WO2024021072A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2024021072A1
WO2024021072A1 PCT/CN2022/109122 CN2022109122W WO2024021072A1 WO 2024021072 A1 WO2024021072 A1 WO 2024021072A1 CN 2022109122 W CN2022109122 W CN 2022109122W WO 2024021072 A1 WO2024021072 A1 WO 2024021072A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
substructure
display panel
retaining wall
wall
Prior art date
Application number
PCT/CN2022/109122
Other languages
English (en)
French (fr)
Inventor
贾文斌
龚泳豪
朱飞飞
Original Assignee
京东方科技集团股份有限公司
合肥京东方卓印科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方卓印科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280002462.XA priority Critical patent/CN117795692A/zh
Priority to PCT/CN2022/109122 priority patent/WO2024021072A1/zh
Publication of WO2024021072A1 publication Critical patent/WO2024021072A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel and a display device.
  • organic electroluminescent display devices Compared with liquid crystal display devices (Liquid Crystal Display, LCD), organic electroluminescent display devices (Organic Light-Emitting Diode, OLED) have the advantages of self-illumination, fast response, wide viewing angle, high brightness, bright colors, and thinness, etc., and are considered to be the next generation devices.
  • Next generation display technology Compared with liquid crystal display devices (Liquid Crystal Display, LCD), organic electroluminescent display devices (Organic Light-Emitting Diode, OLED) have the advantages of self-illumination, fast response, wide viewing angle, high brightness, bright colors, and thinness, etc., and are considered to be the next generation devices. Next generation display technology.
  • evaporation process There are two main film formation methods for OLED devices: evaporation process and solution process. Among them, the evaporation process has been used in mass production. However, due to the high material cost and low material utilization rate of the evaporation process, the production cost of OLED devices is high. Solution processes include spin coating, inkjet printing, nozzle coating methods, etc., which are suitable for polymer materials and soluble small molecule materials. The equipment cost of the solution process is low, which can reduce the production cost of OLED devices.
  • ink droplets can be accurately dropped into the openings of the pixel definition layer to form the organic thin film in the OLED device.
  • the size of the openings in the pixel definition layer becomes smaller and smaller, resulting in poor film formation uniformity of the organic film layer in the OLED device, affecting the life and luminous quality of the OLED device.
  • a base substrate having a plurality of pixel units arranged in an array in a first direction and a second direction, the first direction and the second direction intersecting each other;
  • the pixel defining layer includes: a plurality of first blocking walls and a plurality of second blocking walls; the plurality of first blocking walls extend along the first direction and Arranged along the second direction, the plurality of second retaining walls extend along the second direction and are arranged along the first direction; the plurality of first retaining walls and the plurality of second retaining walls constitute Multiple openings; the height of the first retaining wall is less than the height of the second retaining wall;
  • the first retaining wall includes: a plurality of sub-retaining walls, the sub-retaining walls are located between two adjacent second retaining walls; at least one of the sub-retaining walls is on a side facing away from the substrate.
  • a plurality of first structures are provided on the surface.
  • the first structures include first substructures and second substructures.
  • the first substructures and the second substructures are alternately arranged and are vertical to the substrate. In the direction, the height of the first substructure is less than or equal to the height of the first retaining wall.
  • the first substructure in at least one of the first structures is a strip structure extending along the second direction and arranged along the first direction.
  • the first substructure runs through the width of the sub-retaining wall in the second direction.
  • the first substructure in at least one of the first structures is a strip structure extending along the first direction and arranged along the second direction.
  • the first substructure runs through the width of the sub-retaining wall in the first direction.
  • the first substructures of at least one of the sub-retaining wall surfaces are distributed in an array.
  • the cross-sectional shape of the first substructure in a direction parallel to the base substrate is a polygon, a circle or an irregular figure.
  • the ratio of the width of the first substructure to the width of the second substructure is between 0.5 and 1.5.
  • the first substructure is a groove that is concave toward the surface of the sub-blocking wall close to the base substrate.
  • the ratio of the depth of the groove to the height of the sub-retaining wall is greater than or equal to 1/6.
  • the first substructure is a protrusion protruding from a surface of the sub-blocking wall away from the base substrate.
  • the height of the protrusion is greater than or equal to 1/6 of the height of the sub-retaining wall.
  • the surface of the first retaining wall is lyophilic, and the surface of the second retaining wall is lyophobic.
  • the pixel defining layer includes: a first pixel defining layer, and a second pixel defining layer located on a side of the first pixel defining layer facing away from the base substrate;
  • the first pixel defining layer includes the plurality of first blocking walls, and the second pixel defining layer includes the plurality of second blocking walls.
  • embodiments of the present disclosure also provide a display device, which includes: any of the above display panels.
  • Figure 1 is a schematic top structural view of a display panel provided by an embodiment of the present disclosure
  • Figure 2 is a schematic cross-sectional view at the dotted line MM' in Figure 1;
  • Figure 3 is a schematic cross-sectional view at the dotted line NN' in Figure 1;
  • Figure 4 is a schematic diagram of the principle of improving ink fluidity with the first structure in an embodiment of the present disclosure
  • Figure 5 is a partial enlarged schematic diagram of the neutron retaining wall in Figure 1;
  • Figure 6 is another partial enlarged schematic diagram of the neutron retaining wall in Figure 1;
  • Figure 7 is another partial enlarged schematic diagram of the neutron retaining wall in Figure 1;
  • Figure 8 is a schematic cross-sectional view of a sub-retaining wall in an embodiment of the present disclosure.
  • Figure 9 is another structural schematic diagram of a sub-retaining wall in an embodiment of the present disclosure.
  • Figure 10 is another cross-sectional schematic diagram at the dotted line MM' in Figure 1;
  • Figure 11 is another cross-sectional schematic diagram at the dotted line MM' in Figure 1.
  • embodiments of the present invention provide a display panel and a display device.
  • Figure 1 is a schematic top structural view of a display panel provided by an embodiment of the present disclosure.
  • Figure 2 is a schematic cross-sectional view taken along the dotted line MM' in Figure 1.
  • Figure 3 is a schematic cross-sectional view taken along the dotted line NN' in Figure 1, as shown in Figures 1 to 3
  • the display panel provided by the embodiment of the present disclosure may include: a base substrate 10 and a pixel definition layer 11 located on the base substrate 10 .
  • the substrate substrate 10 has the function of supporting and carrying.
  • the substrate substrate 10 can be a glass substrate.
  • the substrate substrate 10 can also be a flexible substrate.
  • the specific details of the substrate substrate 10 are not mentioned here. Materials are limited.
  • the base substrate 10 has a plurality of pixel units P arranged in an array in a first direction F1 and a second direction F2.
  • the first direction F1 and the second direction F2 intersect with each other.
  • F2 can be perpendicular to each other.
  • the first direction F1 may be the row direction of the pixel unit P, and the second direction F2 may be the column direction of the pixel unit P; or, the first direction F1 may be the column direction of the pixel unit P, and the second direction F2 It can be the row direction of the pixel unit P, which is not limited here.
