WO2018210142A1 - 一种打印激光光源的打印头模块、系统及方法 - Google Patents

一种打印激光光源的打印头模块、系统及方法 Download PDF

Info

Publication number
WO2018210142A1
WO2018210142A1 PCT/CN2018/085670 CN2018085670W WO2018210142A1 WO 2018210142 A1 WO2018210142 A1 WO 2018210142A1 CN 2018085670 W CN2018085670 W CN 2018085670W WO 2018210142 A1 WO2018210142 A1 WO 2018210142A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
ink
laser light
dye
bsa
Prior art date
Application number
PCT/CN2018/085670
Other languages
English (en)
French (fr)
Inventor
赵永生
姚建年
赵金阳
闫永丽
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710359566.7A external-priority patent/CN108957778A/zh
Priority claimed from CN201710358471.3A external-priority patent/CN108957777A/zh
Priority claimed from CN201710359567.1A external-priority patent/CN108963758A/zh
Priority claimed from CN201710359582.6A external-priority patent/CN108957779A/zh
Priority claimed from CN201710361265.8A external-priority patent/CN108948857A/zh
Priority claimed from CN201710359076.7A external-priority patent/CN108944066A/zh
Priority claimed from CN201710358465.8A external-priority patent/CN108948862A/zh
Priority claimed from CN201710359070.XA external-priority patent/CN108944032A/zh
Priority to US16/614,753 priority Critical patent/US11192388B2/en
Priority to JP2019564093A priority patent/JP7181229B2/ja
Priority to EP18802018.4A priority patent/EP3611021B1/en
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Publication of WO2018210142A1 publication Critical patent/WO2018210142A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/44Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements
    • B41J2/442Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/54Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed with two or more sets of type or printing elements
    • B41J3/546Combination of different types, e.g. using a thermal transfer head and an inkjet print head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/006Patterns of chemical products used for a specific purpose, e.g. pesticides, perfumes, adhesive patterns; use of microencapsulated material; Printing on smoking articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0023Digital printing methods characterised by the inks used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/0058Digital printing on surfaces other than ordinary paper on metals and oxidised metal surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/007Digital printing on surfaces other than ordinary paper on glass, ceramic, tiles, concrete, stones, etc.
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/108Hydrocarbon resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/328Inkjet printing inks characterised by colouring agents characterised by dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/168Solid materials using an organic dye dispersed in a solid matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/36Structure or shape of the active region; Materials used for the active region comprising organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/0047Digital printing on surfaces other than ordinary paper by ink-jet printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094034Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a dye

