WO2018190300A1 - 排ガス浄化用触媒 - Google Patents

排ガス浄化用触媒 Download PDF

Info

Publication number
WO2018190300A1
WO2018190300A1 PCT/JP2018/014939 JP2018014939W WO2018190300A1 WO 2018190300 A1 WO2018190300 A1 WO 2018190300A1 JP 2018014939 W JP2018014939 W JP 2018014939W WO 2018190300 A1 WO2018190300 A1 WO 2018190300A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
alkaline earth
earth metal
exhaust gas
porous carrier
Prior art date
Application number
PCT/JP2018/014939
Other languages
English (en)
French (fr)
Inventor
隼輔 大石
省梧 河村
貴寛 永田
浩隆 小里
伊藤 実
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to EP18783833.9A priority Critical patent/EP3581269B1/en
Priority to JP2019512500A priority patent/JP7062642B2/ja
Priority to CN201880024001.6A priority patent/CN110494215A/zh
Priority to US16/603,380 priority patent/US11504700B2/en
Publication of WO2018190300A1 publication Critical patent/WO2018190300A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9468Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • B01J27/055Sulfates with alkali metals, copper, gold or silver
    • B01J35/19
    • B01J35/394
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings

Definitions

  • the present invention relates to an exhaust gas purifying catalyst provided in an exhaust system of an internal combustion engine. Specifically, the present invention relates to an exhaust gas purifying catalyst containing at least one metal belonging to the platinum group as a catalyst metal and further containing an alkaline earth metal such as barium (Ba) or strontium (Sr) as a promoter component.
  • an alkaline earth metal such as barium (Ba) or strontium (Sr) as a promoter component.
  • a so-called three-way catalyst is used.
  • a porous carrier made of an inorganic oxide such as alumina (Al 2 O 3 ) or zirconia (ZrO 2 ), a metal functioning as an oxidation catalyst and / or a reduction catalyst (typically palladium ( Noble metals belonging to the platinum group, such as Pd) and rhodium (Rh), which are hereinafter referred to as “catalytic metals”) are used.
  • a three-way catalyst in which Pd as an oxidation catalyst and Rh as a reduction catalyst are supported on a porous carrier is widely used.
  • a promoter component capable of improving the exhaust gas purification function is used for this type of exhaust gas purification catalyst.
  • examples thereof include alkaline earth metals such as barium (Ba) and strontium (Sr).
  • Alkaline earth metals such as barium (Ba) and strontium (Sr).
  • an alkaline earth metal component such as Ba in at least a part of the catalyst layer (for example, about 1% by mass to 10% by mass of the entire region)
  • NO x contained in the exhaust gas is contained.
  • Patent Documents 1 and 2 describe conventional exhaust gas purification catalysts containing alkaline earth metals such as Ba and Sr as promoters.
  • the alkaline earth metal exists in the vicinity of the catalyst metal in the catalyst layer of the exhaust gas purification catalyst.
  • it is important that the alkaline earth catalyst is present in a highly dispersed state together with the catalyst metal.
  • the alkaline earth metal component is unevenly distributed in the catalyst layer (alkaline earth metal supporting region), and the outer surface and pores of the porous carrier are highly dispersed. It could not be supported inside.
  • the alkaline earth metal in the catalyst layer (alkaline earth metal support region), the alkaline earth metal is similarly placed in the vicinity of the catalyst metal supported in a highly dispersed state on the outer surface of the porous carrier and in the pores.
  • the catalyst layer alkaline earth metal support region
  • the present invention was created to solve such conventional problems, and provides an exhaust gas purification catalyst in which an alkaline earth metal as a promoter component is supported in a highly dispersed state on a porous carrier, and its An object of the present invention is to provide a production method capable of realizing such highly dispersed support.
  • alkaline earth metals such as Ba
  • alkaline earth metals such as Ba
  • sulfuric acid or ammonium sulfate solution is supplied to the slurry to produce an alkaline earth metal sulfate (insoluble) such as Ba.