  • the pixel definition layer 11 may include: a plurality of first blocking walls 111 and a plurality of second blocking walls 112. Each first blocking wall 111 extends along the first direction F1 and is arranged along the second direction F2. Each second blocking wall 112 extends along the first direction F1 and is arranged along the second direction F2. The second direction F2 extends and is arranged along the first direction F1. The height of the first retaining wall 111 is smaller than the height of the second retaining wall 112. Each first blocking wall 111 and each plurality of second blocking walls 112 form a plurality of openings U, and the openings U can be used to define the area of the pixel unit P.
  • the display panel provided by the embodiment of the present disclosure may be an organic electroluminescent display panel.
  • the display panel may further include: a plurality of first electrodes 12 and a second electrode 13 .
  • the above-mentioned first electrode 12 is an anode and the second electrode 13 is a cathode; or the above-mentioned first electrode 12 is a cathode and the above-mentioned second electrode 13 is an anode, which is not limited here.
  • the above-mentioned pixel definition layer 11 includes a plurality of openings U. The openings U are used to define the area of the pixel unit P.
  • Each opening U corresponds to each first electrode 12 respectively, and the corresponding first electrode 12 is exposed through each opening U. Therefore, the organic light-emitting functional layer 14 can be in contact with the first electrode 12 , so that the first electrode 12 can provide carriers to the organic light-emitting functional layer 14 .
  • a driving circuit can also be included between the first electrode 12 and the base substrate 10. The driving circuit is electrically connected to each first electrode 12. Each first electrode 12 can be arranged separately, and the second electrode 13 can be arranged in an entire layer. By driving The circuit provides driving signals to each first electrode 12 to achieve picture display.
  • the organic light-emitting functional layer 14 may include organic film layers such as a light-emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer.
  • organic film layers such as a light-emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer.
  • an inkjet printing process can be used to produce each organic film layer in the organic light-emitting functional layer 14.
  • the organic light-emitting functional layers 14 of the pixel units P of the same color can use the same process. Material.
  • each first retaining wall 111 extends along the first direction F1 and is arranged along the second direction F2
  • each second retaining wall 112 extends along the second direction F2 and is arranged along the second direction F2
  • Arranged in one direction F1 each first blocking wall 111 and each plurality of second blocking walls 112 form a plurality of openings U, and the openings U are used to define the area of the pixel unit P.
  • an inkjet printing process can be used to drop ink of the organic film layer into the opening U to form the organic film layer in the organic light-emitting functional layer 14 in the opening U.
  • the ink can flow in a row of openings U arranged along the second direction F2, thereby enhancing the fluidity of the ink.
  • the ink content in each opening U is averaged, and the volume difference of the ink in each opening U is reduced, thereby improving the film-forming uniformity of the ink.
  • the rows of openings U arranged along the second direction F2 are connected with each other, the colors of the row of pixel units P arranged along the second direction F2 formed by the inkjet printing process are the same.
  • the height of the first retaining wall 111 It cannot be further reduced, so it is difficult to further improve the film formation uniformity of the ink.
  • the first blocking wall 111 may include: a plurality of sub-blocking walls W, the sub-blocking walls W are located between two adjacent second blocking walls 112, and at least one sub-blocking wall 111 is facing away from the substrate.
  • a plurality of first structures T are provided on the surface of one side of the substrate 10.
  • the first structures T include a first substructure t1 and a second substructure t2.
  • the first substructures t1 and the second substructure t2 are alternately arranged and are vertical to In the direction of the base substrate 10 , the height of the first substructure t1 is less than or equal to the height of the first retaining wall 111 , and the second substructure t2 may be a gap between adjacent first substructures t1 .
  • the first substructure t1 may be a groove on the surface of the concave sub-barrier wall W close to the base substrate 10 , and the height of the above-mentioned first substructure t1 refers to the depth of the groove, or, the first substructure t1 may be a groove.
  • the structure t1 may also be a protrusion protruding from the surface of the sub-barrier wall W away from the base substrate. The height of the above-mentioned first sub-structure t1 refers to the thickness of the protrusion.
  • the surface area of the sub-blocking wall W can be increased, and during the inkjet printing process, the contact area between the ink and the first blocking wall 111 can be increased. , reducing the contact angle between the ink and the first retaining wall 111 and increasing the fluidity of the ink, thereby further improving the film-forming uniformity of the ink. Moreover, it can also reduce the process requirements of inkjet printing equipment and improve the inkjet printing process window, thereby reducing equipment costs.
  • the first structure T can be provided on the surface of each sub-blocking wall W, or the first structure T can be provided on the surface of the molecular blocking wall W in the display panel.
  • the first structure T can be provided only on the surface of the ink flow rate.
  • the first structure T is provided on the surface of the neutron retaining wall W in the poor area, which can be set according to actual needs, and is not limited here.
  • Figure 4 is a schematic diagram of the principle that the first structure improves ink fluidity in an embodiment of the present disclosure.
  • (1) in Figure 4 is a schematic diagram of the surface of the sub-retaining wall without the first structure.
  • Figure 4 (2) and (3) are schematic diagrams of setting the first structure on the surface of the sub-retaining wall.
  • the above-mentioned first substructure t1 can be a groove on the surface of the concave sub-barrier wall W close to the base substrate, and the second substructure t2 can be is the gap between two adjacent grooves.
  • the above-mentioned first substructure t1 may be a protrusion protruding from the surface of the sub-blocking wall W away from the base substrate, and the second substructure t2 can be the gap between two adjacent protrusions.
  • a1 represents the contact angle between the ink droplet 20 and the surface of the sub-blocking wall W when the first structure T is not provided on the surface of the sub-blocking wall W
  • a2 represents the contact angle between the ink droplet 20 and the surface of the sub-blocking wall W when the first structure T is provided on the surface of the sub-blocking wall W. The contact angle with the surface of the sub-retaining wall W.
  • the apparent solid-liquid contact area can be understood as: the projected area of the ink 20 on the surface of the sub-retaining wall W.
  • the surface area of the sub-retaining wall W can be increased, thereby increasing the contact area between the ink 20 and the sub-retaining wall W. Therefore, the proportion coefficient r> 1.
  • the surface of the first retaining wall 111 may be lyophilic.
  • the first retaining wall 111 may be made of lyophilic material, or the first retaining wall 111 may be surface treated to make the first retaining wall 111 lyophilic.
  • the surface of 111 is lyophilic, so that the ink can flow in a row of openings U arranged along the second direction F2.
  • the surface of the second retaining wall 112 may be liquid-repellent.
  • the second retaining wall 112 may be made of a liquid-repellent material, or the second retaining wall 112 may be surface-treated to make the surface of the second retaining wall 112 liquid-repellent. The ink overflows to areas other than opening U.
  • the contact between the ink 20 and the surface of the sub-barrier wall W can satisfy the solid-liquid surface wetting mode.
  • the contact between the ink 20 and the surface of the sub-barrier wall W can satisfy the cassie wetting mode, that is, the ink 20 does not fill the gap between the adjacent first sub-structures t1 ;
  • the contact between the ink 20 and the surface of the sub-barrier wall W can satisfy the wezel wetting mode, that is, the ink 20 can fill the gap between the adjacent first sub-structures t1.