Definitions

  • the invention relates to the field of lasers, and in particular to a print head module, system and method for printing a laser light source.
  • the existing laser display technology causes laser speckle due to the interference effect of the strong coherence of the laser, which seriously degrades the display quality, and has to use a vibrating screen to eliminate the speckle.
  • a print head module for printing a laser light source comprising:
  • the ink used in the printing includes a luminescent dye and a matrix material as well as a solvent.
  • the laser light source is used to form a plurality of independent laser light source modules
  • At least two light sources can emit different colors of light under the same excitation conditions.
  • the size of the printhead is determined by the size of each of the light sources.
  • the laser light source has dimensions of millimeters, micrometers or less.
  • the voltage applied to the printhead can be controlled to adjust the size of the ink drops during printing.
  • the luminescent dye comprises: a photo-supplied laser dye, an electro-laser dye or a dye thereof.
  • the luminescent dye comprises: an oligostyrene-based blue dye, a coumarin-based green dye, a rhodamine series dye, a hemi-cyanine red dye or a mixture thereof.
  • an oligostyrene-based blue dye e.g., a coumarin-based green dye, a rhodamine series dye, a hemi-cyanine red dye or a mixture thereof.
  • coumarin 153, or coumarin 6 or rhodamine 6G dye e.g., coumarin 153, or coumarin 6 or rhodamine 6G dye.
  • the matrix material comprises: polystyrene, polymethyl methacrylate, NOA series photocurable materials or a mixture thereof.
  • the ink is water, dichloromethane, chloroform, dimethylformamide or a mixture thereof as a solvent.
  • the ink is in any of the following formulations:
  • Symmetrical diphenylethene, sodium fluorescein and rhodamine B laser dyes were added to 300-1000mg/mL BSA aqueous solution respectively, wherein the mass ratio of three dyes to BSA was 1-3%, respectively, followed by the addition of glycerin, glycerol and The volume ratio of water is 1:1-4, preferably 1:2;
  • the ink is in any of the following formulations:
  • the ink further comprises an auxiliary material; the auxiliary material comprises a liquid polymer prepolymer.
  • the ink further comprises an auxiliary material;
  • the auxiliary material comprises: a thermosetting epoxy resin, a NOA series photocuring adhesive or a mixture thereof.
  • the laser light source comprises an RGB three primary color light source.
  • the laser light source is spaced about 2.5-4 times its diameter.
  • the three primary color light sources have substantially the same diameter and are respectively located at three vertices of an equilateral triangle, and the side length of the equilateral triangle exceeds 10%-30% of the diameter.
  • the present invention provides a system for printing a laser light source, comprising:
  • the print head module is configured to inject and print respective laser light sources on the substrate
  • the ink cartridge is for storing ink; wherein the ink comprises a luminescent dye and a matrix material and a solvent.
  • the system further comprises: fabricating a dot matrix module for fabricating a dot pattern corresponding to the position of the laser light source on the cleaned substrate.
  • the system further comprises: a curing module for curing the laser light source after printing the respective laser light sources.
  • the laser light source has dimensions of millimeters, micrometers or less.
  • the luminescent dye comprises: a photo-laserable dye or an electro-laserable dye.
  • the luminescent dye comprises: an oligostyrene-based blue dye, a coumarin-based green dye, a rhodamine series dye, and a hemi-cyanine red dye.
  • an oligostyrene-based blue dye for example, coumarin 153, or coumarin 6 or rhodamine 6G dye.
  • More preferred luminescent dyes are symmetrical diphenylethylene, sodium fluorescein and rhodamine B, and mixtures thereof, more preferably a mixture of the three.
  • the matrix material comprises: polystyrene, polymethyl methacrylate, NOA series photocurable materials or a mixture thereof.
  • the ink is water, dichloromethane, chloroform, dimethylformamide or a mixture thereof as a solvent.
  • the ink is in any of the following formulations:
  • Symmetrical diphenylethene, sodium fluorescein and rhodamine B laser dyes were added to 300-1000mg/mL BSA aqueous solution respectively, wherein the mass ratio of three dyes to BSA was 1-3%, respectively, followed by the addition of glycerin, glycerol and The volume ratio of water is 1:1-4, preferably 1:2;
  • the ink is in any of the following formulations:
  • the ink further comprises an auxiliary material; the auxiliary material comprises a liquid polymer prepolymer.
  • the ink further comprises an auxiliary material;
  • the auxiliary material comprises: a thermosetting epoxy resin, a NOA series photocuring adhesive.
  • the laser light source comprises an RGB three primary color light source.
  • the printed laser light source can form a plurality of independent laser light source modules; and each of the independent laser light source modules can emit different colors of light under the same excitation condition.
  • the printhead module includes one or more printheads for printing one or more laser light sources at a time; the size of the printheads is determined by the size of each of the light sources.
  • the laser light source is spaced about 2.5-4 times its diameter.
  • the temperature and time during the heating are determined by the inherent characteristics of the ink.
  • the three primary color light sources have substantially the same diameter and are respectively located at three vertices of an equilateral triangle, and the side length of the equilateral triangle exceeds 10%-30% of the diameter.
  • the present invention provides a method of printing a laser light source, comprising the following steps:
  • S200 Printing the respective laser light sources on the substrate by using the ink.
  • the preprocessing comprises the following steps:
  • S101 A dot pattern corresponding to a position of the laser light source is formed on the cleaned substrate.
  • the method further comprises the following steps:
  • the laser light source has dimensions of millimeters, micrometers or less.
  • the luminescent dye comprises: a photo-laserable dye or an electro-laserable dye.
  • the luminescent dye comprises: an oligostyrene-based blue dye, a coumarin-based green dye, a rhodamine series dye, and a hemi-cyanine red dye.
  • an oligostyrene-based blue dye for example, coumarin 153, or coumarin 6 or rhodamine 6G dye.
  • More preferred luminescent dyes are symmetrical diphenylethylene, sodium fluorescein and rhodamine B, and mixtures thereof, more preferably a mixture of the three.
  • the matrix material comprises: polystyrene, polymethyl methacrylate, NOA series photocurable material.
  • the ink is water, dichloromethane, chloroform, dimethylformamide or a mixture thereof as a solvent.
  • the ink is in any of the following formulations:
  • Symmetrical diphenylethene, sodium fluorescein and rhodamine B laser dyes were added to 300-1000mg/mL BSA aqueous solution respectively, wherein the mass ratio of three dyes to BSA was 1-3%, respectively, followed by the addition of glycerin, glycerol and The volume ratio of water is 1:1-4, preferably 1:2;
  • the ink is in any of the following formulations:
  • the ink further comprises an auxiliary material; the auxiliary material comprises a liquid polymer prepolymer.
  • the ink further comprises an auxiliary material;
  • the auxiliary material comprises: a thermosetting epoxy resin, any one of the NOA series photocuring adhesives or a mixture thereof.
  • the laser light source comprises an RGB three primary color light source.
  • the printed laser light source can form a plurality of independent laser light source modules; and each of the independent laser light source modules can emit different colors of light under the same excitation condition.
  • the inkjet printer comprises one or more printheads for printing one or more laser light sources at a time; the size of the printheads is determined by the size of each of the light sources.
  • the laser light source is spaced about 2.5-4 times its diameter.
  • the temperature and time during the heating are determined by the inherent characteristics of the ink.
  • the three primary color light sources have substantially the same diameter and are respectively located at three vertices of an equilateral triangle, and the side length of the equilateral triangle exceeds 10%-30% of the diameter.
  • a laser light source is obtained by inkjet printing, which provides a new technical solution for inexpensive and industrial manufacture of various laser light sources and display devices thereof;
  • the laser light source facilitates the realization of a module comprising a plurality of independent laser light sources, so that each group of laser light source modules can stand apart from each other when emitting light, and it is difficult to generate laser coherence between the emitted light, thereby greatly eliminating the common laser coherence. Caused by speckle.
  • a laser light source is obtained by inkjet printing, which provides a new technical solution for inexpensive and industrial manufacture of various laser light sources and display devices thereof;
  • the laser light source facilitates the realization of a module comprising a plurality of independent laser light sources, so that each group of laser light source modules can stand apart from each other when emitting light, and it is difficult to generate laser coherence between the emitted light, thereby greatly eliminating the common laser coherence. Caused by speckle.
  • a laser light source is obtained by inkjet printing, which provides a new technical solution for inexpensive and industrial manufacture of various laser light sources and display devices thereof.
  • the laser light source facilitates the realization of a module comprising a plurality of independent laser light sources, so that each group of laser light source modules can stand apart from each other when emitting light, and it is difficult to generate laser coherent superposition between the emitted lights, thereby greatly eliminating common laser coherence. The resulting speckle phenomenon.
  • FIG. 1 is a schematic view of an inkjet printing process in one embodiment of the present invention.
  • FIG 2 is another schematic view of an inkjet printing process in one embodiment of the present invention.
  • Figure 3 is a schematic illustration of a laser source in one embodiment of the invention.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the invention.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will appreciate that the embodiments described herein can be combined with other embodiments.
  • a printhead module for printing a laser source comprising:
  • the ink used in the printing includes a luminescent dye and a matrix material as well as a solvent.
  • the embodiment firstly, it realizes the laser light source by inkjet printing, which provides a new technical solution for the cheap and industrial manufacture of the laser light source and its various display devices or lighting devices; secondly, Since the plurality of laser light sources are convenient to realize a module including a plurality of independent laser light sources, each group of the laser light source modules can be separated from each other when emitting light, and it is difficult to generate laser coherence between the emitted lights, thereby greatly eliminating common The speckle phenomenon caused by laser coherence.
  • a printhead for ink of different colors for successively printing different light sources on a substrate.
  • Each printhead corresponds to one color of ink.
  • a plurality of printheads correspond to one color of ink.
  • one or more print heads for printing one or more laser light sources on a substrate are not difficult to see that the above embodiments describe completely and clearly: one or more print heads for printing one or more laser light sources on a substrate.
  • the print head when a print head is used, the print head successively prints each of the light sources of each group, for example, three colors of red, green and blue are sequentially printed in the order of R, G, B;
  • multiple printheads can print each of each set of laser sources at a time - it is easy to understand that the number of printheads in operation must be greater than or equal to the number of light sources in each set of laser source modules, for example greater than Equal to the number of three RGB light sources.
  • Figure 2 shows only a plurality of printheads for a certain light source, such as a red light source, for a plurality of printheads, and a plurality of printheads for another color are not shown.
  • the ink may be a polymer solution doped with a laser dye.
  • the substrate it may be advantageous to ink-jet the light source thereon. More preferably, the substrate needs to have a certain light transmittance.
  • the substrate may be selected from any of the following: (1) a silver mirror substrate coated with magnesium fluoride; (2) a distributed Bragg mirror (DBR) substrate, and the like.
  • DBR distributed Bragg mirror
  • the substrate requires pretreatment, including fabricating a dot pattern corresponding to the location of the laser source on the cleaned substrate.
  • the purpose of making a dot pattern is to facilitate printing of the light source in accordance with the pattern.
  • the dot pattern is produced by a plotter.
  • the pre-processed (including the cleaning of the substrate) substrate is first placed in the working area of the plotter; secondly, the dot matrix corresponding to the position of the laser light source is drawn on the substrate by the plotter (Note: easy It is understood that the lattice is an arrayed pattern, both of which are different representations of the same concept in the present invention).
  • the printhead module can print the laser source based on the fabricated array pattern.
  • the laser source may require artificial interference with its curing process.
  • it may be a natural curing or an artificial curing, wherein the natural curing time is often relatively large, and the artificial curing is to accelerate the curing process.
  • artificial curing it is possible to use a method of heating the substrate (often heated by a constant temperature heating plate), or other suitable curing methods similar to heating, such as light irradiation (including ultraviolet light or other spectral light irradiation). . It is easy to understand that the choice of curing method depends on the ink.
  • the laser light source is configured to form a plurality of independent laser light source modules; and each of the independent laser light source modules can emit different colors of light under the same excitation conditions.
  • this enables color mixing of each set of laser light source modules by at least two light sources. More advantageously, in view of the fact that the embodiment can be based on the same excitation conditions, for example, by exciting the light source by a femtosecond laser, those skilled in the art can achieve at least only by using a wavelength of femtosecond laser.
  • the color mixture of the two sources That is, at least two light sources can be excited by one beam of light to achieve color mixing.
  • each light source is generally not in contact with each other. Avoid blending with each other.
  • each light source is often not in contact with each other, and there is a gap; if each light source is understood as a hemisphere, then for a plurality of light sources, the first hemisphere and the second hemisphere (even with the third hemisphere, etc.) Not sympathetic to each other.
  • the femtosecond laser is used to excite the at least two light sources, and only a single femtosecond laser is used, then the femtosecond laser must be able to At the same time, the at least two light sources are excited.
