WO2021227794A1 - 透明显示面板及其制备方法、显示装置 - Google Patents

透明显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2021227794A1
WO2021227794A1 PCT/CN2021/088517 CN2021088517W WO2021227794A1 WO 2021227794 A1 WO2021227794 A1 WO 2021227794A1 CN 2021088517 W CN2021088517 W CN 2021088517W WO 2021227794 A1 WO2021227794 A1 WO 2021227794A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
groove
transparent
substrate
channel
Prior art date
Application number
PCT/CN2021/088517
Other languages
English (en)
French (fr)
Inventor
崔颖
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/638,832 priority Critical patent/US20220310725A1/en
Publication of WO2021227794A1 publication Critical patent/WO2021227794A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the field of display technology, in particular, to a transparent display panel and a manufacturing method thereof, and also to a display device.
  • PLED Inkjet printing polymer electroluminescence display
  • pixels will become smaller and smaller.
  • inkjet printing it is necessary to print luminescent materials in a smaller light-emitting area, which places harsh requirements on inkjet printing equipment.
  • some color sub-pixels have smaller areas than other color sub-pixels.
  • the purpose of the present disclosure is to provide a transparent display panel, a manufacturing method thereof, and a display device, so as to solve one or more problems in the prior art.
  • a transparent display panel including a plurality of pixel units arranged in an array, the pixel units including a light-emitting area and a transparent area, and the pixel units including:
  • the pixel defining layer is arranged in the light-emitting area of the substrate and defines a plurality of opening areas
  • a plurality of light-emitting devices are arranged in the plurality of opening regions in a one-to-one correspondence;
  • the transparent film layer is provided in the transparent area of the substrate and is made of a hydrophobic material.
  • the transparent film layer includes a groove and a channel, and the channel communicates with the groove and any opening area, wherein the channel It has an inclination angle relative to the substrate, the distance from the bottom surface of the groove to the substrate is greater than the distance from the bottom surface of the opening area to the substrate, and the projected area of the groove on the substrate is larger than that of the substrate.
  • the projection area of the opening area connected by the channel on the substrate.
  • the projection area of each opening area in the pixel unit on the substrate is not completely equal, and the channel communicates with the groove and the smallest projection area. Opening area.
  • the pixel unit includes a red light-emitting device, the red light-emitting device is arranged in the opening area with the smallest projection area, and the channel communicates with the groove and the arrangement The opening area of the red light emitting device.
  • each of the opening areas is arranged along a first direction, and the pixel areas and light-emitting areas are arranged along a second direction.
  • the direction is vertical, and the groove is strip-shaped and extends along the first direction.
  • the pixel unit includes two green light-emitting devices, the two green light-emitting devices are arranged in the two opening regions with the smallest projection area, and the channel is also It includes two, and the two channels are connected to the groove and two opening regions provided with two green light-emitting devices in one-to-one correspondence.
  • the opening regions provided with two green light-emitting devices are arranged along a first direction
  • the pixel regions and the light-emitting regions are arranged along a second direction
  • the The first direction is perpendicular to the second direction
  • the groove is strip-shaped and extends along the first direction.
  • the grooves of the pixel units arranged on the same straight line communicate with each other.
  • the extending direction of the groove is perpendicular to the extending direction of the channel.
  • the inclination angle of the channel is 5-50°.
  • the transparent film layer and the pixel defining layer are made of the same material and arranged in the same layer.
  • the hydrophobic material includes fluorine-modified polyimide or fluorine-modified polymethyl methacrylate.
  • a display device including the above-mentioned transparent display panel.
  • a method for manufacturing a transparent display panel including:
  • a transparent film layer located in the transparent region is formed, the transparent film layer is made of a hydrophobic material, and the transparent film layer includes a groove and a channel, and the channel communicates with the groove and the corresponding pixel unit Any one of the opening regions, wherein the channel has an inclination angle with respect to the substrate, the distance from the bottom surface of the groove to the substrate is greater than the distance from the bottom surface of the opening region to the substrate, and the recess
  • the projected area of the groove on the substrate is larger than the projected area of the opening area connected to the channel on the substrate;
  • the ink containing the film layer material to be printed is printed in the groove by inkjet printing, so that the ink flows from the channel into the opening area to form a target film layer.
  • the target film layer is an organic light-emitting layer.
  • FIG. 1 is a schematic diagram of the structure of a pixel unit of the first embodiment
  • Figure 2 is a cross-sectional view of the structure in the direction A-A in Figure 1;
  • FIG. 3 is a schematic diagram of the structure of the display panel of the first embodiment
  • FIG. 4 is a schematic diagram of the optimized structure of the display panel of the first embodiment
  • FIG. 5 is a schematic structural diagram of another arrangement of display panels in the first embodiment
  • FIG. 6 is a schematic diagram of the structure of a pixel unit of the second embodiment
  • FIG. 7 is a schematic diagram of the structure of the display panel of the second embodiment.
  • FIG. 8 is a schematic diagram of the optimized structure of the display panel of the second embodiment.
  • FIG. 9 is a schematic structural diagram of another arrangement form of the display panel of the second embodiment.
  • FIG. 10 is a flow chart of a manufacturing process of a display panel according to an embodiment.
  • Substrate 2. Pixel defining layer; 3. Transparent film layer; 4. Light emitting device; 5. Groove; 6. Channel; 41, Red light emitting device, 42, Green light emitting device; 43, Blue Light-emitting device; 100, light-emitting area; 200, transparent area; 110, open area; 401, anode layer; 402, organic light-emitting layer; 403, cathode layer.
  • the inkjet printing technology is to spray a solution of red, green, and blue luminescent materials (also called ink) on the opening area of the ITO substrate that has been patterned in advance through a micron-level print nozzle.
  • a light-emitting pixel unit of three primary colors of red, green and blue is formed.
  • the thickness of the film is determined by the amount of solute printed in the pixel.
  • This method can greatly save expensive luminescent materials, and printing with multiple nozzles (128 or 256 nozzles) can greatly shorten the film production time. Therefore, inkjet printing color patterning technology is used in PLED manufacturing
  • the field has been recognized as the mainstream technology that is developing towards industrialization.
  • the opening area is getting smaller and smaller, and the accuracy of inkjet printing technology needs to be high to accurately print materials to be printed, especially organic light-emitting materials, in the opening area.
  • a transparent display panel which is suitable for being prepared by inkjet printing technology, and includes a plurality of pixel units.
  • FIGS. 1 and 2 which are schematic diagrams of the structure of a pixel unit in this exemplary embodiment
  • FIG. 1 is a top view of the pixel unit of this exemplary embodiment
  • FIG. 2 is a view of the pixel unit of this exemplary embodiment along the AA direction. Sectional view.
  • the pixel unit includes a light emitting area 100 and a transparent area 200.