  • the pixel definition layer 11 may also include: a third blocking wall 113 and a fourth blocking wall 114 extending along the first direction F1. 114 are respectively located on both sides of each first retaining wall 111 in the second direction F2. The height of the third retaining wall 113 is greater than the height of the first retaining wall 111. The height of the fourth retaining wall 114 is greater than the height of the first retaining wall 111. .
  • ink can flow along the second direction F2.
  • the third retaining wall 113 and the fourth retaining wall 114 can be made of liquid-repellent materials, or the third retaining wall 113 and the fourth retaining wall 114 can be surface treated to make the third retaining wall 113 and the fourth retaining wall 114 The surface of 114 can be liquid-repellent to effectively prevent ink from overflowing.
  • Figure 5 is a partially enlarged schematic diagram of the sub-retaining wall in Figure 1.
  • the first substructure t1 in at least one first structure T may extend along the second direction F2.
  • the extension direction of the first substructure t1 is basically consistent with the flow direction of the ink, which can further enhance the fluidity of the ink, thereby making the formed organic film layer more uniform.
  • the strip-shaped structure may be a groove; or the strip-shaped structure may be a protrusion, which is not limited here.
  • the first substructure t1 can penetrate the width of the sub-barrier wall W in the second direction F2, thereby avoiding the influence of the end of the first substructure t1 in the second direction F2.
  • the fluidity of the ink in order to further enhance the fluidity of the ink, the first substructure t1 can penetrate the width of the sub-barrier wall W in the second direction F2, thereby avoiding the influence of the end of the first substructure t1 in the second direction F2.
  • Figure 6 is another partially enlarged schematic diagram of the sub-retaining wall in Figure 1.
  • the first substructure t1 in at least one first structure T may be along the first direction.
  • the strip-shaped structure may be a groove; or the strip-shaped structure may be a protrusion, which is not limited here.
  • the first substructure t1 can penetrate the width of the sub-barrier wall W in the first direction F1, thereby avoiding the influence of the end of the first substructure t1 in the first direction F1.
  • the fluidity of the ink in order to further enhance the fluidity of the ink.
  • the extension direction of the first substructure t1 may also have a certain angle with the second direction F2, which is not limited here.
  • Figure 7 is another partially enlarged schematic diagram of the sub-retaining wall in Figure 1.
  • the first sub-structures t1 on the surface of at least one sub-retaining wall W can be distributed in an array.
  • the first sub-structure t1 does not block the flow of ink. Therefore, the fluidity of ink can be improved by increasing the surface area of the sub-blocking wall W without affecting the flow of ink.
  • the first substructure t1 shown in FIG. 7 may be a groove or a protrusion.
  • the cross-sectional shape of the first substructure t1 in the direction parallel to the substrate may be a polygon, a circle or an irregular shape.
  • the shape of the first substructure t1 in FIG. 7 may be a circle.
  • the shape of the first substructure t1 may also be an ellipse, a square, or other other shapes, which are not limited here.
  • the plurality of first substructures t1 on the surface of the sub-retaining wall W may also be distributed in a non-array manner, and may be set according to the actual situation, which is not limited here.
  • Figure 8 is a schematic cross-sectional view of a sub-retaining wall in an embodiment of the present disclosure.
  • Figure 9 is another structural schematic diagram of a sub-retaining wall in an embodiment of the present disclosure.
  • Figures 8 and 9 can be Figure 5
  • the cross-sectional schematic diagram at the dotted line L1, combined with Figures 5, 8 and 9, shows that in the first direction F1, the ratio of the width d1 of the first substructure t1 to the width d2 of the second substructure t2 can be between 0.5 and 1.5. between.
  • the width d1 of the first substructure t1 can be the internal width of the groove
  • the second The width d2 of the substructure t2 may be the width of the sub-barrier wall W between two adjacent grooves.
  • the width d1 of the first substructure t1 when the first substructure t1 is a protrusion protruding from the surface of the sub-blocking wall W away from the substrate, the width d1 of the first substructure t1 may be the width of the protrusion, and the second substructure t1 may be a protrusion.
  • the width d2 of the substructure t2 may be the width of the gap between two adjacent protrusions.
  • the ratio between the width d1 of the first substructure t1 and the width d2 of the second substructure t2 is set to between 0.5 and 1.5, that is, the width d1 of the first substructure t1 and the width d2 of the second substructure t2 are dimensioned It is similar, which can prevent the first substructure t1 on the surface of the sub-retaining wall W from being too sparse or too dense, and ensure better fluidity of the ink on the surface of the sub-retaining wall W.
  • Figures 8 and 9 can be schematic cross-sectional views at the dotted line L2 in Figure 6.
  • the first substructure t1 The ratio of the width d1 to the width d2 of the second substructure t2 may be between 0.5 and 1.5.
  • the width d1 of the first substructure t1 when the first substructure t1 is a groove close to the surface of the concave sub-barrier wall W, the width d1 of the first substructure t1 can be the internal width of the groove, and the second The width d2 of the substructure t2 may be the width of the sub-barrier wall W between two adjacent grooves.
  • the width d1 of the first substructure t1 may be the width of the protrusion
  • the second substructure t1 may be a protrusion
  • the width d2 of the substructure t2 may be the width of the gap between two adjacent protrusions.
  • the ratio between the width d1 of the first substructure t1 and the width d2 of the second substructure t2 is set to between 0.5 and 1.5, that is, the width d1 of the first substructure t1 and the width d2 of the second substructure t2 are dimensioned
  • the width of the first substructure t1 on the surface of the sub-retaining wall W when the first substructure t1 on the surface of the sub-retaining wall W is distributed in an array, in any direction parallel to the base substrate, the width of the first substructure t1
  • the ratio to the width of the second substructure t2 may be between 0.5 and 1.5. Therefore, the first substructure t1 on the surface of the sub-retaining wall W can be avoided from being too sparse or too dense, ensuring that the ink has good fluidity on the surface of the sub-retaining wall W.
  • the minimum width d1 of the first substructure t1 may be between 0.2 ⁇ m and 3 ⁇ m, that is, 0.2 ⁇ m ⁇ d1 ⁇ 3 ⁇ m. Preferably, 0.5 ⁇ m ⁇ d1 ⁇ 3 ⁇ m. Setting the minimum width d1 of the first substructure t1 within this range can effectively improve the fluidity of the ink and avoid the insignificant effect on improving the fluidity of the ink due to the small size of the first substructure t1. It can also prevent the size of the first substructure t1 from being too large and affecting the flow of ink.
  • the minimum width d2 of the second substructure t2 can be between 0.2 ⁇ m and 3 ⁇ m, that is, 0.2 ⁇ m ⁇ d2 ⁇ 3 ⁇ m. Preferably, 0.5 ⁇ m ⁇ d2 ⁇ 3 ⁇ m. In this way, the first crack on the surface of the sub-barrier wall W can be avoided.
  • the substructure t1 is too sparse or too dense to ensure good fluidity of the ink on the surface of the sub-retaining wall W.
