WO2018207597A1 - 蓄電デバイス用部材及び蓄電デバイス - Google Patents

蓄電デバイス用部材及び蓄電デバイス Download PDF

Info

Publication number
WO2018207597A1
WO2018207597A1 PCT/JP2018/016393 JP2018016393W WO2018207597A1 WO 2018207597 A1 WO2018207597 A1 WO 2018207597A1 JP 2018016393 W JP2018016393 W JP 2018016393W WO 2018207597 A1 WO2018207597 A1 WO 2018207597A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
solid electrolyte
storage device
negative electrode
electricity storage
Prior art date
Application number
PCT/JP2018/016393
Other languages
English (en)
French (fr)
Inventor
英郎 山内
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US16/492,962 priority Critical patent/US20200067134A1/en
Priority to CN201880015809.8A priority patent/CN110383558B/zh
Publication of WO2018207597A1 publication Critical patent/WO2018207597A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electricity storage device member and an electricity storage device that can be used for an electricity storage device such as an all-solid sodium ion secondary battery.
  • Hard carbon has been proposed as a negative electrode active material for sodium ion secondary batteries (Patent Document 1). However, since hard carbon has a low capacity of 200 mAh / g, and its charge / discharge voltage is close to 0 V (vs. Na / Na + ), metal Na dendrite is deposited on the negative electrode, causing a short circuit and high risk. Has the problem.
  • Patent Document 2 a material made of an oxide such as SnO has been studied as a negative electrode active material for sodium ion secondary batteries.
  • An object of the present invention is to provide an electricity storage device member and an electricity storage device that can be an electricity storage device having a high charge / discharge capacity and excellent charge / discharge cycle characteristics.
  • the member for an electricity storage device of the present invention comprises a solid electrolyte made of a sodium ion conductive oxide and a negative electrode layer made of a metal or alloy capable of occluding and releasing sodium and provided on the solid electrolyte. Yes.
  • the metal or alloy preferably contains at least one element selected from the group consisting of Sn, Bi, Sb, and Pb.
  • the negative electrode layer is preferably made of a metal film or an alloy film formed on the solid electrolyte.
  • the solid electrolyte is preferably ⁇ -alumina, ⁇ ′′ -alumina or NASICON type crystal.
  • the electricity storage device of the present invention is characterized by comprising the above-mentioned member for an electricity storage device of the present invention and a positive electrode layer.
  • the electricity storage device of the present invention may be an electricity storage device including a solid electrolyte made of a sodium ion conductive oxide, a negative electrode layer made of a metal or alloy capable of occluding and releasing sodium, and a positive electrode layer.
  • the negative electrode layer is preferably formed from a metal film or an alloy film.
  • an electricity storage device having a high charge / discharge capacity and excellent charge / discharge cycle characteristics can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing a member for an electricity storage device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an electricity storage device according to an embodiment of the present invention.
  • FIG. 3 is a graph showing an initial charge / discharge curve of the evaluation battery of Example 1.
  • 4 is a graph showing an initial charge / discharge curve of the evaluation battery of Example 3.
  • FIG. 5 is a graph showing an initial charge / discharge curve of the evaluation battery of Example 5.
  • FIG. 1 is a schematic cross-sectional view showing a member for an electricity storage device according to an embodiment of the present invention.
  • the electricity storage device member 1 of the present embodiment includes a solid electrolyte 2 and a negative electrode layer 3 provided on the solid electrolyte 2.
  • the solid electrolyte 2 is made of a sodium ion conductive oxide.
  • the negative electrode layer 3 is made of a metal or alloy capable of occluding and releasing sodium.
  • the negative electrode active material peels off from the current collector during charge / discharge, or the negative electrode active material itself cracks and becomes fine powder. And may be dispersed in the electrolyte.
  • the negative electrode layer 3 is provided on the solid electrolyte 2, so that the above-described problems are less likely to occur.
  • Examples of the metal or alloy capable of occluding and releasing sodium include a metal or alloy that occludes sodium by alloying with sodium.
  • Examples of such a metal or alloy include a metal or alloy containing at least one element selected from the group consisting of Sn, Bi, Sb, and Pb.
  • a metal that does not alloy with sodium may be included.
  • Examples of metals that do not alloy with sodium include Zn, Cu, Ni, Co, Si, Al, Mg, and Mo.
  • an alloy containing Zn, Cu, or Al is preferable because it is easy to process.
  • the content of the metal not alloyed with sodium is preferably in the range of 0 to 80 mol%, more preferably in the range of 10 to 70 mol%, and further in the range of 35 to 55 mol%. preferable. When there is too much content of the metal which does not alloy with sodium, a charge / discharge capacity may become too low.
  • the negative electrode layer 3 is preferably made of a metal film or an alloy film.
  • the charge / discharge cycle characteristics can be further improved.
  • the negative electrode layer 3 is made of a metal film or an alloy film, it is possible to increase the density of the negative electrode layer 3. Thereby, not only the thickness of the negative electrode layer 3 can be reduced, but also the conductive network in the in-plane direction of the film is expanded, so that the electronic resistance of the negative electrode layer 3 can be reduced. As a result, the rate characteristic is excellent.
  • Examples of a method for forming a metal film or an alloy film include a physical vapor phase method such as vapor deposition or sputtering, and a chemical vapor phase method such as thermal CVD, MOCVD, or plasma CVD.
  • Other methods for forming the metal film or alloy film include plating, sol-gel method, and liquid phase film forming method by spin coating.
  • a paste containing metal particles or alloy particles may be applied to the surface of the solid electrolyte 2 to form the negative electrode layer 3.
  • heat treatment may be performed to form a film.
  • the negative electrode layer 3 may be formed by attaching metal particles or alloy particles to the surface of the solid electrolyte 2 by an aerosol deposition method, an electrostatic powder coating method, or the like.
  • it is preferable to improve electrical conductivity or ion conductivity by applying pressure to the attached metal particles or alloy particles to increase the density.
  • the attached metal particles or alloy particles may be heated to near the melting point to increase the density to improve conductivity or ion conductivity.
  • the negative electrode layer 3 may contain a solid electrolyte powder, a conductive aid such as carbon, a binder, and the like.
  • a solid electrolyte powder By including the solid electrolyte powder, the contact interface between the active material and the solid electrolyte powder is increased, and it becomes easy to occlude / release sodium ions accompanying charge / discharge, and as a result, rate characteristics can be improved.
  • solid electrolyte powder the powder of the material similar to the solid electrolyte 2 mentioned later can be used.
  • the average particle size of the solid electrolyte powder is preferably 0.01 to 15 ⁇ m, 0.05 to 10 ⁇ m, particularly preferably 0.1 to 5 ⁇ m.
  • the discharge capacity tends to decrease.
  • the average particle size of the solid electrolyte powder is too large, the distance required for sodium ion conduction tends to be long, and the ionic conductivity tends to decrease. In addition, the ion conduction path between the active material powder and the solid electrolyte powder tends to decrease. As a result, the discharge capacity tends to decrease.
  • the average particle size of the solid electrolyte powder is too small, the ion conductivity is likely to be lowered due to the elution of sodium ions and the deterioration due to the reaction with carbon dioxide. Moreover, since voids are easily formed, the electrode density is also likely to decrease. As a result, the discharge capacity tends to decrease.
  • polypropylene carbonate PPC
  • CMC carboxymethylcellulose
  • the thickness of the negative electrode layer 3 is preferably in the range of 0.05 to 50 ⁇ m, and more preferably in the range of 0.3 to 3 ⁇ m. If the thickness of the negative electrode layer 3 is too thin, the absolute capacity (mAh) of the negative electrode decreases, which is not preferable. If the thickness of the negative electrode layer 3 is too thick, the resistance increases and the capacity (mAh / g) tends to decrease.