  • the plurality of light sources are a set of laser light source modules, such as the three ones shown in FIG. Groups, then the color mixing in each set of laser source modules can be achieved using the techniques of the present invention. Color mixing is very meaningful, for example, a variety of different colors can be mixed according to the RGB three primary colors.
  • the present invention allows at least two light sources of the plurality of light sources to emit light of the same color under the same excitation conditions.
  • a plurality of light sources in each group of laser light source modules may also be the same light source, and each of the plurality of light sources can emit the same color under the same excitation condition.
  • Light Such a laser source can be used in the field of searchlights.
  • the laser source has dimensions on the order of millimeters, micrometers, or less.
  • any one of the light sources is considered to be a micro hemisphere structure, we can produce a micro hemisphere structure of the size corresponding to the resolution according to the resolution requirements.
  • the size of the micro hemisphere structure of any one of the light sources may be 15, 35, 45, 85, 100 microns, etc., or even smaller. If the size of the micro hemisphere structure of any one of the light sources is on the order of millimeters, it is suitable for outdoor large screen display technology.
  • the optical mode in the micro hemisphere structure is the whispering gallery mode, and the mode spacing is different for different sizes of micro hemisphere structures.
  • the number of modes is reduced to one, it is a single mode laser, and the best monochromaticity is obtained.
  • the single mode laser emitted by the light source can further Increase the gamut interval of the laser.
  • the specified dimensions are approximately 15 microns.
  • the size of the printhead is determined by the size of each of the light sources.
  • the size of the printhead is related to the hemispherical diameter of the micro hemisphere structure described above, and is determined by the diameter of the hemisphere.
  • the size of the printhead can be selected from 5, 10, 20, 30, 40, 50, 60 microns, and the like. If it is necessary to make a micro hemisphere structure smaller than the micrometer scale, when the size of the print head cannot be smaller, an inkjet printer capable of adjusting the droplet size can be used to slightly improve the adaptability to make the ink by inkjet printing.
  • the light source of the invention As mentioned earlier, if a micro hemisphere structure of the millimeter order is to be obtained, the size of the print head can be appropriately larger.
  • the size of the ink drops is adjusted by controlling the voltage applied to the printhead.
  • Other ink jet printers capable of adjusting the size of the ink droplets can be found in the following patent documents in the prior art: CN1876375A, US8042899B2, US8714692B1, US8955937B2, US8985723B2, US9573382B1. These patent documents incorporate the specification of the present invention herein, however, it should be noted that these are only a part of the related art of ink jet printers in the prior art. Since all existing technologies cannot be exhausted, the remaining prior art that can be referenced and slightly improved is not listed.
  • the luminescent dye comprises any of the following: a photoimageable dye, an electroluminescent laser dye.
  • the luminescent dye comprises any of the following: an oligostyrene-based blue dye, a coumarin-based green dye, a rhodamine series dye, a hemi-cyanine red dye.
  • the dye of the corresponding emission wavelength may be selected according to the color requirement of the luminescence.
  • the luminescent dye may also be selected from an oligostyrene-based blue dye, or a coumarin 153, or a coumarin-like green dye such as coumarin 6, or a rhodamine series such as Rhodamine 6G, or a semi-cyanine red.
  • Light dyes Since the embodiment realizes three kinds of light, red, green and blue, it is easy to produce an RGB laser light source through the print head module and the ink.
  • the laser source comprises an RGB (red, green, and blue) three primary color source.
  • the RGB three primary color light sources are three light sources and are a set of light source modules independent of other laser light sources. In this way, it is convenient to independently control and mix colors, and to minimize speckle.
  • the matrix material comprises any of the following: polystyrene, polymethyl methacrylate, NOA series photocurable materials.
  • the matrix material acts as a support material for the laser cavity, which is material compatible with the laser dye. It is easy to understand that the better the material compatibility, the more suitable it is for use as a matrix material. It can be seen that the matrix material is also very advantageous if it has good processability.
  • NOA series photocurable materials include NOA1625, NOA68 and so on.
  • the ink employs any of the following solvents: water, dichloromethane, chloroform, dimethylformamide. It can be seen that the examples exemplarily provide a range of choices for the solvent.
  • the ink is in any of the following formulations:
  • the BSA aqueous solution has a solubility atmosphere of 300-1000 mg/mL.
  • the mass ratio of rhodamine B, sodium fluorescein and symmetrical diphenylethylene to BSA is 1% to 2%, 1% to 3%, and 1% to 3%, respectively.
  • the volume ratio of glycerin to water is from 30% to 100%.
  • the laser light source is excited by excitation of a 335-375 nm femtosecond laser. It is easy to see that the wavelength of the femtosecond laser is determined by the absorption spectrum of the light source formed after the ink is solidified.
  • the matrix material was selected from bovine serum albumin (i.e., BSA).
  • the ink further comprises an auxiliary material; the auxiliary material comprises a liquid polymer prepolymer.
  • auxiliary materials may not be necessary. If auxiliary materials are included, on the one hand it helps to reduce the volatility of the solvent and on the other hand ensures that the ink does not solidify during the printing process. Since all ink formulations cannot be exhausted, those skilled in the art will be able to foresee that under certain formulations, auxiliary materials may not be required, as long as the solvent and luminescent dye are properly selected, the solvent volatility during inkjet printing is still not significant. And the ink is not easily cured, that is, in the case where the auxiliary material is not included, there is a possibility that the inkjet printing process can be substantially prevented from being affected by the curing. Among them, for the polymer prepolymer, it will not cure until after illumination or heat treatment.
  • the auxiliary material comprises any of the following: a thermosetting epoxy resin, a NOA series photocuring adhesive. This corresponds to the previous description of the auxiliary materials.
  • each set of laser light source modules excites the plurality of light sources by a femtosecond laser.
  • the content related to femtosecond lasers is further described below.
  • the parameters of the specific femtosecond laser such as the wavelength, are determined by the light source itself formed by curing the ink described above. Excited by the laser, it is inevitably related to the absorption spectrum of the light source itself formed after the ink is solidified. That is, the wavelength referred to herein is determined by the absorption spectrum of the light source formed after the ink is cured.
  • each set of laser light source modules comprises three light sources, each of which is produced by inkjet printing using a specific laser dye
  • the three dyes are made of the same wavelength of laser light
  • one skilled in the art can select a laser of this wavelength as the excitation condition; of course, this does not exclude the use of two or three wavelengths of laser light as excitation conditions; that is, the laser used for excitation.
  • the wavelength can be flexibly selected: it is possible to select one laser, two lasers or three lasers to excite the laser light source modules, and the wavelength of each laser is determined by the absorption spectrum of the light source.
  • the present invention only needs to use a laser to excite the light source.
  • the light source can be excited by a direct current voltage.
  • the laser dye is obviously characterized by being capable of being excited by a certain DC voltage, for example, a DC voltage of about 3V.
  • each set of laser light source modules ie, including a plurality of laser light sources
  • each set of laser light source modules is excited to emit light corresponding to one pixel of the image.
  • each set of laser source modules is pixel level. This facilitates the realization of finer image display and promotes the application of laser technology in the field of high definition and ultra clear display.
  • each group of laser light source modules can be driven by a thin film transistor or by other thin film transistors: for example, an oxide semiconductor thin film transistor, a polysilicon thin film transistor, an amorphous silicon. Thin film transistor.
  • a thin film transistor for example, an oxide semiconductor thin film transistor, a polysilicon thin film transistor, an amorphous silicon. Thin film transistor.
  • the excitation of the DC voltage can control each pixel individually or even simultaneously, which is very beneficial for a pixel-level laser source device.
  • this type of excitation can also greatly reduce the size of equipment in the field of laser display.
  • the laser source is spaced about 2.5-4 times its diameter.
  • the temperature and time of the printed light source during curing are determined by the inherent characteristics of the ink.
  • the BSA aqueous solution system and the polystyrene/dichloromethane system are heated at 60 degrees Celsius for 1 hour, and the NOA series materials can be irradiated with ultraviolet light for several minutes.
  • the three primary color light sources have substantially the same diameter and are respectively located at three vertices of an equilateral triangle, and the side length of the equilateral triangle exceeds 10% of the diameter - 30 %.
  • the relationship between the length of the side and the diameter can also be changed according to the needs of the light source.
  • a system for printing a laser source comprising:
  • the print head module is configured to inject and print respective laser light sources on the substrate
  • the ink cartridge is for storing ink; wherein the ink comprises a luminescent dye and a matrix material and a solvent.
  • the embodiment firstly, it realizes the laser light source by inkjet printing, which provides a new technical solution for the cheap and industrial manufacture of the laser light source and its various display devices or lighting devices; secondly, Since the laser light source is convenient to realize a module including a plurality of independent laser light sources, each group of the laser light source modules can be separated from each other when emitting light, and it is difficult to generate laser coherence between the emitted lights, thereby greatly eliminating common lasers. Speckle caused by coherence.
  • the ink may be a polymer solution doped with a laser dye.
  • system further includes: fabricating a dot matrix module for fabricating a dot pattern corresponding to the location of the laser source on the cleaned substrate.
  • the purpose of making a dot pattern is to facilitate printing of the light source in accordance with the pattern.
  • system further includes a curing module for curing the laser source after printing the respective laser sources.
  • the curing is as described in the above embodiments.
  • the light source can be excited by a direct current voltage.
  • the laser dye is obviously characterized by being capable of being excited by a certain DC voltage, for example, a DC voltage of about 3V.
  • the printhead module includes one or more printheads for printing one or more laser light sources at a time.
  • the print head when a print head is used, the print head successively prints each of the light sources of each group, for example, three colors of red, green and blue are sequentially printed in the order of R, G, B;
  • multiple printheads can print each of each set of laser sources at a time - it is easy to understand that the number of printheads in operation must be greater than or equal to the number of light sources in each set of laser source modules, for example greater than Equal to the number of three RGB light sources.
  • Figure 2 shows only a plurality of printheads for a certain light source, such as a red light source, of the plurality of printheads, other light sources for a plurality of light sources are not shown.
  • a method of printing a laser source comprising the steps of:
  • S200 Printing the respective laser light sources on the substrate by using the ink.
  • the embodiment firstly, it realizes the laser light source by inkjet printing, which provides a new technical solution for the cheap and industrial manufacture of the laser light source and its various display devices or lighting devices; secondly, Since the laser light source is convenient to realize a module including a plurality of independent laser light sources, each group of the laser light source modules can be separated from each other when emitting light, and it is difficult to generate laser coherent superposition between the emitted lights, thereby greatly eliminating common Speckle caused by laser coherence.
  • the ink may be a polymer solution doped with a laser dye.
  • the pre-processing comprises the following steps:
  • S101 A dot pattern corresponding to a position of the laser light source is formed on the cleaned substrate.
  • the purpose of making a dot pattern is to facilitate printing of the light source in accordance with the pattern.
  • the method further includes the following steps:
  • the curing is as described in the above embodiments.
  • the light source can be excited by a direct current voltage or a pulsed voltage.
  • the laser dye is obviously characterized by being capable of being excited by a certain DC voltage, for example, a DC voltage of about 3V.
  • the DC voltage may be changed to a pulse voltage as needed. The pulse frequency and amplitude match the refresh rate required for display.
  • each group of laser light source modules can be driven by a thin film transistor or driven by other thin film transistors: for example, an oxide semiconductor thin film transistor, a polysilicon thin film transistor, Amorphous silicon thin film transistor.
  • the excitation of the DC voltage or the pulse voltage can control each pixel individually or even simultaneously compared to the excitation by one or more beams of femtosecond laser, which is very beneficial for a pixel-level laser source device.
  • this type of excitation can also greatly reduce the size of equipment in the field of laser display.
  • the inkjet printer includes one or more printheads for printing one or more laser light sources at a time.
  • the print head when a print head is used, the print head successively prints each of the light sources of each group, for example, three colors of red, green and blue are sequentially printed in the order of R, G, B;
  • multiple printheads can print each of each set of laser sources at a time - it is easy to understand that the number of printheads in operation must be greater than or equal to the number of light sources in each set of laser source modules, for example greater than Equal to the number of three RGB light sources.
  • Figure 2 shows only a plurality of printheads for a certain light source, such as a red light source, of the plurality of printheads, other light sources for a plurality of light sources are not shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Lasers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种打印激光光源的打印头模块、系统及方法。打印头模块包括一个或多个打印头,用于在基板上逐次打印或一次打印多个激光光源;打印所采用的墨水包括发光染料和基质材料以及溶剂。所述系统包括打印头模块和墨盒;所述打印头模块用于在基板上喷墨打印各个激光光源;所述墨盒用于存储墨水。通过上述技术方案,实现了工业化制造各种激光光源,并消除了激光相干所导致的散斑现象。