  • the depth H2 of the groove is the same as the depth H2 of the sub-retaining wall W.
  • the ratio of height H1 is greater than or equal to 1/6, that is, H1/6 ⁇ H2 ⁇ H1.
  • the depth H2 of the groove can be equal to the height H1 of the sub-barrier wall W, that is, the groove can penetrate the sub-barrier wall W in the thickness direction, and the height of the organic film layer formed after the solvent of the ink evaporates can be lower than the height of the sub-barrier wall W. Therefore, the groove runs through the sub-barrier wall W in the thickness direction and will not affect the display effect of adjacent pixel units.
  • the height H3 of the protrusion is greater than or equal to 1/6 of the height H1 of the sub-retaining wall W. That is, H1/6 ⁇ H3 ⁇ H1.
  • the height H1 of the sub-retaining wall W can be set to: 0.1 ⁇ m ⁇ H1 ⁇ 0.5 ⁇ m.
  • photosensitive materials such as photoresist can be used to make the first structure T, so that the pattern of the first structure T can be obtained through the photolithography process; or organic materials such as resin and acrylic can also be used to make the first structure. T, in this way, the etching process can be used to obtain the pattern of the first structure T.
  • other materials and processes can also be used to make the first structure T, which is not limited here.
  • Figure 10 is another schematic cross-sectional view at the dotted line MM' in Figure 1.
  • the pixel definition layer 11 can be an integrated structure, that is, the first blocking wall 111 and the second blocking wall.
  • the wall 112 can be made using the same composition process. In this way, the number of composition processes is reduced and the production cost can be saved.
  • a half-tone mask can be used to produce the first retaining wall 111 and the second retaining wall 112 with different heights.
  • each first blocking wall 111, each second blocking wall 112, third blocking wall and fourth blocking wall in the pixel definition layer 11 can be an integrated structure, and the same patterning process can be used to form the first blocking wall. wall, the second retaining wall, the third retaining wall and the fourth retaining wall, thereby further simplifying the production process and saving production costs.
  • Figure 11 is another schematic cross-sectional view of the dotted line MM' in Figure 1.
  • the pixel defining layer 11 may include: a first pixel defining layer 11a, and a first pixel defining layer 11a.
  • the pixel defining layer 11a is away from the second pixel defining layer 11b on the side of the substrate 10.
  • the first pixel defining layer 11a may include: a plurality of first baffles 111
  • the second pixel defining layer 11b may include: a plurality of second baffles.
  • Wall 112. In the actual process, different patterning processes can be used to make the first retaining wall 111 and the second retaining wall 112.
  • the second pixel defining layer 11b may also include: a third retaining wall and a fourth retaining wall, since the heights of the second retaining wall, the third retaining wall and the fourth retaining wall are all greater than the height of the first retaining wall. , and the surfaces of the second retaining wall, the third retaining wall and the fourth retaining wall are all lyophobic. Therefore, in the actual process, the same composition process can be used to form the second retaining wall, the third retaining wall and the fourth retaining wall.
  • the fourth retaining wall further simplifies the production process and saves production costs.
  • embodiments of the present disclosure also provide a display device, including the above-mentioned display panel.