  • the present inventor studied from the raw material stage of alkaline earth metal such as Ba, and by using a raw material in which a water-soluble compound of alkaline earth metal coexists with a certain S-containing water-soluble organic compound, It is found that alkaline earth metal sulfate such as Ba can be arranged (supported) on the porous support in a highly dispersed state together with the catalyst metal in the catalyst layer (alkaline earth metal supporting region), and the present invention is completed. It came to.
  • the present invention provides an exhaust gas purification catalyst that is disposed in an exhaust pipe of an internal combustion engine and purifies exhaust gas discharged from the internal combustion engine.
  • the exhaust gas purifying catalyst disclosed here includes a base material and a catalyst layer formed on the base material.
  • a catalyst layer is A porous carrier composed of an inorganic compound;
  • An alkaline earth metal carrying region is provided.
  • the exhaust gas purifying catalyst disclosed here is about the cross section of the alkaline earth metal supporting region of the catalyst layer, Pixel (compartment) size 0.34 ⁇ m ⁇ 0.34 ⁇ m; Number of measurement pixels (partitions) 256 ⁇ 256: Surface analysis by FE-EPMA under the following conditions: the characteristic X-ray intensity ( ⁇ : cps) of the alkaline earth metal element (Ae) and the main constituent element (M: That is, the characteristic X-ray intensity ( ⁇ : cps) of each of the pixels is measured for each pixel, and ⁇ and ⁇ in the obtained pixels are used.
  • the calculated Pearson correlation coefficient is R Ae / M
  • the value of R Ae / M is 0.5 or more.
  • the exhaust gas purification catalyst disclosed herein is a catalyst product that can be produced by the exhaust gas purification catalyst production method (details will be described later) provided by the present invention.
  • the surface analysis by FE-EPMA is performed.
  • R Ae / M which is a Pearson correlation coefficient (product moment correlation coefficient) calculated based on the result, is 0.5 or more.
  • the first variable is the characteristic X-ray intensity ( ⁇ ) of the alkaline earth metal element (Ae) in the surface analysis by FE-EPMA
  • the second variable is the porous carrier in the same surface analysis.
  • NO x contained in the exhaust gas can be temporarily occluded by an alkaline earth metal component such as Ba, and can be effectively reduced and purified by a catalytic metal such as Rh.
  • the alkaline earth metal can be frequently arranged in the vicinity of Pd or the like, so that sintering of the catalyst metal such as Pd can be suppressed and the catalytic activity can be maintained and improved.
  • the average particle size based on the X-ray diffraction method of the alkaline earth metal sulfate supported on the porous carrier is particularly preferably 25 nm or less.
  • Such an alkaline earth metal component having a fine average particle diameter can exhibit particularly high performance as a promoter component.
  • the calculated Pearson correlation coefficient RAe / M is 0.7 or more.
  • the exhaust gas-purifying catalyst of this configuration has high dispersibility of the alkaline earth metal component.
  • the performance (function) as a promoter component can be exhibited at a high level in the catalyst layer (alkaline earth metal supporting region).
  • Ae is Ba and M is Al or Zr
  • a high R Ae / M that is, it can be described as R Ba / Al or R Ba / Zr
  • R Ba / Al or R Ba / Zr can be preferably realized.
  • the catalyst metal has at least palladium (Pd) and / or rhodium (Rh), and the alkaline earth metal sulfate is at least It has barium sulfate (BaSO 4 ).
  • the highly dispersed barium component (barium sulfate), together with the NO x can be stably temporarily storing temporarily occluded NO x component in the component Can be effectively reduced and purified by Rh. Further, by being supported on a carrier with highly dispersed, it is possible to improve the NO x reduction effect.
  • the exhaust gas purifying catalyst of this configuration can be suitably employed as a high-performance NO x purification catalyst.