  • the loading amount of the negative electrode 3 in the solid electrolyte 2 is preferably in the range of 0.01 to 5 (mg / cm 2 ), and preferably in the range of 0.4 to 0.9 (mg / cm 2 ). Is more preferable. If the amount of the negative electrode layer 3 supported is too small, the absolute capacity (mAh) of the negative electrode decreases, which is not preferable. When the amount of the negative electrode layer 3 supported is too large, the resistance increases and the capacity (mAh / g) tends to decrease.
  • the solid electrolyte 2 is formed from a sodium ion conductive oxide.
  • the sodium ion conductive oxide include compounds containing at least one selected from Al, Y, Zr, Si and P, Na, and O. Specific examples thereof include ⁇ -alumina, ⁇ ′′- Examples thereof include alumina and NASICON crystals, which are preferably used because of their excellent sodium ion conductivity.
  • the oxide material containing ⁇ -alumina or ⁇ ′′ -alumina contains Al 2 O 3 65 to 98%, Na 2 O 2 to 20%, MgO + Li 2 O 0.3 to 15% in mol%.
  • % means “mol%” in the following description unless otherwise specified.
  • ⁇ + ⁇ +...” Means the total amount of each corresponding component.
  • Al 2 O 3 is, beta-alumina and beta "- content .
  • al 2 O 3 is a main component of alumina 65 to 98% to be particularly 70 to 95% preferably .al 2 O 3
  • the amount of Al 2 O 3 is too large, ⁇ -alumina having no ionic conductivity remains, and the ionic conductivity tends to decrease.
  • Na 2 O is a component that imparts sodium ion conductivity to the solid electrolyte.
  • the content of Na 2 O is preferably 2 to 20%, 3 to 18%, particularly 4 to 16%.
  • Na 2 O is too small, the effect is difficult to obtain.
  • excess sodium forms a compound that does not contribute to ionic conductivity such as NaAlO 2, so that ionic conductivity tends to decrease.
  • MgO and Li 2 O are components (stabilizers) that stabilize the structure of ⁇ -alumina and ⁇ ′′ -alumina.
  • the content of MgO + Li 2 O is 0.3 to 15%, 0.5 to 10%, In particular, it is preferably 0.8 to 8% If the amount of MgO + Li 2 O is too small, ⁇ -alumina remains in the solid electrolyte and the ionic conductivity tends to decrease, whereas if the amount of MgO + Li 2 O is too large.
  • the MgO or Li 2 O that did not function as a stabilizer remains in the solid electrolyte, and the ionic conductivity tends to decrease.
  • the solid electrolyte preferably contains ZrO 2 or Y 2 O 3 in addition to the above components.
  • ZrO 2 and Y 2 O 3 suppress the abnormal grain growth of ⁇ -alumina and / or ⁇ ′′ -alumina when a raw material is fired to produce a solid electrolyte, and ⁇ -alumina and / or ⁇ ′′ -alumina There is an effect of improving the adhesion of each particle.
  • the content of ZrO 2 is preferably 0 to 15%, 1 to 13%, particularly 2 to 10%.
  • the content of Y 2 O 3 is preferably 0 to 5%, 0.01 to 4%, particularly preferably 0.02 to 3%. If there is too much ZrO 2 or Y 2 O 3, the amount of ⁇ -alumina and / or ⁇ ′′ -alumina produced will decrease, and the ionic conductivity tends to decrease.
  • the crystal represented by the general formula NasA1tA2uOv include Na 3 Zr 2 Si 2 PO 12 , Na 3.2 Zr 1.3 Si 2.2 P 0.8 O 10.5 , Na 3 Zr 1. 6 Ti 0.4 Si 2 PO 12 , Na 3 Hf 2 Si 2 PO 12 , Na 3.4 Zr 0.9 Hf 1.4 Al 0.6 Si 1.2 P 1.8 O 12 , Na 3 Zr 1 .7 Nb 0.24 Si 2 PO 12 , Na 3.6 Ti 0.2 Y 0.8 Si 2.8 O 9 , Na 3 Zr 1.88 Y 0.12 Si 2 PO 12 , Na 3.12 Zr 1.88 Y 0.12 Si 2 PO 12 , Na 3.6 Zr 0.13 Yb 1.67 Si 0.11 P 2.9 O 12 and the like.
  • the thickness of the solid electrolyte 2 is preferably in the range of 10 to 2000 ⁇ m, and more preferably in the range of 50 to 200 ⁇ m. If the thickness of the solid electrolyte 2 is too thin, the mechanical strength is reduced and it is easily damaged, so that an internal short circuit is likely to occur. If the thickness of the solid electrolyte 2 is too thick, the ion conduction distance associated with charging / discharging becomes long, so the internal resistance increases, and the discharge capacity and the operating voltage tend to decrease. In addition, the energy density per unit volume of the electricity storage device tends to decrease.
  • the solid electrolyte 2 can be manufactured by mixing raw material powders, forming the mixed raw material powders, and firing them.
  • a green sheet can be produced by slurrying raw material powder and then firing the green sheet.
  • the negative electrode layer 3 is made of a metal or alloy capable of occluding and releasing sodium, it has a high charge / discharge capacity. Moreover, since the negative electrode layer 3 is provided on the solid electrolyte 2, good charge / discharge cycle characteristics are exhibited. When the negative electrode layer 3 is formed on the solid electrolyte 2 as a metal film or an alloy film and is supported on the solid electrolyte 2, even better charge / discharge cycle characteristics are exhibited.
  • the negative electrode layer 3 can also function as a negative electrode current collector, there is a case where it is not necessary to provide a negative electrode current collector that is necessary for a conventional power storage device.
  • FIG. 2 is a schematic cross-sectional view showing an electricity storage device according to an embodiment of the present invention.
  • the electricity storage device 11 of this embodiment includes a solid electrolyte 12 made of a sodium ion conductive oxide, a negative electrode layer 13 made of a metal or alloy capable of occluding and releasing sodium, and a positive electrode layer 14. It has.
  • the electricity storage device 11 of this embodiment can be used as an all-solid sodium ion secondary battery.
  • the power storage device member 1 shown in FIG. 1 is used as the solid electrolyte 12 and the negative electrode layer 13. Therefore, the negative electrode layer 13 is preferably formed on the solid electrolyte 2 as a metal film or an alloy film and supported on the solid electrolyte 12.
  • the electricity storage device of the present invention is not limited to this.
  • solid electrolyte 12 and the negative electrode layer 13 in the present embodiment those similar to the solid electrolyte 2 and the negative electrode layer 3 of the embodiment shown in FIG. 1 can be used.
  • the positive electrode layer 14 in this embodiment is not particularly limited as long as it includes a positive electrode active material capable of occluding and releasing sodium and functions as a positive electrode layer.
  • a positive electrode active material capable of occluding and releasing sodium and functions as a positive electrode layer.
  • an active material precursor powder such as glass powder may be formed by firing. By firing the active material precursor powder, an active material crystal is precipitated, and this active material crystal acts as a positive electrode active material.
  • the active material crystal that acts as the positive electrode active material includes Na, M (M is at least one transition metal element selected from Cr, Fe, Mn, Co, V, and Ni), sodium transition metal containing P and O.
  • M is at least one transition metal element selected from Cr, Fe, Mn, Co, V, and Ni
  • sodium transition metal containing P and O examples include phosphate crystals. Specific examples include Na 2 FeP 2 O 7 , NaFePO 4 , Na 3 V 2 (PO 4 ) 3 , Na 2 NiP 2 O 7 , Na 3.64 Ni 2.18 (P 2 O 7 ) 2 , Na 3. Ni 3 (PO 4) 2 ( P 2 O 7) , and the like.
  • the sodium transition metal phosphate crystal is preferable because of its high capacity and excellent chemical stability.
  • triclinic crystals belonging to the space group P1 or P-1 especially the general formula NaxMyP 2 Oz (1.2 ⁇ x ⁇ 2.8, 0.95 ⁇ y ⁇ 1.6, 6.5 ⁇ z ⁇
  • the crystal represented by 8) is preferable because of excellent cycle characteristics.
  • Other active material crystals that act as a positive electrode active material include layered sodium transition metal oxide crystals such as NaCrO 2 , Na 0.7 MnO 2 , and NaFe 0.2 Mn 0.4 Ni 0.4 O 2. .
  • the active material precursor powder is selected from (i) at least one transition metal element selected from the group consisting of Cr, Fe, Mn, Co, Ni, Ti and Nb, and (ii) P, Si and B. And (iii) those containing O.
  • the positive electrode active material precursor powder a powder containing Na 2 O 8 to 55%, CrO + FeO + MnO + CoO + NiO 10 to 70%, P 2 O 5 + SiO 2 + B 2 O 3 15 to 70% in terms of mol% in terms of oxide. Can be mentioned. The reason why each component is limited in this way will be described below. In the following description regarding the content of each component, “%” means “mol%” unless otherwise specified.
  • Na 2 O serves as a supply source of sodium ions that move between the positive electrode active material and the negative electrode active material during charge and discharge.