Description

一种打印激光光源的打印头模块、系统及方法 技术领域
本发明涉及激光领域,特别涉及一种打印激光光源的打印头模块、系统及方法。
背景技术
对于激光领域,一方面,现有的激光显示技术,由于激光强相干性的干涉效应引起激光散斑,严重降低了显示质量,不得不采用振屏等手段来消除散斑。另一方面,现有技术中缺乏一种快速、批量制造激光光源且使得每个光源都能发出不同颜色激光的技术。
发明内容
为了解决上述问题,本发明提供了一种打印激光光源的打印头模块,包括:
一个或多个打印头,用于在基板上逐次打印或一次打印多个激光光源;
所述打印所采用的墨水包括发光染料和基质材料以及溶剂。
优选的,所述激光光源,用于组成多组独立的激光光源模块;
每组独立的激光光源模块中,至少两个光源能够在相同的激发条件下发出不同颜色的光。
优选的,所述打印头的尺寸由所述每个光源的尺寸所决定。
优选的,所述激光光源的尺度为毫米级、微米级或更小。
优选的,施加在所述打印头的电压能够被控制,以便调节打印过程中墨滴的尺寸。
优选的,所述发光染料包括:可光致发激光的染料,可电致发激光的染料或其。
优选的,所述发光染料包括:寡聚苯乙烯类蓝光染料,香豆素类绿光染料,罗丹明系列染料,半花菁类红光染料或其混合物。例如香豆素153,或者香豆素6或者罗丹明6G染料。
优选的,所述基质材料包括:聚苯乙烯,聚甲基丙烯酸甲酯,NOA系列光固化材料或其混合物。
优选的,所述墨水采用:水,二氯甲烷,三氯甲烷,二甲基甲酰胺或他们的混合 物作为溶剂。
优选的,所述墨水采用下述任一种配方:
对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入300-1000mg/mL的BSA水溶液,其中三个染料与BSA的质量比分别为1-3%,随后加入甘油,甘油与水的体积比为1:1-4,优选为1:2;
更优选地,所述墨水采用下述任一种配方:
(1)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入400mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
(2)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入800mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
(3)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入500mg/mL的BSA水溶液,其中二苯代乙烯,荧光素钠和罗丹明B与BSA的质量比分别为:2%,2%和1%,最后加入甘油,甘油与水的体积比为1:2。
优选的,所述墨水还包括辅助材料;所述辅助材料包括液态的聚合物预聚体。
优选的,所述墨水还包括辅助材料;所述辅助材料包括:热固化环氧树脂,NOA系列光固化胶或他们的混合物。
优选的,所述激光光源包括RGB三原色光源。
优选的,所述激光光源的间隔约为其直径的2.5-4倍。
优选的,对于每一组RGB三原色光源,所述三原色光源的直径基本相同且分别位于等边三角形的三个顶点,所述等边三角形的边长则超出直径的10%-30%。
为了解决上述问题,本发明提供了一种打印激光光源的系统,包括:
打印头模块和墨盒、基板;
所述打印头模块,用于在所述基板上喷墨打印各个激光光源;
所述墨盒,用于存储墨水;其中,所述墨水包括发光染料和基质材料以及溶剂。
优选的,所述系统还包括:制作点阵模块,用于在清洁的基板上制作对应于激光光源位置的点阵图案。
优选的,所述系统还包括:固化模块,用于打印各个激光光源后,固化所述激光光源。
优选的,所述激光光源的尺度为毫米级、微米级或更小。
优选的,所述发光染料包括:可光致发激光的染料或可电致发激光的染料。
优选的,所述发光染料包括:寡聚苯乙烯类蓝光染料,香豆素类绿光染料,罗丹明系列染料,半花菁类红光染料。例如香豆素153,或者香豆素6或者罗丹明6G染料。
更优选的发光染料为对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料及其混合物,更优选为三者的混合物。
优选的,其中,所述基质材料包括:聚苯乙烯,聚甲基丙烯酸甲酯,NOA系列光固化材料或其混合物。
优选的,所述墨水采用:水,二氯甲烷,三氯甲烷,二甲基甲酰胺或其混合物作为溶剂。
优选的,所述墨水采用下述任一种配方:
对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入300-1000mg/mL的BSA水溶液,其中三个染料与BSA的质量比分别为1-3%,随后加入甘油,甘油与水的体积比为1:1-4,优选为1:2;
更优选地,所述墨水采用下述任一种配方:
(1)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入400mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
(2)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入800mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
(3)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入500mg/mL的BSA水溶液,其中二苯代乙烯,荧光素钠和罗丹明B与BSA的质量比分别为:2%,2%和1%,最后加入甘油,甘油与水的体积比为1:2。
优选的,所述墨水还包括辅助材料;所述辅助材料包括液态的聚合物预聚体。
优选的,所述墨水还包括辅助材料;所述辅助材料包括:热固化环氧树脂,NOA 系列光固化胶。
优选的,所述激光光源包括RGB三原色光源。
优选的,所述打印的激光光源能够组成多组独立的激光光源模块;每组独立的激光光源模块中,至少两个光源能够在相同的激发条件下发出不同颜色的光。
优选的,所述打印头模块包括一个或多个打印头,用于逐次打印或一次打印多个激光光源;所述打印头的尺寸由所述每个光源的尺寸所决定。
优选的,所述激光光源的间隔约为其直径的2.5-4倍。
优选的,所述加热过程中的温度和时间由墨水固有特性所决定。
优选的,对于每一组RGB三原色光源,所述三原色光源的直径基本相同且分别位于等边三角形的三个顶点,所述等边三角形的边长则超出直径的10%-30%。
为了解决上述问题,本发明提供了一种打印激光光源的方法,包括如下步骤:
S100:将经过预处理的基板放置在喷墨打印机的工作区域,其中,所述喷墨打印机采用的墨水包括发光染料和基质材料以及溶剂;
S200:利用所述墨水,在所述基板上打印各个激光光源。
优选的,所述预处理包括如下步骤:
S101:在清洁的基板上制作对应于激光光源位置的点阵图案。
优选的,所述方法还包括如下步骤:
S300:打印各个激光光源后,固化所述激光光源。
优选的,所述激光光源的尺度为毫米级、微米级或更小。
优选的,所述发光染料包括:可光致发激光的染料或可电致发激光的染料。
优选的,所述发光染料包括:寡聚苯乙烯类蓝光染料,香豆素类绿光染料,罗丹明系列染料,半花菁类红光染料。例如香豆素153,或者香豆素6或者罗丹明6G染料。
更优选的发光染料为对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料及其混合物,更优选为三者的混合物。
优选的,其中,所述基质材料包括:聚苯乙烯,聚甲基丙烯酸甲酯,NOA系列光固化材料。
优选的,所述墨水采用水,二氯甲烷,三氯甲烷,二甲基甲酰胺或其混合物作为 溶剂。
优选的,所述墨水采用下述任一种配方:
对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入300-1000mg/mL的BSA水溶液,其中三个染料与BSA的质量比分别为1-3%,随后加入甘油,甘油与水的体积比为1:1-4,优选为1:2;
更优选地,所述墨水采用下述任一种配方:
(1)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入400mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
(2)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入800mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
(3)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入500mg/mL的BSA水溶液,其中二苯代乙烯,荧光素钠和罗丹明B与BSA的质量比分别为:2%,2%和1%,最后加入甘油,甘油与水的体积比为1:2。
优选的,所述墨水还包括辅助材料;所述辅助材料包括液态的聚合物预聚体。
优选的,所述墨水还包括辅助材料;所述辅助材料包括:热固化环氧树脂,NOA系列光固化胶任一种或其混合物。
优选的,所述激光光源包括RGB三原色光源。
优选的,所述打印的激光光源能够组成多组独立的激光光源模块;每组独立的激光光源模块中,至少两个光源能够在相同的激发条件下发出不同颜色的光。
优选的,所述喷墨打印机包括一个或多个打印头,用于逐次打印或一次打印多个激光光源;所述打印头的尺寸由所述每个光源的尺寸所决定。
优选的,所述激光光源的间隔约为其直径的2.5-4倍。
优选的,所述加热过程中的温度和时间由墨水固有特性所决定。
优选的,对于每一组RGB三原色光源,所述三原色光源的直径基本相同且分别位于等边三角形的三个顶点,所述等边三角形的边长则超出直径的10%-30%。
本发明的有益效果:
1.通过本发明所提供的诸多技术方案,首先其实现了用喷墨打印制得激光光源, 这为廉价且工业化制造各种激光光源及其显示装置提供了新的技术方案;其次,由于所述激光光源便于实现包括多组独立的激光光源的模块,就使得每组激光光源模块发光时能够相互独散立,其出射光之间很难产生激光相干,从而极大消除常见的激光相干所导致的散斑现象。
2.通过本发明所提供的诸多技术方案,首先其实现了用喷墨打印制得激光光源,这为廉价且工业化制造各种激光光源及其显示装置提供了新的技术方案;其次,由于所述激光光源便于实现包括多组独立的激光光源的模块,就使得每组激光光源模块发光时能够相互独散立,其出射光之间很难产生激光相干,从而极大消除常见的激光相干所导致的散斑现象。
