WO2018199250A1 - 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法 - Google Patents

排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法 Download PDF

Info

Publication number
WO2018199250A1
WO2018199250A1 PCT/JP2018/017025 JP2018017025W WO2018199250A1 WO 2018199250 A1 WO2018199250 A1 WO 2018199250A1 JP 2018017025 W JP2018017025 W JP 2018017025W WO 2018199250 A1 WO2018199250 A1 WO 2018199250A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
exhaust gas
cerium
less
mass
Prior art date
Application number
PCT/JP2018/017025
Other languages
English (en)
French (fr)
Inventor
弘尊 久野
高広 池上
光脩 三木田
優 中島
茂和 南
正憲 池田
Original Assignee
ユミコア日本触媒株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユミコア日本触媒株式会社 filed Critical ユミコア日本触媒株式会社
Priority to CA3061311A priority Critical patent/CA3061311A1/en
Priority to CN201880041507.8A priority patent/CN110785232B/zh
Priority to JP2019514632A priority patent/JP6735912B2/ja
Priority to US16/607,405 priority patent/US11141713B2/en
Priority to EP18792319.8A priority patent/EP3616791A4/en
Publication of WO2018199250A1 publication Critical patent/WO2018199250A1/ja

Links

Images

Classifications

    • B01J35/19
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • B01D53/865Simultaneous elimination of the components characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases

Definitions

  • the present invention relates to an exhaust gas purifying catalyst and an exhaust gas purifying method using the same, and more particularly, to purify hydrocarbon (HC), carbon monoxide (CO) and nitrogen oxide (NOx) in exhaust gas at a low temperature.
  • the present invention relates to an exhaust gas purification catalyst that can be used and an exhaust gas purification method using the same.
  • Patent Documents 1 to 3 described above are merely sufficient to purify HC and NOx in the exhaust gas, and are not sufficient for application when the temperature of the exhaust gas is low.
  • the present invention has been made in view of the above problems, and an exhaust gas purifying catalyst capable of efficiently purifying HC, CO and NOx in exhaust gas discharged at a low temperature at which the catalyst does not sufficiently act. It is another object of the present invention to provide an exhaust gas purification method using the same.
  • the exhaust gas purifying catalyst and the exhaust gas purifying method using the same according to the present invention can purify NOx at a low temperature.
  • a small amount of low-temperature exhaust gas is introduced into a state where a large amount of high-temperature exhaust gas is instantaneously introduced, that is, not only a sudden rise in the temperature of the exhaust gas, but also the space velocity relative to the catalyst.
  • the exhaust gas purifying catalyst according to the present invention is a catalyst that can purify NOx for a long time and has durability.
  • the exhaust gas purifying catalyst of the present invention is provided with a region containing palladium on the three-dimensional structure, and in order from the side containing the palladium to the side flowing out from the side into which the exhaust gas flows, A first region and a second region are provided, and the concentration of rhodium contained in the first region is higher than the concentration of rhodium contained in the second region.
  • exhaust capable of efficiently purifying hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) in exhaust gas discharged at low temperatures at which the catalyst does not sufficiently function.
  • the gas purification catalyst and the exhaust gas purification method using the same can be provided.
  • FIG. 1 is a front view showing a schematic configuration of an exhaust gas purifying catalyst according to an embodiment (Example 1).
  • FIG. 2 is a front view showing a schematic configuration of a conventional exhaust gas purifying catalyst (Comparative Example 1).
  • FIG. 3 is a graph showing the results of Examples and Comparative Examples.
  • An exhaust gas purifying catalyst according to an embodiment of the present invention (hereinafter sometimes simply referred to as “catalyst”) is provided with a region containing palladium on a three-dimensional structure, and on the region containing palladium. Then, in order from the exhaust gas inflow side to the outflow side, a first region and a second region are provided, and the concentration of rhodium contained in the first region is the concentration of rhodium contained in the second region. It is higher than the concentration. (I) The concentration of rhodium contained in the first region is more preferably 2 to 5 times the concentration of rhodium contained in the second region, and (ii) the region containing palladium.
  • the concentration of cerium contained therein is higher than the concentration of cerium contained in the first region and / or the concentration of cerium contained in the second region, and (iii) the second region
  • the concentration of cerium contained therein is higher than the concentration of cerium contained in the first region
  • cerium in the region containing palladium is a cerium composite oxide (3)
  • cerium in one region is cerium composite oxide (1) and cerium in the second region is cerium composite oxide (2)
  • the cerium composite oxide (3) Compared to product (1) and / or the cerium oxide (2), (the concentration of CeO 2 in terms, hereinafter the same) concentration of cerium is high and it is more preferable.
  • the exhaust gas purification method purifies exhaust gas using the exhaust gas purification catalyst.
  • the three-dimensional structure used in one embodiment of the present invention is not particularly limited as long as the three-dimensional structure can be provided with a region containing palladium on the surface thereof.
  • the flow-through honeycomb, plug honeycomb, and corrugated structure are not particularly limited.
  • a structure having a shape usually used as a catalyst carrier, such as a type honeycomb, a plate, or a corrugated sheet, is preferable, and a structure having a flow through type honeycomb is more preferable.
  • the material of the three-dimensional structure is not particularly limited as long as it is a material having heat resistance, and ceramics such as iron metal such as stainless steel, cordierite, SiC, and alumina can be preferably used.
  • the three-dimensional structure is commercially available as a three-dimensional structure for exhaust gas purification, it can be used.
  • the size and shape of the three-dimensional structure can be appropriately selected according to the amount of exhaust gas to be processed.
  • the length of the three-dimensional structure is 200 mm or less, preferably 160 mm or less, more preferably 120 mm or less, most preferably 100 mm or less, and 30 mm or more, preferably 50 mm or more, more preferably 60 mm or more, most preferably 70 mm or more.
  • the equivalent diameter of the cross section of the three-dimensional structure is 60 mm or more, preferably 70 mm or more, and 120 mm or less, preferably 100 mm or less.
  • the shape of the hole may be any shape such as a triangle, a quadrangle, a hexagon, and a circle, but is preferably a quadrangle or a hexagon.
  • the number of holes is preferably 15 holes / cm 2 to 190 holes / cm 2, more preferably 60 holes / cm 2 to 140 holes / cm 2 .
  • the volume of the three-dimensional structure is 0.4 liter (hereinafter sometimes referred to as “L”) or more, preferably 0.5 L or more, more preferably 0.6 L or more, and 2.0 L or less. , Preferably 1.6 L or less, more preferably 1.4 L or less.
  • the region containing palladium is provided on the three-dimensional structure.
  • the region containing palladium only needs to contain at least palladium.
  • the amount of palladium contained in the region is 0.1 g / L or more in terms of metal with respect to the three-dimensional structure (hereinafter, each component amount per liter of the three-dimensional structure is “g / L”). The same applies to “Claims”.), More preferably 0.2 g / L or more, still more preferably 0.4 g / L or more, and most preferably 2 g / L or more.
  • the amount of palladium is less than 0.1 g / L, the reaction sites in the three-dimensional structure are insufficient.
  • the amount of palladium contained in the region is 20 g / L or less, more preferably 15 g / L or less, further preferably 10 g / L or less, and most preferably 5 g in terms of metal relative to the three-dimensional structure. / L or less.
  • the amount of palladium exceeds 20 g / L, the reaction efficiency decreases.
  • the concentration of palladium contained in the region is preferably 1% by mass or more, more preferably 3% by mass or more, and preferably 10% by mass or less, more preferably 8% by mass or less.
  • concentration is a percentage (%) of the mass of each component with respect to the total mass of all components contained in the target region.
  • concentration is the same for each component in other regions.
  • palladium, rhodium, and platinum are converted into metals, and other components are converted into oxides, and each is shown as a percentage.
  • platinum and rhodium may be contained as necessary, but in order to make the effect of palladium stand out, it is preferable that the amount of platinum and rhodium is small.
  • nitrates As raw materials for palladium, platinum, and rhodium (sometimes referred to as “noble metals” generically), nitrates, chloride salts, and the like can be used, and nitrates are more preferable.
  • the length of the region is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, and most preferably 80% or more of the length of the three-dimensional structure starting from the exhaust gas inflow side. It is preferably 85% or less, more preferably 90% or less, still more preferably 95% or less, and most preferably 100% or less.
  • alumina such as ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina, usually used in the catalyst, silica, titania, zirconia, or a mixture thereof, and a composite oxide thereof
  • Refractory inorganic oxides such as alkali metal oxides, Mg, alkaline earth metal oxides, rare earth metal oxides such as La, Ce, and Nd, and transition metal oxides.
  • an oxygen storage material for example, cerium oxide
  • the oxide a commercially available oxide can be used as appropriate.
  • cerium has an oxide that interacts with palladium as an oxygen storage material, and can improve NOx purification performance at low temperatures.
  • the amount of cerium contained in the region is 2 g / L or more, more preferably 10 g / L or more, and further preferably 13 g / L or more in terms of CeO 2 with respect to the three-dimensional structure.
  • the amount of cerium is 50 g / L or less, more preferably 20 g / L or less in terms of CeO 2 with respect to the three-dimensional structure.
  • the amount of cerium exceeds 50 g / L, the heat resistance of the region is insufficient.
  • Cerium oxide can be used as a composite oxide (3) combined with other metal oxides such as aluminum oxide and / or zirconium oxide.
  • the amount of cerium contained in the composite oxide (3) is 20% by mass or more, preferably 30% by mass or more, more preferably 40% by mass or more, and 70% by mass or less, preferably in terms of CeO 2. It is 60 mass% or less, More preferably, it is 50 mass% or less.
  • cerium oxide easily exhibits an effect of supplying oxygen to Pd and maintaining Pd in an oxide state.
  • heat resistance is taken into consideration, it is effective to reduce the amount of cerium to 70% by mass or less and combine it with other metal oxides.
  • the amount of the refractory inorganic oxide used in the region is 5 g / L or more, more preferably 7 g / L or more, still more preferably 10 g / L or more, and 100 g / L with respect to the three-dimensional structure. Hereinafter, it is more preferably 80 g / L or less, and still more preferably 70 g / L or less.
  • the amount of the alkaline earth metal oxide used in the region is 1 g / L or more, more preferably 5 g / L or more, and 25 g / L or less, more preferably 15 g / L with respect to the three-dimensional structure. L or less.
  • the amount of rare earth metal oxide excluding cerium used in the region is 1 g / L or more, more preferably 5 g / L or more, and more preferably 25 g / L or less, more preferably 3D structure. 15 g / L or less.
  • the amount of the transition metal oxide used in the region is 1 g / L or more, more preferably 5 g / L or more, and 25 g / L or less, more preferably 15 g / L or less with respect to the three-dimensional structure. It is.
  • the amount of zirconium oxide is 5 g / L or more, more preferably 10 g / L or more in terms of ZrO 2 with respect to the three-dimensional structure.
  • the amount of zirconium oxide is 50 g / L or less, more preferably 30 g / L or less, and further preferably 20 g / L or less in terms of ZrO 2 with respect to the three-dimensional structure.
  • the zirconium oxide may be either a single oxide or a complex oxide.
  • the amount of alumina is 5 g / L or more, more preferably 10 g / L or more, and more preferably 50 g / L in terms of Al 2 O 3 with respect to the three-dimensional structure. L or less, more preferably 30 g / L or less, still more preferably 20 g / L or less.
  • the above range is suitable for effectively dispersing palladium.
  • the amount of all components provided in the region is 30 g / L or more, preferably 50 g / L or more, more preferably 70 g / L or more, and most preferably 80 g / L or more with respect to the three-dimensional structure. Moreover, it is 150 g / L or less, preferably 130 g / L or less, more preferably 110 g / L or less.
  • the first region is provided on the region containing palladium and on the side into which the exhaust gas flows.
  • the first region may contain at least rhodium.
  • the amount of rhodium is 0.35 g / L (liter, the same shall apply hereinafter) or more, more preferably 0.4 g / L or more, and further preferably 0.5 g / L in terms of metal with respect to 1 liter of the three-dimensional structure. Further, it is 1.2 g / L or less, more preferably 1.0 g / L or less, and further preferably 0.9 g / L or less.
  • alumina such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina and the like, usually used in the catalyst, silica, titania, zirconia or a mixture thereof, or a composite thereof
  • refractory inorganic oxides such as oxides; alkali metal oxides, alkaline earth metal oxides, rare earth metal oxides, and transition metal oxides.
  • oxygen-absorbing substances for example, cerium oxide
  • cerium oxide that are refractory inorganic oxides or metal oxides and can store oxygen are more preferable.
  • cerium oxide is more preferable.
  • the total amount of the oxide used in the first region is 5 g / L or more, preferably 20 g / L or more, more preferably 30 g / L or more, and 150 g / L with respect to 1 liter of the three-dimensional structure. L or less, more preferably 120 g / L or less.
  • the length of the first region is preferably 20 mm or more, more preferably 25 mm or more, and further preferably 30 mm or more, starting from the side into which the exhaust gas flows. If the length of the first region is shorter than 20 mm, there is not enough precious metal on the exhaust gas inflow side, so the exhaust gas purification rate becomes low.
  • the length of the first region is preferably 50 mm or less, more preferably 40 mm or less, and further preferably 35 mm or less, starting from the side into which the exhaust gas flows. When the length of the first region is longer than 50 mm, noble metals are not intensively supported on the exhaust gas inflow side, so that the exhaust gas purification rate becomes low.
  • the length of each region is obtained by dividing the completed catalyst or the three-dimensional structure covering each region, and the average value of the shortest value L min and the longest value L max inside the region. “(L min + L max ) / 2”.
  • each slurry is applied in advance under some application conditions. It is possible to use a method of destroying the formed catalyst and measuring the above-described length, thickness, and amount using a microscope such as a caliper, an electronic balance, and a three-dimensional (3D) microscope. Moreover, the above-mentioned length, thickness, and quantity can be measured using an X-ray CT apparatus without destroying the catalyst.
  • a suitable catalyst can be easily produced by applying each slurry described below under application conditions that have been confirmed to be applied in a desired length, thickness, and amount.
  • cerium has an oxide that interacts with rhodium as an oxygen storage material, and can improve NOx purification performance at low temperatures.
  • the amount of cerium in the case where cerium is contained is 0 g / L or more, preferably 0.5 g / L or more, more preferably 1 g / L or more, in terms of CeO 2 with respect to the three-dimensional structure. Preferably it is 1.5 g / L or more.
  • the combustion power of exhaust gas may be required rather than the oxygen storage capacity in the first region. In this case, it is effective to set cerium to 0 g / L.
  • the amount of cerium is 0.5 g / L or more.
  • the amount of the cerium is less than 20 g / L, more preferably less than 10 g / L, still more preferably less than 4 g / L, particularly preferably not more than 3 g / L in terms of CeO 2 with respect to the three-dimensional structure. is there.
  • the amount of cerium exceeds 20 g / L, rhodium is oxidized and the activity of the rhodium is lowered.
  • Cerium oxide can be used as a composite oxide (1) combined with other metal oxides such as aluminum oxide and / or zirconium oxide.
  • the amount of cerium contained in the composite oxide (1) is 5% by mass or more, preferably 10% by mass or more, more preferably 20% by mass or more, and 40% by mass or less, preferably in terms of CeO 2. It is less than 30% by mass, more preferably 27% by mass or less.
  • the amount of cerium is preferably 5% by mass or more, In order to suppress excessive oxygen storage, it is effective that the amount of cerium is 50% by mass or less.
  • the amount of all components provided in the first region is 10 g / L or more, preferably 15 g / L or more, more preferably 20 g / L or more, and less than 70 g / L with respect to the three-dimensional structure. Preferably it is less than 60 g / L, more preferably less than 50 g / L.
  • the second region is provided on the palladium-containing region on the exhaust gas outflow side, and preferably on the palladium-containing region on the exhaust gas outflow side and the first region is provided. It is provided in the part which is not.
  • the second region may or may not contain rhodium.
  • the amount of the rhodium is 0.01 g / L or more, preferably 0.1 g / L or more, more preferably 0.2 g / L, in terms of metal, with respect to the three-dimensional structure. Further, it is 1.2 g / L or less, more preferably less than 0.4 g / L, still more preferably 0.3 g / L or less.
  • the length of the second region is preferably the length from the end portion on the side where the exhaust gas flows out in the first region to the end portion on the side where the exhaust gas flows out in the three-dimensional structure.
  • Components other than rhodium contained in the second region usually include alumina such as ⁇ -alumina, ⁇ -alumina and ⁇ -alumina used for the catalyst, silica, titania, zirconia or a mixture thereof, or a composite oxidation thereof.
  • Refractory inorganic oxides such as alkali metal oxides, alkaline earth metal oxides, rare earth metal oxides, and transition metal oxides.
  • oxygen-absorbing substances for example, cerium oxide
  • cerium oxide that are refractory inorganic oxides or metal oxides and can store oxygen are more preferable.
  • cerium oxide is more preferable.
  • the total amount of the oxide used in the second region is 20 g / L or more, more preferably 25 g / L or more, and 150 g / L or less, more preferably 120 g / L, based on the three-dimensional structure. It is as follows.
  • cerium has an oxide that interacts with rhodium as an oxygen storage material, and can improve NOx purification performance at low temperatures.
  • the amount of cerium is 0.5 g / L or more, more preferably 3.5 g / L or more, further preferably 4 g / L or more, and most preferably 5 g / L in terms of CeO 2 with respect to the three-dimensional structure.
  • the amount exceeds.
  • the amount of cerium is 20 g / L or less, more preferably less than 10 g / L, and even more preferably 7 g / L or less in terms of CeO 2 with respect to the three-dimensional structure.
  • the amount of cerium exceeds 20 g / L, if rhodium is contained, rhodium is oxidized and the activity of the rhodium is reduced.
  • Cerium oxide can be used as a complex oxide (2) complexed with other metal oxides such as aluminum oxide and / or zirconium oxide.
  • the amount of cerium contained in the composite oxide (2) is 5% by mass or more, preferably 10% by mass or more, more preferably 20% by mass or more, and 40% by mass or less, preferably in terms of CeO 2. It is less than 30% by mass, more preferably 27% by mass or less.
  • the amount of cerium is preferably 5% by mass or more, In order to suppress excessive oxygen storage, it is effective that the amount of cerium is 50% by mass or less.
  • the amount of all components provided in the second region is 30 g / L or more, preferably 50 g / L or more, more preferably 60 g / L or more, and 100 g / L or less, based on the three-dimensional structure. Preferably it is 90 g / L or less, More preferably, it is less than 80 g / L.
  • the concentration of rhodium contained in the first region is higher than the concentration of rhodium contained in the second region. More preferably, the concentration of rhodium contained in the region is 2 to 5 times the concentration of rhodium contained in the second region.
  • the concentration of rhodium contained in each region refers to the percentage of the mass of rhodium (in metal conversion) with respect to the total mass of rhodium and components other than rhodium in each region.
  • the ignition characteristic is a characteristic represented by the time (ignition time) when the purification rate of HC, CO, NOx of the catalyst reaches 50% (T50) in the exhaust gas at a specific temperature.
  • the concentration of rhodium contained in the first region is 0.1% by mass or more, more preferably 0.8% by mass or more, further preferably 1.0% by mass or more, and most preferably 1.5% in terms of metal. It is at least mass%. When the concentration of rhodium contained in the first region is less than 0.1% by mass, the reaction sites in the three-dimensional structure are insufficient.
  • the rhodium concentration is 10% by mass or less, more preferably 5% by mass or less, and further preferably 4% by mass or less in terms of metal.
  • the concentration of rhodium contained in the second region is 0% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.2% by mass or more in terms of metal.
  • the concentration of rhodium contained in the second region is 5% by mass or less, more preferably 2% by mass or less, still more preferably less than 1.0% by mass, most preferably 0.7% by mass in terms of metal. % Or less.
  • concentration of rhodium contained in the second region exceeds 5% by mass, the reaction efficiency decreases.
  • the concentration of rhodium contained in the first region and the second region is preferably higher than the concentration of rhodium contained in the region containing palladium, and the rhodium contained in the first region
  • the concentration is not less than 2 times, preferably not less than 3 times, and not more than 6 times, preferably not more than 5 times the concentration of rhodium contained in the second region. If the rhodium concentration is within this range, even if the temperature of the exhaust gas changes, NOx can be processed (purified) instantaneously, which is advantageous.