  • the display device can be applied to any device with a display such as mobile phones, tablet computers, televisions, monitors, notebook computers, digital photo frames, and navigators. Functional products or components. Since the problem-solving principle of this display device is similar to that of the above-mentioned display panel, the implementation of this display device can be referred to the implementation of the above-mentioned display panel, and repeated details will not be repeated.

Abstract

一种显示面板及显示装置,显示面板包括:衬底基板(10)及像素界定层(11),像素界定层(11)包括:多个第一挡墙(111)和多个第二挡墙(112),第一挡墙(111)的高度小于第二挡墙(112)的高度。第一挡墙(111)包括:多个子挡墙(W),子挡墙(W)位于相邻的两个第二挡墙(112)之间,至少一个子挡墙(W)的表面设有多个第一结构(T),第一结构(T)包括第一子结构(t1)和第二子结构(t2),第一子结构(t1)和第二子结构(t2)交替设置,第一子结构(t1)的高度小于或等于第一挡墙(111)的高度。这样,在喷墨打印过程中,可以增大墨水的流动性,从而提高有机膜层的成膜均一性。

Description

显示面板及显示装置 技术领域
本公开涉及显示技术领域,尤指一种显示面板及显示装置。
背景技术
有机电致发光显示器件(OrganicLight-Emitting Diode,OLED)相对于液晶显示器件(Liquid Crystal Display,LCD)具有自发光、反应快、视角广、亮度高、色彩艳、轻薄等优点,被认为是下一代显示技术。
OLED器件的成膜方式主要有蒸镀制程和溶液制程两种。其中,蒸镀制程已经应用于量产中,但是,由于蒸镀制程的材料成本较高且材料利用率较低,导致OLED器件的制作成本较高。溶液制程包括旋涂、喷墨打印、喷嘴涂覆法等,适用于聚合物材料和可溶性小分子材料,溶液制程的设备成本较低,可以降低OLED器件的制作成本。
采用喷墨打印工艺,能够将墨滴精准的滴入像素界定层的开口中,以形成OLED器件中的有机薄膜。在相关技术中,随着OLED器件的分辨率不断提高,像素界定层中的开口尺寸越来越小,导致OLED器件中有机膜层的成膜均一性较差,影响OLED器件的寿命和发光质量。
发明内容
本公开实施例提供的显示面板,其中,包括:
衬底基板,所述衬底基板之上具有在第一方向和第二方向呈阵列排布的多个像素单元,所述第一方向与所述第二方向相互交叉;
像素界定层,位于所述衬底基板之上;所述像素界定层包括:多个第一挡墙和多个第二挡墙;所述多个第一挡墙沿所述第一方向延伸且沿所述第二方向排列,所述多个第二挡墙沿所述第二方向延伸且沿所述第一方向排列;所述多个第一挡墙和所述多个第二挡墙构成多个开口;所述第一挡墙的高度 小于所述第二挡墙的高度;
所述第一挡墙包括:多个子挡墙,所述子挡墙位于相邻的两个所述第二挡墙之间;至少一个所述子挡墙在背离所述衬底基板一侧的表面设有多个第一结构,所述第一结构包括第一子结构和第二子结构,所述第一子结构和所述第二子结构交替设置,且在垂直于所述衬底基板的方向上,所述第一子结构的高度小于或等于所述第一挡墙的高度。
可选地,在本公开实施例中,至少一个所述第一结构中的所述第一子结构为沿所述第二方向延伸且沿所述第一方向排列的条状结构。
可选地,在本公开实施例中,所述第一子结构贯穿所述子挡墙在所述第二方向上的宽度。
可选地,在本公开实施例中,至少一个所述第一结构中的所述第一子结构为沿所述第一方向延伸且沿所述第二方向排列的条状结构。
可选地,在本公开实施例中,所述第一子结构贯穿所述子挡墙在所述第一方向上的宽度。
可选地,在本公开实施例中,至少一个所述子挡墙表面的所述第一子结构呈阵列分布。
可选地,在本公开实施例中,所述第一子结构在平行于所述衬底基板方向上的截面形状为多边形、圆形或不规则图形。
可选地,在本公开实施例中,在所述第一方向上,所述第一子结构的宽度与所述第二子结构的宽度的比值在0.5~1.5之间。
可选地,在本公开实施例中,所述第一子结构为凹向所述子挡墙靠近所述衬底基板的表面的凹槽。
可选地,在本公开实施例中,在垂直于所述衬底基板的方向上,所述凹槽的深度与所述子挡墙的高度之比大于等于1/6。
可选地,在本公开实施例中,所述第一子结构为凸出于所述子挡墙远离所述衬底基板的表面的凸起。
可选地,在本公开实施例中,所述凸起的高度大于或等于所述子挡墙的 高度的1/6。
可选地,在本公开实施例中,所述第一挡墙的表面具有亲液性,所述第二挡墙的表面具有疏液性。
可选地,在本公开实施例中,所述像素界定层包括:第一像素界定层,以及位于所述第一像素界定层背离所述衬底基板一侧的第二像素界定层;
所述第一像素界定层包括:所述多个第一挡墙,所述第二像素界定层包括:所述多个第二挡墙。
相应地,本公开实施例还提供了一种显示装置,其中,包括:上述任一显示面板。
附图说明
图1为本公开实施例提供的显示面板的俯视结构示意图;
图2为图1中虚线MM'处的截面示意图;
图3为图1中虚线NN'处的截面示意图;
图4为本公开实施例中第一结构提高墨水流动性的原理示意图;
图5为图1中子挡墙的局部放大示意图;
图6为图1中子挡墙的另一局部放大示意图;
图7为图1中子挡墙的另一局部放大示意图;
图8为本公开实施例中子挡墙的截面示意图;
图9为本公开实施例中子挡墙的另一结构示意图;
图10为图1中虚线MM'处的另一截面示意图;
图11为图1中虚线MM'处的另一截面示意图。
具体实施方式
针对采用喷墨打印工艺形成的有机膜层的成膜均一性较差的问题,本发明实施例提供了一种显示面板及显示装置。
下面结合附图,对本发明实施例提供的显示面板及显示装置的具体实施 方式进行详细地说明。附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本发明内容。
图1为本公开实施例提供的显示面板的俯视结构示意图,图2为图1中虚线MM'处的截面示意图,图3为图1中虚线NN'处的截面示意图,如图1至图3所示,本公开实施例提供的显示面板可以包括:衬底基板10,以及位于衬底基板10之上的像素界定层11。
衬底基板10具有支撑和承载的作用,通常衬底基板10可以为玻璃基板,当显示面板应用于柔性显示装置时,衬底基板10也可以采用柔性基板,此处不对衬底基板10的具体材质进行限定。衬底基板10之上具有在第一方向F1和第二方向F2呈阵列排布的多个像素单元P,第一方向F1与第二方向F2相互交叉,例如,第一方向F1与第二方向F2可以相互垂直。在具体实施时,第一方向F1可以为像素单元P的行方向,第二方向F2可以为像素单元P的列方向;或者,第一方向F1可以为像素单元P的列方向,第二方向F2可以为像素单元P的行方向,此处不做限定。
像素界定层11可以包括:多个第一挡墙111和多个第二挡墙112,各第一挡墙111沿第一方向F1延伸且沿第二方向F2排列,各第二挡墙112沿第二方向F2延伸且沿第一方向F1排列,第一挡墙111的高度小于第二挡墙112的高度。各第一挡墙111和各多个第二挡墙112构成多个开口U,开口U可以用于界定像素单元P的区域。
本公开实施例提供的显示面板可以为有机电致发光显示面板,参照图3,上述显示面板还可以包括:多个第一电极12,第二电极13,以及位于第一电极12与第二电极13之间的有机发光功能层14。上述第一电极12为阳极,第二电极13为阴极;或者,上述第一电极12为阴极,上述第二电极13为阳极,此处不做限定。上述像素界定层11中包含多个开口U,开口U用于界定像素单元P的区域,各开口U分别与各第一电极12一一对应,通过各开口U分别暴露对应的第一电极12,从而使有机发光功能层14可以与第一电极12接触,以使第一电极12可以向有机发光功能层14提供载流子。此外,第一电 极12与衬底基板10之间还可以包括驱动电路,驱动电路与各第一电极12电连接,各第一电极12可以分立设置,第二电极13可以整层设置,通过驱动电路向各第一电极12提供驱动信号,从而实现画面显示。
在具体实施时,有机发光功能层14可以包括发光层、空穴注入层、空穴传输层、电子注入层及电子传输层等有机膜层。在本公开实施例中,可以采用喷墨打印工艺制作有机发光功能层14中的各有机膜层,在喷墨打印工艺过程中,相同颜色的像素单元P的有机发光功能层14可以采用相同的材料。
可以理解的是,为了清楚地示意像素界定层的结构,图1和图2中省略了第一电极、第二电极和有机发光功能层等膜层。
继续参照图1至图3,在本公开实施例中,各第一挡墙111沿第一方向F1延伸且沿第二方向F2排列,各第二挡墙112沿第二方向F2延伸且沿第一方向F1排列,各第一挡墙111和各多个第二挡墙112构成多个开口U,开口U用于界定像素单元P的区域。在制作工艺过程中,可以采用喷墨打印工艺,在开口U内滴入有机膜层的墨水,以在开口U内形成有机发光功能层14中的有机膜层。由于第一挡墙111的高度小于第二挡墙112的高度,这样,在喷墨打印工艺过程中,墨水可以在沿第二方向F2排列的一排开口U内流动,增强了墨水的流动性,使得各开口U内的墨水含量平均化,减小各开口U内墨水的体积差异,从而提高墨水的成膜均一性。并且,由于沿第二方向F2排列的一排开口U相互连通,这样,采用喷墨打印工艺形成的沿第二方向F2排列的一排像素单元P的颜色相同。
在实际应用中,第一挡墙111的高度越小,沿第二方向F2排列的一排开口U内流动的墨水的流动性越好,但是,由于工艺的限制,第一挡墙111的高度无法进一步减小,因而,墨水的成膜均一性难以进一步提高。
本公开提供的显示面板中,第一挡墙111可以包括:多个子挡墙W,子挡墙W位于相邻的两个第二挡墙112之间,至少一个子挡墙111在背离衬底基板10一侧的表面设有多个第一结构T,第一结构T包括第一子结构t1和第二子结构t2,第一子结构t1和第二子结构t2交替设置,且在垂直于衬底基板 10的方向上,第一子结构t1的高度小于或等于第一挡墙111的高度,第二子结构t2可以为相邻第一子结构t1之间的间隙。在具体实施时,第一子结构t1可以为凹向子挡墙W靠近衬底基板10的表面的凹槽,上述第一子结构t1的高度指的是凹槽的深度,或者,第一子结构t1也可以为凸出于子挡墙W远离衬底基板的表面的凸起,上述第一子结构t1的高度指的是凸起的厚度。
本公开实施例中,通过在子挡墙W的表面设置第一结构T,可以增大子挡墙W的表面积,在喷墨打印过程中,可以增大墨水与第一挡墙111的接触面积,减小墨水与第一挡墙111之间的接触角,增大墨水的流动性,从而进一步提高墨水的成膜均一性。并且,也可以降低喷墨打印设备的工艺要求,提升喷墨打印工艺窗口,从而降低设备成本。在具体实施时,可以在每一个子挡墙W的表面均设置第一结构T,或者,也可以在显示面板中部分子挡墙W的表面设置第一结构T,例如,可以仅在墨水流通性较差的区域中子挡墙W的表面设置第一结构T,可以根据实际需要进行设置,此处不做限定。
图4为本公开实施例中第一结构提高墨水流动性的原理示意图,如图4所示,图4中的(1)为子挡墙的表面未设置第一结构的示意图,图4中的(2)和(3)为子挡墙的表面设置第一结构的示意图。如图4中的(2)所示,在一种可能的实现方式中,上述第一子结构t1可以为凹向子挡墙W靠近衬底基板的表面的凹槽,第二子结构t2可以为相邻两个凹槽之间的间隙。如图4中的(3)所示,在另一种可能的实现方式中,上述第一子结构t1可以为凸出于子挡墙W远离衬底基板的表面的凸起,第二子结构t2可以为相邻两个凸起之间的间隙。
结合图4中的(1)至(3),墨水20与子挡墙W表面之间的接触角满足以下关系式:
cos a2=r*cos a1;
其中,a1表示子挡墙W的表面未设置第一结构时,墨滴20与子挡墙W表面之间的接触角;a2表示子挡墙W的表面设置第一结构T时,墨滴20与子挡墙W表面之间的接触角。
r为比例系数,r=实际固液接触面积/表观固液接触面积,表观固液接触面积可以理解为:墨水20在子挡墙W表面的投影面积。
本公开实施例中,通过在子挡墙W的表面设置第一结构T,可以增大子挡墙W的表面积,从而增大墨水20与子挡墙W的接触面积,因而,比例系数r>1,根据上述关系式可知:cos a2>cos a1,进而可以得到:a2<a1,即子挡墙W的表面设置第一结构T时,墨滴20与子挡墙W表面之间的接触角更小,因此,通过在子挡墙W的表面设置第一结构T,可以减小墨水20与子挡墙W之间的接触角,从而提高墨水的流动性。
在一种可能的实现方式中,第一挡墙111的表面可以具有亲液性,可以采用亲液材料制作第一挡墙111,或对第一挡墙111进行表面处理,使第一挡墙111的表面具有亲液性,这样,可以使墨水能够在沿第二方向F2排列的一排开口U内流动。第二挡墙112的表面可以具有疏液性,可以采用疏液材料制作第二挡墙112,或对第二挡墙112进行表面处理,使第二挡墙112的表面具有疏液性,避免墨水溢出流到开口U以外的区域。
继续参照图4,在喷墨打印工艺过程中,墨水20与子挡墙W表面的接触可以满足固液面润湿模式。举例来说,如图4中的(2)所示,墨水20与子挡墙W表面的接触可以满足cassie润湿模式,即墨水20未填满相邻的第一子结构t1之间的间隙;如图4中的(3)所示,墨水20与子挡墙W表面的接触可以满足wezel润湿模式,即墨水20可以填满相邻的第一子结构t1之间的间隙。
如图1所示,在本公开实施例中,像素界定层11还可以包括:沿第一方向F1延伸的第三挡墙113和第四挡墙114,第三挡墙113和第四挡墙114分别位于各第一挡墙111在第二方向F2上的两侧,第三挡墙113的高度大于第一挡墙111的高度,第四挡墙114的高度大于第一挡墙111的高度。在喷墨打印工艺过程中,墨水可以沿第二方向F2流动,通过在像素界定层11的两侧设置高度较高的第三挡墙113和第四挡墙114,可以防止墨水溢出,在具体实施时,可以采用疏液材料制作第三挡墙113和第四挡墙114,或对第三挡墙113 和第四挡墙114进行表面处理,以使第三挡墙113和第四挡墙114的表面可以具有疏液性,从而有效防止墨水溢出。
图5为图1中子挡墙的局部放大示意图,如图5所示,在本公开的一些实施例中,至少一个第一结构T中的第一子结构t1可以为沿第二方向F2延伸且沿第一方向F1排列的条状结构。这样,第一子结构t1的延伸方向与墨水的流动方向基本一致,可以进一步增强墨水的流动性,从而使形成的有机膜层的均一性更好。该条状结构可以为凹槽;或者,该条状结构也可以为凸起,此处不做限定。
继续参照图5,为了进一步增强墨水的流动性,第一子结构t1可以贯穿子挡墙W在第二方向F2上的宽度,从而避免第一子结构t1在第二方向F2上的端部影响墨水的流动性。
图6为图1中子挡墙的另一局部放大示意图,如图6所示,在本公开的一些实施例中,至少一个第一结构T中的第一子结构t1可以为沿第一方向F1延伸且沿第二方向F2排列的条状结构。这样也可以增强墨水的流动性,从而使形成的有机膜层的均一性更好。该条状结构可以为凹槽;或者,该条状结构也可以为凸起,此处不做限定。
继续参照图6,为了进一步增强墨水的流动性,第一子结构t1可以贯穿子挡墙W在第一方向F1上的宽度,从而避免第一子结构t1在第一方向F1上的端部影响墨水的流动性。
在具体实施时,第一子结构t1的延伸方向也可以与第二方向F2具有一定夹角,此处不做限定。
图7为图1中子挡墙的另一局部放大示意图,如图7所示,在本公开的另一些实施例中,至少一个子挡墙W表面的第一子结构t1可以呈阵列分布。这样,第一子结构t1不会阻挡墨水的流动,因而,可以在不影响墨水流动的基础上,通过增大子挡墙W的表面积,来提高墨水的流动性。在具体实施时,图7中所示的第一子结构t1可以为凹槽或凸起。在具体实施时,第一子结构t1在平行于衬底基板方向上的截面形状可以为多边形、圆形或不规则图形, 例如图7中第一子结构t1的形状可以为圆形,当然,第一子结构t1的形状也可以为椭圆形或方形等其他形状,此处不做限定。在一些情况下,子挡墙W表面的多个第一子结构t1也可以呈非阵列分布,可以根据实际情况进行设置,此处不做限定。
图8为本公开实施例中子挡墙的截面示意图,图9为本公开实施例中子挡墙的另一结构示意图,在一种可能的实现方式中,图8和图9可以为图5中虚线L1处的截面示意图,结合图5、图8和图9,在第一方向F1上,第一子结构t1的宽度d1与第二子结构t2的宽度d2的比值可以在0.5~1.5之间。如图5和图8所示,第一子结构t1为凹向子挡墙W靠近衬底基板的表面的凹槽时,第一子结构t1的宽度d1可以为凹槽的内部宽度,第二子结构t2的宽度d2可以为相邻两个凹槽之间的子挡墙W的宽度。如图5和图9所示,第一子结构t1为凸出于子挡墙W远离衬底基板的表面的凸起时,第一子结构t1的宽度d1可以为凸起的宽度,第二子结构t2的宽度d2可以为相邻两个凸起之间的空隙的宽度。将第一子结构t1的宽度d1与第二子结构t2的宽度d2之间的比值设置为在0.5~1.5之间,即第一子结构t1的宽度d1与第二子结构t2的宽度d2尺寸相近,可以避免子挡墙W表面的第一子结构t1过于稀疏或过于密集,保证墨水在子挡墙W表面的流动性较好。
在另一种可能的实现方式中,图8和图9可以为图6中虚线L2处的截面示意图,结合图6、图8和图9,在第二方向F2上,第一子结构t1的宽度d1与第二子结构t2的宽度d2的比值可以在0.5~1.5之间。如图6和图8所示,第一子结构t1为凹向子挡墙W靠近衬底基板的表面的凹槽时,第一子结构t1的宽度d1可以为凹槽的内部宽度,第二子结构t2的宽度d2可以为相邻两个凹槽之间的子挡墙W的宽度。如图6和图9所示,第一子结构t1为凸出于子挡墙W远离衬底基板的表面的凸起时,第一子结构t1的宽度d1可以为凸起的宽度,第二子结构t2的宽度d2可以为相邻两个凸起之间的空隙的宽度。将第一子结构t1的宽度d1与第二子结构t2的宽度d2之间的比值设置为在0.5~1.5之间,即第一子结构t1的宽度d1与第二子结构t2的宽度d2尺寸相近, 可以避免子挡墙W表面的第一子结构t1过于稀疏或过于密集,保证墨水在子挡墙W表面的流动性较好。
在另一种可能的实现方式中,如图7所示,子挡墙W表面的第一子结构t1呈阵列分布时,在任一平行于衬底基板的方向上,第一子结构t1的宽度与第二子结构t2的宽度的比值可以在0.5~1.5之间。从而,可以避免子挡墙W表面的第一子结构t1过于稀疏或过于密集,保证墨水在子挡墙W表面的流动性较好。
在本申请的一些实施例中,参照图8和图9,第一子结构t1的最小宽度d1可以在0.2μm~3μm之间,即0.2μm≤d1≤3μm,优选地,0.5μm≤d1≤3μm,将第一子结构t1的最小宽度d1设置在该范围内,可以有效提升墨水的流动性,避免由于第一子结构t1的尺寸过小,而导致对墨水流动性的提升效果不明显,也可以避免第一子结构t1的尺寸过大,而影响墨水的流动。
另外,第二子结构t2的最小宽度d2可以在0.2μm~3μm之间,即0.2μm≤d2≤3μm,优选地,0.5μm≤d2≤3μm,这样,可以避免子挡墙W表面的第一子结构t1过于稀疏或过于密集,保证墨水在子挡墙W表面的流动性较好。
如图8所示,第一子结构t1为凹向子挡墙W靠近衬底基板的表面的凹槽时,在垂直于衬底基板的方向上,凹槽的深度H2与子挡墙W的高度H1之比大于等于1/6,即H1/6≤H2≤H1,优选地,H1/4≤H2≤H1,这样,可以有效提升墨水的流动性,避免由于凹槽的深度过小,而导致对墨水流动性的提升效果不明显。并且,凹槽的深度H2可以等于子挡墙W的高度H1,即凹槽可以在厚度方向贯穿子挡墙W,墨水的溶剂蒸发后形成的有机膜层的高度可以低于子挡墙W的高度,因而,凹槽在厚度方向贯穿子挡墙W,不会影响相邻像素单元的显示效果。
如图9所示,第一子结构t1为凸出于子挡墙W远离衬底基板的表面的凸起时,凸起的高度H3大于或等于子挡墙W的高度H1的1/6,即H1/6≤H3≤H1,优选地,H1/4≤H3≤H1,这样,可以有效提升墨水的流动性,避免由 于凸起的高度过小,而导致对墨水流动性的提升效果不明显,也可以避免由于凸起的高度过大,而影响墨水的流动。
在具体实施时,子挡墙W的高度H1可以设置为:0.1μm≤H1≤0.5μm。
在实际应用中,可以采用光刻胶等光敏材料制作第一结构T,这样,通过光刻工艺就可以得到第一结构T的图形;或者,也可以采用树脂、亚克力等有机材料制作第一结构T,这样,可以采用刻蚀工艺得到第一结构T的图形。当然,也可以采用其他材料和工艺制作第一结构T,此处不做限定。
图10为图1中虚线MM'处的另一截面示意图,如图10所示,在本公开的一些实施例中,像素界定层11可以为一体结构,即第一挡墙111和第二挡墙112可以采用同一次构图工艺制作,这样,构图工艺次数少,可以节约制作成本。在实际工艺过程中,可以采用半色调掩膜版(half tone)制作得到高度不同的第一挡墙111和第二挡墙112。在具体实施时,像素界定层11中的各第一挡墙111、各第二挡墙112、第三挡墙及第四挡墙可以为一体结构,可以采用同一次构图工艺,形成第一挡墙、第二挡墙、第三挡墙和第四挡墙,从而进一步简化制作工艺、节约制作成本。
图11为图1中虚线MM'处的另一截面示意图,如图11所示,在本公开的另一些实施例中,像素界定层11可以包括:第一像素界定层11a,以及位于第一像素界定层11a背离衬底基板10一侧的第二像素界定层11b,第一像素界定层11a可以包括:多个第一挡墙111,第二像素界定层11b可以包括:多个第二挡墙112。在实际工艺过程中,可以采用不同的构图工艺制作第一挡墙111和第二挡墙112,这样,每次构图工艺的图形高度一致,可以降低工艺难度,节约制作成本。在具体实施时,第二像素界定层11b还可以包括:第三挡墙和第四挡墙,由于第二挡墙、第三挡墙和第四挡墙的高度均大于第一挡墙的高度,且第二挡墙、第三挡墙和第四挡墙的表面均具有疏液性,因而,在实际工艺过程中,可以采用同一次构图工艺,形成第二挡墙、第三挡墙和第四挡墙,从而进一步简化制作工艺、节约制作成本。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括上述显 示面板,该显示装置可以应用于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。由于该显示装置解决问题的原理与上述显示面板相似,因此该显示装置的实施可以参见上述显示面板的实施,重复之处不再赘述。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种显示面板,其中,包括:
    衬底基板,所述衬底基板之上具有在第一方向和第二方向呈阵列排布的多个像素单元,所述第一方向与所述第二方向相互交叉;
    像素界定层,位于所述衬底基板之上;所述像素界定层包括:多个第一挡墙和多个第二挡墙;所述多个第一挡墙沿所述第一方向延伸且沿所述第二方向排列,所述多个第二挡墙沿所述第二方向延伸且沿所述第一方向排列;所述多个第一挡墙和所述多个第二挡墙构成多个开口;所述第一挡墙的高度小于所述第二挡墙的高度;
    所述第一挡墙包括:多个子挡墙,所述子挡墙位于相邻的两个所述第二挡墙之间;至少一个所述子挡墙在背离所述衬底基板一侧的表面设有多个第一结构,所述第一结构包括第一子结构和第二子结构,所述第一子结构和所述第二子结构交替设置,且在垂直于所述衬底基板的方向上,所述第一子结构的高度小于或等于所述第一挡墙的高度。
  2. 如权利要求1所述的显示面板,其中,至少一个所述第一结构中的所述第一子结构为沿所述第二方向延伸且沿所述第一方向排列的条状结构。
  3. 如权利要求2所述的显示面板,其中,所述第一子结构贯穿所述子挡墙在所述第二方向上的宽度。
  4. 如权利要求1所述的显示面板,其中,至少一个所述第一结构中的所述第一子结构为沿所述第一方向延伸且沿所述第二方向排列的条状结构。
  5. 如权利要求4所述的显示面板,其中,所述第一子结构贯穿所述子挡墙在所述第一方向上的宽度。
  6. 如权利要求1所述的显示面板,其中,至少一个所述子挡墙表面的所述第一子结构呈阵列分布。
  7. 如权利要求6所述的显示面板,其中,所述第一子结构在平行于所述衬底基板方向上的截面形状为多边形、圆形或不规则图形。
  8. 如权利要求2或3所述的显示面板,其中,在所述第一方向上,所述第一子结构的宽度与所述第二子结构的宽度的比值在0.5~1.5之间。
  9. 如权利要求1~8任一项所述的显示面板,其中,所述第一子结构为凹向所述子挡墙靠近所述衬底基板的表面的凹槽。
  10. 如权利要求9所述的显示面板,其中,在垂直于所述衬底基板的方向上,所述凹槽的深度与所述子挡墙的高度之比大于等于1/6。
  11. 如权利要求1~8任一项所述的显示面板,其中,所述第一子结构为凸出于所述子挡墙远离所述衬底基板的表面的凸起。
  12. 如权利要求10所述的显示面板,其中,所述凸起的高度大于或等于所述子挡墙的高度的1/6。
  13. 如权利要求1~12任一项所述的显示面板,其中,所述第一挡墙的表面具有亲液性,所述第二挡墙的表面具有疏液性。
  14. 如权利要求1~13任一项所述的显示面板,其中,所述像素界定层包括:第一像素界定层,以及位于所述第一像素界定层背离所述衬底基板一侧的第二像素界定层;