  • the content of Na 2 O is preferably 8 to 55%, 15 to 45%, particularly 25 to 35%. If the amount of Na 2 O is too small, sodium ions contributing to occlusion and release decrease, and the discharge capacity tends to decrease. On the other hand, when there is too much Na 2 O, different crystals that do not contribute to charging / discharging such as Na 3 PO 4 tend to precipitate, and the discharge capacity tends to decrease.
  • CrO, FeO, MnO, CoO, and NiO are components that act as a driving force for occlusion and release of sodium ions by causing a redox reaction by changing the valence of each transition element during charge and discharge.
  • NiO and MnO have a great effect of increasing the redox potential.
  • FeO is particularly easy to stabilize the structure during charge and discharge, and to improve cycle characteristics.
  • the content of CrO + FeO + MnO + CoO + NiO is preferably 10 to 70%, 15 to 60%, 20 to 55%, 23 to 50%, 25 to 40%, particularly preferably 26 to 36%.
  • P 2 O 5 , SiO 2 and B 2 O 3 form a three-dimensional network structure, they have an effect of stabilizing the structure of the positive electrode active material.
  • P 2 O 5 and SiO 2 are preferable because of excellent ion conductivity, and P 2 O 5 is most preferable.
  • the content of P 2 O 5 + SiO 2 + B 2 O 3 is 15 to 70%, preferably 20 to 60%, particularly preferably 25 to 45%. If the amount of P 2 O 5 + SiO 2 + B 2 O 3 is too small, the discharge capacity tends to decrease when the battery is repeatedly charged and discharged.
  • the content of each component of P 2 O 5 , SiO 2 and B 2 O 3 is preferably 0 to 70%, 15 to 70%, 20 to 60%, and particularly preferably 25 to 45%.
  • vitrification can be facilitated by incorporating various components in addition to the above components within a range not impairing the effect as the positive electrode active material.
  • examples of such components include MgO, CaO, SrO, BaO, ZnO, CuO, Al 2 O 3 , GeO 2 , Nb 2 O 5 , ZrO 2 , V 2 O 5 , and Sb 2 O 5 in oxide notation.
  • Al 2 O 3 serving as a network-forming oxide and V 2 O 5 serving as an active material component are preferable.
  • the total content of the above components is preferably 0 to 30%, 0.1 to 20%, particularly preferably 0.5 to 10%.
  • the positive electrode active material precursor powder is preferably such that an amorphous phase is formed together with the positive electrode active material crystal by firing.
  • an amorphous phase is formed together with the positive electrode active material crystal by firing.
  • the average particle diameter of the active material precursor powder is preferably 0.01 to 15 ⁇ m, 0.05 to 12 ⁇ m, and particularly preferably 0.1 to 10 ⁇ m.
  • the average particle diameter of the active material precursor powder is too small, the cohesive force between the active material precursor powders becomes strong and tends to be inferior in dispersibility when formed into a paste.
  • the internal resistance of the battery increases and the operating voltage tends to decrease.
  • the electrode density tends to decrease and the capacity per unit volume of the battery tends to decrease.
  • the average particle size of the active material precursor powder is too large, sodium ions are difficult to diffuse and the internal resistance tends to increase. Moreover, there exists a tendency to be inferior to the surface smoothness of an electrode.
  • the average particle diameter means D50 (volume-based average particle diameter) and indicates a value measured by a laser diffraction scattering method.
  • the thickness of the positive electrode layer 14 is preferably in the range of 3 to 300 ⁇ m, and more preferably in the range of 10 to 150 ⁇ m. If the thickness of the positive electrode layer 14 is too thin, the energy density tends to decrease because the capacity of the electricity storage device 11 itself decreases. If the thickness of the positive electrode layer 14 is too thick, resistance to electronic conduction increases, and the discharge capacity and operating voltage tend to decrease.
  • the positive electrode layer 14 may contain solid electrolyte powder as necessary.
  • the solid electrolyte powder the same solid electrolyte powder as that contained in the negative electrode layer 13 can be used. By including the solid electrolyte powder, sodium ion conductivity in the positive electrode layer 14 and at the interface between the positive electrode layer 14 and the solid electrolyte 12 can be improved.
  • the volume ratio of the active material precursor powder to the solid electrolyte powder is preferably 20:80 to 95: 5, 30:70 to 90:10, particularly 35:65 to 88:12.
  • the positive electrode layer 14 may contain a conductive aid such as carbon powder as necessary. By including a conductive additive, the internal resistance of the positive electrode layer 14 can be reduced.
  • the conductive assistant is preferably contained in the positive electrode layer 14 at 0 to 20% by mass, and more preferably 1 to 10% by mass.
  • the positive electrode layer 14 can be produced using an active material precursor powder and, if necessary, a slurry containing a solid electrolyte powder and / or a conductive aid at the above-mentioned ratio. If necessary, a binder, a plasticizer, a solvent, and the like are added to the slurry. After applying the slurry, the positive electrode layer 14 can be produced by drying and firing the slurry. Alternatively, the slurry may be applied on a substrate such as PET (polyethylene terephthalate) and then dried to produce a green sheet, and the green sheet may be fired.
  • PET polyethylene terephthalate
  • the manufacturing method of the electricity storage device 11 shown in FIG. 2 is not particularly limited.
  • the positive electrode layer 14 is formed on one surface of the solid electrolyte 12
  • the negative electrode layer 13 is formed on the other surface. May be.
  • the positive electrode layer forming slurry may be applied on one surface of the solid electrolyte 12 and then dried and fired to form the positive electrode layer 14.
  • the solid electrolyte forming green sheet and the positive electrode layer forming green sheet may be laminated, and these green sheets may be fired to form the solid electrolyte 12 and the positive electrode layer 14 simultaneously.
  • the negative electrode layer 13 is formed on the other surface of the solid electrolyte 12 in the same manner as the embodiment shown in FIG. .
  • the positive electrode layer 14 may be formed on the other surface.
  • the negative electrode layer 13 is formed on one surface of the solid electrolyte 12 in the same manner as in the embodiment shown in FIG. 1
  • the positive electrode layer 14 is formed on the other surface of the solid electrolyte 12 in the same manner as described above.
  • the solid electrolyte 12, the negative electrode layer 13, and the positive electrode layer 14 may be separately manufactured, and the electricity storage device 11 may be manufactured by combining them.
  • a magnetron sputtering apparatus (JEOL) Sputtering was performed using JEC-3000FC).
  • JEOL magnetron sputtering apparatus
  • a negative electrode layer made of a metal film or an alloy film was formed on one surface of the solid electrolyte.
  • Sputtering was performed while introducing argon (Ar) gas in a vacuum and applying a current of 30 mA.
  • Table 1 shows the supported amount and thickness of the negative electrode layer on the solid electrolyte.
  • a battery for evaluating negative electrode characteristics was produced as follows. In an argon atmosphere with a dew point of ⁇ 70 ° C. or lower, metallic sodium serving as a counter electrode was pressure-bonded to the surface opposite to the surface on which the negative electrode layer of the power storage device member was formed. The obtained laminate was placed on the lower lid of the coin cell, and then the upper lid was put on to produce a CR2032-type evaluation battery.
  • Table 1 shows the initial charge capacity, the initial discharge capacity, the initial charge / discharge efficiency, and the discharge capacity maintenance rate at the 20th cycle.
  • 3, 4, and 5 are diagrams showing initial charge / discharge curves of the evaluation batteries of Example 1, Example 3, and Example 5.
  • FIG. 1 shows the initial charge capacity, the initial discharge capacity, the initial charge / discharge efficiency, and the discharge capacity maintenance rate at the 20th cycle.
  • 3, 4, and 5 are diagrams showing initial charge / discharge curves of the evaluation batteries of Example 1, Example 3, and Example 5.
  • the negative electrodes of Examples 1 to 5 have high charge / discharge capacity and excellent charge / discharge cycle characteristics. Therefore, it can be seen that by using the negative electrodes of Examples 1 to 5, an electricity storage device having high charge / discharge capacity and excellent charge / discharge cycle characteristics can be obtained.
  • Example 1 and Example 2 the charge / discharge cycle characteristics are improved by including a metal that does not alloy with sodium such as Cu and Zn. I understand that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

充放電容量が高く、かつ充放電サイクル特性に優れた蓄電デバイスにすることができる蓄電デバイス用部材及び蓄電デバイスを提供する。 本発明の蓄電デバイス用部材1は、ナトリウムイオン伝導性酸化物からなる固体電解質2と、ナトリウムを吸蔵・放出可能な金属または合金からなり、固体電解質2の上に設けられる負極層3とを備えることを特徴としている。

Description

蓄電デバイス用部材及び蓄電デバイス
 本発明は、全固体ナトリウムイオン二次電池等の蓄電デバイスに用いることができる蓄電デバイス用部材及び蓄電デバイスに関する。
 ナトリウムイオン二次電池用の負極活物質として、ハードカーボンが提案されている(特許文献1)。しかしながら、ハードカーボンは、容量が200mAh/gと低いことに加え、充放電電圧が0V(vs.Na/Na)に近いため、負極上で金属Naデンドライトが析出し短絡しやすく危険性が高いという問題を有している。
 そこで、ナトリウムイオン二次電池用の負極活物質として、SnO等の酸化物からなる材料が検討されている(特許文献2)。
特開2009-266821号公報 特開2015-28922号公報
 しかしながら、SnO等の酸化物からなる材料を負極活物質として用いると、初回充電時に対極からNaイオンと電子を吸蔵する際、酸化物から金属に還元するコンバージョン反応に電子が消費されるため、初回充放電効率が悪いという問題を有している。
 一方、SnやBi等の金属は、Naと合金化することによりNaを吸蔵することができるので、高い容量が得られることが期待される。しかしながら、Naイオンの吸蔵・放出に伴う体積変化が大きいため、負極活物質が集電体から剥離したり、負極活物質自体に亀裂が生じ微粉化し、電解液中に分散されるため、良好な充放電サイクル特性が得られないという問題がある。
 本発明の目的は、充放電容量が高く、かつ充放電サイクル特性に優れた蓄電デバイスにすることができる蓄電デバイス用部材及び蓄電デバイスを提供することにある。
 本発明の蓄電デバイス用部材は、ナトリウムイオン伝導性酸化物からなる固体電解質と、ナトリウムを吸蔵・放出可能な金属または合金からなり、固体電解質の上に設けられる負極層とを備えることを特徴としている。
 金属または合金は、Sn、Bi、Sb、及びPbからなる群より選ばれる少なくとも1種の元素を含むことが好ましい。
 負極層は、固体電解質の上に形成された金属膜または合金膜からなることが好ましい。
 固体電解質は、β-アルミナ、β”-アルミナまたはNASICON型結晶であることが好ましい。
 本発明の蓄電デバイスは、上記本発明の蓄電デバイス用部材と、正極層とを備えることを特徴としている。
 また、本発明の蓄電デバイスは、ナトリウムイオン伝導性酸化物からなる固体電解質と、ナトリウムを吸蔵・放出可能な金属または合金からなる負極層と、正極層とを備える蓄電デバイスであってもよい。この場合、負極層は、金属膜または合金膜から形成されていることが好ましい。
 本発明によれば、充放電容量が高く、かつ充放電サイクル特性に優れた蓄電デバイスにすることができる。
図1は、本発明の一実施形態の蓄電デバイス用部材を示す模式的断面図である。 図2は、本発明の一実施形態の蓄電デバイスを示す模式的断面図である。 図3は、実施例1の評価用電池の初回充放電曲線を示す図である。 図4は、実施例3の評価用電池の初回充放電曲線を示す図である。 図5は、実施例5の評価用電池の初回充放電曲線を示す図である。
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。
 図1は、本発明の一実施形態の蓄電デバイス用部材を示す模式的断面図である。図1に示すように、本実施形態の蓄電デバイス用部材1は、固体電解質2と、固体電解質2の上に設けられている負極層3とを備えている。固体電解質2は、ナトリウムイオン伝導性酸化物からなる。負極層3は、ナトリウムを吸蔵・放出可能な金属または合金からなる。既述の通り、液系電解質を使用した電池において金属または合金からなる負極活物質を使用した場合、充放電時に負極活物質が集電体から剥離したり、負極活物質自体に亀裂が生じ微粉化し、電解液中に分散されるという問題が生じ得る。一方、本実施形態の蓄電デバイス用部材1では、固体電解質2の上に負極層3を設けることにより、上記のような問題が生じにくくなる。
 ナトリウムを吸蔵・放出可能な金属または合金としては、例えば、ナトリウムと合金化することによりナトリウムを吸蔵する金属または合金が挙げられる。このような金属または合金として、Sn、Bi、Sb、及びPbからなる群より選ばれる少なくとも1種の元素を含む金属または合金が挙げられる。負極層3が合金からなる場合、ナトリウムと合金化しない金属が含まれていてもよい。ナトリウムと合金化しない金属としては、Zn、Cu、Ni、Co、Si、Al、Mg、Mo等が挙げられる。ナトリウムと合金化しない金属を含むことにより、ナトリウムを吸蔵・放出する際の活物質の膨張及び収縮を抑制し、充放電サイクル特性を向上させることができる。特に、Zn、CuまたはAlを含む合金であれば、加工しやすいため好ましい。ナトリウムと合金化しない金属の含有量は、0~80モル%の範囲であることが好ましく、10~70モル%の範囲であることがより好ましく、35~55モル%の範囲であることがさらに好ましい。ナトリウムと合金化しない金属の含有量が多すぎると、充放電容量が低くなりすぎる場合がある。
 本実施形態において、負極層3を固体電解質2に密着させる観点から、負極層3は金属膜または合金膜からなることが好ましい。負極層3と固体電解質2との密着性が高くなることにより、充放電サイクル特性をより高めることができる。また、負極層3が金属膜または合金膜からなることにより、負極層3の高密度化を図ることが可能となる。それにより、負極層3の厚みを小さくできるだけでなく、膜の面内方向における導電ネットワークも広がるため、負極層3の電子抵抗を低くすることができる。結果的にレート特性に優れる。金属膜または合金膜を形成する方法としては、蒸着またはスパッタリング等の物理的気相法や、熱CVD、MOCVD、プラズマCVD等の化学的気相法が挙げられる。また、金属膜または合金膜のその他の形成方法として、メッキ、ゾルゲル法、スピンコートによる液相成膜法が挙げられる。
 金属または合金が粒子状である場合、金属粒子または合金粒子を含むペーストを固体電解質2の表面に塗布して、負極層3を形成してもよい。この場合、必要に応じて、熱処理を施し、膜状に形成してもよい。また、金属粒子または合金粒子を、エアロゾルデポジション法、静電粉体塗装法等で固体電解質2の表面に付着させて負極層3を形成してもよい。この場合、付着した金属粒子または合金粒子に圧力を加え、高密度化させることで、導電性またはイオン伝導性を向上させることが好ましい。また、付着した金属粒子または合金粒子を融点付近に加熱することで、高密度化させて導電性またはイオン伝導性を向上させてもよい。
 負極層3には、固体電解質粉末、カーボン等の導電助剤、バインダー等が含有されていてもよい。固体電解質粉末を含有させることにより、活物質と固体電解質粉末の接触界面が増加し、充放電に伴うナトリウムイオンの吸蔵・放出が行いやすくなり、その結果レート特性を向上させることができる。固体電解質粉末としては、後述する固体電解質2と同様の材料の粉末を用いることができる。固体電解質粉末の平均粒子径は0.01~15μm、0.05~10μm、特に0.1~5μmであることが好ましい。固体電解質粉末の平均粒子径が大きすぎると、ナトリウムイオン伝導に要する距離が長くなりイオン伝導性が低下する傾向がある。また、活物質粉末と固体電解質粉末との間のイオン伝導パスが減少する傾向がある。結果として、放電容量が低下しやすくなる。一方、固体電解質粉末の平均粒子径が小さすぎると、ナトリウムイオンの溶出や炭酸ガスとの反応による劣化が起こってイオン伝導性が低下しやすくなる。また、空隙が形成されやすくなるため電極密度も低下しやすくなる。結果として、放電容量が低下する傾向がある。
 バインダーとしては、不活性雰囲気で低温分解するポリプロピレンカーボネート(PPC)が好ましい。また、イオン伝導性に優れるカルボキシメチルセルロース(CMC)が好ましい。
 負極層3の厚みは、0.05~50μmの範囲であることが好ましく、0.3~3μmの範囲であることがさらに好ましい。負極層3の厚みが薄すぎると、負極の絶対容量(mAh)が低下するため好ましくない。負極層3の厚みが厚すぎると、抵抗が大きくなるため容量(mAh/g)が低下する傾向にある。
 また、固体電解質2における負極3の担持量は、0.01~5(mg/cm)の範囲であることが好ましく、0.4~0.9(mg/cm)の範囲であることがさらに好ましい。負極層3の担持量が少なすぎると、負極の絶対容量(mAh)が低下するため好ましくない。負極層3の担持量が多すぎると、抵抗が増加するため容量(mAh/g)が低下する傾向にある。
 本実施形態において、固体電解質2は、ナトリウムイオン伝導性酸化物から形成されている。ナトリウムイオン伝導性酸化物としては、Al、Y、Zr、Si及びPから選ばれる少なくとも1種、Na、並びにOを含有する化合物が挙げられ、その具体例としては、β-アルミナ、β”-アルミナ、及びNASICON型結晶が挙げられる。これらは、ナトリウムイオン伝導性に優れているため好ましく用いられる。