  • the pixel unit includes a substrate 1.
  • a pixel defining layer 2 is provided on the light emitting area 100 of the substrate 1.
  • the transparent region 200 of the substrate is provided with a transparent film layer 3, the transparent film layer 3 is made of a hydrophobic material, the transparent film layer 3 includes a groove 5 and a channel 6, and the channel 6 communicates with the groove 5 and any one of the opening regions 110;
  • the distance from the bottom surface of the groove 5 to the substrate 1 is greater than the distance from the bottom surface of the opening area 110 to the substrate 1, that is, the bottom surface of the groove 5 is higher than the bottom surface of the opening area 110.
  • the projected area on the substrate 1 is larger than the projected area on the substrate 1 of the opening area 110 connected to the channel 6.
  • the ink of the organic light-emitting layer 402 to be printed can be printed in the groove 5 with a larger area. Since the groove 5 and the channel 6 are made on a hydrophobic material, the ink will be Under the action of the hydrophobic force, the inclined channel 6 flows into the opening area 110 with a smaller area, and then the organic light emitting layer 402 prepared in the opening area 110 is obtained. Therefore, even if the opening area 110 is small, it can be prepared by inkjet printing technology. At the same time, the groove 5 and the channel 6 are formed in the transparent area 200, which will not affect the display of the light-emitting area 100. Especially for a high-precision transparent display panel with a small opening area 110, the organic light-emitting layer 402 can also achieve inkjet printing, which overcomes the application limitations of inkjet printing technology.
  • the division of the light-emitting area and the transparent area in FIG. 1 is only an example. Based on this division method, since the channel 6 communicates with the groove 5 and the opening area 110, a part of the channel is located in the light-emitting area. However, in this application, it is considered that the channels 6 are all located in the transparent region.
  • the light-emitting materials of different color light-emitting devices 4 have different attenuation speeds, with blue materials being faster, green light second, and red light being slower.
  • the blue sub-pixels are designed to be larger, followed by the green sub-pixels, and the red sub-pixels have the smallest area. Therefore, in this exemplary embodiment, the projected areas of the opening regions 110 in the pixel unit on the substrate 1 are not completely equal, and the sub-pixel with the smallest area has higher requirements for the accuracy of the inkjet printing technology.
  • the channel 6 is connected to the opening area 110 with the smallest projected area, so that the organic light-emitting layer 402 corresponding to the sub-pixel can be printed on the ink with a larger area during inkjet printing. In the groove 5, it then flows into the opening area 110. In this way, the organic light-emitting layer 402 of the sub-pixel with the smallest opening area can be realized by inkjet printing technology.
  • the area of the groove 5 needs to be set according to the resolution and the printing accuracy of the inkjet printing device.
  • the area of the groove 5 cannot be too large, otherwise it will occupy too much area of the transparent area 200.
  • the area of the groove 5 cannot be too small. It is still difficult for ink printing equipment to accurately print ink therein and preparation is difficult.
  • the volume of the groove 5 needs to be set according to the volume of the material to be printed to ensure that it can hold a sufficient volume of ink.
  • the inclination angle ⁇ of the channel 6 is preferably set between 5-50°. If the angle is less than 5°, it is difficult for the ink to flow smoothly to the opening area 110. If the angle is greater than 50°, the channel length will remain unchanged.
  • the thickness of the transparent film layer 3 needs to be larger, which will increase the thickness of the panel, and the trenches with larger angles have higher process requirements during the preparation.
  • the inclination angle ⁇ of the channel is between 5-50°, not only can the ink flow smoothly from the groove 5 to the opening area 110, but also can maintain a thinner panel and facilitate preparation.
  • the transparent film layer 3 and the pixel defining layer 2 can be made of the same material and arranged in the same layer to simplify the preparation process. Then, it is necessary to select a material with both transparent and hydrophobic properties.
  • the material is a fluorine-modified transparent material, and specifically may be fluorine-modified polyimide or fluorine-modified polymethyl methacrylate. Polyimide and polymethyl methacrylate are themselves water-absorbing materials, and fluorine atoms have high electronegativity. After being modified by fluorine-containing monomers, their water absorption will be reduced.
  • Fluorine-containing monomers can be polypropylene pentafluoride
  • Fluorine-containing organic solvents such as benzene and hexafluorodianhydride are not particularly limited in this disclosure.
  • the cost of fluorine-modified polyimide or fluorine-modified polymethyl methacrylate is lower, which is suitable for the cost of control panel.
  • FIG. 2 only exemplarily shows part of the film layers of the light-emitting device, such as the cathode layer 403, the anode layer 401, and the organic light-emitting layer 402.
  • the light-emitting device may also include film layers such as a hole transport layer and an electron transport layer.
  • FIG. 1 to FIG. 3 it is a top view of the transparent display panel of the first exemplary embodiment.
  • the display panel includes a plurality of pixel units arranged in an array.
  • the light-emitting area 100 and the transparent area 200 in the pixel unit of the display panel are arranged along the column direction, and the transparent area 200 is located above the light-emitting area 100.
  • the light-emitting area 100 includes red sub-pixels, green sub-pixels, and blue sub-pixels to form an RGB three-color display, and the three sub-pixels are arranged along the row direction.
  • the light-emitting area 100 includes three opening areas 110 for arranging the red light-emitting device 41, the green light-emitting device 42, and the blue light-emitting device 43, respectively.
  • the three opening areas 110 are arranged in the row direction, and the red sub-pixel
  • the opening area 110 of the blue sub-pixel has the smallest area
  • the opening area 110 of the blue sub-pixel has the largest area
  • the green is in the middle.
  • the groove 5 is disposed in the upper transparent area 200, and is connected to the opening area 110 of the red sub-pixel through the channel 6.
  • the area of the groove 5 is larger than the area of the red sub-pixel opening area 110, and the groove 5 When the height is higher than the opening area 110, the red ink can be printed in the groove 5 first during inkjet printing, and then flow into the opening area 110 through the inclined channel 6 to form the red organic light-emitting layer 402.
  • the red sub-pixel is located at the leftmost side of the pixel unit, so the channel 6 is also arranged above the red sub-pixel.
  • the three color sub-pixels can also be arranged in other orders.
  • the red sub-pixel is located in the middle or the right, as long as the groove 5 and the opening area 110 of the red sub-pixel can be connected through the channel 6. Just connect.
  • the grooves 5 have a strip-shaped structure and extend along the row direction, so that the area of the transparent region 200 can be fully utilized.
  • the extending direction of the channel 6 is perpendicular to the extending direction of the groove 5, and ink can be injected into the opening area 110 through the shortest path, so as to prevent ink from stagnating in the channel 6 or the groove 5.
  • FIG. 4 shows a further simplified structure of the transparent display panel shown in FIG. 3.
