WO2018210144A1 - 一种用于制得激光光源的墨水 - Google Patents

一种用于制得激光光源的墨水 Download PDF

Info

Publication number
WO2018210144A1
WO2018210144A1 PCT/CN2018/085672 CN2018085672W WO2018210144A1 WO 2018210144 A1 WO2018210144 A1 WO 2018210144A1 CN 2018085672 W CN2018085672 W CN 2018085672W WO 2018210144 A1 WO2018210144 A1 WO 2018210144A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
laser
light source
dye
rhodamine
Prior art date
Application number
PCT/CN2018/085672
Other languages
English (en)
French (fr)
Inventor
赵永生
姚建年
赵金阳
闫永丽
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710359070.XA external-priority patent/CN108944032A/zh
Priority claimed from CN201710358465.8A external-priority patent/CN108948862A/zh
Priority claimed from CN201710361265.8A external-priority patent/CN108948857A/zh
Priority claimed from CN201710358471.3A external-priority patent/CN108957777A/zh
Priority claimed from CN201710359567.1A external-priority patent/CN108963758A/zh
Priority claimed from CN201710359076.7A external-priority patent/CN108944066A/zh
Priority claimed from CN201710359582.6A external-priority patent/CN108957779A/zh
Priority claimed from CN201710359566.7A external-priority patent/CN108957778A/zh
Priority to JP2019564049A priority Critical patent/JP7383485B2/ja
Priority to EP18803067.0A priority patent/EP3611234B1/en
Priority to US16/614,769 priority patent/US11535041B2/en
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Publication of WO2018210144A1 publication Critical patent/WO2018210144A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/44Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements
    • B41J2/442Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/54Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed with two or more sets of type or printing elements
    • B41J3/546Combination of different types, e.g. using a thermal transfer head and an inkjet print head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/006Patterns of chemical products used for a specific purpose, e.g. pesticides, perfumes, adhesive patterns; use of microencapsulated material; Printing on smoking articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0023Digital printing methods characterised by the inks used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/0058Digital printing on surfaces other than ordinary paper on metals and oxidised metal surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/007Digital printing on surfaces other than ordinary paper on glass, ceramic, tiles, concrete, stones, etc.
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/108Hydrocarbon resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/328Inkjet printing inks characterised by colouring agents characterised by dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/168Solid materials using an organic dye dispersed in a solid matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/36Structure or shape of the active region; Materials used for the active region comprising organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/0047Digital printing on surfaces other than ordinary paper by ink-jet printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094034Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a dye