  • the concentration of cerium contained in the palladium-containing region is such that the concentration of cerium contained in the first region and / or the second region. More preferably, the concentration of cerium contained in the region containing palladium is higher than the concentration of cerium contained in the first region and the concentration of cerium contained in the second region. More preferably, it is higher than the concentration.
  • the concentration of cerium contained in each region is the percentage of the mass of cerium (CeO 2 equivalent) with respect to the total mass of cerium (CeO 2 equivalent) and components other than cerium (the mass of the compound contained in the region). Point to. When the concentration of cerium contained in the region containing palladium is lower than the concentration of cerium contained in the first region and the concentration of cerium contained in the second region, the oxygen storage capacity is reduced. To do.
  • the concentration of cerium contained in the second region is higher than the concentration of cerium contained in the first region.
  • the concentration of cerium contained in the second region is lower than the concentration of cerium contained in the first region, the oxygen storage capacity decreases.
  • the concentration of cerium contained in the palladium-containing region is 10% by mass or more, more preferably 13% by mass or more, still more preferably 14% by mass or more, and 40% by mass or less, in terms of CeO 2. Preferably it is 25 mass% or less, More preferably, it is 20 mass% or less.
  • the concentration of cerium contained in the first region is 0% by mass or more, more preferably 1% by mass or more, more preferably 20% by mass or less, more preferably less than 13% by mass, more preferably in terms of CeO 2. Is 12% by mass or less, and most preferably 4% by mass or less.
  • the combustion power of the exhaust gas may be required rather than the oxygen storage capacity.
  • cerium 0 mass% it is effective to make cerium 0 mass%.
  • concentration of cerium contained in the second region is 5% by mass or more, more preferably 7% by mass or more, and 30% by mass or less, more preferably less than 13% by mass in terms of CeO 2 . More preferably, it is 12 mass% or less.
  • the exhaust gas can be efficiently purified even when the temperature of the exhaust gas is low and the space velocity is high.
  • low temperature means that the temperature of the exhaust gas at the end of the three-dimensional structure into which the exhaust gas flows is 100 ° C. or more and 400 ° C. or less
  • the space velocity is fast It means 80000h ⁇ 1 or more.
  • the amount of all components provided in each region is not particularly limited as long as the amount improves the catalytic activity.
  • the amount of the second region is equal to or greater than that of the first region, and preferably a large amount.
  • the amount of all components provided in each region is such that the region containing palladium is larger than the first region and / or the second region, and preferably the region containing palladium is the first region. The amount is larger than the area and the second area.
  • the amount of all components provided in each region is such that the region containing palladium is more than the second region, and the second region is more than the first region.
  • the amount of all components provided in each region can be obtained by appropriately selecting from the amount of each component provided in each region described above.
  • the method for preparing the exhaust gas purifying catalyst according to one embodiment of the present invention may be a normal preparation method used for the exhaust gas purifying catalyst, and is not particularly limited. This will be described in detail.
  • slurry a for forming a region containing palladium, slurry b for forming a first region, and slurry for forming a second region c the slurry a is brought into contact with the three-dimensional structure, and then the excess slurry is removed and dried or fired. Then, the slurry b is brought into contact with the portion that becomes the first region on the region containing palladium. Then, the excess slurry is removed and dried or fired. Subsequently, the slurry c is brought into contact with the portion to be the second region on the palladium-containing region, and then the excess slurry is removed and dried or fired.
  • slurry a, b, and c are prepared, and a region containing palladium is formed, and then placed on the region containing palladium.
  • the excess slurry is removed and dried or fired, and then the slurry b is brought into contact with the portion to be the first region on the region containing palladium.
  • a method of obtaining a catalyst by removing or drying excess slurry and (3) a slurry d containing a component specific to the region containing palladium, a slurry e containing a component specific to the first region, and a second region
  • the slurry f containing the components peculiar to the above and the solution containing the components common to the respective regions are prepared, the slurry d is brought into contact with the three-dimensional structure, and then the excess slurry is removed and dried or fired.
  • the excess slurry is removed or dried or fired, and then the slurry f is brought into contact with the portion that becomes the second region, and then the excess slurry.
  • the solution is impregnated into the three-dimensional structure after firing, followed by drying or baking, a method of obtaining a catalyst; and the like.
  • the drying temperature is preferably from room temperature to about 150 ° C, and the firing temperature is preferably from about 150 to 600 ° C.
  • the conditions for drying and firing can be appropriately changed according to the object.
  • Examples of a method for producing the above-mentioned slurries a to f include, for example, (1) a method in which powders of respective components are wet-pulverized to form a slurry; ), And then drying or baking to obtain a mixed powder, and then wet-pulverizing the mixed powder to form a slurry; (3) adding a liquid (precursor) of another component to a powder of a certain component; And a method of mixing and wet-pulverizing to make a slurry.
  • a slurry can be prepared by mixing the fine powder with an appropriate medium.
  • the exhaust gas targeted (applied) by the exhaust gas purification method according to an embodiment of the present invention may be any exhaust gas discharged from an internal combustion engine such as a gasoline engine, a diesel engine, or a gas turbine. Although not limited, exhaust gas discharged from a gasoline engine is more preferable. Hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxide in exhaust gas by bringing the exhaust gas purifying catalyst according to one embodiment of the present invention into contact with exhaust gas discharged from an internal combustion engine (NOx) can be purified.
  • the exhaust gas purifying catalyst according to an embodiment of the present invention can purify the exhaust gas more effectively when the exhaust gas has a temperature higher than 500 ° C., but the exhaust gas is preferably 500.
  • the purification rate of the exhaust gas can be 50% or more.
  • T50 the time for the exhaust gas purification rate to reach 50%
  • the shorter the time for reaching T50 (ignition time) the faster the exhaust gas is purified.
  • the exhaust gas has a space velocity of preferably 80000 h ⁇ 1 or more, more preferably 100000 h ⁇ 1 or more, and further preferably 120,000 h ⁇ 1 or more. Also, the exhaust gas can be effectively purified.
  • the upper limit of the space velocity of the exhaust gas is preferably 500,000 h ⁇ 1 or less, although it depends on the displacement of an internal combustion engine such as an engine.
  • the exhaust gas purification catalyst works effectively even when exposed to exhaust gas at 800 to 1000 ° C. for 40 to 450 hours, and can purify HC, CO and NOx in the exhaust gas.
  • NOx can be purified over a long period of time and has durability.
  • the present invention includes the inventions described in [1] to [18] below.
  • a region containing palladium is provided on the three-dimensional structure, and the first region and the second region are sequentially arranged on the palladium-containing region from the exhaust gas inflow side to the outflow side.
  • An exhaust gas purification catalyst provided, wherein the concentration of rhodium contained in the first region is higher than the concentration of rhodium contained in the second region.
  • the concentration of rhodium contained in the first region is 1.0% by mass or more and 10% by mass or less, and the concentration of rhodium contained in the second region is 0% by mass or more, 1
  • the amount of rhodium contained in the first region is 0.35 / L or more and 1.2 g / L or less in terms of metal with respect to 1 liter of the three-dimensional structure
  • the second The amount of rhodium contained in the region is 0.01 g / L or more and 0.3 g / L or less in terms of metal per 1 liter of the three-dimensional structure [1] to [3 ]
  • the exhaust gas purifying catalyst according to any one of the above.
  • the concentration of cerium contained in the palladium-containing region is higher than the concentration of cerium contained in the first region and / or the concentration of cerium contained in the second region.
  • the exhaust gas purifying catalyst as described in any one of [1] to [4].
  • the concentration of cerium contained in the palladium-containing region is 13% by mass or more and 40% by mass or less in terms of CeO 2 and the concentration of cerium contained in the first region and / or
  • [8] is the concentration of the cerium contained in said first region, in terms of CeO 2, 0 wt% or more and 4 wt% or less, and the concentration of the cerium contained in said second area, calculated as CeO 2
  • the amount of cerium contained in the palladium-containing region is 10 g / L or more and 50 g / L or less in terms of CeO 2 with respect to 1 liter of the three-dimensional structure, and in the first region
  • the amount of cerium contained in the second region and / or the amount of cerium contained in the second region is 0 g / L or more and less than 10 g / L in terms of CeO 2 with respect to 1 liter of the three-dimensional structure.
  • Cerium in the palladium-containing region is cerium composite oxide (3)
  • cerium in the first region is cerium composite oxide (1)
  • cerium in the second region is cerium composite oxide
  • the cerium composite oxide (3) has a higher cerium concentration in terms of CeO 2 than the cerium composite oxide (1) and / or the cerium composite oxide (2).
  • the cerium composite oxide (2) in the second region has the same or higher concentration of cerium in terms of CeO 2 than the cerium composite oxide (1) in the first region.
  • the exhaust gas purifying catalyst as set forth in any one of [10].
  • the amount of cerium contained in the cerium composite oxide (3) in the palladium-containing region is 30% by mass or more and 70% by mass or less in terms of CeO 2 , and the cerium composite in the second region.
  • the amount of cerium contained in the oxide (2) is 5% by mass or more and less than 30% by mass in terms of CeO 2 , according to any one of [1] to [11] Exhaust gas purification catalyst.
  • the amount of palladium contained in the palladium-containing region is 0.1 g / L or more and 20 g / L or less in terms of metal with respect to 1 liter of the three-dimensional structure, and contains the palladium.
  • the exhaust gas purifying catalyst according to any one of [1] to [12], wherein the concentration of palladium contained in the region is 1% by mass or more and 10% by mass or less.
  • the amount of all components provided in each region is such that the region containing palladium is more than the second region, the second region is more than the first region, and 1 liter of the three-dimensional structure.
  • the amount of all components provided in the palladium-containing region is 50 g / L or more and 150 g / L or less, and the amount of all components provided in the first region is 10 g / L or more and less than 60 g / L.
  • the exhaust gas purification catalyst according to any one of [1] to [13], wherein the amount of all components provided in the second region is 50 g / L or more and 90 g / L or less .
  • the three-dimensional structure is 30 mm or more and 200 mm or less, the region containing palladium is 60% or more and 100% or less with respect to the length of the three-dimensional structure, and the first region is 20 mm The first region is 50 mm or less, and the second region is provided on the region containing palladium and on the side where the exhaust gas flows out and the first region is not provided [1] to [14]
  • the exhaust gas purifying catalyst according to any one of [14].
  • An exhaust gas purification method comprising purifying exhaust gas using the exhaust gas purification catalyst according to any one of [1] to [15].
  • Example 1 (Palladium-containing region) An aqueous solution containing palladium, an oxide containing aluminum and a cerium composite oxide (the content of cerium is 45% by mass in terms of CeO 2 , and also contains aluminum), an oxide containing zirconium (in addition to zirconium, cerium is added) 24 mass% in terms of CeO 2 (including lanthanum) and barium oxide were mixed, dried and fired to obtain a powder. Water was added to this powder and wet pulverized to obtain a slurry for forming a region containing palladium.
  • a cordierite honeycomb (three-dimensional structure) having a length of 80 mm was immersed in the slurry, and then the excess slurry was removed and dried and fired to provide a region containing palladium in the honeycomb.
  • Per liter of honeycomb 5 g of palladium, 18 g of zirconium in terms of zirconium oxide (ZrO 2 equivalent), 31 g in terms of aluminum oxide (in terms of Al 2 O 3 ), 14 g in terms of cerium oxide (in terms of CeO 2 ), Lanthanum was contained in 6 g in terms of La 2 O 3 , and barium was contained in 4 g in terms of BaO.
  • the concentration of cerium in this region is 17% by mass in terms of cerium oxide (CeO 2 ), and the concentration of palladium is 6% by mass.
  • the amount of all components provided in the region containing palladium is 81 g / L.
  • a first region was provided 30 mm from the exhaust gas inlet side of the honeycomb on the palladium-containing region.
  • honeycomb contained 0.6 g of rhodium, 0.6 g of palladium, 16 g of zirconium in terms of zirconium oxide (ZrO 2 ), and 22 g of aluminum in terms of aluminum oxide (Al 2 O 3 ).
  • the concentration of rhodium in the region is 1.3% by mass
  • the concentration of palladium is 1.3% by mass
  • the concentration of cerium is 0% by mass in terms of cerium oxide (CeO 2 ).
  • the amount of all components provided in the first region is 46 g / L.
  • the honeycomb having the first region is dipped in slurry for forming the second region from the other end to a predetermined position (position that is a boundary with the first region), and then the surplus
  • the second region was provided 50 mm from the exhaust gas outlet side of the honeycomb on the region containing palladium.
  • rhodium is 0.3 g
  • palladium is 0.3 g
  • zirconium is 9 g in terms of zirconium oxide (ZrO 2 )
  • aluminum is 54 g in terms of aluminum oxide (Al 2 O 3 )
  • cerium cerium oxide (CeO 2). ) 8g was included in conversion.
  • the rhodium concentration in the region is 0.3 mass%
  • the palladium concentration is 0.3 mass%
  • the cerium concentration is 11 mass% in terms of cerium oxide (CeO 2 ).
  • the amount of all components provided in the second region is 75 g / L.
  • FIG. 1 A schematic configuration of the exhaust gas purifying catalyst A is shown in FIG. 1
  • the exhaust gas purifying catalyst A of this example is provided with a region 2 containing palladium on a honeycomb 1 made of cordierite, and the exhaust gas is on the region 2 containing palladium.
  • the first region 3 and the second region 4 were sequentially provided from the inflow side to the outflow side.
  • Example 2 (Palladium-containing region) An aqueous solution containing palladium, an oxide containing barium oxide and aluminum (aluminum content is 97% by mass in terms of Al 2 O 3 ), a cerium composite oxide (the content of cerium is 45% by mass in terms of CeO 2 and contains zirconium) The ratio was 44 mass% in terms of ZrO 2 ), and then dried and fired to obtain a powder. Water was added to this powder and wet pulverized to obtain a slurry for forming a region containing palladium.
  • a cordierite honeycomb having a length of 80 mm was immersed in the slurry, and then the excess slurry was removed and dried and fired to provide a region containing palladium in the honeycomb.
  • palladium is 5 g
  • barium is 10 g in terms of BaO
  • zirconium is 15 g in terms of zirconium oxide (ZrO 2 )
  • aluminum is 43 g in terms of aluminum oxide (Al 2 O 3 )
  • cerium cerium oxide (CeO 2 ). 15 g in terms of conversion was included.
  • the concentration of cerium is 16% by mass in terms of cerium oxide (CeO 2 )
  • the palladium concentration is 5% by mass.
  • the amount of all components provided in the region containing palladium is 95 g / L.
  • a first region was provided 30 mm from the exhaust gas inlet side of the honeycomb on the palladium-containing region.
  • rhodium is 0.6 g
  • zirconium is 8 g in terms of zirconium oxide (ZrO 2 )
  • lanthanum is 4 g in terms of lanthanum oxide (La 2 O 3 )
  • aluminum is 14 g in terms of aluminum oxide (Al 2 O 3 ).
  • cerium oxide 3 g was contained in terms of cerium oxide (CeO 2 ).
  • the rhodium concentration in the region is 1.9% by mass, and the cerium concentration is 10.3% by mass in terms of cerium oxide (CeO 2 ).
  • the amount of all components provided in the first region is 31 g / L.
  • an aqueous solution containing rhodium, an oxide containing aluminum (aluminum content is 96% by mass in terms of Al 2 O 3 ) and a cerium-containing oxide (the content of cerium is 23% by mass in terms of CeO 2 , zirconium is 24% by mass in terms of ZrO 2 and 50% by mass in terms of aluminum in terms of Al 2 O 3 ) were mixed, dried and fired to obtain a powder. Water was added to this powder and wet pulverized to obtain a slurry for forming the second region.
  • the honeycomb having the first region is dipped in slurry for forming the second region from the other end to a predetermined position (position that is a boundary with the first region), and then the surplus
  • the second region was provided 50 mm from the exhaust gas outlet side of the honeycomb on the region containing palladium.
  • rhodium is 0.3 g
  • zirconium is 13 g in terms of zirconium oxide (ZrO 2 )
  • aluminum is 23 g in terms of aluminum oxide (Al 2 O 3 )
  • cerium 6 g in terms of cerium oxide (CeO 2 )
  • lanthanum Was 6 g in terms of lanthanum oxide (La 2 O 3 ).
  • the rhodium concentration in the region is 0.5% by mass
  • the cerium concentration is 10.4% by mass in terms of cerium oxide (CeO 2 ).
  • the amount of all components provided in the second region is 50 g / L.
  • a cordierite honeycomb having a length of 80 mm was immersed in the slurry, and then the excess slurry was removed and dried and fired to provide a region containing palladium in the honeycomb.
  • 5 g of palladium, 12 g of barium in terms of barium oxide (BaO), 16 g in terms of zirconium in terms of zirconium oxide (ZrO 2 ), 58 g in terms of aluminum oxide (Al 2 O 3 ), and cerium in cerium oxide 16 g in terms of (CeO 2 ) was contained.
  • the concentration of cerium is 16% by mass in terms of cerium oxide (CeO 2 )
  • palladium is 4% by mass.
  • the amount of all components provided in the palladium-containing region is 125 g / L.
  • rhodium is 0.6 g
  • zirconium is 21 g in terms of zirconium oxide
  • lanthanum is 9 g in terms of lanthanum oxide (La 2 O 3 )
  • aluminum is 37 g in terms of aluminum oxide (Al 2 O 3 )
  • cerium is oxidized 8 g in terms of cerium (CeO 2 ) was contained.
  • the rhodium concentration in the region is 0.7% by mass, and the cerium concentration is 10.4% by mass in terms of cerium oxide (CeO 2 ).
  • the amount of all components provided in the surface area is 81 g / L.
  • FIG. 1 A schematic configuration of the exhaust gas purifying catalyst C is shown in FIG. 1
  • the exhaust gas purifying catalyst C of the comparative example is provided with a region 2 containing palladium on a cordierite honeycomb 1 and a surface region 5 provided on the region 2 containing palladium. It was the structure that has been.
  • the exhaust gas purifying catalysts A to C prepared in Examples 1 and 2 and Comparative Example 1 have a function in which A / F (air / fuel) swings around a stoichiometric ratio of 14.6. Installed in the exhaust pipe of a gasoline engine. Then, after the exhaust gas purification catalysts A to C are exposed to 1000 ° C. exhaust gas for 80 hours, the exhaust gas purification catalysts A to C kept at 100 ° C. are supplied with 500 ° C. exhaust gas at a space velocity of 125000 h ⁇ 1. The ignition time of HC, CO, and NOx was measured. The result is shown in FIG. Here, the ignition time refers to the time from when the exhaust gas at 500 ° C. is introduced until the purification rate of HC, CO, NOx of the exhaust gas purification catalyst reaches 50% (T50).
  • the horizontal axis represents the example and the comparative example, and the vertical axis represents the time to reach T50 (ignition time).
  • the exhaust gas purifying catalyst according to one embodiment of the present invention is more HC (Figure 1) than the catalyst (Comparative Example 1) having a single composition in the surface region often found in the prior art. 3 described as THC (total hydrocarbons), CO, and NOx, the time to reach T50 was short, and thus the purification rate reached 50% faster and showed excellent performance.
  • the exhaust gas purifying catalyst and the exhaust gas purifying method using the same according to the present invention can be suitably used for purifying exhaust gas discharged from an internal combustion engine such as a gasoline engine, a diesel engine, or a gas turbine.
  • an internal combustion engine such as a gasoline engine, a diesel engine, or a gas turbine.

Abstract

排気ガス中の炭化水素、一酸化炭素および窒素酸化物を低温で浄化することができる排気ガス浄化用触媒を提供するため、本発明の排気ガス浄化用触媒は、三次元構造体(1)上にパラジウムを含む領域(2)が設けられ、領域(2)上であって排気ガスが流入する側から流出する側に向けて順に、第一領域(3)と第二領域(4)とが設けられ、第一領域(3)に含まれるロジウムの濃度が第二領域(4)に含まれるロジウムの濃度に比べて高くなっている。

Description

排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法
 本発明は、排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法に関し、詳しくは排気ガス中の炭化水素(HC)、一酸化炭素(CO)および窒素酸化物(NOx)を低温で浄化することができる排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法に関する。
 排気ガス中の炭化水素(HC)、一酸化炭素(CO)および窒素酸化物(NOx)を同時に除去する排気ガス浄化方法が数多く提案されている。
 例えば、触媒担体に触媒成分を重ねて被覆し、この重ねた部分に含まれる貴金属の濃度を変えることで、排ガス中に含まれる被毒成分が触媒に付着したときであっても、一定量の触媒活性成分を被毒物質から守り、触媒活性成分が一度に被毒されて該触媒の活性低下を生じることの無い技術が提案されている(特許文献1)。また、触媒に含まれる酸素貯蔵成分と排気ガスとの接触効率を向上させるために、触媒上に重ねて被覆する技術が提案されている(特許文献2)。また、Pt、Pd、Rhの各貴金属の作用を考慮して触媒成分を重ねて被覆し、さらに担体に直接被覆される部分に含まれるPtとPdとが存在する領域を分けることで排気ガス中のHC、NOxの浄化を目的とする技術が提案されている(特許文献3)。
 しかし、排気ガスの規制は日を追うごとに厳しくなり、従来の排気ガス浄化用触媒では十分に対応することができなくなりつつある。特に、NOxの還元に効果を示すロジウムの性能を十分に活用できていないのが現状である。例えば、排気ガスが触媒と接触してNOxなどの被浄化成分および酸素の濃度が変化することで、排気ガスの入口側から出口側に向けて被浄化成分が浄化(処理)される量が変化するために、排気ガスを十分に浄化することが困難となっている。具体的には、例えば自動車がアイドリング状態から走行状態に移ると、多量の高温の排気ガスが瞬時に発生して排気ガス浄化用触媒に導入されることになる。しかしながら、排気ガス浄化用触媒は排気ガスに比べて低温である。それゆえ、従来の排気ガス浄化用触媒では排気ガスを直ちに浄化することが難しい。即ち、従来の排気ガス浄化用触媒は、排気ガスに対して触媒の応答性が低い。
日本国公開特許公報「特開2013-6179号公報」 日本国公開特許公報「特表2005-505403号公報」 日本国公開特許公報「特開2010-5590号公報」
 上記特許文献1~3の技術では、単に排気ガス中のHC、NOxを浄化できるにとどまり、排気ガスの温度が低温である場合に適用するには十分とはいい難い。
 本発明は、上記問題点に鑑みてなされたものであり、触媒が十分に作用し難い低温時に排出された排気ガス中のHC、COおよびNOxを効率よく浄化することができる排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法を提供することを目的とする。本発明に係る排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法は、低温でNOxを浄化することができる。特に、少量の低温の排気ガスが導入されている状態から、多量の高温の排気ガスが瞬時に導入される状態となったとき、つまり、排気ガスの温度の急上昇のみならず、触媒に対する空間速度(単位体積の触媒を通過する排気ガスの単位時間当たりの容量(h-1))が急激に速くなった場合であっても、多量の高温の排気ガスを処理することができる応答性に優れた浄化用触媒およびそれを用いた排気ガス浄化方法を提供することができることを目的とする。さらに、本発明に係る排気ガス浄化用触媒は、NOxを長時間に亘り浄化することができ、耐久性を備えている触媒である。
 本発明者らは、上記課題を解決するために鋭意検討の結果、下記排気ガス浄化用触媒を見出して発明を完成するに至った。
 即ち、本発明の排気ガス浄化用触媒は、三次元構造体上にパラジウムを含む領域が設けられ、該パラジウムを含む領域上であって排気ガスが流入する側から流出する側に向けて順に、第一領域と第二領域とが設けられ、第一領域中に含まれるロジウムの濃度が第二領域中に含まれるロジウムの濃度に比べて高くなっていることを特徴とする。
 本発明によれば、触媒が十分に作用し難い低温時に排出された排気ガス中の炭化水素(HC)、一酸化炭素(CO)および窒素酸化物(NOx)を効率よく浄化することができる排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法を提供することができるという効果を奏する。
図1は、一実施の形態(実施例1)に係る排気ガス浄化用触媒の概略の構成を示す正面図である。 図2は、従来(比較例1)の排気ガス浄化用触媒の概略の構成を示す正面図である。 図3は、実施例および比較例の結果を示すグラフである。
 以下、本発明の実施の形態について詳細に説明する。但し、本発明はこれに限定されるものではなく、記述した範囲内で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。そして、各元素において質量または物性に関する特徴があるときには、別途、個々に換算式や物質名等を記載する。
 本発明の一実施の形態に係る排気ガス浄化用触媒(以下、単に「触媒」と記載する場合がある)は、三次元構造体上にパラジウムを含む領域が設けられ、該パラジウムを含む領域上であって排気ガスが流入する側から流出する側に向けて順に、第一領域と第二領域とが設けられ、第一領域中に含まれるロジウムの濃度が第二領域中に含まれるロジウムの濃度に比べて高くなっている。そして、(i)第一領域中に含まれるロジウムの濃度が第二領域中に含まれるロジウムの濃度に比べて2倍以上、5倍以下であることがより好ましく、(ii)パラジウムを含む領域中に含まれるセリウムの濃度が、第一領域中に含まれるセリウムの濃度および/または第二領域中に含まれるセリウムの濃度に比べて高くなっていることがより好ましく、(iii) 第二領域中に含まれるセリウムの濃度が第一領域中に含まれるセリウムの濃度に比べて高くなっていること、(iv)該パラジウムを含む領域におけるセリウムがセリウム複合酸化物(3)であり、該第一領域におけるセリウムがセリウム複合酸化物(1)であり、かつ該第二領域におけるセリウムがセリウム複合酸化物(2)であるとき、該セリウム複合酸化物(3)が、該セリウム酸化物(1)および/または該セリウム酸化物(2)に比べて、セリウムの濃度(CeO換算の濃度、以下同じ)が高いことがより好ましい。また、本発明の一実施の形態に係る排気ガス浄化方法は、上記排気ガス浄化用触媒を用いて排気ガスを浄化する。
 (三次元構造体)
 本発明の一実施の形態に用いられる三次元構造体は、その表面に該パラジウムを含む領域を設けることができる構造体であればよく、特に限定されないものの、フロースルー型ハニカム、プラグハニカム、コルゲート型ハニカム、板状、波板状などの、触媒担体として通常用いられる形状の構造体が好ましく、フロースルー型ハニカム形状の構造体がより好ましい。三次元構造体の材質は、耐熱性を有する材質であればよく、特に限定されないものの、ステンレスなどの鉄系の金属、コージェライト、SiC、アルミナなどのセラミックスを好適に用いることができる。
 三次元構造体は排気ガス浄化用の三次元構造体として市販されているので、これを用いることができる。三次元構造体の大きさは、処理する排気ガスの量に応じて、好ましい大きさおよび形状を適宜選択することができる。
 三次元構造体の長さは、200mm以下、好ましくは160mm以下、さらに好ましくは120mm以下、最も好ましくは100mm以下であり、また、30mm以上、好ましくは50mm以上、さらに好ましくは60mm以上、最も好ましくは70mm以上である。
 三次元構造体の断面の相当直径は、60mm以上、好ましくは70mm以上であり、また、120mm以下、好ましくは100mm以下である。
 三次元構造体が孔を有する場合には、その孔の形状は、三角形、四角形、六角形、円形など何れの形状であってもよいが、好ましくは四角形、六角形である。孔の数は15個/cm~190個/cmが好ましく、60個/cm~140個/cmがより好ましい。
 三次元構造体の容積は、0.4リットル(以下、「L」と記載することもある)以上、好ましくは0.5L以上、さらに好ましくは0.6L以上であり、また、2.0L以下、好ましくは1.6L以下、さらに好ましくは1.4L以下である。
 (パラジウムを含む領域)
 パラジウムを含む領域は三次元構造体上に設けられる。該パラジウムを含む領域には、少なくともパラジウムが含まれていればよい。該領域中に含まれるパラジウムの量は、三次元構造体に対して、金属換算で、0.1g/L以上(以下、三次元構造体1リットル当たりの各成分量を「g/L」と記載する場合がある。「特許請求の範囲」についても同じ。)、より好ましくは0.2g/L以上、さらに好ましくは0.4g/L以上、最も好ましくは2g/L以上である。パラジウムの量が0.1g/L未満である場合には、三次元構造体における反応サイトが不足する。また、該領域中に含まれるパラジウムの量は、三次元構造体に対して、金属換算で、20g/L以下、より好ましくは15g/L以下、さらに好ましくは10g/L以下、最も好ましくは5g/L以下である。パラジウムの量が20g/Lを超える場合には、反応効率が低下する。
 該領域中に含まれるパラジウムの濃度は、好ましくは1質量%以上、より好ましくは3質量%以上であり、また、好ましくは10質量%以下、より好ましくは8質量%以下である。本明細書において「濃度」とは、対象とする領域中に含まれる全成分を合計した質量に対する各成分の質量の百分率(%)である。以下、「濃度」に関する記載は、他の領域における各成分に関しても同様である。なお、パラジウム、ロジウムおよび白金は金属換算し、他の成分は酸化物換算し、それぞれ百分率で示す。
 該領域には、必要に応じて、白金、ロジウムが含まれていてもよいが、パラジウムの効果を際立たせるには、白金、ロジウムの量は少ない方が好ましい。
 パラジウム、白金、ロジウム(総称として、「貴金属」と記載することがある)の原料としては、硝酸塩や塩化物塩などを用いることができ、硝酸塩がより好ましい。
 該領域の長さは、排気ガスが流入する側を起点として、三次元構造体における長さの50%以上が好ましく、60%以上がより好ましく、70%以上がさらに好ましく、80%以上が最も好ましく、また、85%以下が好ましく、90%以下がより好ましく、95%以下がさらに好ましく、100%以下が最も好ましい。
 該領域中に含まれる貴金属以外の成分としては、通常、触媒に用いられるα-アルミナ、γ-アルミナ、θ-アルミナなどのアルミナ、シリカ、チタニア、ジルコニアまたはこれらの混合物、およびこれらの複合酸化物などの耐火性無機酸化物;アルカリ金属酸化物、Mg、アルカリ土類金属酸化物、La、Ce、Ndなどの希土類金属酸化物、遷移金属酸化物が挙げられる。上記例示の成分の中でも、耐火性無機酸化物、または金属酸化物であって、酸素を吸蔵することができる酸素吸蔵物質(例えば、酸化セリウムなど)がより好ましい。上記酸化物は、市販されている酸化物を適宜使用することができる。
 希土類元素の中でもセリウムは、その酸化物が酸素吸蔵物質としてパラジウムと相互に作用し、低温でNOxの浄化性能を向上させることができる。該領域中に含まれるセリウムの量は、三次元構造体に対して、CeO換算で、2g/L以上、より好ましくは10g/L以上、さらに好ましくは13g/L以上である。セリウムの量が2g/L未満である場合には、酸素吸蔵量が不足する。また、セリウムの量は、三次元構造体に対して、CeO換算で、50g/L以下、より好ましくは20g/L以下である。セリウムの量が50g/Lを超える場合には、該領域の耐熱性が不足する。
 酸化セリウムは、他の金属酸化物、例えば酸化アルミニウムおよび/または酸化ジルコニウムと複合された複合酸化物(3)として用いることができる。該複合酸化物(3)中に含まれるセリウムの量は、CeO換算で、20質量%以上、好ましくは30質量%以上、より好ましくは40質量%以上であり、70質量%以下、好ましくは60質量%以下、より好ましくは50質量%以下である。セリウムの量が20質量%以上であれば、酸化セリウムが酸素をPdに供給してPdを酸化物状態に維持する効果を発揮し易くなる。一方、耐熱性を考慮すると、セリウムの量を70質量%以下に抑えて他の金属酸化物と複合させることが効果的である。
 該領域に用いられる耐火性無機酸化物の量は、三次元構造体に対して、5g/L以上、より好ましくは7g/L以上、さらに好ましくは10g/L以上であり、また、100g/L以下、より好ましくは80g/L以下、さらに好ましくは70g/L以下である。該領域に用いられるアルカリ土類金属酸化物の量は、三次元構造体に対して、1g/L以上、より好ましくは5g/L以上であり、また、25g/L以下、より好ましくは15g/L以下である。該領域に用いられる、セリウムを除く希土類金属酸化物の量は、三次元構造体に対して、1g/L以上、より好ましくは5g/L以上であり、また、25g/L以下、より好ましくは15g/L以下である。該領域に用いられる遷移金属酸化物の量は、三次元構造体に対して、1g/L以上、より好ましくは5g/L以上であり、また、25g/L以下、より好ましくは15g/L以下である。
 耐火性無機酸化物としてジルコニア(酸化ジルコニウム)を用いるとき、酸化ジルコニウムの量は、三次元構造体に対して、ZrO換算で、5g/L以上、より好ましくは10g/L以上である。酸化ジルコニウムの量が5g/L未満である場合には、該領域の耐熱性が不足する。また、酸化ジルコニウムの量は、三次元構造体に対して、ZrO換算で、50g/L以下、より好ましくは30g/L以下、さらに好ましくは20g/L以下である。酸化ジルコニウムの量が50g/Lを超える場合には、他の成分の濃度が希薄になるので、他の成分の効果が低くなり易くなる。該酸化ジルコニウムは、単独の酸化物、複合酸化物の何れであってもよい。
 耐火性無機酸化物としてアルミナを用いるとき、アルミナの量は、三次元構造体に対して、Al換算で、5g/L以上、より好ましくは10g/L以上であり、また、50g/L以下、より好ましくは30g/L以下、さらに好ましくは20g/L以下である。パラジウムを有効に分散するためには上記範囲が好適である。
 該領域に設けられる全成分の量は、三次元構造体に対して、30g/L以上、好ましくは50g/L以上、更に好ましくは70g/L以上であり、最も好ましくは80g/L以上であり、また、150g/L以下、好ましくは130g/L以下、さらに好ましくは110g/L以下である。
 (第一領域)
 第一領域はパラジウムを含む領域上であって、排気ガスが流入する側に設けられる。該第一領域には、少なくともロジウムが含まれていればよい。ロジウムの量は、三次元構造体1リットルに対して、金属換算で、0.35g/L(リットル、以下同じ)以上、より好ましくは0.4g/L以上、さらに好ましくは0.5g/L以上であり、また、1.2g/L以下、より好ましくは1.0g/L以下、さらに好ましくは0.9g/L以下である。
 該第一領域中に含まれるロジウム以外の成分としては、通常、触媒に用いられるα-アルミナ、γ-アルミナ、θ-アルミナなどのアルミナ、シリカ、チタニア、ジルコニアまたはこれらの混合物、またはこれらの複合酸化物などの耐火性無機酸化物;アルカリ金属酸化物、アルカリ土類金属酸化物、希土類金属酸化物、遷移金属酸化物が挙げられる。上記例示の成分の中でも、耐火性無機酸化物または金属酸化物であって、酸素を吸蔵することができる酸素吸蔵物質(例えば、酸化セリウムなど)がより好ましく、γ-アルミナ、θ-アルミナ、ジルコニア、酸化セリウムがさらに好ましい。該第一領域に用いられる上記酸化物の総量は、三次元構造体1リットルに対して、5g/L以上、好ましくは20g/L以上、より好ましくは30g/L以上であり、また、150g/L以下、より好ましくは120g/L以下である。
 該第一領域の長さは、排気ガスが流入する側を起点として、20mm以上であることが好ましく、25mm以上であることがより好ましく、30mm以上であることがさらに好ましい。第一領域の長さが20mmよりも短いと、排気ガスが流入する側に貴金属が十分に存在しないため、排気ガスの浄化率が低くなる。また、第一領域の長さは、排気ガスが流入する側を起点として、50mm以下であることが好ましく、40mm以下であることがより好ましく、35mm以下であることがさらに好ましい。第一領域の長さが50mmよりも長いと、排気ガスが流入する側に貴金属が集中的に担持されないため、排気ガスの浄化率が低くなる。
 ここで、各領域の長さは、完成した触媒または各領域を被覆した三次元構造体を分割し、内部における当該領域の長さが最も短い値Lminと最も長い値Lmaxとの平均値「(Lmin+Lmax)÷2」である。
 後述する各スラリーの、三次元構造体上における塗布状態(塗布長さ、塗布厚さ、塗布量)を確認する方法としては、例えば、予め、幾つかの塗布条件にて各スラリーを塗布して形成した触媒を破壊して、上述の長さ、厚さ、量を、ノギス、電子天秤、および3次元(3D)マイクロスコープなどの顕微鏡を用いて測定する方法が使用可能である。また、X線CT装置を用いて、触媒を破壊せずに上述の長さ、厚さ、量を測定することもできる。所望の長さ、厚さ、量となるように塗布されることを確認した塗布条件にて後述する各スラリーの塗布を行うことにより、好適な触媒を容易に製造することができる。
 希土類元素の中でもセリウムは、その酸化物が酸素吸蔵物質としてロジウムと相互に作用し、低温でNOxの浄化性能を向上させることができる。セリウムが含まれている場合における該セリウムの量は、三次元構造体に対して、CeO換算で、0g/L以上、好ましくは0.5g/L以上、より好ましくは1g/L以上、さらに好ましくは1.5g/L以上である。排気ガス温度が低い内燃機関に関しては、第一領域では酸素吸蔵能力よりも排気ガスの燃焼力が求められることがあり、その場合にはセリウムを0g/Lにすることが効果的である。なお、酸素吸蔵量を確保するには、セリウムの量が0.5g/L以上であることが効果的である。また、該セリウムの量は、三次元構造体に対して、CeO換算で、20g/L未満、より好ましくは10g/L未満、さらに好ましくは4g/L未満、特に好ましくは3g/L以下である。セリウムの量が20g/Lを超える場合には、ロジウムが酸化されるので該ロジウムの活性が低下する。
 酸化セリウムは、他の金属酸化物、例えば酸化アルミニウムおよび/または酸化ジルコニウムと複合された複合酸化物(1)として用いることができる。該複合酸化物(1)中に含まれるセリウムの量は、CeO換算で、5質量%以上、好ましくは10質量%以上、より好ましくは20質量%以上であり、40質量%以下、好ましくは30質量%未満、更に好ましくは27質量%以下である。排気ガスが酸化雰囲気下にあるときに、第一領域が効果的に酸素を吸蔵して排気ガスの浄化に寄与するには、セリウムの量は5質量%以上であることが好ましく、第一領域が過剰に酸素を吸蔵することを抑制するには、セリウムの量は50質量%以下であることが効果的である。
 該第一領域に設けられる全成分の量は、三次元構造体に対して、10g/L以上、好ましくは15g/L以上、更に好ましくは20g/L以上であり、また、70g/L未満、好ましくは60g/L未満、更に好ましくは50g/L未満である。
 (第二領域)
 第二領域は、該パラジウムを含む領域上であって、排気ガスが流出する側に設けられ、好ましくは該パラジウムを含む領域上かつ排気ガスが流出する側であって該第一領域が設けられていない部分に設けられる。該第二領域には、ロジウムが含まれていてもよく、含まれていなくてもよい。ロジウムが含まれている場合における該ロジウムの量は、三次元構造体に対して、金属換算で、0.01g/L以上、好ましくは0.1g/L以上、より好ましくは0.2g/L以上であり、また、1.2g/L以下、より好ましくは0.4g/L未満、さらに好ましくは0.3g/L以下である。
 第二領域の長さは、第一領域における排気ガスが流出する側の端部を起点として、三次元構造体における排気ガスが流出する側の端部までの長さであることが好ましい。
 第二領域中に含まれるロジウム以外の成分としては、通常、触媒に用いられるα-アルミナ、γ-アルミナ、θ-アルミナなどのアルミナ、シリカ、チタニア、ジルコニアまたはこれらの混合物、またはこれらの複合酸化物などの耐火性無機酸化物;アルカリ金属酸化物、アルカリ土類金属酸化物、希土類金属酸化物、遷移金属酸化物が挙げられる。上記例示の成分の中でも、耐火性無機酸化物または金属酸化物であって、酸素を吸蔵することができる酸素吸蔵物質(例えば、酸化セリウムなど)がより好ましく、γ-アルミナ、θ-アルミナ、ジルコニア、酸化セリウムがさらに好ましい。該第二領域に用いられる上記酸化物の総量は、三次元構造体に対して、20g/L以上、より好ましくは25g/L以上であり、また、150g/L以下、より好ましくは120g/L以下である。
 希土類元素の中でもセリウムは、その酸化物が酸素吸蔵物質としてロジウムと相互に作用し、低温でNOxの浄化性能を向上させることができる。セリウムの量は、三次元構造体に対して、CeO換算で、0.5g/L以上、より好ましくは3.5g/L以上、さらに好ましくは4g/L以上、最も好ましくは5g/Lを超える量である。セリウムの量が0.5g/L未満である場合には、酸素吸蔵量が不足する。また、セリウムの量は、三次元構造体に対して、CeO換算で、20g/L以下、より好ましくは10g/L未満、さらに好ましくは7g/L以下である。セリウムの量が20g/Lを超える場合には、ロジウムが含まれていると、ロジウムが酸化されるので該ロジウムの活性が低下する。
 酸化セリウムは、他の金属酸化物、例えば酸化アルミニウムおよび/または酸化ジルコニウムと複合された複合酸化物(2)として用いることができる。該複合酸化物(2)中に含まれるセリウムの量は、CeO換算で、5質量%以上、好ましくは10質量%以上、より好ましくは20質量%以上であり、40質量%以下、好ましくは30質量%未満、さらに好ましくは27質量%以下である。排気ガスが酸化雰囲気下にあるときに、第一領域が効果的に酸素を吸蔵して排気ガスの浄化に寄与するには、セリウムの量は5質量%以上であることが好ましく、第一領域が過剰に酸素を吸蔵することを抑制するには、セリウムの量は50質量%以下であることが効果的である。
 該第二領域に設けられる全成分の量は、三次元構造体に対して、30g/L以上、好ましくは50g/L以上、更に好ましくは60g/L以上であり、また、100g/L以下、好ましくは90g/L以下、更に好ましくは80g/L未満である。
 (領域間におけるロジウムの濃度の比較)
 本発明の一実施の形態に係る排気ガス浄化用触媒は、該第一領域中に含まれるロジウムの濃度が該第二領域中に含まれるロジウムの濃度に比べて高くなっており、該第一領域中に含まれるロジウムの濃度が該第二領域中に含まれるロジウムの濃度に比べて2倍以上、5倍以下になっていることがより好ましい。各領域中に含まれるロジウムの濃度とは、各領域においてロジウムとロジウム以外の成分との合計の質量に対する、ロジウム(金属換算)の質量の百分率を指す。第一領域中に含まれるロジウムの濃度が第二領域中に含まれるロジウムの濃度に比べて低くなっている場合には、触媒の低温での着火特性が低下する。なお、着火特性とは、特定温度の排気ガスにおいて触媒のHC、CO、NOxの浄化率が50%(T50)に達する時間(着火時間)で表される特性である。
 該第一領域中に含まれるロジウムの濃度は、金属換算で、0.1%質量以上、より好ましくは0.8質量%以上、さらに好ましくは1.0質量%以上、最も好ましくは1.5質量%以上である。第一領域中に含まれるロジウムの濃度が0.1質量%未満である場合には、三次元構造体における反応サイトが不足する。また、該ロジウムの濃度は、金属換算で、10質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。
 一方、該第二領域中に含まれるロジウムの濃度は、金属換算で、0質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上である。また、第二領域中に含まれるロジウムの濃度は、金属換算で、5質量%以下、より好ましくは2質量%以下、さらに好ましくは1.0質量%未満であり、最も好ましくは0.7質量%以下である。第二領域中に含まれるロジウムの濃度が5質量%を超える場合には、反応効率が低下する。
 そして、第一領域および第二領域中に含まれるロジウムの濃度は、上記パラジウムを含む領域中に含まれるロジウムの濃度に比べて高くなっていることが好ましく、第一領域中に含まれるロジウムの濃度が第二領域中に含まれるロジウムの濃度に比べて2倍以上、好ましくは3倍以上、また、6倍以下、好ましくは5倍以下である。ロジウムの濃度が該範囲内であれば、排気ガスの温度の変化が生じても、NOxを瞬時に処理(浄化)することができるので有利である。
 (領域間におけるセリウムの濃度の比較)
 本発明の一実施の形態に係る排気ガス浄化用触媒は、該パラジウムを含む領域中に含まれるセリウムの濃度が、該第一領域中に含まれるセリウムの濃度および/または該第二領域中に含まれるセリウムの濃度に比べて高くなっていることがより好ましく、パラジウムを含む領域中に含まれるセリウムの濃度が、第一領域中に含まれるセリウムの濃度および第二領域中に含まれるセリウムの濃度に比べて高くなっていることがさらに好ましい。各領域中に含まれるセリウムの濃度とは、セリウム(CeO換算)とセリウム以外の成分(領域中に含まれる化合物の質量)との合計の質量に対する、セリウム(CeO換算)の質量の百分率を指す。パラジウムを含む領域中に含まれるセリウムの濃度が、第一領域中に含まれるセリウムの濃度および第二領域中に含まれるセリウムの濃度に比べて低くなっている場合には、酸素吸蔵能力が低下する。
 さらに、該第二領域中に含まれるセリウムの濃度が該第一領域中に含まれるセリウムの濃度に比べて高くなっていることがより好ましい。第二領域中に含まれるセリウムの濃度が第一領域中に含まれるセリウムの濃度に比べて低くなっている場合には、酸素吸蔵能力が低下する。
 該パラジウムを含む領域中に含まれるセリウムの濃度は、CeO換算で、10質量%以上、より好ましくは13質量%以上、さらに好ましくは14質量%以上であり、また、40質量%以下、より好ましくは25質量%以下、さらに好ましくは20質量%以下である。該第一領域中に含まれるセリウムの濃度は、CeO換算で、0質量%以上、より好ましくは1質量%以上であり、また、20質量%以下、より好ましくは13質量%未満、さらに好ましくは12質量%以下、最も好ましくは4質量%以下である。排気ガス温度が低い内燃機関に関しては、第一領域では酸素吸蔵能力よりも排気ガスの燃焼力が求められることがあり、その場合にはセリウムを0質量%にすることが効果的である。該第二領域中に含まれるセリウムの濃度は、CeO換算で、5質量%以上、より好ましくは7質量%以上であり、また、30質量%以下、より好ましくは13質量%未満であり、さらに好ましくは12質量%以下である。
 上述した本発明の一実施の形態に係る排気ガス浄化用触媒を用いることにより、排気ガスの温度が低温で、かつ、空間速度が速い場合においても、該排気ガスを効率よく浄化することができる。ここで「低温」とは、三次元構造体の排気ガスが流入する側の端部における排気ガスの温度が100℃以上、400℃以下であることを指し、「空間速度が速い」とは、80000h-1以上であることを指す。
 (領域間に設けられる全成分の量の比較)
 各領域に設けられる全成分の量は、触媒活性を向上させる量であれば特に制限はない。(1)好ましくは、該第二領域が該第一領域に比べて同等か多い量、好ましくは多い量である。(2)また、各領域に設けられる全成分の量は、該パラジウムを含む領域が該第一領域および/または第二領域よりも多い量であり、好ましくは該パラジウムを含む領域が該第一領域および第二領域よりも多い量である。(3)さらに好ましくは、各領域に設けられる全成分の量は、該パラジウムを含む領域が第二領域よりも多く、第二領域が第一領域よりも多い。なお、各領域に設けられる全成分の量は、上述した各領域に設けられる各成分の量から適宜選択して得ることができる。
 (排気ガス浄化用触媒の調製方法)
 本発明の一実施の形態に係る排気ガス浄化用触媒の調製方法は、排気ガス浄化用触媒に用いられる通常の調製方法であればよく、特に限定されないものの、より好ましい調製方法の一例を、以下に具体的に説明する。
 排気ガス浄化用触媒の調製方法としては、例えば、(1)パラジウムを含む領域を成形するためのスラリーa、第一領域を形成するためのスラリーb、および、第二領域を形成するためのスラリーcを作製し、三次元構造体に、スラリーaを接触させた後、余剰のスラリーを除いて乾燥または焼成し、次いで、パラジウムを含む領域上における第一領域となる部分に、スラリーbを接触させた後、余剰のスラリーを除いて乾燥または焼成し、続いて、パラジウムを含む領域上における第二領域となる部分に、スラリーcを接触させた後、余剰のスラリーを除いて乾燥または焼成することで、触媒を得る方法;(2)上記(1)と同様にしてスラリーa、b、cを作製し、パラジウムを含む領域を形成した後、パラジウムを含む領域上における第二領域となる部分に、スラリーcを接触させた後、余剰のスラリーを除いて乾燥または焼成し、次いで、パラジウムを含む領域上における第一領域となる部分に、スラリーbを接触させた後、余剰のスラリーを除いて乾燥または焼成することで、触媒を得る方法;(3)パラジウムを含む領域に特有の成分を含むスラリーd、第一領域に特有の成分を含むスラリーe、第二領域に特有の成分を含むスラリーf、および、各領域に共通の成分を含む溶液を作製し、三次元構造体に、スラリーdを接触させた後、余剰のスラリーを除いて乾燥または焼成し、次いで、第一領域となる部分に、スラリーeを接触させた後、余剰のスラリーを除いて乾燥または焼成し、続いて、第二領域となる部分に、スラリーfを接触させた後、余剰のスラリーを除いて乾燥または焼成し、最後に、焼成後の三次元構造体に溶液を含浸させた後、乾燥または焼成することで、触媒を得る方法;などが挙げられる。
 乾燥温度は室温から150℃程度が好適であり、焼成温度は150~600℃程度が好適である。乾燥および焼成の条件は、対象物に応じて適宜、変更することができる。
 上記スラリーa~fを作製する方法としては、例えば、(1)各成分の粉体同士を湿式粉砕してスラリーとする方法;(2)ある成分の粉体に他の成分の液体(前駆体)を含浸させた後、乾燥または焼成して混合粉体とし、該混合粉体を湿式粉砕してスラリーとする方法;(3)ある成分の粉体に他の成分の液体(前駆体)を混合し、湿式粉砕してスラリーとする方法;などが挙げられる。或いは、粉体が微粉末である場合には、該微粉末を適切な媒体と混合することでスラリーを作製することもできる。
 (排気ガス浄化方法)
 本発明の一実施の形態に係る排気ガス浄化方法が対象とする(適用される)排気ガスは、ガソリンエンジン、ディーゼルエンジン、ガスタービンなどの内燃機関から排出される排気ガスであればよく、特に限定されないものの、ガソリンエンジンから排出される排気ガスがより好ましい。本発明の一実施の形態に係る排気ガス浄化用触媒を、内燃機関から排出される排気ガスと接触させることで、排気ガス中の炭化水素(HC)、一酸化炭素(CO)および窒素酸化物(NOx)を浄化することができる。特に、本発明の一実施の形態に係る排気ガス浄化用触媒は、排気ガスが500℃よりも高温である方が該排気ガスをより有効に浄化することができるものの、排気ガスが好ましくは500℃以下、より好ましくは400℃以下、さらに好ましくは350℃以下の低温であっても、該排気ガスの浄化率を50%以上にすることができる。ここで、排気ガスの浄化率が50%に達する時間をT50とすると、T50に達する時間(着火時間)が短いほど、排気ガスが迅速に浄化されることを意味する。
 また、本発明の一実施の形態に係る排気ガス浄化用触媒は、上記排気ガスの空間速度が好ましくは80000h-1以上、より好ましくは100000h-1以上、さらに好ましくは120000h-1以上であっても、該排気ガスを有効に浄化することができる。排気ガスの空間速度の上限は、エンジンなどの内燃機関の排気量に依存するものの、500000h-1以下が好ましい。
 また、上記排気ガス浄化用触媒は、800~1000℃で40~450時間、排気ガスに曝された場合においても有効に作用し、排気ガス中のHC、COおよびNOxを浄化することができるので、特にNOxを長時間に亘り浄化することができ、耐久性を備えている。
 〔まとめ〕
 以上のように、本発明は、以下の〔1〕~〔18〕に記載の発明を含む。
 〔1〕 三次元構造体上にパラジウムを含む領域が設けられ、該パラジウムを含む領域上であって排気ガスが流入する側から流出する側に向けて順に、第一領域と第二領域とが設けられ、第一領域中に含まれるロジウムの濃度が第二領域中に含まれるロジウムの濃度に比べて高くなっていることを特徴とする排気ガス浄化用触媒。
 〔2〕 該第一領域中に含まれるロジウムの濃度が該第二領域中に含まれるロジウムの濃度に比べて2倍以上、5倍以下であることを特徴とする〔1〕に記載の排気ガス浄化用触媒。
 〔3〕 該第一領域中に含まれるロジウムの濃度が、1.0質量%以上、10質量%以下であり、かつ該第二領域中に含まれるロジウムの濃度が、0質量%以上、1.0質量%未満であることを特徴とする〔1〕または〔2〕に記載の排気ガス浄化用触媒。
 〔4〕 該第一領域中に含まれるロジウムの量が、三次元構造体1リットルに対して、金属換算で、0.35/L以上、1.2g/L以下であり、かつ該第二領域中に含まれるロジウムの量が、三次元構造体1リットルに対して、金属換算で、0.01g/L以上、0.3g/L以下であることを特徴とする〔1〕~〔3〕の何れか1項に記載の排気ガス浄化用触媒。
 〔5〕 該パラジウムを含む領域中に含まれるセリウムの濃度が、該第一領域中に含まれるセリウムの濃度および/または該第二領域中に含まれるセリウムの濃度に比べて高くなっていることを特徴とする〔1〕~〔4〕の何れか1項に記載の排気ガス浄化用触媒。
 〔6〕 該第二領域中に含まれるセリウムの濃度が該第一領域中に含まれるセリウムの濃度に比べて高くなっていることを特徴とする〔1〕~〔5〕の何れか1項に記載の排気ガス浄化用触媒。
 〔7〕 該パラジウムを含む領域中に含まれるセリウムの濃度が、CeO換算で、13質量%以上、40質量%以下であり、かつ該第一領域中に含まれるセリウムの濃度および/または該第二領域中に含まれるセリウムの濃度が、CeO換算で、0質量%以上、13質量%未満であることを特徴とする〔1〕~〔6〕の何れか1項に記載の排気ガス浄化用触媒。
 〔8〕 該第一領域中に含まれるセリウムの濃度が、CeO換算で、0質量%以上、4質量%以下であり、かつ該第二領域中に含まれるセリウムの濃度が、CeO換算で、5質量%以上、13質量%未満であることを特徴とする〔1〕~〔7〕の何れか1項に記載の排気ガス浄化用触媒。
 〔9〕 該パラジウムを含む領域中に含まれるセリウムの量が、三次元構造体1リットルに対して、CeO換算で、10g/L以上、50g/L以下であり、かつ該第一領域中に含まれるセリウムの量および/または該第二領域中に含まれるセリウムの量が、三次元構造体1リットルに対して、CeO換算で、0g/L以上、10g/L未満であることを特徴とする〔1〕~〔8〕の何れか1項に記載の排気ガス浄化用触媒。
 〔10〕 該パラジウムを含む領域におけるセリウムがセリウム複合酸化物(3)であり、該第一領域におけるセリウムがセリウム複合酸化物(1)であり、かつ該第二領域におけるセリウムがセリウム複合酸化物(2)であるとき、該セリウム複合酸化物(3)が、該セリウム複合酸化物(1)および/または該セリウム複合酸化物(2)に比べて、CeO換算でのセリウムの濃度が高いことを特徴とする〔1〕~〔9〕の何れか1項に記載の排気ガス浄化用触媒。
 〔11〕 該第二領域におけるセリウム複合酸化物(2)は、該第一領域におけるセリウム複合酸化物(1)に比べて、CeO換算でのセリウムの濃度が同じまたは高いことを特徴とする〔1〕~〔10〕の何れか1項に記載の排気ガス浄化用触媒。
 〔12〕 該パラジウムを含む領域におけるセリウム複合酸化物(3)中に含まれるセリウムの量は、CeO換算で、30質量%以上、70質量%以下であり、かつ該第二領域におけるセリウム複合酸化物(2)中に含まれるセリウムの量は、CeO換算で、5質量%以上、30質量%未満であることを特徴とする〔1〕~〔11〕の何れか1項に記載の排気ガス浄化用触媒。
 〔13〕 該パラジウムを含む領域中に含まれるパラジウムの量は、三次元構造体1リットルに対して、金属換算で、0.1g/L以上、20g/L以下であり、かつ該パラジウムを含む領域中に含まれるパラジウムの濃度が、1質量%以上、10質量%以下であることを特徴とする〔1〕~〔12〕の何れか1項に記載の排気ガス浄化用触媒。
 〔14〕 各領域に設けられる全成分の量は、該パラジウムを含む領域が第二領域よりも多く、第二領域が第一領域よりも多く、かつ、三次元構造体1リットルに対して、該パラジウムの含む領域に設けられる全成分の量は、50g/L以上、150g/L以下であり、該第一領域に設けられる全成分の量は、10g/L以上、60g/L未満であり、該第二領域に設けられる全成分の量は、50g/L以上、90g/L以下であることを特徴とする〔1〕~〔13〕の何れか1項に記載の排気ガス浄化用触媒。
 〔15〕 該三次元構造体が30mm以上、200mm以下であり、該パラジウムを含む領域が該三次元構造体の長さに対して60%以上、100%以下であり、該第一領域が20mm以上、50mm以下であり、該第二領域が該パラジウムを含む領域上かつ排気ガスが流出する側であって該第一領域が設けられていない部分に設けられることを特徴とする〔1〕~〔14〕の何れか1項に記載の排気ガス浄化用触媒。
 〔16〕 〔1〕~〔15〕の何れか1項に記載の排気ガス浄化用触媒を用いて排気ガスを浄化することを特徴とする排気ガス浄化方法。
 〔17〕 100℃以上、500℃以下の排気ガスを浄化することを特徴とする〔16〕に記載の排気ガス浄化方法。
 〔18〕 空間速度が80000h-1以上の排気ガスを浄化することを特徴とする〔16〕または〔17〕に記載の排気ガス浄化方法。
 以下、実施例および比較例を用いて、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されて解釈されるべきではない。
 (実施例1)
 (パラジウムを含む領域)
 パラジウムを含む水溶液と、アルミニウムを含む酸化物およびセリウム複合酸化物(セリウムの含有率はCeO換算で45質量%、他にアルミニウムを含む)、ジルコニウムを含む酸化物(ジルコニウムの他に、セリウムをCeO換算で24質量%、ランタンを含む)、酸化バリウムとを混合した後、乾燥および焼成して粉体を得た。この粉体に水を添加し、湿式粉砕して、パラジウムを含む領域を成形するためのスラリーを得た。次に、長さ80mmのコージェライト製のハニカム(三次元構造体)を該スラリーに浸漬した後、余剰のスラリーを除いて乾燥および焼成することにより、上記ハニカムにパラジウムを含む領域を設けた。ハニカム1リットル当たり、パラジウムが5g、ジルコニウムが酸化ジルコニウム換算(ZrO換算)で18g、アルミニウムが酸化アルミニウム換算(Al換算)で31g、セリウムが酸化セリウム換算(CeO換算)で14g、ランタンがLa換算で6g、バリウムがBaO換算で4g含まれていた。該領域のセリウムの濃度は酸化セリウム(CeO)換算で17質量%であり、パラジウムの濃度は6質量%である。パラジウムを含む領域に設けられる全成分の量は、81g/Lである。
 (第一領域)
 次いで、ロジウムおよびパラジウムを含む水溶液と、ジルコニウムを含む酸化物(ジルコニウム含有率はZrO換算で73質量%)およびアルミニウムを含む酸化物(アルミニウム含有率はAl換算で97質量%)とを混合した後、乾燥および焼成して粉体を得た。この粉体に水を添加し、湿式粉砕して、第一領域を形成するためのスラリーを得た。次に、パラジウムを含む領域を設けた上記ハニカムを、その一方の端部から所定の位置(第二領域との境目となる位置)まで、第一領域を形成するためのスラリーに浸漬した後、余剰のスラリーを除いて乾燥および焼成することにより、パラジウムを含む領域上でハニカムの排気ガスの入口側から30mmに第一領域を設けた。ハニカム1リットル当たり、ロジウムが0.6g、パラジウムが0.6g、ジルコニウムが酸化ジルコニウム(ZrO)換算で16g、アルミニウムが酸化アルミニウム(Al)換算で22g含まれていた。該領域のロジウムの濃度は1.3質量%であり、パラジウムの濃度は1.3質量%、セリウムの濃度は酸化セリウム(CeO)換算で0質量%である。該第一領域に設けられる全成分の量は、46g/Lである。
 (第二領域)
 続いて、ロジウムおよびパラジウムを含む水溶液と、アルミニウムを含む酸化物(アルミニウム含有率はAl換算で97質量%)およびセリウム複合酸化物(セリウムの含有率はCeO換算で23質量%、ジルコニウムを含む)とを混合した後、乾燥および焼成して粉体を得た。この粉体に水を添加し、湿式粉砕して、第二領域を形成するためのスラリーを得た。次に、第一領域を設けた上記ハニカムを、その他方の端部から所定の位置(第一領域との境目となる位置)まで、第二領域を形成するためのスラリーに浸漬した後、余剰のスラリーを除いて乾燥および焼成することにより、パラジウムを含む領域上でハニカムの排気ガスの出口側から50mmに第二領域を設けた。ハニカム1リットル当たり、ロジウムが0.3g、パラジウムが0.3g、ジルコニウムが酸化ジルコニウム(ZrO)換算で9g、アルミニウムが酸化アルミニウム(Al)換算で54g、セリウムが酸化セリウム(CeO)換算で8g含まれていた。該領域のロジウムの濃度は0.3質量%、パラジウム濃度が0.3質量%であり、セリウムの濃度は酸化セリウム(CeO)換算で11質量%である。該第二領域に設けられる全成分の量は、75g/Lである。
 これにより、排気ガス浄化用触媒Aを調製した。該排気ガス浄化用触媒Aの概略の構成を図1に示す。
 図1に示すように、本実施例の排気ガス浄化用触媒Aは、コージェライト製のハニカム1上に、パラジウムを含む領域2が設けられ、該パラジウムを含む領域2上であって排気ガスが流入する側から流出する側に向けて順に、第一領域3と第二領域4とが設けられている構造となっていた。
 (実施例2)
 (パラジウムを含む領域)
 パラジウムを含む水溶液と、酸化バリウム、アルミニウムを含む酸化物(アルミニウム含有率はAl換算で97質量%)、セリウム複合酸化物(セリウムの含有率はCeO換算で45質量%、ジルコニウム含有率はZrO換算で44質量%)とを混合した後、乾燥および焼成して粉体を得た。この粉体に水を添加し、湿式粉砕して、パラジウムを含む領域を成形するためのスラリーを得た。次に、長さ80mmのコージェライト製のハニカムを該スラリーに浸漬した後、余剰のスラリーを除いて乾燥および焼成することにより、上記ハニカムにパラジウムを含む領域を設けた。ハニカム1リットル当たり、パラジウムが5g、バリウムがBaO換算で10g、ジルコニウムが酸化ジルコニウム(ZrO)換算で15g、アルミニウムが酸化アルミニウム(Al)換算で43g、セリウムが酸化セリウム(CeO)換算で15g含まれていた。セリウムの濃度は酸化セリウム(CeO)換算で16質量%、パラジウム濃度は5質量%である。パラジウムを含む領域に設けられる全成分の量は、95g/Lである。
 (第一領域)
 次いで、ロジウムを含む水溶液と、アルミニウムを含む酸化物(アルミニウム含有率はAl換算で97質量%)およびセリウム複合酸化物(セリウムの含有率はCeO換算で23質量%、ジルコニウム含有率はZrO換算で24質量%、アルミニウムがAl換算で50質量%)とを混合した後、乾燥および焼成して粉体を得た。この粉体に水を添加し、湿式粉砕して、第一領域を形成するためのスラリーを得た。次に、パラジウムを含む領域を設けた上記ハニカムを、その一方の端部から所定の位置(第二領域との境目となる位置)まで、第一領域を形成するためのスラリーに浸漬した後、余剰のスラリーを除いて乾燥および焼成することにより、パラジウムを含む領域上でハニカムの排気ガスの入口側から30mmに第一領域を設けた。ハニカム1リットル当たり、ロジウムが0.6g、ジルコニウムが酸化ジルコニウム(ZrO)換算で8g、ランタンが酸化ランタン(La)換算で4g、アルミニウムが酸化アルミニウム(Al)換算で14g、セリウムが酸化セリウム(CeO)換算で3g含まれていた。該領域のロジウムの濃度は1.9質量%であり、セリウムの濃度は酸化セリウム(CeO)換算で10.3質量%である。該第一領域に設けられる全成分の量は、31g/Lである。
 (第二領域)
 続いて、ロジウムを含む水溶液と、アルミニウムを含む酸化物(アルミニウム含有率がAl換算で96質量%)およびセリウム含有酸化物(セリウムの含有率はCeO換算で23質量%、ジルコニウムがZrO換算で24質量%、アルミニウムがAl換算で50質量%)とを混合した後、乾燥および焼成して粉体を得た。この粉体に水を添加し、湿式粉砕して、第二領域を形成するためのスラリーを得た。次に、第一領域を設けた上記ハニカムを、その他方の端部から所定の位置(第一領域との境目となる位置)まで、第二領域を形成するためのスラリーに浸漬した後、余剰のスラリーを除いて乾燥および焼成することにより、パラジウムを含む領域上でハニカムの排気ガスの出口側から50mmに第二領域を設けた。ハニカム1リットル当たり、ロジウムが0.3g、ジルコニウムが酸化ジルコニウム(ZrO)換算で13g、アルミニウムが酸化アルミニウム(Al)換算で23g、セリウムが酸化セリウム(CeO)換算で6g、ランタンが酸化ランタン(La)換算で6g含まれていた。該領域のロジウムの濃度は0.5質量%であり、セリウムの濃度は酸化セリウム(CeO)換算で10.4質量%である。該第二領域に設けられる全成分の量は、50g/Lである。
 これにより、排気ガス浄化用触媒Bを調製した。
 (比較例1)
 (パラジウムを含む領域)
 パラジウムを含む水溶液と、酸化バリウム、アルミニウムを含む酸化物(アルミニウム含有率がAl換算で97質量%)およびセリウム複合酸化物(セリウムの含有率はCeO換算で45質量%、ジルコニウム含有率がZrO換算で44質量%を含む)とを混合した後、乾燥および焼成して粉体を得た。この粉体に水を添加し、湿式粉砕して、パラジウムを含む領域を成形するためのスラリーを得た。次に、長さ80mmのコージェライト製のハニカムを該スラリーに浸漬した後、余剰のスラリーを除いて乾燥および焼成することにより、上記ハニカムにパラジウムを含む領域を設けた。ハニカム1リットル当たり、パラジウムが5g、バリウムが酸化バリウム(BaO)換算で12g、ジルコニウムが酸化ジルコニウム(ZrO)換算で16g、アルミニウムが酸化アルミニウム(Al)換算で58g、セリウムが酸化セリウム(CeO)換算で16g含まれていた。セリウムの濃度は酸化セリウム(CeO)換算で16質量%、パラジウムは4質量%である。該パラジウムを含む領域に設けられる全成分の量は、125g/Lである。
 (表面領域)
 次いで、ロジウムを含む水溶液と、アルミニウムを含む酸化物およびセリウム複合酸化物(セリウムの含有率はCeO換算で24質量%、ジルコニウムがZrO換算で60質量%)とを混合した後、乾燥および焼成して粉体を得た。この粉体に水を添加し、湿式粉砕して、表面領域を形成するためのスラリーを得た。次に、パラジウムを含む領域を設けた上記ハニカムを、表面領域を形成するためのスラリーに浸漬した後、余剰のスラリーを除いて乾燥および焼成することにより、パラジウムを含む領域上に表面領域を設けた。ハニカム1リットル当たり、ロジウムが0.6g、ジルコニウムが酸化ジルコニウム換算で21g、ランタンが酸化ランタン(La)換算で9g、アルミニウムが酸化アルミニウム(Al)換算で37g、セリウムが酸化セリウム(CeO)換算で8g含まれていた。該領域のロジウムの濃度は0.7質量%であり、セリウムの濃度は酸化セリウム(CeO)換算で10.4質量%である。該表面領域に設けられる全成分の量は、81g/Lである。
 これにより、比較用の排気ガス浄化用触媒Cを調製した。該排気ガス浄化用触媒Cの概略の構成を図2に示す。
 図2に示すように、比較例の排気ガス浄化用触媒Cは、コージェライト製のハニカム1上に、パラジウムを含む領域2が設けられ、該パラジウムを含む領域2上に、表面領域5が設けられている構造となっていた。
 (触媒評価)
 実施例1、2および比較例1で調製した排気ガス浄化用触媒A~Cを別個に、化学量論比である14.6を中心にしてA/F(空気/燃料)が振幅する機能を有するガソリンエンジンの排気管に設置した。そして、該排気ガス浄化用触媒A~Cを1000℃の排気ガスに80時間、曝した後、100℃に保った排気ガス浄化用触媒A~Cに500℃の排気ガスを空間速度125000h-1で流通させ、HC、CO、NOxの着火時間を測定した。その結果を図3に示す。ここで、着火時間とは、500℃の排気ガスを導入した時点から、排気ガス浄化用触媒のHC、CO、NOxの浄化率が50%(T50)に達するまでの時間を指す。
 図3のグラフでは、横軸に実施例および比較例を配し、縦軸にT50に達する時間(着火時間)を示した。グラフから明らかなように、本発明の一実施の形態に係る排気ガス浄化用触媒は、従来技術に多く見られる表面領域が単一組成である触媒(比較例1)に比べて、HC(図3ではTHC(全炭化水素)として記載)、CO、NOxの全てにおいてT50に達する時間が短く、従って浄化率がより早く50%に達して、優れた性能を示した。
 本発明に係る排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法は、ガソリンエンジン、ディーゼルエンジン、ガスタービンなどの内燃機関から排出される排気ガスの浄化に好適に利用可能である。
 1 ハニカム(三次元構造体)
 2 パラジウムを含む領域
 3 第一領域
 4 第二領域
 5 表面領域

Claims (18)

  1.  三次元構造体上にパラジウムを含む領域が設けられ、該パラジウムを含む領域上であって排気ガスが流入する側から流出する側に向けて順に、第一領域と第二領域とが設けられ、
     第一領域中に含まれるロジウムの濃度が第二領域中に含まれるロジウムの濃度に比べて高くなっていることを特徴とする排気ガス浄化用触媒。
  2.  該第一領域中に含まれるロジウムの濃度が該第二領域中に含まれるロジウムの濃度に比べて2倍以上、5倍以下であることを特徴とする請求項1に記載の排気ガス浄化用触媒。
  3.  該第一領域中に含まれるロジウムの濃度が、1.0質量%以上、10質量%以下であり、かつ該第二領域中に含まれるロジウムの濃度が、0質量%以上、1.0質量%未満であることを特徴とする請求項1または2に記載の排気ガス浄化用触媒。
  4.  該第一領域中に含まれるロジウムの量が、三次元構造体1リットルに対して、金属換算で、0.35g/L以上、1.2g/L以下であり、かつ該第二領域中に含まれるロジウムの量が、三次元構造体1リットルに対して、金属換算で、0.01g/L以上、0.3g/L以下であることを特徴とする請求項1~3の何れか1項に記載の排気ガス浄化用触媒。
  5.  該パラジウムを含む領域中に含まれるセリウムの濃度が、該第一領域中に含まれるセリウムの濃度および/または該第二領域中に含まれるセリウムの濃度に比べて高くなっていることを特徴とする請求項1~4の何れか1項に記載の排気ガス浄化用触媒。
  6.  該第二領域中に含まれるセリウムの濃度が該第一領域中に含まれるセリウムの濃度に比べて高くなっていることを特徴とする請求項1~5の何れか1項に記載の排気ガス浄化用触媒。
  7.  該パラジウムを含む領域中に含まれるセリウムの濃度が、CeO換算で、13質量%以上、40質量%以下であり、かつ該第一領域中に含まれるセリウムの濃度および/または該第二領域中に含まれるセリウムの濃度が、CeO換算で、0質量%以上、13質量%未満であることを特徴とする請求項1~6の何れか1項に記載の排気ガス浄化用触媒。
  8.  該第一領域中に含まれるセリウムの濃度が、CeO換算で、0質量%以上、4質量%以下であり、かつ該第二領域中に含まれるセリウムの濃度が、CeO換算で、5質量%以上、13質量%未満であることを特徴とする請求項1~7の何れか1項に記載の排気ガス浄化用触媒。
  9.  該パラジウムを含む領域中に含まれるセリウムの量が、三次元構造体1リットルに対して、CeO換算で、10g/L以上、50g/L以下であり、かつ該第一領域中に含まれるセリウムの量および/または該第二領域中に含まれるセリウムの量が、三次元構造体1リットルに対して、CeO換算で、0g/L以上、10g/L未満であることを特徴とする請求項1~8の何れか1項に記載の排気ガス浄化用触媒。
  10.  該パラジウムを含む領域におけるセリウムがセリウム複合酸化物(3)であり、該第一領域におけるセリウムがセリウム複合酸化物(1)であり、かつ該第二領域におけるセリウムがセリウム複合酸化物(2)であるとき、
     該セリウム複合酸化物(3)が、該セリウム複合酸化物(1)および/または該セリウム複合酸化物(2)に比べて、CeO換算でのセリウムの濃度が高いことを特徴とする請求項1~9の何れか1項に記載の排気ガス浄化用触媒。
  11.  該第二領域におけるセリウム複合酸化物(2)は、該第一領域におけるセリウム複合酸化物(1)に比べて、CeO換算でのセリウムの濃度が同じまたは高いことを特徴とする請求項1~10の何れか1項に記載の排気ガス浄化用触媒。
  12.  該パラジウムを含む領域におけるセリウム複合酸化物(3)中に含まれるセリウムの量は、CeO換算で、30質量%以上、70質量%以下であり、かつ該第二領域におけるセリウム複合酸化物(2)中に含まれるセリウムの量は、CeO換算で、5質量%以上、30質量%未満であることを特徴とする請求項1~11の何れか1項に記載の排気ガス浄化用触媒。
  13.  該パラジウムを含む領域中に含まれるパラジウムの量は、三次元構造体1リットルに対して、金属換算で、0.1g/L以上、20g/L以下であり、かつ該パラジウムを含む領域中に含まれるパラジウムの濃度が、1質量%以上、10質量%以下であることを特徴とする請求項1~12の何れか1項に記載の排気ガス浄化用触媒。
  14.  各領域に設けられる全成分の量は、該パラジウムを含む領域が第二領域よりも多く、第二領域が第一領域よりも多く、
     かつ、三次元構造体1リットルに対して、
     該パラジウムの含む領域に設けられる全成分の量は、50g/L以上、150g/L以下であり、
     該第一領域に設けられる全成分の量は、10g/L以上、60g/L未満であり、
     該第二領域に設けられる全成分の量は、50g/L以上、90g/L以下であることを特徴とする請求項1~13の何れか1項に記載の排気ガス浄化用触媒。
  15.  該三次元構造体が30mm以上、200mm以下であり、該パラジウムを含む領域が該三次元構造体の長さに対して60%以上、100%以下であり、該第一領域が20mm以上、50mm以下であり、該第二領域が該パラジウムを含む領域上かつ排気ガスが流出する側であって該第一領域が設けられていない部分に設けられることを特徴とする請求項1~14の何れか1項に記載の排気ガス浄化用触媒。
  16.  請求項1~15の何れか1項に記載の排気ガス浄化用触媒を用いて排気ガスを浄化することを特徴とする排気ガス浄化方法。
  17.  100℃以上、500℃以下の排気ガスを浄化することを特徴とする請求項16に記載の排気ガス浄化方法。
  18.  空間速度が80000h-1以上の排気ガスを浄化することを特徴とする請求項16または17に記載の排気ガス浄化方法。
PCT/JP2018/017025 2017-04-28 2018-04-26 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法 WO2018199250A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3061311A CA3061311A1 (en) 2017-04-28 2018-04-26 Exhaust gas purification catalyst and exhaust gas purification method using the same
CN201880041507.8A CN110785232B (zh) 2017-04-28 2018-04-26 废气净化用催化剂及使用其的废气净化方法
JP2019514632A JP6735912B2 (ja) 2017-04-28 2018-04-26 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法
US16/607,405 US11141713B2 (en) 2017-04-28 2018-04-26 Exhaust gas purification catalyst and exhaust gas purification method using the same
EP18792319.8A EP3616791A4 (en) 2017-04-28 2018-04-26 EXHAUST GAS PURIFICATION CATALYZER AND EXHAUST GAS PURIFICATION METHOD USING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017090254 2017-04-28
JP2017-090254 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199250A1 true WO2018199250A1 (ja) 2018-11-01

Family

ID=63918498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017025 WO2018199250A1 (ja) 2017-04-28 2018-04-26 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法

Country Status (6)

Country Link
US (1) US11141713B2 (ja)
EP (1) EP3616791A4 (ja)
JP (1) JP6735912B2 (ja)
CN (1) CN110785232B (ja)
CA (1) CA3061311A1 (ja)
WO (1) WO2018199250A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059466A1 (ja) * 2020-09-18 2022-03-24 株式会社キャタラー 排ガス浄化用触媒

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733289B1 (en) * 2017-12-28 2024-02-28 Umicore Shokubai Japan Co., Ltd. Phosphorus-compound-containing-exhaust-gas purifying catalyst
EP3889404A1 (en) * 2020-03-30 2021-10-06 Johnson Matthey Public Limited Company Multi-region twc catalysts for gasoline engine exhaust gas treatments with improved h2s attenuation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505403A (ja) 2001-10-01 2005-02-24 エンゲルハード・コーポレーシヨン 内燃機関用排気装置製品
WO2006057067A1 (ja) * 2004-11-25 2006-06-01 Cataler Corporation 排ガス浄化用触媒
US20090041643A1 (en) * 2007-08-09 2009-02-12 Michel Deeba Multilayered Catalyst Compositions
JP2010005590A (ja) 2008-06-30 2010-01-14 Toyota Motor Corp 排ガス浄化用触媒
JP2013006179A (ja) 2005-07-15 2013-01-10 Basf Corp 自動車排ガス処理用高リン被毒耐性触媒
JP2015073943A (ja) * 2013-10-09 2015-04-20 トヨタ自動車株式会社 触媒コンバーター
WO2015087871A1 (ja) * 2013-12-13 2015-06-18 株式会社キャタラー 排ガス浄化用触媒
JP2015151970A (ja) * 2014-02-18 2015-08-24 マツダ株式会社 排気ガス浄化触媒装置及び排気ガス浄化方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168537A (ja) * 1984-02-10 1985-09-02 Nippon Shokubai Kagaku Kogyo Co Ltd 一体構造型排ガス浄化用触媒の製造方法
US6375910B1 (en) * 1999-04-02 2002-04-23 Engelhard Corporation Multi-zoned catalytic trap and methods of making and using the same
JP3845274B2 (ja) * 2001-06-26 2006-11-15 ダイハツ工業株式会社 排ガス浄化用触媒
JP4696546B2 (ja) * 2004-12-10 2011-06-08 マツダ株式会社 排気ガス浄化用触媒
JP4669322B2 (ja) * 2005-05-24 2011-04-13 株式会社キャタラー 排ガス浄化用触媒
JP2007278101A (ja) * 2006-04-03 2007-10-25 Honda Motor Co Ltd 排気ガス浄化用触媒コンバータ装置
DE102007046158B4 (de) * 2007-09-27 2014-02-13 Umicore Ag & Co. Kg Verwendung eines katalytisch aktiven Partikelfilters zur Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren
DE502007002874D1 (de) * 2007-09-28 2010-04-01 Umicore Ag & Co Kg Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren
JP4751916B2 (ja) * 2008-06-30 2011-08-17 トヨタ自動車株式会社 排ガス浄化用触媒
RU2504431C2 (ru) * 2008-07-31 2014-01-20 Басф Се УДЕРЖИВАЮЩИЕ NOx МАТЕРИАЛЫ И ЛОВУШКИ, УСТОЙЧИВЫЕ К ТЕРМИЧЕСКОМУ СТАРЕНИЮ
JP5492448B2 (ja) * 2009-04-28 2014-05-14 株式会社キャタラー 排ガス浄化用触媒
US8501661B2 (en) * 2010-01-04 2013-08-06 Toyota Jidosha Kabushiki Kaisha Catalyst for converting exhaust gases
US8828343B2 (en) * 2010-03-05 2014-09-09 Basf Corporation Carbon monoxide conversion catalyst
JP5515939B2 (ja) * 2010-03-26 2014-06-11 マツダ株式会社 排気ガス浄化用触媒
US8784759B2 (en) * 2010-06-10 2014-07-22 Basf Se NOx storage catalyst with reduced Rh loading
US8557204B2 (en) * 2010-11-22 2013-10-15 Umicore Ag & Co. Kg Three-way catalyst having an upstream single-layer catalyst
US8617496B2 (en) * 2011-01-19 2013-12-31 Basf Corporation Three way conversion catalyst with alumina-free rhodium layer
JP2012154259A (ja) * 2011-01-26 2012-08-16 Mazda Motor Corp 排気ガス浄化用触媒装置
US9486793B2 (en) * 2012-06-06 2016-11-08 Umicore Ag & Co. Kg Start-up catalyst for use upstream of a gasoline particulate filter
EP2858738B1 (en) * 2012-06-06 2019-11-20 Umicore Ag & Co. Kg Three-way-catalyst system
US9662638B2 (en) * 2013-01-08 2017-05-30 Umicore Ag & Co. Kg Catalyst for reducing nitrogen oxides
JP5888259B2 (ja) * 2013-02-13 2016-03-16 トヨタ自動車株式会社 触媒コンバーター
JP5846137B2 (ja) * 2013-02-13 2016-01-20 トヨタ自動車株式会社 触媒コンバーター
US9283547B2 (en) * 2013-03-14 2016-03-15 Basf Corporation Catalytic article with segregated washcoat and methods of making same
GB2514177A (en) * 2013-05-17 2014-11-19 Johnson Matthey Plc Oxidation catalyst for a compression ignition engine
EP3020474A4 (en) * 2013-07-10 2017-04-26 Cataler Corporation Catalyst for exhaust gas purification
JP6532823B2 (ja) * 2013-11-28 2019-06-19 株式会社キャタラー 排ガス浄化用触媒
GB201401115D0 (en) * 2014-01-23 2014-03-12 Johnson Matthey Plc Diesel oxidation catalyst and exhaust system
JP6194111B2 (ja) * 2014-05-28 2017-09-06 ユミコア日本触媒株式会社 内燃機関排ガス浄化用触媒およびそのシステム
US9579604B2 (en) * 2014-06-06 2017-02-28 Clean Diesel Technologies, Inc. Base metal activated rhodium coatings for catalysts in three-way catalyst (TWC) applications
JP6269823B2 (ja) * 2014-08-29 2018-01-31 マツダ株式会社 排気ガス浄化触媒装置及び排気ガス浄化方法
JP6279448B2 (ja) * 2014-10-17 2018-02-14 株式会社キャタラー 排ガス浄化装置
US9764286B2 (en) * 2014-12-03 2017-09-19 Ford Global Technologies, Llc Zoned catalyst system for reducing N2O emissions
JP6700290B2 (ja) * 2015-02-06 2020-05-27 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 三元触媒及び排気システムにおけるその使用
JP6213508B2 (ja) * 2015-03-20 2017-10-18 トヨタ自動車株式会社 触媒コンバーター
JP6176278B2 (ja) * 2015-03-23 2017-08-09 トヨタ自動車株式会社 触媒コンバーター
CN107923288B (zh) * 2015-06-24 2021-05-04 巴斯夫公司 分层汽车催化剂复合材料
JP6372513B2 (ja) * 2016-04-13 2018-08-15 トヨタ自動車株式会社 触媒コンバーター
JP2017200676A (ja) * 2016-05-02 2017-11-09 三菱自動車工業株式会社 内燃機関の排ガス浄化触媒

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505403A (ja) 2001-10-01 2005-02-24 エンゲルハード・コーポレーシヨン 内燃機関用排気装置製品
WO2006057067A1 (ja) * 2004-11-25 2006-06-01 Cataler Corporation 排ガス浄化用触媒
JP2013006179A (ja) 2005-07-15 2013-01-10 Basf Corp 自動車排ガス処理用高リン被毒耐性触媒
US20090041643A1 (en) * 2007-08-09 2009-02-12 Michel Deeba Multilayered Catalyst Compositions
JP2010005590A (ja) 2008-06-30 2010-01-14 Toyota Motor Corp 排ガス浄化用触媒
JP2015073943A (ja) * 2013-10-09 2015-04-20 トヨタ自動車株式会社 触媒コンバーター
WO2015087871A1 (ja) * 2013-12-13 2015-06-18 株式会社キャタラー 排ガス浄化用触媒
JP2015151970A (ja) * 2014-02-18 2015-08-24 マツダ株式会社 排気ガス浄化触媒装置及び排気ガス浄化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3616791A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059466A1 (ja) * 2020-09-18 2022-03-24 株式会社キャタラー 排ガス浄化用触媒
CN116209522A (zh) * 2020-09-18 2023-06-02 株式会社科特拉 排气净化用催化剂

Also Published As

Publication number Publication date
US20200129962A1 (en) 2020-04-30
CN110785232A (zh) 2020-02-11
US11141713B2 (en) 2021-10-12
JP6735912B2 (ja) 2020-08-05
CA3061311A1 (en) 2019-10-23
CN110785232B (zh) 2022-09-23
JPWO2018199250A1 (ja) 2020-03-12
EP3616791A1 (en) 2020-03-04
EP3616791A4 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
KR102536415B1 (ko) 층상 자동차 촉매 복합체
JP5996538B2 (ja) 改善されたno酸化活性度を有するリーン燃焼ガソリンエンジン用の触媒
JP5021188B2 (ja) 排ガス浄化用触媒
JP6449785B2 (ja) 二金属層を有する自動車用触媒複合体
JP4833605B2 (ja) 排ガス浄化用触媒
JP6855445B2 (ja) 排ガス浄化用触媒
JP5910833B2 (ja) 排ガス浄化触媒
JP4935219B2 (ja) 排ガス浄化用触媒
JP6132324B2 (ja) リーンバーンエンジン用排ガス浄化触媒
JP6889252B2 (ja) 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法
JP2012035206A (ja) 排ガス浄化触媒
JP3817443B2 (ja) 排気ガス浄化用触媒
JP6748590B2 (ja) 排ガス浄化用触媒
CN113905816A (zh) 催化制品和制造催化制品的方法
WO2018199250A1 (ja) 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法
JP5876475B2 (ja) Rh負荷が低減されたNOx貯蔵触媒
JP6811851B2 (ja) 排気ガス浄化用触媒およびそれを用いた排気ガス浄化方法
JP2020032306A (ja) 排ガス浄化用触媒
JP4805031B2 (ja) 排ガス浄化触媒、その製造方法及び使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514632

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3061311

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018792319

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018792319

Country of ref document: EP

Effective date: 20191128