  • the grooves 5 of each row of pixel units can be connected in the row direction, thereby The difficulty of the process can be reduced.
  • the groove 5 area is larger than the red sub-pixel opening area 110 area, the width does not exceed 80 ⁇ m, and the depth does not exceed 1.5 ⁇ m.
  • the existing inkjet printing equipment has a precision requirement for printing the red sub-pixel organic light-emitting layer 402.
  • the row direction is the first direction
  • the column direction is the second direction
  • the column direction may be the first direction
  • the row direction may be the second direction.
  • the transparent area 200 and the light-emitting area 100 are arranged along the row direction.
  • the pixels are arranged in the column direction, the extending direction of the groove 5 is also the column direction, and the extending direction of the channel 6 is the row direction.
  • the grooves 5 of each column of pixel units can also be connected in the column direction (not shown in the figure).
  • FIG. 6 is a top view of the structure of the pixel unit of the second exemplary embodiment
  • FIG. 7 is a top view of the transparent display panel of the second exemplary embodiment.
  • the display panel includes a plurality of pixel units arranged in an array.
  • the light-emitting area 100 and the transparent area 200 in the pixel unit are arranged along the row direction, and the transparent area 200 is located on the right side of the light-emitting area 100.
  • the light-emitting area 100 includes a red sub-pixel, a blue sub-pixel, and two green sub-pixels to form an RGGB three-color display.
  • two green sub-pixels are arranged along the column direction and located on the right side of the light-emitting area 100, and red and blue sub-pixels are arranged along the row direction and located on the left side of the light-emitting area 100.
  • the opening area 110 of the two green sub-pixels has the same and the smallest area
  • the opening area 110 of the blue sub-pixel has the largest area
  • the red is in the middle.
  • the green sub-pixels have the highest requirements for inkjet printing equipment.
  • the groove 5 is provided in the transparent region 200 on the right side, and the transparent region 200 is also provided with two channels 6, which respectively connect the opening regions 110 and the recesses of the two green sub-pixels.
  • the grooves 5 are connected, the height of the bottom surface of the groove 5 is higher than the height of the bottom surface of the opening area 110 of the green sub-pixel, the area of the groove 5 is larger than the area of any one of the green sub-pixel opening areas 110, and the volume of the groove 5 can accommodate two green sub-pixels at the same time.
  • the ink of two green sub-pixels can be printed in the groove 5 at the same time through one-step printing, and then the ink is divided into two paths through the two channels 6 to flow into the two opening regions 110 respectively.
  • the green ink can be printed in the groove 5 first, and then flow into the opening area 110 through the inclined channel 6 to form the green organic light-emitting layer 402.
  • the area of the groove 5 only needs to be larger than one of the green opening regions 110 to reduce the difficulty of inkjet printing, without making the area of the groove 5 larger than the area of the two green sub-pixel opening regions 110
  • the area of the groove 5 is greater than the sum of the areas of the two green sub-pixel opening regions 110, it is easier to achieve inkjet printing.
  • the volume of the groove 5 determines whether two green sub-pixels can be printed at the same time. As long as the groove 5 can accommodate the organic light-emitting material of the two green sub-pixels, synchronous printing can be achieved.
  • the transparent region 200 may further include two grooves 5 (not shown in the figure), and the two grooves 6 respectively connect the two grooves 5 and the two green sub-pixels in a one-to-one correspondence.
  • the area of each groove 5 is larger than the area of the corresponding green opening area 110.
  • the green ink in each groove 5 flows into the corresponding opening area 110 to complete the film preparation of the opening area 110.
  • This structure can also reduce The difficulty of inkjet printing. But obviously, this structure has higher requirements on the manufacturing process of the panel.
  • the groove 5 in this embodiment also has a strip-shaped structure and extends along the column direction. In this way, the ink can be injected into the opening area 110 through the shortest path, so as to prevent the ink from stagnating in the channel 6 or the groove 5.
  • FIG. 8 shows a further simplified structure of the transparent display panel shown in FIG. 7.
  • the grooves 5 of each column of pixel units can be connected in the column direction, by This can reduce the process difficulty.
  • the two green sub-pixels are located on the far right side of the light-emitting area 100, so the channel 6 is also arranged on the right side of the two green sub-pixels.
  • the four sub-pixels can also be arranged in other orders.
  • the red sub-pixel is located on the left
  • the blue sub-pixel is located in the middle
  • the two green sub-pixels are located on the right, as long as they can pass through the channel 6. It suffices to connect the groove 5 and the opening regions 110 of the two sub-pixels.
  • the column direction is the first direction
  • the row direction is the second direction.
  • the row direction may be the first direction
  • the column direction may be the second direction.
  • the transparent area 200 and the light-emitting area 100 are arranged in the column direction.
  • the sub-pixels are arranged in the column direction
  • the two green sub-pixels are arranged in the row direction
  • the extending direction of the groove 5 is also the row direction
  • the extending direction of the channel 6 is the column direction.
  • the grooves 5 of each row of pixel units can also be connected in the row direction (not shown in the figure).
  • This embodiment also provides a method for manufacturing a transparent display panel. Taking the display panel as shown in FIG. 2 as an example, referring to FIG. 10, the manufacturing method includes the following steps:
  • step S100 a substrate 1 is provided, and the light-emitting area 100 and the transparent area 200 of each pixel unit are divided on the substrate 1.
  • Step S200 forming a pixel defining layer 2 located in the light-emitting area 100 of the substrate 1, and defining a plurality of opening regions 110 through the pixel defining layer 2;
  • Step S300 forming a transparent film layer 3 located in the transparent region 200, the transparent film layer 3 is made of a hydrophobic material, and the transparent film layer 3 includes a groove 5 and a channel 6, which connects the groove 5 and the corresponding pixel unit
  • the channel 6 has an inclination angle relative to the substrate 1, the distance from the bottom surface of the groove 5 to the substrate 1 is greater than the distance from the bottom surface of the opening region 110 to the substrate 1, and the groove 5 is on the substrate 1
  • the projected area is larger than the projected area of the opening area 110 connected to the channel 6 on the substrate 1;
  • step S400 the ink containing the film layer material to be printed is printed in the groove 5 by inkjet printing, so that the ink flows from the channel 6 into the opening area 110 to form a target film layer.
  • a thin film transistor array may be formed on the substrate 1 in advance to realize independent control of the sub-pixels.
  • the opening area 110 of the light emitting device 4 is usually formed first, and the opening area 110 may be formed by sputtering or other processes.
  • the pixel defining layer 2 can be formed by a process of exposure and development using a transparent photoresist material.