Definitions

  • the present invention relates to the field of lasers, and more particularly to an ink for producing a laser source.
  • the existing laser display technology causes laser speckle due to the interference effect of the strong coherence of the laser, which seriously degrades the display quality, and has to use a vibrating screen to eliminate the speckle.
  • the prior art also lacks a technical solution for rapidly and mass-produced laser light sources.
  • the present invention provides an ink for producing a laser light source, which makes it possible to produce a laser light source by inkjet printing, which provides a new kind of cheap and industrially manufactured laser light source and other related products.
  • the ink includes a luminescent dye, a matrix material, and a solvent.
  • the luminescent dye comprises: a photoimageable dye, an electroluminescent laser dye or a mixture thereof.
  • the laser light source comprises three light sources of RGB.
  • the luminescent dye comprises: an oligostyrene-based blue dye, a coumarin-based green dye, a rhodamine series dye, a hemi-cyanine red dye or a mixture thereof.
  • an oligostyrene-based blue dye e.g., a coumarin-based green dye, a rhodamine series dye, a hemi-cyanine red dye or a mixture thereof.
  • coumarin 153, or coumarin 6 or rhodamine 6G dye e.g., coumarin 153, or coumarin 6 or rhodamine 6G dye.
  • More preferred luminescent dyes are symmetrical diphenylethylene, sodium fluorescein and rhodamine B, and mixtures thereof, more preferably a mixture of the three.
  • the matrix material comprises: polystyrene, polymethyl methacrylate, NOA series photocurable materials or a mixture thereof.
  • the ink is water, dichloromethane, chloroform, dimethylformamide or a mixture thereof as a solvent.
  • the ink is in any of the following formulations:
  • Symmetrical diphenylethene, sodium fluorescein and rhodamine B laser dyes were added to 300-1000mg/mL BSA aqueous solution respectively, wherein the mass ratio of three dyes to BSA was 1-3%, respectively, followed by the addition of glycerin, glycerol and The volume ratio of water is 1:1-4, preferably 1:2;
  • the ink is in any of the following formulations:
  • the dimensions of the laser source include any of the following: millimeter scale, micrometer scale or smaller scale.
  • the prepared laser light source can form a plurality of independent laser light source modules; and each of the independent laser light source modules can emit different colors of light under the same excitation condition.
  • the ink further comprises an auxiliary material comprising a liquid polymer prepolymer.
  • the ink further comprises an auxiliary material comprising any one of the following: a thermosetting epoxy resin, a NOA series photocuring adhesive.
  • the laser light source made by inkjet printing has become a reality through the various technical solutions provided by the present invention, which provides a new technical solution for inexpensive and industrially manufactured laser light sources and other related products.
  • FIG. 1 is a schematic view of a laser light source made of ink in one embodiment of the present invention
  • Figure 2 is a schematic illustration of an ink jet printing process in one embodiment of the present invention.
  • Figure 3 is another schematic illustration of an ink jet printing process in one embodiment of the present invention.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the invention.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will appreciate that the embodiments described herein can be combined with other embodiments.
  • the ink includes a luminescent dye, a matrix material, and a solvent.
  • the disclosed inks make it possible to produce laser sources using ink jet printing, which provides a new technical solution for inexpensive and industrial manufacturing of laser sources and other related products.
  • the luminescent dye includes any of the following: a photoimageable dye, an electroluminescent laser dye.
  • the ink also includes an auxiliary material. If auxiliary materials are included, on the one hand it helps to reduce the volatility of the solvent and on the other hand ensures that the ink does not solidify during the printing process.
  • auxiliary materials may not be necessary. Since all ink formulations cannot be exhausted, those skilled in the art will be able to foresee that under certain formulations, auxiliary materials may not be required, as long as the solvent and luminescent dye are properly selected, the solvent volatility during inkjet printing is still not significant. And the ink is not easily cured, that is, in the case where the auxiliary material is not included, there is a possibility that the inkjet printing process can be substantially prevented from being affected by the curing.
  • the luminescent dye comprises: an oligostyrene-based blue dye, a coumarin-based green dye, a rhodamine series dye, a hemi-cyanine red dye or a mixture thereof.
  • an oligostyrene-based blue dye for example, coumarin 153, or coumarin 6 or rhodamine 6G dye.
  • More preferred luminescent dyes are symmetrical diphenylethylene, sodium fluorescein and rhodamine B, and mixtures thereof, more preferably a mixture of the three.
  • the dye of the corresponding emission wavelength may be selected according to the color requirement of the luminescence.
  • the luminescent dye may also be selected from an oligostyrene-based blue dye, or a coumarin 153, or a coumarin-like green dye such as coumarin 6, or a rhodamine series such as Rhodamine 6G, or a semi-cyanine red.
  • Light dyes Since the embodiment realizes three kinds of light of red, green and blue, it is easy to use the ink to produce an RGB laser light source.
  • the matrix material comprises: polystyrene, polymethyl methacrylate, NOA series photocurable materials or mixtures thereof.
  • the matrix material acts as a support material for the laser cavity, which is material compatible with the laser dye. It is easy to understand that the better the material compatibility, the more suitable it is for use as a matrix material. It can be seen that the matrix material is also very advantageous if it has good processability.
  • the ink is made of water, dichloromethane, chloroform, dimethylformamide or a mixture thereof as a solvent. It can be seen that the examples exemplarily provide a range of choices for the solvent.
  • the ink is in any of the following formulations:
  • Symmetrical diphenylethene, sodium fluorescein and rhodamine B laser dyes were added to 300-1000mg/mL BSA aqueous solution respectively, wherein the mass ratio of three dyes to BSA was 1-3%, respectively, followed by the addition of glycerin, glycerol and The volume ratio of water is 1:1-4, preferably 1:2;
  • the ink is in any of the following formulations:
  • the BSA aqueous solution has a solubility atmosphere of 300-1000 mg/mL.
  • the mass ratio of rhodamine B, sodium fluorescein and symmetrical diphenylethylene to BSA is 1% to 2%, 1% to 3%, and 1% to 3%, respectively.
  • the volume ratio of glycerin to water is from 30% to 100%.
  • the laser light source is excited by excitation of a 335-375 nm femtosecond laser.
  • the wavelength of the femtosecond laser is determined by the absorption spectrum of the light source formed after the ink is cured.
  • the matrix material was selected from bovine serum albumin (i.e., BSA).
  • the scale includes any of the following: millimeter scale, micrometer scale or smaller scale.
  • any one of the light sources is considered to be a micro hemisphere structure, we can produce a micro hemisphere structure of the size corresponding to the resolution according to the resolution requirements.
  • the size of the micro hemisphere structure of any one of the light sources may be 15, 35, 45, 85, 100 microns, etc., or even smaller. If the size of the micro hemisphere structure of any one of the light sources is on the order of millimeters, it is suitable for outdoor large screen display technology.
  • the optical mode in the micro hemisphere structure is the whispering gallery mode
  • the mode spacing is different for different sizes of micro hemisphere structures.
  • the number of modes is reduced to one, it is a single mode laser.
  • the single mode laser emitted by the light source can further Increase the gamut interval of the laser.
