sapphire substrate 11 is as small as possible. It is very different.
  • the grain size of the AlN crystal depends on various growth conditions such as the off angle of the sapphire substrate 11, the growth temperature (substrate temperature), the supply amount and supply ratio of raw materials (V / III ratio), and the supply amount of carrier gas. It depends on the film forming apparatus used.
  • AlN crystal nuclei are formed on a sapphire substrate, and an AlN layer is grown so as to fill the space between the AlN crystal nuclei.
  • the growth temperature is preferably 1150 ° C. or higher and 1300 ° C. or lower, from the viewpoint of suitably epitaxially growing an AlN crystal on the main surface of the sapphire substrate 11. More preferably, the temperature is less than ° C.
  • FIG. 3 to 5 are AFM (Atomic Force Microscope) images of the surface of the AlN layer grown to a thickness of 20 nm in the template according to the embodiment of the present invention.
  • FIG. 3 is an AFM image of an AlN layer having a thickness of 20 nm grown on the main surface of a sapphire substrate having an off angle of 0.2 °.
  • FIG. 4 is an AFM image of an AlN layer having a thickness of 20 nm grown on the main surface of a sapphire substrate having an off angle of 0.5 °.
  • FIG. 5 is an AFM image of an AlN layer having a thickness of 20 nm grown on the main surface of a sapphire substrate with an off angle of 1.0 °.
  • FIG. 6 to 9 are tables showing the grain sizes of AlN crystals measured from the AFM image of the surface of the AlN layer grown to a thickness of 20 nm in the template according to the embodiment of the present invention.
  • FIG. 6 is a table showing the grain size of the AlN crystal measured from the AFM image of the 20 nm thick AlN layer grown on the main surface of the sapphire substrate having an off angle of 0.2 °.
  • FIG. 7 is a table showing the grain size of the AlN crystal measured from the AFM image of the 20 nm thick AlN layer grown on the main surface of the sapphire substrate having an off angle of 0.5 °.
  • FIG. 6 is a table showing the grain size of the AlN crystal measured from the AFM image of the 20 nm thick AlN layer grown on the main surface of the sapphire substrate having an off angle of 0.5 °.
  • FIG. 8 is a table showing the grain size of the AlN crystal measured from the AFM image of the 20 nm thick AlN layer grown on the main surface of the sapphire substrate having an off angle of 1.0 °.
  • FIG. 9 shows the result of measurement of the AlN crystal grain size shown in FIGS. 6 to 8 together with the RMS (Root ⁇ MeanNSquare) value of the AlN crystal grain size and AlN layer surface roughness measured by the AFM apparatus. It is the table shown.
  • the measurement results shown in FIGS. 6 to 8 show that the measurement region of the AFM image having a size of 500 nm ⁇ 500 nm is divided into 25 small regions of 100 nm ⁇ 100 nm, and the AlN crystal contained in each small region is divided. It is the result of measuring the particle size one by one.
  • AlN crystals located on the boundaries of the small regions are allocated to small regions including more than half of the AlN crystals, the grain size cannot be measured for AlN crystals located on the boundaries of the measurement regions. Ignored.
  • the AlN crystal in the AFM image is generally circular or elliptical (strictly speaking, it is considered to have a shape close to a hexagon, and some grains have sides (facets) visible.
  • the average particle size and standard deviation of “individually measured values” are values when AlN crystals in an AFM image are measured one by one as shown in FIGS.
  • the average particle diameter, standard deviation and surface roughness RMS value of “instrument measurement values” were measured by an AFM apparatus (probe station: NanoNaviIIs, scanning probe microscope unit: NanoCute, software: NanoNaviStation ver5.6B). Value.
  • This AFM apparatus regards one closed region that is equal to or higher than a predetermined threshold height (for example, an intermediate value such as an average value or median) among the heights of the measurement points in the measurement region as one particle.
  • each of the number of particles and the total area of the particles is detected, and the diameter of a circle having an average particle area obtained by dividing the total particle area by the number of particles is calculated as the average particle diameter. Furthermore, this AFM apparatus calculates the standard deviation of the particle area.
  • the value obtained by converting the standard deviation of the particle area into the standard deviation of the diameter of the circle is the standard deviation of the particle diameter of the “apparatus measurement value” in FIG.
  • the RMS value of the surface roughness is a value of Rq calculated by the following formula (1).
  • Z (i) is the height of each measurement point in the measurement region
  • n is the number of measurement points in the measurement region
  • Ze is the average height of each measurement point in the measurement region. Value.
  • the grain size of approximately 20 nm or more and 100 nm or less in any sample with the off-angle of the sapphire substrate 1 of 0.2 °, 0.5 °, and 1.0 °.
  • the AlN crystal is densely packed.
  • the average particle diameter of AlN crystals obtained by measuring one AlN crystal in the AFM image and the average particle diameter of AlN crystals measured by the AFM apparatus are about the same size. It can be said that the average particle diameter of the AlN crystal measured by any method is also an appropriate value.
  • FIGS. 10 and 11 show an AFM image of an AlN layer grown to a thickness of 300 nm and an RMS value of the particle size and surface roughness measured by the AFM apparatus in the template according to the embodiment of the present invention.
  • FIG. 10 shows an AFM image of a 300 nm thick AlN layer grown on the main surface of a sapphire substrate with an off angle of 0.2 °, the grain size of the AlN crystal measured by the AFM apparatus, and the surface roughness of the AlN layer. It is the table
  • FIG. 11 shows an AFM image of a 300 nm thick AlN layer grown on the main surface of a sapphire substrate with an off angle of 1.0 °, the grain size of the AlN crystal measured by the AFM apparatus, and the surface roughness of the AlN layer. It is the table
  • FIG. 12 is a diagram showing a comparison between an AlN layer in a template according to an embodiment of the present invention and an AlN layer in a conventional template described in Patent Document 1 and Non-Patent Document 1.
  • FIG. 12A is an AFM image of the AlN layer in the conventional template described in Patent Literature 1 and Non-Patent Literature 1.
  • FIG. 12B shows an AFM image of the AlN layer in the template according to the embodiment of the present invention (a diagram in which a plurality of AFM images in FIG.
  • the AFM image of the AlN layer in the conventional template described in Patent Document 1 and Non-Patent Document 1 shown in FIG. 12A is an AlN nucleation layer (the main surface of the sapphire substrate) formed on the main surface of the sapphire substrate.
  • 2 is an AFM image of an initial stage layer in an AlN layer having a thickness of 300 nm that is formed first, and corresponds to the state (thickness 20 nm) of FIGS. 3 to 5 of the template according to the embodiment of the present application.
  • some AlN crystals are coalesced to a size of several ⁇ m, and it is difficult to measure the particle size before coalescence. Even a small AlN crystal has an average particle size of about 1000 nm.
  • the average particle diameter of the AlN crystal in the AlN layer of the template according to the embodiment of the present invention is the template described in Patent Document 1 and Non-Patent Document 1. This is significantly smaller than the average grain size of AlN crystals in the AlN layer.
  • the average particle diameter of the AlN crystal at the growth start stage of the AlN layer is about 1000 nm. Furthermore, in the templates described in Patent Document 1 and Non-Patent Document 1, when the thickness of the AlN layer reaches 300 nm, a plurality of existing AlN crystals are completely combined into a film shape, and the individual crystals are observed. It becomes impossible.
  • the average grain size of the AlN crystal at the growth start stage (thickness 20 nm) of the AlN layer is only about 50 nm. Furthermore, in the template according to the embodiment of the present invention, even when the thickness of the AlN layer becomes 300 nm, it can be sufficiently observed as individual crystals, and the average grain size is only about 200 nm.
  • the RMS value of the surface roughness at the growth start stage of the AlN layer is 21.4 nm, and the surface roughness at the stage when the thickness of the AlN layer becomes 300 nm.
  • the RMS value is estimated to be a value between 21.4 nm and 8.2 nm (see FIG. 4B of Patent Document 1).
  • the RMS value of the surface roughness at the growth start stage (thickness 20 nm) of the AlN layer is about 3 nm, and the surface roughness at the stage when the thickness of the AlN layer is 300 nm.
  • the RMS value is about 5 nm. Therefore, the RMS value of the surface roughness in the AlN layer of the template according to the embodiment of the present invention is significantly smaller than the RMS value of the surface roughness in the AlN layer of the template described in Patent Document 1 and Non-Patent Document 1.
  • a fine initial AlN crystal is grown in a large amount and at a high density, so that the RMS value of the surface roughness at the growth start stage of the AlN layer becomes relatively small. Then, since individual AlN crystals coalesce or become coarse after that, the RMS value of the surface roughness of the AlN layer at this stage (the stage where the thickness of the AlN layer becomes 300 nm) is the growth start stage. The same as or more than the RMS value of the surface roughness of the AlN layer.
  • the templates described in Patent Documents 1 and 2 and Non-Patent Document 1 and the template according to the embodiment of the present invention are fundamentally different in the growth mode of the AlN crystal at the growth start stage of the AlN layer.
  • the difference is expressed in the RMS value of the average grain size of the AlN crystal and the surface roughness of the AlN layer.
  • an AlN layer is further grown (thickness is made larger than 300 nm, for example, 1 ⁇ m or more, preferably 2 ⁇ m or more), individual AlN crystals are formed.
  • the films are gradually merged, and finally a film-like AlN layer is obtained.
  • FIG. 13 is a table showing measurement results by XRC (X-ray Rocking Curve) method for the (0002) plane of the AlN layer in the template according to the embodiment of the present invention.
  • 13A is a table showing the measurement result of the ⁇ scan
  • FIG. 13B is a table showing the measurement result of the 2 ⁇ - ⁇ scan, and the numerical values described in each table correspond to the (0002) plane. It is the average value of the full width at half maximum (FWHM: FullHWidth at Half Maximum). Further, in the ⁇ scan measurement shown in FIG.
  • the full width at half maximum of the (0002) plane when the thickness of the AlN layer is 20 nm is It is about 1000 arcsec.
  • the full width at half maximum of the (0002) plane when the thickness of the AlN layer is 300 nm is about 100 arcsec.
  • the full width at half maximum of the (0002) plane in the AlN layer grown on the (0001) plane of the sapphire substrate by about several ⁇ m without particularly limiting the grain size of the AlN crystal is about 2000 arcsec.
  • Non-Patent Document 1 a few AlN crystal nuclei are formed at the stage of starting the growth of the AlN layer, a film-like AlN layer that embeds the AlN crystal nuclei is grown, and further, during the growth of the AlN layer. It is reported that the full width at half maximum of the (0002) plane in the AlN layer grown to a thickness of 4.8 ⁇ m has been improved to about 200 arcsec by promoting the lateral growth.
  • the full width at half maximum of the (0002) plane at the growth start stage (thickness 20 nm) of the AlN layer is already as small as about 1000 arcsec, and the thickness reaches 300 nm.