3.通过本发明所提供的诸多技术方案,首先其实现了用喷墨打印制得激光光源,这为廉价且工业化制造各种激光光源及其显示装置提供了新的技术方案;其次,由于所述激光光源便于实现包括多组独立的激光光源的模块,就使得每组激光光源模块发光时能够相互独散立,其出射光之间很难产生激光相干叠加,从而极大消除常见的激光相干所导致的散斑现象。
附图说明
图1是本发明的一个实施例中的喷墨打印过程示意图;
图2是本发明的一个实施例中的喷墨打印过程另一示意图;
图3是本发明的一个实施例中的激光光源的示意图。
具体实施例
为了使本领域技术人员理解本发明所披露的技术方案,下面将结合实施例及有关附图,对各个实施例的技术方案进行描述,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。本发明所采用的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,“包括”和“具有”以及它们的任何变形,意图在于覆盖且不排他的包含。例如包含了一系列步骤或单元的过程、或方法、或系统、或产品或设备没有限定于已列出的步骤或单元,而是可选的还包括没有列出的步骤或单元,或可选的还包括对于这些过程、方法、系统、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包 含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其他实施例互斥的独立的或备选的实施例。本领域技术人员可以理解的是,本文所描述的实施例可以与其他实施例相结合。
在本发明的一个实施例中,其揭示了一种打印激光光源的打印头模块,包括:
一个或多个打印头,用于在基板上逐次打印或一次打印多个激光光源;
所述打印所采用的墨水包括发光染料和基质材料以及溶剂。
对于所述实施例而言:首先其实现了用喷墨打印制得激光光源,这为廉价且工业化制造激光光源及其各种显示装置或照明装置等提供了一种新的技术方案;其次,由于所述多个激光光源便于实现包括多组独立的激光光源的模块,就使得每组激光光源模块发光时能够相互独散立,其出射光之间很难产生激光相干,从而极大消除常见的激光相干所导致的散斑现象。
其中,参见图1,其示出了分别针对不同颜色的墨水的打印头,用于在基板上逐次打印不同的光源。每个打印头对应了一种颜色的墨水。参见图2,多个打印头对应了一种颜色的墨水。
结合图1、2,不难看出,上述实施例完整、清楚的描述了:一个或多个打印头,用于在基板上逐次打印或一次打印多个激光光源。
对于所述实施例,参见图1,当使用一个打印头时,打印头逐次打印每组激光光源中的每个光源,例如按照R、G、B顺序逐次打印红、绿、蓝三个光源;当使用多个打印头时,多个打印头可以一次打印每组激光光源中的每个光源——容易理解,工作中的打印头数量必然大于等于每组激光光源模块中的光源数量,例如大于等于RGB三个光源的数量。图2仅示出了多个打印头中的针对某个光源,例如红色光源的多个打印头,针对另外一种颜色的多个打印头则没有示出。
可以看出,喷墨打印需要使用墨水来打印。与激光光源对应的是,所述墨水可以采用激光染料掺杂的聚合物溶液。
在另一个实施例中,对于所述基板,只要有利于在其上喷墨打印光源即可。更佳的,基板需要有一定的透光性。示例性的,基板可以选择如下任一种:(1)镀氟化镁的银镜基底;(2)分布式布拉格反射镜(DBR)基底等。
在另一个实施例中,所述基板需要预处理,包括在清洁的基板上制作对应于激光光源位置的点阵图案。
对于所述实施例,制作点阵图案的目的在于便于按照图案来进行光源的打印。
在另一个实施例中,所述点阵图案通过绘图仪来制作。示例性的,首先将预处理(包括对基板的清洁)过的基板放置在绘图仪的工作区域内;其次,利用所述绘图仪在基板上绘制对应于激光光源位置的点阵(备注:容易理解,所述点阵是一种阵列化图案,二者在本发明中是针对同一概念的不同表述方式)。进一步地,打印头模块可以基于制作的阵列化图案来打印激光光源。
容易看出,打印各个激光光源后,所述激光光源可能需要人为干涉其固化过程。
对于所述实施例而言,可以是自然的固化,也可以是人为的固化,其中自然固化时间成本往往比较大,人为的固化则是为了加速固化的过程。就人为的固化而言,可以采用对基板加热的方式(往往采用恒温加热板进行加热),也可以采用类似于加热的其他适当固化方式,例如光辐射(包括紫外光或其他光谱的光线照射)。容易理解的,可选的固化方式取决于墨水。
在另一个实施例中,所述激光光源,用于组成多组独立的激光光源模块;每组独立的激光光源模块中,至少两个光源能够在相同的激发条件下发出不同颜色的光。
就所述实施例来讲,这使得至少通过两个光源就能实现每组激光光源模块的混色。更为有利的是,鉴于所述实施例可以基于相同的激发条件,以通过飞秒激光来激发所述光源为例,本领域技术人员就可以仅仅通过使用一种波长的飞秒激光来实现至少两个光源的混色。即,能够通过一束光来激发至少两个光源,以实现混色。
可以看出,如果打印复数个光源,那么喷墨打印的所述复数个光源通过墨水来打印时,所述复数个光源往往是微球形,确切的说,是半球形。在所述打印头模块工作的过程中,所采用的喷墨打印的墨水由于是液态,而制得的光源最终是固态,那么喷墨打印过程中一般要使得每个光源之间彼此不接触以避免互相之间融合。
也就是说,每个光源之间往往不接触,且存在间距;如果把每个光源理解为半球,那么对于复数个光源来讲,第一半球与第二半球(甚至与第三半球等等)彼此不相切。
能够理解的是,在至少两个光源的混色中,可选的,通过飞秒激光来激发所述至少两个光源,且仅仅使用一束飞秒激光的话,那么这束飞秒激光必然要能够同时激发到所述至少两个光源。这样一来,由于一组复数个光源的至少两个光源能够在相同的激发条件下发出不同颜色的光,假设所述复数个光源为一组激光光源模块,例如图3所示的三个一组,那么利用本发明的技术就能够实现每组激光光源模块中的混色。混 色是非常有意义的,例如根据RGB三原色就能混色出多种不同的颜色。
需要指出的是,本发明允许所述复数个光源的至少两个光源能够在相同的激发条件下发出相同颜色的光。例如,为了实现某种单一颜色的强光,那么每组激光光源模块中的复数个光源也可以是相同的光源,所述复数个光源的每个光源都能够在相同的激发条件下发出同一颜色的光。这种激光光源可以用于探照灯领域。
在另一个实施例中,所述激光光源的尺度为毫米级、微米级或更小。
对于所述实施例而言,每个光源的尺度越小,其越有利于实现更高分辨率的图像显示效果。如果将任意一个光源视为一个微半球结构,按照分辨率的要求,我们可以制得与分辨率相应尺寸的微半球结构。所述任意一个光源的微半球结构的尺寸可以是15、35、45、85、100微米等等,甚至更小。如果任意一个光源的微半球结构的尺寸是毫米级,则适用于户外大屏幕显示技术。
可以看出,微半球结构中的光学模式为回音壁模式,对于不同尺寸的微半球结构,其模式间距不同。根据回音壁模式理论,半球直径越小,其模式间距越大,增益区间内存在的模式数越少,当模式数减少为一个时,即为单模激光,得到最好的单色性。
进一步的,当某个光源所对应的微半球结构的半球直径小到一定尺寸,且所述一定尺寸与所述光源激发出的单模激光存在对应关系时,其所发出的单模激光能够进一步增加激光的色域区间。示例性的而非限制的,所述一定尺寸约为15微米。
在另一个实施例中,所述打印头的尺寸由所述每个光源的尺寸所决定。
可以看出,打印头的尺寸与前文所述微半球结构的半球直径相关,受半球直径决定。所述打印头的尺寸可选的范围有5、10、20、30、40、50、60微米等等。如果需要制得比微米尺度更小的微半球结构,当打印头的尺寸无法更小时,可以采用能够调节墨滴尺寸的喷墨打印机来适应性稍加改进以便于通过喷墨打印来制得本发明所述的光源。如前所述,如果要获得毫米级的微半球结构,那么打印头的尺寸可以适当的大一点。
在另一个实施例中,通过控制施加在打印头的电压,来调节墨滴的尺寸。其他能够调节墨滴尺寸的喷墨打印机,可以参见现有技术中的如下专利文献:CN1876375A、US8042899B2、US8714692B1、US8955937B2、US8985723B2、US9573382B1。这些专利文献在此一并引入本发明的说明书,然而需要指出的是:这些只是现有技术中的喷墨打印机有关技术的一部分。由于无法穷举所有现有技术,因此,其余可以参考 和稍加改进的现有技术不再列出。
在另一个实施例中,所述发光染料包括如下任一:可光致发激光的染料,可电致发激光的染料。
一方面,在材料领域,存在光致发激光的染料,也存在电致发激光的染料。这就为本领域技术人员提供了发光染料的多样选择。另一方面,如果采用光致发激光的染料,那么前文所述通过喷墨打印制得的激光光源则可以被其他光所激发,例如飞秒激光;容易理解的,相应的飞秒激光的参数选择与墨水固化后的光源本身的特性,特别是吸收光谱有关;如果采用电致发激光的染料,那么所述激光光源则可以通过施加电压所激发,例如施加直流电压或脉冲电压;示例性的,借由前文所述实施例,本领域技术人员很容易通过对染料的选择而获得:一种通过施加3V的直流电压就能激发的激光光源。依材料不同,直流电压可能会根据需要更改为脉冲电压。脉冲频率和幅值符合显示所需的刷新率即可。
在另一个实施例中,所述发光染料包括如下任一:寡聚苯乙烯类蓝光染料,香豆素类绿光染料,罗丹明系列染料,半花菁类红光染料。
对于本领域技术人员而言,按照发光颜色需求,选择相应发光波长的染料即可。例如,发光染料还可选择寡聚苯乙烯类蓝光染料,或者香豆素153,或者香豆素6等香豆素类绿光染料,或者罗丹明6G等罗丹明系列,或者半花菁类红光染料。由于所述实施例实现了红绿蓝三种光线,那么很容易通过所述打印头模块和所述墨水制得RGB激光光源。
在另一个实施例中,所述激光光源包括RGB(红绿蓝)三原色光源。
容易理解,这是便于利用RGB三原色原理来混色。如果采用一束飞秒激光来激发且混色,那么这束飞秒激光必然要能够同时激发到所述RGB三个光源,以便利用三原色原理来混色得到各种颜色。类似的,如果采用直流电压激发,那么更精细的控制可以实现:对RGB三个光源能够分别控制其电压,从而利用三原色原理来混色得到各种颜色。
更特别的,所述RGB三原色光源为三个光源,且为一组独立于其他激光光源的光源模块。这样,既能够便于独立的控制、混色,又能够最大化降低散斑现象。