  • coexistence of Pd and Ba can suppress sintering of Pd by the electronic action of Ba and maintain the activity of Pd. Therefore, the exhaust gas purifying catalyst having this configuration can be suitably employed as a high performance exhaust gas purifying catalyst having excellent durability.
  • the present invention also provides a method capable of suitably producing the exhaust gas purification catalyst disclosed herein in order to achieve the above object. That is, the manufacturing method disclosed here is: A method for producing an exhaust gas purifying catalyst that is disposed in an exhaust pipe of an internal combustion engine and purifies exhaust gas discharged from the internal combustion engine, On the substrate A porous carrier composed of an inorganic compound; At least one platinum group catalytic metal functioning as an oxidation and / or reduction catalyst supported on the porous carrier; At least one alkaline earth metal sulfate supported on the porous carrier; A step of forming a catalyst layer having at least part of an alkaline earth metal-supporting region, and a step of firing a substrate on which the catalyst layer is formed, It is a method including.
  • the step of forming the catalyst layer (1) The following ingredients: Inorganic compound particles constituting the porous carrier; The catalyst metal particles or precursors for depositing the catalyst metal; A water-soluble compound of the alkaline earth metal; and an S-containing water-soluble organic compound capable of producing a sulfate of the alkaline earth metal containing S as a constituent element; Mixing with an aqueous solvent to prepare a raw material suspension, (2) preparing a powder material in which the porous carrier, the catalyst metal, and the alkaline earth metal sulfate are mixed by drying and firing the raw material suspension; (3) preparing an alkaline earth metal supporting region forming slurry containing at least the powder material and an aqueous solvent; and (4) forming the alkaline earth metal supporting region on the substrate using the slurry. thing, Is included.
  • a water-soluble compound of an alkaline earth metal and an S-containing water-soluble organic compound specified as described above are combined with a carrier component (inorganic compound particles) and a catalyst metal component (catalyst metal particles).
  • a raw material (suspension) mixed with the catalyst metal precursor) is used for forming an alkaline earth metal supporting region.
  • both the alkaline earth metal water-soluble compound and the S-containing water-soluble organic compound are dissolved in the aqueous solvent.
  • the S-containing water-soluble organic compound does not rapidly lower the pH of the raw material suspension (that is, the suspension is acidified), and the alkaline earth metal water-soluble compound and the S-containing water-soluble organic compound are Both can reach the inside (inside the pores) of the inorganic compound particles (secondary particles) as the carrier component while maintaining water solubility. Then, the prepared raw material suspension is dried and fired. In the course, the alkaline earth metal water-soluble compound as the component and the S-containing water-soluble organic compound react to form insoluble alkaline earth metal sulfate inside and outside the inorganic compound particles. Fixed at the site of presence.
  • the alkaline earth metal is present in a highly dispersed state over the entire porous carrier particles (that is, both the outer surface and the inside (inside the pores) of the carrier particles).
  • an exhaust gas purifying catalyst having an alkaline earth metal supporting region characterized by the above-mentioned in the whole or a part of the catalyst layer can be preferably produced.
  • a water-soluble organic substance having at least one functional group of (—S ( ⁇ O) —) is used as the S-containing water-soluble organic compound for preparing the raw material suspension.
  • the alkaline earth metal water-soluble compound may be any alkaline earth selected from Ba, Sr and Ca.
  • Metal hydroxides, acetates or nitrates are used. Such hydroxides, acetates and nitrates have good water solubility and are preferred as alkaline earth metal water-soluble compounds for preparing the raw material suspensions.
  • FIG. 1 is a perspective view schematically showing an exhaust gas purifying catalyst according to an embodiment. It is sectional drawing which shows typically the catalyst layer of the catalyst for exhaust gas purification which concerns on one Embodiment. It is an image which shows the Ba element mapping result in the surface analysis (256 * 256 pixel) of FE-EPMA implemented about the catalyst layer (alkaline earth metal carrying
  • FIG. 6 is an image showing a Ba element mapping result in a surface analysis (256 ⁇ 256 pixels) of FE-EPMA performed on a catalyst layer (alkaline earth metal supporting region) of an exhaust gas purifying catalyst according to Comparative Example 1.