  • the two film layers can be formed through the same process. Specifically, first coat or deposit a layer of fluorine-modified polyimide or fluorine-modified polymethyl methacrylate on the light-emitting area 100 and the transparent area 200 at the same time, both of which can form a transparent photoresist Then use a photomask to expose the transparent photoresist film, develop the exposed transparent photoresist film, and remove the unexposed transparent photoresist film to form the pixel defining layer 2 and the transparent film layer 3 .
  • a photomask to expose the transparent photoresist film, develop the exposed transparent photoresist film, and remove the unexposed transparent photoresist film to form the pixel defining layer 2 and the transparent film layer 3 .
  • the channel 6 in the transparent film layer 3 since the channel 6 has an inclination angle, it needs to be formed by a grayscale exposure process, that is, the photomask used when forming the channel 6 is gray.
  • a step mask can be used to form an inclined bottom surface of the trench 6 after development through a different amount of exposure.
  • the display panel with the groove 5 and the channel 6 formed in the transparent area 200 continues to manufacture the subsequent steps to achieve a better printing effect.
  • step S400 taking inkjet printing of the organic light-emitting layer 402 as an example, before printing the organic light-emitting layer 402, it is first necessary to form a hole injection layer, a hole transport layer, and a resistance blocking layer in the opening area 110.
  • the layer can be formed by evaporation, chemical deposition or the like.
  • the organic light-emitting layer 402 of the red sub-pixel is formed, the red ink can be printed in the groove 5 of the transparent area 200 by inkjet printing. Since the area of the groove 5 is large, inkjet printing is easier to implement.
  • the ink flows into the opening area 110 of the red sub-pixel through the channel 6 under the action of the hydrophobic material, thereby forming the red organic light-emitting layer 402.
  • the ink can be directly printed in the opening area 110 by the conventional inkjet printing method.
  • This step can be used to print the organic light-emitting layer 402 of the red sub-pixel or the organic light-emitting layer 402 of other color sub-pixels, as long as the corresponding grooves 5 and channels are prepared when the transparent film layer 3 is prepared in step S300. 6 structure is enough.
  • this step can also be used to achieve inkjet printing of other target film layers, such as a hole transport layer.
  • the printing principle is the same as that of the organic light-emitting layer 402, and will not be repeated here.
  • the preparation of the display panel also includes the formation of film layers such as an electron transport layer, an electron injection layer, and a cathode layer. All of these film layers can be realized by conventional technical means in the art, and will not be repeated here.
  • This embodiment also provides a display device, which includes the transparent display panel of the above embodiment. Since the display device has the above-mentioned transparent display panel, it has the same beneficial effects, which will not be repeated in this disclosure.
  • the present disclosure does not specifically limit the application of display devices, which can be TVs, laptops, tablet computers, wearable display devices, mobile phones, car displays, navigation, e-books, digital photo frames, advertising light boxes, etc., which have display functions. Products or parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种透明显示面板及其制备方法、显示装置。透明显示面板包括阵列排布的多个像素单元,像素单元包括发光区(100)和透明区(200),像素单元包括设于发光区(100)的像素界定层,且定义出多个开口区,开口区内设置发光器件(41,42,43);像素单元还包括设于透明区(200)的透明膜层,透明膜层为疏水材料,且包括凹槽(5)和倾斜的沟道(6),沟道(6)连通凹槽(5)和任意一个开口区,凹槽(5)底面高于开口区底面,且凹槽(5)面积大于与沟道(6)相连的开口区面积。该结构的透明显示面板在制备时,可以将待打印膜层的墨水打印在凹槽(5)内,墨水在疏水力作用下由倾斜的沟道(6)流入面积较小的开口区,由此开口区内面积较小的膜层可以实现喷墨打印,克服了喷墨打印技术的应用局限。

Description

透明显示面板及其制备方法、显示装置
交叉引用
本公开要求于2020年5月11日提交的申请号为202010394367.1名称为“透明显示面板及其制备方法、显示装置”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及显示技术领域,具体而言,涉及一种透明显示面板及其制备方法,还涉及显示装置。
背景技术
喷墨打印聚合物电致发光显示(PLED)技术具有操作简单、成本低廉、及工艺简单、易于实现大尺寸等优点,随着高性能聚合物材料的不断研发和薄膜制备技术的进一步完善,PLED技术有望快速实现产业化。
对于高分辨透明显示而言,像素会越来越小,采用喷墨打印方式制作高分辨透明显示器件时,要在较小的发光区内打印发光材料,对喷墨打印设备提出苛刻的要求。而且,通常情况下,会有一些颜色的子像素面积小于其他颜色子像素,在高分辨的前提下,要在更小的开口区内打印发光材料,越来越高的制备要求限制了喷墨打印技术的应用。
需要说明的是,在上述背景技术部分发明的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种透明显示面板及其制备方法、显示装置,解决现有技术存在的一种或多种问题。
根据本公开的一个方面,提供一种透明显示面板,包括阵列排布的多个像素单元,所述像素单元包括发光区和透明区,所述像素单元包括:
基板;
像素界定层,设于所述基板的发光区,且定义出多个开口区;
多个发光器件,所述多个发光器件一一对应地设于所述多个开口区;
透明膜层,设于所述基板的透明区且为疏水材料,所述透明膜层包括凹槽和沟道,所述沟道连通所述凹槽和任意一个开口区,其中,所述沟道相对于所述基板具有一倾斜角,所述凹槽底面到所述基板的距离大于所述开口区底面到所述基板的距离,且所述凹槽在所述基板的投影面积大于与所述沟道相连的所述开口区在所述基板的投影面积。
在本公开的一种示例性实施例中,所述像素单元内的各开口区在所述基板的投影面积不完全相等,所述沟道连通所述凹槽和所述投影面积最小的所述开口区。
在本公开的一种示例性实施例中,所述像素单元包括红色发光器件,所述红色发光器件设置于所述投影面积最小的所述开口区,所述沟道连通所述凹槽和设置所述红色发光器件的所述开口区。
在本公开的一种示例性实施例中,所述像素单元内,各所述开口区沿第一方向排列,所述像素区和发光区沿第二方向排列,所述第一方向和第二方向垂直,所述凹槽为条形且沿所述第一方向延伸。
在本公开的一种示例性实施例中,所述像素单元包括两个绿色发光器件,所述两个绿色发光器件设置于所述投影面积最小的两个所述开口区,所述沟道也包括两个,所述两个沟道一一对应的连通所述凹槽和设置两个绿色发光器件的两个开口区。
在本公开的一种示例性实施例中,所述像素单元内,设置两个绿色发光器件的所述开口区沿第一方向排列,所述像素区和发光区沿第二方向排列,所述第一方向和第二方向垂直,所述凹槽为条形且沿所述第一方向延伸。
在本公开的一种示例性实施例中,排布于同一直线上的各所述像素单元的所述凹槽相互连通。
在本公开的一种示例性实施例中,所述凹槽的延伸方向与所述沟道的延伸方向垂直。
在本公开的一种示例性实施例中,所述沟道的倾斜角的角度为5-50°。
在本公开的一种示例性实施例中,所述透明膜层与所述像素界定层采用相同材料且为同层设置。
在本公开的一种示例性实施例中,所述疏水材料包括氟改性的聚酰亚胺或氟改性的聚甲基丙烯酸甲酯。
根据本公开的另一个方面,提供一种显示装置,包括上述所述的透明显示面板。
根据本公开的再一个方面,提供一种透明显示面板的制备方法,包括:
提供一基板,在所述基板上划分每个像素单元的发光区和透明区;
形成位于所述基板发光区的像素界定层,且通过所述像素界定层定义出多个开口区;
形成位于所述透明区的透明膜层,所述透明膜层为疏水材料,且所述透明膜层包括凹槽和沟道,所述沟道连通所述凹槽和对应的所述像素单元内的任意一个开口区,其中,所述沟道相对于所述基板具有一倾斜角,所述凹槽底面到所述基板的距离大于所述开口区底面到所述基板的距离,且所述凹槽在所述基板的投影面积大于与所述沟道相连的所述开口区在所述基板的投影面积;
采用喷墨打印的方式将包含待打印膜层材料的墨水打印在所述凹槽中,使所述墨水从所述沟道流入所述开口区内,形成目标膜层。
在本公开的一种示例性实施例中,所述目标膜层为有机发光层。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为第一种实施方式像素单元的结构示意图;
图2为图1中A-A向的结构剖视图;
图3为第一种实施方式显示面板的结构示意图;
图4为第一种实施方式显示面板优化的结构示意图;
图5为第一种实施方式显示面板另一种排布形式的结构示意图;
图6为第二种实施方式像素单元的结构示意图;
图7为第二种实施方式显示面板的结构示意图;
图8为第二种实施方式显示面板优化的结构示意图;
图9为第二种实施方式显示面板另一种排布形式的结构示意图;
图10为一种实施方式的显示面板的制备工艺流程图。
图中:1、基板;2、像素界定层;3、透明膜层;4、发光器件;5、凹槽;6、沟道;41、红色发光器件,42、绿色发光器件;43、蓝色发光器件;100、发光区;200、透明区;110、开口区;401、阳极层;402、有机发光层;403、阴极层。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
相关技术中,喷墨打印技术是通过微米级的打印喷头将红、绿、蓝三色发光材料的溶液(也称之为墨水)分别喷涂在预先已经图案化了的ITO衬底上的开口区110中,形成红绿蓝三基色发光像素单元。膜层的厚度由打印在像素内的溶质数量决定。这种方法能极大地节省昂贵的发光材料,而且通过使用有多个喷射口的喷头打印(128或256个喷射口)可以大幅缩短制膜时间,因此,喷墨打印彩色图案化技术在PLED制造领域已被确认为向产业化发展的主流技术。
对于分辨率越来越高的透明显示面板,开口区面积越来越小,喷墨打印技术的精准度需要很高才能准确将待打印材料,尤其是有机发光材料,打印在开口区内。
本实施方式中提供了一种透明显示面板,适用于采用喷墨打印技术 制备,其包括多个像素单元。如图1和图2所示,为本示例性实施方式中一个像素单元的结构示意图,图1为该示例性实施方式像素单元的俯视图,图2为该示例性实施方式像素单元沿A-A向的剖视图。像素单元包括发光区100和透明区200,像素单元包括基板1,基板1的发光区100上设置有像素界定层2,像素界定层2用于定义多个开口区110,开口区110内设置发光器件4;基板的透明区200设置有透明膜层3,透明膜层3采用疏水材料,透明膜层3包括凹槽5和沟道6,沟道6连通凹槽5和任意一个开口区110;其中,凹槽5底面到基板1的距离大于开口区110底面到基板1的距离,即凹槽5底面比开口区110底面高,沟道6相对于基板1具有一倾斜角α,且凹槽5在基板1的投影面积大于与沟道6相连的开口区110在基板1的投影面积。
该结构的透明显示面板在制备时,可以将待打印的有机发光层402的墨水打印在面积较大的凹槽5内,由于凹槽5和沟道6制作在疏水材料上,因此墨水会在疏水力作用下由倾斜的沟道6流入面积较小的开口区110,进而得到制备在开口区110中的有机发光层402。由此,即便开口区110较小,也可以利用喷墨打印技术制备,同时,凹槽5和沟道6制作在透明区200,不会影响发光区100显示。尤其对于开口区110较小的高精度透明显示面板而言,其有机发光层402也可以实现喷墨打印,克服了喷墨打印技术的应用局限。
需要说明的是,附图1中对于发光区和透明区的划分仅为一种示例,基于该划分方式,由于沟道6连通凹槽5和开口区110,因此有一部分沟道位于发光区内,但在本申请中,认为沟道6全部位于透明区。
针对目前OLED发光材料而言,不同颜色发光器件4的发光材料衰减速度不同,蓝色材料较快,绿光次之,红色较慢。为了获得相近的寿命,一般在设计像素时,把蓝光子像素设计的比较大,其次绿光子像素,红光子像素面积最小。因此,本示例性实施方式中,像素单元内的各开口区110在基板1的投影面积不完全相等,那么面积最小的子像素,对喷墨打印技术的精准度要求更高。在该示例性实施方式中,将沟道6与投影面积最小的开口区110进行连通,使得对应子像素的有机发光层402在进行喷墨打印时,可以先将墨水打印至面积较大的凹槽5中,进而使 其流入开口区110。该方式使得开口区最小的子像素的有机发光层402可以采用喷墨打印技术实现。
凹槽5的面积需要根据分辨率和喷墨打印设备的打印精度设置,凹槽5面积不能过大,否则会占据透明区200过多的面积,同时凹槽5面积也不能太小,否则喷墨打印设备仍然难以将墨水准确打印在其中且制备较困难。另一方面,凹槽5的容积需要根据待打印材料的体积设置,以保证能够容纳足够体积的墨水。
沟道6的倾斜角α角度优选设置在5-50°之间,若角度小于5°则墨水难以顺畅地流动至开口区110,若角度大于50°,在沟道长度不变的前提下则需要透明膜层3厚度较大,由此会增加面板厚度,且角度较大的沟道在制备时对工艺要求较高。当沟道的倾斜角α在5-50°之间时,既能够使墨水顺畅的由凹槽5流动至开口区110,且能维持较薄的面板还便于制备。
本示例性实施方式中,透明膜层3可以与像素界定层2采用相同材料且同层设置,以此简化制备工艺,那么则需要选择同时具备透明特性和疏水特性的材料。在本实施方式中,该材料为氟改性的透明材料,具体可以为氟改性的聚酰亚胺或氟改性的聚甲基丙烯酸甲酯。聚酰亚胺和聚甲基丙烯酸甲酯本身为吸水材料,氟原子具有较高的电负性,经含氟单体改性后会降低其吸水性,含氟单体可以为聚丙烯五氟苯、六氟二酐等含氟有机溶剂,本公开不对此进行特殊限定。氟含量越高,吸水率越低,疏水性越高,则对墨水的排斥作用越明显,可以有效将墨水推送至开口区。同时氟改性的聚酰亚胺或氟改性的聚甲基丙烯酸甲酯成本较低,适于控制面板成本。
需要指出的是,图2中仅示例性地示出了发光器件的部分膜层,如阴极层403、阳极层401和有机发光层402。虽然图中未示出其他膜层,但本领域技术人员知晓,发光器件还可以包括空穴传输层、电子传输层等膜层。
下面给出几种具体实施例,以对本公开的透明显示面板的结构进行详细的说明。
实施例一
如图1-图3所示,为第一种示例性实施方式的透明显示面板的俯视图。该显示面板包括多个阵列排布的像素单元,该显示面板的像素单元内的发光区100和透明区200沿列方向排列,透明区200位于发光区100上方。发光区100内包含红色子像素、绿色子像素和蓝色子像素,构成RGB三色显示,三个子像素沿行方向排列。也就是说,发光区100内包含三个开口区110,分别用于设置红色发光器件41、绿色发光器件42和蓝色发光器件43,三个开口区110沿行方向排列,其中,红色子像素的开口区110面积最小,蓝色子像素的开口区110面积最大,绿色位于中间。本示例性实施方式中,凹槽5设置于上方的透明区200内,通过沟道6连通红色子像素的开口区110,凹槽5的面积大于红色子像素开口区110的面积,凹槽5高度高于开口区110,喷墨打印时便可以先将红色墨水打印在凹槽5中,然后经由倾斜的沟道6流入开口区110内,从而形成红色有机发光层402。
在图中所示的结构中,红色子像素位于像素单元最左侧,因此沟道6也设置在红色子像素上方。本领域技术人员可以理解的是,三个颜色子像素也可以按照其他顺序排列,例如,红色子像素位于中间或右侧,只要能通过沟道6将凹槽5和红色子像素的开口区110连接起来即可。
在本示例性实施方式中,凹槽5呈条形结构且沿行方向延伸,由此可充分利用透明区200的面积。沟道6的延伸方向和凹槽5延伸方向垂直,可以通过最短路径将墨水注入开口区110,避免墨水在沟道6或凹槽5中滞留。
图4所示为图3所示的透明显示面板的进一步简化的结构,对于沿行方向排布的多个像素单元而言,每一行像素单元的凹槽5可以在行方向上连通起来,由此可以降低工艺难度。以该像素结构为例,对于像素密度超过160甚至300PPI的面板而言,凹槽5面积在大于红色子像素开口区110面积的前提下,宽度不超过80μm,深度不超过1.5μm,就可以满足现有喷墨打印设备打印红色子像素有机发光层402的精度需求。
需要说明的是,图3和图4的实施方式是以行方向为第一方向,列方向为第二方向。本领域技术人员可以理解的是,也可以以列方向为第一方向,行方向为第二方向,参考图5,透明区200与发光区100沿行 方向排列,发光区100的三个颜色子像素沿列方向排列,凹槽5延伸方向也为列方向,沟道6延伸方向为行方向。同理,对于沿列方向排布的多个像素单元而言,每一列像素单元的凹槽5也可以在列方向上连通起来(图中未示出)。
实施例二
如图6所示为第二种示例性实施方式的像素单元的结构俯视图,如图7所示为第二种示例性实施方式的透明显示面板的俯视图。参考图6和图7,该显示面板包括多个阵列排布的像素单元,像素单元内的发光区100和透明区200沿行方向排列,透明区200位于发光区100右侧。发光区100内包含红色子像素、蓝色子像素和两个绿色子像素,构成RGGB三色显示,也就是说,发光区100内包含四个开口区110,分别用于设置红色发光器件41、蓝色发光器件43和两个绿色发光器件42。在本实施例中,两个绿色子像素沿列方向排列且位于发光区100右侧,红色和蓝色子像素沿行方向排列位于发光区100左侧。其中,两个绿色子像素的开口区110面积相等且最小,蓝色子像素的开口区110面积最大,红色位于中间。对于这种像素结构的面板而言,绿色子像素对喷墨打印设备的要求最高。本示例性实施方式中,凹槽5设置于右侧的透明区200内,透明区200还设置有两个沟道6,两个沟道6分别将两个绿色子像素的开口区110和凹槽5连通,凹槽5底面高度高于绿色子像素的开口区110底面高度,凹槽5的面积大于任意一个绿色子像素开口区110的面积,凹槽5的容积可以同时容纳两个绿色子像素所有打印材料,由此便可以通过一步打印将两个绿色子像素的墨水同时打印在凹槽5内,然后墨水经两个沟道6分成两路分别流入两个开口区110。喷墨打印时便可以先将绿色墨水打印在凹槽5中,然后经由倾斜的沟道6流入开口区110内,从而形成绿色有机发光层402。
需要说明的是,本实施例中,凹槽5的面积只需要大于其中一个绿色开口区110就可以使喷墨打印难度降低,而无需使凹槽5面积大于两个绿色子像素开口区110面积之和,当然,若凹槽5面积大于两个绿色子像素开口区110面积之和,则更容易实现喷墨打印。而凹槽5的容积决定是否能同时打印两个绿色子像素,只要凹槽5能容纳两个绿色子像 素的有机发光材料既可以实现同步打印。
在另一种实施方式中,透明区200还可以包括两个凹槽5(图中未示出),两个沟道6分别将两个凹槽5和两个绿色子像素一一对应的连通起来,每个凹槽5的面积大于对应的绿色开口区110的面积,打印时每个凹槽5内的绿色墨水流入对应的开口区110内完成开口区110膜层制备,该结构也可以降低喷墨打印的难度。但显然,该结构对面板的制作工艺要求较高。
与上一实施例类似的是,本实施例中凹槽5也呈条形结构且沿列方向延伸,两个沟道6的延伸方向和凹槽5延伸方向垂直,即沿行方向延伸,由此可以通过最短路径将墨水注入开口区110,避免墨水在沟道6或凹槽5中滞留。
图8所示为图7所示的透明显示面板的进一步简化的结构,对于沿列方向排布的多个像素单元而言,每一列像素单元的凹槽5可以在列方向上连通起来,由此可以降低工艺难度。
在图7-图8中所示的像素结构中,两个绿色子像素位于发光区100最右侧,因此沟道6也设置在两个绿色子像素的右侧。本领域技术人员可以理解的是,四个子像素也可以按照其他顺序排列,例如,红色子像素位于左侧,蓝色子像素位于中间,两个绿色子像素位于右侧,只要能通过沟道6将凹槽5和两个子像素的开口区110连接起来即可。
需要说明的是,本示例性实施方式是以列方向为第一方向,行方向为第二方向。本领域技术人员可以理解的是,也可以以行方向为第一方向,列方向为第二方向,参考图9,透明区200与发光区100沿列方向排列,发光区100的红色和蓝色子像素沿列方向排列,两个绿色子像素沿行方向排列,凹槽5延伸方向也为行方向,沟道6延伸方向为列方向。同理,对于沿行方向排布的多个像素单元而言,每一行像素单元的凹槽5也可以在行方向上连通起来(图中未示出)。
本实施方式还提供一种透明显示面板的制备方法,以形成如图2所示的显示面板为例,参考图10,该制备方法包括以下步骤:
步骤S100,提供一基板1,在基板1上划分每个像素单元的发光区100和透明区200。
步骤S200,形成位于基板1发光区100的像素界定层2,且通过像素界定层2定义出多个开口区110;
步骤S300,形成位于透明区200的透明膜层3,透明膜层3为疏水材料,且透明膜层3包括凹槽5和沟道6,沟道6连通所述凹槽5和对应的像素单元内的任意一个开口区110,其中,沟道6相对于基板1具有一倾斜角,凹槽5底面到基板1的距离大于开口区110底面到基板1的距离,且凹槽5在基板1的投影面积大于与沟道6相连的开口区110在基板1的投影面积;
步骤S400,采用喷墨打印的方式将包含待打印膜层材料的墨水打印在凹槽5中,使墨水从所述沟道6流入开口区110内,形成目标膜层。
上述方法中,步骤S100基板1上可以预先形成有薄膜晶体管阵列,以实现对子像素的独立调控。在形成步骤S200中发光区100的像素界定层2之前,通常先形成发光器件4的开口区110,开口区110具体可以通过溅射等工艺形成。像素界定层2可采用透明光阻材料经曝光、显影的工艺形成。
当上述步骤S200中的像素界定层2和步骤S300的透明膜层3采用相同材料时,例如氟改性的聚酰亚胺或氟改性的聚甲基丙烯酸甲酯时,这两个膜层可以通过同一步工艺形成。具体而言,先在发光区100和透明区200同时涂覆或沉积一层氟改性的聚酰亚胺或氟改性的聚甲基丙烯酸甲酯,这两种材料都能够形成透明光阻薄膜,然后利用光掩膜板对该透明光阻薄膜进行曝光,对曝光后的透明光阻薄膜进行显影操作,去除未曝光的透明光阻薄膜,就可以形成像素界定层2和透明膜层3。
需要说明的是,在形成透明膜层3中的沟道6时,由于沟道6具有一倾斜角,因此需要通过灰阶曝光工艺形成,即形成沟道6时所用的光掩膜板为灰阶掩膜板,由此便可以通过曝光量不同在显影后形成倾斜的沟道6底面。在透明区200形成有凹槽5和沟道6的显示面板上继续制作后续步骤,就可以实现较好的打印效果。
步骤S400中,以喷墨打印有机发光层402为例,在打印有机发光层402之前,首先需要在开口区110内形成空穴注入层、空穴传输层、电阻阻挡层等膜层,这些膜层可以采用蒸镀、化学沉积等方式形成。然后 在形成红色子像素的有机发光层402时,可以采用喷墨打印的方式将红色墨水打印在透明区200的凹槽5中,由于凹槽5面积较大,因此喷墨打印较易实现,然后墨水从在疏水材料的作用下经沟道6流入红色子像素的开口区110内,从而形成红色有机发光层402。在形成其他颜色子像素的有机发光层402时,由于开口区110面积较大,则可采用传统的喷墨打印方式直接将墨水打印在开口区110内。
该步骤既可以用来打印红色子像素的有机发光层402,也可以用来打印其他颜色子像素的有机发光层402,只要在步骤S300制备透明膜层3时制备相应的凹槽5和沟道6结构即可。当然,该步骤还可以用来实现其他目标膜层的喷墨打印,例如空穴传输层等,打印原理与有机发光层402相同,此处不再赘述。
除了上述步骤之外,显示面板的制备还包括电子传输层、电子注入层、阴极层等膜层的形成,这些膜层均采用本领域常规技术手段即可实现,此处不再赘述。
本实施方式还提供一种显示装置,该显示装置包括上述实施方式的透明显示面板。由于该显示装置具有上述透明显示面板,因此具有相同的有益效果,本公开在此不再赘述。
本公开对于显示装置的适用不做具体限制,其可以是电视机、笔记本电脑、平板电脑、可穿戴显示设备、手机、车载显示、导航、电子书、数码相框、广告灯箱等任何具有显示功能的产品或部件。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外 还可存在另外的要素/组成部分/等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (14)

  1. 一种透明显示面板,包括阵列排布的多个像素单元,所述像素单元包括发光区和透明区,其中,所述像素单元包括:
    基板;
    像素界定层,设于所述基板的发光区,且定义出多个开口区;
    多个发光器件,所述多个发光器件一一对应地设于所述多个开口区;
    透明膜层,设于所述基板的透明区且为疏水材料,所述透明膜层包括凹槽和沟道,所述沟道连通所述凹槽和任意一个开口区,其中,所述沟道相对于所述基板具有一倾斜角,所述凹槽底面到所述基板的距离大于所述开口区底面到所述基板的距离,且所述凹槽在所述基板的投影面积大于与所述沟道相连的所述开口区在所述基板的投影面积。
  2. 根据权利要求1所述的透明显示面板,其中,所述像素单元内的各开口区在所述基板的投影面积不完全相等,所述沟道连通所述凹槽和所述投影面积最小的所述开口区。
  3. 根据权利要求2所述的透明显示面板,其中,所述像素单元包括红色发光器件,所述红色发光器件设置于所述投影面积最小的所述开口区,所述沟道连通所述凹槽和设置所述红色发光器件的所述开口区。
  4. 根据权利要求3所述的透明显示面板,其中,所述像素单元内,各所述开口区沿第一方向排列,所述像素区和发光区沿第二方向排列,所述第一方向和第二方向垂直,所述凹槽为条形且沿所述第一方向延伸。
  5. 根据权利要求2所述的透明显示面板,其中,所述像素单元包括两个绿色发光器件,所述两个绿色发光器件设置于所述投影面积最小的两个所述开口区,所述沟道也包括两个,所述两个沟道一一对应的连通所述凹槽和设置两个绿色发光器件的两个开口区。
  6. 根据权利要求5所述的透明显示面板,其中,所述像素单元内,设置两个绿色发光器件的所述开口区沿第一方向排列,所述像素区和发光区沿第二方向排列,所述第一方向和第二方向垂直,所述凹槽为条形且沿所述第一方向延伸。
  7. 根据权利要求1-6中任一项所述的透明显示面板,其中,排布于同一直线上的各所述像素单元的所述凹槽相互连通。
  8. 根据权利要求7所述的透明显示面板,其中,所述凹槽的延伸方向与所述沟道的延伸方向垂直。
  9. 根据权利要求1所述的透明显示面板,其中,所述沟道的倾斜角的角度为5-50°。
  10. 根据权利要求1所述的透明显示面板,其中,所述透明膜层与所述像素界定层采用相同材料且为同层设置。
  11. 根据权利要求10所述的透明显示面板,其中,所述疏水材料包括氟改性的聚酰亚胺或氟改性的聚甲基丙烯酸甲酯。
  12. 一种显示装置,其中,包括权利要求1-11中任一项所述的透明显示面板。
  13. 一种透明显示面板的制备方法,其中,包括:
    提供一基板,在所述基板上划分每个像素单元的发光区和透明区;
    形成位于所述基板发光区的像素界定层,且通过所述像素界定层定义出多个开口区;
    形成位于所述透明区的透明膜层,所述透明膜层为疏水材料,且所述透明膜层包括凹槽和沟道,所述沟道连通所述凹槽和对应的所述像素单元内的任意一个开口区,其中,所述沟道相对于所述基板具有一倾斜角,所述凹槽底面到所述基板的距离大于所述开口区底面到所述基板的距离,且所述凹槽在所述基板的投影面积大于与所述沟道相连的所述开口区在所述基板的投影面积;
    采用喷墨打印的方式将包含待打印膜层材料的墨水打印在所述凹槽中,使所述墨水从所述沟道流入所述开口区内,形成目标膜层。
  14. 根据权利要求13所示的制备方法,其中,所述目标膜层为有机发光层。
PCT/CN2021/088517 2020-05-11 2021-04-20 透明显示面板及其制备方法、显示装置 WO2021227794A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/638,832 US20220310725A1 (en) 2020-05-11 2021-04-20 Transparent display panel and method for preparing same, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010394367.1A CN111554711A (zh) 2020-05-11 2020-05-11 透明显示面板及其制备方法、显示装置
CN202010394367.1 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021227794A1 true WO2021227794A1 (zh) 2021-11-18

Family

ID=72006186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088517 WO2021227794A1 (zh) 2020-05-11 2021-04-20 透明显示面板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20220310725A1 (zh)
CN (1) CN111554711A (zh)
WO (1) WO2021227794A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554711A (zh) * 2020-05-11 2020-08-18 京东方科技集团股份有限公司 透明显示面板及其制备方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150362855A1 (en) * 2014-06-17 2015-12-17 Canon Kabushiki Kaisha Organic light emitting device
CN108807457A (zh) * 2017-04-27 2018-11-13 京东方科技集团股份有限公司 阵列基板以及制作方法、oled器件及其制作方法、显示装置
CN109860438A (zh) * 2019-02-15 2019-06-07 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN110854174A (zh) * 2019-11-26 2020-02-28 京东方科技集团股份有限公司 显示背板及其制备方法和显示装置
CN111554711A (zh) * 2020-05-11 2020-08-18 京东方科技集团股份有限公司 透明显示面板及其制备方法、显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223722B1 (ko) * 2010-04-02 2013-01-17 삼성디스플레이 주식회사 유기 발광 표시 장치
CN104201292B (zh) * 2014-08-27 2019-02-12 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法
CN107895736B (zh) * 2017-12-15 2019-10-22 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示面板及其制作方法
CN110071138A (zh) * 2018-01-24 2019-07-30 株式会社日本有机雷特显示器 发光装置和显示装置
CN108428723B (zh) * 2018-03-27 2021-08-03 京东方科技集团股份有限公司 像素界定结构及其制备方法、显示基板、喷墨打印方法
CN110544713B (zh) * 2019-09-09 2022-08-26 合肥京东方卓印科技有限公司 显示面板及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150362855A1 (en) * 2014-06-17 2015-12-17 Canon Kabushiki Kaisha Organic light emitting device
CN108807457A (zh) * 2017-04-27 2018-11-13 京东方科技集团股份有限公司 阵列基板以及制作方法、oled器件及其制作方法、显示装置
CN109860438A (zh) * 2019-02-15 2019-06-07 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN110854174A (zh) * 2019-11-26 2020-02-28 京东方科技集团股份有限公司 显示背板及其制备方法和显示装置
CN111554711A (zh) * 2020-05-11 2020-08-18 京东方科技集团股份有限公司 透明显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN111554711A (zh) 2020-08-18
US20220310725A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
US9373814B2 (en) Organic light-emitting diode (OLED) display panel, pixel define layer (PDL) and preparation method thereof
US10784322B2 (en) Array substrate, manufacturing method, and display device
CN100580947C (zh) 显示器件以及制造方法
US10559635B2 (en) Pixel defining layer, production method thereof, and display substrate
US10811476B2 (en) Pixel definition layer, manufacturing method thereof, display substrate and display device
KR101586673B1 (ko) 유기전계발광표시장치 및 그 제조방법
WO2020224010A1 (zh) Oled 显示面板及其制备方法
US10868095B2 (en) Pixel defining layer, display substrate and method for manufacturing the same, and display device
CN108922912B (zh) 用于有机发光显示装置的基板、显示面板、显示装置
CN109860239B (zh) 阵列基板及其制作方法、显示装置
JP2014099402A (ja) 発光ディスプレイバックプレーン、ディスプレイデバイス、及び画素定義層の製造方法
US20220115452A1 (en) Display Substrate, Display Panel, Display Device and Manufacturing Method of Display Panel
WO2019052229A1 (zh) 显示基板、显示器件和显示基板的制造方法
WO2021088832A1 (zh) 电子设备、显示装置、显示基板及其制造方法
CN105336881A (zh) 一种印刷型高分辨率显示器件及其制作方法
WO2021227794A1 (zh) 透明显示面板及其制备方法、显示装置
US20210359044A1 (en) Organic light emitting diode back plate and method of manufacturing same
CN105428553A (zh) 一种印刷型显示器件及其制作方法
US12133421B2 (en) Display panel, manufacturing method thereof, and display device
WO2024022056A9 (zh) 显示面板及制作方法、显示装置
CN111146255B (zh) 显示面板、显示面板的制备方法和显示装置
CN110444692B (zh) 显示基板及其制备方法、显示装置
WO2024000389A1 (zh) 显示基板及显示装置
WO2022174521A1 (zh) 一种显示面板及其制作方法、显示装置
WO2020215513A1 (zh) 显示面板及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803042

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21803042

Country of ref document: EP

Kind code of ref document: A1