WO2016039259A1 - 有機マイクロディスク構造体の製造方法 - Google Patents

有機マイクロディスク構造体の製造方法 Download PDF

Info

Publication number
WO2016039259A1
WO2016039259A1 PCT/JP2015/075155 JP2015075155W WO2016039259A1 WO 2016039259 A1 WO2016039259 A1 WO 2016039259A1 JP 2015075155 W JP2015075155 W JP 2015075155W WO 2016039259 A1 WO2016039259 A1 WO 2016039259A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
ink
hyperbranched polymer
microdisk
meth
Prior art date
Application number
PCT/JP2015/075155
Other languages
English (en)
French (fr)
Inventor
雄司 興
宏晃 吉岡
圭 安井
小澤 雅昭
Original Assignee
国立大学法人九州大学
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 日産化学工業株式会社 filed Critical 国立大学法人九州大学
Priority to US15/509,451 priority Critical patent/US10498101B2/en
Priority to JP2016547413A priority patent/JP6579392B2/ja
Publication of WO2016039259A1 publication Critical patent/WO2016039259A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/328Inkjet printing inks characterised by colouring agents characterised by dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/168Solid materials using an organic dye dispersed in a solid matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/20Liquids
    • H01S3/213Liquids including an organic dye
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29335Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
    • G02B6/29338Loop resonators
    • G02B6/29341Loop resonators operating in a whispering gallery mode evanescently coupled to a light guide, e.g. sphere or disk or cylinder

Definitions

  • the present invention relates to a method for manufacturing an organic microdisk structure, and more particularly, to a method for manufacturing an organic microdisk structure using an inkjet method.
  • a microcavity typified by a microdisk structure can confine light with high efficiency by repeating total reflection at the interface, and can extract a high interaction between a substance and light. For this reason, it is expected to be applied to a high sensitivity sensor such as a micro laser capable of oscillating at an ultra-low threshold, optical signal processing, an integrated optical circuit, and a biosensor.
  • a high sensitivity sensor such as a micro laser capable of oscillating at an ultra-low threshold, optical signal processing, an integrated optical circuit, and a biosensor.
  • an organic material has advantages such as low cost and easy molding processing, which can be doped with various pigments, compared to an inorganic material.
  • the photolithography method has been mainly used (see Non-Patent Documents 1 to 3), but the process is complicated.
  • the ink jet method is simple and has an advantage of energy saving and high degree of freedom since it is a method of adding a material only to a necessary portion.
  • only low viscosity ink of several to several tens of mPa ⁇ s can be ejected by the ink jet method, so it is difficult to increase the concentration of the polymer in the ink, and only a thin film of about several hundred nm is produced. There is a disadvantage that it can not. For these reasons, no example of producing an organic microdisk using an inkjet method has been known so far.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing an organic microdisk structure using an ink jet method.
  • the inventors of the present invention focused on the fact that a thick film can be produced because the hyperbranched polymer has a relatively low viscosity even when the hyperbranched polymer is a high-concentration solution.
  • the predetermined fluorine-containing hyperbranched polymer and the triazine-based hyperbranched polymer exhibiting a high refractive index can be applied to an ink jet even when it is a high concentration ink, and is a material suitable for thickening with an ink jet.
  • the present inventors have found that an organic microdisk structure produced by an ink jet method using these hyperbranched polymers and a laser dye can be laser-oscillated at a low threshold value, thereby completing the present invention.
  • a microdisk laser comprising a clad layer containing a fluorine-containing hyperbranched polymer and a core layer containing a fluorine-free triazine-based hyperbranched polymer and a laser dye.
  • an unprecedented new method for manufacturing an organic microdisk structure using an ink jet method can be provided.
  • a triazine-based hyperbranched polymer hereinafter abbreviated as HBP
  • HBP triazine-based hyperbranched polymer
  • An organic microdisk laser capable of oscillation can be provided.
  • all the manufacturing steps can be performed under atmospheric pressure and room temperature with low stimulation, it is impossible with conventional lithography methods with high sample loads (vacuum handling, high heat, high stimulation etching, etc.).
  • it is possible to provide a highly versatile manufacturing technique for applications such as biosensing devices).
  • FIG. 1 It is a schematic process drawing of the manufacturing method of the organic microdisk structure concerning the present invention. It is a figure which shows the laser oscillation spectrum measurement result of the microdisk produced in Example 1. FIG. It is a figure which shows the input-output characteristic of the microdisk produced in Example 1. FIG.
  • the organic microdisk manufacturing method includes a cladding layer forming step of forming a cladding layer by printing a first ink containing fluorine-containing HBP on a substrate by an inkjet method, a fluorine-free triazine-based HBP, and a laser.
  • the ink jet printer used for ink jet printing is not particularly limited, and may be a continuous type or an on-demand type.
  • any of a piezo method, a thermal method, and an electrostatic method may be used, but a piezo method is preferable.
  • the diameter of the inkjet nozzle is not particularly limited, and can be appropriately selected according to the viscosity of the ink and the size of the target microdisk, but is usually about 10 to 100 ⁇ m, preferably 20 to Although it is 80 ⁇ m, it is preferable to make the nozzle diameter when forming the cladding layer larger than the nozzle diameter when forming the core layer.
  • the first ink used for forming the cladding layer is prepared by dissolving or dispersing fluorine-containing HBP in an organic solvent.
  • the fluorine-containing HBP is not particularly limited as long as it is a fluorine atom-containing HBP, but non-triazine-based HBP is preferable, and acrylic-based HBP is more preferable.
  • the acrylic fluorine-containing HBP disclosed in International Publication No. 2010/137724 is suitable.
  • a monomer having two or more (meth) acryl groups in the molecule, a fluoroalkyl group in the molecule and at least Acrylic HBP obtained by subjecting a monomer having one (meth) acrylic group to solution polymerization in an organic solvent in the presence of 5 to 200 mol% of a polymerization initiator based on the total moles of monomers is preferred.
  • the refractive index of fluorine-containing HBP should just be lower than the triazine type
  • the weight average molecular weight of the fluorine-containing HBP is not particularly limited, but in the present invention, it is preferably 1,000 to 200,000, more preferably 2,000 to 100,000, and 5,000 to 60,000. 000 is even more preferable.
  • the weight average molecular weight in the present invention is an average molecular weight obtained in terms of standard polystyrene by gel permeation chromatography (hereinafter referred to as GPC) analysis (hereinafter the same).
  • monomers having two or more (meth) acryl groups in the molecule include ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (Meth) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, glycerol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, alkoxy titanium tri (meth) acrylate, 1,6- Hexanediol di (meth) acrylate, 2-methyl-1,8-octanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) Acrylate, tricyclodecane dimethanol di
  • the monomer having a fluoroalkyl group and at least one (meth) acryl group in the molecule include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-penta Fluoropropyl (meth) acrylate, 2- (perfluorobutyl) ethyl (meth) acrylate, 2- (perfluorohexyl) ethyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) acrylate, 2- (perfluorohexyl) Fluorodecyl) ethyl (meth) acrylate, 2- (perfluoro-3-methylbutyl) ethyl (meth) acrylate, 2- (perfluoro-5-methylhexyl) ethyl (meth) acrylate, 2- (perfluoro-7- Methyloctyl) ethyl (meth)
  • an azo polymerization initiator is suitable, and specific examples thereof include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2 2,2′-azobis (2,4-dimethylvaleronitrile), 1,1′-azobis (1-cyclohexanecarbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2 -(Carbamoylazo) isobutyronitrile, 2,2'-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2'-azobis ⁇ 2-methyl-N- [2- (1-hydroxybutyl)] propionamide ⁇ , 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2′-azobi [N- (2-propenyl) -2-methylpropionamide], 2,2′-azobis (
  • Organic solvents used for polymerization include aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and tetralin; aliphatic or alicyclic hydrocarbons such as n-hexane, n-heptane, mineral spirit, and cyclohexane Solvent: halogenated hydrocarbon solvents such as methyl chloride, methyl bromide, methyl iodide, methylene dichloride, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, orthodichlorobenzene; ethyl acetate, butyl acetate, methoxybutyl acetate, Ester or ester ether solvents such as methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether acetate; diethyl ether, tetrahydrofuran, 1,4
  • organic solvent used for the preparation of the first ink those having the ability to dissolve fluorine-containing HBP are suitable.
  • organic solvents include those exemplified as the polymerization solvent.
  • Ether solvents such as 1,4-dioxane are preferred.
  • concentration of the fluorine-containing HBP in the first ink is preferably 5 to 20% by mass, more preferably 7 to 15% by mass from the viewpoint of increasing the film thickness by inkjet coating.
  • the viscosity of the first ink is not particularly limited as long as it is a viscosity that can be applied by ink jetting, but the concentration of the fluorine-containing HBP is preferably 1 to 30 mPa ⁇ s at 25 ° C., and preferably 3 to 20 mPa ⁇ s. s is more preferable.
  • the clad layer made of the first ink serves as a foundation on which the core layer is made, a low viscosity ( ⁇ 20 mPa ⁇ s) is preferable in order to improve surface flatness.
  • the substrate on which the clad layer is formed using the first ink is not particularly limited as long as it has resistance to the solvent contained in the first ink and the etchant used in the subsequent etching step.
  • a glass substrate, a quartz substrate, an ITO substrate, an IZO substrate, a substrate made of a metal or its oxide, a resin substrate such as polyethylene terephthalate (PET), etc. can be used.
  • a resin substrate such as PET is used. Is preferred.
  • the spot diameter when ink-jet printing the first ink on the substrate varies depending on the diameter of the ink-jet nozzle used, and thus cannot be defined unconditionally.
  • the spot diameter is about 100 to 500 ⁇ m, and 150 to About 350 ⁇ m is preferable, and about 220 to 320 ⁇ m is more preferable.
  • the number of times of ink jet printing at the time of forming the clad layer may be one time or a plurality of times.
  • an area that can encompass the core layer and a plane it is preferably 2 to 10 times. Is preferably laminated by repeating printing 3 to 7 times.
  • the thickness of the cladding layer is not particularly limited, but is usually about 0.5 to 3 ⁇ m.
  • the second ink used for forming the core layer is prepared by dissolving or dispersing a fluorine-free triazine-based HBP and a laser dye in an organic solvent.
  • a fluorine-free triazine-based HBP a high refractive index triazine ring-containing HBP disclosed in International Publication No. 2010/128661 is preferable, and among them, a repeating unit represented by the following formula is preferable because of its high refractive index. HBP having a structure is preferred.
  • Ar represents any group represented by the following formula.
  • the Ar group is more preferably represented by the following formula.
  • the refractive index of the triazine-based HBP is preferably 1.65 or more, and more preferably 1.70 to 1.90 in view of further enhancing the optical confinement effect.
  • the weight average molecular weight of the triazine-based HBP is preferably 500 to 500,000, preferably 50,000 or less, more preferably 30,000 or less, from the viewpoint of further improving the solubility and decreasing the viscosity of the second ink. 10,000 or less is even more preferable.
  • the triazine-based HBP used in the present invention can be produced by a method described in International Publication No. 2010/128661.
  • triazine-based HBP having an m-phenylene group as an Ar group includes cyanuric halide and m-phenylenediamine.
  • examples of the organic solvent include the same ones as described above.
  • the organic solvent used for the preparation of the second ink those having the ability to dissolve triazine-based HBP are suitable, and examples of such an organic solvent include those exemplified as the polymerization solvent.
  • a ketone solvent such as is preferable.
  • the concentration of the triazine-based HBP in the second ink is preferably 5 to 20% by mass and more preferably 7 to 15% by mass from the viewpoint of increasing the film thickness by inkjet coating.
  • the viscosity of the second ink is not particularly limited as long as it is a viscosity that can be applied by ink jetting. However, the concentration of the triazine-based HBP is preferably 1 to 30 mPa ⁇ s at 25 ° C.
  • a low viscosity ( ⁇ 20 mPa ⁇ s) is preferable in order to improve the flatness of the disk surface necessary for low threshold laser oscillation.
  • the laser dye used for the second ink is not particularly limited, and may be appropriately selected from conventionally known dyes. Specific examples thereof include carbon condensed ring dyes such as anthracene derivatives, tetracene derivatives, pyrene derivatives, rubrene derivatives, decacyclene derivatives and perylene derivatives, xanthene dyes, cyanine dyes, coumarin dyes, quinacridone dyes, squaric dyes. Styryl dyes, phenoxazone dyes, metal or metal-free phthalocyanines, benzidines, iridium complexes, metal complexes composed of central metals and ligands made of Al, Zn, Be, or rare earth metals. A dye is preferred.
  • LDS698,720,722,730,750,751,759,765,798,821,867,925,950, coumarin 440,445,450 are commercially available products. 456,460,461,478,480,481,485,487,490,498,500,503,504,504T, 510,515,519,521,521T, 522B, 523,525,535,540,540A 545 (above, Indeco Co., Ltd.) and the like.
  • the concentration of the coloring matter in the second ink is not particularly limited, but in the present invention, it is about 0.1 to 10 mM, preferably about 0.5 to 5 mM, preferably about 1 to 3 mM in the ink. More preferred.
  • the spot diameter when ink-jet printing the second ink on the clad layer varies depending on the diameter of the ink-jet nozzle used, it cannot be defined unconditionally, but is preferably smaller than the clad layer. In the invention, it is about 10 to 200 ⁇ m, preferably about 50 to 150 ⁇ m, more preferably about 50 to 120 ⁇ m.
  • the number of times of ink jet printing at the time of forming the core layer may be one time or a plurality of times. However, when the second ink of the present invention is used, a core layer having a sufficient thickness can be formed by one printing.
  • the thickness of the core layer is not particularly limited, but is usually about 0.5 to 3 ⁇ m.
  • the clad layer is etched using a solvent that preferentially dissolves fluorine-containing HBP, and an organic microdisk structure having a desired shape Manufacturing.
  • the solvent (etchant) used in the etching step is not particularly limited as long as it is a solvent that preferentially dissolves fluorine-containing HBP.
  • an ether solvent such as 1,4-dioxane is used. Is preferred.
  • the number of etching is not particularly limited, but usually 0.1 to 1 ⁇ L, preferably 0.1 to 0.5 ⁇ L of solvent is used for 0.1 to 10 seconds, preferably 0.5 to 2 seconds. This etching may be performed about 1 to 5 times.
  • the removal of the solvent may be performed using an appropriate method such as washing or suction.
  • the organic microdisk structure obtained by the manufacturing method of the present invention uses triazine-based HBP, which is expected to have a high light confinement effect, and therefore can oscillate with a low threshold equivalent to that of the existing lithography method.
  • This organic microdisk laser can be suitably used as a high-sensitivity sensor such as a microlaser capable of oscillating with an ultra-low threshold, optical signal processing, an integrated optical circuit, or a biosensor by utilizing the characteristics.
  • Inkjet printing apparatus inkjet head (MicroJet, IJK-200S), high-precision desktop robot (Musashi Engineering, SHOTmini SL), piezo driver (Hantech, MC6), pressure driver (SMC) , CN03) Composite device
  • the inkjet printing process was performed at room temperature (25 ° C.) and atmospheric pressure. During printing of the cladding layer and core layer, the spacing between the substrate and the inkjet nozzle was maintained at ⁇ 1 mm.
  • the moving speed of the inkjet head was set at a low speed of 2 mm / s in order to suppress the disturbance of the ejected ink due to the air turbulence.
  • Laser oscillation spectrum measuring apparatus measurement optical system using excitation light source (manufactured by Nanolase, PNG-002025-040), observation microscope (manufactured by NIKON, ECLIPSE TE2000-U), spectroscope (manufactured by Ocean Optics, HR4000) System Microdisk laser oscillation was evaluated at room temperature (25 ° C.).
  • Example 1 Production of microdisk structure (1) Clad layer forming step As shown in FIG. 1, the first ink 11 obtained in Production Example 1 was used as a PET substrate 10 using a 70 ⁇ m-diameter inkjet nozzle 13. The clad layer 12 having a spot diameter of 250 to 300 ⁇ m was formed by printing by stacking 5 shots thereon. (2) Core layer forming step Next, using the 50 ⁇ m diameter inkjet nozzle 23, the second ink 21 prepared in Production Example 2 is ejected and printed at the center on the previously formed clad layer 12, and printed. A core layer 22 having a spot diameter of ⁇ 100 ⁇ m was formed, and a laminate 20 of the clad layer 12 and the core layer 22 was produced.
  • the laser oscillation characteristics of the microdisk produced in Example 1 were measured and evaluated by the following method.
  • the measurement result of the laser oscillation spectrum is shown in FIG. 2, and the input / output measurement result is shown in FIG. [1]
  • Laser oscillation spectrum A microdisk having a spot diameter of 75 ⁇ m was used for the microdisk cavity.
  • the excitation light source the second harmonic (wavelength: 532 nm, pulse width: 5 ns, repetition frequency: 100 Hz) of a Q-switched Nd: YAG laser was used. This light was squeezed to a spot diameter of 300 ⁇ m by a plano-convex lens having a focal length of 2 cm and irradiated to the microdisk.
  • the laser light with whispering-gallery mode (WGM) emitted from the edge of the microdisk cavity was collected using a microscope with a magnification of 100 times, and the laser oscillation spectrum was measured by exposure measurement using a spectroscope for 30 seconds. .
  • WGM whispering-gallery mode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Optical Integrated Circuits (AREA)
  • Lasers (AREA)

Abstract

 フッ素含有ハイパーブランチポリマーを含む第1のインク11をインクジェット法によって基板10上に印刷してクラッド層12を形成するクラッド層形成工程1と、フッ素非含有トリアジン系ハイパーブランチポリマーおよびレーザー色素を含む第2のインク21をインクジェット法によってクラッド層12上に印刷してコア層22を形成するコア層形成工程2と、フッ素含有ハイパーブランチポリマーのみを溶かす溶媒31を用いてクラッド層12をエッチングするエッチング工程3と、を含むことを特徴とする有機マイクロディスク構造体40の製造方法。これにより、インクジェット法を用いたこれまでにない新しい有機マイクロディスク構造体の製造方法を提供できる。

Description

有機マイクロディスク構造体の製造方法
 本発明は、有機マイクロディスク構造体の製造方法に関し、さらに詳述すると、インクジェット法を用いた有機マイクロディスク構造体の製造方法に関する。
 マイクロディスク構造体に代表されるマイクロキャビティーは、界面で全反射を繰り返すことにより高効率で光を閉じ込めることができ、物質と光の高い相互作用を引き出すことが可能である。このため、超低しきい値で発振できる微小レーザーや光信号処理、集積光学回路、バイオセンサ等の高感度センサなどへの応用が期待されている。
 マイクロディスクを形成する材料として、有機物は無機物と比較して、様々な色素をドープすることができる、低コストである、成型加工が容易などの利点がある。
 これまで、有機系のマイクロディスク作製においては、フォトリソグラフィ法が主に用いられている(非特許文献1~3参照)が、プロセスが煩雑であることが欠点であった。
 これに対し、インクジェット法は、簡便であるとともに、必要な箇所にのみ材料を追加していく手法であるため、省エネルギーかつ自由度が高いといった利点がある。
 その反面、インクジェット法では、一般的に、数~数十mPa・sの低粘度インクしか吐出することができないため、インク中のポリマーの高濃度化が困難であり、数100nm程度の薄膜しか作製できないという欠点がある。
 このような理由から、これまでインクジェット法を用いた有機マイクロディスクの作製例は知られていない。
OPTICS EXPRESS, Vol. 19, No.12, pp.11451 (2011) Applied Physics Letters 97, 063304 (2010) OPTICS EXPRESS, Vol.19, No.10, pp.10009 (2011)
 本発明は、上記事情に鑑みてなされたものであり、インクジェット法を用いた有機マイクロディスク構造体の製造方法を提供することを目的とする。
 本発明者らは、ハイパーブランチポリマーが高濃度溶液とした場合でも比較的低粘度であることから厚膜の作製が可能であることに着目し、上記目的を達成するため鋭意検討を重ねた結果、所定のフッ素含有ハイパーブランチポリマーおよび高屈折率を示すトリアジン系ハイパーブランチポリマーが、高濃度のインクとした場合でもインクジェット塗布が可能であり、インクジェットでの厚膜化に適した材料であることを見出すとともに、これらのハイパーブランチポリマーとレーザー色素とを用いてインクジェット法によって作製した有機マイクロディスク構造体が、低しきい値でレーザー発振できることを見出し、本発明を完成した。
 すなわち、本発明は、
1. フッ素含有ハイパーブランチポリマーを含む第1のインクをインクジェット法によって基板上に印刷してクラッド層を形成するクラッド層形成工程と、フッ素非含有トリアジン系ハイパーブランチポリマーおよびレーザー色素を含む第2のインクをインクジェット法によって前記クラッド層上に印刷してコア層を形成するコア層形成工程と、前記フッ素含有ハイパーブランチポリマーのみを溶かす溶媒を用いて前記クラッド層をエッチングするエッチング工程と、を含むことを特徴とする有機マイクロディスク構造体の製造方法、
2. 前記フッ素含有ハイパーブランチポリマーが、アクリル系ハイパーブランチポリマーである1の有機マイクロディスク構造体の製造方法、
3. 前記第1のインクにおける前記フッ素含有ハイパーブランチポリマーの濃度が、5~20質量%である1または2の有機マイクロディスク構造体の製造方法、
4. 前記第2のインクにおける前記フッ素非含有トリアジン系ハイパーブランチポリマーの濃度が、5~20質量%である1~3のいずれかの有機マイクロディスク構造体の製造方法、
5. 前記フッ素含有ハイパーブランチポリマーの屈折率が、1.50以下である1~4のいずれかの有機マイクロディスク構造体の製造方法、
6. 前記フッ素非含有トリアジン系ハイパーブランチポリマーの屈折率が、1.70~1.90である1~5のいずれかの有機マイクロディスク構造体の製造方法、
7. 1~6のいずれかの製造方法で得られる有機マイクロディスク構造体、
8. 7のマイクロディスク構造体からなるマイクロディスクレーザー、
9. 8のマイクロディスクレーザーを用いたセンサ、
10. フッ素含有ハイパーブランチポリマーを含むクラッド層と、フッ素非含有トリアジン系ハイパーブランチポリマーおよびレーザー色素を含むコア層とからなることを特徴とするマイクロディスクレーザー
を提供する。
 本発明によれば、インクジェット法を用いたこれまでにない新しい有機マイクロディスク構造体の製造方法を提供できる。
 また、本発明では、高い光閉じ込め効果が期待されるトリアジン系ハイパーブランチポリマー(以下、HBPと略記する)とレーザー色素を用いているため、既存のリソグラフィ法と同等レベルの低しきい値でレーザー発振できる有機マイクロディスクレーザーを提供できる。
 さらに、本発明では、すべての作製工程を大気圧および室温下、低刺激で行うことができるため、サンプル負荷(真空ハンドリング、高熱、高刺激エッチングなど)の高い従来のリソグラフィ法では不可能であった有機物の事前添加による作製を可能とし、応用(バイオセンシングデバイスなど)において汎用性の高い製造技術を提供できる。
本発明に係る有機マイクロディスク構造体の製造方法の概略工程図である。 実施例1で作製したマイクロディスクのレーザー発振スペクトル測定結果を示す図である。 実施例1で作製したマイクロディスクの入出力特性を示す図である。
 以下、本発明についてさらに詳しく説明する。
 本発明に係る有機マイクロディスクの製造方法は、フッ素含有HBPを含む第1のインクをインクジェット法によって基板上に印刷してクラッド層を形成するクラッド層形成工程と、フッ素非含有トリアジン系HBPおよびレーザー色素を含む第2のインクをインクジェット法によってクラッド層上に印刷してコア層を形成するコア層形成工程と、フッ素含有HBPのみを溶かす溶媒を用いてクラッド層をエッチングするエッチング工程と、を含むものである。
 本発明において、インクジェット印刷に用いるインクジェット印刷機としては、特に限定されるものではなく、コンティニュアス型でも、オンデマンド型でもよい。また、オンデマンド型の場合、ピエゾ方式、サーマル方式、静電方式のいずれでもよいが、ピエゾ方式が好ましい。
 インクジェットノズルの径も特に限定されるものではなく、インクの粘度や目的とするマイクロディスクの大きさに応じて適宜選定することができるが、通常、10~100μm程度であり、好ましくは、20~80μmであるが、クラッド層形成時のノズル径をコア層形成時のノズル径よりも大きくすることが好適である。
 クラッド層形成に用いられる第1のインクは、フッ素含有HBPを有機溶媒に溶解または分散させて調製される。
 フッ素含有HBPとしては、フッ素原子を含有するHBPであれば特に限定されるものではないが、非トリアジン系のHBPが好ましく、アクリル系HBPがより好ましい。
 特に、国際公開第2010/137724号に開示されるアクリル系含フッ素HBPが好適であり、中でも、分子内に2個以上の(メタ)アクリル基を有するモノマーと、分子内にフルオロアルキル基および少なくとも1個の(メタ)アクリル基を有するモノマーとを、モノマー総モルに対して5~200モル%の重合開始剤の存在下、有機溶媒中で溶液重合させて得られるアクリル系HBPが好ましい。
 フッ素含有HBPの屈折率は、コア層に用いられるトリアジン系HBPよりも低ければよいが、本発明では1.5以下が好ましい。
 フッ素含有HBPの重量平均分子量としては、特に限定されるものではないが、本発明では、1,000~200,000が好ましく、2,000~100,000がより好ましく、5,000~60,000がより一層好ましい。
 なお、本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCという)分析による標準ポリスチレン換算で得られる平均分子量である(以下同様)。
 分子内に2個以上の(メタ)アクリル基を有するモノマーの具体例としては、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、アルコキシチタントリ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、2-ヒドロキシ-1-アクリロイルオキシ-3-メタクリロイルオキシプロパン、2-ヒドロキシ-1,3-ジ(メタ)アクリロイルオキシプロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、ウンデシレノキシエチレングリコールジ(メタ)アクリレート、ビス[4-(メタ)アクリロイルチオフェニル]スルフィド、ビス[2-(メタ)アクリロイルチオエチル]スルフィド、1,3-アダマンタンジオールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、ポリエチレングリコール(分子量300)ジ(メタ)アクリレート、ポリプロピレングリコール(分子量500)ジ(メタ)アクリレート等が挙げられる。
 分子内にフルオロアルキル基および少なくとも1個の(メタ)アクリル基を有するモノマーの具体例としては、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレート、2-(パーフルオロデシル)エチル(メタ)アクリレート、2-(パーフルオロ-3-メチルブチル)エチル(メタ)アクリレート、2-(パーフルオロ-5-メチルヘキシル)エチル(メタ)アクリレート、2-(パーフルオロ-7-メチルオクチル)エチル(メタ)アクリレート、1H,1H,3H-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,7H-ドデカフルオロヘプチル(メタ)アクリレート、1H,1H,9H-ヘキサデカフルオロノニル(メタ)アクリレート、1H-1-(トリフオロメチル)トリフルオロエチル(メタ)アクリレート、1H,1H,3H-ヘキサフルオロブチル(メタ)アクリレート、3-パーフルオロブチル-2-ヒドロキシプロピル(メタ)アクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピル(メタ)アクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-3-メチルブチル)-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-5-メチルヘキシル)-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-7-メチルオクチル)-2-ヒドロキシプロピル(メタ)アクリレート等が挙げられる。
 重合開始剤としては、アゾ系重合開始剤が好適であり、その具体例としては、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2-メチルブチロニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、1,1'-アゾビス(1-シクロヘキサンカルボニトリル)、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2,2'-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2'-アゾビス{2-メチル-N-[2-(1-ヒドロキシブチル)]プロピオンアミド}、2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2'-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2'-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2'-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジスルフェートジヒドレート、2,2'-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロクロリド、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2'-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)ジヒドロクロリド、2,2'-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2'-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]テトラヒドレート、2,2'-アゾビスイソ酪酸ジメチル、4,4'-アゾビス-4-シアノバレリン酸、2,2'-アゾビス(2,4,4-トリメチルペンタン)、1,1'-アゾビス(1-アセトキシ-1-フェニルエタン)、ジメチル1,1'-アゾビス(1-シクロヘキサンカルボキシレート)、4,4'-アゾビス(4-シアノペンタン酸)、4,4'-アゾビス(4-シアノペンタン酸-2-(パーフルオロメチル)エチル)、4,4'-アゾビス(4-シアノペンタン酸-2-(パーフルオロブチル)エチル)、4,4'-アゾビス(4-シアノペンタン酸-2-(パーフルオロヘキシル)エチル)等が挙げられるが、2,2'-アゾビスイソ酪酸ジメチル、2,2'-アゾビス(2,4,4-トリメチルペンタン)が好適である。
 重合に用いられる有機溶媒としては、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン等の芳香族炭化水素系溶媒;n-ヘキサン、n-ヘプタン、ミネラルスピリット、シクロヘキサン等の脂肪族または脂環式炭化水素系溶媒;塩化メチル、臭化メチル、ヨウ化メチル、メチレンジクロライド、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、オルトジクロロベンゼン等のハロゲン系炭化水素系溶媒;酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル系またはエステルエーテル系溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のエーテル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等のケトン系溶媒;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、tert-ブタノール、2-エチルヘキシルアルコール、ベンジルアルコール等のアルコール系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒、N-メチル-2-ピロリドン等の複素環式化合物系溶媒が挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
 重合反応の温度は好ましくは50~200℃、さらに好ましくは70~150℃である。
 第1のインク調製に用いられる有機溶媒としては、フッ素含有HBPの溶解能を有するものが好適であり、このような有機溶媒としては、上記重合溶媒として例示したものが挙げられるが、特に、1,4-ジオキサン等のエーテル系溶媒が好適である。
 第1のインク中における、フッ素含有HBPの濃度は、インクジェット塗布による厚膜化を図るという点から、5~20質量%が好ましく、7~15質量%がより好ましい。
 また、第1のインクの粘度は、インクジェット塗布可能な粘度であれば特に限定されるものではないが、上記フッ素含有HBPの濃度において、25℃で1~30mPa・sが好ましく、3~20mPa・sがより好ましい。
 また、第1のインクにより作製されるクラッド層はコア層が作製される基礎土台となるため、表面の平坦性を向上させるためにも、低粘度(~20 mPa・s)が好ましい。
 第1のインクを用いてクラッド層を形成する基板としては、第1のインクに含まれる溶媒や、後のエッチング工程で使用するエッチャントに対する耐性を有するものであれば特に限定されるものではなく、例えば、ガラス基板、石英基板、ITO基板、IZO基板、金属やその酸化物からなる基板、ポリエチレンテレフタレート(PET)等の樹脂基板などを用いることができるが、本発明では、PET等の樹脂基板が好適である。
 第1のインクを基板上にインクジェット印刷する際のスポット径は、使用するインクジェットノズル径によっても変動するものであるため一概には規定できないが、本発明では、100~500μm程度であり、150~350μm程度が好ましく、220~320μm程度がより好ましい。
 クラッド層形成時のインクジェット印刷の回数は、1回でも複数回でもよいが、十分な厚さとコア層を包括し得る面積かつ平面を有するクラッド層を形成するためには、2~10回、好ましくは3~7回の印刷を繰り返して積層することが好ましい。
 なお、クラッド層の厚みは特に限定されるものではないが、通常、0.5~3μm程度である。
 一方、コア層形成に用いられる第2のインクは、フッ素非含有トリアジン系HBPおよびレーザー色素を有機溶媒に溶解または分散させて調製される。
 フッ素非含有トリアジン系HBPとしては、国際公開第2010/128661号に開示される、高屈折率のトリアジン環含有HBPが好適であり、中でも高屈折率であることから、下記式で示される繰り返し単位構造を有するHBPが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式中、上記Arは、下記式で示されるいずれかの基を示す。
Figure JPOXMLDOC01-appb-C000002
 特に、高屈折率と有機溶媒に対する溶解性とのバランスを考慮すると、Ar基としては、下記式で示されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000003
 トリアジン系HBPの屈折率は、1.65以上が好ましく、光閉じ込め効果をより高めることを考慮すると、1.70~1.90がより好ましい。
 トリアジン系HBPの重量平均分子量は、500~500,000が好ましく、より溶解性を高め、第2のインクの粘度を低下させるという点から、50,000以下が好ましく、30,000以下がより好ましく、10,000以下がより一層好ましい。
 本発明で用いるトリアジン系HBPは、国際公開第2010/128661号記載の方法で製造することができ、例えば、Ar基としてm-フェニレン基を有するトリアジン系HBPは、ハロゲン化シアヌルおよびm-フェニレンジアミンを適当な有機溶媒中で反応させて得ることができる。
 この際、有機溶媒としては、上記と同様のものが挙げられる。
 第2のインク調製に用いられる有機溶媒としては、トリアジン系HBPの溶解能を有するものが好適であり、このような有機溶媒としては、上記重合溶媒として例示したものが挙げられるが、特に、シクロヘキサノン等のケトン系溶媒が好適である。
 第2のインク中における、トリアジン系HBPの濃度は、インクジェット塗布による厚膜化を図るという点から、5~20質量%が好ましく、7~15質量%がより好ましい。
 また、第2のインクの粘度は、インクジェット塗布可能な粘度であれば特に限定されるものではないが、上記トリアジン系HBPの濃度において、25℃で1~30mPa・sが好ましく、3~20mPa・sがより好ましい。
 さらに、低しきい値レーザー発振に必要なディスク表面の平坦性を向上させるためにも、低粘度(~20mPa・s)が好ましい。
 また、第2のインクに用いられるレーザー色素としては、特に限定されるものではなく、従来公知の色素から適宜選択して用いればよい。
 その具体例としては、アントラセン誘導体,テトラセン誘導体,ピレン誘導体,ルブレン誘導体,デカシクレン誘導体,ペリレン誘導体等の炭素縮合環系色素、キサンテン系色素、シアニン系色素、クマリン系色素、キナクリドン系色素、スクアリウム系色素、スチリル系色素、フェノキサゾン系色素、金属または無金属のフタロシアニン、ベンジジン、イリジウム錯体、Al、Zn、Beまたは希土類金属からなる中心金属および配位子から構成される金属錯体などが挙げられるが、有機色素が好ましい。
 これらの色素は、市販品として入手可能であり、市販品としては、LDS698,720,722,730,750,751,759,765,798,821,867,925,950、クマリン440,445,450,456,460,461,478,480,481,485,487,490,498,500,503,504,504T,510,515,519,521,521T,522B,523,525,535,540,540A,545(以上、(株)インデコ)等が挙げられる。
 第2のインク中における色素の濃度は、特に限定されるものではないが、本発明では、インク中に0.1~10mM程度であり、0.5~5mM程度が好ましく、1~3mM程度がより好ましい。
 第2のインクをクラッド層上にインクジェット印刷する際のスポット径は、使用するインクジェットノズル径によっても変動するものであるため一概には規定できないが、クラッド層よりも小さいことが好ましいことから、本発明では、10~200μm程度であり、50~150μm程度が好ましく、50~120μm程度がより好ましい。
 コア層形成時のインクジェット印刷の回数は、1回でも複数回でもよいが、本発明の第2のインクを用いた場合、1回の印刷で十分な厚みのコア層を形成できる。
 なお、コア層の厚みは特に限定されるものではないが、通常、0.5~3μm程度である。
 以上のようにしてインクジェット印刷により、クラッド層とコア層との積層体を製造した後、フッ素含有HBPを優先的に溶かす溶媒を用いてクラッド層をエッチングし、所望の形状の有機マイクロディスク構造体を製造する。
 エッチング工程で用いられる溶媒(エッチャント)としては、フッ素含有HBPを優先的に溶かす溶媒であれば特に限定されるものではないが、本発明では、1,4-ジオキサン等のエーテル系溶媒を用いることが好ましい。
 エッチング回数は、特に限定されるものではないが、通常、0.1~1μL、好ましくは0.1~0.5μLの溶媒を用いて0.1~10秒間、好ましくは0.5~2秒間のエッチングを1~5回程度行えばよい。
 溶媒の除去は、洗浄や吸引等の適宜な手法を用いればよい。
 本発明の製造方法で得られた有機マイクロディスク構造体は、高い光閉じ込め効果が期待されるトリアジン系HBPを用いているため、既存のリソグラフィ法と同等レベルの低しきい値でレーザー発振可能な有機マイクロディスクレーザーとして機能する。
 この有機マイクロディスクレーザーは、その特性を利用して、超低しきい値で発振できる微小レーザー、光信号処理、集積光学回路、バイオセンサ等の高感度センサ類などとして好適に用いることができる。
 以下、製造例および実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、使用した装置は以下のとおりである。
[1]インクジェット印刷
装置:インクジェットヘッド(マイクロジェット社製、IJK-200S)、高精度卓上ロボット(武蔵エンジニアリング社製、SHOTmini SL)、ピエゾドライバー(ハンテック社製、MC6)、圧力ドライバー(SMC社製、CN03)による複合装置
 インクジェット印刷プロセスは、室温(25℃)、大気圧下で行った。
 クラッド層およびコア層の印刷中、基板とインクジェットノズルの間隔は、~1mmに維持した。
 インクジェットヘッドの移動速は、空気乱流による吐出インクの乱れを抑えるため2mm/sの低速に設定した。
[2]レーザー発振スペクトル測定
装置:励起光源(Nanolase社製、PNG-002025-040)、観測顕微鏡(NIKON社製、ECLIPSE TE2000-U)、分光器(Ocean Optics社製、HR4000)による測定光学系システム
 マイクロディスクレーザーの発振評価は、室温(25℃)で行った。
[製造例1]第1のインクの製造
 国際公開第2010/137724号の実施例1と同様の手順により、エチレングリコールジメタクリレート、1H,1H,5H-オクタフルオロペンチルメタクリレートおよび2,2′-アゾビスイソ酪酸メチルから製造したフッ素含有アクリル系HBPを、1,4-ジオキサンに溶かし、10質量%の第1のインクを製造した。
[製造例2]第2のインクの製造
 国際公開第2010/128661号の実施例98と同様の手順により、m-フェニレンジアミン、2,4,6-トリクロロ-1,3,5-トリアジンおよびアニリンから製造したトリアジン系HBPおよびレーザー色素LDS798(Exiton社製)をシクロヘキサノンに溶かし、ポリマー10質量%、色素2mMの第2のインクを製造した。
[実施例1]マイクロディスク構造体の作製
(1)クラッド層形成工程
 図1に示されるように、70μm径インクジェットノズル13を用い、製造例1で得られた第1のインク11をPET基板10上に5ショット吐出積層して印刷し、スポット径250~300μmのクラッド層12を形成した。
(2)コア層形成工程
 次に、50μm径インクジェットノズル23を用い、製造例2で調製した第2のインク21を、先に形成したクラッド層12上の中央に1ショット吐出して印刷し、スポット径~100μmのコア層22を形成し、クラッド層12およびコア層22の積層体20を作製した。
(3)エッチング工程
 エッチャント31として1,4-ジオキサンを用い、1つの積層体20に対し、一回のエッチングで0.2μLのエッチャント31を投入して1秒間エッチングを行った後、積層体20の側面方向からクリーンペーパーで吸引してエッチャント31を除去する工程を二回繰り返し、マイクロディスク構造体40を得た。
 なお、エッチング工程は、室温(25℃)、大気圧下、顕微鏡(NIKON社製、ECLIPSE TE2000-U製)で確認しながら手動で行った。
 上記実施例1で作製したマイクロディスクについて、下記手法によりレーザー発振特性を測定・評価した。レーザー発振スペクトルの測定結果を図2に、入出力測定結果を図3にそれぞれ示す。
[1]レーザー発振スペクトル
 マイクロディスクキャビティーにはスポット径75μmのマイクロディスクを用いた。励起光源にはQスイッチ動作Nd:YAGレーザーの第二次高調波(波長532nm、パルス幅~5ns、繰り返し周波数100Hz)を用いた。
 この光を焦点距離2cmの平凸レンズによりスポット径300μmまで絞ってマイクロディスクに照射した。
 マイクロディスクキャビティーのエッジから放出したwhispering-gallery mode(WGM)をもつレーザー光は、倍率100倍の顕微鏡を用いて集光し、分光器を用いた30秒間露光測定によりレーザー発振スペクトルを測定した。
[2]入出力測定
 レーザー発振評価における入出力特性は、励起光源と集光レンズの間に設置された回転型NDフィルター(減光フィルター)を用い、有効励起エネルギー密度(μJ/mm2)を変えてスペクトルを測定し、有効励起エネルギー密度に対応するスペクトルピークをプロットすることで求めた。このとき有効励起エネルギー密度は、NDフィルターと集光レンズの間でモニターしたエネルギーを元に集光レンズでの損失を考慮して定義した。
 図2に示されるように、励起エネルギー密度が弱いとき、波長820nm付近をピークとした複数のレーザー発振スペクトルが得られた。励起エネルギー密度を増加させると、発振ピークは短波長側へとシフトした。
 最大励起エネルギー密度4.8μJ/mm2のとき、波長811.5nmがピーク波長となった。このとき、ディスク外周を共振器長とする縦モード間隔と等しい1.55nmが得られた。
 図3に示されるように、弱励起における立ち上がりを除いた直線フィッティングによりレーザー発振閾値を定義すると、波長817.3nmにおいて最小閾値0.33μJ/mm2が得られた。この閾値は、これまで報告された基礎的なディスク型マイクロキャビティーレーザーにおいて最も低い値である。
 1 クラッド層形成工程
 2 コア層形成工程
 3 エッチング工程
 10 PET基板(基板)
 11 第1のインク
 12 クラッド層
 21 第2のインク
 22 コア層
 31 エッチャント(溶媒)
 40 マイクロディスク構造体

Claims (10)

  1.  フッ素含有ハイパーブランチポリマーを含む第1のインクをインクジェット法によって基板上に印刷してクラッド層を形成するクラッド層形成工程と、
     フッ素非含有トリアジン系ハイパーブランチポリマーおよびレーザー色素を含む第2のインクをインクジェット法によって前記クラッド層上に印刷してコア層を形成するコア層形成工程と、
     前記フッ素含有ハイパーブランチポリマーのみを溶かす溶媒を用いて前記クラッド層をエッチングするエッチング工程と、を含むことを特徴とする有機マイクロディスク構造体の製造方法。
  2.  前記フッ素含有ハイパーブランチポリマーが、アクリル系ハイパーブランチポリマーである請求項1記載の有機マイクロディスク構造体の製造方法。
  3.  前記第1のインクにおける前記フッ素含有ハイパーブランチポリマーの濃度が、5~20質量%である1または2の有機マイクロディスク構造体の製造方法。
  4.  前記第2のインクにおける前記フッ素非含有トリアジン系ハイパーブランチポリマーの濃度が、5~20質量%である請求項1~3のいずれか1項記載の有機マイクロディスク構造体の製造方法。
  5.  前記フッ素含有ハイパーブランチポリマーの屈折率が、1.50以下である請求項1~4のいずれか1項記載の有機マイクロディスク構造体の製造方法。
  6.  前記フッ素非含有トリアジン系ハイパーブランチポリマーの屈折率が、1.70~1.90である請求項1~5のいずれか1項記載の有機マイクロディスク構造体の製造方法。
  7.  請求項1~6のいずれか1項記載の製造方法で得られる有機マイクロディスク構造体。
  8.  請求項7記載のマイクロディスク構造体からなるマイクロディスクレーザー。
  9.  請求項8記載のマイクロディスクレーザーを用いたセンサ。
  10.  フッ素含有ハイパーブランチポリマーを含むクラッド層と、フッ素非含有トリアジン系ハイパーブランチポリマーおよびレーザー色素を含むコア層とからなることを特徴とするマイクロディスクレーザー。
PCT/JP2015/075155 2014-09-08 2015-09-04 有機マイクロディスク構造体の製造方法 WO2016039259A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/509,451 US10498101B2 (en) 2014-09-08 2015-09-04 Method for producing organic microdisk structure
JP2016547413A JP6579392B2 (ja) 2014-09-08 2015-09-04 有機マイクロディスク構造体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014181951 2014-09-08
JP2014-181951 2014-09-08

Publications (1)

Publication Number Publication Date
WO2016039259A1 true WO2016039259A1 (ja) 2016-03-17

Family

ID=55459007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075155 WO2016039259A1 (ja) 2014-09-08 2015-09-04 有機マイクロディスク構造体の製造方法

Country Status (3)

Country Link
US (1) US10498101B2 (ja)
JP (1) JP6579392B2 (ja)
WO (1) WO2016039259A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056324A1 (ja) * 2016-09-20 2018-03-29 国立大学法人九州大学 バイオセンサ
JP2018142648A (ja) * 2017-02-28 2018-09-13 国立大学法人九州大学 無機マイクロディスク及びその製造方法
CN108808433A (zh) * 2017-04-26 2018-11-13 中国科学院化学研究所 一种具有支柱支撑的回音壁模式光子学器件及其制备方法和用途
WO2018210144A1 (zh) * 2017-05-19 2018-11-22 中国科学院化学研究所 一种用于制得激光光源的墨水
CN108944032A (zh) * 2017-05-19 2018-12-07 中国科学院化学研究所 一种打印激光光源的系统
CN108944066A (zh) * 2017-05-19 2018-12-07 中国科学院化学研究所 一种打印激光光源的打印头模块

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102628632B1 (ko) 2015-06-04 2024-01-23 카티바, 인크. 금속 표면 상에서 에치 레지스트 패턴의 제조 방법
KR102626521B1 (ko) 2015-08-13 2024-01-17 카티바, 인크. 금속 표면 상에 에치 레지스트 패턴을 형성하는 방법
US10398034B2 (en) 2016-12-12 2019-08-27 Kateeva, Inc. Methods of etching conductive features, and related devices and systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277741A (ja) * 2002-03-26 2003-10-02 Sharp Corp 有機el発光素子およびそれを用いた液晶表示装置
JP2010080950A (ja) * 2008-08-29 2010-04-08 Semiconductor Energy Lab Co Ltd 固体色素レーザ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US936007A (en) * 1908-11-19 1909-10-05 Francis J Mauborgne Knockdown table.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277741A (ja) * 2002-03-26 2003-10-02 Sharp Corp 有機el発光素子およびそれを用いた液晶表示装置
JP2010080950A (ja) * 2008-08-29 2010-04-08 Semiconductor Energy Lab Co Ltd 固体色素レーザ

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CONG CHEN ET AL.: "Rapid microdisk printing in room temperature atmosphere", HEISEI 26 NENDO JOINT CONFERENCE OF ELECTRICAL, ELECTRONICS AND INFORMATION ENGINEERS IN KYUSHU KOEN RONBUNSHU, 11 September 2014 (2014-09-11), pages 07 - 2 P-13 *
MITSUNORI SAITO ET AL.: "Ink-jet process for creating fluorescent microdroplet", PROC. OF SPIE, vol. 7716, 2010, pages 77161T *
PETER E. FROEHLING: "Dendrimers and dyes", DYES AND PIGMENTS, vol. 48, 2001, pages 187 - 195 *
XIN LIU ET AL.: "Ink-Jet-Printed Organic Semiconductor Distributed Feedback Laser", APPLIED PHYSICS EXPRESS, vol. 5, 19 June 2012 (2012-06-19), pages 072101 *
YU YANG ET AL.: "Highly photo-stable dye doped solid-state distributed-feedback (DFB) channeled waveguide lasers by a pen-drawing technique", OPTICS EXPRESS, vol. 18, no. 21, pages 22080 - 22089 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056324A1 (ja) * 2016-09-20 2018-03-29 国立大学法人九州大学 バイオセンサ
JPWO2018056324A1 (ja) * 2016-09-20 2019-08-15 国立大学法人九州大学 バイオセンサ
JP2018142648A (ja) * 2017-02-28 2018-09-13 国立大学法人九州大学 無機マイクロディスク及びその製造方法
CN108808433A (zh) * 2017-04-26 2018-11-13 中国科学院化学研究所 一种具有支柱支撑的回音壁模式光子学器件及其制备方法和用途
WO2018210144A1 (zh) * 2017-05-19 2018-11-22 中国科学院化学研究所 一种用于制得激光光源的墨水
CN108944032A (zh) * 2017-05-19 2018-12-07 中国科学院化学研究所 一种打印激光光源的系统
CN108944066A (zh) * 2017-05-19 2018-12-07 中国科学院化学研究所 一种打印激光光源的打印头模块
JP2020521023A (ja) * 2017-05-19 2020-07-16 中国科学院化学研究所 レーザー光源製造用のインク
US11535041B2 (en) 2017-05-19 2022-12-27 Institute Of Chemistry, Chinese Academy Of Sciences Ink for producing laser light sourcesy
JP7383485B2 (ja) 2017-05-19 2023-11-20 中国科学院化学研究所 レーザー光源製造用のインク

Also Published As

Publication number Publication date
JP6579392B2 (ja) 2019-09-25
US20170264066A1 (en) 2017-09-14
US10498101B2 (en) 2019-12-03
JPWO2016039259A1 (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6579392B2 (ja) 有機マイクロディスク構造体の製造方法
Oakdale et al. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography
Ovsianikov et al. Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials
Hua et al. Convex silica microlens arrays via femtosecond laser writing
Kim et al. Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique
Nazir et al. π-expanded ketocoumarins as efficient, biocompatible initiators for two-photon-induced polymerization
CN104487545B (zh) 液晶液滴激光共振器对湿的聚合物溶液的印刷方法及用该方法制成的产品
Žukauskas et al. Characterization of photopolymers used in laser 3D micro/nanolithography by means of laser-induced damage threshold (LIDT)
Yan et al. Superlensing plano-convex-microsphere (PCM) lens for direct laser nano-marking and beyond
Palomba et al. Near-field imaging with a localized nonlinear light source
Yoshioka et al. Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temperature atmospheric ink-jet technique
KR101917169B1 (ko) 유지보수액
Biver et al. High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics
Elmeranta et al. Characterization of nanostructures fabricated with two-beam DLW lithography using STED microscopy
Ladika et al. Synthesis and application of triphenylamine-based aldehydes as photo-initiators for multi-photon lithography
Xu et al. Multifunctional sensing based on an ultrathin transferrable microring laser
König et al. Sub-100 nm material processing and imaging with a sub-15 femtosecond laser scanning microscope
Johnson et al. Model for polymerization and self-deactivation in two-photon nanolithography
JP6886666B2 (ja) バイオセンサ
Crivello et al. Photoactivated cationic ring-opening frontal polymerizations of oxetanes
Kim et al. Simple and easily controllable parabolic-shaped microlenses printed on polymeric mesas
Caillau et al. Sub-micron lines patterning into silica using water developable chitosan bioresist films for eco-friendly positive tone e-beam and UV lithography
Steenhusen et al. Multi-photon polymerization of inorganic-organic hybrid polymers using visible or IR ultrafast laser pulses for optical or optoelectronic devices
Wang et al. Etching of nanostructures on soda-lime glass
EP3236547A1 (en) Random lasing photo-curable composition for use as random lasing gain medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547413

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15509451

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840864

Country of ref document: EP

Kind code of ref document: A1