在另一个实施例中,所述基质材料包括如下任一:聚苯乙烯,聚甲基丙烯酸甲酯,NOA系列光固化材料。
对于所述实施例而言,基质材料作为激光腔体的支撑材料,其与激光染料有材料兼容性即可。容易理解的,材料兼容性越好,则越适于用作基质材料。可以看出,基质材料如果具有良好的加工性能,那么也是非常有利的。其中,NOA系列光固化材料包括NOA1625,NOA68等等。
在另一个实施例中,所述墨水采用如下任一作为溶剂:水,二氯甲烷,三氯甲烷,二甲基甲酰胺。可以看出,所述实施例示例性的提供了溶剂的选择范围。
在另一个实施例中,所述墨水采用下述任一种配方:
(1)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入400mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
(2)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入800mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
(3)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入500mg/mL的BSA水溶液,其中二苯代乙烯,荧光素钠和罗丹明B与BSA的质量比分别为:2%,2%和1%,最后加入甘油,甘油与水的体积比为1:2;
(4)除以上具体配方的用量外,仍有多种选择,其中BSA水溶液的溶度氛围为300-1000mg/mL。罗丹明B,荧光素钠和对称二苯代乙烯与BSA的质量比分别为1%-2%,1%-3%,和1%-3%。甘油与水的体积比为30%-100%。
在另一个实施例中,当采用上述配方(1)至(3)时,所述激光光源在335-375nm飞秒激光的激发下而受激发光。容易看出,飞秒激光的波长由墨水固化后所形成的光源的吸收光谱决定。
对于上述有关实施例,基质材料选择牛血清蛋白(即BSA)。
在另一个实施例中,所述墨水还包括辅助材料;所述辅助材料包括液态的聚合物预聚体。
需要指出的是,辅助材料可能不是必需的。如果包括辅助材料,那么一方面有助于降低溶剂的挥发性,另一方面确保打印过程中墨水不会固化。由于无法穷尽所有墨水配方,所以本领域技术人员能够预见的是:在某些配方下,可能不需要辅助材料,只要溶剂和发光染料选择得当,依然能够确保喷墨打印过程中溶剂挥发性不明显,且 墨水不易固化,即:不包括辅助材料的情况下,存在可能性,以使得喷墨打印过程基本能够不受固化的影响。其中,对于聚合物预聚体,其在光照或加热处理后,才会固化。
在另一个实施例中,所述辅助材料包括如下任一:热固化环氧树脂,NOA系列光固化胶。这与前文对于辅助材料的说明相呼应。
上文指出,在另一个实施例中,所述每组激光光源模块通过飞秒激光来激发所述复数个光源。下面进一步描述飞秒激光有关的内容。
可以看出,具体的飞秒激光的参数,例如波长,是由上述墨水固化后所形成的光源本身所决定的。受激光激发,必然与墨水固化后所形成的光源本身的吸收光谱有关。即,此处所说的波长由墨水固化后所形成的光源的吸收光谱决定。
假设每组激光光源模块包括三个光源,每个光源采用一种具体的激光染料来喷墨打印制得,那么:当三种染料制得的所述三个光源都可以被同一波长的激光来受激发光时,本领域技术人员可选择这种波长的激光来作为激发条件;当然,这并不排斥使用两种或三种波长的激光作为激发条件;也就是说,用于激发的激光的波长可灵活选择:选择一束激光,两束激光还是三束激光,来激发所述每组激光光源模块都是可以的,而每束激光的波长则由所述光源的吸收光谱所决定。特别的,与现有技术中采用多束不同颜色的光来扫描发光、并用于图像的显示不同,本发明只需要采用一束激光来激发所述光源即可。
在另一个实施例中,所述光源能够通过直流电压来激发。
对于所述实施例,其揭示了另一种激发方式。当然,无论是飞秒激光来激发,还是直流电压或脉冲电压来激发,都取决于墨水固化后所形成的光源本身。换句话说,所述激光染料显然要具备能够被一定的直流电压激发的特点,例如直流电压约为3V。
在另一个实施例中,当所述光源用于显示一个图像时,每组激光光源模块(即包括复数个激光光源)受激发而发出的光,均对应所述图像的一个像素。
就所述实施例而言,意味着所述每组激光光源模块是像素级的。这有利于实现更精细的图像显示,推动激光技术在高清、超清显示领域的应用。
在另一个实施例中,当采用直流电压的激发方式时,每组激光光源模块可以通过薄膜晶体管进行驱动,或者通过其他薄膜晶体管进行驱动:例如氧化物半导体薄膜晶体管、多晶硅薄膜晶体管、非晶硅薄膜晶体管。与通过一束或多束飞秒激光这种激发 方式相比,直流电压的激发方式能够单独、甚至同时的控制每个像素点,这对于像素级的激光光源装置是非常有益的。附带的,这种激发方式还能够大大缩小激光显示领域中设备的体积。
在另一个实施例中,所述激光光源的间隔约为其直径的2.5-4倍。
容易理解,此处的间隔,是可以根据光源的需求而改变的。
在另一个实施例中,打印的光源在固化过程中的温度和时间由墨水固有特性所决定。例如,BSA水溶液体系和聚苯乙烯/二氯甲烷体系在60摄氏度下加热1小时,NOA系列材料则可以采用紫外光照射数分钟。
在另一个实施例中,对于每一组RGB三原色光源,所述三原色光源的直径基本相同且分别位于等边三角形的三个顶点,所述等边三角形的边长则超出直径的10%-30%。显而易见的,此处的边长与直径的尺寸关系,同样可以根据光源的需求而改变。
参见图1,在本发明的一个实施例中,其示出了一种打印激光光源的系统,包括:
打印头模块和墨盒、基板;
所述打印头模块,用于在所述基板上喷墨打印各个激光光源;
所述墨盒,用于存储墨水;其中,所述墨水包括发光染料和基质材料以及溶剂。
对于所述实施例而言:首先其实现了用喷墨打印制得激光光源,这为廉价且工业化制造激光光源及其各种显示装置或照明装置等提供了一种新的技术方案;其次,由于所述激光光源便于实现包括多组独立的激光光源的模块,就使得每组激光光源模块发光时能够相互独散立,其出射光之间很难产生激光相干,从而极大消除常见的激光相干所导致的散斑现象。
可以看出,喷墨打印需要使用墨水来打印。与激光光源对应的是,所述墨水可以采用激光染料掺杂的聚合物溶液。
在另一个实施例中,所述系统还包括:制作点阵模块,用于在清洁的基板上制作对应于激光光源位置的点阵图案。
对于所述实施例,制作点阵图案的目的在于便于按照图案来进行光源的打印。
在另一个实施例中,所述系统还包括:固化模块,用于打印各个激光光源后,固化所述激光光源。
对于所述实施例而言,所述固化如上述实施例所述。
在另一个实施例中,所述光源能够通过直流电压来激发。
对于所述实施例,其揭示了另一种激发方式。当然,无论是飞秒激光来激发,还是直流电压或脉冲电压来激发,都取决于墨水固化后所形成的光源本身。换句话说,所述激光染料显然要具备能够被一定的直流电压激发的特点,例如直流电压约为3V。
在另一个实施例中,所述打印头模块包括一个或多个打印头,用于逐次打印或一次打印多个激光光源。
对于所述实施例,参见图1,当使用一个打印头时,打印头逐次打印每组激光光源中的每个光源,例如按照R、G、B顺序逐次打印红、绿、蓝三个光源;当使用多个打印头时,多个打印头可以一次打印每组激光光源中的每个光源——容易理解,工作中的打印头数量必然大于等于每组激光光源模块中的光源数量,例如大于等于RGB三个光源的数量。图2仅示出了多个打印头中的针对某个光源,例如红色光源的多个打印头,针对复数个光源的其他光源并未示出。
参见图1,在本发明的一个实施例中,其示出了一种打印激光光源的方法,包括如下步骤:
S100:将经过预处理的基板放置在喷墨打印机的工作区域,其中,所述喷墨打印机采用的墨水包括发光染料和基质材料以及溶剂;
S200:利用所述墨水,在所述基板上打印各个激光光源。
对于所述实施例而言:首先其实现了用喷墨打印制得激光光源,这为廉价且工业化制造激光光源及其各种显示装置或照明装置等提供了一种新的技术方案;其次,由于所述激光光源便于实现包括多组独立的激光光源的模块,就使得每组激光光源模块发光时能够相互独散立,其出射光之间很难产生激光相干叠加,从而极大消除常见的激光相干所导致的散斑现象。
可以看出,喷墨打印需要使用墨水来打印。与激光光源对应的是,所述墨水可以采用激光染料掺杂的聚合物溶液。
在另一个实施例中,所述预处理包括如下步骤:
S101:在清洁的基板上制作对应于激光光源位置的点阵图案。
对于所述实施例,制作点阵图案的目的在于便于按照图案来进行光源的打印。
在另一个实施例中,所述方法还包括如下步骤:
S300:打印各个激光光源后,固化所述激光光源。
对于所述实施例而言,所述固化如上述实施例所述。
在另一个实施例中,所述光源能够通过直流电压或脉冲电压来激发。
对于所述实施例,其揭示了另一种激发方式。当然,无论是飞秒激光来激发,还是直流电压或脉冲电压来激发,都取决于墨水固化后所形成的光源本身。换句话说,所述激光染料显然要具备能够被一定的直流电压激发的特点,例如直流电压约为3V。依材料不同,直流电压可能会根据需要更改为脉冲电压。脉冲频率和幅值符合显示所需的刷新率即可。
在另一个实施例中,当采用直流电压或脉冲电压的激发方式时,每组激光光源模块可以通过薄膜晶体管进行驱动,或者通过其他薄膜晶体管进行驱动:例如氧化物半导体薄膜晶体管、多晶硅薄膜晶体管、非晶硅薄膜晶体管。与通过一束或多束飞秒激光这种激发方式相比,直流电压或脉冲电压的激发方式能够单独、甚至同时的控制每个像素点,这对于像素级的激光光源装置是非常有益的。附带的,这种激发方式还能够大大缩小激光显示领域中设备的体积。
在另一个实施例中,所述喷墨打印机包括一个或多个打印头,用于逐次打印或一次打印多个激光光源。
对于所述实施例,参见图1,当使用一个打印头时,打印头逐次打印每组激光光源中的每个光源,例如按照R、G、B顺序逐次打印红、绿、蓝三个光源;当使用多个打印头时,多个打印头可以一次打印每组激光光源中的每个光源——容易理解,工作中的打印头数量必然大于等于每组激光光源模块中的光源数量,例如大于等于RGB三个光源的数量。图2仅示出了多个打印头中的针对某个光源,例如红色光源的多个打印头,针对复数个光源的其他光源并未示出。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明的各实施例技术方案的范围。