  • FIG. 6 is an image showing S element mapping results in a surface analysis (256 ⁇ 256 pixels) of FE-EPMA performed on a catalyst layer (alkaline earth metal supporting region) of an exhaust gas purifying catalyst according to Comparative Example 1.
  • FIG. 10 is an image showing a Ba element mapping result in a surface analysis (256 ⁇ 256 pixels) of FE-EPMA performed on a catalyst layer (alkaline earth metal supporting region) of an exhaust gas purifying catalyst according to Comparative Example 2.
  • FIG. 6 is an image showing S element mapping results in a surface analysis (256 ⁇ 256 pixels) of FE-EPMA performed on a catalyst layer (alkaline earth metal supporting region) of an exhaust gas purifying catalyst according to Comparative Example 1.
  • FIG. 10 is an image showing a Ba
  • HC of the exhaust gas-purifying catalyst according to an embodiment the purification performance of the CO and NO x (T50: °C) is a graph comparing the performance of the comparative example.
  • the exhaust gas-purifying catalyst disclosed herein is highly characterized in that the alkaline earth metal sulfate has the above-described properties in at least a part of the catalyst layer (that is, a predesigned alkaline earth metal support region in the catalyst layer). It is an exhaust gas purifying catalyst characterized by being provided in a dispersed state, and other configurations are not particularly limited.
  • the exhaust gas-purifying catalyst disclosed herein is appropriately selected from the types of catalyst metals, supports, and base materials described later, and molded into a desired shape according to the application, thereby exhaust systems of various internal combustion engines, particularly automobile engines. (Exhaust pipe). In the following description, it is assumed that the exhaust gas purifying catalyst of the present invention is mainly applied to a three-way catalyst provided in the exhaust pipe of an automobile gasoline engine. It is not intended to be limited to such applications.
  • the base material constituting the skeleton of the exhaust gas purifying catalyst disclosed here various materials and forms conventionally used for this type of application can be employed.
  • ceramics such as cordierite and silicon carbide (SiC) having high heat resistance are suitable.
  • a base material made of an alloy such as stainless steel
  • the shape may be the same as that of a conventional exhaust gas purification catalyst.
  • the exhaust gas purification catalyst 10 shown in FIG. 1 is a honeycomb substrate 1 having a cylindrical outer shape, and through holes (cells) 2 serving as exhaust gas passages are provided in the cylinder axis direction. The thing which exhaust gas can contact the partition (rib wall) 4 which divides the cell 2 is mentioned.
  • the shape of the substrate 1 can be a foam shape, a pellet shape, or the like in addition to the honeycomb shape.
  • it may be a so-called wall-through type (also referred to as a wall flow type) base material in which exhaust gas flows from one entry side cell through the cell partition wall to the other exit cell.
  • wall-through type also referred to as a wall flow type
  • the external shape of the whole base material it may replace with cylindrical shape and may employ
  • a catalyst metal belonging to at least one platinum group that can function as an oxidation catalyst or a reduction catalyst (hereinafter also referred to as “PGM”) is adopted.
  • PGM a catalyst metal belonging to at least one platinum group that can function as an oxidation catalyst or a reduction catalyst
  • rhodium (Rh), palladium (Pd), platinum (Pt), and the like can be given.
  • Ruthenium (Ru), osmium (Os), iridium (Ir), or other metals other than PGM having a catalytic function may be used. You may use what alloyed 2 or more types of PGM.
  • the average particle size (for example, the average value of particle sizes obtained by TEM observation or the average value based on the X-ray diffraction method) is preferably about 1 nm to 15 nm, and is 10 nm or less, 7 nm. Hereinafter, it is particularly preferably 5 nm or less.
