WO2021243801A1 - 量子点墨水、全彩膜片的制备方法以及显示面板 - Google Patents

量子点墨水、全彩膜片的制备方法以及显示面板 Download PDF

Info

Publication number
WO2021243801A1
WO2021243801A1 PCT/CN2020/101006 CN2020101006W WO2021243801A1 WO 2021243801 A1 WO2021243801 A1 WO 2021243801A1 CN 2020101006 W CN2020101006 W CN 2020101006W WO 2021243801 A1 WO2021243801 A1 WO 2021243801A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
color
ink
dot ink
red
Prior art date
Application number
PCT/CN2020/101006
Other languages
English (en)
French (fr)
Inventor
彭文祥
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/970,366 priority Critical patent/US11659754B2/en
Publication of WO2021243801A1 publication Critical patent/WO2021243801A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • This application relates to the field of display technology, in particular to a method for preparing quantum dot ink, full-color film, and a display panel.
  • QD-LED Quantum Dot-Light Emitting Diode
  • Quantum Dot-Light Emitting Diode structure display consists of two parts: quantum dot light color conversion film and light emitting diode. It not only has the characteristics of autonomous light emission, thinness and flexibility of LED devices, but also It has the advantage of high color gamut of quantum dots.
  • the structural device uses the photoluminescence characteristic of QD to convert the blue light of the backlight into red light and green light, thereby realizing the purpose of full-color display.
  • the QD film layer can usually be made by the IJP (Inkjet Printing) process.
  • IJP Inkjet Printing
  • the technical advantage of IJP is that it can control the position and volume of the quantum dot ink drop, so that it can be printed into a film in the pixel-level area.
  • the composition of the quantum dot ink has a greater impact on its brightness conversion rate and the process requirements of inkjet printing, and further development and optimization are still needed.
  • the present application provides a quantum dot ink, a method for preparing a full-color diaphragm, and a display panel.
  • the scattering particles in the quantum dot ink can be stably dispersed in the quantum dot ink to prevent the device from being blocked when the quantum dot ink is printed due to uneven dispersion The problem.
  • the present invention provides a quantum dot ink.
  • the quantum dot ink includes quantum dots, scattering particles, a polar solvent, and a transparent polymer material as a host material.
  • the scattering particles are selected from at least one of silicon dioxide and titanium dioxide.
  • the polar solvent is selected from N,N-dimethylformamide, N,N-dimethylacetamide, tetramethylurea, dimethylsulfoxide , At least one of trimethyl phosphate and N-methylpyrrolidone.
  • the transparent polymer material is a transparent polymer that can be dissolved in a polar solvent.
  • the content of the quantum dots is 20-30 wt%
  • the content of the scattering particles is 1-10 wt%
  • the polarity is
  • the content of the solvent is 20-30 wt%
  • the remainder is the transparent polymer material.
  • the host material includes polyvinylidene fluoride.
  • the quantum dots are selected from one of blue light quantum dots, red light quantum dots, and green light quantum dots.
  • the present invention also provides a method for preparing a full-color film, which includes the following steps:
  • the color filter film layer includes a plurality of red color resists, a plurality of blue color resists, and a plurality of green color resists.
  • the scattering particles are selected from at least one of silica and titanium dioxide
  • the polar solvent is selected from N, N -At least one of dimethylformamide, N,N-dimethylacetamide, tetramethylurea, dimethylsulfoxide, trimethyl phosphate and N-methylpyrrolidone
  • the transparent polymer material is Transparent polymer that can be dissolved in polar solvents.
  • step S20 in the red quantum dot ink, the content of the red quantum dot is 20-30 wt%, and the content of the red quantum dot is 20-30 wt%, and the content of the red quantum dot is 20-30 wt%.
  • the content of the green quantum dots is 20-30 wt%.
  • the buffer layer is a single-layer silicon nitride or silicon oxide film, or a silicon nitride and silicon oxide laminated film layer .
  • step S60 the dropping process of the red quantum dot ink, the green quantum dot ink, and the blank ink is an inkjet printing process.
  • the present invention also provides a display panel, which includes an array driving layer, a blue light emitting layer, and a full-color film prepared by the aforementioned manufacturing method of the full-color film.
  • the color filter film layer is on the quantum dot color conversion layer.
  • the array driving layer includes a plurality of thin film transistors arranged in an array.
  • the blue light emitting layer is a blue OLED light emitting layer.
  • the present invention provides a quantum dot ink, a method for preparing a full-color film, and a display panel.
  • the quantum dot ink includes quantum dots, scattering particles, polar solvents, and a host material.
  • Transparent polymer materials on the one hand, through the addition of scattering particles, can effectively improve the brightness conversion rate of the film prepared from the quantum dots, on the other hand, use polar solvents for dissolution and dispersion, so that the polar scattering particles can be stably dispersed in In the quantum dot ink, the problem of blocking of the quantum dot ink printing device caused by uneven dispersion is prevented.
  • FIG. 1 is a schematic diagram of a text flow chart of a method for preparing a full-color film provided by an embodiment of the present invention
  • 2A-2C are schematic structural diagrams of a method for preparing a full-color film provided by an embodiment of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, “plurality” means two or more than two, unless specifically defined otherwise.
  • An embodiment of the present invention provides a quantum dot ink, which includes quantum dots, scattering particles, a polar solvent, and a transparent polymer material as a host material.
  • the quantum dots are usually blue light quantum dots, red light quantum dots and green light quantum dots, corresponding to the red, green and blue pixels in the display panel
  • the scattering particles are selected from at least one of silicon dioxide and titanium dioxide
  • the polar solvent is selected from at least one of N,N-dimethylformamide, N,N-dimethylacetamide, tetramethylurea, dimethylsulfoxide, trimethyl phosphate, and N-methylpyrrolidone Or other commonly used polar solvents
  • the transparent polymer material is a transparent polymer that can be dissolved in a polar solvent, for example, it may usually include polyvinylidene fluoride.
  • the content of the quantum dots is 20-30 wt%
  • the content of the scattering particles is 1-10 wt%
  • the content of the polar solvent is 20-30 wt%
  • the remainder is the host material, of course, it can also be in other proportions to obtain a stably dispersed quantum dot ink.
  • the brightness conversion rate of the film prepared from the quantum dots can be effective, but because the scattering particles are usually polar particles such as silica or titanium dioxide, the two quantum dot inks Usually non-polar, this leads to the unstable dispersion of the scattering particles in the system, which leads to the problem of clogging the printing nozzle when printing ink.
  • the scattering particles can be stabilized. To avoid the aforementioned problems.
  • Another embodiment of the present invention also provides a method for preparing a full-color film.
  • the steps please refer to Fig. 1 and Figs. 2A-2C.
  • the preparation method includes the following steps:
  • the color filter film layer includes a plurality of red color resists 202, a plurality of green color resists 203, and a plurality of blue color resists 204, And the first black matrix 201 formed between the plurality of red color resistors 202, the plurality of green color resistors 203, and the plurality of blue color resistors 204, that is, the structure shown in FIG. 2A is formed;
  • a buffer layer 30 is formed on the color filter film layer 20, that is, the structure shown in FIG. 2B is formed.
  • the buffer layer 30 is usually a single layer of silicon nitride or silicon oxide film, or silicon nitride and The silicon oxide laminated film layer is used to protect the color filter film 20 from contacting and reacting with the upper film layer;
  • the quantum dots and the scattering particles will be uniformly dispersed in the film layer. Due to the van der Waals force between the particles, the quantum dot material can also be partially adsorbed on the scattering particles . When the blue backlight irradiates the scattering particles, a refraction phenomenon occurs, thereby increasing the optical path of the backlight in the quantum dot film layer. Because of the increase in the optical path length, the amount of the backlight absorbed by the quantum dot material will also increase, and finally the brightness conversion rate of the resulting color film will be improved.
  • a color filter film layer is added.
  • it can filter out the blue backlight in the green/red pixels that is not absorbed by the quantum dots and improve the color gamut of the color.
  • It can also filter the ambient light to reduce the excitation of the quantum dots from the ambient light to improve the contrast.
  • the scattering particles are selected from at least one of silicon dioxide and titanium dioxide
  • the polar solvent is selected from N,N-dimethylformamide, N,N-dimethylethyl At least one of amide, tetramethylurea, dimethylsulfoxide, trimethyl phosphate, and N-methylpyrrolidone
  • the host material is a transparent polymer material.
  • step S20 in the red quantum dot ink, the content of the red quantum dots is 20-30 wt%, and in the green quantum dot ink, the content of the green quantum dots is 20- 30wt%.
  • step S60 the dropping process of the red quantum dot ink, the green quantum dot ink, and the blank ink is an inkjet printing process. Since the scattering particles are stably dispersed by the polar solvent, the risk of clogging of the print nozzle due to the unstable quantum dot ink is greatly reduced.
  • Another embodiment of the present invention also provides a display panel, the display panel including:
  • the array driving layer usually includes a plurality of thin film transistors arranged in an array as each pixel switch of the display panel;
  • the blue light-emitting layer is used as a blue backlight through the principle of electroluminescence, usually blue OLED light-emitting layer, blue Mini LED light-emitting layer or blue Micro LED light-emitting layer.
  • the full-color diaphragm prepared by the aforementioned method for preparing the full-color diaphragm realizes full-color color development through photoluminescence.
  • the color filter layer is on the quantum dot color conversion layer, that is, the blue backlight emitted by the blue light emitting layer first penetrates the quantum dot color conversion layer, and then penetrates the quantum dot color conversion layer.
  • the color filter film layer is emitted later.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Filters (AREA)

Abstract

量子点墨水、全彩膜片的制备方法以及显示面板。量子点墨水包括量子点,散射粒子,极性溶剂以及作为主体材料的透明高分子材料。量子点墨水中的散射粒子可以稳定分散于量子点墨水中,防止出现因分散不均导致量子点墨水打印时设备堵塞的问题。

Description

量子点墨水、全彩膜片的制备方法以及显示面板 技术领域
本申请涉及显示技术领域,具体涉及一种量子点墨水、全彩膜片的制备方法以及显示面板。
背景技术
QD-LED(Quantum Dot-Light Emitting Diode,量子点-发光二极管)结构显示器由量子点光色转换薄膜以及发光二极管两部分组成,其不仅具有LED器件的自主发光、薄型化和柔性的特点而且还具有量子点高色域的优点。该结构器件利用QD的光致发光的特性,把背光的蓝光转换成红光与绿光,从而实现全彩化显示的目的。
QD膜层通常可采用IJP(Inkjet Printing,喷墨打印)工艺来制作。IJP的技术优势在于可以控制量子点墨水滴下的位置及体积大小,从而能够在像素级别的区域进行打印成膜。其中,量子点墨水的组成对其亮度转换率,以及喷墨打印的工艺要求有着较大的影响,仍需进一步地开发与优化。
技术问题
本申请提供一种量子点墨水、全彩膜片的制备方法以及显示面板,量子点墨水中的散射粒子可以稳定分散于量子点墨水中,防止出现因分散不均导致量子点墨水打印时设备堵塞的问题。
技术解决方案
为解决上述问题,第一方面,本发明提供一种量子点墨水,所述量子点墨水包括量子点,散射粒子,极性溶剂以及作为主体材料的透明高分子材料。
在本发明实施例提供的一种量子点墨水中,所述散射粒子选自二氧化硅以及二氧化钛中的至少一者。
在本发明实施例提供的一种量子点墨水中,所述极性溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四甲基脲、二甲亚砜、磷酸三甲酯以及N-甲基吡咯烷酮中的至少一者。
在本发明实施例提供的一种量子点墨水中,所述透明高分子材料为可在极性溶剂中溶解的透明聚合物。
在本发明实施例提供的一种量子点墨水中,在所述量子点墨水中,所述量子点的含量为20-30wt%,所述散射粒子的含量为1-10wt%,所述极性溶剂的含量为20-30wt%,剩余为所述透明高分子材料。
在本发明实施例提供的一种量子点墨水中,所述主体材料包括聚偏氟乙烯。
在本发明实施例提供的一种量子点墨水中,所述量子点选自蓝光量子点,红光量子点以及绿光量子点中的一者。
另一方面,本发明还提供了一种全彩膜片的制备方法,所述制备方法包括如下步骤:
S10:将散射粒子,极性溶剂以及主体材料混合并分散均匀,制得空白墨水;
S20:向所述空白墨水中加入红色量子点并分散均匀,制得红色量子点墨水,以及向所述空白墨水中加入绿色量子点并分散均匀,制得绿色量子点墨水;
S30:提供一基板,在所述基板上形成彩色滤光膜层,所述彩色滤光膜层包括多个红色色阻、多个蓝色色阻、多个绿色色阻以及形成于所述多个红色色阻、多个蓝色色阻与多个绿色色阻之间的第一黑色矩阵;
S40:在所述彩色滤光膜层上形成缓冲层;
S50:在所述缓冲层上形成与所述第一黑色矩阵对应的第二黑色矩阵;以及
S60:在所述第二黑色矩阵的间隙中,依次在所述多个红色色阻的对应区域滴加红色量子点墨水,在所述多个绿色色阻的对应区域滴加绿色量子点墨水,以及在所述多个蓝色色阻的对应区域滴加空白墨水,并加热去除所述极性溶剂形成量子点色转换层。
在本发明实施例提供的一种全彩膜片的制备方法中,在步骤S10中,所述散射粒子选自二氧化硅以及二氧化钛中的至少一者,所述极性溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四甲基脲、二甲亚砜、磷酸三甲酯以及N-甲基吡咯烷酮中的至少一者,所述透明高分子材料为可在极性溶剂中溶解的透明聚合物。
在本发明实施例提供的一种全彩膜片的制备方法中,在步骤S20中,在所述红色量子点墨水中,所述红色量子点的含量为20-30wt%,以及在所述绿色量子点墨水中,所述绿色量子点的含量为20-30wt%。
在本发明实施例提供的一种全彩膜片的制备方法中,在步骤S40中,所述缓冲层为单层的氮化硅或氧化硅薄膜,或氮化硅与氧化硅叠层膜层。
在本发明实施例提供的一种全彩膜片的制备方法中,在步骤S60中,所述红色量子点墨水、绿色量子点墨水以及空白墨水的滴加工艺为喷墨打印工艺。
另一方面,本发明还提供了一种显示面板,所述显示面板包括阵列驱动层,蓝光发光层以及前述的全彩膜片的制备方法制备而得的全彩膜片。
在本发明实施例提供的一种显示面板中,沿所述显示面板的出光方向,所述彩色滤光膜层在所述量子点色转换层之上。
在本发明实施例提供的一种显示面板中,所述阵列驱动层包括阵列排布的多个薄膜晶体管。
在本发明实施例提供的一种显示面板中,所述蓝光发光层为蓝色OLED发光层。
有益效果
相较于现有技术,本发明提供了一种量子点墨水、全彩膜片的制备方法以及显示面板,其中,所述量子点墨水包括量子点,散射粒子,极性溶剂以及作为主体材料的透明高分子材料,一方面通过散射粒子的加入,可有效提升由该量子点制备的薄膜的亮度转换率,另一方面,使用极性溶剂进行溶解分散,使得极性的散射粒子可以稳定分散于量子点墨水中,防止出现因分散不均导致量子点墨水打印设备时堵塞的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供一种全彩膜片的制备方法的文字流程示意图;
图2A-2C是本发明实施例提供一种全彩膜片的制备方法的结构流程示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,“示例性”一词用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本发明,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本发明。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本发明的描述变得晦涩。因此,本发明并非旨在限于所示的实施例,而是与符合本申请所公开的原理和特征的最广范围相一致。
本发明实施例提供了一种量子点墨水,所述量子点墨水包括量子点,散射粒子,极性溶剂以及作为主体材料的透明高分子材料。
其中,所述量子点通常为蓝光量子点,红光量子点以及绿光量子点,对应于显示面板中的红绿蓝像素,所述散射粒子选自二氧化硅以及二氧化钛中的至少一者,所述极性溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四甲基脲、二甲亚砜、磷酸三甲酯以及N-甲基吡咯烷酮中的至少一者或其他常用的极性溶剂,所述透明高分子材料为可在极性溶剂中溶解的透明聚合物,例如,通常可以包括聚偏氟乙烯。
在本实施例中,在所述量子点墨水中,所述量子点的含量为20-30wt%,所述散射粒子的含量为1-10wt%,所述极性溶剂的含量为20-30wt%,剩余为所述主体材料,当然,也可为其他比例,以能获得稳定分散的量子点墨水即可。
在上述实施例提供的量子点墨水中,通过添加散射例子,可有效由该量子点制备的薄膜的亮度转换率,但由于散射粒子通常为二氧化硅或二氧化钛等极性粒子,二量子点墨水通常为非极性,这边导致散射粒子在体系中分散不稳定,从而导致打印墨水时堵塞打印喷嘴的问题,而通过将散射例子以及量子点分散于极性溶剂中,即可使得散射粒子稳定地分散而避免前述问题。
本发明的另一实施例还提供了一种全彩膜片的制备方法,其步骤请参阅图1与图2A-2C,具体地,所述制备方法包括如下步骤:
S10:将散射粒子,极性溶剂以及主体材料混合并分散均匀,制得空白墨水;
S20:向所述空白墨水中加入红色量子点并分散均匀,制得红色量子点墨水,以及向所述空白墨水中加入绿色量子点并分散均匀,制得绿色量子点墨水;
S30:提供一基板10,在所述基板10上形成彩色滤光膜层20,所述彩色滤光膜层包括多个红色色阻202、多个绿色色阻203、多个蓝色色阻204,以及形成于所述多个红色色阻202、多个绿色色阻203与多个蓝色色阻204之间的第一黑色矩阵201,即形成如图2A所示的结构;
S40:在所述彩色滤光膜层20上形成缓冲层30,即形成如图2B所示的结构,所述缓冲层30通常为单层的氮化硅或氧化硅薄膜,或氮化硅与氧化硅叠层膜层,用于保护彩色滤光膜20防止其与上层膜层接触反应;
S50:在所述缓冲层30上形成与所述第一黑色矩阵201对应的第二黑色矩阵401,用于防止不同像素间光色串扰。所述第二黑色矩阵401之间有空隙,即为用于形成量子点薄膜的像素区域;以及
S60:在所述第二黑色矩阵401的间隙中,依次在所述多个红色色阻202的对应区域滴加红色量子点墨水,在所述多个绿色色阻203的对应区域滴加绿色量子点墨水,以及在所述多个蓝色色阻204的对应区域滴加空白墨水,并加热去除所述极性溶剂形成量子点色转换层40,包括红光色转换薄膜402,绿光色转换薄膜403,以及透明薄膜404,即形成如图2C所示的结构。
在通过上述实施例中的制备方法制备而得的彩色膜片中,量子点和散射粒子会均匀的分散在膜层中,因为粒子间的范德华力,量子点材料也能部分吸附到散射粒子上。当蓝色背光照射到散射粒子上时会发生折射现象,从而提高了背光在量子点膜层中的光程。因为光程的增加,使得背光被量子点材料吸收的量也会随之增加,最终达到提高所得的彩色膜片的亮度转换率。
另外,在所制得的彩色膜片中,增加了彩色滤光膜层,一方面可以滤掉绿/红像素中未被量子点吸收的蓝色背光提高显色的色域,另一方面,还可过滤环境光从而减少环境光对量子点的激发来提高对比度。
进一步地,在步骤S10中,所述散射粒子选自二氧化硅以及二氧化钛中的至少一者,所述极性溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四甲基脲、二甲亚砜、磷酸三甲酯以及N-甲基吡咯烷酮中的至少一者,所述主体材料是为透明的高分子材料。
进一步地,在步骤S20中,在所述红色量子点墨水中,所述红色量子点的含量为20-30wt%,以及在所述绿色量子点墨水中,所述绿色量子点的含量为20-30wt%。
进一步地,在步骤S60中,所述红色量子点墨水、绿色量子点墨水以及空白墨水的滴加工艺为喷墨打印工艺。由于通过极性溶剂,稳定分散了所述散射粒子,大大降低了打印喷头因量子点墨水不稳定而发生堵塞的风险。
本发明的另一实施例还提供了一种显示面板,所述显示面板包括:
阵列驱动层,通常包括阵列排布的多个薄膜晶体管,作为显示面板的各个像素开关;
蓝光发光层,通过电致发光原理作为蓝色背光,通常可为蓝光OLED发光层,蓝光Mini LED发光层或蓝光Micro LED发光层。
以及前述的全彩膜片的制备方法制备而得的全彩膜片,通过光致发光实现全彩显色。
其中,沿所述显示面板的出光方向,所述彩色滤光膜层在所述量子点色转换层之上,即蓝光发光层发出的蓝色背光先穿透量子点色转换层,再穿透所述彩色滤光膜层后射出。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见上文针对其他实施例的详细描述,此处不再赘述。
以上对本发明实施例所提供的一种量子点墨水、全彩膜片的制备方法以及显示面板进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (16)

  1. 一种量子点墨水,其中,所述量子点墨水包括量子点,散射粒子,极性溶剂以及作为主体材料的透明高分子材料。
  2. 如权利要求1所述的量子点墨水,其中,所述散射粒子选自二氧化硅以及二氧化钛中的至少一者。
  3. 如权利要求1所述的量子点墨水,其中,所述极性溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四甲基脲、二甲亚砜、磷酸三甲酯以及N-甲基吡咯烷酮中的至少一者。
  4. 如权利要求1所述的量子点墨水,其中,所述透明高分子材料为可在极性溶剂中溶解的透明聚合物。
  5. 如权利要求1所述的量子点墨水,其中,在所述量子点墨水中,所述量子点的含量为20-30wt%,所述散射粒子的含量为1-10wt%,所述极性溶剂的含量为20-30wt%,剩余为所述透明高分子材料。
  6. 如权利要求4所述的量子点墨水,其中,所述透明高分子材料包括聚偏氟乙烯。
  7. 如权利要求1所述的量子点墨水,其中,所述量子点选自蓝光量子点,红光量子点以及绿光量子点中的一者。
  8. 一种全彩膜片的制备方法,其中,所述制备方法包括如下步骤:
    S10:将散射粒子,极性溶剂以及透明高分子材料混合并分散均匀,制得空白墨水;
    S20:向所述空白墨水中加入红色量子点并分散均匀,制得红色量子点墨水,以及向所述空白墨水中加入绿色量子点并分散均匀,制得绿色量子点墨水;
    S30:提供一基板,在所述基板上形成彩色滤光膜层,所述彩色滤光膜层包括多个红色色阻、多个蓝色色阻、多个绿色色阻以及形成于所述多个红色色阻、多个蓝色色阻与多个绿色色阻之间的多个第一黑色矩阵;
    S40:在所述彩色滤光膜层上形成缓冲层;
    S50:在所述缓冲层上形成与所述多个第一黑色矩阵对应的多个第二黑色矩阵;以及
    S60:在所述多个第二黑色矩阵的间隙中,依次在所述多个红色色阻的对应区域滴加红色量子点墨水,在所述多个绿色色阻的对应区域滴加绿色量子点墨水,以及在所述多个蓝色色阻的对应区域滴加空白墨水,并加热去除所述极性溶剂形成量子点色转换层。
  9. 如权利要求8所述的全彩膜片的制备方法,其中,在步骤S10中,所述散射粒子选自二氧化硅以及二氧化钛中的至少一者,所述极性溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四甲基脲、二甲亚砜、磷酸三甲酯以及N-甲基吡咯烷酮中的至少一者,所述透明高分子材料为可在极性溶剂中溶解的透明聚合物。
  10. 如权利要求8所述的全彩膜片的制备方法,其中,在步骤S20中,在所述红色量子点墨水中,所述红色量子点的含量为20-30wt%,以及在所述绿色量子点墨水中,所述绿色量子点的含量为20-30wt%。
  11. 如权利要求8所述的全彩膜片的制备方法,其中,在步骤S40中,所述缓冲层为单层的氮化硅或氧化硅薄膜,或氮化硅与氧化硅叠层膜层。
  12. 如权利要求8所述的全彩膜片的制备方法,其中,在步骤S60中,所述红色量子点墨水、绿色量子点墨水以及空白墨水的滴加工艺为喷墨打印工艺。
  13. 一种显示面板,其中,所述显示面板包括阵列驱动层,蓝光发光层以及由权利要求8所述的全彩膜片的制备方法制备而得的全彩膜片。
  14. 如权利要求13所述的显示面板,其中,沿所述显示面板的出光方向,所述彩色滤光膜层在所述量子点色转换层之上。
  15. 如权利要求13所述的显示面板,其中,所述阵列驱动层包括阵列排布的多个薄膜晶体管。
  16. 如权利要求13所述的显示面板,其中,所述蓝光发光层为蓝色OLED发光层。
PCT/CN2020/101006 2020-06-04 2020-07-09 量子点墨水、全彩膜片的制备方法以及显示面板 WO2021243801A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/970,366 US11659754B2 (en) 2020-06-04 2020-07-09 Quantum dot ink with colored quantum dots

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010500173.5 2020-06-04
CN202010500173.5A CN111704827A (zh) 2020-06-04 2020-06-04 量子点墨水、全彩膜片的制备方法以及显示面板

Publications (1)

Publication Number Publication Date
WO2021243801A1 true WO2021243801A1 (zh) 2021-12-09

Family

ID=72539399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101006 WO2021243801A1 (zh) 2020-06-04 2020-07-09 量子点墨水、全彩膜片的制备方法以及显示面板

Country Status (2)

Country Link
CN (1) CN111704827A (zh)
WO (1) WO2021243801A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420766A (zh) * 2020-11-13 2021-02-26 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN112876906A (zh) * 2021-01-12 2021-06-01 深圳市华星光电半导体显示技术有限公司 量子点散射浆料、彩膜基板及其制备方法、显示装置
CN112802948A (zh) * 2021-03-30 2021-05-14 北京芯海视界三维科技有限公司 显示器件及显示器件的制作方法
CN113745292B (zh) * 2021-08-27 2023-06-02 深圳市华星光电半导体显示技术有限公司 量子点彩膜基板、其制造方法、以及量子点显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106009930A (zh) * 2016-04-25 2016-10-12 苏州星烁纳米科技有限公司 量子点墨水
CN106526962A (zh) * 2016-11-28 2017-03-22 纳晶科技股份有限公司 光转换膜片、其制备方法及显示设备
KR20180070991A (ko) * 2016-12-19 2018-06-27 국민대학교산학협력단 양자점 잉크 제조방법, 이로부터 제조된 양자점 잉크 및 이를 포함하는 태양전지
CN109370312A (zh) * 2018-08-09 2019-02-22 苏州佳生物科技有限公司 一种量子点墨水及其应用
CN109535836A (zh) * 2018-10-16 2019-03-29 苏州星烁纳米科技有限公司 量子点墨水及量子点彩膜
CN111063708A (zh) * 2019-11-15 2020-04-24 深圳市华星光电半导体显示技术有限公司 彩膜基板及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120113671A1 (en) * 2010-08-11 2012-05-10 Sridhar Sadasivan Quantum dot based lighting
CN107674500A (zh) * 2017-11-17 2018-02-09 张家港海纳至精新材料科技有限公司 一种油墨及其制备方法
CN110459560B (zh) * 2019-07-26 2021-09-03 深圳市华星光电半导体显示技术有限公司 一种量子点显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106009930A (zh) * 2016-04-25 2016-10-12 苏州星烁纳米科技有限公司 量子点墨水
CN106526962A (zh) * 2016-11-28 2017-03-22 纳晶科技股份有限公司 光转换膜片、其制备方法及显示设备
KR20180070991A (ko) * 2016-12-19 2018-06-27 국민대학교산학협력단 양자점 잉크 제조방법, 이로부터 제조된 양자점 잉크 및 이를 포함하는 태양전지
CN109370312A (zh) * 2018-08-09 2019-02-22 苏州佳生物科技有限公司 一种量子点墨水及其应用
CN109535836A (zh) * 2018-10-16 2019-03-29 苏州星烁纳米科技有限公司 量子点墨水及量子点彩膜
CN111063708A (zh) * 2019-11-15 2020-04-24 深圳市华星光电半导体显示技术有限公司 彩膜基板及其制备方法

Also Published As

Publication number Publication date
CN111704827A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2021243801A1 (zh) 量子点墨水、全彩膜片的制备方法以及显示面板
WO2017092131A1 (zh) 彩膜基板的制作方法及液晶显示装置
US9897912B2 (en) Color filter film manufacturing method and color filter film
US20060132666A1 (en) Substrate for display device and manufacturing method thereof
WO2010013637A1 (ja) 色変換方式有機elディスプレイ
CN104465671A (zh) 一种显示基板及其制作方法、显示装置
KR100620483B1 (ko) 액체 토출 장치 및 방법과 표시 장치용 패널의 제조 장치및 방법
CN111028704A (zh) 一种显示面板及其制备方法
WO2021093028A1 (zh) 彩膜基板及其制备方法
WO2021174983A1 (zh) 显示面板、其制作方法及显示装置
KR100738103B1 (ko) 컬러 필터의 제조방법
JP6304031B2 (ja) インクジェット用インク及びカラーフィルタとその製造方法及びカラー反射型ディスプレイとその製造方法
US11659754B2 (en) Quantum dot ink with colored quantum dots
WO2021088144A1 (zh) Oled背板的制备方法及oled背板
KR100738106B1 (ko) 컬러 필터의 제조장치
Funamoto et al. 27.5: Late News Paper: A 130‐ppi, Full‐Color Polymer OLED Display Fabricated Using an Ink‐jet Process
CN204257657U (zh) 一种显示基板及显示装置
JP2007095630A (ja) インキ吐出印刷物
JP4893017B2 (ja) 印刷物の製造方法、カラーフィルタの製造方法及びパターン形成方法
WO2022000692A1 (zh) 量子点彩膜基板及其制备方法、显示面板
US20220003903A1 (en) Quantum dot color filter substrate, manufacturing method thereof, and display panel
GAO et al. P‐86: Ink‐Jet Printed Stable Full‐Color Perovskite and Quantum Rod Color Filter
KR100944884B1 (ko) 비충격 프린팅을 위한 노즐 및 이를 사용한 인쇄방법
CN112876906A (zh) 量子点散射浆料、彩膜基板及其制备方法、显示装置
US20090017388A1 (en) Substrate structure for color filter and color filter having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938674

Country of ref document: EP

Kind code of ref document: A1