Claims (10)

  1. 一种打印激光光源的打印头模块,包括:
    一个或多个打印头,用于在基板上逐次打印或一次打印多个激光光源;
    所述打印所采用的墨水包括发光染料和基质材料以及溶剂。
  2. 根据权利要求1所述的打印头模块,其中,
    所述激光光源,用于组成多组独立的激光光源模块;
    每组独立的激光光源模块中,至少两个光源能够在相同的激发条件下发出不同颜色的光。
    优选地,所述打印头的尺寸由所述每个光源的尺寸所决定。
    优选地,施加在所述打印头的电压能够被控制,以便调节打印过程中墨滴的尺寸。
    优选地,所述激光光源的尺度为毫米级、微米级或更小。
  3. 根据权利要求1或2所述的打印头模块,其中,所述发光染料包括:
    可光致发激光的染料,可电致发激光的染料。
    优选地,所述发光染料:寡聚苯乙烯类蓝光染料,香豆素类绿光染料,罗丹明系列染料,半花菁类红光染料或他们的混合物。例如香豆素153,或者香豆素6或者罗丹明6G染料。
    优选地,激光染料为对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料及其混合物,更优选为三者的混合物。
    优选地,所述基质材料包括:聚苯乙烯,聚甲基丙烯酸甲酯,NOA系列光固化材料或他们的混合物。
  4. 根据权利要求1-3任一项所述的打印头模块,其中,所述墨水采用:水,二氯甲烷,三氯甲烷,二甲基甲酰胺或他们的混合物作为溶剂。
    优选地,所述墨水采用下述任一种配方:
    对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入300-1000mg/mL的BSA水溶液,其中三个染料与BSA的质量比分别为1-3%,随后加入甘油,甘油与水的体积比为1:1-4,优选为1:2;
    优选地,所述墨水采用下述任一种配方:
    (1)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入400mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
    (2)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入800mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
    (3)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入500mg/mL的BSA水溶液,其中二苯代乙烯,荧光素钠和罗丹明B与BSA的质量比分别为:2%,2%和1%,最后加入甘油,甘油与水的体积比为1:2。
    优选地,所述墨水还包括辅助材料;所述辅助材料包括液态的聚合物预聚体。
    优选地,所述辅助材料包括:热固化环氧树脂,NOA系列光固化胶或他们的混合物。
    优选地,所述激光光源包括RGB三原色光源。
    优选地,对于每一组RGB三原色光源,所述三原色光源的直径基本相同且分别位于等边三角形的三个顶点,所述等边三角形的边长则超出直径的10%-30%。
    优选地,所述激光光源的间隔约为其直径的2.5-4倍。
  5. 一种打印激光光源的系统,包括:打印头模块和墨盒、基板;
    所述打印头模块,用于在所述基板上喷墨打印各个激光光源;
    所述墨盒,用于存储墨水;其中,所述墨水包括发光染料和基质材料以及溶剂。
  6. 根据权利要求5所述的系统,其中,所述系统还包括:制作点阵模块,用于在清洁的基板上制作对应于激光光源位置的点阵图案。
    优选地,所述系统还包括:固化模块,用于打印各个激光光源后,固化所述激光光源。
    优选地,所述激光光源的尺度为毫米级、微米级或更小。
    优选地,所述发光染料包括:可光致发激光的染料,可电致发激光的染料。
    优选地,所述发光染料包括:寡聚苯乙烯类蓝光染料,香豆素类绿光染料,罗丹明系列染料,半花菁类红光染料或其混合物。
    优选地,所述基质材料包括:聚苯乙烯,聚甲基丙烯酸甲酯,NOA系列光固化材料。
  7. 根据权利要求5或6所述的系统,其中,所述墨水采用:水,二氯甲烷,三氯甲烷,二甲基甲酰胺或他们的混合物作为溶剂。
    优选地,所述墨水采用下述任一种配方:
    对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入300-1000mg/mL的BSA水溶液,其中三个染料与BSA的质量比分别为1-3%,随后加入甘油,甘油与水的体积比为1:1-4,优选为1:2;
    优选地,所述墨水采用下述任一种配方:
    (1)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入400mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
    (2)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入800mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
    (3)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入500mg/mL的BSA水溶液,其中二苯代乙烯,荧光素钠和罗丹明B与BSA的质量比分别为:2%,2%和1%,最后加入甘油,甘油与水的体积比为1:2。
    优选地,所述墨水还包括辅助材料;所述辅助材料包括液态的聚合物预聚体;或者,所述辅助材料包括:热固化环氧树脂,NOA系列光固化胶或他们的混合物。
    优选地,所述激光光源包括RGB三原色光源。
    优选地,对于每一组RGB三原色光源,所述三原色光源的直径基本相同且分别位于等边三角形的三个顶点,所述等边三角形的边长则超出直径的10%-30%。
    优选地,所述激光光源的间隔约为其直径的2.5-4倍。
    优选地,所述打印的激光光源能够组成多组独立的激光光源模块;每组独立的激光光源模块中,至少两个光源能够在相同的激发条件下发出不同颜色的光。
    优选地,所述打印头模块包括一个或多个打印头,用于逐次打印或一次打印多个激光光源;所述打印头的尺寸由所述每个光源的尺寸所决定。
    优选地,所述固化过程中的温度和时间由墨水固有特性所决定。
  8. 一种打印激光光源的方法,包括如下步骤:
    S100:将经过预处理的基板放置在喷墨打印机的工作区域,其中,所述喷墨打印机采用的墨水包括发光染料和基质材料以及溶剂;
    S200:利用所述墨水,在所述基板上打印各个激光光源。
  9. 根据权利要求8所述的方法,其中,所述预处理包括如下步骤:
    S101:在清洁的基板上制作对应于激光光源位置的点阵图案。
    优选地,所述方法还包括如下步骤:
    S300:打印各个激光光源后,固化所述激光光源。
    优选地,所述激光光源的尺度为毫米级、微米级或更小。
    优选地,所述发光染料包括:可光致发激光的染料,可电致发激光的染料。
    优选地,所述发光染料包括:寡聚苯乙烯类蓝光染料,香豆素类绿光染料,罗丹明系列染料、半花菁类红光染料或其混合物。
    优选地,所述基质材料包括:聚苯乙烯,聚甲基丙烯酸甲酯,NOA系列光固化材料或其 混合物。
  10. 根据权利要求8或9所述的方法,其中,所述墨水采用:水,二氯甲烷,三氯甲烷,二甲基甲酰胺或他们的混合物作为溶剂。
    优选地,所述墨水采用下述任一种配方:
    对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入300-1000mg/mL的BSA水溶液,其中三个染料与BSA的质量比分别为1-3%,随后加入甘油,甘油与水的体积比为1:1-4,优选为1:2;
    优选地,所述墨水采用下述任一种配方:
    (1)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入400mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
    (2)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入800mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
    (3)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入500mg/mL的BSA水溶液,其中二苯代乙烯,荧光素钠和罗丹明B与BSA的质量比分别为:2%,2%和1%,最后加入甘油,甘油与水的体积比为1:2。
    优选地,所述墨水还包括辅助材料;所述辅助材料包括液态的聚合物预聚体。
    优选地,所述辅助材料包括:热固化环氧树脂,NOA系列光固化胶或他们的混合物。
    优选地,所述激光光源包括RGB三原色光源。
    优选地,对于每一组RGB三原色光源,所述三原色光源的直径基本相同且分别位于等边三角形的三个顶点,所述等边三角形的边长则超出直径的10%-30%。
    优选地,所述激光光源的间隔约为其直径的2.5-4倍。
    优选地,所述打印的激光光源能够组成多组独立的激光光源模块;每组独立的激光光源模块中,至少两个光源能够在相同的激发条件下发出不同颜色的光。
    优选地,所述喷墨打印机包括一个或多个打印头,用于逐次打印或一次打印多个激光光源;所述打印头的尺寸由所述每个光源的尺寸所决定。
    优选地,所述固化过程中的温度和时间由墨水固有特性所决定。
PCT/CN2018/085670 2017-05-19 2018-05-04 一种打印激光光源的打印头模块、系统及方法 WO2018210142A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/614,753 US11192388B2 (en) 2017-05-19 2018-05-04 Printing head module, system and method for printing laser sources
JP2019564093A JP7181229B2 (ja) 2017-05-19 2018-05-04 レーザー光源の印刷方法
EP18802018.4A EP3611021B1 (en) 2017-05-19 2018-05-04 Printing head module, system and method for printing laser light sources

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201710359076.7 2017-05-19
CN201710358471.3A CN108957777A (zh) 2017-05-19 2017-05-19 一种电压驱动的激光显示器
CN201710359566.7 2017-05-19
CN201710359070.X 2017-05-19
CN201710358471.3 2017-05-19
CN201710359567.1A CN108963758A (zh) 2017-05-19 2017-05-19 一种激光阵列装置
CN201710359582.6A CN108957779A (zh) 2017-05-19 2017-05-19 一种激光面板
CN201710361265.8A CN108948857A (zh) 2017-05-19 2017-05-19 一种打印激光光源的方法
CN201710359582.6 2017-05-19
CN201710359566.7A CN108957778A (zh) 2017-05-19 2017-05-19 一种激光显示器
CN201710359567.1 2017-05-19
CN201710359076.7A CN108944066A (zh) 2017-05-19 2017-05-19 一种打印激光光源的打印头模块
CN201710358465.8A CN108948862A (zh) 2017-05-19 2017-05-19 一种用于制得激光光源的墨水
CN201710359070.XA CN108944032A (zh) 2017-05-19 2017-05-19 一种打印激光光源的系统
CN201710358465.8 2017-05-19
CN201710361265.8 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018210142A1 true WO2018210142A1 (zh) 2018-11-22

Family

ID=64273256

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2018/085671 WO2018210143A1 (zh) 2017-05-19 2018-05-04 一种激光面板、激光阵列装置及激光显示器
PCT/CN2018/085672 WO2018210144A1 (zh) 2017-05-19 2018-05-04 一种用于制得激光光源的墨水
PCT/CN2018/085670 WO2018210142A1 (zh) 2017-05-19 2018-05-04 一种打印激光光源的打印头模块、系统及方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/085671 WO2018210143A1 (zh) 2017-05-19 2018-05-04 一种激光面板、激光阵列装置及激光显示器
PCT/CN2018/085672 WO2018210144A1 (zh) 2017-05-19 2018-05-04 一种用于制得激光光源的墨水

Country Status (5)

Country Link
US (3) US11298957B2 (zh)
EP (3) EP3611234B1 (zh)
JP (3) JP7383485B2 (zh)
KR (2) KR102215532B1 (zh)
WO (3) WO2018210143A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183930B (zh) * 2019-05-21 2021-11-12 福建合润包装涂料有限公司 一种激光打码用的光油及复合涂层

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303228A (zh) * 1999-12-22 2001-07-11 通用电气公司 发光显示器及其制造方法
CN1476973A (zh) * 2002-07-08 2004-02-25 佳能株式会社 液体排出装置和方法、显示装置用板的制造装置和制造方法
US20050100660A1 (en) * 2002-09-19 2005-05-12 Nobuyuki Ito Method and apparatus for manufacturing organic EL display and color filter by ink jet method
CN1701641A (zh) * 2002-09-24 2005-11-23 夏普株式会社 有源矩阵型有机el显示体制造方法及其装置和有源矩阵型有机el显示体、液晶阵列制造方法和液晶阵列、滤色片衬底制造方法及其装置和滤色片衬底
CN1824713A (zh) * 2005-02-24 2006-08-30 东芝泰格有限公司 喷墨墨水
CN1876375A (zh) 2005-06-10 2006-12-13 三星电子株式会社 能够调节墨滴尺寸的喷墨打印机
CN101353472A (zh) * 1999-03-29 2009-01-28 精工爱普生株式会社 组合物及膜的制造方法以及功能元件及其制造方法
US8042899B2 (en) 2008-03-17 2011-10-25 Xerox Corporation System and method for compensating for weak, intermittent, or missing inkjets in a printhead assembly
US8714692B1 (en) 2012-12-04 2014-05-06 Xerox Corporation System and method of compensating for defective inkjets with context dependent image data
US8955937B2 (en) 2012-07-23 2015-02-17 Xerox Corporation System and method for inoperable inkjet compensation
US8985723B2 (en) 2012-04-20 2015-03-24 Xerox Corporation System and method of compensating for defective inkjets
CN104619794A (zh) * 2012-01-27 2015-05-13 录象射流技术公司 打印安全码的方法
US9573382B1 (en) 2016-03-02 2017-02-21 Xerox Corporation System and method for missing inkjet compensation in a multi-level inkjet printer