  • the catalyst metal loading rate (PGM content rate when the carrier is 100% by mass) is not particularly limited, but is suitably 2% by mass or less, for example 0.05% by mass or more and 2% by mass or less.
  • the content is preferably about 0.2% by mass or more and 1% by mass or less. If the loading ratio is less than the above range, it is difficult to obtain the catalytic effect of the catalytic metal. If the carrying rate is too much higher than the above range, it is disadvantageous in terms of cost.
  • porous carrier that constitutes the catalyst layer and carries the above-described catalyst metal and other components (for example, alkaline earth metal), the same inorganic compound as the conventional exhaust gas purification catalyst is used.
  • a porous carrier having a large specific surface area is preferably used.
  • Preferable examples include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), ceria (CeO 2 ), silica (SiO 2 ), titania (TiO 2 ), and solid solutions thereof (eg, ceria-zirconia composite oxide)
  • the main constituent element (M) of the inorganic compound constituting the porous carrier defines the inorganic compound. Therefore, for example, the main constituent elements (M) for the above-listed alumina, zirconia, ceria, silica, titania, and CZ composite oxide are Al, Zr, Ce, It is easily understood by those skilled in the art that Si, Ti, and Ce & Zr.
  • an inorganic compound such as alumina or zirconia having good heat resistance is supported or non-supported (that is, a catalyst layer not supporting catalyst metal or alkaline earth metal). It is preferably included in the catalyst layer as a constituent component.
  • the carrier or non-supported particles (for example, alumina powder or CZ composite oxide powder) have a specific surface area of 50 to 500 m 2 / g (for example, 200 to 400 m 2 / g) for heat resistance and structural stability. It is preferable from the viewpoint.
  • the average particle size based on TEM observation of the carrier particles is preferably about 1 nm to 500 nm (more preferably 5 nm to 300 nm).
  • the catalyst metal content per liter is preferably about 0.1 to 5 g / L, and 0.2 to 2 g / L. The degree is preferred. If the catalyst metal content is too high, it is not preferable in terms of cost, and if it is too low, the exhaust gas purification ability is low, such being undesirable.
  • the catalyst volume is 1 L, in addition to the pure volume of the base material, it includes an internal void (cell) volume (that is, includes a catalyst layer formed in the void (cell)). Is 1L.
  • the catalyst layer formed on the base material is the main component of the exhaust gas purification catalyst as a place for purifying the exhaust gas.
  • the exhaust gas purification catalyst disclosed here as described above, At least a part (or all) constitutes the alkaline earth metal supporting region.
  • the “alkaline earth metal supporting region” means a part or all of a catalyst layer including a porous carrier, a catalyst metal, and an alkaline earth metal sulfate (barium sulfate, strontium sulfate, etc.).
  • part of the catalyst layer refers to one section that can function as an exhaust gas purifying catalyst, and cannot be called a functional one section such as several to several tens of carrier particles, for example. It is a term that does not mean a microscopic part.
  • a laminated structure type catalyst layer 6 having two upper and lower layers having different contents formed on the base material 1 as in the catalyst layer 6 shown in FIG.
  • Either one or both of 6B and the upper layer 6A constituting the surface layer portion of the catalyst layer 6 can be formed as an alkaline earth metal supporting region.
  • a part of the upstream side (or downstream side) is alkaline earth metal along the flow direction of the exhaust gas. It may be a carrying region.
  • barium (Ba), strontium (Sr), and calcium (Ca) are mentioned as an alkaline-earth metal element which comprises the suitable sulfate contained in an alkaline-earth metal carrying
  • the type, arrangement (distribution), and the like of the catalyst metal supported on the catalyst layer can be appropriately set according to various purposes as in the determination of the alkaline earth metal support region.