 β-アルミナやβ”-アルミナを含有する酸化物材料としては、モル%で、Al 65~98%、NaO 2~20%、MgO+LiO 0.3~15%を含有するものが挙げられる。組成をこのように限定した理由を以下に説明する。なお、以下の説明において、特に断りのない限り、「%」は「モル%」を意味する。また「○+○+・・・」は該当する各成分の合量を意味する。
 Alは、β-アルミナ及びβ”-アルミナを構成する主成分である。Alの含有量は65~98%、特に70~95%であることが好ましい。Alが少なすぎると、イオン伝導性が低下しやすくなる。一方、Alが多すぎると、イオン伝導性を有さないα-アルミナが残存し、イオン伝導性が低下しやすくなる。
 NaOは、固体電解質にナトリウムイオン伝導性を付与する成分である。NaOの含有量は2~20%、3~18%、特に4~16%であることが好ましい。NaOが少なすぎると、上記効果が得られにくくなる。一方、NaOが多すぎると、余剰のナトリウムがNaAlO等のイオン伝導性に寄与しない化合物を形成するため、イオン伝導性が低下しやすくなる。
 MgO及びLiOはβ-アルミナ及びβ”-アルミナの構造を安定化させる成分(安定化剤)である。MgO+LiOの含有量は0.3~15%、0.5~10%、特に0.8~8%であることが好ましい。MgO+LiOが少なすぎると、固体電解質中にα-アルミナが残存してイオン伝導性が低下しやすくなる。一方、MgO+LiOが多すぎると、安定化剤として機能しなかったMgOまたはLiOが固体電解質中に残存して、イオン伝導性が低下しやすくなる。
 固体電解質は、上記成分以外にも、ZrOやYを含有することが好ましい。ZrO及びYは、原料を焼成して固体電解質を作製する際のβ-アルミナ及び/またはβ”-アルミナの異常粒成長を抑制し、β-アルミナ及び/またはβ”-アルミナの各粒子の密着性を向上させる効果がある。ZrOの含有量は0~15%、1~13%、特に2~10%であることが好ましい。また、Yの含有量は0~5%、0.01~4%、特に0.02~3%であることが好ましい。ZrOまたはYが多すぎると、β-アルミナ及び/またはβ”-アルミナの生成量が低下して、イオン伝導性が低下しやすくなる。
 NASICON型結晶としては、一般式NasA1tA2uOv(A1はAl、Y、Yb、Nd、Nb、Ti、Hf及びZrから選択される少なくとも1種、A2はSi及びPから選択される少なくとも1種、s=1.4~5.2、t=1~2.9、u=2.8~4.1、v=9~14)で表される結晶を含有するものが挙げられる。なお上記結晶の好ましい形態としては、A1はY、Nb、Ti及びZrから選択される少なくとも1種、s=2.5~3.5、t=1~2.5、u=2.8~4、v=9.5~12である。このようにすることでイオン伝導性に優れた結晶を得ることができる。特に、単斜晶系または三方晶系のNASICON型結晶であればイオン伝導性に優れるため好ましい。
 上記一般式NasA1tA2uOvで表される結晶の具体例としては、NaZrSiPO12、Na3.2Zr1.3Si2.20.810.5、NaZr1.6Ti0.4SiPO12、NaHfSiPO12、Na3.4Zr0.9Hf1.4Al0.6Si1.21.812、NaZr1.7Nb0.24SiPO12、Na3.6Ti0.20.8Si2.8、NaZr1.880.12SiPO12、Na3.12Zr1.880.12SiPO12、Na3.6Zr0.13Yb1.67Si0.112.912等が挙げられる。
 固体電解質2の厚みは、10~2000μmの範囲であることが好ましく、50~200μmの範囲であることがさらに好ましい。固体電解質2の厚みが薄すぎると、機械的強度が低下して破損しやすくなるため、内部短絡が起こりやすくなる。固体電解質2の厚みが厚すぎると、充放電に伴うイオン伝導距離が長くなるため内部抵抗が高くなり、放電容量及び作動電圧が低下しやすくなる。また、蓄電デバイスの単位体積当たりのエネルギー密度も低下する傾向にある。
 固体電解質2は、原料粉末を混合し、混合した原料粉末を成形した後、焼成することにより製造することができる。例えば、原料粉末をスラリー化してグリーンシートを作製した後、グリーンシートを焼成することにより製造することができる。また、ゾルゲル法により製造してもよい。
 本実施形態では、負極層3が、ナトリウムを吸蔵・放出可能な金属または合金から形成されているので、高い充放電容量を有する。また、負極層3が固体電解質2の上に設けられているので、良好な充放電サイクル特性を示す。負極層3が、金属膜または合金膜として固体電解質2の上に形成され、固体電解質2に担持されることにより、さらに良好な充放電サイクル特性を示す。
 本実施形態において、負極層3は負極集電体としても機能させることができるので、従来の蓄電デバイスに必要であった負極集電体を設ける必要がなくなる場合がある。
 図2は、本発明の一実施形態の蓄電デバイスを示す模式的断面図である。図2に示すように、本実施形態の蓄電デバイス11は、ナトリウムイオン伝導性酸化物からなる固体電解質12と、ナトリウムを吸蔵・放出可能な金属または合金からなる負極層13と、正極層14とを備えている。本実施形態の蓄電デバイス11は、全固体ナトリウムイオン二次電池として用いることができるものである。本実施形態においては、固体電解質12及び負極層13として、図1に示す蓄電デバイス用部材1を用いている。従って、負極層13は金属膜または合金膜として固体電解質2の上に形成され、固体電解質12に担持されていることが好ましい。しかしながら、本発明の蓄電デバイスはこれに限定されるものではない。
 本実施形態における固体電解質12及び負極層13としては、図1に示す実施形態の固体電解質2及び負極層3と同様のものを用いることができる。
 本実施形態における正極層14は、ナトリウムを吸蔵・放出可能な正極活物質を含み、正極層として機能するものであれば特に限定されない。例えば、ガラス粉末等の活物質前駆体粉末を焼成して形成してもよい。活物質前駆体粉末を焼成することにより、活物質結晶が析出し、この活物質結晶が正極活物質として作用する。
 正極活物質として作用する活物質結晶としては、Na、M(MはCr、Fe、Mn、Co、V及びNiからから選ばれる少なくとも1種の遷移金属元素)、P及びOを含むナトリウム遷移金属リン酸塩結晶が挙げられる。具体例としては、NaFeP、NaFePO、Na(PO、NaNiP、Na3.64Ni2.18(P、NaNi(PO(P)等が挙げられる。当該ナトリウム遷移金属リン酸塩結晶は、高容量で化学的安定性に優れるため好ましい。なかでも空間群P1またはP-1に属する三斜晶系結晶、特に一般式NaxMyPOz(1.2≦x≦2.8、0.95≦y≦1.6、6.5≦z≦8)で表される結晶がサイクル特性に優れるため好ましい。その他に正極活物質として作用する活物質結晶としては、NaCrO、Na0.7MnO、NaFe0.2Mn0.4Ni0.4等の層状ナトリウム遷移金属酸化物結晶が挙げられる。
 活物質前駆体粉末としては、(i)Cr、Fe、Mn、Co、Ni、Ti及びNbからなる群より選ばれた少なくとも1種の遷移金属元素、(ii)P、Si及びBから選択される少なくとも1種の元素、並びに(iii)Oを含むものが挙げられる。
 正極活物質前駆体粉末としては、酸化物換算のモル%で、NaO 8~55%、CrO+FeO+MnO+CoO+NiO 10~70%、P+SiO+B 15~70%を含有するものが挙げられる。各成分をこのように限定した理由を以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。
 NaOは、充放電の際に正極活物質と負極活物質との間を移動するナトリウムイオンの供給源となる。NaOの含有量は8~55%、15~45%、特に25~35%であることが好ましい。NaOが少なすぎると、吸蔵及び放出に寄与するナトリウムイオンが少なくなるため、放電容量が低下する傾向にある。一方、NaOが多すぎると、NaPO等の充放電に寄与しない異種結晶が析出しやすくなるため、放電容量が低下する傾向にある。
 CrO、FeO、MnO、CoO、NiOは、充放電の際に各遷移元素の価数が変化してレドックス反応を起こすことにより、ナトリウムイオンの吸蔵及び放出の駆動力として作用する成分である。なかでも、NiO及びMnOは酸化還元電位を高める効果が大きい。また、FeOは充放電において特に構造を安定化させやすく、サイクル特性を向上させやすい。CrO+FeO+MnO+CoO+NiOの含有量は10~70%、15~60%、20~55%、23~50%、25~40%、特に26~36%であることが好ましい。CrO+FeO+MnO+CoO+NiOが少なすぎると、充放電に伴うレドックス反応が起こりにくくなり、吸蔵及び放出されるナトリウムイオンが少なくなるため放電容量が低下する傾向にある。一方、CrO+FeO+MnO+CoO+NiOが多すぎると、異種結晶が析出して放電容量が低下する傾向にある。
 P、SiO及びBは3次元網目構造を形成するため、正極活物質の構造を安定化させる効果を有する。特に、P、SiOがイオン伝導性に優れるために好ましく、Pが最も好ましい。P+SiO+Bの含有量は15~70%であり、20~60%、特に25~45%であることが好ましい。P+SiO+Bが少なすぎると、繰り返し充放電した際に放電容量が低下しやすくなる傾向にある。一方、P+SiO+Bが多すぎると、P等の充放電に寄与しない異種結晶が析出する傾向にある。なお、P、SiO及びBの各成分の含有量は各々0~70%、15~70%、20~60%、特に25~45%であることが好ましい。
 また、正極活物質としての効果を損なわない範囲で、上記成分に加えて種々の成分を含有させることでガラス化を容易にすることができる。このような成分としては、酸化物表記でMgO、CaO、SrO、BaO、ZnO、CuO、Al、GeO、Nb、ZrO、V、Sbが挙げられ、特に網目形成酸化物として働くAlや活物質成分となるVが好ましい。上記成分の含有量は、合量で0~30%、0.1~20%、特に0.5~10%であることが好ましい。
 正極活物質前駆体粉末は、焼成により、正極活物質結晶とともに非晶質相が形成されるものであることが好ましい。非晶質相が形成されることにより、正極層14内及び正極層14と固体電解質12との界面におけるナトリウムイオン伝導性を向上させることができる。
 活物質前駆体粉末の平均粒子径は0.01~15μm、0.05~12μm、特に0.1~10μmであることが好ましい。活物質前駆体粉末の平均粒子径が小さすぎると、活物質前駆体粉末同士の凝集力が強くなり、ペースト化した際に分散性に劣る傾向がある。その結果、電池の内部抵抗が高くなり作動電圧が低下しやすくなる。また、電極密度が低下して電池の単位体積あたりの容量が低下する傾向がある。一方、活物質前駆体粉末の平均粒子径が大きすぎると、ナトリウムイオンが拡散しにくくなるとともに、内部抵抗が大きくなる傾向がある。また、電極の表面平滑性に劣る傾向がある。
 なお、本発明において、平均粒子径はD50(体積基準の平均粒子径)を意味し、レーザー回折散乱法により測定された値を指すものとする。
 正極層14の厚みは、3~300μmの範囲であることが好ましく、10~150μmの範囲であることがさらに好ましい。正極層14の厚みが薄すぎると、蓄電デバイス11自体の容量が小さくなるためエネルギー密度が低下する傾向にある。正極層14の厚みが厚すぎると、電子伝導に対する抵抗が大きくなるため放電容量及び作動電圧が低下する傾向にある。
 正極層14には、必要に応じて、固体電解質粉末が含まれていてもよい。固体電解質粉末としては、負極層13に含有させる固体電解質粉末と同様のものを用いることができる。固体電解質粉末を含むことにより、正極層14内及び正極層14と固体電解質12との界面におけるナトリウムイオン伝導性を向上させることができる。
 活物質前駆体粉末と固体電解質粉末の体積比は20:80~95:5、30:70~90:10、特に35:65~88:12であることが好ましい。
 また、正極層14には、必要に応じて、カーボン粉末等の導電助剤が含まれていてもよい。導電助剤が含まれることにより、正極層14の内部抵抗を低減することができる。導電助剤は、正極層14中に0~20質量%で含有させることが好ましく、1~10質量%の割合で含有させることがより好ましい。
 正極層14は、活物質前駆体粉末、必要に応じて、上述の割合で固体電解質粉末及び/または導電助剤を含むスラリーを用いて作製することができる。スラリーには、必要に応じて、バインダー、可塑剤、溶剤等が添加される。スラリーを塗布した後、乾燥し、これを焼成することにより、正極層14を作製することができる。また、スラリーをPET(ポリエチレンテレフタレート)等の基材の上に塗布した後乾燥し、グリーンシートを作製し、このグリーンシートを焼成することにより作製してもよい。
 図2に示す蓄電デバイス11の製造方法は、特に限定されるものではなく、例えば、固体電解質12の一方面の上に正極層14を形成した後、他方面の上に負極層13を形成してもよい。この場合、固体電解質12の一方面の上に、正極層形成用スラリーを塗布した後、乾燥し、焼成して正極層14を形成してもよい。また、固体電解質形成用グリーンシートと正極層形成用グリーンシートを積層し、これらのグリーンシートを焼成して、固体電解質12及び正極層14を同時に形成してもよい。
 以上のようにして、固体電解質12の一方面の上に正極層14を形成した後、固体電解質12の他方面の上に、図1に示す実施形態と同様にして、負極層13を形成する。
 また、固体電解質12の一方面の上に負極層13を形成した後、他方面の上に正極層14を形成してもよい。この場合、図1に示す実施形態と同様にして固体電解質12の一方面の上に負極層13を形成した後、固体電解質12の他方面の上に、上記と同様にして、正極層14を形成する。
 また、固体電解質12、負極層13及び正極層14をそれぞれ別々に作製し、それらを組み合わせて蓄電デバイス11を作製してもよい。
 以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。
 (実施例1~5)
 <蓄電デバイス用部材の作製>
 固体電解質として、厚み1mmのβ”-アルミナ(組成式:Na1.6Li0.34Al10.6617のLiO安定化β”-アルミナ、Ionotec社製)を12mm角に切断したものを用いた。
 固体電解質の一方面の上に開口部10mm角のマスキングを施し、形成する金属膜または合金膜の組成が表1に示す組成となるターゲット(フルウチ化学社製)を用い、マグネトロンスパッタ装置(JEOL社製、JEC-3000FC)を用いてスパッタリングを行った。これにより、固体電解質の一方面の上に金属膜または合金膜からなる負極層を形成した。なお、スパッタリングは真空中にアルゴン(Ar)ガスを導入し、電流30mAを印加しながら行った。
 表1に、固体電解質上における負極層の担持量及び厚みを示す。
 <評価用電池の作製>
 上記のようにして作製した蓄電デバイス用部材を用いて、負極特性を評価するための電池を、以下のようにして作製した。露点-70℃以下のアルゴン雰囲気中にて、対極となる金属ナトリウムを、蓄電デバイス用部材の負極層が形成された面と反対側の面に圧着した。得られた積層体をコインセルの下蓋の上に載置した後、上蓋を被せてCR2032型評価用電池を作製した。
 <充放電試験>
 作製した評価用電池について、60℃で開回路電圧から0.001Vまでの定電流充電を行い、初回の充電容量を求めた。次に、放電は0.001Vから、実施例1および2においては2.0Vまで、実施例3~5においては2.5Vまで定電流放電を行い、初回の放電容量を求めた。なお、Cレートは0.1Cで行い、20サイクル目の放電容量から、初回の放電容量に対する20サイクル目の放電容量維持率を算出した。なお、この充放電試験において、充電は負極活物質へのナトリウムイオンの吸蔵であり、放電は負極活物質からのナトリウムイオンを放出である。
 表1に、初回の充電容量、初回の放電容量、初回の充放電効率、及び20サイクル目の放電容量維持率を示す。図3、図4及び図5は、実施例1、実施例3、及び実施例5の評価用電池の初回充放電曲線を示す図である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~5の負極は、充放電容量が高く、かつ充放電サイクル特性に優れていることがわかる。従って、実施例1~5の負極を用いることにより、充放電容量が高く、かつ充放電サイクル特性に優れた蓄電デバイスが得られることがわかる。
 また、実施例1と実施例2との比較、実施例3と実施例4及び5との比較から、Cu及びZn等のナトリウムと合金化しない金属を含むことにより、充放電サイクル特性が向上することがわかる。
 (比較例1及び2)
 <負極の作製>
 負極集電体として厚み20μmの銅箔を用いた。この銅箔の片側表面の上に、開口部10mm角のマスキングを施し、形成する金属膜の組成が表2に示す組成となるターゲット(フルウチ化学社製)を用い、マグネトロンスパッタ装置(JEOL社製、JEC-3000FC)を用いてスパッタリングを行った。これにより、銅箔の片側表面の上に金属膜からなる負極を形成した。なお、スパッタリングは真空中にアルゴン(Ar)ガスを導入し、電流30mAを印加しながら行った。
 <評価用電池の作製>
 上記のようにして作製した負極を用いて、負極特性を評価するための電池を、以下のようにして作製した。負極を、銅箔の面を下に向けてコインセルの下蓋に載置し、その上に70℃で8時間減圧乾燥した直径16mmのポリプロピレン多孔質膜からなるセパレータと、対極である金属ナトリウムとを積層し、電解液を含浸させた後、上蓋を被せて評価用電池を作製した。電解液としては、EC:DEC=1:1の混合溶媒に、1M(モル/リットル)のNaPFを溶解させた溶液を用いた。なお、評価用電池の組み立ては、露点温度-70℃以下の環境で行った。
 <充放電試験>
 作製した評価用電池について、実施例1~5と同様にして充放電試験を行い、初回の充電容量、初回の放電容量、初回の充放電効率、及び20サイクル目の放電容量維持率を測定した。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、比較例1及び2では、初回の充放電容量は高いが、良好な充放電サイクル特性が得られないことがわかる。
1…蓄電デバイス用部材
2…固体電解質
3…負極層
11…蓄電デバイス
12…固体電解質
13…負極層
14…正極層

Claims (7)

  1.  ナトリウムイオン伝導性酸化物からなる固体電解質と、
     ナトリウムを吸蔵・放出可能な金属または合金からなり、前記固体電解質の上に設けられる負極層と、
    を備える、蓄電デバイス用部材。
  2.  前記金属または前記合金が、Sn、Bi、Sb、及びPbからなる群より選ばれる少なくとも1種の元素を含む、請求項1に記載の蓄電デバイス用部材。
  3.  前記負極層が、前記固体電解質の上に形成された金属膜または合金膜からなる、請求項1または2に記載の蓄電デバイス用部材。
  4.  前記固体電解質が、β-アルミナ、β”-アルミナまたはNASICON型結晶である、請求項1~3のいずれか一項に記載の蓄電デバイス用部材。
  5.  請求項1~4のいずれか一項に記載の蓄電デバイス用部材と、
     正極層と、
    を備える蓄電デバイス。
  6.  ナトリウムイオン伝導性酸化物からなる固体電解質と、
     ナトリウムを吸蔵・放出可能な金属または合金からなる負極層と、
     正極層と、
    を備える蓄電デバイス。
  7.  前記負極層が、金属膜または合金膜から形成されている、請求項6に記載の蓄電デバイス。
PCT/JP2018/016393 2017-05-08 2018-04-23 蓄電デバイス用部材及び蓄電デバイス WO2018207597A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/492,962 US20200067134A1 (en) 2017-05-08 2018-04-23 Member for power storage device, and power storage device
CN201880015809.8A CN110383558B (zh) 2017-05-08 2018-04-23 蓄电设备用部件和蓄电设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-092311 2017-05-08
JP2017092311A JP7052215B2 (ja) 2017-05-08 2017-05-08 蓄電デバイス用部材及び蓄電デバイス

Publications (1)

Publication Number Publication Date
WO2018207597A1 true WO2018207597A1 (ja) 2018-11-15

Family

ID=64104623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016393 WO2018207597A1 (ja) 2017-05-08 2018-04-23 蓄電デバイス用部材及び蓄電デバイス

Country Status (4)

Country Link
US (1) US20200067134A1 (ja)
JP (1) JP7052215B2 (ja)
CN (1) CN110383558B (ja)
WO (1) WO2018207597A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259726B (zh) * 2020-10-15 2022-01-18 湘潭大学 一种AlCuCo准晶材料的应用
WO2023248793A1 (ja) * 2022-06-20 2023-12-28 日本電気硝子株式会社 全固体二次電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730272A (en) * 1980-07-10 1982-02-18 Varta Batterie Galvanic solid electrolyte battery
JP2006216508A (ja) * 2005-02-07 2006-08-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP2014216249A (ja) * 2013-04-26 2014-11-17 三菱自動車工業株式会社 ナトリウムイオン二次電池
JP2015022983A (ja) * 2013-07-23 2015-02-02 日本電信電話株式会社 ナトリウム二次電池
JP2015115283A (ja) * 2013-12-13 2015-06-22 日本電信電話株式会社 ナトリウム二次電池及び該ナトリウム二次電池に使用する正極材料の製造方法
WO2015152105A1 (ja) * 2014-03-31 2015-10-08 住友化学株式会社 ナトリウム二次電池用電極合材ペースト、ナトリウム二次電池用正極 およびナトリウム二次電池
JP2016100077A (ja) * 2014-11-18 2016-05-30 日本電信電話株式会社 ナトリウム二次電池
WO2016156447A1 (en) * 2015-04-01 2016-10-06 Fundación Centro De Investigación Cooperativa De Energías Alternativas Cic Energigune Fundazioa Positive electrode active material for sodium-ion batteries
WO2017026228A1 (ja) * 2015-08-11 2017-02-16 日本電気硝子株式会社 蓄電デバイス用負極活物質

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119934A (en) * 1975-04-12 1976-10-20 Yuasa Battery Co Ltd Battery
JP5089028B2 (ja) * 2005-02-07 2012-12-05 三洋電機株式会社 ナトリウム二次電池
JP2008016446A (ja) * 2006-06-09 2008-01-24 Canon Inc 粉末材料、粉末材料を用いた電極構造体及び該電極構造体を有する蓄電デバイス、並びに粉末材料の製造方法
JP5418803B2 (ja) * 2008-07-02 2014-02-19 国立大学法人九州大学 全固体電池
KR101115397B1 (ko) * 2009-10-27 2012-02-16 경상대학교산학협력단 고체 나트륨 전지 및 그의 제조 방법
WO2013109542A1 (en) * 2012-01-16 2013-07-25 Ceramatec, Inc. Composite alkali ion conductive solid electrolyte
JP5910742B2 (ja) * 2012-06-12 2016-04-27 トヨタ自動車株式会社 ナトリウム電池用正極材料及びその製造方法
CN104798225A (zh) * 2012-11-21 2015-07-22 3M创新有限公司 用于钠离子电池的阳极组合物及其制备方法
JP6460316B2 (ja) * 2013-12-09 2019-01-30 日本電気硝子株式会社 ナトリウムイオン電池用電極合材、及びその製造方法並びにナトリウム全固体電池
WO2017190135A1 (en) * 2016-04-29 2017-11-02 University Of Maryland, College Park Metal alloy layers on substrates, methods of making same, and uses thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730272A (en) * 1980-07-10 1982-02-18 Varta Batterie Galvanic solid electrolyte battery
JP2006216508A (ja) * 2005-02-07 2006-08-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP2014216249A (ja) * 2013-04-26 2014-11-17 三菱自動車工業株式会社 ナトリウムイオン二次電池
JP2015022983A (ja) * 2013-07-23 2015-02-02 日本電信電話株式会社 ナトリウム二次電池
JP2015115283A (ja) * 2013-12-13 2015-06-22 日本電信電話株式会社 ナトリウム二次電池及び該ナトリウム二次電池に使用する正極材料の製造方法
WO2015152105A1 (ja) * 2014-03-31 2015-10-08 住友化学株式会社 ナトリウム二次電池用電極合材ペースト、ナトリウム二次電池用正極 およびナトリウム二次電池
JP2016100077A (ja) * 2014-11-18 2016-05-30 日本電信電話株式会社 ナトリウム二次電池
WO2016156447A1 (en) * 2015-04-01 2016-10-06 Fundación Centro De Investigación Cooperativa De Energías Alternativas Cic Energigune Fundazioa Positive electrode active material for sodium-ion batteries
WO2017026228A1 (ja) * 2015-08-11 2017-02-16 日本電気硝子株式会社 蓄電デバイス用負極活物質

Also Published As

Publication number Publication date
CN110383558A (zh) 2019-10-25
JP2018190601A (ja) 2018-11-29
JP7052215B2 (ja) 2022-04-12
CN110383558B (zh) 2022-12-02
US20200067134A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
CN110521046B (zh) 全固体钠离子二次电池
CN110383559B (zh) 全固体钠离子二次电池
US10622673B2 (en) Solid electrolyte sheet, method for manufacturing same, and sodium ion all-solid-state secondary cell
JP5987103B2 (ja) 全固体イオン二次電池
JP5348607B2 (ja) 全固体リチウム二次電池
WO2014020654A1 (ja) 全固体イオン二次電池
WO2014141456A1 (ja) 固体電解質及びそれを用いた全固体型イオン二次電池
CN111213272B (zh) 双极型全固体钠离子二次电池
JP7321769B2 (ja) 全固体リチウム二次電池
JP2018018578A (ja) 固体電解質粉末、並びにそれを用いてなる電極合材及び全固体ナトリウムイオン二次電池
WO2018207597A1 (ja) 蓄電デバイス用部材及び蓄電デバイス
CN114128004A (zh) 固体电解质片及其制造方法
WO2018131627A1 (ja) ナトリウムイオン二次電池用電極合材及びその製造方法
JP3984937B2 (ja) リチウム二次電池用負極の製造に用いる成膜用材料、リチウム二次電池用負極の製造方法及びリチウム二次電池用負極
WO2021124945A1 (ja) 蓄電デバイス用部材及び蓄電デバイス
WO2018235575A1 (ja) ナトリウムイオン二次電池
WO2019060715A2 (en) ELECTRODE DENSE OF SOLID ELECTROLYTE BATTERY
US20220416222A1 (en) Member for sodium ion secondary batteries, and sodium ion secondary battery
WO2020235291A1 (ja) 電極合材
KR20230098397A (ko) 내구성이 개선된 전고체전지
JP2020105600A (ja) スパッタリングターゲット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798506

Country of ref document: EP

Kind code of ref document: A1