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313566A (ja) * 1988-06-13 1989-12-19 Mitsubishi Petrochem Co Ltd 着色重合体組成物の製造法
EP0865931B1 (en) * 1997-03-21 2002-09-04 Canon Kabushiki Kaisha Production processes of printed substrate, electron-emitting element, electron source and image-forming apparatus
US6220912B1 (en) * 1997-05-09 2001-04-24 Canon Kabushiki Kaisha Method and apparatus for producing electron source using dispenser to produce electron emitting portions
JP2000268973A (ja) 1999-03-17 2000-09-29 Tdk Corp 有機el素子
US6176908B1 (en) * 1999-09-20 2001-01-23 E. I. Du Pont De Nemours And Company Aqueous ink jet inks for postal metering
JP4345278B2 (ja) * 2001-09-14 2009-10-14 セイコーエプソン株式会社 パターニング方法、膜形成方法、パターニング装置、有機エレクトロルミネッセンス素子の製造方法、カラーフィルタの製造方法、電気光学装置の製造方法、及び電子装置の製造方法
US6807211B1 (en) * 2003-05-27 2004-10-19 Eastman Kodak Company White-light laser
EP1681907A1 (en) * 2003-11-07 2006-07-19 Idemitsu Kosan Co., Ltd. Barrier film for light-emitting display and method for producing same
CN2727767Y (zh) * 2004-06-07 2005-09-21 朱延坤 一种激光显示器的扫描装置
US7625959B2 (en) * 2004-09-16 2009-12-01 Agfa Graphics, N.V. Curable jettable liquid for flexography
US7532656B2 (en) * 2005-02-16 2009-05-12 The Trustees Of Columbia University In The City Of New York All-silicon raman amplifiers and lasers based on micro ring resonators
JP4682701B2 (ja) * 2005-05-27 2011-05-11 凸版印刷株式会社 有機el素子用インキおよび有機el素子の製造方法
JP5428147B2 (ja) * 2006-12-07 2014-02-26 三菱化学株式会社 有機蛍光体材料
JP2008147394A (ja) * 2006-12-08 2008-06-26 Furukawa Electric Co Ltd:The 色素レーザ用レーザ媒質、色素レーザ発振装置およびレーザ光
KR101445871B1 (ko) * 2007-10-25 2014-09-30 삼성전기주식회사 액정 폴리에스터 수지 조성물 및 그를 이용한 인쇄회로기판
CN101257185B (zh) * 2008-02-28 2010-11-24 复旦大学 有机无机复合回音壁模式光学微腔激光器的制备方法
KR101629637B1 (ko) * 2008-05-29 2016-06-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 성막방법 및 발광장치의 제조방법
KR101353472B1 (ko) 2008-08-29 2014-01-23 삼성테크윈 주식회사 동적 도메인 네임 서비스를 제공하기 위한 서버, 시스템 및방법
WO2011060180A1 (en) * 2009-11-11 2011-05-19 Qd Vision, Inc. Device including quantum dots
EA201291213A1 (ru) * 2010-05-25 2013-04-30 Сикпа Холдинг Са Связанные с полимерами периленовые красители и содержащие их композиции
JP5311149B2 (ja) * 2010-12-07 2013-10-09 カシオ計算機株式会社 光源装置及びプロジェクタ
KR101822500B1 (ko) * 2011-09-06 2018-01-29 삼성전자주식회사 양자점층 제조 방법 및 양자점층을 포함한 양자점 광전자소자
JP5880274B2 (ja) * 2012-05-21 2016-03-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2014049245A (ja) * 2012-08-30 2014-03-17 Asahi Kasei Chemicals Corp 透明電極、表示デバイス、エレクトロルミネッセンスデバイス、発光素子デバイス
CN103777453B (zh) * 2012-10-25 2016-08-24 耿征 真三维图像显示系统及显示方法
KR101445002B1 (ko) * 2012-11-29 2014-09-26 가톨릭대학교 산학협력단 열가교성 정공전달 고분자 중합체 및 이를 이용한 고분자 유기전자 소자
CN103346154B (zh) * 2013-05-27 2016-03-23 北京京东方光电科技有限公司 一种量子点发光二极管及其制备方法、显示器件
CN104253372B (zh) 2013-06-27 2017-09-15 中国科学院化学研究所 一种回音壁模式光子学器件及其制备方法
US10498101B2 (en) * 2014-09-08 2019-12-03 Kyushu University, National University Corporation Method for producing organic microdisk structure
US11061276B2 (en) * 2015-06-18 2021-07-13 X Display Company Technology Limited Laser array display
CN105096749B (zh) * 2015-08-04 2017-07-04 京东方科技集团股份有限公司 一种显示装置及其制备方法
CN105225644B (zh) * 2015-11-05 2017-12-29 苏州苏大维格光电科技股份有限公司 一种激光显示装置及其制作方法
CN105699330B (zh) * 2016-01-19 2019-02-22 北京大学 基于表面等离激元激光的折射率传感器及探测系统和方法
KR102452189B1 (ko) * 2016-11-30 2022-10-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 표시 장치, 및 조명 장치
KR20180074577A (ko) * 2016-12-23 2018-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 표시 장치, 및 조명 장치
KR20180077029A (ko) * 2016-12-28 2018-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 표시 장치, 및 조명 장치
DE112018002451T5 (de) * 2017-05-12 2020-02-27 Semiconductor Energy Laboratory Co., Ltd. Organische Verbindung, Licht emittierendes Element, Licht emittierende Vorrichtung, elektronisches Gerät, Anzeigevorrichtung und Beleuchtungsvorrichtung

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101353472A (zh) * 1999-03-29 2009-01-28 精工爱普生株式会社 组合物及膜的制造方法以及功能元件及其制造方法
CN1303228A (zh) * 1999-12-22 2001-07-11 通用电气公司 发光显示器及其制造方法
CN1476973A (zh) * 2002-07-08 2004-02-25 佳能株式会社 液体排出装置和方法、显示装置用板的制造装置和制造方法
US20050100660A1 (en) * 2002-09-19 2005-05-12 Nobuyuki Ito Method and apparatus for manufacturing organic EL display and color filter by ink jet method
CN1701641A (zh) * 2002-09-24 2005-11-23 夏普株式会社 有源矩阵型有机el显示体制造方法及其装置和有源矩阵型有机el显示体、液晶阵列制造方法和液晶阵列、滤色片衬底制造方法及其装置和滤色片衬底
CN1824713A (zh) * 2005-02-24 2006-08-30 东芝泰格有限公司 喷墨墨水
CN1876375A (zh) 2005-06-10 2006-12-13 三星电子株式会社 能够调节墨滴尺寸的喷墨打印机
US8042899B2 (en) 2008-03-17 2011-10-25 Xerox Corporation System and method for compensating for weak, intermittent, or missing inkjets in a printhead assembly
CN104619794A (zh) * 2012-01-27 2015-05-13 录象射流技术公司 打印安全码的方法
US8985723B2 (en) 2012-04-20 2015-03-24 Xerox Corporation System and method of compensating for defective inkjets
US8955937B2 (en) 2012-07-23 2015-02-17 Xerox Corporation System and method for inoperable inkjet compensation
US8714692B1 (en) 2012-12-04 2014-05-06 Xerox Corporation System and method of compensating for defective inkjets with context dependent image data
US9573382B1 (en) 2016-03-02 2017-02-21 Xerox Corporation System and method for missing inkjet compensation in a multi-level inkjet printer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611021A4

Also Published As

Publication number Publication date
US11298957B2 (en) 2022-04-12
KR20180127247A (ko) 2018-11-28
EP3611557A1 (en) 2020-02-19
EP3611557B1 (en) 2023-06-21
WO2018210143A1 (zh) 2018-11-22
EP3611021A1 (en) 2020-02-19
US11192388B2 (en) 2021-12-07
EP3611021A4 (en) 2020-12-16
EP3611021B1 (en) 2023-06-21
EP3611234B1 (en) 2023-06-21
EP3611557A4 (en) 2021-02-24
JP2020521327A (ja) 2020-07-16
WO2018210144A1 (zh) 2018-11-22
JP7181229B2 (ja) 2022-11-30
KR20210019039A (ko) 2021-02-19
US20200079107A1 (en) 2020-03-12
KR102215532B1 (ko) 2021-02-15
US20200381901A1 (en) 2020-12-03
JP2020523184A (ja) 2020-08-06
KR102339275B1 (ko) 2021-12-14
EP3611234A4 (en) 2021-02-24
JP7383485B2 (ja) 2023-11-20
JP2020521023A (ja) 2020-07-16
US20200172750A1 (en) 2020-06-04
US11535041B2 (en) 2022-12-27
EP3611234A1 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
US9804489B2 (en) Method for manufacturing quantum dot color filter
JP2002022924A (ja) カラーフィルタ、カラーフィルタの製造方法および製造装置、カラーフィルタを備えた表示装置および該表示装置の製造方法、該表示装置を備えた装置および該装置の製造方法、表示装置用のパネル、表示装置用のパネルの製造方法及び製造装置
WO2018210142A1 (zh) 一种打印激光光源的打印头模块、系统及方法
JP6304031B2 (ja) インクジェット用インク及びカラーフィルタとその製造方法及びカラー反射型ディスプレイとその製造方法
CN115663597A (zh) 一种激光阵列装置
CN108944032A (zh) 一种打印激光光源的系统
JP2002323615A (ja) インクジェット着色装置及び方法、カラーフィルタ、エレクトロルミネッセンス素子、表示装置の製造方法、表示装置用パネルの製造装置及び製造方法
CN115145046A (zh) 一种激光面板
CN115079428A (zh) 一种激光显示器
CN108944066A (zh) 一种打印激光光源的打印头模块
CN108948857A (zh) 一种打印激光光源的方法
JPWO2018210144A5 (zh)
CN115047640A (zh) 一种电压驱动的激光显示器
CN108948862A (zh) 一种用于制得激光光源的墨水
JP2004122743A (ja) 液滴吐出ヘッドの駆動装置、製膜装置、液滴吐出ヘッドの駆動方法、製膜方法及び電子機器並びにデバイスの製造方法
JP3299509B2 (ja) 光書き込み型プリンタヘッド、及び光書き込み型プリンタ
US7415928B2 (en) Printing machines with at least one color support
KR20210052886A (ko) 양자점 색변환 구조체를 갖는 컬러필터, 이를 포함하는 표시장치 및 그 제조방법
JP2017095601A (ja) 着色インク及びカラーフィルタ及び反射型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018802018

Country of ref document: EP

Effective date: 20191113

ENP Entry into the national phase

Ref document number: 2019564093

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE