WO2018199014A1 - テトラカルボン酸二無水物、ポリイミド前駆体樹脂及びその溶液、並びに、ポリイミド及びその溶液 - Google Patents

テトラカルボン酸二無水物、ポリイミド前駆体樹脂及びその溶液、並びに、ポリイミド及びその溶液 Download PDF

Info

Publication number
WO2018199014A1
WO2018199014A1 PCT/JP2018/016434 JP2018016434W WO2018199014A1 WO 2018199014 A1 WO2018199014 A1 WO 2018199014A1 JP 2018016434 W JP2018016434 W JP 2018016434W WO 2018199014 A1 WO2018199014 A1 WO 2018199014A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
mol
general formula
formula
film
Prior art date
Application number
PCT/JP2018/016434
Other languages
English (en)
French (fr)
Inventor
伸一 小松
亜紗子 京武
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to CN201880006933.8A priority Critical patent/CN110177794B/zh
Priority to KR1020197026759A priority patent/KR102312165B1/ko
Priority to US16/608,742 priority patent/US11525037B2/en
Publication of WO2018199014A1 publication Critical patent/WO2018199014A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a tetracarboxylic dianhydride, a polyimide precursor resin and a solution thereof, and a polyimide and a solution thereof.
  • Polyimide has attracted attention as a light and flexible material that has higher heat resistance than ever before.
  • polyimides that have sufficient light transmission properties that can be used for glass replacement applications and the like as well as heat resistance, and that are soluble in solvents.
  • Polyimide has been developed.
  • Patent Document 1 discloses a polyimide having a repeating unit described by a specific general formula. Such a polyimide had sufficient heat resistance, light transmittance and solubility.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and is suitably used for producing a polyimide having a sufficiently high level of heat resistance and transparency while having a higher solubility. It is an object of the present invention to provide a tetracarboxylic dianhydride that can be used. Another object of the present invention is to provide a polyimide that can have higher solubility while having a sufficiently high level of heat resistance and transparency, and a polyimide solution containing the polyimide. To do. Furthermore, an object of this invention is to provide the polyimide precursor resin solution which can be utilized suitably in order to manufacture the said polyimide, and the polyimide precursor resin solution containing the polyimide precursor resin.
  • tetracarboxylic dianhydrides represented by the following general formula (1) (six types of stereoisomers having different norbornane ring configurations).
  • the total amount of the following stereoisomers (A) and (B) is 50 mol% or more with respect to the total amount of the stereoisomers (stereoisomers based on the configuration of the norbornane ring).
  • the content ratio of the following stereoisomer (A) is 30 mol% or more with respect to the total amount of the stereoisomer, while having a sufficiently high level of heat resistance and transparency.
  • the inventors have found that it can be suitably used to produce a polyimide having higher solubility, and have completed the present invention.
  • the tetracarboxylic dianhydride of the present invention has the following general formula (1):
  • R 1 , R 2 and R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n represents 0 to 12 Indicates an integer.
  • R 1, R 2, R 3 and n each is the formula in (1).
  • the ratio of the total amount of the stereoisomer (B) represented by the formula is 50 mol% or more, and the content of the stereoisomer (A) is 30 mol% or more with respect to the total amount of the stereoisomers. It is what is.
  • the polyimide precursor resin of the present invention has the following general formula (4):
  • R 1 , R 2 and R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n represents 0 to 12
  • R 4 represents an arylene group having 6 to 50 carbon atoms
  • X is independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkylsilyl group having 3 to 9 carbon atoms.
  • the repeating unit (A ′) represented by the following general formula (5):
  • R 1 in, R 2, R 3, R 4, R 1 of n and X are each the formula (4) in, R 2, R 3, R 4, n and X as defined is there.
  • the ratio of the total amount of the repeating units (B ′) represented by the formula is 50 mol% or more based on the total amount of all the repeating units, and the content ratio of the repeating units (A ′) is the total amount of all the repeating units. On the other hand, it is 30 mol% or more.
  • the polyimide of the present invention has the following general formula (6):
  • R 1 , R 2 and R 3 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n represents 0 to 12 R 4 represents an arylene group having 6 to 50 carbon atoms.
  • R 1, R 2, R 3 , R 1 in R 4 and n are each the formula (6), R 2, R 3, R 4 and n in the formula (7).
  • the ratio of the total amount of the repeating unit (B) represented by the formula is 50 mol% or more based on the total amount of all the repeating units, and the content ratio of the repeating unit (A) is based on the total amount of all the repeating units. It is 30 mol% or more.
  • the polyimide solution of the present invention contains the polyimide of the present invention and an organic solvent.
  • the polyimide precursor resin solution of the present invention contains the polyimide precursor resin of the present invention and an organic solvent.
  • a resin solution such as a polyimide solution or a polyimide precursor resin solution (for example, a polyamic acid solution)
  • various forms of polyimide can be efficiently produced.
  • a polyimide solution and a polyimide precursor resin solution can also be suitably used for the preparation of polyimide as a resin solution in the form of a mixed solution obtained by mixing them.
  • a tetracarboxylic dianhydride that can be suitably used for producing a polyimide having higher solubility while having a sufficiently high level of heat resistance and transparency. It becomes possible.
  • a polyimide that can have higher solubility while having a sufficiently high level of heat resistance and transparency, and a polyimide solution containing the polyimide. It becomes possible.
  • a polyimide precursor resin that can be suitably used for producing the polyimide, and a polyimide precursor resin solution containing the polyimide precursor resin. Become.
  • FIG. 2 is a graph showing an IR spectrum of tetracarboxylic acid tetramethyl ester (intermediate) obtained in Example 1.
  • FIG. 2 is a graph showing a 1 H-NMR (CDCl 3 ) spectrum of tetracarboxylic acid tetramethyl ester (intermediate) obtained in Example 1.
  • FIG. 2 is a chromatogram obtained by HPLC measurement of tetracarboxylic acid tetramethyl ester (intermediate) obtained in Example 1.
  • FIG. 2 is a graph showing an IR spectrum of tetracarboxylic dianhydride obtained in Example 1.
  • FIG. 2 is a graph showing the 1 H-NMR (CDCl 3 ) spectrum of the tetracarboxylic dianhydride obtained in Example 1.
  • FIG. 2 is a chromatogram obtained by HPLC measurement of the tetracarboxylic dianhydride obtained in Example 1.
  • 2 is a chromatogram obtained by gas chromatography measurement (GC analysis) of the tetracarboxylic dianhydride obtained in Example 1.
  • the tetracarboxylic dianhydride of the present invention is a tetracarboxylic dianhydride represented by the above general formula (1), and is a stereoisomer based on the configuration of two norbornane rings in the general formula (1).
  • the ratio of the total amount of the stereoisomer (A) represented by the general formula (2) and the stereoisomer (B) represented by the general formula (3) is 50 mol% or more with respect to the total amount of
  • the content of the stereoisomer (A) is 30 mol% or more with respect to the total amount of the stereoisomer.
  • R 1 , R 2 and R 3 are each independently one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n is It is an integer from 0 to 12.
  • R 1, R 2, R 3 and n in the general formula (2) and (3) R 1, R 2, R 3 and n are respectively the formula in (1).
  • the alkyl group that can be selected as R 1 , R 2 , or R 3 in such a formula is an alkyl group having 1 to 10 carbon atoms. When the number of carbon atoms exceeds 10, the glass transition temperature is lowered and a sufficiently high heat resistance cannot be achieved. Further, the number of carbon atoms of the alkyl group that can be selected as R 1 , R 2 , or R 3 is preferably 1 to 6 and is preferably 1 to 5 from the viewpoint of easier purification. Is more preferably 1 to 4, particularly preferably 1 to 3. Further, such an alkyl group that can be selected as R 1 , R 2 , or R 3 may be linear or branched. Further, such an alkyl group is more preferably a methyl group or an ethyl group from the viewpoint of ease of purification.
  • R 1 , R 2 and R 3 in such a formula are each independently a hydrogen atom or an alkyl having 1 to 10 carbon atoms from the viewpoint that higher heat resistance can be obtained when a polyimide is produced.
  • each independently represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or an isopropyl group. More preferably, it is particularly preferably a hydrogen atom or a methyl group.
  • it is especially preferable that several R ⁇ 1 >, R ⁇ 2 >, R ⁇ 3 > in such a formula is the same from viewpoints, such as the ease of refinement
  • n in such a formula represents an integer of 0-12.
  • the upper limit value of the numerical value range of n in the general formula (1) is more preferably 5 and particularly preferably 3 from the viewpoint of easier purification.
  • the lower limit of the numerical range of n in the general formula (1) is more preferably 1 and particularly preferably 2 from the viewpoint of the stability of the raw material compound.
  • n in the general formula (1) is particularly preferably an integer of 2 to 3.
  • the tetracarboxylic dianhydride represented by the general formula (1) can contain six stereoisomers based on the configuration of two norbornane rings in the general formula (1).
  • the six stereoisomers mentioned here are the stereoisomer (A) (trans-exo-endo isomer) represented by the above general formula (2); 3) stereoisomer (B) (cis-exo-endo isomer) represented by the following formula; and the following general formulas (I) to (IV):
  • the tetracarboxylic dianhydride of the present invention is the above general formula (2) with respect to the total amount of the stereoisomer (the total amount of all stereoisomers contained in the tetracarboxylic dianhydride).
  • the ratio of the total amount of the stereoisomer (A) represented by the formula (3) and the stereoisomer (B) represented by the following general formula (3) needs to be 50 mol% or more.
  • the ratio of the total amount of such stereoisomers (A) and (B) is less than the lower limit, when the tetracarboxylic dianhydride is used as a polyimide raw material (monomer), the resulting polyimide solvent The solubility of the is reduced.
  • the ratio of the total amount of such stereoisomers (A) and (B) is more preferably 50 to 100 mol%, further preferably 60 to 98 mol%, and more preferably 70 to 95 mol%.
  • the mol% is particularly preferred, and 80 to 90 mol% is most preferred.
  • the above general formula (2) with respect to the total amount of the stereoisomer (the total amount of all stereoisomers contained in the tetracarboxylic dianhydride).
  • the content ratio of the stereoisomer (A) represented by the formula must be 30 mol% or more.
  • the solubility of the resulting polyimide in a solvent decreases when the tetracarboxylic dianhydride is used as a polyimide raw material (monomer).
  • the content ratio of such stereoisomer (A) is more preferably 30 to 99 mol%, further preferably 40 to 90 mol%, and more preferably 50 to 85 mol%. Particularly preferred is 60 to 80 mol%.
  • the content ratio of the stereoisomer (A) is within the above range, it tends to have a higher solubility while having a sufficiently high level of heat resistance and transparency.
  • the above general formula (3) with respect to the total amount of the stereoisomer (the total amount of all stereoisomers contained in the tetracarboxylic dianhydride).
  • the content ratio of the stereoisomer (B) represented by the formula is more preferably 1 to 70 mol%, and more preferably 10 to 60 mol%. More preferably, it is 10 to 50 mol%, particularly preferably 10 to 40 mol%.
  • the content ratio of the stereoisomer (B) is within the above range, it tends to have higher solubility while having a sufficiently high level of heat resistance and transparency.
  • the above general formula total amount of all stereoisomers contained in the tetracarboxylic dianhydride
  • the ratio of the total amount of the stereoisomer (D) represented by II) and the stereoisomer (F) represented by the general formula (IV) (molar basis) is preferably 50 mol% or less. 0 to 40 mol% is more preferable, 0 to 30 mol% is still more preferable, and 0 to 20 mol% is particularly preferable. When the ratio of the total amount of such stereoisomers (D) and (F) exceeds the upper limit, the solubility of the resulting polyimide in the solvent tends to be reduced.
  • the above general formula (the total amount of all stereoisomers contained in the tetracarboxylic dianhydride) is the above general formula ( It is preferable that the ratio of the total amount of the stereoisomer (C) represented by I) and the stereoisomer (E) represented by the general formula (III) (molar basis) is 10 mol% or less. 0 to 5 mol% is more preferable, 0 to 3 mol% is further preferable, 0 to 1.5 mol% is particularly preferable, and 0 to 1 mol% is most preferable. .
  • the ratio of the total amount of such stereoisomers (C) and (E) exceeds the upper limit, the heat resistance tends to decrease.
  • a value obtained as follows (value obtained by gas chromatography measurement (GC measurement and GC-MS measurement)) is adopted. be able to. That is, first, at least 1 ⁇ L of a dimethylacetamide solution (DMAc solution) containing tetracarboxylic dianhydride to be analyzed at a ratio of 0.1% by mass as a measurement sample is prepared, and a gas chromatograph mass spectrometer ( Agilent product name “7890A”), helium as the mobile phase gas (carry gas), RESTEX Rtx-5 Amine (30 m) as the stationary phase (column), and Agilent as the MS detector
  • DMAc solution dimethylacetamide solution
  • tetracarboxylic dianhydride to be analyzed at a ratio of 0.1% by mass as a measurement sample is prepared, and a gas chromatograph mass spectrometer ( Agilent product name “7890A”), helium as the mobile phase gas (carry gas), RESTEX Rtx-5 Am
  • the temperature rise rate is 10 ° C./min
  • the temperature is raised from 50 ° C. to 300 ° C.
  • the temperature is kept at 300 ° C. for 25 minutes.
  • the content ratios of the isomers derived from each peak can be calculated, and the content ratios of the above-mentioned isomers can be respectively determined.
  • the area ratio of each peak in the chromatogram can be determined as the content ratio of isomers derived from the peak (area percentage method).
  • the peak area ratio based on each isomer can be directly determined by the measuring apparatus.
  • the tetracarboxylic dianhydride is norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6
  • the peaks of the six stereoisomers basically appear within a retention time of about 31 to 34 minutes, and a retention time of around 31.4 minutes.
  • the peak of (31.3 to 31.6 minutes) is a peak derived from the trans-exo-exo isomer and the cis-exo-exo isomer, and has a retention time of around 31.8 minutes (31.7 to 31).
  • trans-exo-end It is a peak derived from the sex isomer (the stereoisomer (A)), and the peak with a retention time of around 33.0 minutes (32.7 to 33.3 minutes) is the trans-endo-endo isomer and cis-endo- It is a peak derived from the endo isomer.
  • a peak appears approximately at the position of the holding time.
  • Such a tetracarboxylic dianhydride of the present invention can be suitably used as a monomer for producing a polyimide (in particular, a monomer (tetracarboxylic acid for producing a polyimide of the present invention described later). Dianhydride)).
  • a monomer tetracarboxylic acid for producing a polyimide of the present invention described later. Dianhydride
  • examples of such other tetracarboxylic dianhydrides include known tetracarboxylic dianhydrides that can be used for the production of polyimide (for example, listed in paragraph [0171] of WO 2014/034760). (Such as aliphatic or alicyclic tetracarboxylic dianhydrides or aromatic tetracarboxylic dianhydrides) can be used as appropriate.
  • a suitable method for producing the tetracarboxylic dianhydride of the present invention is not particularly limited.
  • the following methods formation step of the first ester compound, production of the second ester compound
  • Process and method including tetracarboxylic dianhydride production process are simply referred to as “production method (A)”. That is, in such a production method (A), first, the following general formula (10):
  • R 1, R 2, R 3 and n are respectively the same as R 1, R 2, R 3 and n in the general formula (1).
  • the raw material compound represented by this is prepared, this is esterified, and the following general formula (11):
  • R 6 is independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, and 7 to 20 carbon atoms.
  • 1 is selected from the group consisting of aralkyl groups, and n is an integer of 0-12.
  • (1st ester compound formation process) is formed.
  • the first ester compound thus obtained has the following general formulas (i) to (vi):
  • trans-exo-endo isomer and cis-exo- The ratio of the total amount of endo isomer (cis-exo-endo) is 50 mol% or more and the content of trans-exo-endo isomer (trans-exo-endo) is 30 mol%.
  • the ratio of the total amount of cis-exo-endo isomers is 50 mol% or more and trans-exo-endo isomers (trans A second ester compound having a content of -exo-endo isomer) of 30 mol% or more is obtained (production process of the second ester compound).
  • the second ester compound is converted into an acid dianhydride to obtain the tetracarboxylic dianhydride of the present invention (a process for producing a tetracarboxylic dianhydride).
  • a manufacturing method (A) will be described.
  • a raw material compound is prepared and esterified to form a first ester compound.
  • Such raw material compound is a compound represented by the general formula (10), R 1, R 2 of R 1, R 2, R 3 and n, respectively in formula (1) in the formula, It is synonymous with R ⁇ 3 > and n (The suitable thing is also the same).
  • As such raw material compounds for example, those similar to those described in JP-A-2015-137235, International Publication No. 2011/099517, etc. can be suitably used.
  • the method for producing such a raw material compound is not particularly limited, and a known method (for example, a method described in JP-A-2015-137235, International Publication No. 2011/099517, etc.) can be appropriately used.
  • the method for esterifying such a raw material compound is not particularly limited, and a method capable of introducing an ester group into a carbon atom forming a double bond of the raw material compound (allows alkoxycarbonylation).
  • the method described in No. 2011/099517 can be appropriately used.
  • a known method can be appropriately employed. For example, by reacting the raw material compound with alcohol and carbon monoxide, esterification is performed to form a double bond of the raw material compound. You may employ
  • the alcohol that can be used for such esterification is not particularly limited, but the following general formula (12): R 6 OH (12) Wherein (12), R 6 has the same meaning as R 6 in the general formula (11). ] It is preferable that it is alcohol represented by these. That is, as such an alcohol, an alkyl alcohol having 1 to 10 carbon atoms (more preferably 1 to 5, more preferably 1 to 3) (wherein the alkyl group is linear or branched). A cycloalkyl alcohol having 3 to 10 carbon atoms (more preferably 3 to 8, more preferably 5 to 6), and 2 to 10 carbon atoms (more preferably 2 to 5 carbon atoms, more preferably 2 carbon atoms).
  • an alkenyl alcohol having 6 to 20 carbon atoms (more preferably 6 to 10, more preferably 6 to 8), an aryl alcohol having 7 to 20 carbon atoms (more preferably 7 to 10 and even more preferably 7 carbon atoms).
  • methanol and ethanol are more preferable, and methanol is particularly preferable from the viewpoint that purification of the resulting compound becomes easier.
  • Such alcohols may be used alone or in combination of two or more.
  • reaction temperature various conditions such as a reaction temperature
  • various conditions are not particularly limited, and are those employed in known esterification methods (for example, conditions described in International Publication No. 2014/050810, Japanese Unexamined Patent Application Publication No. 2015-137231, Japanese Unexamined Patent Application Publication No. 2014-218460, International Publication No. 2011/099517, etc.) can be appropriately employed (for example, palladium catalyst and oxidation
  • the reaction may be carried out in the presence of an agent).
  • R 6 in the general formula (11) is independently a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, from the viewpoint of easier purification.
  • a sec-butyl, t-butyl, 2-ethylhexyl group, cyclohexyl group, allyl group, phenyl group or benzyl group is preferable, and a methyl group is particularly preferable.
  • R ⁇ 6 > in the said General formula (11) may be the same or different, it is more preferable that it is the same from a synthetic viewpoint.
  • the first ester compound (the first ester compound is the same as that described above) as a reaction product of the raw material compound, the alcohol (R 6 OH), and carbon monoxide (CO).
  • the second ester compound each of the compounds contained in the first ester compound is obtained.
  • the ratio of the total amount of the trans-exo-endo isomer and the cis-exo-endo isomer is 50 mol% or more, and the trans-exo-endo isomer
  • the ratio of the total amount of cis-exo-endo isomers is 50 mol% or more and trans-exo-
  • the content of the command isomers obtain second ester compound is 30 mol% or more.
  • the present inventors have found that the above-mentioned six stereoisomers of the first ester compound have different solubility in solvents, and the trans-exo-endo isomer and the cis-exo-endo isomer are compared.
  • the ratio of the total amount of trans-exo-endo isomers and cis-exo-endo isomers is 50 mol% or more by the following steps using such characteristics.
  • the second ester compound having a trans-exo-endo isomer content of 30 mol% or more can be obtained. That is, the raw material compound, the alcohol (R 6 OH), and carbon monoxide (CO) are reacted to obtain the first ester compound as a reaction product.
  • the reaction product is dissolved in a solvent to obtain a solution under temperature conditions that allow the reaction product to be dissolved (optionally by stirring).
  • the obtained solution is cooled (in the case where it is heated, it may be allowed to cool), and crystals are precipitated in the solution. Due to the precipitation of such crystals, the trans-exo-endo isomer and the trans-exo-endo isomer, which are relatively highly soluble in the solvent, remain at a higher concentration on the solution side. And the ester compound having a higher concentration of the cis-exo-endo isomer remains dissolved, whereas the crystal side contains other than the trans-exo-endo isomer and the cis-exo-endo isomer.
  • the ratio of the total amount of trans-exo-endo isomer and cis-exo-endo isomer is 50 mol% or more, and the content of trans-exo-endo isomer is 30 mol%. It becomes possible to extract an isomer from the first ester compound. As described above, the reaction product is dissolved in a solvent, and then cooled (in some cases, allowed to cool) to precipitate crystals, and the filtrate is recovered by filtration. To obtain a second ester compound in which the ratio of the total amount of cis-exo-endo isomer is 50 mol% or more and the content of trans-exo-endo isomer is 30 mol% or more. be able to.
  • the ratio of the total amount of trans-exo-endo isomer and cis-exo-endo isomer is 50 mol% or more and the content of trans-exo-endo isomer is 30 mol%.
  • Solvents that can be used when extracting isomers from the first ester compound are preferably those that are highly soluble in trans-exo-endo isomers and cis-exo-endo isomers, for example, Aromatic solvents such as toluene, xylene, o-xylene, m-xylene, p-xylene, benzene, hydrocarbon solvents such as pentane, hexane, heptane, cyclopentane, cyclohexane, petroleum ether, methanol, ethanol, isopropanol, Alcohol solvents such as butanol, diethylene glycol and propylene glycol; , Ketone solvents such as methyl ethyl ketone,
  • toluene, xylene, benzene, ethanol, ethyl acetate, diisopropyl ether, acetonitrile, ethyl lactate, and acetic acid are preferable from the viewpoint of isomer separation (extractability and crystallization separation).
  • Ethanol, ethyl acetate, and acetic acid are more preferable, and toluene, ethyl acetate, and acetic acid are still more preferable.
  • the temperature condition employed when the reaction product is dissolved in the solvent varies depending on the type of the solvent and cannot be generally specified, but is preferably 0 to 150 ° C., preferably 30 to More preferably, it is 120 degreeC.
  • the temperature condition is less than the lower limit, the first ester compound tends to be insoluble, and when the temperature exceeds the upper limit, alteration and coloring tend to proceed.
  • it is preferable to add the reaction product into the solvent and stir from the viewpoint of more efficient dissolution.
  • the crystal and the filtrate are separated by filtration, and then the filtrate is recovered.
  • the solvent is applied to the filtered crystals to perform washing, and the washing solution is collected and mixed with the filtrate. May be.
  • the washing solution is collected and mixed with the filtrate. May be.
  • a 2nd ester compound can be obtained as solid content by evaporating a solvent.
  • the ratio of the total amount of trans-exo-endo isomer and cis-exo-endo isomer is 50 mol% or more, and the content of trans-exo-endo isomer
  • the above operation operation for dissolving the solvent and precipitating crystals and collecting the filtrate
  • the second ester compound may have a desired isomer concentration.
  • the second ester compound is converted into an acid dianhydride to thereby produce the tetra ester of the present invention.
  • Carboxylic dianhydride is obtained.
  • the configuration of the norbornane ring basically does not change, so that the ratio of the total amount of trans-exo-endo isomer and cis-exo-endo isomer is 50 mol%. It is possible to obtain a tetracarboxylic dianhydride that satisfies the above conditions and that the content of the trans-exo-endo isomer is 30 mol% or more.
  • the method of acid dianhydride formation of such a second ester compound is not particularly limited, and a known method capable of obtaining a tetracarboxylic dianhydride by converting the tetraester compound to an acid dianhydride is appropriately employed.
  • a method of heating the second ester compound in a carboxylic acid having 1 to 5 carbon atoms can be appropriately employed.
  • Examples of a method for converting such a tetraester compound into an acid dianhydride include, for example, a method described in International Publication No. 2014/050788, a method described in International Publication No. 2015/178261, and International Publication No. 2011/099518.
  • the methods and conditions employed in the methods described in JP-A-2015-218160, etc. can be employed as appropriate (various conditions including the carboxylic acid used, catalyst, etc. are also used in the above known methods. Adopted methods can be used as appropriate).
  • the isomer is extracted from the solvent (first ester compound).
  • the tetracarboxylic dianhydride may be washed using a solvent described as a solvent that can be used in the process.
  • the ratio of isomers in tetracarboxylic dianhydride can be further varied. For example, although it varies depending on the type of solvent, when washing is performed using a solvent at about 15 ° C. or more as a washing liquid, isomers are easily dissolved in the washing liquid, and some isomers are removed with the washing.
  • the ratio of isomers in tetracarboxylic dianhydride varies.
  • the types of isomers that are easily dissolved in the cleaning solution vary depending on the type of cleaning solution (solvent), temperature conditions, etc., but it cannot be generally stated, but the cis-exo-endo isomers of acid dianhydrides are compared. Tend to dissolve easily. Also, for example, although it varies depending on the type of solvent, when washing is performed using a solvent at a lower temperature (for example, about ⁇ 5 ° C. or less) as the washing liquid, the dissolution of the isomer in the solvent is more effectively suppressed. It is possible to carry out the washing step (while maintaining the isomer ratio more sufficiently).
  • the desired isomer is further washed by appropriately changing the type of solvent, temperature conditions, etc. according to the intended design. It is also possible to change the design to a tetracarboxylic dianhydride having a ratio.
  • the second ester compound is converted into an acid dianhydride, whereby the tetracarboxylic dianhydride represented by the above general formula (1) is obtained, and the total amount of the stereoisomer (the tetracarboxylic acid dianhydride) is obtained.
  • the ratio of the total amount of the stereoisomer (A) and the stereoisomer (B) is 50 mol% or more with respect to the total amount of all stereoisomers contained in the anhydride, and Tetra with a content ratio of the stereoisomer (A) of 30 mol% or more with respect to the total amount of the stereoisomer (total amount of all stereoisomers contained in the tetracarboxylic dianhydride) Carboxylic dianhydrides can be obtained.
  • the tetracarboxylic dianhydride of the present invention has been described above. Next, the polyimide precursor resin of the present invention will be described.
  • the ratio of the total amount of the repeating unit (A ′) represented by the general formula (4) and the repeating unit (B ′) represented by the general formula (5) is all repeated. It is 50 mol% or more with respect to the total amount of the unit, and the content ratio of the repeating unit (A ′) is 30 mol% or more with respect to the total amount of all the repeating units.
  • R 1 , R 2 and R 3 are each independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom.
  • N represents an integer of 0 to 12
  • R 4 represents an arylene group having 6 to 50 carbon atoms
  • X is independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkyl group having 3 to 9 carbon atoms. 1 type selected from the group which consists of silyl groups is shown.
  • R 1, R 2, R 3 and n are respectively the same as R 1, R 2, R 3 and n in the foregoing general formula (1) in ( The preferable thing is also the same).
  • the arylene group that can be selected as R 4 in the general formulas (4) and (5) has 6 to 50 carbon atoms, and such aryl groups have 6 to 40 carbon atoms. It is preferably 6-30, more preferably 12-20.
  • the number of carbon atoms is less than the lower limit, the heat resistance of the resulting polyimide tends to be reduced.
  • the carbon number exceeds the upper limit, the solubility of the obtained polyimide in a solvent tends to be lowered.
  • R 11 represents one selected from the group consisting of a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, a hydroxyl group, and a trifluoromethyl group
  • Q is , 9,9-fluorenylidene group; formula: —O—, —S—, —CO—, —CONH—, —SO 2 —, —C (CF 3 ) 2 —, —C (CH 3 ) 2 —, — CH 2 —, —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O—, —O—C 6 H 4 —C (CF 3 ) 2 —C 6 H 4 —O—, —O—C 6 H 4 —SO 2 —C 6 H 4 —O—, —C (CH 3 ) 2 —C 6 H 4 —C (CH 3 ) 2 —, —O—C 6 H 4 —SO 2 —
  • each R a independently represents any one of an alkyl group having 1 to 10 carbon atoms, a phenyl group and a tolyl group, and y represents an integer of 1 to 18) 1 group selected from the group consisting of: ] It is preferable that it is at least 1 sort (s) of group represented by these.
  • R 11 in the general formula (c) is more preferably a hydrogen atom, a fluorine atom, a methyl group or an ethyl group, and particularly preferably a hydrogen atom, from the viewpoint of heat resistance. Furthermore, R 11 in the general formula (c) is more preferably a methyl group, a hydroxyl group, or a trifluoromethyl group from the viewpoint of solubility.
  • each R a is independently an alkyl group having 1 to 10 carbon atoms, a phenyl group, or a tolyl group. Any one of these.
  • Ra is preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a phenyl group, or a tolyl group, more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
  • y represents an integer of 1 to 15 (more preferably 3 to 12, more preferably 5 to 10).
  • the adhesion and laser peelability of the polyimide film (ease of film peeling when laser peeling treatment is performed when a film is produced on a substrate) tend to decrease.
  • the upper limit is exceeded, the heat resistance and transparency of the polyimide film tend to be lowered.
  • Q in the general formula (d) is a 9,9-fluorenylidene group, or a formula: —CONH—, —O—C 6 H 4 —O— from the viewpoint of a balance between heat resistance and solubility.
  • a group represented by the formula: —O— or —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O— is preferred, and has the formula: —CONH—, —O—C 6 H 4 —O A group represented by —, —O—C 6 H 4 —C 6 H 4 —O— or —O— is particularly preferred, and has the formula: —CONH—, —O—C 6 H 4 —O— or —O—.
  • Q in the general formula (d) is preferably a group represented by the general formula (e) from the viewpoints of adhesiveness and laser peelability, and has a linear expansion coefficient and heat resistance. Is preferably a group represented by the formula: —CONH—.
  • R 4 has higher solubility in a solvent, and therefore 9,9-bis (4-aminophenyl) fluorene, 4,4′-diaminodiphenylmethane, 4,4′- Diaminodiphenyl ether, 2,2-bis (4-aminophenoxyphenyl) propane, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2′- Bis (trifluoromethyl) -4,4′-diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3 2 from an aromatic diamine selected from the group consisting of -aminophenoxy) benzene and 2,2-bis (4-aminophenoxyphenyl) propane It is preferably a divalent group (arylene group)
  • X in the general formulas (4) and (5) is independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms (preferably 1 to 3 carbon atoms) and an alkylsilyl group having 3 to 9 carbon atoms. It is 1 type selected from the group which becomes.
  • Such X can change the kind of the substituent and the introduction rate of the substituent by appropriately changing the production conditions.
  • X is a hydrogen atom (when it becomes a so-called polyamic acid repeating unit)
  • polyimide there is a tendency that the production of polyimide is easy.
  • X is an alkyl group having 1 to 6 carbon atoms (preferably 1 to 3 carbon atoms)
  • the storage stability of the polyimide precursor resin tends to be more excellent.
  • X is an alkyl group having 1 to 6 carbon atoms (preferably 1 to 3 carbon atoms)
  • it is more preferably a methyl group or an ethyl group.
  • X is an alkylsilyl group having 3 to 9 carbon atoms
  • the solubility of the polyimide precursor resin tends to be more excellent.
  • X is an alkylsilyl group having 3 to 9 carbon atoms, it is more preferably a trimethylsilyl group or a t-butyldimethylsilyl group.
  • the introduction rate of the group is not particularly limited, but at least a part of X is an alkyl group and / or Or an alkylsilyl group (at least a part of X in the repeating unit (A ′) and / or the repeating unit (B ′) contained in the resin precursor is an alkyl group and / or an alkylsilyl group)
  • 25% or more (more preferably 50% or more, more preferably 75% or more) of the total amount (total number) of X is preferably an alkyl group and / or an alkylsilyl group (in this case, X other than an alkyl group and / or an alkylsilyl group is a hydrogen atom).
  • the storage stability of the polyimide precursor resin becomes more excellent. There is a tendency.
  • a polyimide precursor resin since manufacture of a polyimide becomes easier, it is preferable that all X is a hydrogen atom, ie, it is a polyamic acid.
  • the ratio of the total amount of the said repeating unit (A ') and the said repeating unit (B') needs to be 50 mol% or more with respect to the total amount of all the repeating units. .
  • the ratio of the total amount of such repeating units (A ′) and (B ′) is less than the lower limit, the solubility of the polyimide obtained from the polyimide precursor resin in the solvent is lowered.
  • the ratio of the total amount of such repeating units (A ′) and (B ′) is more preferably 50 to 100 mol%, further preferably 60 to 98 mol%, and more preferably 70 to It is particularly preferably 95 mol%, most preferably 80 to 90 mol%.
  • the ratio of the total amount of the repeating units (A ′) and (B ′) is within the above range, the solubility of the finally obtained polyimide in the solvent tends to be good.
  • the content of the repeating unit (A ′) represented by the general formula (4) needs to be 30 mol% or more based on the total amount of all repeating units.
  • the content ratio of such a repeating unit (A ′) is less than the lower limit, the solubility of the polyimide obtained from the polyimide precursor resin in a solvent is lowered.
  • the content ratio of such repeating units (A ′) is more preferably 30 to 99 mol%, still more preferably 40 to 90 mol%, based on the total amount of all repeating units. It is particularly preferably 50 to 85 mol%, most preferably 60 to 80 mol%.
  • the content ratio of the repeating unit (A ′) is within the above range, it tends to have higher solubility while having a sufficiently high level of heat resistance and transparency.
  • the content ratio of the repeating unit (B ′) represented by the general formula (5) is more preferably 1 to 70 mol% based on the total amount of all repeating units, It is more preferably 10 to 60 mol%, particularly preferably 10 to 50 mol%, and most preferably 10 to 40 mol%.
  • the content ratio of the repeating unit (B ′) is within the above range, it tends to have a higher solubility while having a sufficiently high level of heat resistance and transparency.
  • Such a repeating unit (A ′) is a tetracarboxylic dianhydride stereoisomer (A) represented by the above general formula (1) (compound represented by the above general formula (2): trans - exo - and endo-isomers) of the formula: H 2 N-R 4 aromatic diamine represented by -NH 2 (R 4 above general formula in the formula (4) and (5) R 4 as defined in ).
  • the steric structure of the repeating unit (A ′) is derived from the steric structure of the tetracarboxylic dianhydride stereoisomer (A), and the repeating unit (A ′) is trans-exo-endo. It is a repeating unit having the three-dimensional structure.
  • the repeating unit (B ′) is a tetracarboxylic dianhydride stereoisomer (B) represented by the general formula (1) (compound represented by the general formula (3): cis-exo). - and endo-isomers) of the formula: H 2 N-R 4 aromatic diamine represented by -NH 2 (R 4 in the formula above general formula (4) is synonymous with R 4 in and (5) And a repeating unit having a cis-exo-endo three-dimensional structure.
  • the repeating unit of the polyimide precursor resin derived from is as follows. That is, the repeating unit derived from the above-mentioned trans-exo-exo isomer (compound represented by the above formula (I)) has a trans-exo-exo steric structure represented by the following general formula (I ′).
  • the repeating unit derived from the above-mentioned trans-endo-endo isomer is a trans-endo represented by the following general formula (II ′).
  • a repeating unit (D ′) having a stereo structure of endo, and a repeating unit derived from the above-mentioned cis-exo-exo isomer (compound represented by the above formula (III)) is represented by the following general formula (III ′)
  • the repeating unit derived from a cis-endo-endo isomer is a repeating unit (E ′) having a cis-exo-exo steric structure represented by the following general formula: (IV ') That cis - endo - a repeating unit having a three-dimensional structure of the end (F ').
  • R 1 in the following general formula (I ') ⁇ (IV' ), R 2, R 3, R 1 R 4 and n are each the general formula (4) and (5) in, R 2, R 3 , R 4 and n have the same meaning (suitable examples thereof are also the same).
  • the polyimide precursor resin of the present invention may contain other repeating units other than the repeating units (A ′) and (B ′) as long as the effects of the present invention are not impaired.
  • Such other repeating units are preferably the repeating units (C ′) to (F ′), since it can be easily prepared using the tetracarboxylic dianhydride. .
  • the ratio of the total amount of the repeating units (D ′) and (F ′) is all repeating units. Is preferably 50 mol% or less, more preferably 0 to 40 mol%, still more preferably 0 to 30 mol%, and particularly preferably 0 to 20 mol%.
  • the ratio of the total amount of such repeating units (D ′) and (F ′) exceeds the upper limit, the solubility of the finally obtained polyimide in the solvent tends to be lowered.
  • the ratio of the total amount of the repeating units (C ′) and (E ′) is all repeating units. Is preferably 10 mol% or less, more preferably 0 to 5 mol%, still more preferably 0 to 3 mol%, and particularly preferably 0 to 1.5 mol%. 0 to 1 mol% is most preferable.
  • the ratio of the total amount of such repeating units (C ′) and (E ′) exceeds the upper limit, the physical properties of the finally obtained polyimide tend to be lowered.
  • the polyimide precursor resin (more preferably, polyamic acid), other repeating units other than the repeating units (A ′) to (F ′) may be included as the other repeating units.
  • the total amount of the repeating units (A ′) to (F ′) is 70 to 100 with respect to all the repeating units from the standpoint of fully expressing the effects of the present invention. Is preferably 80 to 100 mol%, more preferably 90 to 100 mol%, particularly preferably 95 to 100 mol%, and 98 to 100 mol%. Most preferably it is. From the viewpoint that the solubility in a solvent becomes higher, the polyimide precursor resin preferably contains 100 mol% of repeating units (A ′) to (F ′).
  • repeating units other than such repeating units (A ′) to (F ′) are not particularly limited, and are known repeating units that can be used as a polyimide precursor resin (more preferably, a repeating unit of polyamic acid). Units are listed. Examples of the other repeating units other than the repeating units (A ′) to (F ′) include, for example, other tetracarboxylic dianhydrides other than the tetracarboxylic dianhydride represented by the general formula (1). A repeating unit derived from a product (for example, a compound described in paragraph [0171] of International Publication No. 2014/034760) may be used.
  • the polyimide precursor resin of the present invention is easier to prepare, the tetracarboxylic dianhydride of the present invention and an aromatic represented by the formula: H 2 N—R 4 —NH 2 it is preferred diamine is a reaction product of (R 4 in the formula above general formula (4) and (5) R 4 as synonymous in) (polymer).
  • the intrinsic viscosity [ ⁇ ] is preferably 0.05 to 3.0 dL / g, and preferably 0.1 to 2.0 dL / g. Is more preferable.
  • the intrinsic viscosity [ ⁇ ] is smaller than 0.05 dL / g, when a film-like polyimide is produced using the intrinsic viscosity [ ⁇ ], the resulting film tends to be brittle, while 3.0 dL / g is reduced. When it exceeds, the viscosity is too high and the processability is lowered, and for example, when a film is produced, it is difficult to obtain a uniform film.
  • Such intrinsic viscosity [ ⁇ ] can be measured as follows.
  • N, N-dimethylacetamide is used as a solvent, and the polyamic acid is dissolved in the N, N-dimethylacetamide so as to have a concentration of 0.5 g / dL, and a measurement sample (solution) is obtained. obtain.
  • the viscosity of the measurement sample is measured using a kinematic viscometer under a temperature condition of 30 ° C., and the obtained value is adopted as the intrinsic viscosity [ ⁇ ].
  • an automatic viscosity measuring device (trade name “VMC-252”) manufactured by Koiso Co., Ltd. is used.
  • such a polyimide precursor resin (more preferably, polyamic acid) can be suitably used when producing the polyimide of the present invention.
  • such a polyimide precursor resin (more preferably a polyamic acid) can be obtained as a reaction intermediate (precursor) in producing the polyimide of the present invention.
  • the polyimide precursor resin of the present invention (more preferably, polyamic acid) has been described above. Next, the polyimide of the present invention will be described.
  • the ratio of the total amount of the repeating unit (A) represented by the general formula (6) and the repeating unit (B) represented by the general formula (7) is based on the total amount of all the repeating units.
  • the content ratio of the repeating unit (A) is 30 mol% or more based on the total amount of all repeating units.
  • R 1 , R 2 , and R 3 are each independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a fluorine atom.
  • N represents an integer of 0 to 12
  • R 4 represents an arylene group having 6 to 50 carbon atoms.
  • Such R 1 in the general formula (6) and (7) in, R 2, R 3 and n are respectively the same as R 1, R 2, R 3 and n in the foregoing general formula (1) ( The preferable thing is also the same).
  • the general formula (6) and (7) R 4 each aforementioned general formula in (4) and (5) the same meaning as R 4 in.
  • the ratio of the total amount of the repeating unit (A) and the repeating unit (B) needs to be 50 mol% or more with respect to the total amount of all the repeating units.
  • the ratio of the total amount of such repeating units (A) and (B) is less than the lower limit, the solubility of the polyimide in the solvent is lowered.
  • the ratio of the total amount of such repeating units (A) and (B) is more preferably 50 to 100 mol%, further preferably 60 to 98 mol%, and more preferably 70 to 95 mol%. % Is particularly preferable, and 80 to 90 mol% is most preferable.
  • the ratio of the total amount of the repeating units (A) and (B) is within the above range, the solubility of the polyimide in the solvent tends to be good.
  • the content ratio of the repeating unit (A) represented by the general formula (2) needs to be 30 mol% or more based on the total amount of all repeating units. If the content rate of such a repeating unit (A) is less than the said minimum, the solubility to the solvent of this polyimide will fall. Further, the content ratio of such a repeating unit (A) is more preferably 30 to 99 mol%, further preferably 40 to 90 mol%, and particularly preferably 50 to 85 mol%. 60 to 80 mol% is most preferable. When the content ratio of the repeating unit (A) is within the above range, it tends to have a higher solubility while having a sufficiently high level of heat resistance and transparency.
  • the content of the repeating unit (B) represented by the general formula (7) is more preferably 1 to 70 mol% with respect to the total amount of all repeating units, and 10 to 60 mol. % Is more preferable, 10 to 50 mol% is particularly preferable, and 10 to 40 mol% is most preferable.
  • the content ratio of the repeating unit (B) is within the above range, it tends to have higher solubility while having a sufficiently high level of heat resistance and transparency.
  • Such a repeating unit (A) is a tetracarboxylic dianhydride stereoisomer (A) represented by the above general formula (1) (compound represented by the above general formula (2): trans- exo - and endo-isomers) of the formula: H 2 N-R 4 aromatic diamine represented by -NH 2 (R 4 the above general formula in the formula (4) and (5) R 4 as defined in ).
  • the steric structure of the repeating unit (A) is derived from the steric structure of the tetracarboxylic dianhydride stereoisomer (A), and the repeating unit (A) is a trans-exo-endo steric structure.
  • the repeating unit (B) is a stereoisomer (B) of a tetracarboxylic dianhydride represented by the general formula (1) (compound represented by the general formula (3): cis-exo- and endo-isomers) of the formula: H 2 N-R 4 -NH aromatic diamine represented by 2 (R 4 in the formula above general formula (4) is synonymous with R 4 in and (5) And a repeating unit having a cis-exo-endo three-dimensional structure.
  • a stereoisomer of tetracarboxylic dianhydride represented by the above general formula (1) other than the above-mentioned stereoisomers (A) and (B), and a formula: H 2 N—R 4 —NH 2
  • the repeating unit of polyimide derived from is as follows.
  • the repeating unit derived from the above-described trans-exo-exo isomer has a trans-exo-exo steric structure represented by the following general formula (I-1):
  • the repeating unit derived from the above-mentioned trans-endo-endo isomer is a trans-unit represented by the following general formula (II).
  • the repeating unit (D) having an end-to-end steric structure is derived from the above-mentioned cis-exo-exo isomer (compound represented by the above formula (III)).
  • the repeating unit derived from a cis-endo-endo isomer (compound represented by the above formula (IV)) has the following general formula: Table in (IV-1)
  • the cis - endo - the repeating unit (F) having a three-dimensional structure of the end.
  • the following general formula (I-1) ⁇ R 1 of (IV-1) in, R 2, R 3, R 1 R 4 and n are each the general formula (6) and (7) in, R 2 , R 3 , R 4 and n have the same meaning (the preferred ones are also the same).
  • the polyimide of the present invention may contain other repeating units other than the repeating units (A) and (B) as long as the effects of the present invention are not impaired.
  • the polyimide of the present invention can be efficiently prepared by using the tetracarboxylic dianhydride of the present invention, the polyimide other than such repeating units (A) and (B) can be used.
  • the other repeating units are preferably the repeating units (C) to (F).
  • the ratio of the total amount of the repeating units (D) and (F) (molar ratio) is 50 moles with respect to all the repeating units. % Or less, more preferably 0 to 40 mol%, still more preferably 0 to 30 mol%, particularly preferably 0 to 20 mol%.
  • the ratio of the total amount of such repeating units (D) and (F) exceeds the upper limit, the solubility of polyimide in a solvent tends to be lowered.
  • the ratio of the total amount of the repeating units (C) and (E) (molar basis ratio) is 10 with respect to all repeating units. It is preferably not more than mol%, more preferably 0 to 5 mol%, still more preferably 0 to 3 mol%, particularly preferably 0 to 1.5 mol%, and preferably 0 to 1 mol%. Most preferably, it is mol%.
  • the ratio of the total amount of such repeating units (C) and (E) exceeds the upper limit, the physical properties of the polyimide tend to be lowered.
  • such polyimide may contain other repeating units other than the repeating units (A) to (F) as the other repeating units.
  • Such other repeating units other than the repeating units (A) to (F) are not particularly limited, and include known repeating units that can be used as polyimide repeating units.
  • Examples of other repeating units other than the repeating units (A) to (F) include, for example, other tetracarboxylic dianhydrides other than the tetracarboxylic dianhydride represented by the general formula (1) ( For example, a repeating unit derived from the compound described in paragraph [0171] of International Publication No. 2014/034760 may be used.
  • the polyimide of the present invention is easier to prepare, the tetracarboxylic dianhydride of the present invention and an aromatic diamine represented by the formula: H 2 N—R 4 —NH 2 (formula it is preferred R 4 in is the general formula (4) and (5) a reaction product of R 4 as synonymous) in (polymer).
  • the polyimide of the present invention preferably has a 5% weight loss temperature of 400 ° C. or higher, more preferably 450 to 550 ° C. If such a 5% weight loss temperature is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and if it exceeds the upper limit, it tends to be difficult to produce a polyimide having such characteristics. It is in.
  • a 5% weight loss temperature is scanned using, for example, a TG / DTA 7200 thermogravimetric analyzer (manufactured by SII Nano Technology Co., Ltd.) under a nitrogen gas atmosphere at a temperature rising rate of 10 ° C./min. It can be determined by heating the temperature from 30 ° C. to 550 ° C. and measuring the temperature at which the weight of the sample used is reduced by 5%.
  • such a polyimide preferably has a glass transition temperature (Tg) of 250 ° C. or higher, more preferably 300 to 500 ° C. If the glass transition temperature (Tg) is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and if it exceeds the upper limit, it tends to be difficult to produce a polyimide having such characteristics. It is in.
  • Tg glass transition temperature
  • Such a glass transition temperature (Tg) can be measured by a tensile mode using a thermomechanical analyzer (trade name “TMA8310” or “TMA8311” manufactured by Rigaku).
  • thermomechanical analyzer (trade name “TMA8310” or “TMA8311” manufactured by Rigaku) is used as a measuring device, and a polyimide film having a size of 20 mm in length and 5 mm in width (the thickness of the film affects the measured value). Therefore, it is preferably 5 to 80 ⁇ m, and a measurement sample is formed. Under a nitrogen atmosphere, a tensile mode (49 mN) and a temperature rising rate of 5 ° C./min are used.
  • the TMA curve can be obtained by adopting and measuring and extrapolating the curve before and after the inflection point of the TMA curve resulting from the glass transition.
  • such a polyimide preferably has a softening temperature of 300 ° C. or higher, more preferably 350 to 550 ° C. If the softening temperature is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and if it exceeds the upper limit, it tends to be difficult to produce a polyimide having such characteristics.
  • a softening temperature can be measured in a penetration mode using a thermomechanical analyzer (trade name “TMA8310” or “TMA8311” manufactured by Rigaku). In measurement, since the sample size (vertical, horizontal, thickness, etc.) does not affect the measured value, the thermomechanical analyzer (trade name “TMA8310” or “TMA8311” manufactured by Rigaku) to be used is used. What is necessary is just to adjust the size of a sample suitably to the size which can be mounted in a tool.
  • Such a polyimide preferably has a thermal decomposition temperature (Td) of 450 ° C. or higher, more preferably 480 to 600 ° C. If the thermal decomposition temperature (Td) is less than the lower limit, it tends to be difficult to achieve sufficient heat resistance. On the other hand, if the thermal decomposition temperature (Td) exceeds the upper limit, a polyimide having such characteristics can be produced. It tends to be difficult.
  • Td thermal decomposition temperature was measured using a TG / DTA7200 thermogravimetric analyzer (manufactured by SII Nanotechnology Co., Ltd.) in a nitrogen atmosphere under a heating rate of 10 ° C./min. It can be determined by measuring the temperature at the intersection of the tangent lines drawn on the decomposition curve before and after thermal decomposition under the conditions of
  • the polyimide of the present invention preferably has a pencil hardness of 6B to 6H, and more preferably HB to 4H. If the hardness is less than the lower limit, it tends to be difficult to obtain a sufficiently high level of hardness. It tends to be difficult. Such a pencil hardness value can be obtained by measuring in accordance with a method defined in JIS K5600-5-4 issued in 1999.
  • the number average molecular weight (Mn) of such a polyimide is preferably 1,000 to 1,000,000, more preferably 10,000 to 500,000 in terms of polystyrene.
  • Mn number average molecular weight
  • the film obtained when the film is formed using the polyimide becomes brittle, and the heat resistance of the polyimide tends to decrease.
  • the viscosity increases and it takes a long time to dissolve the polyimide in the solvent, making it difficult to process.
  • a film is formed using the polyimide, a flexible film cannot be obtained and the wrinkles are reduced. Tend to be a film.
  • the weight average molecular weight (Mw) of such a polyimide is preferably 1000 to 5000000 in terms of polystyrene.
  • a weight average molecular weight (Mw) it is more preferable that it is 5000, It is further more preferable that it is 10,000, It is especially preferable that it is 20000.
  • an upper limit of the numerical range of a weight average molecular weight (Mw) it is more preferable that it is 5000000, It is further more preferable that it is 500,000, It is especially preferable that it is 100,000.
  • the film obtained when the film is formed using the polyimide becomes brittle, and the heat resistance of the polyimide tends to decrease. In addition, it takes a long time to dissolve the polyimide in the solvent, making it difficult to process.
  • a film is formed using the polyimide a flexible film cannot be obtained, and the film tends to be wrinkled. It is in.
  • the molecular weight distribution (Mw / Mn) of such polyimide is preferably 1.1 to 5.0, and more preferably 1.5 to 3.0. If the molecular weight distribution is less than the lower limit, it tends to be difficult to produce, while if it exceeds the upper limit, it tends to be difficult to obtain a uniform film.
  • the molecular weight (Mw or Mn) and molecular weight distribution (Mw / Mn) of such a polyimide are measured by a gel permeation chromatography (GPC) measuring device (Degasser: DG-2080-54 manufactured by JASCO, Liquid pump: PU-2080 manufactured by JASCO, interface: LC-NetII / ADC manufactured by JASCO, column: GPC column KF-806M (x2) manufactured by Shodex, column oven: 860-CO manufactured by JASCO, RI detector : Data measured using RI-2031 manufactured by JASCO, column temperature 40 ° C., chloroform solvent (flow rate 1 mL / min.) Can be obtained by conversion with polystyrene.
  • GPC gel permeation chromatography
  • such a polyimide preferably has an intrinsic viscosity [ ⁇ ] of 0.05 to 3.0 dL / g, and more preferably 0.1 to 2.0 dL / g.
  • the intrinsic viscosity [ ⁇ ] is smaller than 0.05 dL / g, when a film-like polyimide is produced using the intrinsic viscosity [ ⁇ ], the resulting film tends to be brittle, while 3.0 dL / g is reduced.
  • it exceeds the viscosity is too high and the processability is lowered, and for example, when a film is produced, it is difficult to obtain a uniform film.
  • Such intrinsic viscosity [ ⁇ ] can be measured as follows.
  • N, N-dimethylacetamide is used as a solvent, and polyimide is dissolved in the N, N-dimethylacetamide so as to have a concentration of 0.5 g / dL to obtain a measurement sample (solution).
  • the viscosity of the measurement sample is measured using a kinematic viscometer under a temperature condition of 30 ° C., and the obtained value is adopted as the intrinsic viscosity [ ⁇ ].
  • an automatic viscosity measuring device (trade name “VMC-252”) manufactured by Koiso Co., Ltd. is used.
  • such a polyimide preferably has a linear expansion coefficient (CTE) of 0 to 100 ppm / K, more preferably 10 to 70 ppm / K.
  • CTE linear expansion coefficient
  • the linear expansion coefficient exceeds the upper limit, peeling tends to occur due to thermal history when combined with a metal or an inorganic material having a linear expansion coefficient range of 5 to 20 ppm / K.
  • the linear expansion coefficient is less than the lower limit, the solubility and the film characteristics tend to be lowered.
  • a polyimide film having a size of 20 mm in length and 5 mm in width is not particularly limited because it does not affect the measured value, but is preferably 5 to 80 ⁇ m.
  • a thermomechanical analyzer (trade name “TMA8310” or “TMA8311” manufactured by Rigaku) as a measuring device, a tensile mode (49 mN), a heating rate of 5 ° C. / The temperature was raised from room temperature to 200 ° C. (first temperature increase), allowed to cool to 30 ° C. or less, then heated from that temperature to 400 ° C.
  • Second temperature increase The change in the length of the sample in the vertical direction at the time of temperature rise is measured.
  • 1 in the temperature range of 100 ° C. to 200 ° C. is used.
  • the average value of the change in length per degree C is obtained, and the obtained value is measured as the linear expansion coefficient of polyimide.
  • the linear expansion coefficient of the polyimide of the present invention a value obtained by calculating the average value of the length change per 1 ° C. in the temperature range of 100 ° C. to 200 ° C. based on the TMA curve is adopted. To do.
  • such a polyimide preferably has a sufficiently high transparency when a film is formed, and has a total light transmittance of 80% or more (more preferably 82% or more, particularly preferably 83% or more). ) Is more preferable.
  • Such total light transmittance can be easily achieved by appropriately selecting the type of repeating unit of polyimide and the like.
  • those having a haze (turbidity) of 5 to 0 are obtained from the viewpoint of obtaining a higher degree of colorless transparency. preferable. If the haze value exceeds the upper limit, it tends to be difficult to achieve a higher level of colorless transparency.
  • such a polyimide has a yellowness (YI) of 10 to 0 (more preferably 5 to 0, particularly preferably 3 to 0) from the viewpoint of obtaining a higher degree of colorless transparency. preferable.
  • YI yellowness
  • Such total light transmittance, haze (turbidity) and yellowness (YI) are measured by a product name “Haze Meter NDH-5000” manufactured by Nippon Denshoku Industries Co., Ltd. or manufactured by Nippon Denshoku Industries Co., Ltd.
  • the thickness is about 13 ⁇ m (the range of 13 ⁇ m ⁇ 2 ⁇ m: there is basically no change in the measured value within this range.
  • the thickness of the measurement sample is 13 ⁇ m.
  • the value measured by using a film made of polyimide as a measurement sample can be used (note that the product name “Haze Meter NDH-5000” manufactured by Nippon Denshoku Industries Co., Ltd.)
  • the yellowness is measured with a trade name “Spectrocolorimeter SD6000” manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the vertical and horizontal sizes of the measurement sample may be any size that can be arranged at the measurement site of the measurement apparatus, and the vertical and horizontal sizes may be appropriately changed.
  • the absolute value of retardation (Rth) in the thickness direction measured at a wavelength of 590 nm is preferably 200 nm or less, more preferably 150 nm or less, and more preferably 100 nm or less in terms of thickness 10 ⁇ m. Is more preferable, and it is especially preferable that it is 50 nm or less. That is, the retardation (Rth) value is preferably ⁇ 200 nm to 200 nm (more preferably ⁇ 150 nm to 150 nm, still more preferably ⁇ 100 to 100 nm, particularly preferably ⁇ 50 to 50 nm).
  • the absolute value of retardation (Rth) in the thickness direction exceeds the upper limit, when used in a display device, the contrast tends to decrease and the viewing angle tends to decrease.
  • the absolute value of the retardation (Rth) falls within the above range, when used in a display device, the effect of suppressing the decrease in contrast and the effect of improving the viewing angle tend to be more advanced.
  • the absolute value of the retardation (Rth) in the thickness direction is from the viewpoint that the reduction in contrast can be suppressed to a higher degree and the viewing angle can be further improved. A lower value is preferred.
  • Such “absolute value of thickness direction retardation (Rth)” is the value of the refractive index (589 nm) of the polyimide film measured as described below using the product name “AxoScan” manufactured by AXOMETRICS as a measuring device. After input to the measuring device, the retardation in the thickness direction of the polyimide film was measured using light with a wavelength of 590 nm under the conditions of temperature: 25 ° C. and humidity: 40%, and the measured value of retardation in the thickness direction thus obtained. Obtain a value (converted value) converted to a retardation value per 10 ⁇ m thickness of the film based on (measured value by automatic measurement (automatic calculation) of the measuring device) and calculate an absolute value from the converted value. Can do.
  • the “absolute value of retardation (Rth) in the thickness direction” can be obtained by calculating the absolute value (
  • the size of the polyimide film of the measurement sample is not particularly limited as long as it is larger than the photometric part (diameter: about 1 cm) of the stage of the measuring instrument. However, the length is 76 mm, the width is 52 mm, and the thickness is 5 to 20 ⁇ m. It is preferable to do.
  • the value of “refractive index of polyimide film (589 nm)” used for the measurement of retardation (Rth) in the thickness direction is an unstretched film made of the same type of polyimide as the polyimide forming the film to be measured for retardation. After forming the film, such an unstretched film is used as a measurement sample (in the case where the film to be measured is an unstretched film, the film can be used as a measurement sample as it is), and measurement is performed.
  • the size of the polyimide film of the measurement sample is not particularly limited as long as it is a size that can be used in the refractive index measurement device, and may be 1 cm square (1 cm in length and width) and 5 to 20 ⁇ m in thickness.
  • the shape of such a polyimide is not particularly limited, and may be, for example, a film shape or a powder shape, or may be a pellet shape by extrusion.
  • the polyimide of the present invention can be formed into a film shape, formed into a pellet shape by extrusion molding, or can be appropriately formed into various shapes by a known method.
  • polyimides are flexible wiring board films, heat-resistant insulating tapes, wire enamels, semiconductor protective coating agents, liquid crystal alignment films, transparent conductive films for organic EL, flexible board films, flexible transparent conductive films, organic Transparent conductive film for thin film solar cell, transparent conductive film for dye-sensitized solar cell, flexible gas barrier film, film for touch panel, TFT substrate film for flat panel detector, seamless polyimide belt for copying machine (so-called transfer belt), Transparent electrode substrate (transparent electrode substrate for organic EL, transparent electrode substrate for solar cell, transparent electrode substrate for electronic paper, etc.), interlayer insulating film, sensor substrate, image sensor substrate, light emitting diode (LED) reflector (LED lighting) Reflector: LED Shot plate), LED illumination cover, LED reflector illumination cover, cover lay film, high ductility composite substrate, semiconductor resist, lithium ion battery, organic memory substrate, organic transistor substrate, organic semiconductor substrate, It is particularly useful as a material for producing a color filter substrate and the like.
  • LED light emitting diode
  • such a polyimide can be formed into a powder or various molded bodies, for example, for automobile parts, aerospace parts, bearing parts, seals, etc. It can also be used as appropriate for materials, bearing parts, gear wheels and valve parts.
  • the method for producing the polyimide of the present invention is not particularly limited, but in the presence of a polymerization solvent, the tetracarboxylic dianhydride of the present invention and the formula: H 2 N—R 4 —NH the R 4 aromatic diamine wherein represented by 2 is an arylene group having 6 to 50 carbon atoms, the same meaning as R 4 in the above general formula (4) and (5) (the preferred ones).
  • polyimide production method (I) for convenience
  • the polyimide of the present invention can be obtained as a reaction product of the tetracarboxylic dianhydride of the present invention and the aromatic diamine.
  • the specific steps for obtaining the polyimide by reacting the tetracarboxylic dianhydride of the present invention with the aromatic diamine are not particularly limited.
  • Such a production method (I) of polyimide is represented by, for example, the tetracarboxylic dianhydride of the present invention and the above formula: H 2 N—R 4 —NH 2 in the presence of a polymerization solvent.
  • the polyimide precursor resin of the present invention in which X in the above general formulas (4) and (5) is a hydrogen atom (preferably used as the polyimide precursor resin of the present invention) (Polyamide acid)
  • Step (Ib) of obtaining the polyimide of the present invention by imidizing the polyimide precursor resin (polyamic acid) It is good also as a method including.
  • steps (Ia) and (Ib) that can be suitably used in the method for producing a polyimide of the present invention will be described.
  • the tetracarboxylic dianhydride of the present invention is reacted with an aromatic diamine represented by the above formula: H 2 N—R 4 —NH 2 in the presence of a polymerization solvent
  • This is a step of obtaining a polyamic acid the polyimide precursor resin of the present invention wherein X in the general formulas (4) and (5) is a hydrogen atom).
  • the tetracarboxylic dianhydride of the present invention and an aromatic diamine represented by the above formula: H 2 N—R 4 —NH 2 are used as monomer components.
  • Such a tetracarboxylic dianhydride of the present invention is a tetracarboxylic dianhydride represented by the above general formula (1), and the total amount of the stereoisomer (contained in the tetracarboxylic dianhydride).
  • the ratio of the total amount of the stereoisomers (A) and (B) is 50 mol% or more with respect to the total amount of the stereoisomers (the total amount of the stereoisomers) Since the content ratio of the stereoisomer (A) is 30 mol% or more with respect to the total amount of all stereoisomers contained in the acid dianhydride), its three-dimensional structure
  • the polyamic acid suitable for the polyimide precursor resin of the present invention (the polyimide precursor resin of the present invention in which X in the general formulas (4) and (5) are both hydrogen atoms) is prepared. can do.
  • R 4 is an arylene group having 6 to 50 carbon atoms, and in the general formulas (4) and (5) described above, It is synonymous with R 4 (the preferred one is also the same).
  • aromatic diamines include aromatic diamines described in paragraph [0211] of International Publication No. 2017/030019, aromatic diamines described in paragraph [0157] of International Publication No. 2014/034760, and the like. It can be used as appropriate. Moreover, you may use a commercially available thing suitably as such aromatic diamine. Such aromatic diamines may be used alone or in combination of two or more in accordance with the design of the target polyimide.
  • the polymerization solvent is preferably an organic solvent capable of dissolving both the tetracarboxylic dianhydride and the aromatic diamine.
  • organic solvent for example, an organic solvent described in paragraph [0213] of International Publication No. 2017-030019) that can be used in the production of polyimide or polyamic acid is appropriately used. Available.
  • a polymerization solvent it is more preferable to use an aprotic polar solvent from the viewpoint of solubility in tetracarboxylic dianhydride and aromatic diamine, and a solvent containing N, N-dimethylacetamide (N, N N-dimethylacetamide alone or in combination with another solvent may be more preferable), and among them, a combination of N, N-dimethylacetamide and ⁇ -butyrolactone is particularly preferable.
  • N, N-dimethylacetamide and ⁇ -butyrolactone are used in combination as the polymerization solvent, the polymerization reaction can proceed more efficiently (the reaction is more likely to proceed). This makes it possible to obtain a polyamic acid varnish having a high degree of polymerization in a shorter time.
  • Such organic solvents may be used singly or in combination of two or more.
  • a base is added to the organic solvent from the viewpoint of improving the reaction rate and obtaining a polyamic acid having a high degree of polymerization.
  • a compound may be further added.
  • Such basic compounds are not particularly limited, and examples thereof include triethylamine, tetrabutylamine, tetrahexylamine, 1,8-diazabicyclo [5.4.0] -undecene-7, pyridine, isoquinoline, ⁇ -picoline and the like. Can be mentioned.
  • the amount of such a basic compound used is preferably 0.001 to 10 equivalents, more preferably 0.01 to 0.1 equivalents per equivalent of the tetracarboxylic dianhydride. .
  • step (Ia) the ratio of the tetracarboxylic dianhydride and the aromatic diamine used, the amount of polymerization solvent (organic solvent) used, and the tetracarboxylic dianhydride and the aromatic diamine are reacted.
  • the conditions employed in the known polyamic acid production method can be appropriately employed as the reaction temperature, reaction time, and the like.
  • the use ratio of the tetracarboxylic dianhydride and the aromatic diamine is such that all acid anhydrides in the tetracarboxylic dianhydride used for the reaction with respect to 1 equivalent of an amino group in the aromatic diamine.
  • the amount of the group is preferably 0.2 to 2 equivalents (more preferably 0.3 to 1.2 equivalents).
  • the amount of the polymerization solvent (organic solvent) used in the step (Ia) is such that the total amount of the tetracarboxylic dianhydride and the aromatic diamine is 0.1 to 50% by mass with respect to the total amount of the reaction solution.
  • the amount is preferably (more preferably 10 to 30% by mass).
  • the reaction temperature for the reaction may be appropriately adjusted to a temperature at which these compounds can be reacted, and is not particularly limited, and is preferably ⁇ 40 to 450 ° C. depending on the case. It is more preferably 20 to 400 ° C., further preferably ⁇ 20 to 200 ° C., and particularly preferably 0 to 100 ° C.
  • the aromatic diamine is used as a solvent under an inert atmosphere such as nitrogen, helium, argon or the like at atmospheric pressure. And then adding the tetracarboxylic dianhydride at the reaction temperature followed by reacting for 10 to 48 hours; reaction under atmospheric pressure, inert atmosphere such as nitrogen, helium, argon, etc.
  • X in the general formulas of the repeating units (A ′) and (B ′) are both hydrogen atoms, and the repeating units (A ′) and (B ′ ) In which the ratio of the total amount is 50 mol% or more with respect to the total amount of all repeating units, and the content ratio of the repeating units (A ′) is 30 mol% or more with respect to the total amount of all repeating units.
  • An acid can be obtained.
  • the polyamic acid obtained in this way is the same as the polyamic acid described as a suitable thing in the polyimide precursor resin of the said invention.
  • the tetracarboxylic dianhydride of the present invention is used.
  • other tetracarboxylic dianhydrides may be used and reacted with the aromatic diamine, or other diamines may be used together with the aromatic diamine, and these may be used as the tetracarboxylic acid dianhydride of the present invention.
  • You may make it react with an anhydride Furthermore, you may manufacture a polyimide using both such other tetracarboxylic dianhydride and other diamine suitably.
  • known ones used for the production of polyimide can be used as appropriate.
  • Step (Ib) is a step of imidizing the polyamic acid to obtain the polyimide of the present invention.
  • Such a method for imidizing polyamic acid is not particularly limited as long as it is a method capable of imidizing polyamic acid, and a known method can be appropriately employed.
  • Examples of the imidization method of the polyamic acid include, for example, a method of imidizing the polyamic acid using a so-called imidizing agent (Ib-1), and a method of imidizing the polyamic acid by performing a heat treatment. (Ib-2) or the like can be adopted.
  • the imidization method (Ib-1) using such an imidizing agent is not particularly limited, and a known method (temperature condition, (Including various conditions such as pressure conditions, atmospheric conditions, types of imidizing agents, amounts of imidizing agents used, and reaction times) can be used as appropriate.
  • a known method for example, International Publication No. 2015-163314, International Publication No. 2014 / 034760, etc. can be employed as appropriate.
  • an additive for example, a reaction accelerator (acid supplementing agent, etc.), an azeotropic dehydrating agent, etc.
  • a known method in combination with an imidizing agent is also used as appropriate.
  • acetic anhydride, propionic anhydride, and trifluoroacetic anhydride are preferable, and acetic anhydride and propionic anhydride are more preferable, and acetic anhydride is preferable from the viewpoints of reactivity, availability, and practicality. Further preferred.
  • the reaction accelerator is preferably triethylamine, diisopropylethylamine, N-methylpiperidine, or pyridine from the viewpoints of reactivity, availability, and practicality. Triethylamine, pyridine, N- Methylpiperidine is more preferable, and triethylamine and N-methylpiperidine are more preferable.
  • the method for imidizing by heat treatment is not particularly limited, and a known method (temperature condition, atmospheric condition, imide) capable of imidizing by heat treatment of polyamic acid is not limited. (Including various conditions such as the type of the agent and the amount of the imidizing agent used) can be used as appropriate. For example, the method described in International Publication No. 2015-163314, International Publication No. 2014/034760, etc. Can be adopted as appropriate.
  • a method (Ib-2) for imidizing by heat treatment it is 60 to 450 ° C. (more preferably 80 to 400 ° C.) with respect to the polyamic acid from the viewpoint of allowing the reaction to proceed efficiently.
  • a method of imidizing by heat treatment under temperature conditions is preferable.
  • the reaction time (heating time) in the case of employing the method of imidizing by performing the heat treatment is preferably 0.5 to 5 hours.
  • reaction accelerator In the case of imidization by performing the heat treatment, a so-called reaction accelerator may be used to promote high molecular weight and imidization.
  • a reaction accelerator such as a tertiary amine
  • reaction accelerators are preferably triethylamine, diisopropylethylamine, N-methylpiperidine, and pyridine from the viewpoint of reactivity, availability, and practicality, more preferably triethylamine, pyridine, and N-methylpiperidine, and triethylamine. N-methylpiperidine is more preferred.
  • Such reaction accelerators may be used alone or in combination of two or more.
  • the amount of the reaction accelerator used is preferably 0.01 to 4.0 moles, more preferably 0.05 to 2.0 moles per mole of repeating units in the polyamic acid. 0.05 to 1.0 mol is more preferable.
  • step (Ia) when a method including such steps (Ia) and (Ib) is used, and a method (Ib-2) in which imidization is performed by performing a heat treatment during imidation, After carrying out the step (Ia), the reaction solution obtained by reacting the tetracarboxylic dianhydride and the aromatic diamine in an organic solvent without isolating the polyamic acid (the polyamic acid) The reaction solution containing the reaction solution is used as it is, and after the solvent is removed by subjecting the reaction solution to evaporation removal (solvent removal treatment), imidization is performed by performing the heat treatment. May be.
  • the mold When the mold is used by the process of evaporating and removing the solvent, it is isolated in a form based on the mold or in the form of a film when applied on the substrate, and then the heat treatment is performed. It is possible to obtain a desired form of polyimide.
  • a film-like polyimide it is a simple method by apply
  • the temperature condition in the method of evaporating and removing the solvent is 0 to 180 ° C. from the viewpoint of efficiently removing the solvent while sufficiently suppressing the generation of bubbles and voids. It is preferably 30 to 150 ° C. In addition, it does not restrict
  • the isolation method is not particularly limited, and a known method capable of isolating the polyamic acid can be appropriately employed. Alternatively, a method of isolating as a reprecipitate may be adopted.
  • the step (Ia) and the step (Ib) may be performed simultaneously as a series of steps.
  • heat treatment is performed from the stage of reacting the tetracarboxylic dianhydride and the aromatic diamine.
  • the heat treatment is performed from the reaction of the tetracarboxylic dianhydride and the aromatic diamine, and the step (Ia) and the step (Ib) are simultaneously performed, in the presence of the polymerization solvent.
  • a reaction accelerator from the step of reacting the tetracarboxylic dianhydride and the aromatic diamine, and in the presence of the polymerization solvent and the reaction accelerator, the tetracarboxylic dianhydride and the aromatic diamine It is preferable to form polyimide by heating and reacting.
  • a polyimide is formed by heating and reacting the tetracarboxylic dianhydride and the aromatic diamine in the presence of the polymerization solvent and the reaction accelerator (by heating with a reaction accelerator).
  • Step (Ia) and step (Ib) are performed simultaneously), and the temperature condition during the heating is preferably 100 to 250 ° C, more preferably 120 to 250 ° C, and more preferably 150 to 220 ° C. More preferably. If the temperature condition is less than the lower limit, the reaction temperature is lower than the boiling point of water, so water does not evaporate, the presence of water hinders the progress of the reaction, and the molecular weight of the polyimide is increased.
  • the reaction accelerator used in the step includes triethylamine, diisopropylethylamine, N-methylpiperidine, pyridine, Collidine, lutidine, 2-hydroxypyridine, 4-dimethylaminopyridine (DMAP), 1,4-diazabicyclo [2.2.2] octane (DABCO), diazabicyclononene (DBN), diazabicycloundecene (DBU)
  • DMAP 1,4-diazabicyclo [2.2.2] octane
  • DBN diazabicyclononene
  • DBU diazabicycloundecene
  • triethylamine, diisopropylethylamine, N-methylpiperidine, and pyridine are preferable, and triethylamine, pyridine, and N-methylpiperidine are more preferable, and triethylamine is preferable.
  • N-methyl Perijin is more preferable.
  • Such reaction accelerators may be used alone or in combination of two or more.
  • the usage-amount of the reaction accelerator is the said tetracarboxylic dianhydride and the said aromatic diamine.
  • the total amount (total amount) of is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 2 parts by mass with respect to 100 parts by mass.
  • the reaction liquid obtained after a heating (reaction containing the said polyimide) (Liquid) is applied onto various substrates to form a coating film, and then the solvent is removed from the coating film and cured by heating to obtain a polyimide film as a film.
  • the heating condition in such a heat curing step is preferably a condition of heating at a temperature of 50 to 450 ° C. (more preferably 50 to 300 ° C.) for 1 to 5 hours. If such heating conditions (temperature and time conditions) are less than the lower limit, the solvent cannot be sufficiently dried, and the heat resistance of the film tends to decrease. There is a tendency that the side reaction such as oxidation proceeds and the transparency is lowered.
  • the ratio of the total amount of the repeating units (A) and (B) is 50 mol% or more with respect to the total amount of all the repeating units, and the content ratio of the repeating unit (A) is all repeating.
  • the polyimide of the present invention having 30 mol% or more based on the total amount of units can be obtained.
  • the polyimide precursor resin of the present invention includes 1) polyamic acid (wherein X in the general formula of each repeating unit is a hydrogen atom), 2) polyamide, depending on the type of substituent of X in the repeating unit formula Acid ester (at least a part of X in the general formula of each repeating unit is an alkyl group), 3) polyamic acid silyl ester (at least a part of X in the general formula of each repeating unit is an alkylsilyl group) be able to. Therefore, methods that can be suitably employed as a method for producing the polyimide precursor resin of the present invention will be described separately for each of the polyimide precursor resin classifications 1) to 3). In addition, the method for manufacturing the polyimide precursor resin of this invention is not limited to the following manufacturing methods.
  • Polyamic acid A method that can be suitably used for producing the polyamic acid will be briefly described below. Although it does not restrict
  • Polyamic acid ester A method that can be suitably used for producing the polyamic acid ester will be described below. That is, first, the tetracarboxylic dianhydride is reacted with an arbitrary alcohol to obtain a diester dicarboxylic acid, and then reacted with a chlorinating reagent (eg, thionyl chloride, oxalyl chloride, etc.) to form a diester dicarboxylic acid chloride (tetra A derivative of the carboxylic acid).
  • a chlorinating reagent eg, thionyl chloride, oxalyl chloride, etc.
  • the monomer component containing the diester dicarboxylic acid chloride thus obtained (the diester dicarboxylic acid chloride derived from the tetracarboxylic dianhydride of the present invention and optionally the tetracarboxylic dianhydride of the present invention).
  • Component) and the aromatic diamine are reacted in the range of ⁇ 20 to 120 ° C. (more preferably ⁇ 5 to 80 ° C.) for 1 to 72 hours.
  • a polyimide precursor resin in which at least a part of X is an alkyl group is obtained. When the reaction is carried out at a temperature of 80 ° C.
  • the polyimide precursor resin which consists of the said polyamic acid ester can also be obtained simply by dehydrating and condensing diester dicarboxylic acid and the said aromatic diamine using a phosphorus-type condensing agent, a carbodiimide condensing agent, etc. Since the polyimide precursor resin comprising a polyamic acid ester obtained by such a method is stable, it can be purified by reprecipitation by adding a solvent such as water or alcohol.
  • the following method can be adopted as a method that can be suitably used for producing the polyamic acid silyl ester. That is, first, the aromatic diamine and a silylating agent are reacted to obtain the silylated aromatic diamine. In addition, you may refine
  • a polyimide precursor resin comprising a polyamic acid silyl ester in which at least part of X in the formula of each repeating unit is an alkylsilyl group can be obtained.
  • the reaction at such a stirring temperature is 80 ° C. or higher, the molecular weight is likely to vary depending on the temperature history at the time of polymerization, and imidization may proceed due to heat, It tends to be difficult to stably produce a polyimide precursor resin.
  • silylating agent which does not contain a chlorine atom it is preferable to use as the silylating agent.
  • a silylating agent that does not contain a chlorine atom in this way, it is not necessary to purify the silylated aromatic diamine, so that the process can be further simplified.
  • silylating agents not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
  • the silylating agent is particularly preferably N, O-bis (trimethylsilyl) acetamide or hexamethyldisilazane because it does not contain a fluorine atom and is low in cost.
  • an amine catalyst such as pyridine, piperidine or triethylamine can be used to accelerate the reaction.
  • an amine catalyst can be used as it is as a polymerization catalyst for the polyimide precursor resin.
  • a method that can be suitably used for producing the polyamic acid described in the column of “1) Polyamic acid” described above was carried out, and obtained after the reaction.
  • the reaction solution is prepared as it is as a polyamic acid solution.
  • a silylating agent is mixed into the obtained polyamic acid solution and stirred for 1 to 72 hours in the range of 0 to 120 ° C. (preferably 5 to 80 ° C.), whereby the polyimide comprising the polyamic acid silyl ester is prepared.
  • a precursor resin can be obtained (direct method). When the reaction is carried out at a temperature of 80 ° C.
  • a silylating agent that can be used in such a direct method a silylated polyamic acid or a silylating agent that does not contain a chlorine atom can be used because it is not necessary to purify the obtained polyimide.
  • silylating agents not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
  • N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are particularly preferable because they do not contain a fluorine atom and are low in cost.
  • any of the methods for producing the polyimide precursor resin of the present invention described above can be carried out in an organic solvent.
  • the polyimide precursor resin solution (varnish of polyimide precursor resin) of the present invention can be easily obtained.
  • the polyimide precursor resin solution of the present invention contains the polyimide precursor resin (preferably polyamic acid) of the present invention and an organic solvent.
  • the polyimide precursor resin solution (preferably polyamic acid solution) of the present invention is a method for producing the above-described polyimide precursor resin of the present invention (for example, when the polyimide precursor resin is polyamic acid, polyamide A method that can be suitably used for producing an acid (a method in which the step (Ia) is performed) is carried out, and a reaction solution obtained after the reaction is used as it is as a polyimide precursor resin solution (for example, a polyimide precursor).
  • the body resin is a polyamic acid, it may be prepared by using a polyamic acid solution.
  • the content of the polyimide precursor resin (preferably polyamic acid) in the polyimide precursor resin solution (preferably polyamic acid solution) is not particularly limited, but is preferably 1 to 80% by mass. More preferably, it is mass%. If such a content is less than the lower limit, the production of the polyimide film tends to be difficult. On the other hand, if the content exceeds the upper limit, the production of the polyimide film tends to be difficult.
  • such a polyimide precursor resin solution preferably a polyamic acid solution
  • such a polyimide precursor resin solution preferably a polyamic acid solution
  • the polyimide precursor resin solution of the present invention has been described above. Next, the polyimide solution of the present invention will be described.
  • the polyimide solution of the present invention contains the polyimide of the present invention and an organic solvent.
  • the same solvents as those described above can be preferably used.
  • the polyimide solution of the present invention can be used after the reaction when the polyimide obtained by carrying out the above-described method for producing the polyimide of the present invention is sufficiently soluble in the polymerization solvent (organic solvent) used during the production.
  • the obtained reaction solution may be used as a polyimide solution as it is (for example, as an organic solvent (polymerization solvent), by using a material that can sufficiently dissolve the obtained polyimide, and by forming the polyimide in the solvent, after the reaction
  • the obtained reaction liquid can be used as a polyimide solution as it is.
  • organic solvent used in the polyimide solution of the present invention the same solvents as those described in the above polymerization solvent can be suitably used.
  • organic solvent used for the polyimide solution of the present invention for example, a halogen-based solvent having a boiling point of 200 ° C.
  • Dichloromethane (boiling point 40 ° C), trichloromethane (boiling point 62 ° C), carbon tetrachloride (boiling point 77 ° C), dichloroethane (boiling point 84 ° C), trichloroethylene (boiling point 87 ° C), tetrachloroethylene (boiling point 121 ° C), tetrachloroethane (boiling point) 147 ° C), chlorobenzene (boiling point 131 ° C), o-dichlorobenzene (boiling point 180 ° C), etc.).
  • N-methyl-2-pyrrolidone, N, N are used from the viewpoint of solubility, film forming property, productivity, industrial availability, existence of existing equipment, and price.
  • -Dimethylformamide, N, N-dimethylacetamide, ⁇ -butyrolactone, propylene carbonate, tetramethylurea, 1,3-dimethyl-2-imidazolidinone, cyclopentanone are preferred
  • N-methyl-2-pyrrolidone, N, N-dimethylacetamide, ⁇ -butyrolactone and tetramethylurea are more preferred
  • N, N-dimethylacetamide and ⁇ -butyrolactone are particularly preferred.
  • such a polyimide solution can be suitably used as a coating solution for producing various processed products.
  • the polyimide solution of the present invention is used as a coating solution, and this is coated on a substrate to obtain a coating film, and then the solvent is removed to obtain a polyimide film. It may be formed.
  • a coating method is not particularly limited, and a known method (spin coating method, bar coating method, dip coating method, etc.) can be appropriately used.
  • the content (dissolution amount) of the polyimide is not particularly limited, but is preferably 1 to 75% by mass, and more preferably 10 to 50% by mass.
  • the content is less than the lower limit, the film thickness after film formation tends to be thin when used for film formation and the like.
  • the content exceeds the upper limit a part tends to be insoluble in the solvent. .
  • such a polyimide solution includes an antioxidant (phenolic, phosphite, thioether, etc.), ultraviolet absorber, hindered amine light stabilizer, nucleating agent, resin additive ( Additives such as fillers, talc, glass fibers, etc.), flame retardants, processability improvers and lubricants may be further added.
  • an antioxidant phenolic, phosphite, thioether, etc.
  • ultraviolet absorber hindered amine light stabilizer
  • nucleating agent resin additive
  • Additives such as fillers, talc, glass fibers, etc.
  • flame retardants such as fillers, talc, glass fibers, etc.
  • processability improvers and lubricants may be further added.
  • limit especially as these additives A well-known thing can be utilized suitably, and a commercially available thing may be utilized.
  • IR measurement and NMR measurement In the IR measurement and the NMR measurement employed in each example and each comparative example, an IR measuring instrument (FT / IR-4100 manufactured by JASCO Corporation) and an NMR measuring instrument (manufactured by VARIAN, trade name) are used as measuring devices, respectively. : UNITY INOVA-600).
  • the value (unit:%) of the total light transmittance of the polyimide is the same as that of the Nippon Denshoku Industries Co., Ltd.
  • the product name “Haze Meter NDH-5000” was used to perform measurement in accordance with JIS K7361-1 (issued in 1997).
  • the 5% weight loss temperature of polyimide was prepared by preparing 2 to 4 mg samples from the polyimides obtained in each Example, etc., and placing them in an aluminum sample pan.
  • a thermogravimetric analyzer (SII Using a trade name “TG / DTA7200” manufactured by Nano Technology Co., Ltd.), setting the scanning temperature from 30 ° C. to 550 ° C. in a nitrogen gas atmosphere, heating at a temperature rising rate of 10 ° C./min, It was determined by measuring the temperature at which the weight of the sample used was reduced by 5%.
  • Example 1 ⁇ Raw compound preparation process>
  • a glass tube was arranged so that gas could be bubbled through the glass tube with respect to the mixed solution existing inside the container. Then, the said container was sealed and internal atmospheric gas was substituted with nitrogen. Thereafter, a vacuum pump was connected to the container, and the inside of the container was depressurized (pressure in the container: 0.015 MPa). Next, while bubbling carbon monoxide into the mixed solution through a glass tube at a rate (flow rate) of 0.015 molar equivalent / minute with respect to the raw material compound, the temperature is adjusted to 25 to 30 ° C. While maintaining the pressure in the container at 0.13 MPa, the mixture was stirred for 5 hours, and then the pressure in the container was further reduced to 0.13 MPa under the condition of temperature: 40 ° C.
  • reaction product is transferred to another container (glass container with a capacity of 2000 mL), and toluene (1200 mL) is added to the reaction product and stirred vigorously at 80 ° C. for 1 hour.
  • toluene (1200 mL) is added to the reaction product and stirred vigorously at 80 ° C. for 1 hour.
  • the reaction product was extracted with toluene to obtain a toluene extract (concentration of reaction product: 8.4% by mass).
  • CuCl and Pd 3 (OAc) 5 (NO 2 ) not dissolved in toluene were separated from the toluene extract by vacuum filtration using a Kiriyama funnel while maintaining the temperature of the toluene extract at 80 ° C. .
  • the toluene extract (filtrate) after separating CuCl and Pd 3 (OAc) 5 (NO 2 ) in this way was subjected to twice with 5% by mass hydrochloric acid (400 ml) at a temperature of 80 ° C. Washed. Subsequently, the toluene extract thus washed with hydrochloric acid was washed once with a saturated aqueous sodium hydrogen carbonate solution (400 ml) under the temperature condition of 80 ° C.
  • the toluene extract obtained after washing is filtered through a filter, and the toluene extract (hereinafter, the toluene extract obtained after the filter filtration is referred to as “toluene extract (A)” in some cases). Obtained.
  • the concentration of the reaction product in the toluene extract (A) was 7.9% by mass.
  • the filtered toluene extract (A) was concentrated by heating to about 110 ° C., which is the boiling point of toluene, at normal pressure (0.1 MPa).
  • the white crystals were separated from the concentrated liquid on which the white crystals were precipitated, and the filtrate was recovered. Further, the white crystals separated by filtration were washed twice with 50 mL of toluene, and the washing solution was collected. Next, after mixing the filtrate and the washing solution, the mixture was concentrated with an evaporator. A brown viscous liquid was obtained by such a concentration step. Subsequently, the obtained viscous liquid was vacuumed (pressure: 0.5 mmHg) under reduced pressure overnight at 80 ° C. to remove (dry) the solvent, thereby removing a brown solid (35.3 g, yield 50). %) Was obtained.
  • HPLC measurement was performed on the obtained product A (product A could not be detected by GC measurement, so it was judged as a low-volatile substance in terms of molecular weight, and not GC measurement. HPLC measurement was performed).
  • a trade name “1200 Series” manufactured by Agilent Technologies, Inc. is used as a measuring device, and a column of trade name “Eclipse XDB-C18 (5 ⁇ m, diameter 4.6 mm, length) manufactured by Agilent Technologies, Inc. is used.
  • the product A (norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6, 6 ′′ -tetracarboxylic acid tetramethyl ester) was confirmed to be a mixture of multiple isomers.
  • the peak at a position of about 3.1 minutes on the horizontal axis is a toluene peak, and the peak at about 1.2 minutes on the horizontal axis is a solvent shock.
  • product A (mixture of plural isomers) has a total amount (content ratio) of trans-exo-endo isomer and cis-exo-endo isomer of all isomers. It was found that the content of the trans-exo-endo isomer was 30 mol% or more with respect to the total amount of all isomers.
  • step (i) After replacing the atmosphere gas in the flask with nitrogen, the reaction solution was heated with stirring using a magnetic stirrer under a nitrogen stream under atmospheric pressure. By such heating, the temperature in the flask was set to 118 ° C., and refluxing was performed for 0.5 hours (refluxing step). After such a reflux step, vapor generated using a Liebig condenser is heated under a heating condition of 118 ° C., and at the same time, acetic acid is added into the flask using a dropping funnel so that the liquid volume in the flask becomes constant. (Hereinafter referred to as “step (i)”).
  • step (i) after starting vapor
  • step (i) the distillate distilled off from the system was analyzed by mass measurement and gas chromatography every hour to confirm the degree of progress of the reaction. Such an analysis confirmed that acetic acid, methyl acetate, and water were present in the distillate.
  • rate (ratio) by which a distillate was removed was about 35 mL per hour.
  • FIG. 4 shows the IR spectrum of the product B thus obtained
  • FIG. 5 shows the 1 H-NMR (CDCl 3 ) spectrum.
  • the result of HPLC measurement is shown in FIG.
  • the obtained product B has the following formula (C):
  • product B is a compound represented by the above formula (C)
  • the total amount of trans-exo-endo isomer and cis-exo-endo isomer is 89.1 mol%
  • a mixture of isomers having a trans-exo-endo isomer content of 60.4 mol% are shown in Table 1.
  • the structures of the six stereoisomers of the compound represented by the above formula (C) are shown below.
  • Example 2 A product C (CpODA) was prepared in the same manner as in Example 1 except that the washing / drying step employed in the tetracarboxylic dianhydride preparation step was changed as follows. That is, in the process for preparing tetracarboxylic dianhydride, the washing / drying step applied to the obtained off-white solid was washed 5 times (sprayed) with ethyl acetate (30 mL) cooled to ⁇ 10 ° C. From the step of drying under reduced pressure at 80 ° C. overnight (15 hours), wash once with 30 ml of acetic acid (20 ° C.) and then wash 5 times with 30 ml of ethyl acetate (20 ° C.).
  • the product C consisting of 25.1 g of an off-white powder was obtained in the same manner as in Example 1 except that the step was performed under reduced pressure drying at 80 ° C. overnight (15 hours).
  • IR measurement and NMR ( 1 H-NMR) measurement were performed.
  • the obtained product C was a compound represented by the formula (C). (CpODA) was confirmed.
  • the obtained product C was measured by gas chromatography in the same manner as in Example 1.
  • the trans-exo-endo isomer content was determined from the area ratio of each peak in the gas chromatogram. 69.4 mol%, the content of cis-exo-endo isomer is 13.7 mol%, and the total amount of cis-exo-exo isomer and trans-exo-exo isomer is 0.2 mol %, And the total amount of trans-endo-endo isomer and cis-endo-endo isomer was confirmed to be 16.7 mol%.
  • the product C is a compound (CpODA) represented by the above formula (C), and the total amount of the trans-exo-endo isomer and the cis-exo-endo isomer is 83.1 mol%. And a mixture of isomers having a trans-exo-endo isomer content of 69.4 mol% (the content ratio (mol%) is the stereoisomerism of CpODA). It is a ratio to the total amount of the body). Comparing the results of such measurements with the results obtained in Example 1, it is possible to change the ratio of the isomers of CpODA depending on the difference in the washing and drying steps after preparing CpODA. I understood that.
  • a raw material compound composed of the compound represented by the above formula (A) was produced by employing the same method as that disclosed in Example 1 of JP-A-2015-137235.
  • the raw material compound is subjected to the same steps as those described in Examples 1 and 2 of International Publication No. 2011/099518, and the compound represented by the above formula (C) (tetracarboxylic dianhydride)
  • a product D was obtained. That is, Examples of International Publication No. 2011/099518 except that the above raw material compound is used as 5-norbornene-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -5 ′′ -norbornene
  • the same process as described in 1 and 2 was employed to obtain product D.
  • the obtained product D was measured by gas chromatography in the same manner as in Example 1. From the area ratio of each peak in the gas chromatogram, the content of the trans-exo-endo isomer was 25.2 mol%, the content of cis-exo-endo isomer is 16.3 mol%, and the total amount of cis-exo-exo isomer and trans-exo-exo isomer is 0.7 mol %, And it was confirmed that the total amount of the trans-endo-endo isomer and the cis-endo-endo isomer was 57.8 mol% (note that the proportion (mol%) of the content is CpODA (The ratio to the total amount of stereoisomers.) Thus, product D was an isomer mixture of CpODA. The obtained results are shown in Table 1.
  • Example 2 A raw material compound composed of the compound represented by the above formula (A) was produced by employing the same method as that disclosed in Example 1 of JP-A-2015-137235. The raw material compound is subjected to a process similar to the process described in the monomer synthesis process described in Synthesis Example 2 and Example 1 of International Publication No. 2014/034760, and is represented by the above formula (C). Product E (tetracarboxylic dianhydride) was obtained. That is, Synthesis Example 2 of International Publication No. 2014/034760 except that the above raw material compound was used as 5-norbornene-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -5 ′′ -norbornene. And the process similar to the process described in the monomer synthesis process of Example 1 was employ
  • the obtained product E was measured by gas chromatography in the same manner as in Example 1. From the area ratio of each peak in the gas chromatogram, the content of the trans-exo-endo isomer was 1.4 mol%, the content of cis-exo-endo isomer is 1.0 mol%, and the total amount of cis-exo-exo isomer and trans-exo-exo isomer is 0.3 mol %, And the total amount of the trans-endo-endo isomer and the cis-endo-endo isomer was confirmed to be 97.3 mol% (note that the proportion (mol%) of the content is CpODA (The ratio to the total amount of stereoisomers.) Thus, Product E was an isomer mixture of CpODA. The obtained results are shown in Table 1.
  • Example 3 First, in a 100 mL three-necked flask equipped with a stirrer and a reflux condenser (Dimroth) in a nitrogen atmosphere, 2,2′-dimethylbiphenyl-4,4′-diamine (m-tol: methoridine) as an aromatic diamine was introduced into the three-neck flask by introducing 3.8438 g (10 mmol) of product B (isomer mixture of CpODA obtained in Example 1) as tetracarboxylic dianhydride. An aromatic diamine and the tetracarboxylic dianhydride were introduced therein.
  • 2,2′-dimethylbiphenyl-4,4′-diamine m-tol: methoridine
  • the mixed liquid thus obtained was stirred for 3 hours under a nitrogen atmosphere at a temperature of 180 ° C. for 3 hours to obtain a viscous uniform light yellow reaction liquid (polyimide solution).
  • a polyimide derived from the aromatic diamine (m-tol) and the tetracarboxylic dianhydride (the product B) was prepared by a heating step to obtain a reaction solution (polyimide solution).
  • the reaction between the aromatic diamine and the tetracarboxylic dianhydride proceeds to form a polyamic acid, and then the imidization proceeds to form a polyimide.
  • the intrinsic viscosity [ ⁇ ] of the polyimide was measured using the polyimide solution thus obtained, the intrinsic viscosity [ ⁇ ] of the polyimide was 0.43 dL / g.
  • the reaction solution was spin-coated on a glass plate (length: 75 mm, width 50 mm, thickness 1.3 mm) to form a coating film on the glass plate.
  • the glass substrate on which the coating film was formed was placed on a hot plate at 60 ° C. and allowed to stand for 2 hours, and the solvent was removed from the coating film by evaporation.
  • the glass substrate on which the coating film has been formed is put into an inert oven in which nitrogen is flowing at a flow rate of 3 L / min. After standing for 0.5 hour, heated at 135 ° C. for 0.5 hour, further heated at 300 ° C.
  • the film thickness of the polyimide film thus obtained was 13 ⁇ m.
  • a part of the reaction solution (polyamic acid solution) was used to prepare a dimethylacetamide solution having a polyamic acid concentration of 0.5 g / dL, and the intrinsic viscosity [ ⁇ ] of the polyamic acid as a reaction intermediate was prepared.
  • the intrinsic viscosity [ ⁇ ] of the polyamic acid was 0.45 dL / g.
  • the reaction solution was spin-coated on a glass plate (length: 75 mm, width 50 mm, thickness 1.3 mm) to form a coating film on the glass plate.
  • the glass substrate on which the coating film was formed was placed on a hot plate at 60 ° C. and allowed to stand for 2 hours, and the solvent (dimethylacetamide) was removed by evaporation from the coating film.
  • the glass substrate on which the coating film has been formed is put into an inert oven in which nitrogen is flowing at a flow rate of 3 L / min. After standing for 0.5 hour, heated at 135 ° C. for 0.5 hour, further heated at 300 ° C.
  • Example 4 The same procedure as in Example 3 was conducted except that 3.2024 g (10 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) was used instead of 2.1230 g (10 mmol) of m-tol as the aromatic diamine.
  • a colorless transparent film (polyimide film) made of polyimide was obtained.
  • the film thickness of the polyimide film thus obtained was 13 ⁇ m, and the intrinsic viscosity [ ⁇ ] of the polyimide was 0.32 dL / g.
  • the IR spectrum was measured in the same manner as in Example 3. As a result, the C ⁇ O stretching vibration of imide carbonyl was observed at 1707 cm ⁇ 1 , confirming that the compound constituting the obtained film was polyimide.
  • such a polyimide has a repeating unit represented by the above general formulas (6) and (7) based on the type of tetracarboxylic dianhydride (product B) used, with 89. It is clear that the polyimide contains 1 mol% and 60.4 mol% of the repeating unit represented by the general formula (6) with respect to all repeating units. Table 3 shows the evaluation results of the properties of the polyimide thus obtained.
  • Example 5 Instead of using 2.1230 g (10 mmol) of m-tol as an aromatic diamine, 3.2024 g (10 mmol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) was used and the product was obtained as tetracarboxylic dianhydride.
  • a colorless transparent film (polyimide film) made of polyimide was obtained in the same manner as in Example 3 except that 3.8438 g (10 mmol) of C (isomer mixture of CpODA obtained in Example 2) was used.
  • the film thickness of the polyimide film obtained in this way was 13 micrometers, and the intrinsic viscosity [(eta)] of the polyamic acid obtained at the time of manufacture was 0.40 dL / g.
  • the C ⁇ O stretching vibration of imide carbonyl was observed at 1707 cm ⁇ 1 , so the film was certainly a polyimide film. It was confirmed.
  • such a polyimide has a repeating unit represented by the above general formulas (6) and (7) based on the type of tetracarboxylic dianhydride (product C) used.
  • the film thickness of the polyimide film obtained in this way was 13 micrometers, and the intrinsic viscosity [(eta)] of the polyamic acid obtained at the time of manufacture was 0.37 dL / g.
  • such polyimide has a repeating unit represented by the above general formulas (6) and (7) based on the type of the tetracarboxylic dianhydride (product D) used. It is apparent that the polyimide contains 5 mol% and 25.2 mol% of the repeating unit represented by the general formula (6) with respect to all repeating units. Table 3 shows the evaluation results of the properties of the polyimide thus obtained.
  • Example 6 As in Example 3, except that 2.1230 g (10 mmol) of m-tol was used as an aromatic diamine, 2.9234 g (10 mmol) of 1,3-bis (4-aminophenoxy) benzene (TPE-R) was used instead of 2.1230 g (10 mmol).
  • TPE-R 1,3-bis (4-aminophenoxy) benzene
  • a colorless transparent film (polyimide film) made of polyimide was obtained. The film thickness of the polyimide film thus obtained was 13 ⁇ m, and the intrinsic viscosity [ ⁇ ] of the polyimide was 0.43 dL / g.
  • the IR spectrum was measured in the same manner as in Example 3.
  • the film thickness of the polyimide film thus obtained was 13 ⁇ m, and the intrinsic viscosity [ ⁇ ] of the polyamic acid obtained at the time of production was 0.50 dL / g.
  • such polyimide has a repeating unit represented by the above general formulas (6) and (7) based on the type of the tetracarboxylic dianhydride (product D) used. It is apparent that the polyimide contains 5 mol% and 25.2 mol% of the repeating unit represented by the general formula (6) with respect to all repeating units.
  • the evaluation results of the properties of the polyimide thus obtained are shown in Table 4.
  • Example 7 Example 3 except that 2.9234 g (10 mmol) of 1,3-bis (3-aminophenoxy) benzene (APB-N) was used instead of 2.1230 g (10 mmol) of m-tol as an aromatic diamine A colorless transparent film (polyimide film) made of polyimide was obtained.
  • the film thickness of the polyimide film thus obtained was 13 ⁇ m, and the intrinsic viscosity [ ⁇ ] of the polyimide was 0.27 dL / g.
  • the film thickness of the polyimide film obtained in this way was 13 micrometers, and the intrinsic viscosity [(eta)] of the polyamic acid obtained at the time of manufacture was 0.34 dL / g.
  • such polyimide has a repeating unit represented by the above general formulas (6) and (7) based on the type of the tetracarboxylic dianhydride (product D) used. It is apparent that the polyimide contains 5 mol% and 25.2 mol% of the repeating unit represented by the general formula (6) with respect to all repeating units. The evaluation results of the properties of the polyimide thus obtained are shown in Table 5.
  • Example 8 A colorless and transparent polyimide comprising the same procedure as in Example 3 except that 2.0024 g (10 mmol) of 4,4′-diaminodiphenyl ether (DDE) was used instead of 2.1230 g (10 mmol) of m-tol as an aromatic diamine. A film (polyimide film) was obtained. The film thickness of the polyimide film thus obtained was 13 ⁇ m, and the intrinsic viscosity [ ⁇ ] of the polyimide was 0.42 dL / g. The IR spectrum was measured in the same manner as in Example 3.
  • DDE 4,4′-diaminodiphenyl ether
  • Example 9 First, a 30 ml three-necked flask was heated with a heat gun and sufficiently dried. Next, the atmosphere gas in the three-necked flask that was sufficiently dried was replaced with nitrogen, and the inside of the three-necked flask was changed to a nitrogen atmosphere. Next, after 2.0024 g (10 mmol) of DDE was added to the three-necked flask, 23.385 g of N, N-dimethylacetamide was further added and stirred, whereby the N, N-dimethylacetamide was added to the N, N-dimethylacetamide. Aromatic diamine (DDE) was dissolved to obtain a solution.
  • DDE Aromatic diamine
  • Such a polyamic acid is a repeating unit represented by the above general formulas (4) and (5) in which X is a hydrogen atom from the type of tetracarboxylic dianhydride (product B) used. Is apparently a polyamic acid containing 89.1 mol% of all repeating units and 60.4 mol% of the repeating units represented by the general formula (4) with respect to all repeating units. It is.
  • the reaction solution was spin-coated on a glass plate (length: 75 mm, width 50 mm, thickness 1.3 mm) to form a coating film on the glass plate.
  • the glass substrate on which the coating film was formed was placed on a hot plate at 60 ° C. and allowed to stand for 2 hours, and the solvent (dimethylacetamide) was removed by evaporation from the coating film.
  • the glass substrate on which the coating film has been formed is put into an inert oven in which nitrogen is flowing at a flow rate of 3 L / min. After standing for 0.5 hour, heated at 135 ° C. for 0.5 hour, further heated at 300 ° C.
  • the film thickness of the polyimide film thus obtained was 13 ⁇ m.
  • the film thickness of the polyimide film obtained in this way was 13 micrometers, and the intrinsic viscosity [(eta)] of the polyamic acid obtained at the time of manufacture was 0.72 dL / g.
  • such polyimide has a repeating unit represented by the above general formulas (6) and (7) based on the type of the tetracarboxylic dianhydride (product D) used. It is apparent that the polyimide contains 5 mol% and 25.2 mol% of the repeating unit represented by the general formula (6) with respect to all repeating units. The evaluation results of the properties of the polyimide thus obtained are shown in Table 6.
  • Example 10 Example 3 was repeated except that 4.3230 g (10 mmol) of bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS) was used instead of 2.1230 g (10 mmol) of m-tol as an aromatic diamine.
  • BAPS bis [4- (4-aminophenoxy) phenyl] sulfone
  • a colorless transparent film (polyimide film) made of polyimide was obtained.
  • the film thickness of the polyimide film thus obtained was 13 ⁇ m, and the intrinsic viscosity [ ⁇ ] of the polyimide was 0.47 dL / g.
  • the IR spectrum was measured in the same manner as in Example 3.
  • the film thickness of the polyimide film thus obtained was 13 ⁇ m, and the intrinsic viscosity [ ⁇ ] of the polyamic acid obtained during production was 0.75 dL / g.
  • such polyimide has a repeating unit represented by the above general formulas (6) and (7) based on the type of the tetracarboxylic dianhydride (product D) used. It is apparent that the polyimide contains 5 mol% and 25.2 mol% of the repeating unit represented by the general formula (6) with respect to all repeating units. Table 7 shows the evaluation results of the properties of the polyimide thus obtained.
  • Example 11 Example 3 was used except that 4.3230 g (10 mmol) of bis [4- (3-aminophenoxy) phenyl] sulfone (BAPS-M) was used instead of 2.1230 g (10 mmol) of m-tol as an aromatic diamine. Similarly, a colorless transparent film (polyimide film) made of polyimide was obtained. The film thickness of the polyimide film thus obtained was 13 ⁇ m, and the intrinsic viscosity [ ⁇ ] of polyimide was 0.28 dL / g. The IR spectrum was measured in the same manner as in Example 3.
  • BAPS-M bis [4- (3-aminophenoxy) phenyl] sulfone
  • the film thickness of the polyimide film obtained in this way was 13 micrometers, and the intrinsic viscosity [(eta)] of the polyamic acid obtained at the time of manufacture was 0.22 dL / g.
  • such polyimide has a repeating unit represented by the above general formulas (6) and (7) based on the type of the tetracarboxylic dianhydride (product D) used. It is apparent that the polyimide contains 5 mol% and 25.2 mol% of the repeating unit represented by the general formula (6) with respect to all repeating units. The evaluation results of the properties of the polyimide thus obtained are shown in Table 8.
  • Example 12 Example 2 except that 2.1230 g (10 mmol) of m-tol was used as an aromatic diamine, and 4.1052 g (10 mmol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) was used instead of 2.1230 g (10 mmol).
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • the film thickness of the polyimide film obtained in this way was 13 micrometers, and the intrinsic viscosity [(eta)] of the polyamic acid obtained at the time of manufacture was 0.71 dL / g.
  • such polyimide has a repeating unit represented by the above general formulas (6) and (7) based on the type of the tetracarboxylic dianhydride (product D) used. It is apparent that the polyimide contains 5 mol% and 25.2 mol% of the repeating unit represented by the general formula (6) with respect to all repeating units. Table 9 shows the evaluation results of the properties of the polyimide thus obtained.
  • the film thickness of the polyimide film thus obtained was 13 ⁇ m, and the intrinsic viscosity [ ⁇ ] of the polyamic acid obtained during production was 0.51 dL / g.
  • a polyimide has a repeating unit represented by the above general formulas (6) and (7) based on the type of tetracarboxylic dianhydride (product E) used. It is clear that the polyimide contains 4 mol% and 1.4 mol% of the repeating unit represented by the general formula (6) with respect to all repeating units. Table 9 shows the evaluation results of the properties of the polyimide thus obtained.
  • Example 13 Example 3 was repeated except that 3.4845 g (10 mmol) of 9,9-bis (4-aminophenyl) fluorene (FDA) was used instead of 2.1230 g (10 mmol) of m-tol as an aromatic diamine.
  • a colorless transparent film (polyimide film) made of polyimide was obtained.
  • the film thickness of the polyimide film thus obtained was 13 ⁇ m, and the intrinsic viscosity [ ⁇ ] of the polyimide was 0.31 dL / g.
  • the IR spectrum was measured in the same manner as in Example 3. As a result, the C ⁇ O stretching vibration of imide carbonyl was observed at 1705 cm ⁇ 1 , confirming that the compound constituting the obtained film was polyimide.
  • such a polyimide has a repeating unit represented by the above general formulas (6) and (7) based on the type of tetracarboxylic dianhydride (product B) used, with 89. It is clear that the polyimide contains 1 mol% and 60.4 mol% of the repeating unit represented by the general formula (6) with respect to all repeating units. Table 10 shows the evaluation results of the properties of the polyimide thus obtained.
  • the resulting polyimide has higher solubility, and uses tetracarboxylic dianhydride that satisfies the above conditions. Thus, it was found that the solubility of the finally obtained polyimide can be further improved.
  • polyimides using the tetracarboxylic dianhydrides (Examples 1 and 2) of the present invention are obtained from the values of total light transmittance and Td 5%. It was also confirmed that the resulting polyimide (the polyimide of the present invention) has a sufficiently high level of transparency and heat resistance.
  • a tetracarboxylic acid that can be suitably used for producing a polyimide having higher solubility while having a sufficiently high level of heat resistance and transparency. It is possible to provide dianhydrides.
  • a polyimide that can have higher solubility while having a sufficiently high level of heat resistance and transparency, and a polyimide solution containing the polyimide. It becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

下記一般式(1):[式(1)中、R1、R2、R3はそれぞれ独立に水素原子等を示し、nは0~12の整数を示す。] で表されるテトラカルボン酸二無水物であり、前記一般式(1)中の2つのノルボルナン環の立体配置に基づく立体異性体の総量に対して、特定の立体異性体(A)及び特定の立体異性体(B)の合計量の割合が50モル%以上であり、かつ、前記立体異性体の総量に対して、前記立体異性体(A)の含有割合が30モル%以上である、テトラカルボン酸二無水物。

Description

テトラカルボン酸二無水物、ポリイミド前駆体樹脂及びその溶液、並びに、ポリイミド及びその溶液
 本発明は、テトラカルボン酸二無水物、ポリイミド前駆体樹脂及びその溶液、並びに、ポリイミド及びその溶液に関する。
 従来より高度な耐熱性を有しかつ軽くて柔軟な素材としてポリイミドが着目されている。このようなポリイミドの分野においては、近年では、耐熱性とともにガラス代替用途等に使用可能な十分な光透過性を有し、かつ、溶媒への溶解性を有するポリイミドが求められており、様々なポリイミドが開発されてきた。例えば、国際公開第2011/099518号(特許文献1)においては、特定の一般式で記載される繰り返し単位を有するポリイミドが開示されている。このようなポリイミドは十分な耐熱性、光透過性及び溶解性を有するものであった。そして、上記特許文献1に記載のポリイミドよりも更に高度な耐熱性を有するポリイミドとして、国際公開第2014/034760号(特許文献2)においては、特定の一般式で記載される繰り返し単位を有するポリイミドも開示されている。このように、特許文献1及び2に記載のポリイミドは十分な耐熱性及び光透過性とともに、溶媒に対する溶解性を有するものではあるが、ポリイミドの分野においては、加工性の更なる向上といった観点から、耐熱性や透明性を特許文献1や2に記載のポリイミドと同等程度に維持しつつ、より溶解性が高いポリイミドの出現が求められるようになってきた。
国際公開第2011/099518号 国際公開第2014/034760号
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するポリイミドを製造するために好適に利用することが可能なテトラカルボン酸二無水物を提供することを目的とする。また、本発明は、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するものとすることが可能なポリイミド及びそのポリイミドを含有するポリイミド溶液を提供することを目的とする。さらに、本発明は、前記ポリイミドを製造するために好適に利用することが可能なポリイミド前駆体樹脂、及び、そのポリイミド前駆体樹脂を含有するポリイミド前駆体樹脂溶液を提供することを目的とする。
 本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、下記一般式(1)で表されるテトラカルボン酸二無水物(ノルボルナン環の立体配置が異なる6種の立体異性体を含み得る)を、その立体異性体(ノルボルナン環の立体配置に基づく立体異性体)の総量に対して下記立体異性体(A)及び(B)の合計量の割合が50モル%以上となるようにし、かつ、その立体異性体の総量に対して下記立体異性体(A)の含有割合を30モル%以上となるようにすることにより、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するポリイミドを製造するために好適に利用することが可能なものとなることを見出し、本発明を完成するに至った。
 すなわち、本発明のテトラカルボン酸二無水物は、下記一般式(1):
Figure JPOXMLDOC01-appb-C000008
[式(1)中、R、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示す。]
で表されるテトラカルボン酸二無水物であり、
 前記一般式(1)中の2つのノルボルナン環の立体配置に基づく立体異性体の総量に対して、下記一般式(2):
Figure JPOXMLDOC01-appb-C000009
[式(2)中のR、R、R及びnはそれぞれ前記一般式(1)中のR、R、R及びnと同義である。]
で表される立体異性体(A)及び下記一般式(3):
Figure JPOXMLDOC01-appb-C000010
[式(3)中のR、R、R及びnはそれぞれ前記一般式(1)中のR、R、R及びnと同義である。]
で表される立体異性体(B)の合計量の割合が50モル%以上であり、かつ、前記立体異性体の総量に対して、前記立体異性体(A)の含有割合が30モル%以上であるものである。
 また、本発明のポリイミド前駆体樹脂は、下記一般式(4):
Figure JPOXMLDOC01-appb-C000011
[式(4)中、R、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示し、Rは炭素数6~50のアリーレン基を示し、Xはそれぞれ独立に水素原子、炭素数1~6のアルキル基及び炭素数3~9のアルキルシリル基よりなる群から選択される1種を示す。]
で表される繰り返し単位(A’)及び下記一般式(5):
Figure JPOXMLDOC01-appb-C000012
[式(5)中のR、R、R、R、n及びXはそれぞれ前記一般式(4)中のR、R、R、R、n及びXと同義である。]
で表される繰り返し単位(B’)の合計量の割合が全繰り返し単位の総量に対して50モル%以上であり、かつ、前記繰り返し単位(A’)の含有割合が全繰り返し単位の総量に対して30モル%以上であるものである。
 また、本発明のポリイミドは、下記一般式(6):
Figure JPOXMLDOC01-appb-C000013
[式(6)中、R、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示し、Rは炭素数6~50のアリーレン基を示す。]
で表される繰り返し単位(A)及び下記一般式(7):
Figure JPOXMLDOC01-appb-C000014
[式(7)中のR、R、R、R及びnはそれぞれ前記一般式(6)中のR、R、R、R及びnと同義である。]
で表される繰り返し単位(B)の合計量の割合が全繰り返し単位の総量に対して50モル%以上であり、かつ、前記繰り返し単位(A)の含有割合が全繰り返し単位の総量に対して30モル%以上であるものである。
 さらに、本発明のポリイミド溶液は、上記本発明のポリイミドと有機溶媒とを含有するものである。また、本発明のポリイミド前駆体樹脂溶液は、上記本発明のポリイミド前駆体樹脂と有機溶媒とを含有するものである。このようなポリイミド溶液やポリイミド前駆体樹脂溶液(例えばポリアミド酸溶液)などの樹脂溶液(ワニス)によれば、各種形態のポリイミドを効率よく製造することが可能である。なお、このようなポリイミド溶液やポリイミド前駆体樹脂溶液は、それらを混合した混合液の形態の樹脂溶液として、ポリイミドの調製に好適に利用することもできる。
 本発明によれば、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するポリイミドを製造するために好適に利用することが可能なテトラカルボン酸二無水物を提供することが可能となる。また、本発明によれば、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するものとすることが可能なポリイミド及びそのポリイミドを含有するポリイミド溶液を提供することが可能となる。さらに、本発明によれば、前記ポリイミドを製造するために好適に利用することが可能なポリイミド前駆体樹脂、及び、そのポリイミド前駆体樹脂を含有するポリイミド前駆体樹脂溶液を提供することが可能となる。
実施例1で得られたテトラカルボン酸テトラメチルエステル(中間体)のIRスペクトルを示すグラフである。 実施例1で得られたテトラカルボン酸テトラメチルエステル(中間体)のH-NMR(CDCl)スペクトルを示すグラフである。 実施例1で得られたテトラカルボン酸テトラメチルエステル(中間体)のHPLC測定により求められたクロマトグラムである。 実施例1で得られたテトラカルボン酸二無水物のIRスペクトルを示すグラフである。 実施例1で得られたテトラカルボン酸二無水物のH-NMR(CDCl)スペクトルを示すグラフである。 実施例1で得られたテトラカルボン酸二無水物のHPLC測定により求められたクロマトグラムである。 実施例1で得られたテトラカルボン酸二無水物のガスクロマトグラフィー測定(GC分析)により求められたクロマトグラムである。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 [テトラカルボン酸二無水物]
 本発明のテトラカルボン酸二無水物は、上記一般式(1)で表されるテトラカルボン酸二無水物であり、前記一般式(1)中の2つのノルボルナン環の立体配置に基づく立体異性体の総量に対して、上記一般式(2)で表される立体異性体(A)及び上記一般式(3)で表される立体異性体(B)の合計量の割合が50モル%以上であり、かつ、前記立体異性体の総量に対して、前記立体異性体(A)の含有割合が30モル%以上であるものである。
 このような一般式(1)中のR、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種であり、nは0~12の整数である。なお、上記一般式(2)及び(3)中のR、R、R及びnはそれぞれ前記一般式(1)中のR、R、R及びnと同義である。
 このような式中のR、R、Rとして選択され得るアルキル基は、炭素数が1~10のアルキル基である。このような炭素数が10を超えるとガラス転移温度が低下し十分に高度な耐熱性が達成できなくなる。また、このようなR、R、Rとして選択され得るアルキル基の炭素数としては、精製がより容易となるという観点から、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましく、1~3であることが特に好ましい。また、このようなR、R、Rとして選択され得るアルキル基は直鎖状であっても分岐鎖状であってもよい。更に、このようなアルキル基としては精製の容易さの観点から、メチル基、エチル基がより好ましい。
 このような式中のR、R、Rとしては、ポリイミドを製造した際に、より高度な耐熱性が得られるという観点から、それぞれ独立に、水素原子又は炭素数1~10のアルキル基であることがより好ましく、中でも、原料の入手が容易であることや精製がより容易であるという観点から、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であることがより好ましく、水素原子又はメチル基であることが特に好ましい。また、このような式中の複数のR、R、Rは精製の容易さ等の観点から、同一のものであることが特に好ましい。
 また、このような式中のnは0~12の整数を示す。このようなnの値が前記上限を超えると、精製が困難になる。また、このような一般式(1)中のnの数値範囲の上限値は、より精製が容易となるといった観点から、5であることがより好ましく、3であることが特に好ましい。また、このような一般式(1)中のnの数値範囲の下限値は、原料化合物の安定性の観点から、1であることがより好ましく、2であることが特に好ましい。このように、一般式(1)中のnとしては、2~3の整数であることが特に好ましい。
 また、このような一般式(1)で表されるテトラカルボン酸二無水物は、該一般式(1)中の2つのノルボルナン環の立体配置に基づく6種の立体異性体を含有し得る。ここにいう6種の立体異性体は、上記一般式(2)で表される立体異性体(A)(トランス-エキソ-エンド異性体(trans-exo-endo異性体));上記一般式(3)で表される立体異性体(B)(シス-エキソ-エンド異性体(cis-exo-endo異性体));及び下記一般式(I)~(IV):
Figure JPOXMLDOC01-appb-C000015
[各式中のR、R、R及びnはそれぞれ前記一般式(1)中のR、R、R及びnと同義である。]
で表される4種の異性体(トランス-エキソ-エキソ異性体(trans-exo-exo異性体:上記一般式(I)で表される立体異性体(C))、トランス-エンド-エンド異性体(trans-endo-endo異性体:上記一般式(II)で表される立体異性体(D))、シス-エキソ-エキソ異性体(cis-exo-exo異性体:上記一般式(III)で表される立体異性体(E))、シス-エンド-エンド異性体(cis-endo-endo異性体:上記一般式(IV)で表される立体異性体(F)));である。
 本発明のテトラカルボン酸二無水物としては、前記立体異性体の総量(そのテトラカルボン酸二無水物に含有されている全ての立体異性体の合計量)に対して、上記一般式(2)で表される立体異性体(A)及び下記一般式(3)で表される立体異性体(B)の合計量の割合(モル基準の割合)が50モル%以上である必要がある。このような立体異性体(A)及び(B)の合計量の割合が前記下限未満では、そのテトラカルボン酸二無水物をポリイミドの原料(モノマー)として利用した場合に、得られるポリイミドの溶媒への溶解性が低下する。また、このような立体異性体(A)及び(B)の合計量の割合としては、50~100モル%であることがより好ましく、60~98モル%であることが更に好ましく、70~95モル%であることが特に好ましく、80~90モル%であることが最も好ましい。立体異性体(A)及び(B)の合計量の割合が前記範囲内にある場合には、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するものとなる傾向にある。
 本発明のテトラカルボン酸二無水物においては、前記立体異性体の総量(そのテトラカルボン酸二無水物に含有されている全ての立体異性体の合計量)に対して、上記一般式(2)で表される立体異性体(A)の含有割合(トランス-エキソ-エンド異性体のモル基準の含有割合)が30モル%以上である必要がある。このような立体異性体(A)の含有割合が前記下限未満では、そのテトラカルボン酸二無水物をポリイミドの原料(モノマー)として利用した場合に、得られるポリイミドの溶媒への溶解性が低下する。また、このような立体異性体(A)の含有割合としては、30~99モル%であることがより好ましく、40~90モル%であることが更に好ましく、50~85モル%であることが特に好ましく、60~80モル%であることが最も好ましい。立体異性体(A)の含有割合が前記範囲内にある場合には、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するものとなる傾向にある。
 本発明のテトラカルボン酸二無水物においては、前記立体異性体の総量(そのテトラカルボン酸二無水物に含有されている全ての立体異性体の合計量)に対して、上記一般式(3)で表される立体異性体(B)の含有割合(シス-エキソ-エンド異性体のモル基準の含有割合)が1~70モル%であることがより好ましく、10~60モル%であることが更に好ましく、10~50モル%であることが特に好ましく、10~40モル%であることが最も好ましい。前記立体異性体(B)の含有割合が前記範囲内にある場合には、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するものとなる傾向にある。
 また、本発明のテトラカルボン酸二無水物においては、前記立体異性体の総量(そのテトラカルボン酸二無水物に含有されている全ての立体異性体の合計量)に対して、上記一般式(II)で表される立体異性体(D)及び上記一般式(IV)で表される立体異性体(F)の合計量の割合(モル基準の割合)が50モル%以下であることが好ましく、0~40モル%であることがより好ましく、0~30モル%であることが更に好ましく、0~20モル%であることが特に好ましい。このような立体異性体(D)及び(F)の合計量の割合が前記上限を超えると得られるポリイミドの溶媒への溶解性が低下する傾向にある。
 さらに、本発明のテトラカルボン酸二無水物においては、前記立体異性体の総量(そのテトラカルボン酸二無水物に含有されている全ての立体異性体の合計量)に対して、上記一般式(I)で表される立体異性体(C)及び上記一般式(III)で表される立体異性体(E)の合計量の割合(モル基準の割合)が10モル%以下であることが好ましく、0~5モル%であることがより好ましく、0~3モル%であることが更に好ましく、0~1.5モル%であることが特に好ましく、0~1モル%であることが最も好ましい。このような立体異性体(C)及び(E)の合計量の割合が前記上限を超えると耐熱性が低下する傾向にある。
 なお、前記テトラカルボン酸二無水物中の各異性体の含有割合としては、以下のようにして求められる値(ガスクロマトグラフィー測定(GC測定およびGC-MS測定)により求められる値)を採用することができる。すなわち、先ず、測定試料として分析対象となるテトラカルボン酸二無水物を0.1質量%の割合で含有するジメチルアセトアミド溶液(DMAc溶液)を少なくとも1μL準備し、測定装置としてガスクロマトグラフ質量分析装置(Agilent社製の商品名「7890A」)を用い、移動相の気体(キャリーガス)としてヘリウムを用い、固定相(カラム)としてRESTEX Rtx-5 Amine(30m)を用いて、MS検出器としてAgilent社製の商品名「5975C VL MSD」を用い、インジェクターとしてAgilent社製G4513Aを用い、測定試料である前記DMAc溶液の1μLを前記インジェクターで注入し、前記キャリーガスであるヘリウムの流量を10mL/分(constant)とし、温度条件は50℃(初期温度)で1分間保持した後に昇温速度を10℃/分として50℃~300℃まで昇温し、300℃で25分間保持する条件として、GC測定およびGC-MS測定することにより、前記測定試料のクロマトグラム(分離像)を求めた後、該クロマトグラム中の各ピークの面積をそれぞれ求めて、面積の合計(総面積)に占める各ピークの面積の比率に基づいて、各ピークに由来する異性体の含有割合を算出して、前述の異性体の含有割合をそれぞれ求めることができる。このようにして、クロマトグラム中の各ピークの面積比を、そのピークに由来する異性体の含有割合として求めることができる(面積百分率法)。なお、前記クロマトグラムにおいて、各異性体に基づくピークの面積比は上記測定装置により直接求めることができる。
 なお、このようにして求められるクロマトグラムに関して、前記テトラカルボン酸二無水物がノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物である場合、その6種の立体異性体のピークは、基本的に、保持時間31分~34分程度の間に現れ、保持時間31.4分付近(31.3分~31.6分)のピークはトランス-エキソ-エキソ異性体及びシス-エキソ-エキソ異性体に由来するピークであり、保持時間31.8分付近(31.7分~31.9分)のピークはシス-エキソ-エンド異性体(前記立体異性体(B))に由来するピークであり、保持時間32.4分付近(32.1分~32.6分)のピークはトランス-エキソ-エンド異性体(前記立体異性体(A))に由来するピークであり、保持時間33.0分付近(32.7~33.3分)のピークはトランス-エンド-エンド異性体及びシス-エンド-エンド異性体に由来するピークである。なお、カラムのロットなどにより若干のずれはあるものの、概ね上記保持時間の位置にピークが出現する。
 このような本発明のテトラカルボン酸二無水物は、ポリイミドを製造するためのモノマーとして好適に利用することが可能である(特に、後述の本発明のポリイミドを製造するためのモノマー(テトラカルボン酸二無水物)として好適である)。また、本発明のテトラカルボン酸二無水物をポリイミドを製造するためのモノマーとして用いる場合には、他のテトラカルボン酸二無水物と混合して利用してもよい。このような他のテトラカルボン酸二無水物としては、ポリイミドの製造に利用することが可能な公知のテトラカルボン酸二無水物(例えば、国際公開第2014/034760号の段落[0171]に列挙されている化合物(脂肪族または脂環式テトラカルボン酸二無水物や芳香族テトラカルボン酸二無水物)等)を適宜利用することができる。
 このような本発明のテトラカルボン酸二無水物を製造するための好適な方法は特に制限されないが、例えば、以下に記載の方法(第一のエステル化合物の形成工程、第二のエステル化合物の製造工程、及び、テトラカルボン酸二無水物の製造工程を含む方法:以下、便宜上、単に「製造方法(A)」と称する)を採用することができる。すなわち、このような製造方法(A)においては、先ず、下記一般式(10):
Figure JPOXMLDOC01-appb-C000016
[式(10)中、R、R、R及びnはそれぞれ前記一般式(1)中のR、R、R及びnと同義である。]
で表される原料化合物を準備し、これをエステル化して、下記一般式(11):
Figure JPOXMLDOC01-appb-C000017
[Rは、それぞれ独立に炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数2~10のアルケニル基、炭素数6~20のアリール基及び炭素数7~20のアラルキル基よりなる群から選択される1種を示し、nは0~12の整数を示す。]
で表される第一のエステル化合物を形成する(第一のエステル化合物の形成工程)。なお、このようにして得られる第一のエステル化合物は、下記一般式(i)~(vi):
Figure JPOXMLDOC01-appb-C000018
で表される6種の立体異性体[トランス-エキソ-エンド異性体(trans-exo-endo異性体:上記式(i));シス-エキソ-エンド異性体(cis-exo-endo異性体:上記式(ii));トランス-エキソ-エキソ異性体(trans-exo-exo異性体:上記式(iii));トランス-エンド-エンド異性体(trans-endo-endo異性体:上記式(iv));シス-エキソ-エキソ異性体(cis-exo-exo異性体:上記式(v));シス-エンド-エンド異性体(cis-endo-endo異性体:上記式(vi))]を含有し得る。次に、形成された第一のエステル化合物中に含まれる各立体異性体の溶媒に対する溶解性の差を利用して、トランス-エキソ-エンド異性体(trans-exo-endo)及びシス-エキソ-エンド異性体(cis-exo-endo)の合計量の割合が50モル%以上となりかつトランス-エキソ-エンド異性体(trans-exo-endo)の含有量が30モル%となるように前記第一のエステル化合物から異性体を抽出することにより、シス-エキソ-エンド異性体(cis-exo-endo異性体)の合計量の割合が50モル%以上でありかつトランス-エキソ-エンド異性体(trans-exo-endo異性体)の含有量が30モル%以上である第二のエステル化合物を得る(第二のエステル化合物の製造工程)。次いで、前記第二のエステル化合物を酸二無水物化することにより上記本発明のテトラカルボン酸二無水物を得る(テトラカルボン酸二無水物の製造工程)。以下、このような製造方法(A)について説明する。
 このような製造方法(A)においては、前述のように、先ず、第一のエステル化合物の形成工程において、原料化合物を準備し、これをエステル化して、第一のエステル化合物を形成する。
 このような原料化合物は、上記一般式(10)で表される化合物であり、式中のR、R、R及びnはそれぞれ前記一般式(1)中のR、R、R及びnと同義である(その好適なものも同様である)。このような原料化合物は、例えば、特開2015-137235号公報、国際公開第2011/099517号等に記載のものと同様のものを好適に利用できる。また、このような原料化合物の製造方法は特に制限されず、公知の方法(例えば、特開2015-137235号公報や国際公開第2011/099517号等に記載の方法)を適宜利用できる。
 また、このような原料化合物をエステル化する方法も特に制限されず、前記原料化合物の二重結合を形成する炭素原子にエステル基を導入することが可能な方法(アルコキシカルボニル化することが可能な方法)を適宜採用することができ、例えば、国際公開第2014/050810号に記載の方法、特開2015-137231号公報に記載の方法、特開2014-218460号公報に記載の方法、国際公開第2011/099517号に記載の方法等を適宜使用することができる。このように、エステル化の方法としては、公知の方法を適宜採用でき、例えば、前記原料化合物をアルコール及び一酸化炭素と反応させることにより、エステル化して、前記原料化合物の二重結合を形成する炭素原子をエステル基を導入する方法を採用してもよい。
 このようなエステル化に利用することが可能なアルコールは特に制限されないが、下記一般式(12):
  ROH    (12)
[式(12)中、Rは、前記一般式(11)中のRと同義である。]
で表されるアルコールであることが好ましい。すなわち、このようなアルコールとしては、炭素数が1~10(より好ましくは1~5、更に好ましくは1~3)のアルキルアルコール(なお、アルキル基は直鎖状であっても分岐鎖状であってもよい)、炭素数が3~10(より好ましくは3~8、更に好ましくは5~6)のシクロアルキルアルコール、炭素数が2~10(より好ましくは2~5、更に好ましくは2~3)のアルケニルアルコール、炭素数が6~20(より好ましくは6~10、更に好ましくは6~8)のアリールアルコール、炭素数が7~20(より好ましくは7~10、更に好ましくは7~9)のアラルキルアルコールを用いることが好ましい。このようなアルコールの中でも、得られる化合物の精製がより容易となるという観点から、メタノール、エタノールがより好ましく、メタノールが特に好ましい。また、このようなアルコールは1種を単独であるいは2種以上を混合して用いてもよい。
 このようなアルコールを利用して、前記原料化合物と前記アルコール(ROH)と一酸化炭素(CO)とを反応せしめることで、前記原料化合物中の二重結合を形成する炭素原子に、それぞれ下記一般式(13):
  -COOR    (13)
[式(13)中、Rは前記一般式(11)中のRと同義である。]
で表されるエステル基(かかるエステル基は導入される位置ごとにRが同一であっても異なっていてもよい。)を導入することができ、これにより前記一般式(11)で表される第一のエステル化合物を形成することが可能となる。このような反応の際の条件(触媒、酸化剤、溶媒などの利用の有無やその種類、反応温度等の各種条件)は特に制限されず、公知のエステル化の方法において採用されている条件(例えば、国際公開第2014/050810号、特開2015-137231号、特開2014-218460号、国際公開第2011/099517号等に記載されている条件)を適宜採用できる(例えば、パラジウム触媒及び酸化剤の存在下で反応させてもよい)。
 さらに、前記一般式(11)中のRとしては、精製がより容易となるという観点から、それぞれ独立にメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル、t-ブチル、2-エチルヘキシル基、シクロヘキシル基、アリル基、フェニル基又はベンジル基であることが好ましく、メチル基であることが特に好ましい。なお、前記一般式(11)中のRは同一のものであっても異なっていてもよいが、合成上の観点からは、同一のものであることがより好ましい。
 また、製造方法(A)においては、前記原料化合物と前記アルコール(ROH)と一酸化炭素(CO)との反応生成物として前記第一のエステル化合物(なお、第一のエステル化合物は前述の一般式(i)~(vi)で表される6種の立体異性体を含有し得る)を得た後、第二のエステル化合物の製造工程において、第一のエステル化合物中に含まれる各立体異性体の溶媒に対する溶解性の差を利用して、トランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体の合計量の割合が50モル%以上となりかつトランス-エキソ-エンド異性体の含有量が30モル%となるように前記第一のエステル化合物から異性体を抽出することにより、シス-エキソ-エンド異性体の合計量の割合が50モル%以上でありかつトランス-エキソ-エンド異性体の含有量が30モル%以上である第二のエステル化合物を得る。
 なお、本発明者らは、前記第一のエステル化合物の前述の6種の立体異性体は、それぞれ溶媒に対する溶解性が異なり、トランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体が比較的溶媒に対する溶解性が高いことを見出しており、かかる特性を利用した以下のような工程により、トランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体の合計量の割合が50モル%以上でありかつトランス-エキソ-エンド異性体の含有量が30モル%以上である第二のエステル化合物を得ることが可能となることを見出している。すなわち、前記原料化合物と前記アルコール(ROH)と一酸化炭素(CO)とを反応させて、反応生成物として前記第一のエステル化合物を得た後、先ず、その反応生成物を溶媒中に添加し、反応生成物が溶解可能となるような温度条件下において(場合により撹拌することにより)、前記反応生成物を溶媒中に溶解して溶解液を得る。次いで、得られた溶解液を冷却し(加熱している場合においては放冷でもよい)、液中に結晶を析出させる。このような結晶の析出により、溶液側には比較的溶媒に対する溶解性が高いトランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体がより高濃度で残存してトランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体の濃度がより高いエステル化合物が溶解されたままの状態となるのに対して、結晶側にはトランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体以外の他の異性体(元々、少量しか含まれていないトランス-エキソ-エキソ異性体、シス-エキソ-エキソ異性体を除く)が析出し易く、その結晶はトランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体以外の他の異性体の濃度が比較的高いものとなるため、これをろ過して、結晶側ではなく、ろ液側を回収することで、トランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体の合計量の割合がより高い化合物(異性体の混合物)を抽出することが可能となる。このようにして、トランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体の合計量の割合が50モル%以上となりかつトランス-エキソ-エンド異性体の含有量が30モル%となるように、前記第一のエステル化合物から異性体を抽出することが可能となる。このように、前記反応生成物を溶媒に溶解せしめた後、冷却(場合により放冷)して結晶を析出させ、ろ過によりろ液を回収する操作を行うことで(場合により、かかる操作を複数回行うことにより)、シス-エキソ-エンド異性体の合計量の割合が50モル%以上でありかつトランス-エキソ-エンド異性体の含有量が30モル%以上である第二のエステル化合物を得ることができる。
 このように、トランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体の合計量の割合が50モル%以上となりかつトランス-エキソ-エンド異性体の含有量が30モル%となるように、前記第一のエステル化合物から異性体を抽出する際に利用することが可能な溶媒としては、トランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体に対する溶解性が高いものが好ましく、例えば、トルエン、キシレン、o-キシレン、m-キシレン、p-キシレン、ベンゼン等の芳香族系溶媒、ペンタン、ヘキサン、ヘプタン、シクロペンタン、シクロヘキサン、石油エーテル等の炭化水素系溶媒、メタノール、エタノール、イソプロパノール、ブタノール、ジエチレングリコール、プロピレングリコール等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶媒、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、プロピレングリコールモノ酢酸エステル等のエステル系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラハイドロフラン、ジオキサン、ジオキソラン、グライム、ジグライム、プロピレングリコールモノメチルエーテル等のエーテル系溶媒、アセトニトリル、ベンゾニトリル等のニトリル系溶媒、DMSO、DMF、DMAc、NMP、DMI、TMU、乳酸エチル、ギ酸、酢酸、プロピオン酸等の極性溶媒、ジクロロメタン、クロロホルム、四塩化炭素、クロロベンゼン、ジクロロベンゼン等のハロゲン系溶媒や、それらの混合溶媒等が挙げられる。また、このような溶媒の中でも、異性体分離(抽出性や晶析分離)の観点からは、トルエン、キシレン、ベンゼン、エタノール、酢酸エチル、ジイソプロピルエーテル、アセトニトリル、乳酸エチル、酢酸が好ましく、トルエン、エタノール、酢酸エチル、酢酸がより好ましく、トルエン、酢酸エチル、酢酸が更に好ましい。
 また、前記反応生成物を溶媒中に溶解する際に採用する温度条件としては、溶媒の種類によっても異なるものであり、一概には言えないが、0~150℃であることが好ましく、30~120℃であることがより好ましい。このような温度条件が前記下限未満では前記第一のエステル化合物が溶解しない傾向にあり、他方、前記上限を超えると変質や着色が進行する傾向にある。なお、前記反応生成物を溶媒中に溶解する際には、より効率よく溶解させるといった観点から、前記反応生成物を溶媒中に添加して撹拌することが好ましい。
 また、前記第一のエステル化合物から異性体を抽出する際に、ろ過により、結晶とろ液をろ別した後、ろ液を回収する。なお、このような異性体の抽出工程においては、ろ別された結晶に対して前記溶媒をかけることで、かけ洗いを行い、かけ洗い液を回収して、前記ろ液と混合して、回収してもよい。このようなかけ洗いにより、結晶に付着して残っている溶液を回収できるとともに、結晶表面にトランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体が析出したとしても、それらをかけ洗い液で抽出することが可能となるため、溶媒に対する溶解性がより高いトランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体を効率よく回収することが可能となる。なお、このようにしてろ液を回収した後、溶媒を蒸発せしめることで、固形分として、第二のエステル化合物を得ることができる。なお、このようにして得られる固形分において、トランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体の合計量の割合が50モル%以上でありかつトランス-エキソ-エンド異性体の含有量が30モル%以上であるという条件を満たさないエステル化合物が得られた場合には、前記条件を満たすように、上記操作(溶媒に溶解し、結晶を析出せしめて、ろ液を回収する操作)を繰り返し実施することにより、第二のエステル化合物を所望の異性体濃度を有するものとしてもよい。
 また、製造方法(A)においては、第二のエステル化合物を得た後、テトラカルボン酸二無水物の製造工程において、前記第二のエステル化合物を酸二無水物化することにより上記本発明のテトラカルボン酸二無水物を得る。なお、酸二無水物化工程においては基本的にノルボルナン環の立体配置は変化しないことから、これにより、トランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体の合計量の割合が50モル%以上でありかつトランス-エキソ-エンド異性体の含有量が30モル%以上であるという条件を満たすテトラカルボン酸二無水物を得ることが可能である。
 このような第二のエステル化合物の酸二無水物化の方法は特に制限されず、テトラエステル化合物を酸二無水物化して、テトラカルボン酸二無水物を得ることが可能な公知の方法を適宜採用でき、例えば、第二のエステル化合物を炭素数1~5のカルボン酸中において加熱する方法等を適宜採用することができる。このようなテトラエステル化合物を酸二無水物化する方法としては、例えば、国際公開第2014/050788号に記載の方法、国際公開第2015/178261号に記載の方法、国際公開第2011/099518号に記載の方法、特開2015-218160号に記載の方法等で採用している方法及び条件を適宜採用することができる(利用するカルボン酸、触媒等を含め各種条件等も、上記公知の方法において採用している方法を適宜利用することができる)。
 また、このようにして第二のエステル化合物を酸二無水物化することで、上記条件を満たすテトラカルボン酸二無水物を形成した後、さらに、前記溶媒(第一のエステル化合物から異性体を抽出する際に利用することが可能な溶媒として説明したもの)を利用して、該テトラカルボン酸二無水物を洗浄してもよい。なお、このような洗浄工程において採用する条件によっては、テトラカルボン酸二無水物中の異性体の比率を更に変動させることも可能となる。例えば、溶媒の種類によっても異なるものではあるが、洗浄液として15℃以上程度の溶媒を利用して洗浄した場合、その洗浄液中に異性体が溶解し易く、洗浄とともに一部の異性体が除去される傾向にあり、これによってテトラカルボン酸二無水物中の異性体の比率が変動することとなる。なお、洗浄液に溶解し易い異性体の種類は、洗浄液(溶媒)の種類や温度条件等によっても変わってくるため一概には言えないが、酸二無水物のシス-エキソ-エンド異性体が比較的溶解し易い傾向にある。また、例えば、溶媒の種類によっても異なるものではあるが、洗浄液としてより低温(例えば-5℃以下程度)の溶媒を利用して洗浄する場合、溶媒への異性体の溶解をより効率よく抑制しながら(異性体比率をより十分に維持しながら)洗浄工程を実施することが可能である。このように、上記条件を満たすテトラカルボン酸二無水物を得た後、更に、目的とする設計に応じて、溶媒の種類や温度条件などを適宜変更して洗浄することによって、所望の異性体比率を有するテトラカルボン酸二無水物に設計変更することも可能である。
 このようにして、第二のエステル化合物を酸二無水物化することで、上記一般式(1)で表されるテトラカルボン酸二無水物であり、前記立体異性体の総量(そのテトラカルボン酸二無水物に含有されている全ての立体異性体の合計量)に対して、上記立体異性体(A)及び上記立体異性体(B)の合計量の割合が50モル%以上であり、かつ、前記立体異性体の総量(そのテトラカルボン酸二無水物に含有されている全ての立体異性体の合計量)に対して、前記立体異性体(A)の含有割合が30モル%以上であるテトラカルボン酸二無水物を得ることができる。
 以上、本発明のテトラカルボン酸二無水物について説明したが、次に、本発明のポリイミド前駆体樹脂について説明する。
 [ポリイミド前駆体樹脂]
 本発明のポリイミド前駆体樹脂は、上記一般式(4)で表される繰り返し単位(A’)及び上記一般式(5)で表される繰り返し単位(B’)の合計量の割合が全繰り返し単位の総量に対して50モル%以上であり、かつ、前記繰り返し単位(A’)の含有割合が全繰り返し単位の総量に対して30モル%以上であるものである。
 このような一般式(4)及び(5)中、R、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示し、Rは炭素数6~50のアリーレン基を示し、Xはそれぞれ独立に水素原子、炭素数1~6のアルキル基及び炭素数3~9のアルキルシリル基よりなる群から選択される1種を示す。
 このような一般式(4)及び(5)中のR、R、R及びnはそれぞれ前述の一般式(1)中のR、R、R及びnと同義である(その好適なものも同様である)。
 このような一般式(4)及び(5)中のRとして選択され得るアリーレン基は、炭素数が6~50のものであるが、このようなアリール基の炭素数は6~40であることが好ましく、6~30であることがより好ましく、12~20であることが更に好ましい。このような炭素数が前記下限未満では得られるポリイミドの耐熱性が低下する傾向にあり、他方、前記上限を超えると、得られたポリイミドの溶媒に対する溶解性が低下する傾向にある。
 このような一般式(4)及び(5)中のRとしては、耐熱性と溶解性のバランスの観点から、下記一般式(a)~(d):
Figure JPOXMLDOC01-appb-C000019
[式(c)中、R11は、水素原子、フッ素原子、メチル基、エチル基、水酸基、及びトリフルオロメチル基よりなる群から選択される1種を示し、式(d)中、Qは、9,9-フルオレニリデン基;式:-O-、-S-、-CO-、-CONH-、-SO-、-C(CF-、-C(CH-、-CH-、-O-C-C(CH-C-O-、-O-C-C(CF-C-O-、-O-C-SO-C-O-、-C(CH-C-C(CH-、-O-C-C-O-、-CONH-C-NHCO-、-NHCO-C-CONH-、-C-及び、-O-C-O-で表される基;並びに、下記一般式(e):
Figure JPOXMLDOC01-appb-C000020
(式(e)中、Raはそれぞれ独立に炭素数1~10のアルキル基、フェニル基及びトリル基のうちのいずれか1種を示し、yは1~18の整数を示す。)
で表される基;からなる群から選択される1種を示す。]
で表される基のうちの少なくとも1種であることが好ましい。
 このような一般式(c)中のR11としては、耐熱性の観点から、水素原子、フッ素原子、メチル基又はエチル基がより好ましく、水素原子が特に好ましい。さらに、一般式(c)中のR11としては、溶解性の観点からは、メチル基、水酸基、又トリフルオロメチル基であることがより好ましい。また、上記一般式(d)中のQとして選択され得る上記一般式(e)で表される基において、Raはそれぞれ独立に炭素数1~10のアルキル基、フェニル基及びトリル基のうちのいずれか1種である。このようなアルキル基の炭素数が前記上限を超えるとポリイミドフィルムの耐熱性や透明性が低下する傾向にある。このようなRaとしては、メチル基、エチル基、プロピル基、イソプロピル基、フェニル基、トリル基であることが好ましく、メチル基、エチル基であることがより好ましく、メチル基が更に好ましい。また、上記一般式(e)中のyは1~15(より好ましくは3~12、更に好ましくは5~10)の整数を示す。このようなyの値が前記下限未満ではポリイミドフィルムの接着性やレーザ剥離性(基板上にフィルムを製造した場合においてレーザ剥離処理を施した場合のフィルムの剥離のしやすさ)が低下する傾向にあり、他方、前記上限を超えるとポリイミドフィルムの耐熱性や透明性が低下する傾向にある。
 また、上記一般式(d)中のQとしては、耐熱性と溶解性のバランスという観点から、9,9-フルオレニリデン基、又は、式:-CONH-、-O-C-O-、-O-、-C(CH-、-O-C-SO-C-O-、-CH-、-O-C-C-O-又は-O-C-C(CH-C-O-、で表される基が好ましく、式:-CONH-、-O-C-O-、-O-C-C-O-若しくは-O-で表される基が特に好ましく、式:-CONH-、-O-C-O-又は-O-で表される基が最も好ましい。さらに、上記一般式(d)中のQとしては、接着性やレーザ剥離性の観点からは、上記一般式(e)で表される基であることが好ましく、線膨張係数と耐熱性の観点からは、式:-CONH-で表される基が好ましい。
 また、このようなRとしては、溶媒に対する溶解性がより高度なものとなることから、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、2,2-ビス(4-アミノフェノキシフェニル)プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、及び、2,2-ビス(4-アミノフェノキシフェニル)プロパンからなる群から選択される芳香族ジアミンから2つのアミノ基を除いた2価の基(アリーレン基)であることが好ましく、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、1,3-ビス(3-アミノフェノキシ)ベンゼン、2,2-ビス(4-アミノフェノキシフェニル)プロパン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,3-ビス(4-アミノフェノキシ)ベンゼン、及び、4,4’-ジアミノジフェニルエーテルからなる群から選択される芳香族ジアミンから2つのアミノ基を除いた2価の基(アリーレン基)であることがより好ましく、2,2-ビス(4-アミノフェノキシフェニル)プロパン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、及び、ビス[4-(3-アミノフェノキシ)フェニル]スルホンからなる群から選択される芳香族ジアミンから2つのアミノ基を除いた2価の基(アリーレン基)であることが更に好ましい。
 このような一般式(4)及び(5)中のXはそれぞれ独立に水素原子、炭素数1~6(好ましくは炭素数1~3)のアルキル基及び炭素数3~9のアルキルシリル基よりなる群から選択される1種である。
 このようなXは、その置換基の種類、及び、置換基の導入率を、その製造条件を適宜変更することで変化させることができる。このようなXは、いずれも水素原子である場合(いわゆるポリアミド酸の繰り返し単位となる場合)には、ポリイミドの製造が容易である傾向がある。また、前記Xが、炭素数1~6(好ましくは炭素数1~3)のアルキル基である場合、ポリイミド前駆体樹脂の保存安定性がより優れたものとなる傾向にある。また、前記Xが炭素数1~6(好ましくは炭素数1~3)のアルキル基である場合、メチル基又はエチル基であることがより好ましい。また、前記Xが炭素数3~9のアルキルシリル基である場合、ポリイミド前駆体樹脂の溶解性がより優れたものとなる傾向にある。また、前記Xが炭素数3~9のアルキルシリル基である場合、トリメチルシリル基又はt-ブチルジメチルシリル基であることがより好ましい。
 このような式中のXが水素原子以外の基(アルキル基及び/又はアルキルシリル基)である場合、その基の導入率は特に限定されないが、Xのうちの少なくとも一部をアルキル基及び/又はアルキルシリル基とする場合(樹脂前駆体中に含まれる繰り返し単位(A’)及び/又は繰り返し単位(B’)中のXのうちの少なくとも一部をアルキル基及び/又はアルキルシリル基とする場合)、それぞれ、Xの総量(総個数)の25%以上(より好ましくは50%以上、更に好ましくは75%以上)をアルキル基及び/又はアルキルシリル基とすることが好ましい(なお、この場合、アルキル基及び/又はアルキルシリル基以外のXは水素原子となる)。樹脂前駆体中に含まれる繰り返し単位のXの総量(総個数)の25%以上をアルキル基及び/又はアルキルシリル基にすることで、ポリイミド前駆体樹脂の保存安定性がより優れたものとなる傾向にある。このようなポリイミド前駆体樹脂としては、ポリイミドの製造がより容易になることから、Xがいずれも水素原子であること、すなわち、ポリアミド酸であることが好ましい。
 また、本発明のポリイミド前駆体樹脂においては、前記繰り返し単位(A’)及び前記繰り返し単位(B’)の合計量の割合が全繰り返し単位の総量に対して50モル%以上である必要がある。このような繰り返し単位(A’)及び(B’)の合計量の割合が前記下限未満では、かかるポリイミド前駆体樹脂に由来して得られるポリイミドの溶媒への溶解性が低下する。また、このような繰り返し単位(A’)及び(B’)の合計量の割合としては、50~100モル%であることがより好ましく、60~98モル%であることが更に好ましく、70~95モル%であることが特に好ましく、80~90モル%であることが最も好ましい。繰り返し単位(A’)及び(B’)の合計量の割合が前記範囲内にある場合には、最終的に得られるポリイミドの溶媒への溶解性が良好となる傾向にある。
 本発明のポリイミド前駆体樹脂においては、前記一般式(4)で表される繰り返し単位(A’)の含有割合が全繰り返し単位の総量に対して30モル%以上である必要がある。このような繰り返し単位(A’)の含有割合が前記下限未満では、かかるポリイミド前駆体樹脂に由来して得られるポリイミドの溶媒への溶解性が低下する。また、このような繰り返し単位(A’)の含有割合としては、全繰り返し単位の総量に対して、30~99モル%であることがより好ましく、40~90モル%であることが更に好ましく、50~85モル%であることが特に好ましく、60~80モル%であることが最も好ましい。繰り返し単位(A’)の含有割合が前記範囲内にある場合には、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するものとなる傾向にある。
 本発明のポリイミド前駆体樹脂においては、上記一般式(5)で表される繰り返し単位(B’)の含有割合が全繰り返し単位の総量に対して1~70モル%であることがより好ましく、10~60モル%であることが更に好ましく、10~50モル%であることが特に好ましく、10~40モル%であることが最も好ましい。前記繰り返し単位(B’)の含有割合が前記範囲内にある場合には、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するものとなる傾向にある。
 なお、このような繰り返し単位(A’)は、上記一般式(1)で表されるテトラカルボン酸二無水物の立体異性体(A)(上記一般式(2)で表される化合物:トランス-エキソ-エンド異性体)と、式:HN-R-NHで表される芳香族ジアミン(式中のRは上記一般式(4)及び(5)中のRと同義である)とに由来するものである。このように、繰り返し単位(A’)の立体構造はテトラカルボン酸二無水物の立体異性体(A)の立体構造に由来した構造であり、かかる繰り返し単位(A’)はトランス-エキソ-エンドの立体構造を有する繰り返し単位である。また、前記繰り返し単位(B’)は、上記一般式(1)で表されるテトラカルボン酸二無水物の立体異性体(B)(上記一般式(3)で表される化合物:シス-エキソ-エンド異性体)と、式:HN-R-NHで表される芳香族ジアミン(式中のRは上記一般式(4)及び(5)中のRと同義である)とに由来するものであり、シス-エキソ-エンドの立体構造を有する繰り返し単位である。さらに、前述の立体異性体(A)及び(B)以外の上記一般式(1)で表されるテトラカルボン酸二無水物の立体異性体と、式:HN-R-NHとに由来するポリイミド前駆体樹脂の繰り返し単位は以下のようになる。すなわち、前述のトランス-エキソ-エキソ異性体(上記式(I)で表される化合物)に由来する繰り返し単位は、下記一般式(I’)で表されるトランス-エキソ-エキソの立体構造を有する繰り返し単位(C’)となり、前述のトランス-エンド-エンド異性体(上記式(II)で表される化合物)に由来する繰り返し単位は下記一般式(II’)で表されるトランス-エンド-エンドの立体構造を有する繰り返し単位(D’)となり、前述のシス-エキソ-エキソ異性体(上記式(III)で表される化合物)に由来する繰り返し単位は下記一般式(III’)で表されるシス-エキソ-エキソの立体構造を有する繰り返し単位(E’)なり、シス-エンド-エンド異性体(上記式(IV)で表される化合物)に由来する繰り返し単位は、下記一般式(IV’)で表されるシス-エンド-エンドの立体構造を有する繰り返し単位(F’)となる。なお、下記一般式(I’)~(IV’)中のR、R、R、R及びnはそれぞれ上記一般式(4)及び(5)中のR、R、R、R及びnと同義である(その好適なものも同様である)。
Figure JPOXMLDOC01-appb-C000021
 また、本発明のポリイミド前駆体樹脂においては、本発明の効果を損なわない範囲において、繰り返し単位(A’)及び(B’)以外の他の繰り返し単位を含有していてもよく、上記本発明のテトラカルボン酸二無水物を利用して容易に調製することが可能であることから、そのような他の繰り返し単位としては、前記繰り返し単位(C’)~(F’)であることが好ましい。
 このような繰り返し単位(D’)及び/又は(F’)を含有する場合、前記繰り返し単位(D’)及び(F’)の合計量の割合(モル基準の割合)としては、全繰り返し単位に対して50モル%以下であることが好ましく、0~40モル%であることがより好ましく、0~30モル%であることが更に好ましく、0~20モル%であることが特に好ましい。このような繰り返し単位(D’)及び(F’)の合計量の割合が前記上限を超えると最終的に得られるポリイミドの溶媒への溶解性が低下する傾向にある。
 さらに、前記繰り返し単位(C’)及び/又は(E’)を含有する場合、前記繰り返し単位(C’)及び(E’)の合計量の割合(モル基準の割合)としては、全繰り返し単位に対して10モル%以下であることが好ましく、0~5モル%であることがより好ましく、0~3モル%であることが更に好ましく、0~1.5モル%であることが特に好ましく、0~1モル%であることが最も好ましい。このような繰り返し単位(C’)及び(E’)の合計量の割合が前記上限を超えると最終的に得られるポリイミドの物性が低下する傾向にある。
 また、このようなポリイミド前駆体樹脂(より好ましくはポリアミド酸)においては、前記他の繰り返し単位として、繰り返し単位(A’)~(F’)以外の他の繰り返し単位を含んでいてもよい。このようなポリイミド前駆体樹脂においては、本発明の効果をより十分に発現させるといった観点からは、繰り返し単位(A’)~(F’)の総量が、全繰り返し単位に対して、70~100モル%であることが好ましく、80~100モル%であることがより好ましく、90~100モル%であることが更に好ましく、95~100モル%であることが特に好ましく、98~100モル%であることが最も好ましい。なお、溶媒への溶解性がより高度なものとなるといった観点からは、ポリイミド前駆体樹脂が繰り返し単位(A’)~(F’)を100モル%含むものであることが好ましい。
 また、このような繰り返し単位(A’)~(F’)以外の他の繰り返し単位としては、特に制限されず、ポリイミド前駆体樹脂(より好ましくはポリアミド酸の繰り返し単位)として利用できる公知の繰り返し単位が挙げられる。このような繰り返し単位(A’)~(F’)以外の他の繰り返し単位としては、例えば、前記一般式(1)で表されるテトラカルボン酸二無水物以外の他のテトラカルボン酸二無水物(例えば、国際公開第2014/034760号の段落[0171]に記載の化合物等)に由来する繰り返し単位等を利用してもよい。
 また、本発明のポリイミド前駆体樹脂としては、調製がより容易であることから、上記本発明のテトラカルボン酸二無水物と、式:HN-R-NHで表される芳香族ジアミン(式中のRは上記一般式(4)及び(5)中のRと同義である)との反応物(重合物)であることが好ましい。
 また、このようなポリイミド前駆体樹脂として好適なポリアミド酸としては、固有粘度[η]が0.05~3.0dL/gであることが好ましく、0.1~2.0dL/gであることがより好ましい。このような固有粘度[η]が0.05dL/gより小さいと、これを用いてフィルム状のポリイミドを製造した際に、得られるフィルムが脆くなる傾向にあり、他方、3.0dL/gを超えると、粘度が高すぎて加工性が低下し、例えばフィルムを製造した場合に均一なフィルムを得ることが困難となる。また、このような固有粘度[η]は、以下のようにして測定することができる。すなわち、先ず、溶媒としてN,N-ジメチルアセトアミドを用い、そのN,N-ジメチルアセトアミド中に前記ポリアミド酸を濃度が0.5g/dLとなるようにして溶解させて、測定試料(溶液)を得る。次に、前記測定試料を用いて、30℃の温度条件下において動粘度計を用いて、前記測定試料の粘度を測定し、求められた値を固有粘度[η]として採用する。なお、このような動粘度計としては、離合社製の自動粘度測定装置(商品名「VMC-252」)を用いる。
 また、このようなポリイミド前駆体樹脂(より好ましくはポリアミド酸)は、本発明のポリイミドを製造する際に好適に利用することが可能なものである。また、このようなポリイミド前駆体樹脂(より好ましくはポリアミド酸)は、本発明のポリイミドを製造する際の反応中間体(前駆体)として得ることが可能である。
 以上、本発明のポリイミド前駆体樹脂(より好ましくはポリアミド酸)について説明したが、次に、本発明のポリイミドについて説明する。
 [ポリイミド]
 本発明のポリイミドは、上記一般式(6)で表される繰り返し単位(A)及び上記一般式(7)で表される繰り返し単位(B)の合計量の割合が全繰り返し単位の総量に対して50モル%以上であり、かつ、前記繰り返し単位(A)の含有割合が全繰り返し単位の総量に対して30モル%以上であるものである。
 このような一般式(6)及び(7)中、R、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示し、Rは炭素数6~50のアリーレン基を示す。このような一般式(6)及び(7)中のR、R、R及びnはそれぞれ前述の一般式(1)中のR、R、R及びnと同義である(その好適なものも同様である)。また、このような一般式(6)及び(7)中のRはそれぞれ前述の一般式(4)及び(5)中のRと同義である(その好適なものも同様である)。
 また、本発明のポリイミドにおいては、前記繰り返し単位(A)及び前記繰り返し単位(B)の合計量の割合が全繰り返し単位の総量に対して50モル%以上である必要がある。このような繰り返し単位(A)及び(B)の合計量の割合が前記下限未満では、かかるポリイミドの溶媒への溶解性が低下する。また、このような繰り返し単位(A)及び(B)の合計量の割合としては、50~100モル%であることがより好ましく、60~98モル%であることが更に好ましく、70~95モル%であることが特に好ましく、80~90モル%であることが最も好ましい。繰り返し単位(A)及び(B)の合計量の割合が前記範囲内にある場合には、かかるポリイミドの溶媒への溶解性が良好となる傾向にある。
 本発明のポリイミドにおいては、上記一般式(2)で表される繰り返し単位(A)の含有割合が全繰り返し単位の総量に対して30モル%以上である必要がある。このような繰り返し単位(A)の含有割合が前記下限未満では、かかるポリイミドの溶媒への溶解性が低下する。また、このような繰り返し単位(A)の含有割合としては、30~99モル%であることがより好ましく、40~90モル%であることが更に好ましく、50~85モル%であることが特に好ましく、60~80モル%であることが最も好ましい。繰り返し単位(A)の含有割合が前記範囲内にある場合には、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するものとなる傾向にある。
 本発明のポリイミドにおいては、前記一般式(7)で表される繰り返し単位(B)の含有割合が全繰り返し単位の総量に対して1~70モル%であることがより好ましく、10~60モル%であることが更に好ましく、10~50モル%であることが特に好ましく、10~40モル%であることが最も好ましい。前記繰り返し単位(B)の含有割合が前記範囲内にある場合には、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するものとなる傾向にある。
 なお、このような繰り返し単位(A)は、上記一般式(1)で表されるテトラカルボン酸二無水物の立体異性体(A)(上記一般式(2)で表される化合物:トランス-エキソ-エンド異性体)と、式:HN-R-NHで表される芳香族ジアミン(式中のRは前述の一般式(4)及び(5)中のRと同義である)とに由来するものである。このように、繰り返し単位(A)の立体構造はテトラカルボン酸二無水物の立体異性体(A)の立体構造に由来した構造であり、かかる繰り返し単位(A)はトランス-エキソ-エンドの立体構造を有する繰り返し単位である。また、前記繰り返し単位(B)は、上記一般式(1)で表されるテトラカルボン酸二無水物の立体異性体(B)(上記一般式(3)で表される化合物:シス-エキソ-エンド異性体)と、式:HN-R-NHで表される芳香族ジアミン(式中のRは前述の一般式(4)及び(5)中のRと同義である)とに由来するものであり、シス-エキソ-エンドの立体構造を有する繰り返し単位である。さらに、前述の立体異性体(A)及び(B)以外の上記一般式(1)で表されるテトラカルボン酸二無水物の立体異性体と、式:HN-R-NHとに由来するポリイミドの繰り返し単位は以下のようになる。すなわち、前述のトランス-エキソ-エキソ異性体(上記式(I)で表される化合物)に由来する繰り返し単位は、下記一般式(I-1)で表されるトランス-エキソ-エキソの立体構造を有する繰り返し単位(C)となり、前述のトランス-エンド-エンド異性体(上記式(II-1)で表される化合物)に由来する繰り返し単位は下記一般式(II)で表されるトランス-エンド-エンドの立体構造を有する繰り返し単位(D)となり、前述のシス-エキソ-エキソ異性体(上記式(III)で表される化合物)に由来する繰り返し単位は下記一般式(III-1)で表されるシス-エキソ-エキソの立体構造を有する繰り返し単位(E)となり、シス-エンド-エンド異性体(上記式(IV)で表される化合物)に由来する繰り返し単位は、下記一般式(IV-1)で表されるシス-エンド-エンドの立体構造を有する繰り返し単位(F)となる。なお、下記一般式(I-1)~(IV-1)中のR、R、R、R及びnはそれぞれ上記一般式(6)及び(7)中のR、R、R、R及びnと同義である(その好適なものも同様である)。
Figure JPOXMLDOC01-appb-C000022
 また、本発明のポリイミドにおいては、本発明の効果を損なわない範囲において、繰り返し単位(A)及び(B)以外の他の繰り返し単位を含有していてもよい。また、本発明のポリイミドは、上記本発明のテトラカルボン酸二無水物を利用することにより、効率よく調製することが可能となることから、そのような繰り返し単位(A)及び(B)以外の他の繰り返し単位としては、前記繰り返し単位(C)~(F)であることが好ましい。
 このような繰り返し単位(D)及び/又は(F)を含有する場合、繰り返し単位(D)及び(F)の合計量の割合(モル基準の割合)としては、全繰り返し単位に対して50モル%以下であることが好ましく、0~40モル%であることがより好ましく、0~30モル%であることが更に好ましく、0~20モル%であることが特に好ましい。このような繰り返し単位(D)及び(F)の合計量の割合が前記上限を超えると、ポリイミドの溶媒への溶解性が低下する傾向にある。
 さらに、前記繰り返し単位(C)及び/又は(E)を含有する場合、前記繰り返し単位(C)及び(E)の合計量の割合(モル基準の割合)としては、全繰り返し単位に対して10モル%以下であることが好ましく、0~5モル%であることがより好ましく、0~3モル%であることが更に好ましく、0~1.5モル%であることが特に好ましく、0~1モル%であることが最も好ましい。このような繰り返し単位(C)及び(E)の合計量の割合が前記上限を超えると、ポリイミドの物性が低下する傾向にある。
 また、このようなポリイミドにおいては、前記他の繰り返し単位として、繰り返し単位(A)~(F)以外の他の繰り返し単位を含んでいてもよい。このような繰り返し単位(A)~(F)以外の他の繰り返し単位としては、特に制限されず、ポリイミドの繰り返し単位として利用できる公知の繰り返し単位が挙げられる。このような繰り返し単位(A)~(F)以外の他の繰り返し単位としては、例えば、前記一般式(1)で表されるテトラカルボン酸二無水物以外の他のテトラカルボン酸二無水物(例えば、国際公開第2014/034760号の段落[0171]に記載の化合物等)に由来する繰り返し単位等を利用してもよい。
 また、本発明のポリイミドとしては、調製がより容易であることから、上記本発明のテトラカルボン酸二無水物と、式:HN-R-NHで表される芳香族ジアミン(式中のRは上記一般式(4)及び(5)中のRと同義である)との反応物(重合物)であることが好ましい。
 また、本発明のポリイミドとしては、5%重量減少温度が400℃以上のものが好ましく、450~550℃のものがより好ましい。このような5%重量減少温度が前記下限未満では十分な耐熱性が達成困難となる傾向にあり、他方、前記上限を超えると、そのような特性を有するポリイミドを製造することが困難となる傾向にある。このような5%重量減少温度は、例えば、TG/DTA7200熱重量分析装置(エスアイアイ・ナノテクノロジー株式会社製)を使用して、窒素ガス雰囲気下、昇温速度10℃/分の条件で走査温度を30℃から550℃まで加熱して、用いた試料の重量が5%減少する温度を測定することにより求めることができる。
 また、このようなポリイミドとしては、ガラス転移温度(Tg)が250℃以上のものが好ましく、300~500℃のものがより好ましい。このようなガラス転移温度(Tg)が前記下限未満では十分な耐熱性が達成困難となる傾向にあり、他方、前記上限を超えるとそのような特性を有するポリイミドを製造することが困難となる傾向にある。なお、このようなガラス転移温度(Tg)は、熱機械的分析装置(リガク製の商品名「TMA8310」又は「TMA8311」)を使用して引張モードにより測定することができる。すなわち、測定装置として熱機械的分析装置(リガク製の商品名「TMA8310」又は「TMA8311」)を使用し、縦20mm、横5mmの大きさのポリイミドフィルム(フィルムの厚みは測定値に影響するものではないため特に制限されるものではないが、5~80μmとすることが好ましい。)を形成して測定試料とし、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件を採用して測定を行ってTMA曲線を求め、ガラス転移に起因するTMA曲線の変曲点に対し、その前後の曲線を外挿することにより求めることができる。
 さらに、このようなポリイミドとしては、軟化温度が300℃以上のものが好ましく、350~550℃のものがより好ましい。このような軟化温度が前記下限未満では十分な耐熱性が達成困難となる傾向にあり、他方、前記上限を超えるとそのような特性を有するポリイミドを製造することが困難となる傾向にある。なお、このような軟化温度は、熱機械的分析装置(リガク製の商品名「TMA8310」又は「TMA8311」)を使用してペネトレーションモードにより測定することができる。また、測定に際しては、試料のサイズ(縦、横、厚み等)は測定値に影響するものではないため、用いる熱機械的分析装置(リガク製の商品名「TMA8310」又は「TMA8311」)の治具に装着可能なサイズに試料のサイズを適宜調整すればよい。
 また、このようなポリイミドとしては、熱分解温度(Td)が450℃以上のものが好ましく、480~600℃のものがより好ましい。このような熱分解温度(Td)が前記下限未満では十分な耐熱性を達成することが困難となる傾向にあり、他方、前記上限を超えると、そのような特性を有するポリイミドを製造することが困難となる傾向にある。なお、このような熱分解温度(Td)は、TG/DTA7200熱重量分析装置(エスアイアイ・ナノテクノロジー株式会社製)を使用して、窒素雰囲気下、昇温速度10℃/min.の条件で熱分解前後の分解曲線にひいた接線の交点となる温度を測定することにより求めることができる。
 また、本発明のポリイミドにおいては、鉛筆硬度において、6B~6Hの硬度を有することが好ましく、HB~4Hの硬度を有することがより好ましい。このような硬度が前記下限未満では十分に高度な水準の硬度を得ることが困難となる傾向にあり、他方、前記上限を超えると、そのような特性を有する無色透明なポリイミドを製造することが困難となる傾向にある。なお、このような鉛筆硬度の値は、1999年発行のJIS K5600-5-4に規定されている方法に準拠して測定することにより求めることができる。
 さらに、このようなポリイミドの数平均分子量(Mn)としては、ポリスチレン換算で1000~1000000であることが好ましく、10000~500000であることがより好ましい。このような数平均分子量が前記下限未満では、そのポリイミドを利用してフィルムを形成した場合に得られるフィルムが脆くなるとともに、ポリイミドの耐熱性が低下する傾向にあり、他方、前記上限を超えると、粘性が増大し、ポリイミドを溶媒に溶解させるのに長時間を要して加工が困難となるとともに、そのポリイミドを利用してフィルムを形成した場合にフレキシブルなフィルムが得られず、皺が寄ったフィルムになる傾向にある。
 また、このようなポリイミドの重量平均分子量(Mw)としては、ポリスチレン換算で1000~5000000であることが好ましい。また、このような重量平均分子量(Mw)の数値範囲の下限値としては、5000であることがより好ましく、10000であることが更に好ましく、20000であることが特に好ましい。また、重量平均分子量(Mw)の数値範囲の上限値としては、5000000であることがより好ましく、500000であることが更に好ましく、100000であることが特に好ましい。このような重量平均分子量が前記下限未満では、そのポリイミドを利用してフィルムを形成した場合に得られるフィルムが脆くなるとともに、ポリイミドの耐熱性が低下する傾向にあり、他方、前記上限を超えると、ポリイミドを溶媒に溶解させるのに長時間を要して加工が困難となるとともに、そのポリイミドを利用してフィルムを形成した場合にフレキシブルなフィルムが得られず、皺が寄ったフィルムになる傾向にある。
 さらに、このようなポリイミドの分子量分布(Mw/Mn)は1.1~5.0であることが好ましく、1.5~3.0であることがより好ましい。このような分子量分布が前記下限未満では製造することが困難となる傾向にあり、他方、前記上限を超えると均一なフィルムを得にくい傾向にある。なお、このようなポリイミドの分子量(Mw又はMn)や分子量の分布(Mw/Mn)は、測定装置としてゲルパーミエーションクロマトグラフィー(GPC)測定装置(デガッサ:JASCO社製DG-2080-54、送液ポンプ:JASCO社製PU-2080、インターフェイス:JASCO社製LC-NetII/ADC、カラム:Shodex社製GPCカラムKF-806M(×2本)、カラムオーブン:JASCO社製860-CO、RI検出器:JASCO社製RI-2031、カラム温度40℃、クロロホルム溶媒(流速1mL/min.)を用いて測定したデータをポリスチレンで換算して求めることができる。
 また、このようなポリイミドは、固有粘度[η]が0.05~3.0dL/gであることが好ましく、0.1~2.0dL/gであることがより好ましい。このような固有粘度[η]が0.05dL/gより小さいと、これを用いてフィルム状のポリイミドを製造した際に、得られるフィルムが脆くなる傾向にあり、他方、3.0dL/gを超えると、粘度が高すぎて加工性が低下し、例えばフィルムを製造した場合に均一なフィルムを得ることが困難となる。また、このような固有粘度[η]は、以下のようにして測定することができる。すなわち、先ず、溶媒としてN,N-ジメチルアセトアミドを用い、そのN,N-ジメチルアセトアミド中にポリイミドを濃度が0.5g/dLとなるようにして溶解させて、測定試料(溶液)を得る。次に、前記測定試料を用いて、30℃の温度条件下において動粘度計を用いて、前記測定試料の粘度を測定し、求められた値を固有粘度[η]として採用する。なお、このような動粘度計としては、離合社製の自動粘度測定装置(商品名「VMC-252」)を用いる。
 また、このようなポリイミドは、線膨張係数(CTE)が0~100ppm/Kであることが好ましく、10~70ppm/Kであることがより好ましい。このような線膨張係数が前記上限を超えると、線膨張係数の範囲が5~20ppm/Kである金属や無機物と組合せて複合化した場合に熱履歴で剥がれが生じやすくなる傾向にある。また、前記線膨張係数が、前記下限未満では溶解性の低下やフィルム特性が低下する傾向にある。
 このようなポリイミドの線膨張係数の測定方法としては、以下に記載の方法を採用する。すなわち、先ず、縦20mm、横5mmの大きさのポリイミドフィルム(かかるフィルムの厚みは測定値に影響するものではないため特に制限されるものではないが、5~80μmとすることが好ましい。)を形成して測定試料とし、測定装置として熱機械的分析装置(リガク製の商品名「TMA8310」又は「TMA8311」)を利用して、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件を採用して、室温から200℃まで昇温(1回目の昇温)し、30℃以下まで放冷した後に、その温度から400℃まで昇温(2回目の昇温)し、その昇温時の前記試料の縦方向の長さの変化を測定する。次いで、このような2回目の昇温時の測定(放冷時の温度から400℃まで昇温する際の測定)で得られたTMA曲線を用いて、100℃~200℃の温度範囲における1℃あたりの長さの変化の平均値を求め、得られる値をポリイミドの線膨張係数として測定する。このように、本発明のポリイミドの線膨張係数としては、前記TMA曲線に基づいて100℃~200℃の温度範囲における1℃あたりの長さの変化の平均値を求めることにより得られる値を採用する。
 また、このようなポリイミドとしては、フィルムを形成した場合に透明性が十分に高いものであることが好ましく、全光線透過率が80%以上(更に好ましくは82%以上、特に好ましくは83%以上)であるものがより好ましい。このような全光線透過率は、ポリイミドの繰り返し単位の種類等を適宜選択することにより容易に達成することができる。また、このようなポリイミドとしては、より高度な無色透明性を得るといった観点から、ヘイズ(濁度)が5~0(更に好ましくは4~0、特に好ましくは3~0)であるものがより好ましい。このようなヘイズの値が前記上限を超えると、より高度な水準の無色透明性を達成することが困難となる傾向にある。さらに、このようなポリイミドとしては、より高度な無色透明性を得るといった観点から、黄色度(YI)が10~0(更に好ましくは5~0、特に好ましくは3~0)であるものがより好ましい。このような黄色度が前記上限を超えると、より高度な水準の無色透明性を達成することが困難となる傾向にある。このような全光線透過率、ヘイズ(濁度)及び黄色度(YI)は、測定装置として、日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」又は日本電色工業株式会社製の商品名「分光色彩計SD6000」を用いて、厚みが13μm程度(13μm±2μmの範囲:かかる範囲であれば基本的に測定値に変動はない。なお、測定試料の厚みは13μmとすることがより好ましい)のポリイミドからなるフィルムを測定用の試料として用いて測定した値を採用することができる(なお、日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」で全光線透過率とヘイズとを測定し、日本電色工業株式会社製の商品名「分光色彩計SD6000」で黄色度を測定する)。また、測定試料の縦、横の大きさは、前記測定装置の測定部位に配置できるサイズであればよく、縦、横の大きさは適宜変更してもよい。なお、このような全光線透過率は、JIS K7361-1(1997年発行)に準拠した測定を行うことにより求め、ヘイズ(濁度)は、JIS K7136(2000年発行)に準拠した測定を行うことにより求め、黄色度(YI)はASTM E313-05(2005年発行)に準拠した測定を行うことにより求める。
 このようなポリイミドは、波長590nmで測定される厚み方向のリタデーション(Rth)の絶対値が、厚み10μmに換算して、200nm以下であることが好ましく、150nm以下であることがより好ましく、100nm以下であることが更に好ましく、50nm以下であることが特に好ましい。すなわち、前記リタデーション(Rth)の値は-200nm~200nm(より好ましくは-150nm~150nm、更に好ましくは-100~100nm、特に好ましくは-50~50nm)であることが好ましい。このような厚み方向のリタデーション(Rth)の絶対値が前記上限を超えると、ディスプレイ機器に使用した際に、コントラストが低下するとともに視野角が低下してしまう傾向にある。なお、前記リタデーション(Rth)の絶対値が前記範囲内となると、ディスプレイ機器に使用した際に、コントラストの低下を抑制する効果及び視野角を改善する効果がより高度なものとなる傾向にある。このように、ディスプレイ機器に使用した場合に、コントラストの低下をより高度に抑制でき、且つ、視野角をより改善することが可能となるといった観点で、厚み方向のリタデーション(Rth)の絶対値はより低い値となることが好ましい。
 このような「厚み方向のリタデーション(Rth)の絶対値」は、測定装置としてAXOMETRICS社製の商品名「AxoScan」を用い、後述のようにして測定したポリイミドフィルムの屈折率(589nm)の値を前記測定装置にインプットした後、温度:25℃、湿度:40%の条件下、波長590nmの光を用いて、ポリイミドフィルムの厚み方向のリタデーションを測定し、求められた厚み方向のリタデーションの測定値(測定装置の自動測定(自動計算)による測定値)に基づいて、フィルムの厚み10μmあたりのリタデーション値に換算した値(換算値)を求め、その換算値から絶対値を算出することにより求めることができる。このように、「厚み方向のリタデーション(Rth)の絶対値」は、前記換算値の絶対値(|換算値|)を算出することで求めることができる。なお、測定試料のポリイミドフィルムのサイズは、測定器のステージの測光部(直径:約1cm)よりも大きければ良いため、特に制限されないが、縦:76mm、横52mm、厚み5~20μmの大きさとすることが好ましい。
 また、厚み方向のリタデーション(Rth)の測定に利用する「ポリイミドフィルムの屈折率(589nm)」の値は、リタデーションの測定対象となるフィルムを形成するポリイミドと同じ種類のポリイミドからなる未延伸のフィルムを形成した後、かかる未延伸のフィルムを測定試料として用いて(なお、測定対象となるフィルムが未延伸のフィルムである場合には、そのフィルムをそのまま測定試料として用いることができる。)、測定装置として屈折率測定装置(株式会社アタゴ製の商品名「NAR-1T SOLID」)を用い、589nmの光源を用いて、23℃の温度条件で、測定試料の589nmの光に対する平均屈折率を測定して求めることができる。このように、未延伸のフィルムを利用して「ポリイミドフィルムの屈折率(589nm)」の値を測定し、得られた測定値(測定試料の589nmの光に対する平均屈折率の値)を上述の厚み方向のリタデーション(Rth)の測定に利用する。ここにおいて、測定試料のポリイミドフィルムのサイズは、前記屈折率測定装置に利用できる大きさであればよく、特に制限されず、1cm角(縦横1cm)で厚み5~20μmの大きさとしてもよい。
 このようなポリイミドの形状は特に制限されず、例えば、フィルム形状や粉状としたり、更には、押出成形によりペレット形状等としてもよい。このように、本発明のポリイミドは、フィルム形状にしたり、押出成形によりペレット形状としたり、公知の方法で各種の形状に適宜成形することもできる。
 また、このようなポリイミドは、フレキシブル配線基板用フィルム、耐熱絶縁テープ、電線エナメル、半導体の保護コーティング剤、液晶配向膜、有機EL用透明導電性フィルム、フレキシブル基板フィルム、フレキシブル透明導電性フィルム、有機薄膜型太陽電池用透明導電性フィルム、色素増感型太陽電池用透明導電性フィルム、フレキシブルガスバリアフィルム、タッチパネル用フィルム、フラットパネルディテクタ用TFT基板フィルム、複写機用シームレスポリイミドベルト(いわゆる転写ベルト)、透明電極基板(有機EL用透明電極基板、太陽電池用透明電極基板、電子ペーパーの透明電極基板等)、層間絶縁膜、センサー基板、イメージセンサーの基板、発光ダイオード(LED)の反射板(LED照明の反射板:LED反射板)、LED照明用のカバー、LED反射板照明用カバー、カバーレイフィルム、高延性複合体基板、半導体向けレジスト、リチウムイオンバッテリー、有機メモリ用基板、有機トランジスタ用基板、有機半導体用基板、カラーフィルタ基材等を製造するための材料として特に有用である。また、このようなポリイミドは、上述のような用途以外にも、その形状を粉状体としたり、各種成形体とすること等により、例えば、自動車用部品、航空宇宙用部品、軸受部品、シール材、ベアリング部品、ギアホイールおよびバルブ部品などに、適宜利用することも可能である。
 以上、本発明のポリイミドについて説明したが、次に、上記本発明のポリイミド及びポリイミド前駆体樹脂を製造するための方法として好適に利用することが可能な方法についてそれぞれ説明する。
 〈本発明のポリイミドを製造するための方法〉
 本発明のポリイミドを製造するための方法としては、特に制限されるものではないが、重合溶媒の存在下、上記本発明のテトラカルボン酸二無水物と、式:HN-R-NHで表される芳香族ジアミン[式中のRは炭素数6~50のアリーレン基であり、前述の一般式(4)及び(5)中のRと同義である(その好適なものも同様である)]とを反応させることにより、上記本発明のポリイミドを得る方法(以下、便宜上、単に「ポリイミドの製造方法(I)」と称する)を好適に採用することができる。このように、本発明のポリイミドは、上記本発明のテトラカルボン酸二無水物と上記芳香族ジアミンとの反応物として得ることができる。このようなポリイミドの製造方法(I)において、上記本発明のテトラカルボン酸二無水物と前記芳香族ジアミンとを反応させてポリイミドを得るための具体的な工程は特に制限されない。
 また、このようなポリイミドの製造方法(I)としては、例えば、重合溶媒の存在下、上記本発明のテトラカルボン酸二無水物と、上記式:HN-R-NHで表される芳香族ジアミンとを反応させることにより、上記一般式(4)及び(5)中のXがいずれも水素原子である上記本発明のポリイミド前駆体樹脂(上記本発明のポリイミド前駆体樹脂として好適なポリアミド酸)を得る工程(Ia)と、
 前記ポリイミド前駆体樹脂(ポリアミド酸)をイミド化して、上記本発明のポリイミドを得る工程(Ib)と、
を含む方法としてもよい。以下、本発明のポリイミドの製造方法に好適に利用することが可能な工程(Ia)及び(Ib)について説明する。
 (工程(Ia):ポリアミド酸を得る工程)
 工程(Ia)は、重合溶媒の存在下、上記本発明のテトラカルボン酸二無水物と、上記式:HN-R-NHで表される芳香族ジアミンとを反応させて、上記ポリアミド酸(上記一般式(4)及び(5)中のXがいずれも水素原子である上記本発明のポリイミド前駆体樹脂)を得る工程である。
 このようなポリアミド酸を得る工程においては、モノマー成分として、上記本発明のテトラカルボン酸二無水物と、上記式:HN-R-NHで表される芳香族ジアミンとを利用する。このような本発明のテトラカルボン酸二無水物が、上記一般式(1)で表されるテトラカルボン酸二無水物であり、前記立体異性体の総量(そのテトラカルボン酸二無水物に含有されている全ての立体異性体の合計量)に対して上記立体異性体(A)及び(B)の合計量の割合が50モル%以上であり、かつ、前記立体異性体の総量(そのテトラカルボン酸二無水物に含有されている全ての立体異性体の合計量)に対して前記立体異性体(A)の含有割合が30モル%以上であるという条件を満たすものであるため、その立体構造に由来して、上記本発明のポリイミド前駆体樹脂として好適なポリアミド酸(上記一般式(4)及び(5)中のXがいずれも水素原子である上記本発明のポリイミド前駆体樹脂)を調製することができる。
 また、前記式:HN-R-NHで表される芳香族ジアミンに関して、Rは炭素数6~50のアリーレン基であり、前述の一般式(4)及び(5)中のRと同義である(その好適なものも同様である)。このような芳香族ジアミンとしては、例えば、国際公開第2017/030019号の段落[0211]に記載の芳香族ジアミン、国際公開第2014/034760号の段落[0157]に記載の芳香族ジアミン等を適宜利用できる。また、このような芳香族ジアミンとしては市販のものを適宜用いてもよい。このような芳香族ジアミンは目的とするポリイミドの設計に併せて、1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。
 また、前記重合溶媒としては、前記テトラカルボン酸二無水物と上記芳香族ジアミンの双方を溶解することが可能な有機溶媒であることが好ましい。このような有機溶媒としては、ポリイミドやポリアミド酸の製造時に利用することが可能な公知の重合溶媒(有機溶媒:例えば国際公開2017-030019号の段落[0213]に記載の有機溶媒等)を適宜利用できる。このような重合溶媒としては、テトラカルボン酸二無水物、芳香族ジアミンに対する溶解性の観点から、非プロトン系極性溶媒を用いることがより好ましく、N,N-ジメチルアセトアミドを含有する溶媒(N,N-ジメチルアセトアミドのみからなるものであっても、他の溶媒と組み合わせたものであってもよい)がより好ましく、中でも、N,N-ジメチルアセトアミド及びγ-ブチロラクトンを組み合わせたものが特に好ましい。このように、前記重合溶媒として、N,N-ジメチルアセトアミド及びγ-ブチロラクトンを組み合わせて利用した場合には、重合反応をより効率よく進行させることが可能となり(より反応が進行し易い状態となり)、これにより、より短時間で高重合度のポリアミド酸ワニスを得ることが可能となる。このような有機溶媒は、1種を単独であるいは2種以上を混合して使用してもよい。
 また、工程(Ia)においては、前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させる際に、反応速度向上と高重合度のポリアミド酸を得るという観点から、前記有機溶媒中に塩基化合物を更に添加してもよい。このような塩基性化合物としては特に制限されないが、例えば、トリエチルアミン、テトラブチルアミン、テトラヘキシルアミン、1,8-ジアザビシクロ[5.4.0]-ウンデセン-7、ピリジン、イソキノリン、α-ピコリン等が挙げられる。また、このような塩基化合物の使用量は、前記テトラカルボン酸二無水物1当量に対して0.001~10当量とすることが好ましく、0.01~0.1当量とすることがより好ましい。
 また、工程(Ia)において、前記テトラカルボン酸二無水物と前記芳香族ジアミンとの使用割合、重合溶媒(有機溶媒)の使用量、前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させる際の反応温度や反応時間などは、公知のポリアミド酸の製造方法において採用されている条件を適宜採用することができる。例えば、前記テトラカルボン酸二無水物と前記芳香族ジアミンの使用割合としては、前記芳香族ジアミン中のアミノ基1当量に対して反応に用いられるテトラカルボン酸二無水物中の全ての酸無水物基の量が0.2~2当量(より好ましくは0.3~1.2当量)となるようにすることが好ましい。また、工程(Ia)における前記重合溶媒(有機溶媒)の使用量としては、前記テトラカルボン酸二無水物と前記芳香族ジアミンの総量が、反応溶液の全量に対して0.1~50質量%(より好ましくは10~30質量%)になるような量であることが好ましい。また、反応させる際の反応温度は、これらの化合物を反応させることが可能な温度に適宜調整すればよく、特に制限されず、場合に応じて、-40~450℃とすることが好ましく、-20~400℃とすることがより好ましく、-20~200℃とすることが更に好ましく、0~100℃とすることが特に好ましい。
 このように、テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させるための方法としては、例えば、大気圧中、窒素、ヘリウム、アルゴン等の不活性雰囲気下において、前記芳香族ジアミンを溶媒に溶解させた後、前記反応温度において、前記テトラカルボン酸二無水物を添加し、その後、10~48時間反応させる方法;大気圧中、窒素、ヘリウム、アルゴン等の不活性雰囲気下において、反応容器中に前記芳香族ジアミン及び前記テトラカルボン酸二無水物を添加した後に、溶媒を添加し、溶媒中に各成分を溶解させた後、前記反応温度において、10~48時間反応させる方法;等を採用してもよい。
 このようにして、工程(Ia)を施すことにより、繰り返し単位(A’)及び(B’)の一般式中のXがいずれも水素原子であり、前記繰り返し単位(A’)及び(B’)の合計量の割合が全繰り返し単位の総量に対して50モル%以上であり、かつ、前記繰り返し単位(A’)の含有割合が全繰り返し単位の総量に対して30モル%以上であるポリアミド酸を得ることができる。なお、このようにして得られるポリアミド酸は、上記本発明のポリイミド前駆体樹脂において、その好適なものとして説明したポリアミド酸と同様のものである。
 なお、最終的に得られるポリイミドに、前記繰り返し単位(A)及び(B)と共に他の繰り返し単位を含有させる場合には、例えば、工程(Ia)において、上記本発明のテトラカルボン酸二無水物とともに、他のテトラカルボン酸二無水物を用い、これらを前記芳香族ジアミンと反応させてもよく、あるいは、前記芳香族ジアミンとともに他のジアミンを用いて、これらを上記本発明のテトラカルボン酸二無水物と反応させてもよく、更には、このような他のテトラカルボン酸二無水物及び他のジアミンを両方とも適宜利用してポリイミドを製造してもよい。このような他のテトラカルボン酸二無水物や他の芳香族ジアミンとしては、それぞれ、ポリイミドの製造に用いられる公知のものを適宜用いることができる。
 (工程(Ib):ポリイミドを得る工程)
 工程(Ib)は、前記ポリアミド酸をイミド化して、上記本発明のポリイミドを得る工程である。
 このようなポリアミド酸のイミド化の方法は、ポリアミド酸をイミド化し得る方法であればよく特に制限されず、公知の方法を適宜採用することができる。このようなポリアミド酸のイミド化の方法としては、例えば、前記ポリアミド酸をいわゆるイミド化剤を用いてイミド化する方法(Ib-1)、前記ポリアミド酸を加熱処理を施すことによりイミド化する方法(Ib-2)等を採用できる。
 このようなイミド化剤を用いてイミド化する方法(Ib-1)としては、特に制限されず、ポリアミド酸をイミド化剤を利用してイミド化することが可能な公知の方法(温度条件、圧力条件、雰囲気条件、イミド化剤の種類、イミド化剤の使用量、反応時間等の各種条件を含む)を適宜使用することができ、例えば、国際公開第2015-163314号、国際公開第2014/034760号、等に記載の方法を適宜採用できる。また、方法(Ib-1)においては、イミド化剤と併せて公知の方法において利用される添加剤(例えば、反応促進剤(酸補足剤等)、共沸脱水剤等)等も適宜利用することができ、これらの利用方法や種類等も公知の条件(例えば、国際公開第2015-163314号、国際公開第2014/034760号、等に記載の条件)と同様にすればよい(例えば、触媒量の反応促進剤(DMAPなど)と共沸脱水剤(ベンゼン、トルエン、キシレンなど)を添加して、ポリアミド酸がイミドになる際に生じる水を共沸脱水により除去し、化学イミド化してもよい)。なお、このようなイミド化剤としては、反応性、入手性、実用性の観点から、無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸が好ましく、無水酢酸、無水プロピオン酸がより好ましく、無水酢酸が更に好ましい。また、反応促進剤を併せて利用する場合、反応促進剤としては、反応性、入手性、実用性の観点から、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルピペリジン、ピリジンが好ましく、トリエチルアミン、ピリジン、N-メチルピペリジンがより好ましく、トリエチルアミン、N-メチルピペリジンが更に好ましい。
 また、加熱処理を施すことによりイミド化する方法(Ib-2)としては、特に制限されず、ポリアミド酸を加熱処理してイミド化することが可能な公知の方法(温度条件、雰囲気条件、イミド化剤の種類、イミド化剤の使用量等にの各種条件を含む)を適宜使用することができ、例えば、国際公開第2015-163314号、国際公開第2014/034760号、等に記載の方法を適宜採用できる。また、加熱処理を施すことによりイミド化する方法(Ib-2)としては、反応を効率よく進行させるといった観点から、前記ポリアミド酸に対して60~450℃(より好ましくは80~400℃)の温度条件の加熱処理を施すことによりイミド化する方法が好ましい。また、前記加熱処理を施すことによりイミド化する方法を採用する場合の反応時間(加熱時間)は0.5~5時間とすることが好ましい。
 また、前記加熱処理を施してイミド化する場合においては、高分子量化やイミド化を促進させるために、いわゆる反応促進剤を利用してもよい。このような反応促進剤としては、公知の反応促進剤(三級アミン等)を適宜利用してもよい。また、このような反応促進剤としては、反応性、入手性、実用性の観点から、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルピペリジン、ピリジンが好ましく、トリエチルアミン、ピリジン、N-メチルピペリジンがより好ましく、トリエチルアミン、N-メチルピペリジンが更に好ましい。このような反応促進剤は1種を単独であるいは2種以上を組み合わせて用いてもよい。また、前記反応促進剤の使用量としてはポリアミド酸中の繰り返し単位1モルに対して0.01~4.0モルとすることが好ましく、0.05~2.0モルであることがより好ましく、0.05~1.0モルとすることが更に好ましい。
 また、このような工程(Ia)及び工程(Ib)を含む方法を利用する場合であって、イミド化に際して加熱処理を施すことによりイミド化する方法(Ib-2)を採用する場合には、前記工程(Ia)を実施した後に、上記ポリアミド酸を単離することなく、有機溶媒中において前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させて得られた反応液(前記ポリアミド酸を含有する反応液)をそのまま用い、前記反応液に対して溶媒を蒸発除去する処理(溶媒除去処理)を施して溶媒を除去した後、前記加熱処理を施すことによりイミド化する方法を採用してもよい。このような溶媒を蒸発除去する処理により、モールドを利用した場合にはそのモールドに基づく形態としたり、基材上に塗布した場合にはフィルム状などの形態にして単離し、その後、加熱処理を施して、所望の形態のポリイミドを得ること等が可能となる。このように、フィルム状のポリイミドを製造する場合、得られた反応液をそのまま基材(例えばガラス板)上に塗布し、前記溶媒を蒸発除去する処理及び加熱処理を施すことで簡便な方法でフィルム状のポリイミドを製造することが可能となる。
 このような溶媒を蒸発除去する処理(溶媒除去処理)の方法における温度条件としては、気泡やボイドの発生を十分に抑制しながら効率よく溶媒を除去するといった観点から、0~180℃であることが好ましく、30~150℃であることがより好ましい。なお、このような反応液の塗布方法としては特に制限されず、公知の方法(キャスト法など)を適宜採用することができる。また、前記反応液から上記ポリアミド酸を単離して利用する場合、その単離方法としては特に制限されず、ポリアミド酸を単離することが可能な公知の方法を適宜採用することができ、例えば、再沈殿物として単離する方法などを採用してもよい。
 また、前記加熱処理を施してイミド化する方法(Ib-2)を採用する場合には、工程(Ia)と工程(Ib)とを一連の工程として同時に施してもよい。このように、工程(Ia)と工程(Ib)とを一連の工程として同時に施す方法としては、例えば、前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させる段階から加熱処理を施すことにより、ポリアミド酸(中間体)の形成とそれに続くポリイミドの形成(イミド化)とを同時に進行せしめて、工程(Ia)と工程(Ib)とを同時に施す方法を採用することができる。
 また、このように、前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させる際から加熱処理を施して、工程(Ia)と工程(Ib)とを同時に施す場合、重合溶媒の存在下、前記テトラカルボン酸二無水物と前記芳香族ジアミンとを反応させる段階から反応促進剤を用い、前記重合溶媒と前記反応促進剤の存在下、前記テトラカルボン酸二無水物と前記芳香族ジアミンとを加熱して反応させることによりポリイミドを形成することが好ましい。このようにして工程(Ia)と工程(Ib)とを同時に施す場合、加熱によって、工程(Ia)におけるポリアミド酸の生成と工程(Ib)におけるポリアミド酸のイミド化とが連続的に引き起こされて、溶媒中においてポリイミドが調製されることとなるが、その際に、前記反応促進剤を利用することで、ポリアミド酸の生成とイミド化の反応速度が非常に早くなり、分子量をより効率よく大きくする(伸ばすこと)が可能となる。また、前記反応促進剤を用いて加熱することにより工程(Ia)と工程(Ib)とを同時に施す場合には、加熱により、テトラカルボン酸二無水物と芳香族ジアミンとの反応が進行するとともに、反応により生成される水を蒸発させて除去することも可能となるため、いわゆる縮合剤(脱水縮合剤)を利用することなく、反応を効率よく進行させることも可能となる。
 また、前記重合溶媒と前記反応促進剤の存在下、前記テトラカルボン酸二無水と前記芳香族ジアミンとを加熱して反応させることによりポリイミドを形成する場合(反応促進剤を用いて加熱することにより工程(Ia)と工程(Ib)とを同時に施す場合)、その加熱時の温度条件としては、100~250℃であることが好ましく、120~250℃であることがより好ましく、150~220℃であることが更に好ましい。このような温度条件が前記下限未満では反応温度が水の沸点以下であるため、水の留去が生じず、水の存在により反応の進行が阻害され、ポリイミドの分子量をより大きなものとすることが困難となる傾向にあり、他方、前記上限を超えると、溶媒の熱分解などの副反応が生じ、加熱後に得られるポリイミドと有機溶媒との混合液(ワニス)中の不純物が多くなって、これを用いてフィルムを形成した場合に、得られるポリイミドの物性が低下する傾向にある。
 また、反応促進剤を用いて加熱することにより工程(Ia)と工程(Ib)とを同時に施す場合、その工程に利用する反応促進剤としては、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルピペリジン、ピリジン、コリジン、ルチジン、2-ヒドロキシピリジン、4-ジメチルアミノピリジン(DMAP)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、ジアザビシクロノネン(DBN)、ジアザビシクロウンデセン(DBU)などの三級アミンが好ましく、中でも、反応性、入手性、実用性の観点から、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルピペリジン、ピリジンが好ましく、トリエチルアミン、ピリジン、N-メチルピペリジンがより好ましく、トリエチルアミン、N-メチルピペリジンが更に好ましい。このような反応促進剤は1種を単独であるいは2種以上を組み合わせて用いてもよい。このように、反応促進剤を用いて加熱することにより工程(Ia)と工程(Ib)とを同時に施す場合、その反応促進剤の使用量は、前記テトラカルボン酸二無水物と前記芳香族ジアミンの総量(合計量)100質量部に対して0.01~10質量部とすることが好ましく、0.05~2質量部とすることがより好ましい。
 なお、前述のように反応促進剤を用いて加熱することにより工程(Ia)と工程(Ib)とを同時に施してポリイミドを形成する場合、例えば、加熱後に得られる反応液(前記ポリイミドを含む反応液)を各種基板の上に塗布して塗膜を形成し、その後、該塗膜から溶媒を除去し、加熱硬化せしめることによりフィルム状の形状としてポリイミドを得ることも可能である。このような加熱硬化工程における加熱条件としては、50~450℃(より好ましくは50~300℃)の温度条件で1~5時間加熱する条件とすることが好ましい。このような加熱条件(温度及び時間の条件)が前記下限未満では十分に溶媒を乾燥させることができず、フィルムの耐熱性が低下する傾向にあり、他方、前記上限を超えると末端アミノ基の酸化などの副反応が進行して透明性が低下する場合が生じる傾向にある。
 このようにして、前記繰り返し単位(A)及び(B)の合計量の割合が全繰り返し単位の総量に対して50モル%以上であり、かつ、前記繰り返し単位(A)の含有割合が全繰り返し単位の総量に対して30モル%以上である上記本発明のポリイミドを得ることができる。
 〈ポリイミド前駆体樹脂を製造するための方法〉
 上記本発明のポリイミド前駆体樹脂は、繰り返し単位の式中のXの置換基の種類に応じて、1)ポリアミド酸(各繰り返し単位の一般式中のXがいずれも水素原子)、2)ポリアミド酸エステル(各繰り返し単位の一般式中のXの少なくとも一部がアルキル基)、3)ポリアミド酸シリルエステル(各繰り返し単位の一般式中のXの少なくとも一部がアルキルシリル基)、に分類することができる。そこで、本発明のポリイミド前駆体樹脂を製造するための方法として好適に採用することが可能な方法については、ポリイミド前駆体樹脂の分類1)~3)ごとに分けて説明する。なお、本発明のポリイミド前駆体樹脂を製造するための方法は、以下の製造方法に限定されるものではない。
 1)ポリアミド酸
 以下、前記ポリアミド酸を製造するために好適に利用することが可能な方法を簡単に説明する。このようなポリアミド酸を製造するために好適に利用することが可能な方法としては、特に制限されないが、上記本発明のポリイミドの製造方法において説明した工程(Ia)を含む方法とすることが好ましい。すなわち、このようなポリアミド酸を製造するために好適に利用することが可能な方法としては、重合溶媒の存在下、前記テトラカルボン酸二無水物と、前記芳香族ジアミンとを反応させて、上記ポリアミド酸を得る方法とすることが好ましい。なお、このような反応の条件等は上述の通りである。
 2)ポリアミド酸エステル
 前記ポリアミド酸エステルを製造するために好適に利用することが可能な方法を以下において説明する。すなわち、先ず、前記テトラカルボン酸二無水物を任意のアルコールと反応させ、ジエステルジカルボン酸を得た後、塩素化試薬(例えば、チオニルクロライド、オキサリルクロライド等)と反応させ、ジエステルジカルボン酸クロライド(テトラカルボン酸の誘導体)を得る。このようにして得られたジエステルジカルボン酸クロライドを含有する単量体成分(上記本発明のテトラカルボン酸二無水物に由来する前記ジエステルジカルボン酸クロライドと、場合により上記本発明のテトラカルボン酸二無水物を含む成分)と、前記芳香族ジアミンとを-20~120℃(より好ましくは-5~80℃)の範囲で1~72時間攪拌して反応させることで、各繰り返し単位の式中のXの少なくとも一部がアルキル基であるポリイミド前駆体樹脂が得られる。なお、撹拌時の温度を80℃以上として反応させる場合、分子量が重合時の温度履歴に依存して変動し易くなり、また、熱によりイミド化が進行する場合も生じ得ることから、ポリイミド前駆体樹脂を安定的に製造することが困難となる傾向にある。また、ジエステルジカルボン酸と前記芳香族ジアミンとを、リン系縮合剤やカルボジイミド縮合剤などを用いて脱水縮合することによっても、簡便に、前記ポリアミド酸エステルからなるポリイミド前駆体樹脂が得られる。このような方法で得られるポリアミド酸エステルからなるポリイミド前駆体樹脂は、安定なため、水やアルコールなどの溶剤を加えて再沈殿などの精製を行うこともできる。
 3)ポリアミド酸シリルエステル
 以下、前記ポリアミド酸シリルエステルを製造するために好適に利用することが可能な方法を、いわゆる間接法と直接法とに分けて簡単に説明する。
 <間接法>
 ポリアミド酸シリルエステルを製造するために好適に利用することが可能な方法としては、以下のような方法(間接法)を採用できる。すなわち、先ず、前記芳香族ジアミンとシリル化剤を反応させ、シリル化された前記芳香族ジアミンを得る。なお、必要に応じて、蒸留等によりシリル化された芳香族ジアミンの精製を行ってもよい。次に、脱水された溶剤中に、シリル化された芳香族ジアミン、又は、シリル化された芳香族ジアミンと芳香族ジアミン(シリル化されていないもの)との混合物を溶解させて溶液を得る。次いで、前記溶液を撹拌しながら、該溶液中に前記テトラカルボン酸二無水物を徐々に添加し、0~120℃(好ましくは5~80℃)の範囲で1~72時間撹拌することで、各繰り返し単位の式中のXの少なくとも一部がアルキルシリル基であるポリアミド酸シリルエステルからなるポリイミド前駆体樹脂を得ることができる。なお、このような撹拌時の温度を80℃以上として反応させる場合、分子量が重合時の温度履歴に依存して変動し易くなり、また、熱によりイミド化が進行する場合も生じ得ることから、ポリイミド前駆体樹脂を安定的に製造することが困難となる傾向にある。
 なお、前記シリル化剤としては、塩素原子を含有しないシリル化剤を用いることが好ましい。このように塩素原子を含有しないシリル化剤を用いることにより、シリル化された芳香族ジアミンを精製する必要がなくなるため、より工程を簡略化することが可能となる。このような塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。また、前記シリル化剤としては、フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
 また、芳香族ジアミンのシリル化反応には、反応を促進するために、ピリジン、ピペリジン、トリエチルアミンなどのアミン系触媒を用いることができる。このようなアミン系触媒はポリイミド前駆体樹脂の重合触媒としてもそのまま使用することができる。
 <直接法>
 先ず、上述の「1)ポリアミド酸」の欄において説明したポリアミド酸を製造するために好適に利用することが可能な方法(前記工程(I)を施す方法)を実施し、反応後に得られた反応液をそのままポリアミド酸溶液として調製する。その後、得られたポリアミド酸溶液に対してシリル化剤を混合し、0~120℃(好ましくは5~80℃)の範囲で1~72時間撹拌することで、前記ポリアミド酸シリルエステルからなるポリイミド前駆体樹脂を得ることができる(直接法)。なお、撹拌時の温度を80℃以上として反応させる場合、分子量が重合時の温度履歴に依存して変動し易くなり、また、熱によりイミド化が進行する場合も生じ得ることから、ポリイミド前駆体樹脂を安定的に製造することが困難となる傾向にある。このような直接法に用いることが可能なシリル化剤としても、シリル化されたポリアミド酸、もしくは、得られたポリイミドを精製する必要がないため、塩素原子を含有しないシリル化剤を用いることが好ましい。このような塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。また、このようなシリル化剤としては、フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
 以上、説明した本発明のポリイミド前駆体樹脂を製造するための方法はいずれも有機溶媒中で実施することが可能である。このようにして、有機溶媒中でのポリイミド前駆体樹脂を製造した場合には、本発明のポリイミド前駆体樹脂溶液(ポリイミド前駆体樹脂のワニス)を容易に得ることができる。
 以上、本発明のポリイミド及びポリイミド前駆体樹脂を製造するために好適に利用することが可能な方法について説明したが、次に、本発明のポリイミド前駆体樹脂溶液について説明する。
 [ポリイミド前駆体樹脂溶液]
 本発明のポリイミド前駆体樹脂溶液は、上記本発明のポリイミド前駆体樹脂(好ましくはポリアミド酸)と有機溶媒とを含むものである。
 このようなポリイミド前駆体樹脂溶液(樹脂溶液:ワニス)に用いる有機溶媒としては、前述の重合溶媒と同様のものを好適に利用することができる。そのため、本発明のポリイミド前駆体樹脂溶液(好ましくはポリアミド酸溶液)は、上述の本発明のポリイミド前駆体樹脂を製造するための方法(例えば、ポリイミド前駆体樹脂がポリアミド酸の場合には、ポリアミド酸を製造するために好適に利用することが可能な方法(前記工程(Ia)を施す方法))を実施して、反応後に得られた反応液をそのままポリイミド前駆体樹脂溶液(例えば、ポリイミド前駆体樹脂がポリアミド酸の場合にはポリアミド酸溶液)とすることで調製してもよい。
 このようなポリイミド前駆体樹脂溶液(好ましくはポリアミド酸溶液)における前記ポリイミド前駆体樹脂(好ましくはポリアミド酸)の含有量は特に制限されないが、1~80質量%であることが好ましく、5~50質量%であることがより好ましい。このような含有量が前記下限未満ではポリイミドフィルムの製造が困難になる傾向にあり、他方、前記上限を超えると、同様にポリイミドフィルムの製造が困難になる傾向にある。なお、このようなポリイミド前駆体樹脂溶液(好ましくはポリアミド酸溶液)は、上記本発明のポリイミドの製造に好適に利用することができ、各種形状のポリイミドを製造するために好適に利用できる。例えば、このようなポリイミド前駆体樹脂溶液(好ましくはポリアミド酸溶液)を各種基板の上に塗布し、これをイミド化して硬化することで、容易にフィルム形状のポリイミドを製造することもできる。
 以上、本発明のポリイミド前駆体樹脂溶液について説明したが、次に、本発明のポリイミド溶液について説明する。
 [ポリイミド溶液]
 本発明のポリイミド溶液は、上記本発明のポリイミドと有機溶媒とを含有するものである。
 このようなポリイミド溶液に用いる有機溶媒としては、前述の重合溶媒と同様のものを好適に利用することができる。また、本発明のポリイミド溶液は、上述の本発明のポリイミドの製造方法を実施して得られるポリイミドが製造時に用いた重合溶媒(有機溶媒)に十分に溶解するものである場合には、反応後に得られた反応液をそのままポリイミド溶液としてもよい(例えば、有機溶媒(重合溶媒)として、得られるポリイミドを十分に溶解可能なものを用いて、その溶媒中でポリイミドを形成することにより、反応後に得られた反応液をそのままポリイミド溶液とすることが可能である。)。
 このように、本発明のポリイミド溶液に用いる有機溶媒としては、前述の重合溶媒において説明したものと同様のものを好適に利用することができる。なお、本発明のポリイミド溶液に用いる有機溶媒としては、例えば、前記ポリイミド溶液を塗工液として利用した場合の溶媒の蒸散性や除去性の観点から、沸点が200℃以下のハロゲン系溶剤(例えば、ジクロロメタン(沸点40℃)、トリクロロメタン(沸点62℃)、四塩化炭素(沸点77℃)、ジクロロエタン(沸点84℃)、トリクロロエチレン(沸点87℃)、テトラクロロエチレン(沸点121℃)、テトラクロロエタン(沸点147℃)、クロロベンゼン(沸点131℃)、o-ジクロロベンゼン(沸点180℃)等)を利用してもよい。
 また、このようなポリイミド溶液に用いる有機溶媒としては、溶解性、成膜性、生産性、工業的入手性、既存設備の有無、価格といった観点から、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトン、プロピレンカーボネート、テトラメチル尿素、1,3-ジメチル-2-イミダゾリジノン、シクロペンタノンが好ましく、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、γ-ブチロラクトン、テトラメチル尿素がより好ましく、N,N-ジメチルアセトアミド、γ-ブチロラクトンが特に好ましい。なお、このような有機溶媒は1種を単独で、あるいは2種以上を組み合わせて利用してもよい。
 また、このようなポリイミド溶液は、各種の加工品を製造するための塗工液等として好適に利用することも可能である。例えば、フィルムを形成する場合、上記本発明のポリイミド溶液を塗工液として利用して、これを基材上に塗工して塗膜を得た後、溶媒を除去することで、ポリイミドフィルムを形成してもよい。このような塗工方法は特に制限されず、公知の方法(スピンコート法、バーコート法、ディップコート法など)を適宜利用することができる。
 このようなポリイミド溶液においては、前記ポリイミドの含有量(溶解量)は特に制限されないが、1~75質量%であることが好ましく、10~50質量%であることがより好ましい。このような含有量が前記下限未満では、製膜等に利用した場合に成膜後の膜厚が薄くなる傾向にあり、他方、前記上限を超えると一部が溶媒に不溶となる傾向にある。さらに、このようなポリイミド溶液には、使用目的等に応じて、酸化防止剤(フェノール系、ホスファイト系、チオエーテル系など)、紫外線吸収剤、ヒンダードアミン系光安定剤、核剤、樹脂添加剤(フィラー、タルク、ガラス繊維など)、難燃剤、加工性改良剤・滑材等の添加剤を更に添加してもよい。なお、これらの添加剤としては、特に制限されず、公知のものを適宜利用することができ、市販のものを利用してもよい。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 先ず、以下に示す実施例等において得られた化合物やポリイミドの特性の評価方法について説明する。
 <IR測定及びNMR測定>
 各実施例や各比較例で採用するIR測定及びNMR測定には、測定装置として、それぞれ、IR測定機(日本分光株式会社製FT/IR-4100)、NMR測定機(VARIAN社製、商品名:UNITY INOVA-600)を用いた。
 <全光線透過率の測定>
 ポリイミドの全光線透過率の値(単位:%)は、各実施例等で得られたポリイミド(フィルム形状のポリイミド)をそのまま測定用の試料として用い、測定装置として日本電色工業株式会社製の商品名「ヘーズメーターNDH-5000」を用い、JIS K7361-1(1997年発行)に準拠した測定を行うことにより求めた。
 <5%重量減少温度(Td5%)の測定>
 ポリイミドの5%重量減少温度は、各実施例等で得られたポリイミドから、それぞれ2~4mgの試料を準備し、これをアルミ製サンプルパンに入れ、測定装置として熱重量分析装置(エスアイアイ・ナノテクノロジー株式会社製の商品名「TG/DTA7200」)を使用して、窒素ガス雰囲気下、走査温度を30℃から550℃に設定し、昇温速度10℃/分の条件で加熱して、用いた試料の重量が5%減少する温度を測定することにより求めた。
 <溶解性の評価>
 各実施例等で得られたポリイミドからそれぞれフィルム状の試料100mgを準備し、該試料をそれぞれ、蓋付サンプル瓶(容量5ml)内に予め導入されたN-メチル-2-ピロリドン(NMP)900mgに対して添加した。このようにして前記試料をNMP中に添加した後、大気圧、室温(25℃)の条件下において、NMP内に試料が完全に溶解するまでの時間をそれぞれ測定して、溶解性を以下の基準A~Fにより評価した。
〈評価基準〉
A :6時間以内に試料の全量が溶解した。
B :12時間以内に試料の全量が溶解した。
C :24時間以内に試料の全量が溶解した。
D :1週間以内に試料の全量が溶解した。
E :試料の全量が溶解するのに1週間以上を要した。
F :試料が膨潤し、必ずしも十分に溶解しなかった。
G :不溶であった。
 (実施例1)
 〈原料化合物の調製工程〉
 特開2015-137235号の実施例1に開示されている方法と同様の方法を採用して、下記式(A):
Figure JPOXMLDOC01-appb-C000023
で表される化合物(5-ノルボルネン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-5’’-ノルボルネン)を調製した。以下、上記式(A)で表される化合物を、便宜上、単に「原料化合物」と称する。
 〈テトラカルボン酸テトラメチルエステルの調製工程〉
 1000mLのガラス製のオートクレーブ(耐圧ガラス工業製の商品名「ハイパーグラスターTEM-V型」)の容器に、メタノール(820mL)、CuCl(II)(81.6g、454mmol)、前記原料化合物(35.6g、148mmol)、及び、Pd(OAc)(NO)(166mg、Pd換算で0.74mmol)を添加して混合液を得た。なお、Pd(OAc)(NO)は2005年に発行されたDalton Trans(vol.11)の第1991頁に記載された方法を採用して製造した。
 次いで、前記容器の内部に存在する混合液に対してガラス管を介してガスをバブリングできるようにガラス管を配置した。その後、前記容器を密閉して内部の雰囲気ガスを窒素で置換した。その後、前記容器に真空ポンプを繋ぎ、容器内を減圧した(容器内の圧力:0.015MPa)。次に、前記混合液中にガラス管を介して一酸化炭素を前記原料化合物に対して0.015モル当量/分の割合(流量)でバブリングして供給しながら、温度を25~30℃に維持するようにしつつ、容器内の圧力を0.13MPaに維持するようにして、前記混合液を5時間撹拌した後、さらに、温度:40℃の条件下、容器内の圧力を0.13MPaに維持するようにして3時間撹拌し、反応液を得た。次いで、前記容器の内部から一酸化炭素を含む雰囲気ガスを除き、前記反応液をエバポレーターで濃縮することにより前記反応液中からメタノールを除去(留去)して、反応生成物を得た(収量65.4g、収率92.6%、重合物0.90%:かかる収量及び収率は、前記反応生成物を少量サンプリングしたものから金属塩を除去処理した後、高速液体クロマトグラフィー(HPLC、Agilent社製、1200シリーズ)分析による測定により求めた値であり、重合物の割合はGPC分析による測定により求めた値である。)。
 その後、前記反応生成物を別の容器(容量2000mLの撹拌機能付きガラス容器)に移して、前記反応生成物に対して、トルエン(1200mL)を加えて80℃の温度条件で1時間激しく撹拌することにより、反応生成物をトルエンで抽出し、トルエン抽出液(反応生成物の濃度:8.4質量%)を得た。次いで、前記トルエン抽出液の温度を80℃に保ったまま、前記トルエン抽出液から、トルエンに溶解しないCuCl及びPd(OAc)(NO)を、桐山ロートを用いた減圧ろ過によって分離した。
 次に、このようにしてCuCl及びPd(OAc)(NO)を分離した後のトルエン抽出液(ろ液)を80℃の温度条件下において5質量%の塩酸(400ml)で2回洗浄した。次いで、このようにして塩酸で洗浄した前記トルエン抽出液を、80℃の温度条件下において、飽和炭酸水素ナトリウム水溶液(400ml)により1回洗浄した。次に、洗浄後に得られたトルエン抽出液をフィルターでろ過してトルエン抽出液(以下、場合により、かかるフィルターろ過後に得られたトルエン抽出液を「トルエン抽出液(A)」と称する。)を得た。なお、トルエン抽出液(A)中の反応生成物の濃度は7.9質量%であった。次いで、前記フィルターろ過後のトルエン抽出液(A)を、常圧(0.1MPa)でトルエンの沸点である110℃程度まで加熱することにより濃縮した。このような濃縮操作により総量で900mlのトルエンを留去し、反応生成物の濃度を20質量%に調整した濃縮液(前記トルエン抽出液の濃縮液)を得た。その後、前記濃縮液を室温(25℃)で12時間ほど放冷して、白色結晶を析出させた。
 次いで、白色結晶を析出させた前記濃縮液から、白色結晶をろ別し、ろ液を回収した。さらに、ろ別した白色結晶を50mLのトルエンで2回かけ洗いを行い、かけ洗い液を回収した。次に、前記ろ液と前記かけ洗い液とを混合した後、その混合液をエバポレーターで濃縮した。このような濃縮工程により、茶色の粘調液が得られた。次いで、得られた粘調液を真空下(圧力:0.5mmHg)、80℃の条件で一昼夜、減圧して溶媒を除去(乾燥)することにより、茶色い固形物(35.3g、収率50%)からなる生成物Aを得た。
 このようにして得られた生成物Aの構造確認のために、IR測定、NMR(H-NMR)測定を行った。このようにして得られた生成物AのIRスペクトルを図1に示し、H-NMR(CDCl)スペクトルを図2に示す。図1~図2に示す結果からも明らかなように、得られた生成物Aは、下記式(B):
Figure JPOXMLDOC01-appb-C000024
で表される化合物(ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル)であることが確認された。さらに、得られた生成物Aに対してGPC分析を行ったところ、不純物である重合物(前記原料化合物中のノルボルネン環が付加重合した重合物や、複数のノルボルネン環がケト基で結合した重合物の混合物等)の含有量は0.7質量%であった。
 また、得られた生成物Aに対してHPLC測定を行った(生成物AがGC測定では検出できなかったことから、分子量の大きさの点で低揮発性物質と判断し、GC測定ではなく、HPLC測定を行った)。このようなHPLC測定は、測定装置としてアジレントテクノロジー株式会社製の商品名「1200 Series」を用い、カラムはアジレントテクノロジー株式会社製の商品名「Eclipse XDB-C18(5μm、直径4.6mm、長さ150mm)」を用い、溶媒はアセトニトリルと蒸留水との混合物(アセトニトリル/蒸留水=70ml/30ml)を用い、溶媒の流速を1ml/min.とし、ダイオードアレイ検出器(DAD)の検出波長を210nmに設定し、温度を35℃とし、生成物Aを溶媒1.5mlに対して1mg添加した試料を調製して行った。また、トランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体の合計量(含有比率)、トランス-エキソ-エンド異性体の含有量をHPLCの面積比より検量線(標準試料:ジシクロペンタジエン)を用いて算出することにより確認した。HPLC測定の結果を図3に示す。
 図3に示すHPLC測定の結果からも明らかなように、生成物A(ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸テトラメチルエステル)は複数種の異性体の混合物であることが確認された。なお、図3に示すクロマトグラムのチャート(HPLC)において、横軸の約3.1分の位置におけるピークはトルエンのピークであり、横軸の約1.2分のピークはソルベントショックである。このようなクロマトグラムの面積比から、生成物A(複数種の異性体の混合物)は、トランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体の合計量(含有比率)が全異性体の総量に対して50モル%以上となり、かつ、トランス-エキソ-エンド異性体の含有量が全異性体の総量に対して30モル%以上となっているものであることが分かった。
 〈テトラカルボン酸二無水物の調製工程〉
 先ず、容量が300mLの還流管付きのフラスコ中に、前記生成物A(上記式(B)で表される化合物、分子量476.52)48gを酢酸192g中に溶解させた溶液を添加し、その後、前記溶液中に均一系酸触媒としてトリフルオロメタンスルホン酸(TfOH、沸点:162℃)0.38gを添加することにより、反応用の溶液を得た。なお、このような反応用の溶液中において、生成物Aと触媒の官能基のモル比([生成物Aのモル量]:[触媒中の官能基(スルホン酸)のモル量)])は1:0.025であった。
 次に、前記フラスコ内の雰囲気ガスを窒素に置換した後、窒素気流下、大気圧の条件で前記反応用の溶液をマグネチックスターラを用いて撹拌しながら加熱した。このような加熱により前記フラスコ内の温度を118℃として、還流を0.5時間行った(還流工程)。このような還流工程後、118℃の加熱条件でリービッヒコンデンサーを用いて発生する蒸気を留去すると同時に、滴下漏斗を用いて酢酸をフラスコ内に加えて、フラスコ内の液量が一定になるようにする工程(以下、「工程(i)」と称する。)を施した。なお、このような工程(i)においては、蒸気の留去を開始した後、2時間経過した後から、フラスコ内の液中(反応溶液中)に灰白色の沈殿物が生成されていることが確認された。また、このような工程(i)においては、1時間ごとに、系外に留去した留出液を質量測定とガスクロマトグラフとにより分析して反応の進行の程度を確認した。なお、このような分析により、留出液中には酢酸、酢酸メチル、水が存在することが確認された。また、上述のような工程における留出液の除去速度を測定したところ、留出液の除去される速度(割合)は1時間あたり約35mLであった。そして、このような工程(i)において蒸気の留去を開始した後、8時間経過した後に酢酸メチルの留出が止まったことから、加熱を止めて、前記工程(i)を終了した。なお、留去開始から8時間経過後までの酢酸メチルの留出量(回収量であり飛散分除く)は、26.4g(88%)であった。また、酢酸メチルの留出が止まるまでの間(反応を終了させるまでの間)に留去された酢酸の量は170gであった。このようにして、工程(i)を施した後に、一昼夜室温で放置した後、ろ紙を用いた減圧ろ過を行って灰白色の固形分を得た。そして、得られた灰白色の固形分に対して、-10℃に冷やした酢酸エチル(30mL)で5回洗浄(かけ洗い)し、80℃で終夜(15時間)減圧乾燥する洗浄・乾燥工程を施すことにより、31.0gの灰白色粉末からなる生成物Bを得た。このようにして得られた生成物Bの構造確認のために、IR測定、NMR(H-NMR)測定及びHPLC測定を行った。なお、HPLC測定は、検量線の標準試料をナフタレンとした以外は、上記生成物Aに対して行った測定方法と同様の方法を採用した。
 このようにして得られた生成物BのIRスペクトルを図4に示し、H-NMR(CDCl)スペクトルを図5に示す。また、HPLC測定の結果を図6に示す。図4~6に示す結果からも明らかなように、得られた生成物Bは、下記式(C):
Figure JPOXMLDOC01-appb-C000025
で表される化合物(ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物:CpODA)であることが確認された。また、図6に示すHPLCの測定結果からも明らかなように、生成物Bは複数種の異性体の混合物であることが確認された(2.7分のシグナルは不明ピーク)。このように、生成物BはCpODAの異性体混合物であることが分かった。なお、このようにして得られた化合物(酸二無水物)に関して、使用した原料化合物の仕込み量から算出される生成物の理論量に対する収率を求めたところ、収率は80%であることが確認された。
 〈ガスクロマトグラフィーによる測定〉
 このようにして得られた生成物B(灰白色粉末)の一部を採取して、ガスクロマトグラフィーによる測定(GC測定およびGC-MS測定)を行った。このような測定に際しては、測定試料として生成物Bを0.1質量%の割合で含むジメチルアセトアミド溶液(以下、単に「DMAc溶液」と称する)を準備し、測定装置としてガスクロマトグラフ質量分析装置(Agilent社製の商品名「7890A」)を用い、移動相の気体(キャリーガス)としてヘリウムを用い、固定相(カラム)としてRESTEX Rtx-5 Amine(30m)を用い、MS検出器としてAgilent社製の商品名「G4513A」を用い、インジェクターとしてAgilent社製G4513Aを用いて、前記インジェクターで前記測定試料のDMAc溶液を1μL注入し、前記キャリーガスであるヘリウムの流量を10mL/分(constant)とし、温度条件は50℃(初期温度)で1分間保持した後に昇温速度を10℃/分として50℃~300℃まで昇温し、300℃で25分間保持する条件とし、GC測定およびGC-MS測定することにより、前記生成物Bのクロマトグラム(分離像)を求めた後、該クロマトグラム中の各ピークの面積をそれぞれ求めて、面積の合計(総面積)に占める各ピークの面積の比率に基づいて、各ピークに由来する異性体の含有割合を算出して、前述の異性体の含有割合をそれぞれ求めた。得られた結果として生成物Bのクロマトグラム(分離像)を図7に示す。
 なお、図7に示すクロマトグラムにおいて、得られた生成物B(灰白色粉末)からは4種のピークが確認され、それらのGC-MS測定で同位体イオンピーク(M+1)が385(酸二無水物:分子量384.38)であることから、生成物Bは同じ分子量の異性体を含むものであることが分かった。また、図7に示すガスクロマトグラムの各ピークの面積比から、トランス-エキソ-エンド異性体の含有量は60.4モル%であり、シス-エキソ-エンド異性体の含有量は28.7モル%であり、シス-エキソ-エキソ異性体及びトランス-エキソ-エキソ異性体の合計量が0.9モル%であり、トランス-エンド-エンド異性体及びシス-エンド-エンド異性体の合計量が10.0モル%であることが確認された(なお、かかる含有量の割合(モル%)はCpODAの立体異性体の総量に対する比率である)。このように、生成物Bは、上記式(C)で表される化合物であり、トランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体の合計量が89.1モル%であり、かつ、トランス-エキソ-エンド異性体の含有量が60.4モル%である異性体の混合物であることが確認された。得られた結果を表1に示す。なお、上記式(C)で表される化合物の6種の立体異性体の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000026
 (実施例2)
 テトラカルボン酸二無水物の調製工程で採用している洗浄・乾燥工程を以下のように変更した以外は実施例1と同様にして生成物C(CpODA)を調製した。すなわち、テトラカルボン酸二無水物の調製工程において、得られた灰白色の固形分に対して施す洗浄・乾燥工程を、-10℃に冷やした酢酸エチル(30mL)で5回洗浄(かけ洗い)し、80℃で終夜(15時間)減圧乾燥する工程から、30mlの酢酸(20℃)で1度洗浄(かけ洗い)した後、30mlの酢酸エチル(20℃)で5回洗浄(かけ洗い)し、80℃で終夜(15時間)減圧乾燥する工程に変更した以外は、実施例1と同様にして、25.1gの灰白色粉末からなる生成物Cを得た(収率65%)。このようにして得られた生成物Cの構造確認のために、IR測定及びNMR(H-NMR)測定を行った結果、得られた生成物Cは、式(C)で表される化合物(CpODA)であることが確認された。
 また、得られた生成物Cに対して、実施例1と同様にしてガスクロマトグラフィーによる測定を行ったところ、ガスクロマトグラムの各ピークの面積比から、トランス-エキソ-エンド異性体の含有量は69.4モル%であり、シス-エキソ-エンド異性体の含有量は13.7モル%であり、シス-エキソ-エキソ異性体及びトランス-エキソ-エキソ異性体の合計量が0.2モル%であり、トランス-エンド-エンド異性体及びシス-エンド-エンド異性体の合計量が16.7モル%であることが確認された。このように、生成物Cは、上記式(C)で表される化合物(CpODA)であり、トランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体の合計量が83.1モル%であり、かつ、トランス-エキソ-エンド異性体の含有量が69.4モル%である異性体の混合物であることが確認された(なお、かかる含有量の割合(モル%)はCpODAの立体異性体の総量に対する比率である)。このような測定の結果と、実施例1で得られた結果とを対比すると、CpODAを調製した後の洗浄・乾燥工程の違いによっても、CpODAの異性体の比率を変更することが可能であることが分かった。
 (比較例1)
 特開2015-137235号の実施例1に開示されている方法と同様の方法を採用して、上記式(A)で表される化合物からなる原料化合物を製造した。かかる原料化合物に対して、国際公開第2011/099518号の実施例1及び2に記載の工程と同様の工程を施して、上記式(C)で表される化合物(テトラカルボン酸二無水物)である生成物Dを得た。すなわち、5-ノルボルネン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-5’’-ノルボルネンとして前記原料化合物を利用する以外は、国際公開第2011/099518号の実施例1及び2に記載の工程と同様の工程を採用して生成物Dを得た。
 なお、得られた生成物Dに対して、実施例1と同様にしてガスクロマトグラフィーによる測定を行ったところ、ガスクロマトグラムの各ピークの面積比から、トランス-エキソ-エンド異性体の含有量は25.2モル%であり、シス-エキソ-エンド異性体の含有量は16.3モル%であり、シス-エキソ-エキソ異性体及びトランス-エキソ-エキソ異性体の合計量が0.7モル%であり、トランス-エンド-エンド異性体及びシス-エンド-エンド異性体の合計量が57.8モル%であることが確認された(なお、かかる含有量の割合(モル%)はCpODAの立体異性体の総量に対する比率である。)。このように、生成物DはCpODAの異性体混合物であった。得られた結果を表1に示す。
 (比較例2)
 特開2015-137235号の実施例1に開示されている方法と同様の方法を採用して、上記式(A)で表される化合物からなる原料化合物を製造した。かかる原料化合物に対して、国際公開第2014/034760号の合成例2及び実施例1に記載のモノマー合成工程に記載されている工程と同様の工程を施して、上記式(C)で表される化合物(テトラカルボン酸二無水物)である生成物Eを得た。すなわち、5-ノルボルネン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-5’’-ノルボルネンとして前記原料化合物を用いた以外は国際公開第2014/034760号の合成例2及び実施例1に記載のモノマー合成工程に記載されている工程と同様の工程を採用して生成物Eを得た。
 なお、得られた生成物Eに対して、実施例1と同様にしてガスクロマトグラフィーによる測定を行ったところ、ガスクロマトグラムの各ピークの面積比から、トランス-エキソ-エンド異性体の含有量は1.4モル%であり、シス-エキソ-エンド異性体の含有量は1.0モル%であり、シス-エキソ-エキソ異性体及びトランス-エキソ-エキソ異性体の合計量が0.3モル%であり、トランス-エンド-エンド異性体及びシス-エンド-エンド異性体の合計量が97.3モル%であることが確認された(なお、かかる含有量の割合(モル%)はCpODAの立体異性体の総量に対する比率である。)。このように、生成物EはCpODAの異性体混合物であった。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000027
 (実施例3)
 先ず、窒素雰囲気下において、攪拌機および還流冷却管(ジムロート)の付いた100mLの三口フラスコ内に、芳香族ジアミンとして2,2’-ジメチルビフェニル-4,4’-ジアミン(m-tol:メタトリジン)を2.123g(10mmol)導入するとともに、テトラカルボン酸二無水物として生成物B(実施例1で得られたCpODAの異性体混合物)を3.8438g(10mmol)導入することにより、前記三口フラスコ内に芳香族ジアミンと前記テトラカルボン酸二無水物とを導入した。
 次に、前記三口フラスコ内に、有機溶媒としてジメチルアセトアミド(N,N-ジメチルアセトアミド)を2.784g及びγ-ブチロラクトンを11.138g導入するとともに、反応促進剤であるトリエチルアミンを50mg(0.5mmol)導入することにより、前記芳香族ジアミン(m-tol)と、前記テトラカルボン酸二無水物(前記生成物B)と、前記有機溶媒(N,N-ジメチルアセトアミド及びγ-ブチロラクトン)と、反応促進剤(トリエチルアミン)とを混合した混合液を得た。
 次いで、このようにして得られた混合液を、窒素雰囲気下、180℃の温度条件で3時間加熱しながら撹拌することにより、粘性のある均一な淡黄色の反応液(ポリイミド溶液)を得た。このようにして、前記芳香族ジアミン(m-tol)と前記テトラカルボン酸二無水物(前記生成物B)とに由来するポリイミドを加熱工程により調製し、反応液(ポリイミドの溶液)を得た。なお、このような加熱により、先ず、前記芳香族ジアミンと、前記テトラカルボン酸二無水物との反応が進行してポリアミド酸が形成され、続いて、そのイミド化が進行してポリイミドが形成されたことは明らかである。このようにして得られたポリイミド溶液を用いて、ポリイミドの固有粘度[η]を測定したところ、ポリイミドの固有粘度[η]は0.43dL/gであった。
 次に、前記反応液をガラス板(縦:75mm、横50mm、厚み1.3mm)上にスピンコートすることにより、ガラス板上に塗膜を形成した。その後、前記塗膜の形成されたガラス基板を60℃のホットプレート上に載せて2時間静置して、前記塗膜から溶媒を蒸発させて除去した。このような溶媒除去処理後、前記塗膜の形成されたガラス基板を3L/分の流量で窒素が流れているイナートオーブンに投入し、イナートオーブン内で、窒素雰囲気下、25℃の温度条件で0.5時間静置した後、135℃の温度条件で0.5時間加熱し、更に300℃の温度条件(焼成温度条件)で1時間加熱して、前記塗膜を硬化せしめ、前記ガラス基板上にポリイミドからなるフィルムを形成した。次に、このようにして得られたポリイミドコートガラスを、90℃の水中に0.5時間浸漬して、前記ガラス基板からポリイミドフィルムを剥離することによりポリイミドフィルムを回収し、ポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。このようにして得られたポリイミドフィルムの膜厚は13μmであった。
 なお、このようにして得られたフィルムを形成する化合物の分子構造を同定するため、IR測定機(日本分光株式会社製、商品名:FT/IR-4100)を用いて、IRスペクトルを測定したところ、イミドカルボニルのC=O伸縮振動が1700cm-1に観察されたことから、得られたフィルムを構成する化合物はポリイミドであることが確認された。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物B)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して89.1モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して60.4モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表2に示す。
 (比較例3)
 先ず、30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素で置換して、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内に、m-tolを2.1230g(10mmol)添加した後、更に、N,N-ジメチルアセトアミドを16.336g添加して、攪拌することにより、前記N,N-ジメチルアセトアミド中に芳香族ジアミン(m-tol)を溶解させて溶解液を得た。
 次に、前記溶解液を含有する三口フラスコ内に、窒素雰囲気下、テトラカルボン酸二無水物として1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)を1.9611g(10mmol)添加した後、窒素雰囲気下、室温(25℃)で12時間攪拌して反応液を得た。このようにして反応液中にポリアミド酸を形成した。なお、かかる反応液(ポリアミド酸溶液)の一部を利用して、ポリアミド酸の濃度が0.5g/dLとなるジメチルアセトアミド溶液を調製し、反応中間体であるポリアミド酸の固有粘度[η]を測定したところ、ポリアミド酸の固有粘度[η]は0.45dL/gであった。
 次に、前記反応液をガラス板(縦:75mm、横50mm、厚み1.3mm)上にスピンコートすることにより、ガラス板上に塗膜を形成した。その後、前記塗膜の形成されたガラス基板を60℃のホットプレート上に載せて2時間静置して、前記塗膜から溶媒(ジメチルアセトアミド)を蒸発させて除去した。このような溶媒除去処理後、前記塗膜の形成されたガラス基板を3L/分の流量で窒素が流れているイナートオーブンに投入し、イナートオーブン内で、窒素雰囲気下、25℃の温度条件で0.5時間静置した後、135℃の温度条件で0.5時間加熱し、更に300℃の温度条件(焼成温度条件)で1時間加熱して、前記塗膜を硬化せしめ、前記ガラス基板上にポリイミドからなるフィルムを形成した。次に、このようにして得られたポリイミドコートガラスを、90℃の水中に0.5時間浸漬して、前記ガラス基板からポリイミドフィルムを剥離することによりポリイミドフィルムを回収し、ポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。このようにして得られたポリイミドフィルムの膜厚は13μmであった。このようにして得られたポリイミドの特性の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000028
 (実施例4)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりに2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)を3.2024g(10mmol)用いた以外は実施例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。このようにして得られたポリイミドフィルムの膜厚は13μmであり、ポリイミドの固有粘度[η]は0.32dL/gであった。なお、実施例3と同様にしてIRスペクトルを測定したところ、イミドカルボニルのC=O伸縮振動が1707cm-1に観察されたことから、得られたフィルムを構成する化合物はポリイミドであることが確認された。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物B)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して89.1モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して60.4モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表3に示す。
 (実施例5)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりに2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)を3.2024g(10mmol)用い、テトラカルボン酸二無水物として生成物C(実施例2で得られたCpODAの異性体混合物)を3.8438g(10mmol)用いた以外は実施例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。なお、このようにして得られたポリイミドフィルムの膜厚は13μmであり、製造時に得られたポリアミド酸の固有粘度[η]は0.40dL/gであった。このようにして得られたポリイミドからなるフィルムに対してIR分析を行ったところ、イミドカルボニルのC=O伸縮振動が1707cm-1に観察されることから該フィルムは確かにポリイミドからなるフィルムであることが確認された。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物C)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して83.1モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して69.4モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表3に示す。
 (比較例4)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりにTFMBを3.2024g(10mmol)用い、テトラカルボン酸二無水物としてCBDAを1.9611g(10mmol)用いる代わりに生成物D(比較例1で得られたCpODAの異性体混合物)を3.8438g(10mmol)用いた以外は比較例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。なお、このようにして得られたポリイミドフィルムの膜厚は13μmであり、製造時に得られたポリアミド酸の固有粘度[η]は0.37dL/gであった。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物D)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して41.5モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して25.2モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表3に示す。
 (比較例5)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりにTFMBを3.2024g(10mmol)用いた以外は比較例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。なお、このようにして得られたポリイミドフィルムの膜厚は13μmであり、製造時に得られたポリアミド酸の固有粘度[η]は0.13dL/gであった。このようにして得られたポリイミドの特性の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000029
 (実施例6)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりに1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)を2.9234g(10mmol)用いた以外は実施例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。このようにして得られたポリイミドフィルムの膜厚は13μmであり、ポリイミドの固有粘度[η]は0.43dL/gであった。なお、実施例3と同様にしてIRスペクトルを測定したところ、イミドカルボニルのC=O伸縮振動が1703cm-1に観察されたことから、得られたフィルムを構成する化合物はポリイミドであることが確認された。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物B)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して89.1モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して60.4モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表4に示す。
 (比較例6)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりにTPE-Rを2.9234g(10mmol)用い、テトラカルボン酸二無水物としてCBDAを1.9611g(10mmol)用いる代わりに生成物D(比較例1で得られたCpODAの異性体混合物)を3.8438g(10mmol)用いた以外は比較例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。なお、このようにして得られたポリイミドフィルムの膜厚は13μmであり、製造時に得られたポリアミド酸の固有粘度[η]は0.50dL/gであった。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物D)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して41.5モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して25.2モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表4に示す。
 (比較例7)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりにTPE-Rを2.9234g(10mmol)用いた以外は比較例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。なお、このようにして得られたポリイミドフィルムの膜厚は13μmであり、製造時に得られたポリアミド酸の固有粘度[η]は0.25dL/gであった。このようにして得られたポリイミドの特性の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000030
 (実施例7)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりに1,3-ビス(3-アミノフェノキシ)ベンゼン(APB-N)を2.9234g(10mmol)用いた以外は実施例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。このようにして得られたポリイミドフィルムの膜厚は13μmであり、ポリイミドの固有粘度[η]は0.27dL/gであった。なお、実施例3と同様にしてIRスペクトルを測定したところ、イミドカルボニルのC=O伸縮振動が1704cm-1cm-1に観察されたことから、得られたフィルムを構成する化合物はポリイミドであることが確認された。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物B)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して89.1モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して60.4モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表5に示す。
 (比較例8)
 芳香族ジアミンとしてm-tolを2.1230g(2.1230mmol)用いる代わりにAPB-Nを2.9234g(10mmol)用い、テトラカルボン酸二無水物としてCBDAを1.9611g(10mmol)用いる代わりに生成物D(比較例1で得られたCpODAの異性体混合物)を3.8438g(10mmol)用いた以外は比較例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。なお、このようにして得られたポリイミドフィルムの膜厚は13μmであり、製造時に得られたポリアミド酸の固有粘度[η]は0.34dL/gであった。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物D)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して41.5モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して25.2モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000031
 (実施例8)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりに4,4’-ジアミノジフェニルエーテル(DDE)を2.0024g(10mmol)用いた以外は実施例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。このようにして得られたポリイミドフィルムの膜厚は13μmであり、ポリイミドの固有粘度[η]は0.42dL/gであった。なお、実施例3と同様にしてIRスペクトルを測定したところ、イミドカルボニルのC=O伸縮振動が1700cm-1に観察されたことから、得られたフィルムを構成する化合物はポリイミドであることが確認された。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物B)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して89.1モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して60.4モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表6に示す。
 (実施例9)
 先ず、30mlの三口フラスコをヒートガンで加熱して十分に乾燥させた。次に、十分に乾燥させた前記三口フラスコ内の雰囲気ガスを窒素で置換して、前記三口フラスコ内を窒素雰囲気とした。次いで、前記三口フラスコ内に、DDEを2.0024g(10mmol)添加した後、更に、N,N-ジメチルアセトアミドを23.385g添加して、攪拌することにより、前記N,N-ジメチルアセトアミド中に芳香族ジアミン(DDE)を溶解させて溶解液を得た。
 次に、前記溶解液を含有する三口フラスコ内に、窒素雰囲気下、テトラカルボン酸二無水物として生成物B(実施例1で得られたCpODAの異性体混合物)を3.8438g(10mmol)添加した後、窒素雰囲気下、室温(25℃)で12時間攪拌して反応液を得た。このようにして反応液中にポリアミド酸を形成した。なお、かかる反応液(ポリアミド酸溶液)の一部を利用して、ポリアミド酸の濃度が0.5g/dLとなるジメチルアセトアミド溶液を調製し、反応中間体であるポリアミド酸の固有粘度[η]を測定したところ、ポリアミド酸の固有粘度[η]は0.59dL/gであった。なお、このようなポリアミド酸は、使用したテトラカルボン酸二無水物(生成物B)の種類から、Xがいずれも水素原子である上記一般式(4)及び(5)で表される繰り返し単位を全繰り返し単位に対して89.1モル%含有し、かつ、上記一般式(4)で表される繰り返し単位を全繰り返し単位に対して60.4モル%含有するポリアミド酸であることは明らかである。
 次に、前記反応液をガラス板(縦:75mm、横50mm、厚み1.3mm)上にスピンコートすることにより、ガラス板上に塗膜を形成した。その後、前記塗膜の形成されたガラス基板を60℃のホットプレート上に載せて2時間静置して、前記塗膜から溶媒(ジメチルアセトアミド)を蒸発させて除去した。このような溶媒除去処理後、前記塗膜の形成されたガラス基板を3L/分の流量で窒素が流れているイナートオーブンに投入し、イナートオーブン内で、窒素雰囲気下、25℃の温度条件で0.5時間静置した後、135℃の温度条件で0.5時間加熱し、更に300℃の温度条件(焼成温度条件)で1時間加熱して、前記塗膜を硬化せしめ、前記ガラス基板上にポリイミドからなるフィルムを形成した。次に、このようにして得られたポリイミドコートガラスを、90℃の水中に0.5時間浸漬して、前記ガラス基板からポリイミドフィルムを剥離することによりポリイミドフィルムを回収し、ポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。このようにして得られたポリイミドフィルムの膜厚は13μmであった。
 このようにして得られたポリイミドからなるフィルムに対してIR分析を行ったところ、イミドカルボニルのC=O伸縮振動が1700cm-1に観察されることから該フィルムはポリイミドからなるフィルムであることが確認された。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物B)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して89.1モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して60.4モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表6に示す。
 (比較例9)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりにDDEを2.0024g(10mmol)用い、テトラカルボン酸二無水物としてCBDAを1.9611g(10mmol)用いる代わりに生成物D(比較例1で得られたCpODAの異性体混合物)を3.8438g(10mmol)用いた以外は比較例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。なお、このようにして得られたポリイミドフィルムの膜厚は13μmであり、製造時に得られたポリアミド酸の固有粘度[η]は0.72dL/gであった。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物D)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して41.5モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して25.2モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000032
 (実施例10)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりにビス[4-(4-アミノフェノキシ)フェニル]スルホン(BAPS)を4.3249g(10mmol)用いた以外は実施例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。このようにして得られたポリイミドフィルムの膜厚は13μmであり、ポリイミドの固有粘度[η]は0.47dL/gであった。なお、実施例3と同様にしてIRスペクトルを測定したところ、イミドカルボニルのC=O伸縮振動が1704cm-1に観察されたことから、得られたフィルムを構成する化合物はポリイミドであることが確認された。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物B)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して89.1モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して60.4モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表7に示す。
 (比較例10)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりにBAPSを4.3249g(10mmol)用い、テトラカルボン酸二無水物としてCBDAを1.9611g(10mmol)用いる代わりに生成物D(比較例1で得られたCpODAの異性体混合物)を3.8438g(10mmol)用いた以外は比較例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。なお、このようにして得られたポリイミドフィルムの膜厚は13μmであり、製造時に得られたポリアミド酸の固有粘度[η]は0.75dL/gであった。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物D)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して41.5モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して25.2モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000033
 (実施例11)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりにビス[4-(3-アミノフェノキシ)フェニル]スルホン(BAPS-M)を4.3249g(10mmol)用いた以外は実施例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。このようにして得られたポリイミドフィルムの膜厚は13μmであり、ポリイミドの固有粘度[η]は0.28dL/gであった。なお、実施例3と同様にしてIRスペクトルを測定したところ、イミドカルボニルのC=O伸縮振動が1705cm-1に観察されたことから、得られたフィルムを構成する化合物はポリイミドであることが確認された。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物B)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して89.1モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して60.4モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表8に示す。
 (比較例11)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりにBAPS-Mを4.3249g(10mmol)用い、テトラカルボン酸二無水物としてCBDAを1.9611g(10mmol)用いる代わりに生成物D(比較例1で得られたCpODAの異性体混合物)を3.8438g(10mmol)用いた以外は比較例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。なお、このようにして得られたポリイミドフィルムの膜厚は13μmであり、製造時に得られたポリアミド酸の固有粘度[η]は0.22dL/gであった。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物D)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して41.5モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して25.2モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000034
 (実施例12)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりに2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を4.1052g(10mmol)用いた以外は実施例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。このようにして得られたポリイミドフィルムの膜厚は13μmであり、ポリイミドの固有粘度[η]は0.46dL/gであった。なお、実施例3と同様にしてIRスペクトルを測定したところ、イミドカルボニルのC=O伸縮振動が1705cm-1に観察されたことから、得られたフィルムを構成する化合物はポリイミドであることが確認された。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物B)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して89.1モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して60.4モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表9に示す。
 (比較例12)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりにBAPPを4.1052g(10mmol)用い、テトラカルボン酸二無水物としてCBDAを1.9611g(10mmol)用いる代わりに生成物D(比較例1で得られたCpODAの異性体混合物)を3.8438g(10mmol)用いた以外は比較例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。なお、このようにして得られたポリイミドフィルムの膜厚は13μmであり、製造時に得られたポリアミド酸の固有粘度[η]は0.71dL/gであった。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物D)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して41.5モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して25.2モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表9に示す。
 (比較例13)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりにBAPPを4.1052g(10mmol)用い、テトラカルボン酸二無水物としてCBDAを1.9611g(10mmol)用いる代わりに生成物E(比較例2で得られたCpODAの異性体混合物)を3.8438g(10mmol)用いた以外は比較例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。なお、このようにして得られたポリイミドフィルムの膜厚は13μmであり、製造時に得られたポリアミド酸の固有粘度[η]は0.51dL/gであった。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物E)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して2.4モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して1.4モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表9に示す。
Figure JPOXMLDOC01-appb-T000035
 (実施例13)
 芳香族ジアミンとしてm-tolを2.1230g(10mmol)用いる代わりに9,9-ビス(4-アミノフェニル)フルオレン(FDA)を3.4845g(10mmol)用いた以外は実施例3と同様にしてポリイミドからなる無色透明フィルム(ポリイミドフィルム)を得た。このようにして得られたポリイミドフィルムの膜厚は13μmであり、ポリイミドの固有粘度[η]は0.31dL/gであった。なお、実施例3と同様にしてIRスペクトルを測定したところ、イミドカルボニルのC=O伸縮振動が1705cm-1に観察されたことから、得られたフィルムを構成する化合物はポリイミドであることが確認された。また、このようなポリイミドは、使用したテトラカルボン酸二無水物(生成物B)の種類から、上記一般式(6)及び(7)で表される繰り返し単位を全繰り返し単位に対して89.1モル%含有し、かつ、上記一般式(6)で表される繰り返し単位を全繰り返し単位に対して60.4モル%含有するポリイミドであることは明らかである。このようにして得られたポリイミドの特性の評価結果を表10に示す。
Figure JPOXMLDOC01-appb-T000036
 [ポリイミドの特性について]
 表1~9に示す結果からも明らかなように、芳香族ジアミンの種類が同じポリイミド同士を比較すると、本発明のテトラカルボン酸二無水物(実施例1~2)を利用してポリイミドを形成した場合には、溶媒に対する溶解性がより高度なものとなることが分かった。また、表3~9に示す結果から、本発明のポリイミドは、テトラカルボン酸として異性体比率の異なる比較例1で得られたCpODA(生成物D)又は比較例2で得られたCpODA(生成物E)を利用して得られたポリイミドと比較しても、溶解性がより高いものとなることが分かった。すなわち、表3~9に示す結果からは、立体異性体の総量に対してトランス-エキソ-エンド異性体及びシス-エキソ-エンド異性体の合計量が50モル%以上であり、かつ、トランス-エキソ-エンド異性体の含有量が30モル%以上であるという条件を満たすCpODAからなる本発明のテトラカルボン酸二無水物(実施例1~2)を用いた場合には、上記条件を満たさないCpODAからなるテトラカルボン酸二無水物(比較例1~2)を利用した場合と比較して、得られるポリイミドの溶解性がより高度なものとなり、上記条件を満たすテトラカルボン酸二無水物を用いることで、最終的に得られるポリイミドの溶解性をより向上させることが可能となることが分かった。また、表1~10に示す結果からも明らかなように、全光線透過率の値及びTd5%の値から、本発明のテトラカルボン酸二無水物(実施例1~2)を利用してポリイミドを形成した場合には、得られるポリイミド(本発明のポリイミド)が十分に高度な水準の透明性と耐熱性とを有することも確認された。
 以上説明したように、本発明によれば、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するポリイミドを製造するために好適に利用することが可能なテトラカルボン酸二無水物を提供することが可能となる。また、本発明によれば、十分に高い水準の耐熱性や透明性を有しつつ、より高い溶解性を有するものとすることが可能なポリイミド及びそのポリイミドを含有するポリイミド溶液を提供することが可能となる。さらに、本発明によれば、前記ポリイミドを製造するために好適に利用することが可能なポリイミド前駆体樹脂、及び、そのポリイミド前駆体樹脂を含有するポリイミド前駆体樹脂溶液を提供することが可能となる。このようなポリイミドは溶解性の点で優れるため、その加工性が高く、各種用途に好適に利用できる。

Claims (5)

  1.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示す。]
    で表されるテトラカルボン酸二無水物であり、
     前記一般式(1)中の2つのノルボルナン環の立体配置に基づく立体異性体の総量に対して、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中のR、R、R及びnはそれぞれ前記一般式(1)中のR、R、R及びnと同義である。]
    で表される立体異性体(A)及び下記一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中のR、R、R及びnはそれぞれ前記一般式(1)中のR、R、R及びnと同義である。]
    で表される立体異性体(B)の合計量の割合が50モル%以上であり、かつ、前記立体異性体の総量に対して、前記立体異性体(A)の含有割合が30モル%以上である、テトラカルボン酸二無水物。
  2.  下記一般式(4):
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、R、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示し、Rは炭素数6~50のアリーレン基を示し、Xはそれぞれ独立に水素原子、炭素数1~6のアルキル基及び炭素数3~9のアルキルシリル基よりなる群から選択される1種を示す。]
    で表される繰り返し単位(A’)及び下記一般式(5):
    Figure JPOXMLDOC01-appb-C000005
    [式(5)中のR、R、R、R、n及びXはそれぞれ前記一般式(4)中のR、R、R、R、n及びXと同義である。]
    で表される繰り返し単位(B’)の合計量の割合が全繰り返し単位の総量に対して50モル%以上であり、かつ、前記繰り返し単位(A’)の含有割合が全繰り返し単位の総量に対して30モル%以上である、ポリイミド前駆体樹脂。
  3.  下記一般式(6):
    Figure JPOXMLDOC01-appb-C000006
    [式(6)中、R、R、Rはそれぞれ独立に水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは0~12の整数を示し、Rは炭素数6~50のアリーレン基を示す。]
    で表される繰り返し単位(A)及び下記一般式(7):
    Figure JPOXMLDOC01-appb-C000007
    [式(7)中のR、R、R、R及びnはそれぞれ前記一般式(6)中のR、R、R、R及びnと同義である。]
    で表される繰り返し単位(B)の合計量の割合が全繰り返し単位の総量に対して50モル%以上であり、かつ、前記繰り返し単位(A)の含有割合が全繰り返し単位の総量に対して30モル%以上である、ポリイミド。
  4.  請求項3に記載のポリイミドと有機溶媒とを含有する、ポリイミド溶液。
  5.  請求項2に記載のポリイミド前駆体樹脂と有機溶媒とを含有する、ポリイミド前駆体樹脂溶液。
PCT/JP2018/016434 2017-04-28 2018-04-23 テトラカルボン酸二無水物、ポリイミド前駆体樹脂及びその溶液、並びに、ポリイミド及びその溶液 WO2018199014A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880006933.8A CN110177794B (zh) 2017-04-28 2018-04-23 四羧酸二酐、聚酰亚胺前驱物树脂及其溶液,以及聚酰亚胺及其溶液
KR1020197026759A KR102312165B1 (ko) 2017-04-28 2018-04-23 테트라카르복실산 이무수물, 폴리이미드 전구체 수지 및 그의 용액, 및 폴리이미드 및 그의 용액
US16/608,742 US11525037B2 (en) 2017-04-28 2018-04-23 Tetracarboxylic dianhydride, polyimide precursor resin and solution thereof, and polyimide and solution thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017089810A JP6766007B2 (ja) 2017-04-28 2017-04-28 テトラカルボン酸二無水物、ポリイミド前駆体樹脂及びその溶液、並びに、ポリイミド及びその溶液
JP2017-089810 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199014A1 true WO2018199014A1 (ja) 2018-11-01

Family

ID=63918263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016434 WO2018199014A1 (ja) 2017-04-28 2018-04-23 テトラカルボン酸二無水物、ポリイミド前駆体樹脂及びその溶液、並びに、ポリイミド及びその溶液

Country Status (6)

Country Link
US (1) US11525037B2 (ja)
JP (1) JP6766007B2 (ja)
KR (1) KR102312165B1 (ja)
CN (1) CN110177794B (ja)
TW (1) TWI787256B (ja)
WO (1) WO2018199014A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7069478B2 (ja) * 2017-12-28 2022-05-18 Ube株式会社 ポリイミド、ポリイミド溶液組成物、ポリイミドフィルム、及び基板
CN110511229A (zh) * 2019-09-02 2019-11-29 北京八亿时空液晶科技股份有限公司 一种二酸酐化合物及其制备方法与应用
CN110922594B (zh) * 2019-12-06 2022-05-06 吉林奥来德光电材料股份有限公司 一种高透光可溶性聚酰亚胺及其薄膜的制备方法
WO2022133722A1 (zh) * 2020-12-22 2022-06-30 宁波长阳科技股份有限公司 聚酰亚胺材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099518A1 (ja) * 2010-02-09 2011-08-18 Jx日鉱日石エネルギー株式会社 ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸及びそのエステル類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類の製造方法、それを用いて得られるポリイミド、並びに、ポリイミドの製造方法
WO2014034760A1 (ja) * 2012-08-31 2014-03-06 Jx日鉱日石エネルギー株式会社 ポリイミド及びその製造に用いる脂環式テトラカルボン酸二無水物
WO2014046064A1 (ja) * 2012-09-18 2014-03-27 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
WO2016084777A1 (ja) * 2014-11-27 2016-06-02 Jx日鉱日石エネルギー株式会社 ポリイミドフィルム、それを用いた基板、及び、ポリイミドフィルムの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156874B1 (ko) * 2003-09-03 2012-06-20 히다치 가세고교 가부시끼가이샤 노보넨 또는 노보난 구조를 갖는 디카본산 혹은 그 유도체의 입체이성체를 분리하는 방법
JP5562062B2 (ja) 2010-02-09 2014-07-30 Jx日鉱日石エネルギー株式会社 5−ノルボルネン−2−スピロ−α−シクロアルカノン−α’−スピロ−2’’−5’’−ノルボルネン類、及び、その製造方法
WO2014050788A1 (ja) 2012-09-28 2014-04-03 Jx日鉱日石エネルギー株式会社 カルボン酸無水物の製造方法
WO2014050810A1 (ja) 2012-09-28 2014-04-03 Jx日鉱日石エネルギー株式会社 エステル化合物の製造方法及びその方法に用いるパラジウム触媒
JP6178611B2 (ja) 2013-05-08 2017-08-09 Jxtgエネルギー株式会社 エステル化合物の製造方法
CN105814116A (zh) * 2013-10-11 2016-07-27 宇部兴产株式会社 聚酰亚胺前体、聚酰亚胺、聚酰亚胺薄膜、清漆和基板
JP2015137235A (ja) 2014-01-20 2015-07-30 Jx日鉱日石エネルギー株式会社 5−ノルボルネン−2−スピロ−α−シクロアルカノン−α’−スピロ−2’’−5’’−ノルボルネン類の製造方法
JP2015137231A (ja) 2014-01-20 2015-07-30 Jx日鉱日石エネルギー株式会社 ノルボルナン−2−スピロ−α−シクロアルカノン−α’−スピロ−2’’−ノルボルナン−5,5’’,6,6’’−テトラカルボン酸及びそのエステル類の製造方法
KR102410839B1 (ko) 2014-04-23 2022-06-21 에네오스 가부시키가이샤 테트라카르복실산 이무수물, 폴리아미드산, 폴리이미드 및 그들의 제조 방법, 및 폴리아미드산 용액
JP6267057B2 (ja) 2014-05-21 2018-01-24 Jxtgエネルギー株式会社 カルボン酸無水物の製造方法
JP2016132686A (ja) * 2015-01-15 2016-07-25 Jxエネルギー株式会社 ポリイミド、ポリイミドの製造方法、ポリイミド溶液及びポリイミドフィルム
EP3330320B1 (en) * 2015-08-07 2019-04-24 Tokyo Ohka Kogyo Co., Ltd. Polyimide precursor composition
CN107922367A (zh) 2015-08-14 2018-04-17 Jxtg能源株式会社 四羧酸二酐、羰基化合物、聚酰胺酸、聚酰亚胺及它们的制造方法、使用聚酰胺酸的溶液以及使用聚酰亚胺的薄膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099518A1 (ja) * 2010-02-09 2011-08-18 Jx日鉱日石エネルギー株式会社 ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸及びそのエステル類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類の製造方法、それを用いて得られるポリイミド、並びに、ポリイミドの製造方法
WO2014034760A1 (ja) * 2012-08-31 2014-03-06 Jx日鉱日石エネルギー株式会社 ポリイミド及びその製造に用いる脂環式テトラカルボン酸二無水物
WO2014046064A1 (ja) * 2012-09-18 2014-03-27 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
WO2016084777A1 (ja) * 2014-11-27 2016-06-02 Jx日鉱日石エネルギー株式会社 ポリイミドフィルム、それを用いた基板、及び、ポリイミドフィルムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIMURA, RYOSUKE ET AL.: "Colorless and thermally stable polymer-An alicyclic polyimide with cyclopentanone bis-spironorbornane structure", JAPANESE JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY, vol. 68, no. 3, 25 March 2011 (2011-03-25), pages 127 - 131, XP008173116 *

Also Published As

Publication number Publication date
KR102312165B1 (ko) 2021-10-14
TW201841898A (zh) 2018-12-01
US11525037B2 (en) 2022-12-13
US20200239636A1 (en) 2020-07-30
CN110177794A (zh) 2019-08-27
KR20190117639A (ko) 2019-10-16
JP2018188373A (ja) 2018-11-29
TWI787256B (zh) 2022-12-21
JP6766007B2 (ja) 2020-10-07
CN110177794B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
JP6077550B2 (ja) ポリイミド及びその製造に用いる脂環式テトラカルボン酸二無水物
JP6503508B2 (ja) テトラカルボン酸二無水物、ポリイミド前駆体樹脂、ポリイミド、ポリイミド前駆体樹脂溶液、ポリイミド溶液及びポリイミドフィルム
WO2018199014A1 (ja) テトラカルボン酸二無水物、ポリイミド前駆体樹脂及びその溶液、並びに、ポリイミド及びその溶液
WO2017030019A1 (ja) テトラカルボン酸二無水物、カルボニル化合物、ポリアミド酸、ポリイミド及びそれらの製造方法、ポリアミド酸を用いた溶液、並びに、ポリイミドを用いたフィルム
JP6506260B2 (ja) テトラカルボン酸二無水物、ポリアミド酸、ポリイミド、及び、それらの製造方法、並びに、ポリアミド酸溶液
TWI759335B (zh) 聚醯亞胺、聚醯亞胺前驅物樹脂、該等之溶液、聚醯亞胺之製造方法及使用聚醯亞胺之薄膜
JP2017133027A (ja) ポリイミド、ポリイミドの製造方法、ポリイミド溶液及びポリイミドフィルム
JP2010184898A (ja) ドデカハイドロ−1,4:5,8−ジメタノアントラセン−9,10−ジオン−2,3,6,7−テトラカルボン酸−2,3:6,7−二無水物類、ドデカハイドロ−1,4:5,8−ジメタノアントラセン−9,10−ジオン−2,3,6,7−テトラカルボン酸テトラエステル類、及び、その製造方法
JP2017066354A (ja) ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド溶液、ポリイミドを用いたフィルム
TWI735650B (zh) 聚醯亞胺、聚醯胺酸、該等之溶液及使用聚醯亞胺之膜
US11667754B2 (en) Tetracarboxylic dianhydride, carbonyl compound, polyimide precursor resin, and polyimide
WO2019172460A2 (ja) テトラカルボン酸二無水物、カルボニル化合物、ポリイミド前駆体樹脂、及び、ポリイミド
WO2022210274A1 (ja) テトラカルボン酸二無水物、カルボニル化合物、酸無水物基含有化合物、それらの製造方法、ポリイミド及びポリイミド前駆体樹脂
JP2022107638A (ja) テトラカルボン酸二無水物、カルボニル化合物、ポリイミド前駆体樹脂及びポリイミド
JP2022156932A (ja) ポリイミド及びポリイミド前駆体樹脂
JPWO2015151924A1 (ja) 酸二無水物およびその利用
JP2022156931A (ja) テトラカルボン酸二無水物、カルボニル化合物、酸無水物基含有化合物及びそれらの製造方法
JPWO2018062428A1 (ja) 酸二無水物およびその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197026759

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791291

Country of ref document: EP

Kind code of ref document: A1