  • the specified dimensions are approximately 15 microns.
  • a set of laser light source modules including three light sources of RGB can be produced by ink. It is easy to understand that it is easy to mix colors using the principle of RGB three primary colors. Referring to the foregoing, if a femtosecond laser is used to excite and mix colors, then the femtosecond laser must be able to simultaneously excite the three RGB sources to use the three primary colors principle to blend colors to obtain various colors. Similarly, if DC voltage excitation is used, finer control can be achieved by separately controlling the voltages of the three RGB light sources, thereby using the three primary color principles to mix colors to obtain various colors.
  • the auxiliary material comprises a liquid polymer prepolymer.
  • polymer prepolymers they do not cure until after light or heat treatment.
  • the auxiliary material includes any one of the following: a thermosetting epoxy resin, a NOA series photocuring adhesive. This corresponds to the previous description of the auxiliary materials.
  • the light source of inkjet printing is printed by ink. If a plurality of light sources are printed, the plurality of light sources are often microspherical, specifically hemispherical. In the process of producing the light source, the inkjet printed ink used is liquid, and the produced light source is finally solid. In the inkjet printing process, each light source is generally not in contact with each other to avoid Integrate with each other.
  • each light source is often not in contact with each other, and there is a gap; if each light source is understood as a hemisphere, then for a plurality of light sources, the first hemisphere and the second hemisphere (even with the third hemisphere, etc.) Not sympathetic to each other.
  • the prepared laser light source can form a plurality of independent laser light source modules
  • At least two light sources can emit different colors of light under the same excitation conditions.
  • the femtosecond laser is used to excite the at least two light sources, and only a single femtosecond laser is used, then the femtosecond laser must be able to At the same time, the at least two light sources are excited.
  • the plurality of light sources are a group of light source modules, such as the three groups shown in FIG. Then, the color mixing in each group of laser light source modules can be realized by the technique of the present invention. Color mixing is very meaningful, for example, a variety of different colors can be mixed according to the RGB three primary colors.
  • the present invention allows at least two light sources of the plurality of light sources to emit light of the same color under the same excitation conditions.
  • a plurality of light sources in each group of laser light source modules may also be the same light source, and each of the plurality of light sources can emit the same color under the same excitation condition.
  • Light Such a laser light source module can be used in the field of searchlights.
  • Each of the sets of laser light source modules excites the plurality of light sources by a femtosecond laser.
  • the content related to femtosecond lasers is further described below.
  • the parameters of the specific femtosecond laser such as the wavelength, are determined by the light source itself formed by curing the ink described above. Excited by the laser, it is inevitably related to the absorption spectrum of the light source itself formed after the ink is solidified. That is, the wavelength referred to herein is determined by the absorption spectrum of the light source formed after the ink is cured.
  • each set of laser light source modules comprises three light sources, each of which is produced by inkjet printing using a specific laser dye
  • the three dyes are made of the same wavelength of laser light
  • one skilled in the art can select a laser of this wavelength as the excitation condition; of course, this does not exclude the use of two or three wavelengths of laser light as excitation conditions; that is, the laser used for excitation.
  • the wavelength can be flexibly selected: it is possible to select one laser, two lasers or three lasers to excite the laser light source modules, and the wavelength of each laser is determined by the absorption spectrum of the light source.
  • the present invention only needs to use a laser to excite the light source.
  • the light source can be excited by a direct current voltage.
  • the laser dye is obviously characterized by being capable of being excited by a certain DC voltage, for example, a DC voltage of about 3V.
  • each set of laser light source modules ie, including a plurality of laser light sources
  • each set of laser light source modules is excited to emit light corresponding to one pixel of the image.
  • each set of laser source modules is pixel level. This facilitates the realization of finer image display and promotes the application of laser technology in the field of high definition and ultra clear display.
  • each group of laser light source modules can be driven by a thin film transistor or by other thin film transistors: for example, an oxide semiconductor thin film transistor, a polysilicon thin film transistor, an amorphous silicon thin film transistor.
  • the excitation of the DC voltage can control each pixel individually or even simultaneously, which is very beneficial for a pixel-level laser source device.
  • this type of excitation can also greatly reduce the size of equipment in the field of laser display.
  • the laser source is spaced about 2.5-4 times its diameter.
  • the temperature and time during curing are determined by the inherent characteristics of the ink.
  • the BSA aqueous solution system and the polystyrene/dichloromethane system are heated at 60 degrees Celsius for 1 hour, and the NOA series materials can be irradiated with ultraviolet light for several minutes.
  • the three primary color light sources have substantially the same diameter and are respectively located at three vertices of an equilateral triangle, the side length of the equilateral triangle being more than 10%-30% of the diameter.
  • the relationship between the length of the side and the diameter can also be changed according to the needs of the light source.
  • Inkjet printing may use one or more printheads; the printheads are used for sequential printing, or each of each set of laser light source modules is printed at a time.
  • the print head when a print head is used, the print head successively prints each light source in each set of laser light source modules, for example, three colors of red, green and blue are successively printed in the order of R, G, B.
  • multiple printheads can print each of the laser light source modules at a time—it is easy to understand that the number of printheads in operation must be greater than or equal to the number of light sources in each set of laser light source modules.
  • the number of three light sources is greater than or equal to RGB.
  • Figure 3 shows only a plurality of printheads for a certain light source, such as a red light source, of the plurality of printheads, other light sources for a plurality of light sources are not shown.
  • the printhead size is determined by the size of each of the light sources.
  • the size of the printhead is related to the hemispherical diameter of the micro hemisphere structure described above, and is determined by the diameter of the hemisphere.
  • the size of the printhead can be selected from 5, 10, 20, 30, 40, 50, 60 microns, and the like. If it is necessary to make a micro hemisphere structure smaller than the micrometer scale, when the size of the print head cannot be smaller, an inkjet printer capable of adjusting the droplet size can be used to slightly improve the adaptability to make the ink by inkjet printing.
  • the light source of the invention As mentioned earlier, if a micro hemisphere structure of the millimeter order is to be obtained, the size of the print head can be appropriately larger.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Lasers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)
  • Coating Apparatus (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

一种用于制得激光光源的墨水。该墨水用于喷墨打印以制得某尺度的激光光源;墨水包括发光染料、基质材料以及溶剂。使用该墨水,使得用喷墨打印制得激光光源成为现实,这为廉价且工业化制造激光光源以及其他关联产品提供了一种新的技术方案。

Description

一种用于制得激光光源的墨水 技术领域
本发明涉及激光领域,特别涉及一种用于制得激光光源的墨水。
背景技术
对于激光领域,一方面,现有的激光显示技术,由于激光强相干性的干涉效应引起激光散斑,严重降低了显示质量,不得不采用振屏等手段来消除散斑。另一方面,现有技术中缺乏一种快速、批量制造激光光源且使得每个光源都能发出不同颜色激光的技术。而现有技术中同样缺乏一种快速、批量制造激光光源的技术方案。
发明内容
为了解决上述问题,本发明提供了一种用于制得激光光源的墨水,使得用喷墨打印制得激光光源成为现实,这为廉价且工业化制造激光光源以及其他关联产品提供了一种新的技术方案。
一种用于制得激光光源的墨水,其中:
所述墨水,用于喷墨打印以制得激光光源;
所述墨水包括发光染料、基质材料以及溶剂。
优选的,所述发光染料包括:可光致发激光的染料,可电致发激光的染料或其混合物。
优选的,所述激光光源包括RGB三种光源。
优选的,所述发光染料包括:寡聚苯乙烯类蓝光染料,香豆素类绿光染料,罗丹明系列染料,半花菁类红光染料或其混合物。例如香豆素153,或者香豆素6或者罗丹明6G染料。
更优选的发光染料为对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料及其混合物,更优选为三者的混合物。
优选的,所述基质材料包括:聚苯乙烯,聚甲基丙烯酸甲酯,NOA 系列光固化材料或其混合物。
优选的,所述墨水采用:水,二氯甲烷,三氯甲烷,二甲基甲酰胺或其混合物作为溶剂。
优选的,所述墨水采用下述任一种配方:
对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入300-1000mg/mL的BSA水溶液,其中三个染料与BSA的质量比分别为1-3%,随后加入甘油,甘油与水的体积比为1:1-4,优选为1:2;
更优选地,所述墨水采用下述任一种配方:
(1)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入400mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
(2)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入800mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
(3)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入500mg/mL的BSA水溶液,其中二苯代乙烯,荧光素钠和罗丹明B与BSA的质量比分别为:2%,2%和1%,最后加入甘油,甘油与水的体积比为1:2。
优选的,所述激光光源的尺度包括如下任一:毫米级,微米级或更小尺度。
优选的,所述制得的激光光源能够组成多组独立的激光光源模块;每组独立的激光光源模块中,至少两个光源能够在相同的激发条件下发出不同颜色的光。
优选的,所述墨水还包括辅助材料,所述辅助材料包括液态的聚合物预聚体。
优选的,所述墨水还包括辅助材料,所述辅助材料包括如下任一:热固化环氧树脂,NOA系列光固化胶。
通过本发明所提供的诸多技术方案,使得用喷墨打印制得激光光源成为现实,这为廉价且工业化制造激光光源以及其他关联产品提供了一 种新的技术方案。
附图说明
图1是本发明的一个实施例中墨水制得的激光光源的示意图;
图2是本发明的一个实施例中的喷墨打印过程示意图;
图3是本发明的一个实施例中的喷墨打印过程另一示意图。
具体实施例
为了使本领域技术人员理解本发明所披露的技术方案,下面将结合实施例及有关附图,对各个实施例的技术方案进行描述,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。本发明所采用的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,“包括”和“具有”以及它们的任何变形,意图在于覆盖且不排他的包含。例如包含了一系列步骤或单元的过程、或方法、或系统、或产品或设备没有限定于已列出的步骤或单元,而是可选的还包括没有列出的步骤或单元,或可选的还包括对于这些过程、方法、系统、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其他实施例互斥的独立的或备选的实施例。本领域技术人员可以理解的是,本文所描述的实施例可以与其他实施例相结合。
参见图1,其示出了复数个激光光源。所述光源均是利用本发明一种墨水所制得,其中:
所述墨水,用于喷墨打印以制得激光光源;
所述墨水包括发光染料、基质材料以及溶剂。
对于所述实施例而言,其公开的墨水使得用喷墨打印制得激光光源成为现实,这为廉价且工业化制造激光光源以及其他关联产品提供了一种新的技术方案。
在另一个实施例,
所述发光染料包括如下任一:可光致发激光的染料,可电致发激光的染料。
一方面,在材料领域,存在光致发激光的染料,也存在电致发激光的染料。这就为本领域技术人员提供了发光染料的多样选择。另一方面,如果采用光致发激光的染料,那么前文所述通过喷墨打印制得的激光光源则可以被其他光所激发,例如飞秒激光;容易理解的,相应的飞秒激光的参数选择与墨水固化后的光源本身的特性,特别是吸收光谱有关;如果采用电致发激光的染料,那么所述激光光源则可以通过施加电压所激发,例如施加直流电压或脉冲电压;示例性的,借由前文所述实施例,本领域技术人员很容易通过对染料的选择而获得:一种通过施加3V的直流电压就能激发的激光光源。依材料不同,直流电压可能会根据需要更改为脉冲电压。脉冲频率和幅值符合显示所需的刷新率即可。
在另一个实施例中,
所述墨水还包括辅助材料。如果包括辅助材料,那么一方面有助于降低溶剂的挥发性,另一方面确保打印过程中墨水不会固化。
需要指出的是,辅助材料可能不是必需的。由于无法穷尽所有墨水配方,所以本领域技术人员能够预见的是:在某些配方下,可能不需要辅助材料,只要溶剂和发光染料选择得当,依然能够确保喷墨打印过程中溶剂挥发性不明显,且墨水不易固化,即:不包括辅助材料的情况下,存在可能性,以使得喷墨打印过程基本能够不受固化的影响。
在另一个实施例中,
所述发光染料包括:寡聚苯乙烯类蓝光染料,香豆素类绿光染料,罗丹明系列染料,半花菁类红光染料或其混合物。例如香豆素153,或者香豆素6或者罗丹明6G染料。
更优选的发光染料为对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料及其混合物,更优选为三者的混合物。
对于本领域技术人员而言,按照发光颜色需求,选择相应发光波长的染料即可。例如,发光染料还可选择寡聚苯乙烯类蓝光染料,或者香 豆素153,或者香豆素6等香豆素类绿光染料,或者罗丹明6G等罗丹明系列,或者半花菁类红光染料。由于所述实施例实现了红绿蓝三种光线,那么很容易采用所述墨水制得RGB激光光源。
在另一个实施例中,
所述基质材料包括:聚苯乙烯,聚甲基丙烯酸甲酯,NOA系列光固化材料或其混合物。
对于所述实施例而言,基质材料作为激光腔体的支撑材料,其与激光染料有材料兼容性即可。容易理解的,材料兼容性越好,则越适于用作基质材料。可以看出,基质材料如果具有良好的加工性能,那么也是非常有利的。
在另一个实施例中,
所述墨水采用:水,二氯甲烷,三氯甲烷,二甲基甲酰胺或其混合物作为溶剂。可以看出,所述实施例示例性的提供了溶剂的选择范围。
在另一个实施例中,
所述墨水采用下述任一种配方:
对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入300-1000mg/mL的BSA水溶液,其中三个染料与BSA的质量比分别为1-3%,随后加入甘油,甘油与水的体积比为1:1-4,优选为1:2;
更优选地,所述墨水采用下述任一种配方:
(1)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入400mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%。最后加入甘油,甘油与水的体积比为1:2;
(2)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入800mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%。最后加入甘油,甘油与水的体积比为1:2;
(3)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入500mg/mL的BSA水溶液,其中二苯代乙烯,荧光素钠和罗丹明B与BSA的质量比分别为:2%,2%和1%。最后加入甘油,甘油与水的体积比为1:2。
(4)除以上具体配方的用量外,仍有多种选择,其中BSA水溶液的溶度氛围为300-1000mg/mL。罗丹明B,荧光素钠和对称二苯代乙烯与BSA的质量比分别为1%-2%,1%-3%,和1%-3%。甘油与水的体积比为30%-100%。
在另一个实施例中,
当采用上述配方(1)至(3)时,所述激光光源在335-375nm飞秒激光的激发下而受激发光。如前所述,飞秒激光的波长由墨水固化后所形成的光源的吸收光谱决定。
对于上述有关实施例,基质材料选择牛血清蛋白(即BSA)。
在另一个实施例中,
所述某尺度包括如下任一:毫米级,微米级或更小尺度。
对于所述实施例而言,每个光源的尺度越小,其越有利于实现更高分辨率的图像显示效果。如果将任意一个光源视为一个微半球结构,按照分辨率的要求,我们可以制得与分辨率相应尺寸的微半球结构。所述任意一个光源的微半球结构的尺寸可以是15、35、45、85、100微米等等,甚至更小。如果任意一个光源的微半球结构的尺寸是毫米级,则适用于户外大屏幕显示技术。
可以看出,微半球结构中的光学模式为回音壁模式,对于不同尺寸的微半球结构,其模式间距不同。根据回音壁模式理论,半球直径越小,其模式间距越大,增益区间内存在的模式数越少,当模式数减少为一个时,即为单模激光。
进一步的,当某个光源所对应的微半球结构的半球直径小到一定尺寸,且所述一定尺寸与所述光源激发出的单模激光存在对应关系时,其所发出的单模激光能够进一步增加激光的色域区间。示例性的而非限制的,所述一定尺寸约为15微米。
在另一个实施例中,
可以通过墨水制得包括RGB三个光源的一组激光光源模块。容易理解,这是便于利用RGB三原色原理来混色。参见前文,如果采用一束飞秒激光来激发且混色,那么这束飞秒激光必然要能够同时激发到所述 RGB三个光源,以便利用三原色原理来混色得到各种颜色。类似的,如果采用直流电压激发,那么更精细的控制可以实现:对RGB三个光源能够分别控制其电压,从而利用三原色原理来混色得到各种颜色。
在另一个实施例中,
所述辅助材料包括液态的聚合物预聚体。对于聚合物预聚体,其在光照或加热处理后,才会固化。
在另一个实施例中,
所述辅助材料包括如下任一:热固化环氧树脂,NOA系列光固化胶。这与前文对于辅助材料的说明相呼应。
可以看出,喷墨打印的光源都是通过墨水来打印,如果打印复数个光源,那么所述复数个光源往往是微球形,确切的说,是半球形。在制得所述光源的过程中,所采用的喷墨打印的墨水由于是液态,而制得的光源最终是固态,那么喷墨打印过程中一般要使得每个光源之间彼此不接触以避免互相之间融合。
也就是说,每个光源之间往往不接触,且存在间距;如果把每个光源理解为半球,那么对于复数个光源来讲,第一半球与第二半球(甚至与第三半球等等)彼此不相切。
在另一个实施例中,
所述制得的激光光源能够组成多组独立的激光光源模块;
每组独立的激光光源模块中,至少两个光源能够在相同的激发条件下发出不同颜色的光。
能够理解的是,在至少两个光源的混色中,可选的,通过飞秒激光来激发所述至少两个光源,且仅仅使用一束飞秒激光的话,那么这束飞秒激光必然要能够同时激发到所述至少两个光源。这样一来,由于所述复数个光源的至少两个光源能够在相同的激发条件下发出不同颜色的光,假设所述复数个光源为一组光源模块,例如图1所示的三个一组,那么利用本发明的技术就能够实现每组激光光源模块中的混色。混色是非常有意义的,例如根据RGB三原色就能混色出多种不同的颜色。
需要指出的是,本发明允许所述复数个光源的至少两个光源能够在 相同的激发条件下发出相同颜色的光。例如,为了实现某种单一颜色的强光,那么每组激光光源模块中的复数个光源也可以是相同的光源,所述复数个光源的每个光源都能够在相同的激发条件下发出同一颜色的光。这种激光光源模块可以用于探照灯领域。
上文指出,在另一个实施例中,
所述每组激光光源模块通过飞秒激光来激发所述复数个光源。下面进一步描述飞秒激光有关的内容。
可以看出,具体的飞秒激光的参数,例如波长,是由上述墨水固化后所形成的光源本身所决定的。受激光激发,必然与墨水固化后所形成的光源本身的吸收光谱有关。即,此处所说的波长由墨水固化后所形成的光源的吸收光谱决定。
假设每组激光光源模块包括三个光源,每个光源采用一种具体的激光染料来喷墨打印制得,那么:当三种染料制得的所述三个光源都可以被同一波长的激光来受激发光时,本领域技术人员可选择这种波长的激光来作为激发条件;当然,这并不排斥使用两种或三种波长的激光作为激发条件;也就是说,用于激发的激光的波长可灵活选择:选择一束激光,两束激光还是三束激光,来激发所述每组激光光源模块都是可以的,而每束激光的波长则由所述光源的吸收光谱所决定。特别的,与现有技术中采用多束不同颜色的光来扫描发光、并用于图像的显示不同,本发明只需要采用一束激光来激发所述光源即可。
在另一个实施例中,
所述光源能够通过直流电压来激发。
对于所述实施例,其揭示了另一种激发方式。当然,无论是飞秒激光来激发,还是直流电压来激发,都取决于墨水固化后所形成的光源本身。换句话说,所述激光染料显然要具备能够被一定的直流电压激发的特点,例如直流电压约为3V。
在另一个实施例中,
当所述光源用于显示一个图像时,每组激光光源模块(即包括复数个激光光源)受激发而发出的光,均对应所述图像的一个像素。
就所述实施例而言,意味着所述每组激光光源模块是像素级的。这有利于实现更精细的图像显示,推动激光技术在高清、超清显示领域的应用。
在另一个实施例中,
当采用直流电压的激发方式时,每组激光光源模块可以通过薄膜晶体管进行驱动,或者通过其他薄膜晶体管进行驱动:例如氧化物半导体薄膜晶体管、多晶硅薄膜晶体管、非晶硅薄膜晶体管。与通过一束或多束飞秒激光这种激发方式相比,直流电压的激发方式能够单独、甚至同时的控制每个像素点,这对于像素级的激光光源装置是非常有益的。附带的,这种激发方式还能够大大缩小激光显示领域中设备的体积。
在另一个实施例中,
所述激光光源的间隔约为其直径的2.5-4倍。
容易理解,此处的间隔,是可以根据光源的需求而改变的。
在另一个实施例中,
固化过程中的温度和时间由墨水固有特性所决定。例如,BSA水溶液体系和聚苯乙烯/二氯甲烷体系在60摄氏度下加热1小时,NOA系列材料则可以采用紫外光照射数分钟。
在另一个实施例中,
对于每一组RGB三原色光源,所述三原色光源的直径基本相同且分别位于等边三角形的三个顶点,所述等边三角形的边长则超出直径的10%-30%。显而易见的,此处的边长与直径的尺寸关系,同样可以根据光源的需求而改变。
在另一个实施例中,
喷墨打印可使用一个或多个打印头;所述打印头,用于逐次打印,或一次打印每组激光光源模块中的每个光源。
对于所述实施例,参见图2,当使用一个打印头时,打印头逐次打印每组激光光源模块中的每个光源,例如按照R、G、B顺序逐次打印红、绿、蓝三个光源;当使用多个打印头时,多个打印头可以一次打印每组激光光源模块中的每个光源——容易理解,工作中的打印头数量必然大 于等于每组激光光源模块中的光源数量,例如大于等于RGB三个光源的数量。图3仅示出了多个打印头中的针对某个光源,例如红色光源的多个打印头,针对复数个光源的其他光源并未示出。
在另一个实施例中,
所述打印头尺寸由所述每个光源的尺寸所决定。
可以看出,打印头的尺寸与前文所述微半球结构的半球直径相关,受半球直径决定。所述打印头的尺寸可选的范围有5、10、20、30、40、50、60微米等等。如果需要制得比微米尺度更小的微半球结构,当打印头的尺寸无法更小时,可以采用能够调节墨滴尺寸的喷墨打印机来适应性稍加改进以便于通过喷墨打印来制得本发明所述的光源。如前所述,如果要获得毫米级的微半球结构,那么打印头的尺寸可以适当的大一点。
能够调节墨滴尺寸的喷墨打印机,可以参见现有技术中的如下专利文献:CN1876375A、US8042899B2、US8714692B1、US8955937B2、US8985723B2、US9573382B1。这些专利文献在此一并引入本发明的说明书,然而需要指出的是:这些只是现有技术中的喷墨打印机有关技术的一部分。由于无法穷举所有现有技术,因此,其余可以参考和稍加改进的现有技术不再列出。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明的各实施例技术方案的范围。

Claims (10)

  1. 一种用于制得激光光源的墨水,其中:
    所述墨水,用于喷墨打印以制得激光光源;
    所述墨水包括发光染料、基质材料以及溶剂。
  2. 根据权利要求1所述的墨水,其中,
    所述发光染料包括:可光致发激光的染料,可电致发激光的染料或其混合物。
  3. 根据权利要求1-2任一项所述的墨水,其中,
    所述光源包括RGB三原色光源。
  4. 根据权利要求1所述的墨水,其中,
    所述发光染料包括:寡聚苯乙烯类蓝光染料,香豆素类绿光染料,罗丹明系列染料,半花菁类红光染料或其混合物。
    例如香豆素153,或者香豆素6或者罗丹明6G染料。
    优选的激光染料为对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料及其混合物,更优选为三者的混合物。
  5. 根据权利要求1所述的墨水,其中,
    所述基质材料包括:聚苯乙烯,聚甲基丙烯酸甲酯,NOA系列光固化材料或其混合物。
  6. 根据权利要求1所述的墨水,其中,
    所述墨水采用:水,二氯甲烷,三氯甲烷,二甲基甲酰胺或其混合物作为溶剂。
  7. 根据权利要求1所述的墨水,其中,
    所述墨水采用下述任一种配方:
    对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入300-1000mg/mL的BSA水溶液,其中三个染料与BSA的质量比分别为1-3%,随后加入甘油,甘油与水的体积比为1:1-4,优选为1:2;
    更优选地,所述墨水采用下述任一种配方:
    (1)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入400mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
    (2)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入800mg/mL的BSA水溶液,其中三个染料与BSA的质量比都为1%,最后加入甘油,甘油与水的体积比为1:2;
    (3)对称二苯代乙烯,荧光素钠和罗丹明B三种激光染料分别加入500mg/mL的BSA水溶液,其中二苯代乙烯,荧光素钠和罗丹明B与BSA的质量比分别为:2%,2%和1%,最后加入甘油,甘油与水的体积比为1:2。
  8. 根据权利要求1所述的墨水,其中,
    所述激光光源的尺度包括:毫米级,微米级或更小尺度。
  9. 根据权利要求1所述的墨水,其中,
    所述制得的激光光源能够组成多组独立的激光光源模块;
    每组独立的激光光源模块中,至少两个光源能够在相同的激发条件下发出不同颜色的光。
  10. 根据权利要求1所述的墨水,其中,
    所述墨水还包括辅助材料;
    所述辅助材料包括液态的聚合物预聚体。
    优选地,所述辅助材料包括:热固化环氧树脂,NOA系列光固化胶或他们的混合物。
PCT/CN2018/085672 2017-05-19 2018-05-04 一种用于制得激光光源的墨水 WO2018210144A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019564049A JP7383485B2 (ja) 2017-05-19 2018-05-04 レーザー光源製造用のインク
EP18803067.0A EP3611234B1 (en) 2017-05-19 2018-05-04 Ink for producing laser light sources
US16/614,769 US11535041B2 (en) 2017-05-19 2018-05-04 Ink for producing laser light sourcesy

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201710358465.8A CN108948862A (zh) 2017-05-19 2017-05-19 一种用于制得激光光源的墨水
CN201710359566.7 2017-05-19
CN201710361265.8A CN108948857A (zh) 2017-05-19 2017-05-19 一种打印激光光源的方法
CN201710358471.3A CN108957777A (zh) 2017-05-19 2017-05-19 一种电压驱动的激光显示器
CN201710359582.6 2017-05-19
CN201710359567.1A CN108963758A (zh) 2017-05-19 2017-05-19 一种激光阵列装置
CN201710359070.XA CN108944032A (zh) 2017-05-19 2017-05-19 一种打印激光光源的系统
CN201710359070.X 2017-05-19
CN201710359076.7A CN108944066A (zh) 2017-05-19 2017-05-19 一种打印激光光源的打印头模块
CN201710358471.3 2017-05-19
CN201710358465.8 2017-05-19
CN201710359582.6A CN108957779A (zh) 2017-05-19 2017-05-19 一种激光面板
CN201710359566.7A CN108957778A (zh) 2017-05-19 2017-05-19 一种激光显示器
CN201710359567.1 2017-05-19
CN201710359076.7 2017-05-19
CN201710361265.8 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018210144A1 true WO2018210144A1 (zh) 2018-11-22

Family

ID=64273256

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2018/085672 WO2018210144A1 (zh) 2017-05-19 2018-05-04 一种用于制得激光光源的墨水
PCT/CN2018/085671 WO2018210143A1 (zh) 2017-05-19 2018-05-04 一种激光面板、激光阵列装置及激光显示器
PCT/CN2018/085670 WO2018210142A1 (zh) 2017-05-19 2018-05-04 一种打印激光光源的打印头模块、系统及方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/085671 WO2018210143A1 (zh) 2017-05-19 2018-05-04 一种激光面板、激光阵列装置及激光显示器
PCT/CN2018/085670 WO2018210142A1 (zh) 2017-05-19 2018-05-04 一种打印激光光源的打印头模块、系统及方法

Country Status (5)

Country Link
US (3) US11535041B2 (zh)
EP (3) EP3611557B1 (zh)
JP (3) JP7383485B2 (zh)
KR (2) KR102215532B1 (zh)
WO (3) WO2018210144A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183930A (zh) * 2019-05-21 2019-08-30 福建合润包装涂料有限公司 一种激光打码用的光油及复合涂层

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297671A (zh) * 1999-03-17 2001-05-30 Tdk株式会社 有机电致发光器件
CN1876375A (zh) 2005-06-10 2006-12-13 三星电子株式会社 能够调节墨滴尺寸的喷墨打印机
US8042899B2 (en) 2008-03-17 2011-10-25 Xerox Corporation System and method for compensating for weak, intermittent, or missing inkjets in a printhead assembly
CN102566214A (zh) * 2010-12-07 2012-07-11 卡西欧计算机株式会社 光源装置和投影仪
CN102906199A (zh) * 2010-05-25 2013-01-30 锡克拜控股有限公司 聚合物结合的苝染料以及包含它的组合物
US8714692B1 (en) 2012-12-04 2014-05-06 Xerox Corporation System and method of compensating for defective inkjets with context dependent image data
US8955937B2 (en) 2012-07-23 2015-02-17 Xerox Corporation System and method for inoperable inkjet compensation
US8985723B2 (en) 2012-04-20 2015-03-24 Xerox Corporation System and method of compensating for defective inkjets
CN104619794A (zh) * 2012-01-27 2015-05-13 录象射流技术公司 打印安全码的方法
WO2016039259A1 (ja) * 2014-09-08 2016-03-17 国立大学法人九州大学 有機マイクロディスク構造体の製造方法
CN105699330A (zh) * 2016-01-19 2016-06-22 北京大学 基于表面等离激元激光的折射率传感器及探测系统和方法
US9573382B1 (en) 2016-03-02 2017-02-21 Xerox Corporation System and method for missing inkjet compensation in a multi-level inkjet printer

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313566A (ja) * 1988-06-13 1989-12-19 Mitsubishi Petrochem Co Ltd 着色重合体組成物の製造法
JPH10326559A (ja) * 1997-03-21 1998-12-08 Canon Inc プリント基板、電子放出素子、電子源、および画像形成装置の製造方法
US6220912B1 (en) * 1997-05-09 2001-04-24 Canon Kabushiki Kaisha Method and apparatus for producing electron source using dispenser to produce electron emitting portions
CN1893140B (zh) 1999-03-29 2012-03-07 精工爱普生株式会社 一种膜的制造方法
US6176908B1 (en) * 1999-09-20 2001-01-23 E. I. Du Pont De Nemours And Company Aqueous ink jet inks for postal metering
US6566808B1 (en) 1999-12-22 2003-05-20 General Electric Company Luminescent display and method of making
JP4345278B2 (ja) * 2001-09-14 2009-10-14 セイコーエプソン株式会社 パターニング方法、膜形成方法、パターニング装置、有機エレクトロルミネッセンス素子の製造方法、カラーフィルタの製造方法、電気光学装置の製造方法、及び電子装置の製造方法
US7188919B2 (en) * 2002-07-08 2007-03-13 Canon Kabushiki Kaisha Liquid discharge method and apparatus using individually controllable nozzles
US7368145B2 (en) * 2002-09-19 2008-05-06 Dai Nippon Printing Co., Ltd. Method and apparatus for manufacturing organic EL display and color filter by ink jet method
CN100490212C (zh) 2002-09-24 2009-05-20 夏普株式会社 有源矩阵型有机el显示体、其制造方法及其制造装置、液晶阵列及其制造方法、以及滤色片衬底、其制造方法及其制造装置
US6807211B1 (en) * 2003-05-27 2004-10-19 Eastman Kodak Company White-light laser
JPWO2005046291A1 (ja) * 2003-11-07 2007-05-24 出光興産株式会社 発光表示装置用バリア膜及びその製造方法
CN2727767Y (zh) * 2004-06-07 2005-09-21 朱延坤 一种激光显示器的扫描装置
US7625959B2 (en) * 2004-09-16 2009-12-01 Agfa Graphics, N.V. Curable jettable liquid for flexography
US7532656B2 (en) * 2005-02-16 2009-05-12 The Trustees Of Columbia University In The City Of New York All-silicon raman amplifiers and lasers based on micro ring resonators
JP4050752B2 (ja) 2005-02-24 2008-02-20 東芝テック株式会社 インクジェットインク、および印字方法
JP4682701B2 (ja) * 2005-05-27 2011-05-11 凸版印刷株式会社 有機el素子用インキおよび有機el素子の製造方法
JP5428147B2 (ja) 2006-12-07 2014-02-26 三菱化学株式会社 有機蛍光体材料
JP2008147394A (ja) 2006-12-08 2008-06-26 Furukawa Electric Co Ltd:The 色素レーザ用レーザ媒質、色素レーザ発振装置およびレーザ光
KR101445871B1 (ko) * 2007-10-25 2014-09-30 삼성전기주식회사 액정 폴리에스터 수지 조성물 및 그를 이용한 인쇄회로기판
CN101257185B (zh) * 2008-02-28 2010-11-24 复旦大学 有机无机复合回音壁模式光学微腔激光器的制备方法
KR101629637B1 (ko) * 2008-05-29 2016-06-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 성막방법 및 발광장치의 제조방법
KR101353472B1 (ko) 2008-08-29 2014-01-23 삼성테크윈 주식회사 동적 도메인 네임 서비스를 제공하기 위한 서버, 시스템 및방법
WO2011060180A1 (en) * 2009-11-11 2011-05-19 Qd Vision, Inc. Device including quantum dots
KR101822500B1 (ko) * 2011-09-06 2018-01-29 삼성전자주식회사 양자점층 제조 방법 및 양자점층을 포함한 양자점 광전자소자
JP5880274B2 (ja) * 2012-05-21 2016-03-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2014049245A (ja) 2012-08-30 2014-03-17 Asahi Kasei Chemicals Corp 透明電極、表示デバイス、エレクトロルミネッセンスデバイス、発光素子デバイス
CN103777453B (zh) * 2012-10-25 2016-08-24 耿征 真三维图像显示系统及显示方法
KR101445002B1 (ko) * 2012-11-29 2014-09-26 가톨릭대학교 산학협력단 열가교성 정공전달 고분자 중합체 및 이를 이용한 고분자 유기전자 소자
CN103346154B (zh) * 2013-05-27 2016-03-23 北京京东方光电科技有限公司 一种量子点发光二极管及其制备方法、显示器件
CN104253372B (zh) 2013-06-27 2017-09-15 中国科学院化学研究所 一种回音壁模式光子学器件及其制备方法
US11061276B2 (en) * 2015-06-18 2021-07-13 X Display Company Technology Limited Laser array display
CN105096749B (zh) * 2015-08-04 2017-07-04 京东方科技集团股份有限公司 一种显示装置及其制备方法
CN105225644B (zh) * 2015-11-05 2017-12-29 苏州苏大维格光电科技股份有限公司 一种激光显示装置及其制作方法
KR102452189B1 (ko) * 2016-11-30 2022-10-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 표시 장치, 및 조명 장치
KR20180074577A (ko) * 2016-12-23 2018-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 표시 장치, 및 조명 장치
KR20180077029A (ko) * 2016-12-28 2018-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 표시 장치, 및 조명 장치
CN116768911A (zh) * 2017-05-12 2023-09-19 株式会社半导体能源研究所 有机化合物、发光元件、发光装置、电子设备、显示装置及照明装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297671A (zh) * 1999-03-17 2001-05-30 Tdk株式会社 有机电致发光器件
CN1876375A (zh) 2005-06-10 2006-12-13 三星电子株式会社 能够调节墨滴尺寸的喷墨打印机
US8042899B2 (en) 2008-03-17 2011-10-25 Xerox Corporation System and method for compensating for weak, intermittent, or missing inkjets in a printhead assembly
CN102906199A (zh) * 2010-05-25 2013-01-30 锡克拜控股有限公司 聚合物结合的苝染料以及包含它的组合物
CN102566214A (zh) * 2010-12-07 2012-07-11 卡西欧计算机株式会社 光源装置和投影仪
CN104619794A (zh) * 2012-01-27 2015-05-13 录象射流技术公司 打印安全码的方法
US8985723B2 (en) 2012-04-20 2015-03-24 Xerox Corporation System and method of compensating for defective inkjets
US8955937B2 (en) 2012-07-23 2015-02-17 Xerox Corporation System and method for inoperable inkjet compensation
US8714692B1 (en) 2012-12-04 2014-05-06 Xerox Corporation System and method of compensating for defective inkjets with context dependent image data
WO2016039259A1 (ja) * 2014-09-08 2016-03-17 国立大学法人九州大学 有機マイクロディスク構造体の製造方法
CN105699330A (zh) * 2016-01-19 2016-06-22 北京大学 基于表面等离激元激光的折射率传感器及探测系统和方法
US9573382B1 (en) 2016-03-02 2017-02-21 Xerox Corporation System and method for missing inkjet compensation in a multi-level inkjet printer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611234A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183930A (zh) * 2019-05-21 2019-08-30 福建合润包装涂料有限公司 一种激光打码用的光油及复合涂层

Also Published As

Publication number Publication date
EP3611021A1 (en) 2020-02-19
EP3611557B1 (en) 2023-06-21
US20200381901A1 (en) 2020-12-03
JP2020523184A (ja) 2020-08-06
US11192388B2 (en) 2021-12-07
EP3611021A4 (en) 2020-12-16
KR102215532B1 (ko) 2021-02-15
EP3611557A1 (en) 2020-02-19
JP2020521023A (ja) 2020-07-16
WO2018210142A1 (zh) 2018-11-22
KR102339275B1 (ko) 2021-12-14
EP3611234B1 (en) 2023-06-21
JP7181229B2 (ja) 2022-11-30
US11535041B2 (en) 2022-12-27
EP3611021B1 (en) 2023-06-21
US11298957B2 (en) 2022-04-12
JP2020521327A (ja) 2020-07-16
KR20180127247A (ko) 2018-11-28
JP7383485B2 (ja) 2023-11-20
KR20210019039A (ko) 2021-02-19
EP3611234A4 (en) 2021-02-24
US20200079107A1 (en) 2020-03-12
EP3611234A1 (en) 2020-02-19
US20200172750A1 (en) 2020-06-04
EP3611557A4 (en) 2021-02-24
WO2018210143A1 (zh) 2018-11-22

Similar Documents

Publication Publication Date Title
US9897912B2 (en) Color filter film manufacturing method and color filter film
US20170235223A1 (en) Method for manufacturing quantum dot color filter
WO2021243801A1 (zh) 量子点墨水、全彩膜片的制备方法以及显示面板
JP2002022924A (ja) カラーフィルタ、カラーフィルタの製造方法および製造装置、カラーフィルタを備えた表示装置および該表示装置の製造方法、該表示装置を備えた装置および該装置の製造方法、表示装置用のパネル、表示装置用のパネルの製造方法及び製造装置
WO2018210144A1 (zh) 一种用于制得激光光源的墨水
CN115663597A (zh) 一种激光阵列装置
JP6304031B2 (ja) インクジェット用インク及びカラーフィルタとその製造方法及びカラー反射型ディスプレイとその製造方法
CN115145046A (zh) 一种激光面板
CN108944032A (zh) 一种打印激光光源的系统
CN108948857A (zh) 一种打印激光光源的方法
CN115079428A (zh) 一种激光显示器
JP2007095630A (ja) インキ吐出印刷物
CN115047640A (zh) 一种电压驱动的激光显示器
JP2002148422A (ja) フィルタ及びフィルタの製造方法並びにこのフィルタを用いた電気光学装置
JPWO2018210144A5 (zh)
CN108948862A (zh) 一种用于制得激光光源的墨水
US20210384261A1 (en) Quantum dot ink, manufacturing method of full-color film, and display panel
JP2004122743A (ja) 液滴吐出ヘッドの駆動装置、製膜装置、液滴吐出ヘッドの駆動方法、製膜方法及び電子機器並びにデバイスの製造方法
JP3299509B2 (ja) 光書き込み型プリンタヘッド、及び光書き込み型プリンタ
JP2017095601A (ja) 着色インク及びカラーフィルタ及び反射型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018803067

Country of ref document: EP

Effective date: 20191113