  • the full width at half maximum of the (0002) plane in the grown AlN layer is further reduced to about 100 arcsec. That is, in the template according to the embodiment of the present invention, the AlN layer must be grown to a thickness of 4.8 ⁇ m in the templates described in Patent Document 1 and Non-Patent Document 1 only by growing the AlN layer by about 300 nm. A crystallinity equal to or higher than that which could not be achieved can be realized.
  • WHEREIN The further improvement of crystallinity is anticipated by growing an AlN layer thicker.
  • the average particle diameter of the AlN crystal epitaxially grown on the main surface of the sapphire substrate is described in Patent Document 1 and Non-Patent Document 1 (Furthermore, Patent Document 2 in which an AlN layer is formed by the same method).
  • the crystallinity of the AlN layer epitaxially grown on the main surface of the sapphire substrate can be dramatically improved by making it sufficiently smaller than the average grain size of the AlN crystal in the AlN layer of the template.
  • the average particle diameter of AlN crystal in the template according to the embodiment of the present invention shown in FIGS. 6 to 12 and the range and the deviation of the variation of the particle diameter, the template according to the embodiment of the present invention, and Patent Document 1 and Non-Patent Document In consideration of the deviation of the grain size of the AlN crystal in each of the templates described in No. 1, the above effect can be obtained by setting the average grain size of the AlN crystal at the growth start stage (thickness 20 nm) of the AlN layer to 100 nm or less. It is thought that it is obtained. In particular, in FIGS.
  • the average particle size of AlN crystal is preferably 75 nm or less, and the average particle size is 70 nm or less. More preferably.
  • the average particle size is preferably 20 nm or more.
  • the average value of the minimum value of AlN crystals is about 28 nm, so the average particle size of AlN crystals is 28 nm or more. More preferably.
  • the average grain size of the AlN crystal in the AlN layer having a thickness of 300 nm to 300 nm or less, and it is more preferable to set the average grain size to 250 nm or less. Further, it is preferable that the average particle diameter is 150 nm or more.
  • the RMS value of the surface roughness of the AlN layer in the growth start stage (thickness 20 nm) of the AlN layer is set to 5 nm or less. An effect is considered to be obtained, and it is more preferable that the RMS value is 4 nm or less. Further, it is preferable that the RMS value is 2 nm or more.
  • the above effect can be obtained by setting the RMS value of the surface roughness of the AlN layer having a thickness of 300 nm to 10 nm or less, and it is more preferable to set the RMS value to 6 nm or less. Further, it is preferable that the RMS value is 4 nm or more.
  • AlN which is a wurtzite structure
  • the C-axis direction ([000-1] direction) is not equivalent, and the + C plane ((0001) plane: Al polar plane) and the ⁇ C plane ((000-1) plane: N polar plane) are not equivalent.
  • an AlN crystal is epitaxially grown on the (0001) plane of the sapphire substrate, an AlN crystal growing in the + C axis direction and an AlN crystal growing in the ⁇ C axis direction can coexist.
  • the AlN crystal constituting the AlN layer is oriented in the + C axis toward the upper side of the substrate (the main growth direction of the AlN crystal is the + C axis direction, or the entire surface of the AlN layer or most of the surface (for example, 80% or more) (Preferably 90% or more) to the + C plane) is preferable because the crystallinity of the AlN layer can be further improved.
  • the method employed in Applied Physics Express 4 (2011) 092102 can be cited.
  • an Al source gas eg, TMA: TriMethylAluminium
  • an N source gas eg, ammonia
  • At least 50% of the surface of the AlN layer grown from the main surface of the sapphire substrate to a thickness of 20 nm is formed. It is a + C plane, and at least 80% or more of the surface of the AlN layer grown to a thickness of 300 nm is a + C plane (+ C axis orientation).
  • the template whose off angles of the sapphire substrate are 0.2 °, 0.5 °, and 2.0 ° has been described.
  • the off-angle of the sapphire substrate is arbitrary. However, it is preferable to set the off angle to 0.2 ° or more because an AlN crystal of the same degree as in the above-described embodiment can be easily obtained.
  • Patent Documents 1 and 2 and Non-Patent Document 1 after an AlN crystal nucleus is formed on the main surface of the sapphire substrate (first stage in FIG. 14), an AlN crystal is formed. An AlN layer is formed so as to fill between the nuclei (second stage in FIG. 14). At this time, since the AlN crystal nuclei are only scattered on the main surface of the sapphire substrate as shown in the first stage of FIG. 14, the main surface of the sapphire substrate is sufficiently covered at this stage. It is not a “layer”.
  • paragraph [0060] of the specification of Patent Document 2 states that “AlN crystal nuclei having a diameter of 20 to 50 nm and a height of 20 to 40 nm are formed at a density of about 200 / ⁇ m 2 ”.
  • the coverage of the AlN crystal nuclei is such that all of the 200 AlN crystal nuclei are within a region of 1 ⁇ m 2 without missing, and all the AlN crystal nuclei have a circular shape in plan view with a diameter of 50 nm.
  • the total area occupied by AlN crystal nuclei is less than 0.4 ⁇ m 2 and the coverage is only less than 40%. Therefore, in the state in which only AlN crystal nuclei are formed in Patent Documents 1 and 2 and Non-Patent Document 1, a “layer” is clearly not formed.
  • Patent Documents 1 and 2 and Non-Patent Document 1 as shown in the second stage of FIG. 14, the main surface of the sapphire substrate is sufficiently formed when a film-like AlN crystal that fills the space between AlN crystal nuclei is formed. A covering “layer” is formed. Then, when the second stage of FIG. 14 is reached, a film-like AlN crystal having an extremely large average particle diameter fused with the AlN crystal nucleus is formed as shown in FIG. 12, and thus the AlN crystal constituting the AlN layer is formed.
  • the average particle size is as large as about 1000 nm.
  • paragraph [0071] of the specification of Patent Document 2 confirms that “the AlN crystal nuclei 2a are bonded together and the AlN layer on the one surface side of the single crystal substrate 1 is flattened to some extent.
  • the density of the exposed AlN crystal nuclei 2a decreased to about 100 / ⁇ m 2
  • the diameter of the AlN crystal nuclei 2a increased to about 50 to 100 nm.
  • the thickness of the film-like AlN crystal is increased and part of the AlN crystal nuclei are filled with the film-like AlN crystal, and the top of the remaining AlN crystal nuclei is exposed. It means that it is in a state. In this state, as shown in FIG. 12, there is a film-like AlN crystal having a large average particle size fused with the AlN crystal nucleus, so the average particle size of the AlN crystal constituting the AlN layer is about 1000 nm. And become very large.
  • the fine AlN crystal constituting the AlN layer is already formed and the sapphire substrate is already formed.
  • a “layer” that sufficiently covers the main surface is formed. This will be specifically described below with reference to the drawings.
  • FIG. 15 is a table showing the height difference in the measurement region of the 300 nm thick AlN layer in the template according to the embodiment of the present invention.
  • FIG. 16 is a table showing the height difference in the measurement region and the cumulative frequency of 90% of the 20 nm thick AlN layer in the template according to the embodiment of the present invention.
  • the height difference in the measurement region is a difference between the highest peak height in the measurement region and the lowest valley height in the measurement region in the measurement by the above-described AFM apparatus.
  • the cumulative frequency of 90% is the height when the cumulative total reaches 90% when the height in the measurement region is counted in order from the highest.
  • the height difference in the measurement region of the AlN layer having a thickness of 300 nm is a value obtained from the two measurement regions described in the respective tables of FIGS.
  • the height difference in the measurement region and the height of the cumulative frequency of 90% of the 20 nm thick AlN layer are the two of the three measurement regions described in the respective tables of FIGS. It is the value obtained from the measurement area.
  • FIG. 17 is a diagram showing an example of a height profile and a height histogram of an AlN layer having a thickness of 20 nm in the template according to the embodiment of the present invention, and is a first measurement in the table shown in FIG. It is the figure which showed the detail of the area
  • the height difference in the measurement region of the AlN layer having a thickness of 300 nm is about 40 nm, which is sufficiently smaller than the thickness of the AlN layer.
  • a sufficiently thick AlN crystal exists also in the deepest valley in the measurement region. Therefore, in the 300 nm thick AlN layer, the entire main surface of the sapphire substrate is covered with AlN crystal, and the coverage of the main surface of the sapphire substrate with AlN crystal is 100%.
  • the height difference in the measurement region of the 20 nm thick AlN layer is about 20 nm, which is about the same as the thickness of the AlN layer. Therefore, there is a possibility that the AlN crystal does not exist in the deepest valley in the measurement region.
  • the height of 90% cumulative frequency of the 20 nm thick AlN layer is about 5 nm.
  • the coverage of the main surface of the sapphire substrate with the AlN crystal at the time of forming the 20 nm thick AlN layer is 90% or more, and the main surface of the sapphire substrate is sufficiently covered It can be said that it has become a “layer”.
  • the valley bottom is not flat in the height profile of FIG.
  • the cumulative frequency of 90% is as high as 5.30 nm, and the cumulative frequency up to 1 nm (or 2 nm) is very close to 100%. ing.
  • this tendency is not limited to the measurement region shown in FIG. 17 (the first measurement region in the table shown in FIG. 16), but also other measurement regions in the table shown in FIG. 16 (the table shown in FIG. 16). This is also applicable to the 2nd to 6th measurement areas). Therefore, in the template according to the embodiment of the present invention, it can be said that the AlN crystal sufficiently covers the main surface of the sapphire substrate even if the AlN crystal does not exist in the deepest valley in the measurement region.
  • the AlN crystal is a “layer” that sufficiently covers the main surface of the sapphire substrate, and the AFM images shown in FIGS. 3 to 5 and FIG. As is clear from the height profile shown in FIG. 5), adjacent AlN crystals have already collided at this point. Therefore, in the template according to the embodiment of the present invention, even if the AlN crystal grows from the state shown in FIGS. 3 to 5 (the state where the AlN layer is grown by a thickness of 20 nm), the thickness from the main surface of the sapphire substrate is increased. The average particle diameter of the AlN crystal at 20 nm does not vary so much. Therefore, in the template according to the embodiment of the present invention, the average particle diameter of the AlN crystal at a thickness of 20 nm from the main surface of the sapphire substrate is 100 nm or less (further 75 nm or less).
  • the present invention can be used for a template including a sapphire substrate, a manufacturing method thereof, and a nitride semiconductor ultraviolet light emitting element including the template.
  • a template including a sapphire substrate, a manufacturing method thereof, and a nitride semiconductor ultraviolet light emitting element including the template.
  • it is suitable for use in a nitride semiconductor ultraviolet light emitting element template having a peak emission wavelength in the ultraviolet region, a method for manufacturing the same, and the nitride semiconductor ultraviolet light emitting element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Led Devices (AREA)

Abstract

テンプレートは、(0001)面または(0001)面に対して所定の角度だけ傾斜した面を主面とするサファイア基板と、サファイア基板の主面に直接形成される当該主面に対してエピタキシャルな結晶方位関係を有するAlN結晶で構成されたAlN層と、を備える。当該テンプレートにおいて、AlN層の主面から20nmの厚さにおけるAlN結晶の平均粒径は、100nm以下である。

Description

テンプレート、窒化物半導体紫外線発光素子及びテンプレートの製造方法
 本発明は、サファイア基板を備えたテンプレート及びその製造方法と、当該テンプレートを備えた窒化物半導体紫外線発光素子とに関する。特に、ピーク発光波長が紫外領域にある窒化物半導体紫外線発光素子用のテンプレート及びその製造方法と、当該窒化物半導体紫外線発光素子とに関する。
 AlGaN系の窒化物半導体を活性層に用いた窒化物半導体紫外線発光素子のテンプレートとして、サファイア基板の主面にAlN層をエピタキシャル成長させたテンプレートが用いられることが多い。
 複数の半導体層を順番にエピタキシャル成長させることで作製される半導体発光素子では、下地の半導体層の結晶性が、その上の半導体層の結晶性に大きな影響を与えることになる。そのため、テンプレートの表面の結晶性は、半導体発光素子の全体の結晶性に影響を与えることになるため、特に重要である。そして、テンプレートの表面の結晶性が良好であるほど、半導体発光素子が備える各半導体層(特に、活性層)の結晶性も良好になり、発光を生じる電子及び正孔の再結合が結晶欠陥によって阻害され難くなるため、発光効率等の特性が良好になる。
 しかし、サファイア基板の主面にAlN層をエピタキシャル成長させて作製されるテンプレートは、サファイアとAlNの格子不整合や、Al原子がマイグレーションし難い等の理由から、良好な結晶性のAlN層を得ることが困難であるという問題がある。
 この問題に関して、AlN層の成長時における原料ガスの供給タイミングを工夫することで、AlN層の結晶性を改善したテンプレートの製造方法が、特許文献1、2及び非特許文献1で提案されている。ここで、特許文献1、2及び非特許文献1で提案されているテンプレートの製造方法について、図面を参照して説明する。図14は、従来のテンプレートの製造方法を示した模式図であり、特許文献1及び2の発明者の1人であって非特許文献1の著者の1人でもある平山秀樹氏の特集記事(RIKEN NEWS June 2011の2~5頁)に記載されている図3の一部である。
 特許文献1、2及び非特許文献1で提案されているテンプレートの製造方法は、最初にサファイア基板の主面上にいくつかのAlN結晶核を形成した後に(図14の第1段階)、Alの原料ガスを連続的に供給しながらNの原料ガス(アンモニア)をパルス的に供給することで、AlN結晶核の間の隙間を埋め込むAlN層を成長させる(図14の第2段階)。このような方法で成長させたAlN層は、単にサファイア基板の主面上で膜状に成長させたAlN層と比較して、貫通転位が少なくなる。そして、その後は、AlN層の膜厚を増大させて、表面を平坦化する(図14の第3段階)。なお、特許文献1及び非特許文献1で提案されているテンプレートの製造方法では、AlN層の膜厚を増大させている途中において、図14の第2段階と同様の方法で原料ガスを供給することによって、AlN結晶の横方向成長を促進させる(図14の第4段階)。これにより、AlN層の成長に伴い上方に伝播しようとする貫通転位が横方向に曲げられることで、AlN層の最終表面における結晶性が改善される。
特開2009-54780号公報 国際公開第2013/005789号
Physica Status Solidi,A206,No.6,1176-1182(2009)
 しかしながら、特許文献1、2及び非特許文献1で提案されているテンプレートの製造方法は、AlN結晶の成長態様を従来から大きく変更するものではなく、従来においてAlN層の結晶性が低下する原因とされていた貫通転位を低減するものに留まるものであるため、AlN層の結晶性を劇的に改善するまでには至らない。
 そこで、本発明は、AlN結晶の成長態様を従来から大きく変更することによってAlN層の結晶性を劇的に改善したテンプレート及びその製造方法と、当該テンプレートを備えた窒化物半導体紫外線発光素子を提供することを目的とする。
 上記目的を達成するため、本発明は、(0001)面または(0001)面に対して所定の角度だけ傾斜した面を主面とするサファイア基板と、前記サファイア基板の前記主面に直接形成される、当該主面に対してエピタキシャルな結晶方位関係を有するAlN結晶で構成されたAlN層と、を備え、前記AlN層の前記主面から20nmの厚さにおける前記AlN結晶の平均粒径が、100nm以下であることを特徴とするテンプレートを提供する。
 さらに、上記特徴のテンプレートにおいて、前記AlN層の前記主面から20nmの厚さにおける前記AlN結晶の平均粒径が、75nm以下であってもよいし、70nm以下であってもよい。また、上記特徴のテンプレートにおいて、前記AlN層の前記主面から300nmの厚さにおける前記AlN結晶の平均粒径が、300nm以下であってもよい。
 また、上記特徴のテンプレートにおいて、前記サファイア基板の前記主面が、(0001)面に対して0.2°以上傾斜した面であってもよい。このテンプレートによれば、上記のような平均粒径が小さいAlN結晶を得られ易くすることができる。
 また、上記特徴のテンプレートにおいて、前記AlN層の前記主面から300nmの厚さにおける前記AlN結晶は、前記サファイア基板の上方に向かって+C軸配向していてもよい。このテンプレートによれば、AlN層の結晶性をさらに改善させることができる。
 また、本発明は、上記のテンプレートと、前記テンプレート上に積層された複数のAlGaN系半導体層を含む素子構造部と、を備えることを特徴とする窒化物半導体紫外線発光素子を提供する。
 また、本発明は、(0001)面または(0001)面に対して所定の角度だけ傾斜した面を主面とするサファイア基板の前記主面にAlN結晶を直接エピタキシャル成長させてAlN層を形成する工程を備え、前記工程において、前記主面から20nmの厚さまでエピタキシャル成長させた前記AlN層の表面における前記AlN結晶の平均粒径が100nm以下になる成長条件で、前記AlN結晶をエピタキシャル成長させることを特徴とするテンプレートの製造方法を提供する。
 また、本発明は、(0001)面または(0001)面に対して所定の角度だけ傾斜した面を主面とするサファイア基板の前記主面にAlN結晶を直接エピタキシャル成長させてAlN層を形成する工程を備え、前記工程において、前記主面の90%以上を被覆する前記AlN層を20nmの厚さまでエピタキシャル成長させた時に、前記AlN層の表面における前記AlN結晶の平均粒径が100nm以下になる成長条件で、前記AlN結晶をエピタキシャル成長させることを特徴とするテンプレートの製造方法を提供する。
 また、上記特徴のテンプレートの製造方法の前記工程において、前記主面から300nmの厚さまでエピタキシャル成長させた前記AlN層の表面における前記AlN結晶の平均粒径が300nm以下になる成長条件で、前記AlN層をエピタキシャル成長させてもよい。
 また、上記特徴のテンプレートの製造方法の前記工程において、前記主面から20nmの厚さまでエピタキシャル成長させた前記AlN層の表面粗さのRMS値が、前記主面から300nmの厚さまでエピタキシャル成長させた前記AlN層の表面粗さのRMS値以下になる成長条件で、前記AlN層をエピタキシャル成長させてもよい。例えば、前記主面から20nmの厚さまでエピタキシャル成長させた前記AlN層の表面粗さのRMS値が5nm以下になる成長条件で、前記AlN層をエピタキシャル成長させてもよいし、前記主面から300nmの厚さまでエピタキシャル成長させた前記AlN層の表面粗さのRMS値が10nm以下になる成長条件で、前記AlN層をエピタキシャル成長させてもよい。
 また、上記特徴のテンプレートの製造方法の前記工程において、前記主面から300nmの厚さまでエピタキシャル成長させた前記AlN層の表面における前記AlN結晶が+C軸配向する成長条件で、前記AlN層をエピタキシャル成長させてもよい。このテンプレートの製造方法によれば、AlN層の結晶性をさらに改善させることができる。
 また、上記特徴のテンプレートの製造方法の前記工程において、前記AlN層の成長温度が1150℃以上1300℃以下にしてもよい。このテンプレートの製造方法によれば、サファイア基板の主面に対してAlN結晶を好適にエピタキシャル成長させることができる。
 上記特徴のテンプレート及びその製造方法によれば、サファイア基板の主面にエピタキシャル成長させるAlN層の結晶性を劇的に改善することができる。また、このテンプレートを用いた窒化物半導体紫外線発光素子は、素子構造部の結晶性が改善されるため、発光効率等の特性を改善することができる。
本発明の実施形態に係る窒化物半導体紫外線発光素子の構造の一例を模式的に示した要部断面図。 図1に示す窒化物半導体紫外線発光素子を図1の上側から見た場合の構造の一例を模式的に示した平面図。 オフ角が0.2°のサファイア基板の主面に成長させた厚さ20nmのAlN層のAFM像。 オフ角が0.5°のサファイア基板の主面に成長させた厚さ20nmのAlN層のAFM像。 オフ角が1.0°のサファイア基板の主面に成長させた厚さ20nmのAlN層のAFM像。 オフ角が0.2°のサファイア基板の主面に成長させた厚さ20nmのAlN層のAFM像から測定されたAlN結晶の粒径を示した表。 オフ角が0.5°のサファイア基板の主面に成長させた厚さ20nmのAlN層のAFM像から測定されたAlN結晶の粒径を示した表。 オフ角が1.0°のサファイア基板の主面に成長させた厚さ20nmのAlN層のAFM像から測定されたAlN結晶の粒径を示した表。 図6~8に示したAlN結晶の粒径の測定結果と、AFM装置によって測定されたAlN結晶の粒径及びAlN層の表面粗さのRMS値とを併せて示した表。 オフ角が0.2°のサファイア基板の主面に成長させた厚さ300nmのAlN層のAFM像と、AFM装置によって測定されたAlN結晶の粒径及びAlN層の表面粗さのRMS値を示した表。 オフ角が0.2°のサファイア基板の主面に成長させた厚さ300nmのAlN層のAFM像と、AFM装置によって測定されたAlN結晶の粒径及びAlN層の表面粗さのRMS値を示した表。 本発明の実施形態に係るテンプレートにおけるAlN層と、特許文献1及び非特許文献1に記載されている従来のテンプレートにおけるAlN層とを比較して示した図。 本発明の実施形態に係るテンプレートにおけるAlN層の(0002)面に対するXRC法による測定結果を示した表。 従来のテンプレートの製造方法を示した模式図。 本発明の実施形態に係るテンプレートにおける、厚さ300nmのAlN層の測定領域内高低差を示した表。 本発明の実施形態に係るテンプレートにおける、厚さ20nmのAlN層の測定領域内高低差及び累積度数90%の高さを示した表。 本発明の実施形態に係るテンプレートにおける、厚さ20nmのAlN層の高さプロファイルと高さヒストグラムの一例を示した図。
 以下、本発明の実施形態を説明するにあたり、サファイア基板を含むテンプレートと、当該テンプレート上に積層された複数のAlGaN系半導体層を有する素子構造部とを備えて通電によりピーク発光波長が365nm以下の光(紫外線)を出射する発光ダイオードである窒化物半導体紫外線発光素子と、その製造方法とを例示する。なお、素子構造部に含まれるAlGaN系半導体層のそれぞれを構成する材料であるAlGaN系半導体とは、AlGaN、AlNまたはGaN、あるいは、これらに微量の不純物(例えば、SiやMg、Inなど)が含まれた半導体であり、以下では必要に応じてAl及びGaに対して添字を用いることでAl及びGaの相対的な組成比を表している(例えば、AlGa1-XN)。
 ただし、本発明は、主としてテンプレートに関するものであるため、テンプレート上の素子構造部の構造はどのようなものであってもよく、以下の<窒化物半導体紫外線発光素子>に例示する構造に限定されるものではない。
<窒化物半導体紫外線発光素子>
 最初に、本発明の実施形態に係る窒化物半導体紫外線発光素子の構造の一例について、図面を参照して説明する。図1は、本発明の実施形態に係る窒化物半導体紫外線発光素子の構造の一例を模式的に示した要部断面図である。図2は、図1に示す窒化物半導体紫外線発光素子を図1の上側から見た場合の構造の一例を模式的に示した平面図である。なお、図1では、図示の都合上、基板、AlGaN系半導体層及び電極の厚さ(図中の上下方向の長さ)を模式的に示しているため、必ずしも実際の寸法比とは一致しない。また、以下の説明において、p型及びn型の両方を記載していないAlGaN系半導体はアンドープであるが、アンドープであっても不可避的に混入する程度の微量の不純物は含まれ得る。
 図1及び図2に示すように、本発明の実施形態に係る窒化物半導体紫外線発光素子1は、サファイア基板11を含むテンプレート10と、複数のAlGaN系半導体層21~24及び電極25,26を含む素子構造部20とを備える。この窒化物半導体紫外線発光素子1は、実装用の基台に対して素子構造部20側(図1における図中上側)を向けて実装される(フリップチップ実装される)ものであり、光の取出方向はテンプレート10側(図1における図中下側)である。
 テンプレート10は、(0001)面または(0001)面に対して所定の角度(オフ角)だけ傾斜した面を主面とするサファイア基板11と、サファイア基板11の主面に直接形成されたAlN層12とを備える。AlN層12は、サファイア基板11の主面からエピタキシャル成長したAlN結晶で構成され、このAlN結晶はサファイア基板11の主面に対してエピタキシャルな結晶方位関係を有している。具体的に例えば、サファイア基板11のC軸方向(<0001>方向)とAlN結晶のC軸方向が揃うように、AlN結晶が成長する。なお、AlN層12を構成するAlN結晶が、微量のGaやその他の不純物を含んでいてもよい。また、AlN層12の上面に、AlαGa1-αN(1>α>0)系半導体で構成された層がさらに形成されていてもよい。
 素子構造部20は、テンプレート10側から順に、n型クラッド層21、活性層22、電子ブロック層23及びp型コンタクト層24を順にエピタキシャル成長させて積層した構造を備えている。
 n型クラッド層21は、n型のAlGa1-XN(1≧X>0)系半導体で構成される。活性層22は、AlY1Ga1-Y1N系半導体(X>Y1≧0)で構成された井戸層と、AlY2Ga1-Y2N(X≧Y2>Y1)で構成された障壁層とのそれぞれを、1層以上交互に積層した単一または多重量子井戸構造である。電子ブロック層23は、p型のAlGa1-ZN(1≧Z≧Y2)系半導体で構成される。p型コンタクト層24は、p型のAlGa1-QN(Z>Q≧0)系半導体で構成される。
 さらに、素子構造部20は、例えばNi/Auで構成されてp型コンタクト層24の上面に形成されるp電極25と、例えばTi/Al/Ti/Auで構成されてn型クラッド層21が露出している一部の領域においてn型クラッド層21の上面に形成されるn電極26とを備えている。このp電極25から正孔が供給されるとともにn電極26から電子が供給されるように通電すると、供給された正孔及び電子のそれぞれが活性層22に到達して再結合することで発光する。
 次に、図1に例示した窒化物半導体紫外線発光装置1の製造方法の一例について説明する。
 まず、有機金属化合物気相成長(MOVPE)法や分子線エピタキシ(MBE)法等の周知のエピタキシャル成長法により、テンプレート10に含まれるAlN層11及び素子構造部20に含まれるAlGaN系半導体層21~24を、サファイア基板11上に順番にエピタキシャル成長させて積層する。このとき、n型の層にはドナー不純物として例えばSiをドープし、p型の層にはアクセプタ不純物として例えばMgをドープする。
 次に、反応性イオンエッチング等の周知のエッチング法により、上記のように積層した半導体層の一部の領域を選択的にエッチングして、当該領域のn型クラッド層21を露出させる。そして、電子ビーム蒸着法などの周知の成膜法により、エッチングされていない領域内のp型コンタクト層24上にp電極25を形成するとともに、エッチングされた領域内のn型クラッド層21上にn電極26を形成する。なお、p電極25及びn電極26の一方または両方の形成後に、RTA(瞬間熱アニール)などの周知の熱処理方法により熱処理を行ってもよい。
<テンプレート>
 次に、上述したテンプレート10について説明する。なお、本発明の実施形態に係るテンプレート10は、サファイア基板11の主面に対して形成されるAlN層12に特徴があり、サファイア基板11は、AlN層12がエピタキシャル成長可能(特にC軸方向に成長可能)なものであれば、任意のものを使用することが可能である。
 本発明の実施形態に係るテンプレート10は、サファイア基板11の主面に形成されるAlN結晶の粒径をできるだけ小さくする点で、特許文献1、2及び非特許文献1で提案されているテンプレートと大きく相違する。AlN結晶の粒径は、例えば、サファイア基板11のオフ角や成長温度(基板温度)、原料の供給量や供給比(V/III比)、キャリアガスの供給量などの様々な成長条件に応じて決まるものであり、使用する成膜装置に応じて異なり得る。なお、特許文献1、2及び非特許文献1で提案されているテンプレートのように、サファイア基板上にAlN結晶核を形成し、そのAlN結晶核の間を埋めるようにAlN層を成長させようとする場合は、AlN層の成長時に特殊な成長方法(アンモニアのパルス供給)が必要であるが、本発明の実施形態に係るテンプレート10のように個々のAlN結晶の粒径をできるだけ小さくしようとする場合は、特殊な成長方法は特に必要なく、使用する成膜装置に応じた適切な成長条件を実験等により適宜探索して採用すればよい。ただし、特にMOVPE法によってAlN層を成長させる場合、サファイア基板11の主面に対してAlN結晶を好適にエピタキシャル成長させる観点から、成長温度を1150℃以上1300℃以下にすると好ましく、1200℃より高く1300℃未満にするとさらに好ましい。
 図3~5は、本発明の実施形態に係るテンプレートにおいて、20nmの厚さまで成長させたAlN層の表面のAFM(Atomic Force Microscope)像である。図3は、オフ角が0.2°のサファイア基板の主面に成長させた厚さ20nmのAlN層のAFM像である。図4は、オフ角が0.5°のサファイア基板の主面に成長させた厚さ20nmのAlN層のAFM像である。図5は、オフ角が1.0°のサファイア基板の主面に成長させた厚さ20nmのAlN層のAFM像である。
 図6~9は、本発明の実施形態に係るテンプレートにおいて、20nmの厚さまで成長させたAlN層の表面のAFM像から測定されたAlN結晶の粒径を示した表である。図6は、オフ角が0.2°のサファイア基板の主面に成長させた厚さ20nmのAlN層のAFM像から測定されたAlN結晶の粒径を示した表である。図7は、オフ角が0.5°のサファイア基板の主面に成長させた厚さ20nmのAlN層のAFM像から測定されたAlN結晶の粒径を示した表である。図8は、オフ角が1.0°のサファイア基板の主面に成長させた厚さ20nmのAlN層のAFM像から測定されたAlN結晶の粒径を示した表である。図9は、図6~8に示したAlN結晶の粒径の測定結果と、AFM装置によって測定されたAlN結晶の粒径及びAlN層の表面粗さのRMS(Root Mean Square)値とを併せて示した表である。
 図6~図8に示す測定結果は、500nm×500nmの大きさであるAFM像の測定領域を、100nm×100nmの25個の小領域に分割し、それぞれの小領域内に含まれるAlN結晶の粒径を1個ずつ測定した結果である。なお、小領域の境界上に位置するAlN結晶については、その半分以上の部分が含まれる小領域に振り分け、測定領域の境界上に位置するAlN結晶については、粒径を測定することができないため無視した。また、AFM像中のAlN結晶は、概ね円形または楕円形である(厳密には六角形に近い形状であると考えられ、いくつかの粒では辺(ファセット)が見えているが、AFM装置の性能の限界等もあって円形や楕円形のように見えている)ため、長軸の長さと短軸の長さの平均値を粒径とした。また、図6~8に示すように、サファイア基板11のオフ角が0.2°、0.5°及び1.0°である3種類の試料(ウエハ)のそれぞれについて、ウエハ上の異なる測定領域1~3のそれぞれのAFM像からAlN結晶の粒径を測定した。
 図9において、「個別測定値」の平均粒径及び標準偏差とは、図6~8に示すようにAFM像におけるAlN結晶を1個ずつ測定した場合の値である。一方、「装置測定値」の平均粒径、標準偏差及び表面粗さのRMS値は、AFM装置(プローブステーション:NanoNaviIIs、走査型プローブ顕微鏡ユニット:NanoCute、ソフトウェア:NanoNaviStation ver5.6B)によって測定された値である。このAFM装置は、測定領域内における各測定点の高さのうち所定の閾値高さ(例えば、平均値やメディアンなどの中間的な値)以上となる閉じた1つの領域を1つの粒子とみなして粒子数及び粒子総面積のそれぞれを検出し、粒子総面積を粒子数で除算した平均粒子面積となる円の直径を平均粒径として算出する。さらに、このAFM装置は、粒子面積の標準偏差を算出する。この粒子面積の標準偏差を円の直径の標準偏差に換算した値が、図9における「装置測定値」の粒径の標準偏差である。また、表面粗さのRMS値は、下記式(1)によって算出されるRqの値である。なお、下記式(1)において、Z(i)は測定領域内における各測定点の高さ、nは測定領域内における測定点の数、Zeは測定領域内における各測定点の高さの平均値である。
Figure JPOXMLDOC01-appb-I000001
 図3~5及び図6~8に示すように、サファイア基板1のオフ角が0.2°、0.5°及び1.0°のいずれの試料においても、およそ20nm以上100nm以下の粒径のAlN結晶が密に詰まった状態になっている。また、図9に示すように、AFM像におけるAlN結晶を1個ずつ測定して得られるAlN結晶の平均粒径と、AFM装置によって測定されるAlN結晶の平均粒径とは同程度の大きさになっており、いずれの方法で測定されたAlN結晶の平均粒径も適切な値であると言える。
 図10及び図11は、本発明の実施形態に係るテンプレートにおいて、300nmの厚さまで成長させたAlN層のAFM像と、AFM装置によって測定された粒径及び表面粗さのRMS値とを示した図である。図10は、オフ角が0.2°のサファイア基板の主面に成長させた厚さ300nmのAlN層のAFM像と、AFM装置によって測定されたAlN結晶の粒径及びAlN層の表面粗さのRMS値を示した表である。図11は、オフ角が1.0°のサファイア基板の主面に成長させた厚さ300nmのAlN層のAFM像と、AFM装置によって測定されたAlN結晶の粒径及びAlN層の表面粗さのRMS値を示した表である。
 ここで、本発明の実施形態に係るテンプレートにおけるAlN層と、特許文献1及び非特許文献1に記載されている従来のテンプレートにおけるAlN層との比較結果について、図面を参照して説明する。図12は、本発明の実施形態に係るテンプレートにおけるAlN層と、特許文献1及び非特許文献1に記載されている従来のテンプレートにおけるAlN層とを比較して示した図である。なお、図12(a)は、特許文献1及び非特許文献1に記載されている従来のテンプレートにおけるAlN層のAFM像である。図12(b)は、本発明の実施形態に係るテンプレートにおけるAlN層のAFM像(図3のAFM像を複数並べた図と、図10のAFM像の一部)と、特許文献1及び非特許文献1に記載されている従来のテンプレートにおけるAlN層のAFM像(図12(a)のAFM像の一部)とを同じ大きさ(2μm×2μm)で比較して示した図である。
 図12(a)に示す特許文献1及び非特許文献1に記載されている従来のテンプレートにおけるAlN層のAFM像は、サファイア基板の主面に形成されるAlN核形成層(サファイア基板の主面に最初に形成される厚さ300nmのAlN層における初期段階の層)のAFM像であり、本願の実施形態に係るテンプレートの図3~5の状態(厚さ20nm)に相当するものである。図12(a)に示すAFM像において、いくつかのAlN結晶は合体して数μm程度まで巨大化しており合体前の粒径の測定は困難であるが、合体していないと見られる比較的小さいAlN結晶であっても、平均粒径は1000nm程度もある。
 図12(b)に示すAFM像の比較結果から明らかなように、本発明の実施形態に係るテンプレートのAlN層におけるAlN結晶の平均粒径は、特許文献1及び非特許文献1に記載のテンプレートのAlN層におけるAlN結晶の平均粒径よりも著しく小さくなっている。
 具体的に、特許文献1及び非特許文献1に記載のテンプレートでは、AlN層の成長開始段階におけるAlN結晶の平均粒径は1000nm程度である。さらに、特許文献1及び非特許文献1に記載のテンプレートでは、AlN層の厚さが300nmになると、複数存在していたAlN結晶が完全に合体して膜状になり、個々の結晶としては観察できない状態になる。これに対して、本発明の実施形態に係るテンプレートでは、AlN層の成長開始段階(厚さ20nm)におけるAlN結晶の平均粒径は50nm程度しかない。さらに、本発明の実施形態に係るテンプレートでは、AlN層の厚さが300nmになっても、個々の結晶として十分に観察可能であり、その平均粒径は200nm程度しかない。
 また、特許文献1及び非特許文献1に記載のテンプレートでは、AlN層の成長開始段階における表面粗さのRMS値は21.4nmであり、AlN層の厚さが300nmになった段階における表面粗さのRMS値は21.4nmと8.2nmの間の値であると推測される(特許文献1の図4B参照)。一方、本発明の実施形態に係るテンプレートでは、AlN層の成長開始段階(厚さ20nm)における表面粗さのRMS値が3nm程度、AlN層の厚さが300nmになった段階における表面粗さのRMS値が5nm程度である。したがって、本発明の実施形態に係るテンプレートのAlN層における表面粗さのRMS値は、特許文献1及び非特許文献1に記載のテンプレートのAlN層における表面粗さのRMS値よりも著しく小さい。
 特に、特許文献1及び非特許文献1に記載のテンプレートでは、AlN層の成長開始段階において比較的大きいAlN結晶核が乱立し、当該AlN結晶核の間を埋め込むように膜状のAlN層が形成されるため、AlN層の表面粗さのRMS値が比較的大きくなる。そして、その後は、個々のAlN結晶核が膜状のAlN層に埋め尽くされるため、AlN層の成長(厚さの増大)に伴いAlN層の表面粗さのRMS値は単純に減少していく。一方、本発明の実施形態に係るテンプレートでは、微細な初期のAlN結晶を大量かつ高密度に成長させるため、AlN層の成長開始段階における表面粗さのRMS値が比較的小さくなる。そして、その後で個々のAlN結晶が合体したり粗大化したりするため、この段階(上述のAlN層の厚さが300nmになった段階)におけるAlN層の表面粗さのRMS値が、成長開始段階におけるAlN層の表面粗さのRMS値と同程度かそれ以上になる。
 このように、特許文献1、2及び非特許文献1に記載のテンプレートと、本発明の実施形態に係るテンプレートとでは、AlN層の成長開始段階におけるAlN結晶の成長態様が根本的に異なっており、その違いは、AlN結晶の平均粒径やAlN層の表面粗さのRMS値に表われている。なお、本発明の実施形態に係るテンプレートであっても、AlN層をさらに成長させる(厚さを300nmよりもさらに大きくする。例えば、1μm以上、好ましくは2μm以上。)と、個々のAlN結晶が次第に合体していき、最終的には膜状のAlN層が得られる。
 次に、本発明の実施形態に係るテンプレートにおけるAlN層の結晶性について、図面を参照して説明する。図13は、本発明の実施形態に係るテンプレートにおけるAlN層の(0002)面に対するXRC(X-ray Rocking Curve)法による測定結果を示した表である。なお、図13(a)はωスキャンの測定結果、図13(b)は2θ-ωスキャンの測定結果を示した表であり、それぞれの表に記載の数値は、(0002)面に対応するピークの半値全幅(FWHM:Full Width at Half Maximum)の平均値である。また、図13(a)に示すωスキャンの測定においては、試料のC軸(サファイア基板及びAlN層のC軸)をX線正反射軸に合わせる軸立てを行うと、サファイア基板によるX線の正反射が測定されてしまいAlN層の半値全幅の測定が困難になったため、敢えてこのような軸立てを行わずに測定を行った。
 図13(a)及び図13(b)に示すように、ωスキャン及び2θ-ωスキャンの両方の測定結果において、AlN層の厚さが20nmである場合の(0002)面の半値全幅が、1000arcsec程度になっている。また、図13(b)に示すように、2θ-ωスキャンの測定結果において、AlN層の厚さが300nmである場合の(0002)面の半値全幅が、100arcsec程度になっている。
 通常、AlN結晶の粒径を特に制限することなくサファイア基板の(0001)面上に数μm程度成長させたAlN層における(0002)面の半値全幅は、およそ2000arcsec程度である。これに対して、非特許文献1では、AlN層の成長開始段階において少数のAlN結晶核を形成するとともに当該AlN結晶核を埋め込む膜状のAlN層を成長させ、さらに、AlN層の成長途中にも横方向成長を促進することによって、4.8μmの厚さまで成長させたAlN層における(0002)面の半値全幅が、200arcsec程度まで改善したと報告されている。
 これらの従来技術と比較して、本発明の実施形態に係るテンプレートでは、AlN層の成長開始段階(厚さ20nm)における(0002)面の半値全幅が、1000arcsec程度と既に小さく、300nmの厚さまで成長させたAlN層における(0002)面の半値全幅は100arcsec程度とさらに小さくなっている。即ち、本発明の実施形態に係るテンプレートは、AlN層をわずか300nm程度成長させただけで、特許文献1及び非特許文献1に記載のテンプレートにおいてAlN層を4.8μmの厚さまで成長させなければ達成し得なかった結晶性と同等かそれ以上の結晶性を実現することができる。そして、本発明の実施形態に係るテンプレートにおいて、AlN層をさらに厚く成長させることで、さらなる結晶性の改善が見込まれる。
 以上のように、サファイア基板の主面にエピタキシャル成長させるAlN結晶の平均粒径を、特許文献1及び非特許文献1(さらに、これらと同様の方法でAlN層が形成される特許文献2)に記載のテンプレートのAlN層におけるAlN結晶の平均粒径よりもよりも十分に小さくすることで、サファイア基板の主面にエピタキシャル成長させるAlN層の結晶性を劇的に改善することができる。
 なお、図6~12に示した本発明の実施形態に係るテンプレートにおけるAlN結晶の平均粒径や粒径のばらつきの範囲及び偏り、本発明の実施形態に係るテンプレートと特許文献1及び非特許文献1に記載のテンプレートとのそれぞれにおけるAlN結晶の粒径の乖離などを考慮すると、AlN層の成長開始段階(厚さ20nm)におけるAlN結晶の平均粒径を100nm以下にすることで上記の効果が得られると考えられる。特に、図6~8において、AlN結晶の粒径の最大値の平均値が大きくても75nm程度であることから、AlN結晶の平均粒径を75nm以下にすると好ましく、平均粒径を70nm以下にするとさらに好ましい。また、この平均粒径を20nm以上にすると好ましく、特に、図6~8において、AlN結晶の粒径の最小値の平均値が28nm程度はあることから、AlN結晶の平均粒径を28nm以上にするとさらに好ましい。同様に、厚さが300nmであるAlN層におけるAlN結晶の平均粒径を300nm以下にすることで上記の効果が得られると考えられ、この平均粒径を250nm以下にするとさらに好ましい。また、この平均粒径を150nm以上にすると、好ましい。
 また、図9~12に示した本発明の実施形態に係るテンプレートにおけるAlN層の表面粗さのRMS値や、本発明の実施形態に係るテンプレートと特許文献1及び非特許文献1に記載のテンプレートとのそれぞれにおけるAlN層の表面粗さのRMS値の乖離などを考慮すると、AlN層の成長開始段階(厚さ20nm)におけるAlN層の表面粗さのRMS値を5nm以下にすることで上記の効果が得られると考えられ、このRMS値を4nm以下にするとさらに好ましい。また、このRMS値を2nm以上にすると、好ましい。同様に、厚さが300nmであるAlN層の表面粗さのRMS値を10nm以下にすることで上記の効果が得られると考えられ、このRMS値を6nm以下にするとさらに好ましい。また、このRMS値を4nm以上にすると、好ましい。
 なお、ウルツ鉱型構造であるAlNは、C軸方向に非対称な結晶構造(C軸を上下方向に見立てた場合、上下非対称な結晶構造)であり、+C軸方向([0001]方向)と-C軸方向([000-1]方向)が等価ではなく、+C面((0001)面:Al極性面)と-C面((000-1)面:N極性面)も等価ではない。そして、サファイア基板の(0001)面上にAlN結晶をエピタキシャル成長させた場合、+C軸方向に成長するAlN結晶と、-C軸方向に成長するAlN結晶とが混在し得る。
 これについて、AlN層を構成するAlN結晶を、基板の上方に向かって+C軸配向させる(AlN結晶の主たる成長方向を+C軸方向にして、AlN層の表面の全面または大部分(例えば80%以上、好ましくは90%以上)を+C面にする)と、AlN層の結晶性をさらに改善させることができるため、好ましい。
 AlN結晶を+C軸配向させる方法の一例として、例えば、Applied Physics Express 4 (2011) 092102で採用されている方法が挙げられる。また例えば、MOVPE法でサファイア基板上にAlN層をエピタキシャル成長させる場合、Alの原料ガス(例えば、TMA:TriMethylAluminium)を、Nの原料ガス(例えば、アンモニア)と同時かそれよりも早く供給を開始することで、サファイア基板の主面が過度に窒化されることを抑制して、AlN層を+C軸配向させるという方法が挙げられる。なお、上述の実施形態に係るテンプレートは、後者の方法を採用してAlN層を成長させたものであり、サファイア基板の主面から20nmの厚さまで成長させたAlN層の表面の少なくとも50%が+C面になっており、300nmの厚さまで成長させたAlN層の表面の少なくとも80%以上が+C面になっている(+C軸配向している)。
 また、上述の実施形態では、サファイア基板のオフ角が0.2°、0.5°及び2.0°のテンプレートについて説明したが、上述した実施形態と同程度のAlN結晶が得られる限りにおいて、サファイア基板のオフ角は任意である。ただし、オフ角を0.2°以上にすると、上述した実施形態と同程度のAlN結晶が得られ易くなるため、好ましい。
<特許文献1、2及び非特許文献1におけるAlN結晶核と、本発明の実施形態におけるAlN層を構成する微細なAlN結晶との違い>
 ここでは、特許文献1、2及び非特許文献1においてAlN層の成長前に形成されるAlN結晶核と、本発明の実施形態においてAlN層を構成する微細なAlN結晶との違いについて説明する。
 まず、図14を参照して説明したように、特許文献1、2及び非特許文献1では、サファイア基板の主面上にAlN結晶核を形成した後(図14の第1段階)、AlN結晶核の間を埋めるようにAlN層を形成する(図14の第2段階)。このとき、AlN結晶核は、図14の第1段階に示されているように、サファイア基板の主面上に点在するのみであるから、この段階ではサファイア基板の主面を十分に被覆する『層』になっていない。
 例えば、特許文献2の明細書の段落[0060]には、「直径が20~50nm、高さが20~40nmのAlN結晶核が200個/μm程度の密度で形成されている」と記載されている。ここで、200個のAlN結晶核の全部が欠けることなく1μmの領域内に収まっており、かつ、全てのAlN結晶核が直径50nmの平面視円形状であるという、AlN結晶核の被覆率が最大限になる現実的にあり得ない状態を想定しても、AlN結晶核が占める面積の合計は0.4μm未満に過ぎず、被覆率は40%未満に過ぎない。したがって、特許文献1、2及び非特許文献1においてAlN結晶核のみが形成されている状態では、明らかに『層』は形成されていない。
 特許文献1、2及び非特許文献1では、図14の第2段階に示すように、AlN結晶核の間を埋める膜状のAlN結晶が形成された時点で、サファイア基板の主面を十分に被覆する『層』が形成される。そして、図14の第2段階に至れば、図12に示したようにAlN結晶核と融合した平均粒径が極めて大きい膜状のAlN結晶が形成されるため、AlN層を構成するAlN結晶の平均粒径は1000nm程度と極めて大きくなる。
 また、特許文献2の明細書の段落[0071]には、「AlN結晶核2a同士が結合されて単結晶基板1の上記一表面側のAlN層がある程度まで平坦化されていることが確認された。ここにおいて、露出しているAlN結晶核2aの密度は100個/μm程度まで減少し、AlN結晶核2aの直径も50~100nm程度まで大きくなっていた。」と記載されている。これは、図14の第2段階において、膜状のAlN結晶の厚みが増大して一部のAlN結晶核が膜状のAlN結晶に埋め尽くされ、残りのAlN結晶核の頂部が露出している状態であることを意味している。そして、この状態では、図12に示したようにAlN結晶核と融合した平均粒径が大きい膜状のAlN結晶が存在しているため、AlN層を構成するAlN結晶の平均粒径は1000nm程度と極めて大きくなる。
 以上に対して、本発明の実施形態に係るテンプレートでは、図3~5に示したAFM像から明らかなように、AlN層を構成する微細なAlN結晶が形成された状態で、既にサファイア基板の主面を十分に被覆する『層』が形成されている。このことについて、以下、図面を参照しながら具体的に説明する。
 図15は、本発明の実施形態に係るテンプレートにおける、厚さ300nmのAlN層の測定領域内高低差を示した表である。図16は、本発明の実施形態に係るテンプレートにおける、厚さ20nmのAlN層の測定領域内高低差及び累積度数90%の高さを示した表である。ここで、測定領域内高低差とは、上述したAFM装置による測定において、測定領域内における最も高い山の高さと、当該測定領域内における最も低い谷の高さとの差である。また、累積度数90%の高さとは、測定領域内の高さを高い方から順に計数していった場合において、累計が90%になった時点の高さである。なお、図15において、厚さ300nmのAlN層の測定領域内高低差は、図10及び11のそれぞれの表に記載している2つの測定領域から得られた値である。また、図16において、厚さ20nmのAlN層の測定領域内高低差及び累計度数90%の高さは、図6~8のそれぞれの表に記載している3つの測定領域の中の2つの測定領域から得られた値である。
 図17は、本発明の実施形態に係るテンプレートにおける、厚さ20nmのAlN層の高さプロファイルと高さヒストグラムの一例を示した図であって、図16に示した表の1段目の測定領域の詳細を示した図である。なお、図17(a)はAFM像、図17(b)は図17(a)に示すAFM像中の線Lに沿った高さプロファイル、図17(c)は図17(a)に示すAFM像の測定領域の高さヒストグラムである。なお、図17(a)に示したAFM像の測定領域は、図3に示したAFM像の測定領域と同じである。また、図17(c)において、薄い線F1は度数分布を表しており、濃い線F2は累積度数分布を表している。
 図15に示すように、厚さ300nmのAlN層の測定領域内高低差は、40nm程度であり、AlN層の厚さよりも十分に小さい。この場合、測定領域内の最も深い谷にも、十分な厚さのAlN結晶が存在すると言える。したがって、厚さ300nmのAlN層では、サファイア基板の主面の全面がAlN結晶で覆われており、AlN結晶によるサファイア基板の主面の被覆率は100%であると言える。
 一方、図16に示すように、厚さ20nmのAlN層の測定領域内高低差は20nm程度であり、AlN層の厚さと同程度である。そのため、測定領域内の最も深い谷にAlN結晶が存在しない可能性がある。しかし、図16に示すように、厚さ20nmのAlN層の累積度数90%の高さは5nm程度もある。ここで、0より大きいオフ角を有するサファイア基板の主面におけるステップの高さが0.22nmであり、主面の平均粗さRaが0.1nm以下であることを考慮すれば、仮に測定領域内の最も深い谷にAlN結晶が存在していなかったとしても、1nm以上の高さがある部分にはAlN結晶が存在している可能性が高く、2nm以上の高さがある部分にはAlN結晶が存在している可能性が極めて高いと言える。したがって、本発明の実施形態に係るテンプレートでは、厚さ20nmのAlN層を形成した時点におけるAlN結晶によるサファイア基板の主面の被覆率が90%以上であり、サファイア基板の主面を十分に被覆する『層』になっていると言える。
 実際に、図17に示す例において、図17(b)の高さプロファイルでは、谷底が平坦になっていない。また、図17(c)に示す高さヒストグラムでは、累積度数90%の高さが5.30nmもあり、高さが1nm(さらには2nm)までの累積度数は100%に極めて近い値になっている。また、この傾向は、図17に示した測定領域(図16に示した表の1段目の測定領域)だけでなく、図16に示した表の他の測定領域(図16に示した表の2~6段目の測定領域)にも妥当する。したがって、本発明の実施形態に係るテンプレートでは、仮に測定領域内の最も深い谷にAlN結晶が存在していなかったとしても、AlN結晶がサファイア基板の主面を十分に被覆していると言える。
 そして、本発明の実施形態に係るテンプレートでは、上述の通りAlN結晶がサファイア基板の主面を十分に被覆する『層』になっており、図3~5に示したAFM像や図17(b)に示した高さプロファイルから明らかなように、この時点で隣接するAlN結晶が既に衝突している。そのため、本発明の実施形態に係るテンプレートでは、図3~5に示した状態(AlN層を厚さ20nmだけ成長させた状態)からAlN結晶が成長しても、サファイア基板の主面から厚さ20nmにおけるAlN結晶の平均粒径はそれほど変動しない。したがって、本発明の実施形態に係るテンプレートにおいて、サファイア基板の主面から厚さ20nmにおけるAlN結晶の平均粒径は、100nm以下(さらには75nm以下)になる。
 本発明は、サファイア基板を備えたテンプレート及びその製造方法と、当該テンプレートを備えた窒化物半導体紫外線発光素子とに利用可能である。特に、ピーク発光波長が紫外領域にある窒化物半導体紫外線発光素子用のテンプレート及びその製造方法と、当該窒化物半導体紫外線発光素子とに利用すると、好適である。
 1   窒化物半導体紫外線発光素子
 10  テンプレート
 11  サファイア基板
 12  AlN層
 20  素子構造部
 21  n型クラッド層
 22  活性層
 23  電子ブロック層
 24  p型コンタクト層
 25  p電極
 26  n電極

Claims (15)

  1.  (0001)面または(0001)面に対して所定の角度だけ傾斜した面を主面とするサファイア基板と、
     前記サファイア基板の前記主面に直接形成される、当該主面に対してエピタキシャルな結晶方位関係を有するAlN結晶で構成されたAlN層と、を備え、
     前記AlN層の前記主面から20nmの厚さにおける前記AlN結晶の平均粒径が100nm以下であることを特徴とするテンプレート。
  2.  前記AlN層の前記主面から20nmの厚さにおける前記AlN結晶の平均粒径が、75nm以下であることを特徴とする請求項1に記載のテンプレート。
  3.  前記AlN層の前記主面から20nmの厚さにおける前記AlN結晶の平均粒径が、70nm以下であることを特徴とする請求項1または2に記載のテンプレート。
  4.  前記AlN層の前記主面から300nmの厚さにおける前記AlN結晶の平均粒径が、300nm以下であることを特徴とする請求項1~3のいずれか1項に記載のテンプレート。
  5.  前記サファイア基板の前記主面が、(0001)面に対して0.2°以上傾斜した面であることを特徴とする請求項1~4のいずれか1項に記載のテンプレート。
  6.  前記AlN層の前記主面から300nmの厚さにおける前記AlN結晶は、前記サファイア基板の上方に向かって+C軸配向していることを特徴とする請求項1~5のいずれか1項に記載のテンプレート。
  7.  請求項1~6のいずれか1項に記載のテンプレートと、
     前記テンプレート上に積層された複数のAlGaN系半導体層を含む素子構造部と、
     を備えることを特徴とする窒化物半導体紫外線発光素子。
  8.  (0001)面または(0001)面に対して所定の角度だけ傾斜した面を主面とするサファイア基板の前記主面にAlN結晶を直接エピタキシャル成長させてAlN層を形成する工程を備え、
     前記工程において、前記主面から20nmの厚さまでエピタキシャル成長させた前記AlN層の表面における前記AlN結晶の平均粒径が100nm以下になる成長条件で、前記AlN結晶をエピタキシャル成長させることを特徴とするテンプレートの製造方法。
  9.  (0001)面または(0001)面に対して所定の角度だけ傾斜した面を主面とするサファイア基板の前記主面にAlN結晶を直接エピタキシャル成長させてAlN層を形成する工程を備え、
     前記工程において、前記主面の90%以上を被覆する前記AlN層を20nmの厚さまでエピタキシャル成長させた時に、前記AlN層の表面における前記AlN結晶の平均粒径が100nm以下になる成長条件で、前記AlN結晶をエピタキシャル成長させることを特徴とするテンプレートの製造方法。
  10.  前記工程において、前記主面から300nmの厚さまでエピタキシャル成長させた前記AlN層の表面における前記AlN結晶の平均粒径が300nm以下になる成長条件で、前記AlN層をエピタキシャル成長させることを特徴とする請求項8または9に記載のテンプレートの製造方法。
  11.  前記工程において、前記主面から20nmの厚さまでエピタキシャル成長させた前記AlN層の表面粗さのRMS値が、前記主面から300nmの厚さまでエピタキシャル成長させた前記AlN層の表面粗さのRMS値以下になる成長条件で、前記AlN層をエピタキシャル成長させることを特徴とする請求項8~10のいずれか1項に記載のテンプレートの製造方法。
  12.  前記工程において、前記主面から20nmの厚さまでエピタキシャル成長させた前記AlN層の表面粗さのRMS値が5nm以下になる成長条件で、前記AlN層をエピタキシャル成長させることを特徴とする請求項8~11のいずれか1項に記載のテンプレートの製造方法。
  13.  前記工程において、前記主面から300nmの厚さまでエピタキシャル成長させた前記AlN層の表面粗さのRMS値が10nm以下になる成長条件で、前記AlN層をエピタキシャル成長させることを特徴とする請求項8~12のいずれか1項に記載のテンプレートの製造方法。
  14.  前記工程において、前記主面から300nmの厚さまでエピタキシャル成長させた前記AlN層の表面における前記AlN結晶が+C軸配向する成長条件で、前記AlN層をエピタキシャル成長させることを特徴とする請求項8~13のいずれか1項に記載のテンプレートの製造方法。
  15.  前記工程において、前記AlN層の成長温度を1150℃以上1300℃以下にすることを特徴とする請求項8~14のいずれか1項に記載のテンプレートの製造方法。
PCT/JP2017/035559 2017-05-26 2017-09-29 テンプレート、窒化物半導体紫外線発光素子及びテンプレートの製造方法 WO2018216240A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/066,414 US11049999B2 (en) 2017-05-26 2017-09-29 Template, nitride semiconductor ultraviolet light-emitting element, and method of manufacturing template
EP17872879.6A EP3432369A4 (en) 2017-05-26 2017-09-29 MODEL, ULTRAVIOLET SEMICONDUCTOR LIGHT EMITTING ELEMENT, AND METHOD FOR PRODUCING THE MODEL
KR1020187019169A KR102054094B1 (ko) 2017-05-26 2017-09-29 템플릿, 질화물 반도체 자외선 발광 소자 및 템플릿의 제조 방법
JP2018502026A JP6483913B1 (ja) 2017-05-26 2017-09-29 テンプレートの製造方法
RU2018119215A RU2702948C1 (ru) 2017-05-26 2017-09-29 Основание, нитридный полупроводниковый излучающий ультрафиолетовое излучение элемент и способ производства основания
CN201780005631.4A CN109314159B (zh) 2017-05-26 2017-09-29 模板、氮化物半导体紫外线发光元件和模板的制造方法
TW107107259A TWI703742B (zh) 2017-05-26 2018-03-05 模板、氮化物半導體紫外線發光元件及模板之製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017019657 2017-05-26
JPPCT/JP2017/019657 2017-05-26

Publications (1)

Publication Number Publication Date
WO2018216240A1 true WO2018216240A1 (ja) 2018-11-29

Family

ID=64395529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035559 WO2018216240A1 (ja) 2017-05-26 2017-09-29 テンプレート、窒化物半導体紫外線発光素子及びテンプレートの製造方法

Country Status (8)

Country Link
US (1) US11049999B2 (ja)
EP (1) EP3432369A4 (ja)
JP (2) JP6483913B1 (ja)
KR (1) KR102054094B1 (ja)
CN (1) CN109314159B (ja)
RU (1) RU2702948C1 (ja)
TW (1) TWI703742B (ja)
WO (1) WO2018216240A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021166308A (ja) * 2019-04-16 2021-10-14 日機装株式会社 窒化物半導体発光素子の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11049999B2 (en) * 2017-05-26 2021-06-29 Soko Kagaku Co., Ltd. Template, nitride semiconductor ultraviolet light-emitting element, and method of manufacturing template
US11152543B2 (en) * 2017-11-22 2021-10-19 Soko Kagaku Co., Ltd. Nitride semiconductor light-emitting element
EP3754732B1 (en) * 2018-02-14 2023-04-12 Soko Kagaku Co., Ltd. Nitride semiconductor ultraviolet light-emitting element
US11552217B2 (en) 2018-11-12 2023-01-10 Epistar Corporation Semiconductor device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287120A (ja) * 2005-04-04 2006-10-19 Canon Inc 発光素子及びその製造方法
JP2009054780A (ja) 2007-08-27 2009-03-12 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法
JP2010064911A (ja) * 2008-09-09 2010-03-25 Tokuyama Corp 突出部を有する構造体およびその製造方法
WO2011077541A1 (ja) * 2009-12-25 2011-06-30 創光科学株式会社 エピタキシャル成長用テンプレート及びその作製方法
US20120291698A1 (en) * 2011-05-20 2012-11-22 Yuriy Melnik Methods for improved growth of group iii nitride semiconductor compounds
WO2013005789A1 (ja) 2011-07-05 2013-01-10 パナソニック株式会社 窒化物半導体発光素子の製造方法、ウェハ、窒化物半導体発光素子
WO2013021464A1 (ja) * 2011-08-09 2013-02-14 創光科学株式会社 窒化物半導体紫外線発光素子
JP2013211442A (ja) * 2012-03-30 2013-10-10 Hitachi Cable Ltd 窒化物半導体エピタキシャルウェハの製造方法
JP2016064928A (ja) * 2014-09-22 2016-04-28 Dowaエレクトロニクス株式会社 AlNテンプレート基板およびその製造方法
JP2017154964A (ja) * 2016-02-26 2017-09-07 国立研究開発法人理化学研究所 結晶基板、紫外発光素子およびそれらの製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340147A (ja) * 1998-05-25 1999-12-10 Matsushita Electron Corp 窒化物半導体ウエハーの製造方法および窒化物半導体素子の製造方法
JP4451222B2 (ja) * 2004-06-08 2010-04-14 日本碍子株式会社 エピタキシャル基板、半導体積層構造、およびエピタキシャル基板の製造方法
JP4578282B2 (ja) * 2005-03-11 2010-11-10 国立大学法人東京農工大学 アルミニウム系iii族窒化物結晶の製造方法
UA97969C2 (ru) * 2006-12-28 2012-04-10 Сейнт-Гобейн Серамикс Энд Пластикс, Инк. Сапфирная основа (варианты)
TWI350784B (en) * 2006-12-28 2011-10-21 Saint Gobain Ceramics Sapphire substrates and methods of making same
JP5095253B2 (ja) * 2007-03-30 2012-12-12 富士通株式会社 半導体エピタキシャル基板、化合物半導体装置、およびそれらの製造方法
JP2009283785A (ja) * 2008-05-23 2009-12-03 Showa Denko Kk Iii族窒化物半導体積層構造体およびその製造方法
JP5399021B2 (ja) * 2008-08-28 2014-01-29 日本碍子株式会社 高周波用半導体素子形成用のエピタキシャル基板および高周波用半導体素子形成用エピタキシャル基板の作製方法
JP2011023677A (ja) * 2009-07-21 2011-02-03 Hitachi Cable Ltd 化合物半導体エピタキシャルウェハおよびその製造方法
RU2009137422A (ru) * 2009-09-30 2011-04-10 Общество с ограниченной ответственностью "УФ Нанодиод" (RU) Комбинированная подложка для светодиодов
JP2011254068A (ja) * 2010-05-07 2011-12-15 Sumitomo Chemical Co Ltd 半導体基板
US8778783B2 (en) * 2011-05-20 2014-07-15 Applied Materials, Inc. Methods for improved growth of group III nitride buffer layers
JP5791399B2 (ja) * 2011-07-07 2015-10-07 学校法人立命館 AlN層の製造方法
CA2884169C (en) 2012-09-11 2020-08-11 Tokuyama Corporation Aluminum nitride substrate and group-iii nitride laminate
JP6704386B2 (ja) 2015-02-27 2020-06-03 住友化学株式会社 窒化物半導体テンプレート及びその製造方法、並びにエピタキシャルウエハ
US10340416B2 (en) 2016-02-26 2019-07-02 Riken Crystal substrate, ultraviolet light-emitting device, and manufacturing methods therefor
US11049999B2 (en) * 2017-05-26 2021-06-29 Soko Kagaku Co., Ltd. Template, nitride semiconductor ultraviolet light-emitting element, and method of manufacturing template
US10407798B2 (en) * 2017-06-16 2019-09-10 Crystal Is, Inc. Two-stage seeded growth of large aluminum nitride single crystals

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287120A (ja) * 2005-04-04 2006-10-19 Canon Inc 発光素子及びその製造方法
JP2009054780A (ja) 2007-08-27 2009-03-12 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法
JP2010064911A (ja) * 2008-09-09 2010-03-25 Tokuyama Corp 突出部を有する構造体およびその製造方法
WO2011077541A1 (ja) * 2009-12-25 2011-06-30 創光科学株式会社 エピタキシャル成長用テンプレート及びその作製方法
US20120291698A1 (en) * 2011-05-20 2012-11-22 Yuriy Melnik Methods for improved growth of group iii nitride semiconductor compounds
WO2013005789A1 (ja) 2011-07-05 2013-01-10 パナソニック株式会社 窒化物半導体発光素子の製造方法、ウェハ、窒化物半導体発光素子
WO2013021464A1 (ja) * 2011-08-09 2013-02-14 創光科学株式会社 窒化物半導体紫外線発光素子
JP2013211442A (ja) * 2012-03-30 2013-10-10 Hitachi Cable Ltd 窒化物半導体エピタキシャルウェハの製造方法
JP2016064928A (ja) * 2014-09-22 2016-04-28 Dowaエレクトロニクス株式会社 AlNテンプレート基板およびその製造方法
JP2017154964A (ja) * 2016-02-26 2017-09-07 国立研究開発法人理化学研究所 結晶基板、紫外発光素子およびそれらの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PHYSICA STATUS SOLIDI, vol. A206, no. 6, 2009, pages 1176 - 1182
See also references of EP3432369A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021166308A (ja) * 2019-04-16 2021-10-14 日機装株式会社 窒化物半導体発光素子の製造方法

Also Published As

Publication number Publication date
RU2702948C1 (ru) 2019-10-14
JPWO2018216240A1 (ja) 2019-06-27
US11049999B2 (en) 2021-06-29
TWI703742B (zh) 2020-09-01
KR102054094B1 (ko) 2019-12-09
JP2018201008A (ja) 2018-12-20
CN109314159A (zh) 2019-02-05
CN109314159B (zh) 2022-03-22
US20200373463A1 (en) 2020-11-26
TW201907584A (zh) 2019-02-16
JP6483913B1 (ja) 2019-03-13
EP3432369A4 (en) 2019-08-28
EP3432369A1 (en) 2019-01-23
KR20190087970A (ko) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6483913B1 (ja) テンプレートの製造方法
US20170069793A1 (en) Ultraviolet light-emitting device and production method therefor
CN103733449B (zh) 氮化物半导体紫外线发光元件
JP5635013B2 (ja) エピタキシャル成長用テンプレート及びその作製方法
JP6194138B2 (ja) 窒化物半導体紫外線発光素子
WO2010082267A1 (ja) エピタキシャル成長用内部改質基板及びそれを用いて作製される結晶成膜体、デバイス、バルク基板及びそれらの製造方法
KR20070046161A (ko) 발광소자 및 그 제조방법
JP6375890B2 (ja) 窒化物半導体素子及びその製造方法
US9324913B2 (en) Nitride semiconductor structure, multilayer structure, and nitride semiconductor light-emitting element
JP2009018983A (ja) GaN基板、エピタキシャル層付き基板、半導体装置、およびGaN基板の製造方法
WO2017134708A1 (ja) エピタキシャル基板
JP6925141B2 (ja) 半導体基板、半導体発光素子および灯具
JP4936653B2 (ja) サファイア基板とそれを用いた発光装置
US9315920B2 (en) Growth substrate and light emitting device comprising the same
TWI828945B (zh) 氮化物半導體紫外線發光元件
US20220262977A1 (en) Light-emitting diode and manufacturing method
WO2019235459A1 (ja) 半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法
JP5549158B2 (ja) GaN単結晶基板およびその製造方法、ならびにGaN系半導体デバイスおよびその製造方法
US20210013373A1 (en) Strain-relaxed InGaN-alloy template
JP2017139253A (ja) エピタキシャル基板の製造方法
WO2019039240A1 (ja) 半導体成長用基板、半導体素子、半導体発光素子、および半導体素子の製造方法
JP2017224841A (ja) 窒化物半導体紫外線発光素子
JP2014001137A (ja) GaN単結晶基板およびその製造方法、ならびにGaN系半導体デバイスおよびその製造方法
Yang et al. Growth of Gallium Nitride Nanorods and Their Coalescence Overgrowth
KR20160149837A (ko) 발광 소자 및 그 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018502026

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018119215

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 20187019169

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019169

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE