WO2021174983A1 - 显示面板、其制作方法及显示装置 - Google Patents

显示面板、其制作方法及显示装置 Download PDF

Info

Publication number
WO2021174983A1
WO2021174983A1 PCT/CN2020/141039 CN2020141039W WO2021174983A1 WO 2021174983 A1 WO2021174983 A1 WO 2021174983A1 CN 2020141039 W CN2020141039 W CN 2020141039W WO 2021174983 A1 WO2021174983 A1 WO 2021174983A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel defining
defining layer
display panel
pixel
base substrate
Prior art date
Application number
PCT/CN2020/141039
Other languages
English (en)
French (fr)
Inventor
侯文军
施槐庭
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/418,156 priority Critical patent/US20230133156A1/en
Publication of WO2021174983A1 publication Critical patent/WO2021174983A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display panel, a manufacturing method thereof, and a display device.
  • organic electroluminescent display devices Compared with liquid crystal display (LCD), organic electroluminescent display devices (Organic Light-Emitting Diode, OLED) have the advantages of self-luminescence, fast response, wide viewing angle, high brightness, bright colors, light and thin. A generation of display technology.
  • LCD liquid crystal display
  • OLED Organic Light-Emitting Diode
  • the thin film deposition methods of organic electroluminescence display devices mainly include vacuum evaporation and solution process.
  • the solution process includes spin coating, inkjet printing, nozzle coating, etc., which are suitable for polymer materials and soluble small molecules.
  • the solution can be accurately jetted into the pixel-defined area to form an organic film.
  • the aspect ratio of the pixel-defined area will cause the evaporation rate of the solvent to be different ,
  • the thickness of the formed organic film is poor, thereby affecting the luminous quality of the organic electroluminescence display device.
  • the display panel provided by the implementation of the present disclosure includes:
  • a base substrate there are a plurality of pixel units arranged in an array on the base substrate;
  • the pixel defining layer is located on the base substrate; the pixel defining layer includes: a plurality of openings and at least one communicating groove; the plurality of openings are respectively located in each of the pixel units;
  • the communicating groove connects the openings corresponding to the two pixel units of the same color.
  • the shape of the opening is rectangular, and the opening includes a first edge extending in a first direction and a second edge extending in a second direction.
  • the length is greater than the length of the second edge;
  • the communicating groove connects two adjacent first edges of the two adjacent openings.
  • a plurality of the pixel units are arranged in an array along the first direction and the second direction;
  • the two adjacent pixel units in the first direction display different colors; the two adjacent pixel units in the second direction display different colors.
  • two pixel units adjacent in the third direction display the same color
  • the third direction is a direction different from the first direction and the second direction.
  • the width of the communicating groove in the first direction is consistent with the length of the first edge.
  • it further includes: an organic light-emitting functional layer located in the opening;
  • the surface of the organic light-emitting function layer facing away from the base substrate is the first surface, and the surface of the pixel defining layer close to the base substrate is the second surface;
  • the distance between the first surface and the second surface is smaller than the distance between the bottom surface of the communicating groove and the second surface.
  • the pixel defining layer includes: a first pixel defining structure located on the bottom surface of the communicating groove on the side close to the base substrate, and except for each of the first pixel defining structures The second pixel outside the structure defines the structure;
  • the second pixel defining structure is an integral structure.
  • the first pixel defining structure is composed of a lyophilic material
  • the second pixel defining structure is made of lyophobic material.
  • the material of the first pixel defining structure includes silicon dioxide, silicon nitride, silicon oxynitride, polymethylmethacrylate or polyimide;
  • the material of the second pixel defining structure includes fluorinated polymethyl methacrylate or fluorinated polyimide.
  • the pixel defining layer is an integral structure
  • the bottom surface of the communicating groove is lyophilic
  • the surface except for the communication grooves has liquid repellency.
  • the thickness of the pixel defining layer at positions other than the openings and the communicating grooves is in the range of 0.5 ⁇ m to 3 ⁇ m.
  • the distance from the bottom surface of the communication groove to the surface of the pixel defining layer on the side close to the base substrate is in the range of 0.1 ⁇ m to 1 ⁇ m.
  • an embodiment of the present disclosure also provides a manufacturing method of the above-mentioned display panel, which includes:
  • the organic light-emitting functional layer is formed by an inkjet printing process.
  • forming a pixel defining layer on a base substrate and patterning the pixel defining layer to form a plurality of openings and a plurality of communication grooves includes:
  • first pixel defining layer Forming a first pixel defining layer on the base substrate using a lyophilic material, and patterning the first pixel defining layer to obtain a plurality of first pixel defining structures;
  • a second pixel defining layer is formed on the first pixel defining layer by using a lyophobic material, and the second pixel defining layer is patterned to obtain a second pixel defining structure; or,
  • a lyophilic material is used to form a first pixel defining layer on the second pixel defining layer, and the first pixel defining layer is patterned to obtain a plurality of first pixel defining structures.
  • forming a pixel defining layer on a base substrate and patterning the pixel defining layer to form a plurality of openings and a plurality of communication grooves includes:
  • the pixel defining layer is patterned by using a halftone mask to obtain each of the openings and the lyophilic communication grooves on the bottom surface.
  • an embodiment of the present disclosure also provides a display device, which includes: the above-mentioned display panel.
  • FIG. 1 is a schematic diagram of a planar structure of a display panel provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic cross-sectional view of Fig. 1 at the dotted line L1;
  • Fig. 3 is a schematic cross-sectional view of Fig. 1 at the dotted line L2;
  • Fig. 4 is a schematic cross-sectional view of Fig. 1 at the dotted line L3;
  • FIG. 5 is a schematic diagram of a planar structure of another display panel provided by an embodiment of the present disclosure.
  • Fig. 6 is a schematic cross-sectional view of Fig. 5 at the dotted line L1;
  • Fig. 7 is a schematic cross-sectional view of Fig. 5 at the dotted line L3;
  • FIG. 8 is a flowchart of a manufacturing method of the above-mentioned display panel provided by an embodiment of the disclosure.
  • 9 to 19 are schematic diagrams of the structure corresponding to each step in the manufacturing method provided by the embodiments of the disclosure.
  • embodiments of the present invention provide a display panel, a manufacturing method thereof, and a display device.
  • FIG. 1 is a schematic plan view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view of FIG. 1 at the dotted line L1.
  • Fig. 4 is a schematic cross-sectional view of Fig. 1 at the dotted line L3, as shown in Figs. 1 to 4, including:
  • a base substrate 10 there are a plurality of pixel units P arranged in an array on the base substrate 10;
  • the pixel defining layer 11 is located on the base substrate 10; the pixel defining layer 11 includes: a plurality of openings U and at least one communicating groove T; the plurality of openings U are respectively located in each pixel unit P;
  • the communicating groove T connects the openings U corresponding to the two pixel units P of the same color.
  • the above-mentioned display panel connects the corresponding openings of two pixel units of the same color by providing communication grooves in the pixel defining layer, thereby enhancing the fluidity of ink droplets and improving the organic content formed by the inkjet printing process.
  • the thickness uniformity of the film improves the luminescence quality of the organic electroluminescence display device.
  • the above-mentioned display panel provided by the embodiment of the present disclosure may be an organic electroluminescence display panel.
  • the above-mentioned display panel may further include: a plurality of first electrodes 12, a second electrode 13, and an organic light emitting device located between the first electrode 12 and the second electrode 13 Function layer 14.
  • the first electrode 12 is an anode
  • the second electrode 13 is a cathode; or, the first electrode 12 is a cathode, and the second electrode 13 is an anode, which is not limited here.
  • the above-mentioned pixel defining layer 11 includes a plurality of openings U.
  • the openings U are used to define the opening area of the pixel unit P.
  • the plurality of openings U correspond to each first electrode 12 one by one, and the corresponding first electrode is exposed through each opening U. 12, so that the organic light-emitting function layer 14 can be in contact with the first electrode 12, so that the first electrode 12 provides the organic light-emitting function layer 14 with carriers.
  • a driving circuit may also be included between the first electrode 12 and the base substrate 10, and the driving circuit is electrically connected to each first electrode 12 to provide a driving signal to each first electrode 12 to realize image display.
  • the organic light-emitting functional layer 14 may include a light-emitting layer 141, a hole injection layer 142, a hole transport layer 143, an electron injection layer 144, and an electron transport layer 155 and other film layers.