    所述第一像素界定层包括所述多个第一挡墙,所述第二像素界定层包括:所述多个第二挡墙。
  15. 一种显示装置,其中,包括:如权利要求1~14任一项所述的显示面板。
PCT/CN2022/109122 2022-07-29 2022-07-29 显示面板及显示装置 WO2024021072A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002462.XA CN117795692A (zh) 2022-07-29 2022-07-29 显示面板及显示装置
PCT/CN2022/109122 WO2024021072A1 (zh) 2022-07-29 2022-07-29 显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109122 WO2024021072A1 (zh) 2022-07-29 2022-07-29 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2024021072A1 true WO2024021072A1 (zh) 2024-02-01

Family

ID=89705065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109122 WO2024021072A1 (zh) 2022-07-29 2022-07-29 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN117795692A (zh)
WO (1) WO2024021072A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282729A (zh) * 2014-10-29 2015-01-14 京东方科技集团股份有限公司 一种有机发光显示面板及其制备方法、显示装置
CN107527939A (zh) * 2017-08-17 2017-12-29 京东方科技集团股份有限公司 像素界定层及其制造方法、显示基板、显示面板
CN109920825A (zh) * 2019-03-14 2019-06-21 京东方科技集团股份有限公司 像素界定结构及其制作方法、显示面板及显示装置
CN111584605A (zh) * 2020-05-29 2020-08-25 京东方科技集团股份有限公司 阵列基板、制备方法、显示面板及显示装置
CN112234085A (zh) * 2020-10-15 2021-01-15 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板、显示装置
CN113193024A (zh) * 2021-04-26 2021-07-30 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
CN113299867A (zh) * 2021-06-30 2021-08-24 京东方科技集团股份有限公司 显示面板、显示基板及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282729A (zh) * 2014-10-29 2015-01-14 京东方科技集团股份有限公司 一种有机发光显示面板及其制备方法、显示装置
CN107527939A (zh) * 2017-08-17 2017-12-29 京东方科技集团股份有限公司 像素界定层及其制造方法、显示基板、显示面板
CN109920825A (zh) * 2019-03-14 2019-06-21 京东方科技集团股份有限公司 像素界定结构及其制作方法、显示面板及显示装置
CN111584605A (zh) * 2020-05-29 2020-08-25 京东方科技集团股份有限公司 阵列基板、制备方法、显示面板及显示装置
CN112234085A (zh) * 2020-10-15 2021-01-15 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板、显示装置
CN113193024A (zh) * 2021-04-26 2021-07-30 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
CN113299867A (zh) * 2021-06-30 2021-08-24 京东方科技集团股份有限公司 显示面板、显示基板及其制备方法

Also Published As

Publication number Publication date
CN117795692A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US10811476B2 (en) Pixel definition layer, manufacturing method thereof, display substrate and display device
US10559635B2 (en) Pixel defining layer, production method thereof, and display substrate
KR100649722B1 (ko) 일렉트로루미네센스 표시소자의 패터닝장치 및 이를이용한 패터닝방법
US20080036374A1 (en) Organic electroluminescent panel and production method thereof, and color filter substrate and production method thereof
CN108922912B (zh) 用于有机发光显示装置的基板、显示面板、显示装置
CN111640772B (zh) 一种显示面板、其制作方法及显示装置
WO2021238431A1 (zh) 阵列基板、制备方法、显示面板及显示装置
US20230133156A1 (en) Display panel, manufacturing method thereof and display apparatus
WO2021233070A1 (zh) 显示基板及其制作方法、显示面板及显示装置
CN109509782A (zh) 像素界定层及其制造方法、自发光显示面板、显示装置
CN113193024B (zh) 显示面板及其制备方法、显示装置
US11037998B2 (en) Pixel defining layer, pixel structure, display panel and display device
CN109148533B (zh) 一种有机发光二极管显示器
WO2024022056A1 (zh) 显示面板及制作方法、显示装置
WO2024021072A1 (zh) 显示面板及显示装置
US20070247480A1 (en) Liquid jetting apparatus and liquid jetting method and display device manufacturing method using the same
WO2020056666A1 (zh) 有机发光二极管背板及其制作方法
CN217426754U (zh) 显示基板及显示装置
CN211654826U (zh) 一种显示基板、显示面板及显示装置
WO2021227794A1 (zh) 透明显示面板及其制备方法、显示装置
US11404505B2 (en) Display substrate, ink-jet printing method thereof, and display apparatus
CN219660309U (zh) 一种显示面板及其显示装置
CN111613649A (zh) 一种显示面板及其制备方法、显示装置
KR100743104B1 (ko) 일렉트로루미네센스 표시소자의 패터닝장치
WO2024000290A1 (zh) 一种阵列基板及其制作方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952519

Country of ref document: EP

Kind code of ref document: A1