  • the organic light-emitting functional layer 14 of the pixel unit P of the same color can be made of the same material. Therefore, the openings U corresponding to the two pixel units P of the same color are connected through the communication groove T, and the inkjet printing process is adopted.
  • the organic light-emitting functional layer 14 is made, ink droplets can flow in the communicating groove T and the opening U connected to the communicating groove T, which increases the flow range of ink droplets, thereby enhancing the fluidity of ink droplets and improving the formed organic light-emitting functional layer The uniformity of 14.
  • it is easier to obtain a uniform film through drying thereby also reducing the requirement for the air extraction rate in the drying process.
  • the alignment accuracy of inkjet printing equipment can also be reduced, thereby reducing equipment costs.
  • the above-mentioned communicating groove T may connect two adjacent openings U to avoid bending of the communicating groove T in order to avoid other pixel units P, and to ensure better fluidity of ink droplets in the communicating groove T.
  • the shape of the opening U is rectangular, and the opening U includes a first edge u1 extending along the first direction S1 and S2 extends a second edge u2, the length of the first edge u1 is greater than the length of the second edge u2;
  • the communicating groove T connects two first edges u1 close to each other in two adjacent openings U.
  • the communicating groove T connects two first edges u1 close to each other in two adjacent openings U, so that the flow range of ink droplets in the second direction S2 can be increased, and the composition of the second direction S2 can be increased. Film uniformity.
  • the shape of the above-mentioned opening U is a rectangle, which can be a standard rectangle or a corner-cut rectangle, which is not limited here.
  • a plurality of pixel units P are arranged in an array along the first direction S1 and the second direction S2;
  • the two adjacent pixel units P in the first direction S1 display different colors; the two adjacent pixel units P in the second direction S2 display different colors.
  • the two adjacent pixel units P display different colors. Therefore, the two openings U connected by the communication groove T are located in different rows and in different columns.
  • the pixel units P displaying different colors can be alternately arranged in a specific order in the first direction S1 (or the second direction S2), and the pixel units P are divided into red (R), green (G), and blue (B).
  • the three colors of color can be arranged alternately in the order of RBG in the first direction S1, and in the order of RGB in the second direction S2.
  • other arrangements can also be used, which are not limited here.
  • two adjacent pixel units P along the third direction S3 display the same color
  • the third direction P is a direction different from the first direction S1 and the second direction S2.
  • the third direction S3 may be the diagonal direction in which the pixel units P are arranged, and the two openings U connected by the communication groove T may correspond to two adjacent pixel units P on the third direction S3. Therefore, By providing the communication groove T, the flow range of ink droplets in the second direction S2 can be increased, and the film formation uniformity in the second direction S2 can be improved.
  • a plurality of communication grooves T can be provided to connect the openings U corresponding to the plurality of pixel units P arranged in the third direction S3, thereby further increasing the flow range of ink droplets.
  • ink droplets can flow in the channels formed by multiple openings U and multiple communicating grooves T until the thickness of the ink droplets is approximately uniform, which improves the film uniformity of the organic light-emitting functional layer and reduces
  • the control accuracy of the difference in the volume of the nozzle piece can be set in a row of pixel units P on the third direction S3 in actual applications.
  • the number of interconnected openings U is not limited here.
  • the requirements on the inkjet printing device can also be reduced.
  • the ink droplets can flow to the other openings U, thereby reducing the accuracy of the inkjet printing device, and when the nozzle of the inkjet printing device is clogged
  • the ink droplets are evenly distributed in each opening U, thereby reducing the impact of nozzle clogging on each pixel unit P. Therefore, when a limited number of nozzles in the inkjet printing device are clogged, the The overall effect of the inkjet printing process is relatively small, thereby increasing the process window of the inkjet printing process.
  • blue pixel units have a shorter lifespan.
  • the size of the blue pixel unit is larger than the size of the red and green pixel units, and the size of the red pixel unit is generally smaller than the size of the green pixel unit. Therefore, in the embodiments of the present disclosure, only Each red pixel unit is connected through a connecting groove, or the red and green pixel units may be connected through a connecting groove respectively, which can be set according to actual needs, and there is no limitation here.
  • the width D of the communicating groove T in the first direction S1 is the same as the length of the first edge u1.
  • the edge of is aligned with the first edge u1 of the opening U, thereby further improving the fluidity of the ink droplet in the second direction S2.
  • the above-mentioned display panel provided by the embodiment of the present disclosure may further include: an organic light-emitting function layer 14 located in the opening U;
  • the surface of the organic light-emitting function layer 14 on the side facing away from the base substrate 10 is the first surface W1, and the surface of the pixel defining layer 11 on the side close to the base substrate 10 is the second surface W2;
  • the distance a between the first surface W1 and the second surface W2 is smaller than the distance h between the bottom surface W3 of the communication groove T and the second surface.
  • the bottom surface W3 of the communicating groove T is the bottom of the inner wall of the communicating groove T.
  • the organic light-emitting functional layer 14 is only located in the corresponding opening U, so that the carriers in the light-emitting functional layer 14 can be prevented from flowing into other adjacent pixel units P, and the mutual influence between adjacent pixel units P can be avoided. , Which can improve the display effect of the display panel.
  • the ink droplets dropped into the opening U in the inkjet printing process are liquid, and the ink droplets can flow in the communicating groove T and the opening U connected to the communicating groove T, and pass through the subsequent After the drying process, the solvent in the ink droplets will evaporate, and the organic light-emitting functional layer 14 formed will stay in the opening U.
  • the above-mentioned pixel defining layer 11 may include: A pixel defining structure 111, and a second pixel defining structure 112 except for each first pixel defining structure 111;
  • the second pixel defining structure 112 is an integral structure.
  • the pixel defining layer 11 is configured to include the first pixel defining structure 111 and the second pixel defining structure 112, so that two patterning processes can be used to fabricate separately For the first pixel defining structure 111 and the second pixel defining structure 112, the patterning process has low requirements on the mask, and the process is relatively simple.
  • the above-mentioned first pixel defining structure 111 is made of lyophilic material
  • the second pixel defining structure 112 is made of liquid repellent material.
  • Using lyophilic materials to make the first pixel defining structure 111 can enable ink droplets to flow in the communicating groove T, and using lyophobic materials to make the second pixel defining structure 112 can prevent ink droplets from flowing to the opening U and the communicating groove T Outside the location.
  • the material of the above-mentioned first pixel defining structure includes silicon dioxide, silicon nitride, silicon oxynitride, polymethylmethacrylate or polyimide;
  • the material of the second pixel defining structure includes fluorinated polymethyl methacrylate or fluorinated polyimide.
  • photoresist for example, positive photoresist
  • photoresist materials can be used to fabricate the first pixel defining structure, so that the first pixel defining structure can be obtained through a photolithography process, and the manufacturing process is simple, for example, Using polymethyl methacrylate or polyimide material, similarly, photoresist can also be used to make the second pixel defining structure, for example, fluorinated polymethyl methacrylate or fluorinated polyimide can be used, or Other materials may also be used to fabricate the first pixel defining structure and the second pixel defining structure, and the materials of the first pixel defining structure and the second pixel defining structure are not limited here.
  • a dry etching process may be used to obtain the pattern of the first pixel structure.
  • the above-mentioned first pixel structure may also be composed of a plurality of laminated sub-layers, and the material of each sub-layer may be the same or different.
  • the above-mentioned second pixel structure may also be composed of a plurality of laminated sub-layers.
  • the sub-membrane layer is constituted, and the material of each sub-membrane layer can be the same or different.
  • FIG. 5 is another schematic diagram of the planar structure of the display panel provided by the embodiments of the present disclosure, and the cross-section of the schematic diagram of the planar structure shown in FIG.
  • the cross-sectional view at the dotted line L2 may be as shown in FIG. 3
  • the cross-sectional view at the dotted line L3 may be as shown in FIG.
  • the bottom surface of the communicating groove T is lyophilic
  • the surface except for the communication grooves T has liquid repellency.
  • the bottom surface of the communication groove T is lyophilic, allowing ink droplets to flow in the communication groove T, and the surface of the pixel defining layer 11 on the side facing away from the base substrate 10 has sparse surfaces except for the communication groove T. Liquidity can prevent ink droplets from flowing to positions other than the opening U and the communicating groove T.
  • the above-mentioned pixel defining layer 11 can be fabricated by using a lyophobic material through a patterning process.
  • a positive photoresist material such as fluorinated polymethyl methacrylate or fluorinated polyimide can be used, so that The pattern of the pixel defining layer 11 can be obtained only by using a photolithography process. The number of patterning processes is small, and the production cost is saved.
  • fluorinated polyimide is used as an example. The lyophobic fluoride in the imine and the lyophilic polyimide are physically mixed.
  • the fluoride After the fluorinated polyimide is coated on the base substrate, the fluoride has a lower surface energy. During the process of exposure and other processes, fluoride will migrate upward and gather on the surface of the film. Therefore, after the photolithography process is completed, the fluoride accumulated on the surface will be removed at the position of the communicating groove. Therefore, the bottom surface of the communicating groove T is polycarbonate.
  • the imide material that is, after the patterning process, the bottom surface of the communicating groove T changes in performance, making the bottom surface of the communicating groove T lyophilic.
  • the thickness H of the pixel defining layer 11 at positions other than the openings U and the communicating grooves T is in the range of 0.5 ⁇ m to 3 ⁇ m. In the range. Setting the thickness H of the pixel defining layer 11 in the range of 0.5 ⁇ m to 3 ⁇ m can ensure that during the inkjet printing process, ink droplets will not flow to positions other than the opening U and the communicating groove T, and prevent ink droplets from overflowing and affecting the display panel Performance.
  • the distance h between the bottom surface of the communicating groove T and the surface of the pixel defining layer 11 near the base substrate 10 is 0.1 ⁇ m to In this way, during the inkjet printing process, ink droplets can flow in the communicating groove T and the opening U, and after the drying process, the organic light-emitting functional layer 14 formed is only in the opening U, avoiding adjacent The pixel units P influence each other, so that the display effect of the display panel can be improved.
  • the above-mentioned distance h may also be set in the range of 0.5 ⁇ m to 1 ⁇ m, or may also be set to other sizes according to actual conditions, which is not limited here.
  • the communicating groove T does not penetrate the pixel defining layer 11, so that it can cover the first electrode 12 and the signal line in the lower layer, preventing leakage of electricity and affecting the display performance.
  • the embodiments of the present disclosure also provide a method for manufacturing the above-mentioned display panel. Since the principle of the manufacturing method to solve the problem is similar to that of the above-mentioned display panel, the implementation of the manufacturing method can refer to the implementation of the above-mentioned display panel. I won't repeat it here.
  • the manufacturing method of the above-mentioned display panel provided by the embodiment of the present disclosure, as shown in FIG. 8, includes:
  • a plurality of openings and a plurality of communicating grooves are formed.
  • the communicating grooves can connect the corresponding openings of two pixel units of the same color, and are produced by an inkjet printing process.
  • ink droplets can flow in the communicating grooves and openings, which enhances the fluidity of the ink droplets and improves the thickness uniformity of the organic film formed by the inkjet printing process, thereby improving the luminescence of the organic electroluminescent display device quality.
  • step S201 it may further include: forming each film layer of the driving circuit on the base substrate, and forming each first electrode.
  • the foregoing step S201 may include:
  • FIG. 10 is a schematic cross-sectional view of FIG. 9 at the dotted line L1.
  • a lyophilic material is used to form a first pixel defining layer on the base substrate 10, and the first pixel defining layer is patterned Obtain a plurality of first pixel defining structures 111;
  • FIG. 12 is a schematic cross-sectional view of FIG. 11 at the dotted line L1.
  • a second pixel defining layer is formed on the first pixel defining layer with a lyophobic material, and the second pixel defining layer is patterned
  • the second pixel defining structure 112 is obtained by transformation.
  • the first pixel defining structure 111 and the second pixel defining structure 112 are respectively fabricated by using two patterning processes.
  • the patterning process requires the mask Low, the process is relatively simple.
  • the first pixel defining structure 111 can be made of a lyophilic photoresist material
  • the second pixel defining structure 112 can be made of a lyophobic photoresist material, which can be obtained by only a photolithography process.
  • the patterns of the first pixel defining structure and the second pixel defining structure have a simple manufacturing process, which further reduces the process cost.
  • each film layer in the organic light-emitting functional layer 14 is fabricated one by one using an inkjet printing process, and ink drops are dropped into the openings and communicating grooves.
  • the ink drops have relatively high fluidity. The uniformity of the formed organic film layer is better.
  • step S202 it may further include: forming a second electrode 13 to obtain the structure as shown in FIG.
  • the second pixel defining structure may be fabricated first, and then the first pixel defining structure may be fabricated.
  • the manufacturing sequence of the first pixel defining structure and the second pixel defining structure is not limited here.
  • the above step S201 may include:
  • FIG. 15 is a schematic cross-sectional view of FIG. 14 at the dotted line L1.
  • a second pixel defining layer is formed on the base substrate 10 using a liquid repellent material, and the second pixel defining layer is patterned Obtain a second pixel defining structure 112;
  • a lyophilic material is used to form a first pixel defining layer on the second pixel defining layer, and the first pixel defining layer is patterned to obtain a plurality of first pixel defining structures 112, and the structures shown in FIGS. 11 and 12 are obtained .
  • the above step S201 may include:
  • FIG. 17 is a schematic cross-sectional view of FIG. 16 at the dotted line L1. As shown in FIG. 16 and FIG. 17, a pixel defining layer 11 is formed on the base substrate 10 by using a liquid repellent material;
  • the pixel defining layer 11 is patterned by using a halftone mask to obtain the openings U and the lyophilic communication grooves T on the bottom surface, as shown in Figs. 18 and 19, where Fig. 19 is the cross section of Fig. 18 at the dashed line L1 Schematic.
  • a halftone mask is used to pattern the pixel defining layer 11, and since the lyophobic material is generally blended, fluorinated polyimide is used as an example.
  • the liquid polyimide is physically mixed.
  • the fluoride After the fluorinated polyimide is coated on the base substrate, the fluoride has a lower surface energy. During the process of solvent removal and exposure, the fluoride will The upward migration gathers on the surface of the film layer. Therefore, after the photolithography process is completed, the fluoride accumulated on the surface will be removed at the position of the communicating groove.
  • the bottom surface of the communicating groove T is made of polyimide material, that is, After the patterning process, the bottom surface performance of the communicating groove T changes, making the bottom surface of the communicating groove T lyophilic, so that the opening U and each communicating groove T can be obtained through a patterning process, reducing the patterning process and saving production costs.
  • a positive photoresist material such as fluorinated polymethyl methacrylate or fluorinated polyimide is used to fabricate the above-mentioned pixel defining layer, so that the pattern of the pixel defining layer 11 can be obtained by using only a photolithography process, which further reduces the number of process steps. , Reduce production costs.
  • embodiments of the present disclosure also provide a display device, including the above-mentioned display panel.
  • the display device can be applied to mobile phones, tablet computers, televisions, monitors, notebook computers, digital photo frames, navigators, etc. Functional products or components. Since the principle of solving the problem of the display device is similar to the above-mentioned display panel, the implementation of the display device can refer to the implementation of the above-mentioned display panel, and the repetition will not be repeated.
  • the above-mentioned display panel, its manufacturing method and the display device provided by the embodiments of the present disclosure connect the corresponding openings of two pixel units of the same color by providing communication grooves in the pixel defining layer, thereby enhancing the fluidity of ink droplets to improve
  • the thickness uniformity of the organic thin film formed by the inkjet printing process improves the light-emitting quality of the organic electroluminescence display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板、其制作方法及显示装置,该显示面板,包括:衬底基板(10);衬底基板(10)之上具有多个像素单元(P);像素界定层(11),位于衬底基板(10)之上;像素界定层(11),包括:分别位于各像素单元(P)内的多个开口(U),以及多个连通槽(T);连通槽(T)连接两个相同颜色的像素单元对应的开口。通过在像素界定层(11)中设置连通槽,将两个相同颜色的像素单元对应的开口连通,从而增强墨滴的流动性,以提高喷墨打印工艺形成的有机薄膜的厚度均一性,从而提高有机电致发光显示器件的发光质量。

Description

显示面板、其制作方法及显示装置 技术领域
本公开涉及显示技术领域,尤指一种显示面板、其制作方法及显示装置。
背景技术
有机电致发光显示器件(OrganicLight-Emitting Diode,OLED)相对于液晶显示器件(Liquid Crystal Display,LCD)具有自发光、反应快、视角广、亮度高、色彩艳、轻薄等优点,被认为是下一代显示技术。
有机电致发光显示器件的薄膜沉积方法主要有真空蒸镀和溶液制程两种,其中,溶液制程包括旋涂、喷墨打印、喷嘴涂覆法等,适用于聚合物材料和可溶性小分子,其特点设备成本低,在大规模、大尺寸生产上优势突出。
采用喷墨打印工艺,能够将溶液精准的喷墨到像素限定区中,形成有机薄膜,但是,由于像素限定区的尺寸较小,像素限定区的长宽比会导致溶剂的挥发速率具有差异性,使形成的有机薄膜厚度均一较差,从而影响有机电致发光显示器件的发光质量。
发明内容
本公开实施提供的显示面板,其中,包括:
衬底基板;所述衬底基板之上具有多个呈阵列排布的像素单元;
像素界定层,位于所述衬底基板之上;所述像素界定层,包括:多个开口以及至少一个连通槽;多个所述开口分别位于各所述像素单元内;
所述连通槽连接两个相同颜色的所述像素单元对应的所述开口。
可选地,在本公开实施例中,所述开口的形状为矩形,且所述开口包括沿第一方向延伸的第一边缘及沿第二方向延伸的第二边缘,所述第一边缘的长度大于所述第二边缘的长度;
所述连通槽连接相邻的两个所述开口中互相接近的两个所述第一边缘。
可选地,在本公开实施例中,多个所述像素单元沿所述第一方向和所述第二方向呈阵列排布;
在所述第一方向上相邻的两个所述像素单元显示的颜色不同;在所述第二方向上相邻的两个所述像素单元显示的颜色不同。
可选地,在本公开实施例中,沿第三方向上相邻的两个像素单元显示的颜色相同;
所述第三方向为不同于所述第一方向和所述第二方向的方向。
可选地,在本公开实施例中,所述连通槽在所述第一方向上的宽度与所述第一边缘的长度一致。
可选地,在本公开实施例中,还包括:位于所述开口内的有机发光功能层;
所述有机发光功能层背离所述衬底基板一侧的表面为第一表面,所述像素界定层靠近所述衬底基板一侧的表面为第二表面;
所述第一表面与所述第二表面之间的距离,小于所述连通槽的底面与所述第二表面之间的距离。
可选地,在本公开实施例中,所述像素界定层,包括:位于所述连通槽的底面靠近所述衬底基板一侧的第一像素界定结构,以及除各所述第一像素界定结构之外的第二像素界定结构;
所述第二像素界定结构为一体结构。
可选地,在本公开实施例中,所述第一像素界定结构由亲液材料构成;
所述第二像素界定结构由疏液材料构成。
可选地,在本公开实施例中,所述第一像素界定结构的材料包括二氧化硅、氮化硅、氮氧化硅、聚甲基丙烯酸甲酯或聚酰亚胺;
所述第二像素界定结构的材料包括氟化聚甲基丙烯酸甲酯或氟化聚酰亚胺。
可选地,在本公开实施例中,所述像素界定层为一体结构;
所述连通槽的底面具有亲液性;
所述像素界定层背离所述衬底基板一侧的表面中,除各所述连通槽以外的表面具有疏液性。
可选地,在本公开实施例中,所述像素界定层在除各所述开口和各所述连通槽以外的位置的厚度在0.5μm~3μm的范围内。
可选地,在本公开实施例中,所述连通槽的底面至所述像素界定层靠近所述衬底基板一侧的表面之间的距离在0.1μm~1μm的范围内。
相应地,本公开实施例还提供了一种上述显示面板的制作方法,其中,包括:
在衬底基板上形成像素界定层,并对所述像素界定层进行图形化形成多个开口及多个连通槽;
采用喷墨打印工艺形成有机发光功能层。
可选地,在本公开实施例中,所述在衬底基板上形成像素界定层,并对所述像素界定层进行图形化形成多个开口及多个连通槽,包括:
采用亲液材料在所述衬底基板之上形成第一像素界定层,并对所述第一像素界定层进行图形化得到多个第一像素界定结构;
采用疏液材料在所述第一像素界定层之上形成第二像素界定层,并对所述第二像素界定层进行图形化得到第二像素界定结构;或者,
采用疏液材料在所述衬底基板之上形成第二像素界定层,并对所述第二像素界定层进行图形化得到第二像素界定结构;
采用亲液材料在所述第二像素界定层之上形成第一像素界定层,并对所述第一像素界定层进行图形化得到多个第一像素界定结构。
可选地,在本公开实施例中,所述在衬底基板上形成像素界定层,并对所述像素界定层进行图形化形成多个开口及多个连通槽,包括:
采用疏液材料在所述衬底基板之上形成像素界定层;
采用半色调掩膜版对所述像素界定层进行图形化,得到各所述开口以及底面亲液的各连通槽。
相应地,本公开实施例还提供了一种显示装置,其中,包括:上述显示 面板。
附图说明
图1为本公开实施例提供的一种显示面板的平面结构示意图;
图2为图1在虚线L1处的截面示意图;
图3为图1在虚线L2处的截面示意图;
图4为图1在虚线L3处的截面示意图;
图5为本公开实施例提供的另一种显示面板的平面结构示意图;
图6为图5在虚线L1处的截面示意图;
图7为图5在虚线L3处的截面示意图;
图8为本公开实施例提供的上述显示面板的制作方法流程图;
图9至图19为本公开实施例提供的制作方法中各步骤对应的结构示意图。
具体实施方式
针对采用喷墨打印工艺形成的有机薄膜厚度均一性较差的问题,本发明实施例提供了一种显示面板、其制作方法及显示装置。
下面结合附图,对本发明实施例提供的显示面板、其制作方法及显示装置的具体实施方式进行详细地说明。附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本发明内容。
本公开实施例提供了一种显示面板,图1为本公开实施例提供的显示面板的平面结构示意图,图2为图1在虚线L1处的截面示意图,图3为图1在虚线L2处的截面示意图,图4为图1在虚线L3处的截面示意图,如图1至图4所示,包括:
衬底基板10;衬底基板10之上具有多个呈阵列排布的像素单元P;
像素界定层11,位于衬底基板10之上;像素界定层11,包括:多个开口U以及至少一个连通槽T;多个开口U分别位于各像素单元P内;
连通槽T连接两个相同颜色的像素单元P对应的开口U。
本公开实施例提供的上述显示面板,通过在像素界定层中设置连通槽,将两个相同颜色的像素单元对应的开口连通,从而增强墨滴的流动性,以提高喷墨打印工艺形成的有机薄膜的厚度均一性,从而提高有机电致发光显示器件的发光质量。
本公开实施例提供的上述显示面板可以为有机电致发光显示面板。在具体实施时,如图1和图2所示,上述显示面板,还可以包括:多个第一电极12,第二电极13,以及位于第一电极12与第二电极13之间的有机发光功能层14。上述第一电极12为阳极,第二电极13为阴极;或者,上述第一电极12为阴极,上述第二电极13为阳极,此处不做限定。
上述像素界定层11中包括多个开口U,开口U用于限定像素单元P的开口区域,多个开口U分别与各第一电极12一一对应,通过各开口U分别暴露对应的第一电极12,从而使有机发光功能层14可以与第一电极12接触,以使第一电极12向有机发光功能层14提供载流子。此外,第一电极12与衬底基板10之间还可以包括驱动电路,驱动电路与各第一电极12电连接,以向各第一电极12提供驱动信号,实现画面显示。
具体地,有机发光功能层14可以包括发光层141、空穴注入层142、空穴传输层143、电子注入层144及电子传输层155等膜层。
在实际工艺过程中,相同颜色的像素单元P的有机发光功能层14可以采用相同的材料,因而,通过连通槽T连接两个相同颜色的像素单元P对应的开口U,在采用喷墨打印工艺制作有机发光功能层14时,墨滴可以在连通槽T及连通槽T连接的开口U内流动,增大了墨滴流动的范围,从而增强墨滴的流动性,提高形成的有机发光功能层14的均一性。并且,在喷墨打印工艺的干燥工艺过程中,更容易经干燥得到均一性较好的薄膜,从而也降低了干燥工艺中对抽气速率的要求。此外,也可以降低喷墨打印设备的对位精度,从而降低设备成本。
在具体实施时,上述连通槽T可以连接两个相邻的开口U,避免连通槽T为了避开其他像素单元P而弯折,保证墨滴在连通槽T内的流动性较好。
具体地,本公开实施例提供的上述显示面板中,如图1至图4所示,开口U的形状为矩形,且开口U包括沿第一方向S1延伸的第一边缘u1及沿第二方向S2延伸的第二边缘u2,第一边缘u1的长度大于第二边缘u2的长度;
连通槽T连接相邻的两个开口U中互相接近的两个第一边缘u1。
由于开口U的第一边缘u1与第二边缘u2的长度不同,墨滴打印到开口U内,第一方向S1和第二方向S2的挥发速率不同,第二方向S2的挥发速率更大,因而,第二方向S2的成膜均匀性更差。本公开实施例中,连通槽T连接相邻的两个开口U中相互接近的两个第一边缘u1,从而可以增大墨滴在第二方向S2的流动范围,提高第二方向S2的成膜均匀性。
本公开实施例中,上述开口U的形状为矩形,可以为标准矩形,也可以为切角矩形,此处不做限定。
在具体实施时,本公开实施例提供的上述显示面板中,如图1所示,多个像素单元P沿第一方向S1和第二方向S2呈阵列排布;
在第一方向S1上相邻的两个像素单元P显示的颜色不同;在第二方向S2上相邻的两个像素单元P显示的颜色不同。
参照图1,在第一方向S1和第二方向S2上,相邻两个像素单元P显示的颜色不同,因而,上述连通槽T连接的两个开口U位于不同行且位于不同列。具体地,显示不同颜色的像素单元P可以在第一方向S1(或第二方向S2)以特定顺序交替排列,以像素单元P分为红(R)、绿(G)色和蓝(B)色三种颜色为例,在第一方向S1可以按照RBG的顺序交替排列,在第二方向S2可以按照RGB的顺序交替排列,此外,也可以采用其他排列方式,此处不做限定。
进一步地,本公开实施例提供的上述显示面板中,同样参照图1,沿第三方向S3上相邻的两个像素单元P显示的颜色相同;
第三方向P为不同于第一方向S1和第二方向S2的方向。
如图1所示,第三方向S3可以为像素单元P排列的对角线方向,连通槽T连接的两个开口U可以与第三方向S3上相邻的两个像素单元P对应,因而, 通过设置连通槽T,可以增加墨滴在第二方向S2的流动范围,提高第二方向S2的成膜均匀性。
在具体实施时,如图1所示,可以通过设置多个连通槽T,将第三方向S3上排列的多个像素单元P对应的开口U连通,从而进一步增加墨滴的流动范围,在喷墨打印工艺过程中,墨滴可以在多个开口U和多个连通槽T构成的通道内流动,至墨滴的厚度大致均匀,提高了有机发光功能层的成膜均匀性,并且,降低了喷嘴件体积差的控制精度,在实际应用中,可以根据实际情况,来设置在第三方向S3上一排像素单元P中,相互连通的开口U的数量,此处不做限定。
此外,通过设置多个连通槽T,将第三方向S3上的多个像素单元P对应的开口U连通,还可以降低对喷墨打印设备的要求,具体地,在喷墨打印工艺过程中,只要将墨滴滴到其中一个开口U或连通槽T处,墨滴就能流动到其他开口U处,从而可以降低喷墨打印设备的精度,并且,当出现喷墨打印设备的喷头堵塞的情况,由于多个开口U相互连通,墨滴在各开口U中均匀分布,从而降低由于喷头堵塞对各像素单元P产生的影响,因而,当喷墨打印设备中有限个喷头出现堵塞情况时,对喷墨打印工艺的整体效果影响较小,从而增大了喷墨打印工艺的工艺窗口。
具体地,在有机电致发光显示面板中,相比于红色或绿色的像素单元,一般蓝色的像素单元的寿命较短,为了避免蓝色的像素单元因衰减而亮度降低,而影响显示面板的显示效果,通常蓝色的像素单元的尺寸大于红色和绿色的像素单元的尺寸,并且,一般红色的像素单元的尺寸小于绿色像素单元的尺寸,因而,在本公开实施例中,可以仅将各红色的像素单元通过连通槽连通,或者,也可以将红色和绿色的像素单元分别通过连通槽连通,可以根据实际需要进行设置,此处不做限定。
在实际应用中,本公开实施例提供的上述显示面板中,如图1所示,连通槽T在第一方向S1上的宽度D与第一边缘u1的长度一致,因而,可以将连通槽T的边缘与开口U的第一边缘u1对齐,从而,进一步提高墨滴在第二 方向S2上的流动性。
具体地,本公开实施例提供的上述显示面板中,如图1和图4所示,还可以包括:位于开口U内的有机发光功能层14;
有机发光功能层14背离衬底基板10一侧的表面为第一表面W1,像素界定层11靠近衬底基板10一侧的表面为第二表面W2;
第一表面W1与第二表面W2之间的距离a,小于连通槽T的底面W3与第二表面之间的距离h。其中,连通槽T的底面W3为连通槽T内壁的底部。
也就是说,有机发光功能层14仅位于对应的开口U内,从而可以避免发光功能层14中的载流子流入相邻的其他像素单元P中,避免相邻的像素单元P之间相互影响,从而可以提高显示面板的显示效果。另外,需要说明的是,在制作工艺过程中,喷墨打印工艺滴入到开口U内的墨滴为液体,墨滴可以在连通槽T及连通槽T连接的开口U内流动,经过后续的干燥工艺后,墨滴中的溶剂会挥发掉,因而形成的有机发光功能层14会留在开口U内。
在具体实施时,本公开实施例提供的上述显示面板中,如图1至图4所示,上述像素界定层11,可以包括:位于连通槽T的底面靠近衬底基板10一侧的第一像素界定结构111,以及除各第一像素界定结构111之外的第二像素界定结构112;
第二像素界定结构112为一体结构。
由于第一像素界定结构111与第二像素界定结构112的厚度不同,将像素界定层11设置为包括第一像素界定结构111及第二像素界定结构112,从而可以采用两次构图工艺,分别制作第一像素界定结构111和第二像素界定结构112,构图工艺对掩膜版的要求低,工艺较简单。
进一步地,本公开实施例提供的上述显示面板中,参照图1至图4,上述第一像素界定结构111由亲液材料构成;
上述第二像素界定结构112由疏液材料构成。
采用亲液材料制作第一像素界定结构111,可以使墨滴能够在连通槽T内流动,并且,采用疏液材料制作第二像素界定结构112,可以避免墨滴流到开 口U和连通槽T以外的位置。
具体地,本公开实施例提供的上述显示面板中,上述第一像素界定结构的材料包括二氧化硅、氮化硅、氮氧化硅、聚甲基丙烯酸甲酯或聚酰亚胺;
第二像素界定结构的材料包括氟化聚甲基丙烯酸甲酯或氟化聚酰亚胺。
在具体实施时,可以采用光刻胶(例如正性光刻胶)材料,制作上述第一像素界定结构,从而可以通过光刻工艺就可以得到上述第一像素界定结构,制作工艺简单,例如可以采用聚甲基丙烯酸甲酯或聚酰亚胺材料,同理,也可以采用光刻胶制作第二像素界定结构,例如可以采用氟化聚甲基丙烯酸甲酯或氟化聚酰亚胺,或者也可以采用其他材料制作上述第一像素界定结构和第二像素界定结构,此处不对第一像素界定结构和第二像素界定结构的材料进行限定。
采用二氧化硅、氮化硅、氮氧化硅等无机材料制作上述第一像素结构时,可以采用干刻工艺得到第一像素结构的图形。
在实际应用中,上述第一像素结构也可以由多个层叠的子膜层构成,各子膜层的材料可以相同,也可以不同,同样的,上述第二像素结构也可以由多个层叠的子膜层构成,各子膜层的材料可以相同,也可以不同。
在具体实施时,本公开实施例提供的上述显示面板中,图5为本公开实施例提供的显示面板的另一平面结构示意图,图5所示的平面结构示意图在虚线L1处的截面可以如图6所示,在虚线L2处的截面图可以如图3所示,虚线L3处的截面图可以如图7所示,如图3、及图5至图7所示,像素界定层11可以为一体结构;
连通槽T的底面具有亲液性;
像素界定层11背离衬底基板10一侧的表面中,除各连通槽T以外的表面具有疏液性。
上述连通槽T的底面具有亲液性,可以使墨滴能够在连通槽T内流动,并且,上述像素界定层11背离衬底基板10一侧的表面中,除连通槽T以外的表面具有疏液性,可以避免墨滴流到开口U和连通槽T以外的位置。
在实际工艺过程中,可以采用疏液材料通过一次构图工艺制作上述像素界定层11,例如可以采用氟化聚甲基丙烯酸甲酯或氟化聚酰亚胺等正性光刻胶材料,从而可以仅采用光刻工艺就能得到像素界定层11的图形,构图工艺次数少,节约制作成本,并且,由于疏液材料一般为共混的,以氟化聚酰亚胺为例,氟化聚酰亚胺中疏液的氟化物和亲液的聚酰亚胺为物理混合,将氟化聚酰亚胺涂覆到衬底基板之上后,由于氟化物具有较低的表面能,在去溶剂、曝光等工艺过程中,氟化物会向上迁移在膜层的表面聚集,因而在光刻工艺完成后,在连通槽位置处,表面聚集的氟化物会被去除,因而连通槽T的底部表面为聚酰亚胺材料,也就是说,经过构图工艺后连通槽T底面性能发生变化,使连通槽T的底面具有亲液性。
在实际应用中,本公开实施例提供的上述显示面板中,如图1和图4所示,像素界定层11在除各开口U和各连通槽T以外的位置的厚度H在0.5μm~3μm的范围内。将像素界定层11的厚度H设置在0.5μm~3μm的范围内,可以保证喷墨打印工艺过程中,墨滴不会流到开口U及连通槽T以外的位置,避免墨滴溢出影响显示面板的性能。
具体地,本公开实施例提供的上述显示面板中,同样参照图1和图4,连通槽T的底面至像素界定层11靠近衬底基板10一侧的表面之间的距离h在0.1μm~1μm的范围内,这样,在喷墨打印工艺过程中,墨滴可以在连通槽T和开口U内流动,且经干燥工艺后,形成的有机发光功能层14仅在开口U内,避免相邻的像素单元P之间相互影响,从而可以提高显示面板的显示效果。在具体实施时,上述距离h也可以设置在0.5μm~1μm的范围内,或者,也可以根据实际情况,设置为其他尺寸,此处不做限定。
此外,连通槽T并没有贯穿像素界定层11,从而可以起到覆盖下层的第一电极12及信号线的作用,防止出现漏电现象,避免影响显示性能。
基于同一发明构思,本公开实施例还提供了一种上述显示面板的制作方法,由于该制作方法解决问题的原理与上述显示面板相似,因此该制作方法的实施可以参见上述显示面板的实施,重复之处不再赘述。
本公开实施例提供的上述显示面板的制作方法,如图8所示,包括:
S201、在衬底基板上形成像素界定层,并对像素界定层进行图形化形成多个开口及多个连通槽;
S202、采用喷墨打印工艺形成有机发光功能层。
本公开实施例提供的制作方法中,通过对像素界定层进行图形化,形成多个开口及多个连通槽,连通槽可以连接两个相同颜色的像素单元对应的开口,采用喷墨打印工艺制作有机发光功能层时,墨滴可以在连通槽及开口内流动,增强了墨滴的流动性,提高了喷墨打印工艺形成的有机薄膜的厚度均一性,从而提高有机电致发光显示器件的发光质量。
在实际应用中,在上述步骤S201之前,还可以包括:在衬底基板上形成驱动电路的各膜层,以及形成各第一电极。
具体地,本公开实施例提供的上述制作方法中,以图1和图2所示的结构为例,上述步骤S201,可以包括:
图10为图9在虚线L1处的截面示意图,如图9和图10所示,采用亲液材料在衬底基板10之上形成第一像素界定层,并对第一像素界定层进行图形化得到多个第一像素界定结构111;
图12为图11在虚线L1处的截面示意图,如图11和图12所示,采用疏液材料在第一像素界定层之上形成第二像素界定层,并对第二像素界定层进行图形化得到第二像素界定结构112。
由于第一像素界定结构111与第二像素界定结构112的厚度不同,因而,采用两次构图工艺,分别制作第一像素界定结构111和第二像素界定结构112,构图工艺对掩膜版的要求低,工艺较简单。并且,可以采用具有亲液性的光刻胶材料制作上述第一像素界定结构111,采用具有疏液性的光刻胶材料制作上述第二像素界定结构112,可以仅通过光刻工艺就能得到第一像素界定结构和第二像素界定结构的图形,制作工艺简单,进一步降低工艺成本。
如图13所示,上述步骤S202中,采用喷墨打印工艺逐一制作有机发光功能层14中的各膜层,将墨滴滴入到开口及连通槽内,墨滴的流动性较大, 因而形成的有机膜层的均匀性较好。
在上述步骤S202之后,还可以包括:形成第二电极13,以得到如图2所示的结构,一般第二电极13可以为覆盖像素界定层及有机发光功能层的整面结构。
此外,也可以先制作第二像素界定结构,再制作第一像素界定结构,此处不对第一像素界定结构和第二像素界定结构的制作顺序进行限定,具体地,上述步骤S201,可以包括:
图15为图14在虚线L1处的截面示意图,如图14和图15所示,采用疏液材料在衬底基板10之上形成第二像素界定层,并对第二像素界定层进行图形化得到第二像素界定结构112;
采用亲液材料在第二像素界定层之上形成第一像素界定层,并对第一像素界定层进行图形化得到多个第一像素界定结构112,得到如图11和图12所示的结构。
在实际应用中,上述显示面板为如图5所示的一体结构时,可以采用以下方法制作,以图5和图6所示的结构为例,上述步骤S201,可以包括:
图17为图16在虚线L1处的截面示意图,如图16和图17所示,采用疏液材料在衬底基板10之上形成像素界定层11;
采用半色调掩膜版对像素界定层11进行图形化,得到各开口U以及底面亲液的各连通槽T,如图18和图19所示,其中图19为图18在虚线L1处的截面示意图。
采用半色调掩膜版对像素界定层11进行图形化,并且,由于疏液材料一般为共混的,以氟化聚酰亚胺为例,氟化聚酰亚胺中疏液的氟化物和亲液的聚酰亚胺为物理混合,将氟化聚酰亚胺涂覆到衬底基板之上后,由于氟化物具有较低的表面能,在去溶剂、曝光等工艺过程中,氟化物会向上迁移在膜层的表面聚集,因而在光刻工艺完成后,在连通槽位置处,表面聚集的氟化物会被去除,因而连通槽T的底部表面为聚酰亚胺材料,也就是说,经过构图工艺后连通槽T底面性能发生变化,使连通槽T的底面具有亲液性,从而 可以通过一次构图工艺得到开口U和各连通槽T,减少构图工艺,节约制作成本,另外,可以采用氟化聚甲基丙烯酸甲酯或氟化聚酰亚胺等正性光刻胶材料,制作上述像素界定层,从而可以仅采用光刻工艺就能得到像素界定层11的图形,进一步减少工艺步骤,降低制作成本。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括上述显示面板,该显示装置可以应用于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。由于该显示装置解决问题的原理与上述显示面板相似,因此该显示装置的实施可以参见上述显示面板的实施,重复之处不再赘述。
本公开实施例提供的上述显示面板、其制作方法及显示装置,通过在像素界定层中设置连通槽,将两个相同颜色的像素单元对应的开口连通,从而增强墨滴的流动性,以提高喷墨打印工艺形成的有机薄膜的厚度均一性,从而提高有机电致发光显示器件的发光质量。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (16)

  1. 一种显示面板,其中,包括:
    衬底基板;所述衬底基板之上具有多个呈阵列排布的像素单元;
    像素界定层,位于所述衬底基板之上;所述像素界定层,包括:多个开口以及至少一个连通槽;多个所述开口分别位于各所述像素单元内;
    所述连通槽连接两个相同颜色的所述像素单元对应的所述开口。
  2. 如权利要求1所述的显示面板,其中,所述开口的形状为矩形,且所述开口包括沿第一方向延伸的第一边缘及沿第二方向延伸的第二边缘,所述第一边缘的长度大于所述第二边缘的长度;
    所述连通槽连接相邻的两个所述开口中互相接近的两个所述第一边缘。
  3. 如权利要求2所述的显示面板,其中,多个所述像素单元沿所述第一方向和所述第二方向呈阵列排布;
    在所述第一方向上相邻的两个所述像素单元显示的颜色不同;在所述第二方向上相邻的两个所述像素单元显示的颜色不同。
  4. 如权利要求3所述的显示面板,其中,沿第三方向上相邻的两个像素单元显示的颜色相同;
    所述第三方向为不同于所述第一方向和所述第二方向的方向。
  5. 如权利要求2所述的显示面板,其中,所述连通槽在所述第一方向上的宽度与所述第一边缘的长度一致。
  6. 如权利要求1所述的显示面板,其中,还包括:位于所述开口内的有机发光功能层;
    所述有机发光功能层背离所述衬底基板一侧的表面为第一表面,所述像素界定层靠近所述衬底基板一侧的表面为第二表面;
    所述第一表面与所述第二表面之间的距离,小于所述连通槽的底面与所述第二表面之间的距离。
  7. 如权利要求1所述的显示面板,其中,所述像素界定层,包括:位于 所述连通槽的底面靠近所述衬底基板一侧的第一像素界定结构,以及除各所述第一像素界定结构之外的第二像素界定结构;
    所述第二像素界定结构为一体结构。
  8. 如权利要求7所述的显示面板,其中,所述第一像素界定结构由亲液材料构成;
    所述第二像素界定结构由疏液材料构成。
  9. 如权利要求8所述的显示面板,其中,所述第一像素界定结构的材料包括二氧化硅、氮化硅、氮氧化硅、聚甲基丙烯酸甲酯或聚酰亚胺;
    所述第二像素界定结构的材料包括氟化聚甲基丙烯酸甲酯或氟化聚酰亚胺。
  10. 如权利要求1所述的显示面板,其中,所述像素界定层为一体结构;
    所述连通槽的底面具有亲液性;
    所述像素界定层背离所述衬底基板一侧的表面中,除各所述连通槽以外的表面具有疏液性。
  11. 如权利要求1~10任一项所述的显示面板,其中,所述像素界定层在除各所述开口和各所述连通槽以外的位置的厚度在0.5μm~3μm的范围内。
  12. 如权利要求1~10任一项所述的显示面板,其中,所述连通槽的底面至所述像素界定层靠近所述衬底基板一侧的表面之间的距离在0.1μm~1μm的范围内。
  13. 一种如权利要求1~12任一项所述的显示面板的制作方法,其中,包括:
    在衬底基板上形成像素界定层,并对所述像素界定层进行图形化形成多个开口及多个连通槽;
    采用喷墨打印工艺形成有机发光功能层。
  14. 如权利要求13所述的制作方法,其中,所述在衬底基板上形成像素界定层,并对所述像素界定层进行图形化形成多个开口及多个连通槽,包括:
    采用亲液材料在所述衬底基板之上形成第一像素界定层,并对所述第一 像素界定层进行图形化得到多个第一像素界定结构;
    采用疏液材料在所述第一像素界定层之上形成第二像素界定层,并对所述第二像素界定层进行图形化得到第二像素界定结构;或者,
    采用疏液材料在所述衬底基板之上形成第二像素界定层,并对所述第二像素界定层进行图形化得到第二像素界定结构;
    采用亲液材料在所述第二像素界定层之上形成第一像素界定层,并对所述第一像素界定层进行图形化得到多个第一像素界定结构。
  15. 如权利要求13所述的制作方法,其中,所述在衬底基板上形成像素界定层,并对所述像素界定层进行图形化形成多个开口及多个连通槽,包括:
    采用疏液材料在所述衬底基板之上形成像素界定层;
    采用半色调掩膜版对所述像素界定层进行图形化,得到各所述开口以及底面亲液的各连通槽。
  16. 一种显示装置,其中,包括:如权利要求1~12任一项所述的显示面板。
PCT/CN2020/141039 2020-03-02 2020-12-29 显示面板、其制作方法及显示装置 WO2021174983A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/418,156 US20230133156A1 (en) 2020-03-02 2020-12-29 Display panel, manufacturing method thereof and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010134649.8A CN111312791B (zh) 2020-03-02 2020-03-02 显示面板、其制作方法及显示装置
CN202010134649.8 2020-03-02

Publications (1)

Publication Number Publication Date
WO2021174983A1 true WO2021174983A1 (zh) 2021-09-10

Family

ID=71148417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141039 WO2021174983A1 (zh) 2020-03-02 2020-12-29 显示面板、其制作方法及显示装置

Country Status (3)

Country Link
US (1) US20230133156A1 (zh)
CN (1) CN111312791B (zh)
WO (1) WO2021174983A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4033539A4 (en) * 2020-05-29 2023-05-10 BOE Technology Group Co., Ltd. ARRAY SUBSTRATE, METHOD OF MANUFACTURE, DISPLAY PANEL AND DISPLAY DEVICE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312791B (zh) * 2020-03-02 2022-12-09 京东方科技集团股份有限公司 显示面板、其制作方法及显示装置
CN112186016B (zh) * 2020-09-29 2022-07-12 京东方科技集团股份有限公司 一种显示面板、其制备方法及显示装置
CN112234085B (zh) * 2020-10-15 2022-07-08 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115529A (ja) * 2005-10-20 2007-05-10 Toshiba Matsushita Display Technology Co Ltd 表示装置及び表示装置の製造方法
US20100141875A1 (en) * 2008-12-08 2010-06-10 Samsung Electronics Co., Ltd. Liquid crystal display, panel therefor, and manufacturing method thereof
CN104465671A (zh) * 2014-12-26 2015-03-25 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN105206643A (zh) * 2015-08-21 2015-12-30 Tcl集团股份有限公司 一种像素界定层结构及其制作方法、显示面板及显示装置
CN111312791A (zh) * 2020-03-02 2020-06-19 京东方科技集团股份有限公司 显示面板、其制作方法及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101681997B (zh) * 2008-02-28 2011-06-01 松下电器产业株式会社 有机电致发光显示屏
CN104299968B (zh) * 2014-09-22 2017-04-26 京东方科技集团股份有限公司 电致发光器件及其制造方法、显示基板和显示装置
CN104409653B (zh) * 2014-10-30 2017-07-18 京东方科技集团股份有限公司 一种像素界定层、有机致发光器件及显示装置
JP6815090B2 (ja) * 2016-03-31 2021-01-20 株式会社Joled 表示パネル及びその製造方法
CN106597802A (zh) * 2016-11-28 2017-04-26 武汉华星光电技术有限公司 一种掩膜板、掩膜板组件及显示面板
CN109148543B (zh) * 2018-08-30 2022-04-19 京东方科技集团股份有限公司 一种像素结构及显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115529A (ja) * 2005-10-20 2007-05-10 Toshiba Matsushita Display Technology Co Ltd 表示装置及び表示装置の製造方法
US20100141875A1 (en) * 2008-12-08 2010-06-10 Samsung Electronics Co., Ltd. Liquid crystal display, panel therefor, and manufacturing method thereof
CN104465671A (zh) * 2014-12-26 2015-03-25 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN105206643A (zh) * 2015-08-21 2015-12-30 Tcl集团股份有限公司 一种像素界定层结构及其制作方法、显示面板及显示装置
CN111312791A (zh) * 2020-03-02 2020-06-19 京东方科技集团股份有限公司 显示面板、其制作方法及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4033539A4 (en) * 2020-05-29 2023-05-10 BOE Technology Group Co., Ltd. ARRAY SUBSTRATE, METHOD OF MANUFACTURE, DISPLAY PANEL AND DISPLAY DEVICE

Also Published As

Publication number Publication date
CN111312791B (zh) 2022-12-09
CN111312791A (zh) 2020-06-19
US20230133156A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
WO2021174983A1 (zh) 显示面板、其制作方法及显示装置
US9768382B2 (en) Display substrate, its manufacturing method and display device
US10784322B2 (en) Array substrate, manufacturing method, and display device
CN107591432B (zh) 像素界定层、显示基板及制造方法、显示装置
CN108538886B (zh) 像素界定层及制造方法、显示基板、显示装置
US11367762B2 (en) Pixel definition layer, display substrate, display device and inkjet printing method
WO2016086728A1 (zh) 像素界定层及其制作方法、显示面板和显示装置
CN111640772B (zh) 一种显示面板、其制作方法及显示装置
US20080036374A1 (en) Organic electroluminescent panel and production method thereof, and color filter substrate and production method thereof
WO2021233070A1 (zh) 显示基板及其制作方法、显示面板及显示装置
KR20230035212A (ko) 어레이 기판, 제조 방법, 디스플레이 패널 및 디스플레이 장치
KR100738103B1 (ko) 컬러 필터의 제조방법
CN112234085A (zh) 一种阵列基板及其制作方法、显示面板、显示装置
US11251241B2 (en) Pixel defining structure and fabrication method thereof, display substrate and jet printing method
CN108400153B (zh) 一种oled基板及其制备方法、显示装置
WO2024022056A9 (zh) 显示面板及制作方法、显示装置
CN217426754U (zh) 显示基板及显示装置
WO2019200903A1 (zh) 阵列基板的喷墨打印方法、阵列基板、显示装置
CN111490072B (zh) 显示器件及其制作方法
CN110600521B (zh) 一种显示基板及其制备方法、显示面板、显示装置
WO2023185318A1 (zh) 显示基板及其制备方法、显示装置
WO2024021072A1 (zh) 显示面板及显示装置
US20210336185A1 (en) Display panel and manufacturing method thereof
CN116033795A (zh) 一种显示面板、其制作方法及显示装置
CN113054146A (zh) 显示装置的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922778

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20922778

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20922778

Country of ref document: EP

Kind code of ref document: A1