  • the type of carrier and the type and content of the catalyst metal supported on the carrier can be made different between the upper layer 6A and the lower layer 6B, as in the conventional product.
  • an alkaline earth metal component for example, barium sulfate
  • at least one catalyst metal for example, Pd or Pt
  • Rh as the catalyst metal can be included in the upper layer 6A side which is not the alkaline earth metal supporting region. This prevents the alkaline earth metals such as Rh and Ba metal (especially Ba) and are close, it is possible to prevent excessive oxidation of the reduced function or Rh of the NO x purification action of Rh.
  • auxiliary components can be arranged in addition to the catalyst metal and the alkaline earth metal.
  • a typical example is an oxygen storage / release component (OxygengStorage OSC).
  • OxygengStorage OSC oxygen storage / release component
  • the OSC material it is preferable to use zirconium oxide (zirconia), cerium oxide (ceria), zeolite or the like. Further, from the viewpoint of high heat resistance and occlusion / release speed, it is preferable to use the ceria-zirconia composite oxide (CZ composite oxide) as an OSC material.
  • the dispersibility of the alkaline earth metal in the alkaline earth metal supporting region of the exhaust gas purifying catalyst disclosed herein can be easily grasped by obtaining the above-mentioned Pearson correlation coefficient: RAe / M.
  • Such correlation coefficient is obtained by conducting surface analysis using FE-EPMA, the characteristic X-ray intensity ( ⁇ : cps) of the alkaline earth metal element (Ae), and the main constituent element (M of the inorganic compound constituting the porous carrier).
  • Characteristic X-ray intensity ( ⁇ : cps) is measured for each pixel, and can be calculated using ⁇ and ⁇ obtained for each pixel.
  • FE Field Emission
  • EPMA Electro Probe Micro Analysis
  • a field emission electron beam microanalyzer an analysis method called a field emission electron beam microanalyzer, and can perform elemental analysis and mapping in a predetermined region of a sample with high accuracy.
  • R Ae / is calculated by calculation using the obtained data.
  • the calculation of the correlation coefficient R Ae / M based on the formula (1) can be derived without performing a particularly difficult calculation process manually by using commercially available general spreadsheet software. For example, it can be easily derived by using the CORREL function function of Excel (trademark), a Microsoft product.
  • data collection for calculating the correlation coefficient can be performed by operating surface analysis by FE-EPMA according to a manual of a commercially available apparatus.
  • the catalyst layer (alkaline earth metal supporting region) of the exhaust gas purification catalyst for surface analysis is cut out and used, or the above powder material is used, and these resin materials are used using a cured resin material such as an epoxy resin.
  • Embedded sample is prepared for surface analysis. After the resin is cured, the surface to be analyzed is polished, and a conductive substance (typically carbon) is vapor-deposited to obtain a sample for EPMA analysis.
  • surface analysis is performed using a commercially available apparatus (for example, an electron beam microanalyzer such as JXA-8530F manufactured by JEOL Ltd.).
  • the pixel (partition) size may be 0.34 ⁇ m ⁇ 0.34 ⁇ m, and the number of measurement pixels (partitions) may be 200 ⁇ 200 or more, for example, 256 ⁇ 256.
  • Measurement conditions are not particularly limited because it depends on the analyzer, but some typical measurement conditions include: Acceleration voltage: 10 kV to 30 kV (for example, 20 kV), Irradiation current: 50 nA to 500 nA (for example, 100 nA), Minimum probe diameter: 500 nm or less (for example, 100 nm), Unit measurement time: 40 ms to 100 ms (for example, 50 ms), Is mentioned.
  • the results of surface analysis by FE-EPMA can be displayed as elemental mapping using an application (computer software) attached to a commercially available apparatus (see the drawings described later).
  • the exhaust gas purifying catalyst according to the present embodiment includes a porous carrier, a catalytic metal composed of at least one PGM, and at least one alkaline earth metal sulfate supported on the porous carrier on a substrate. It includes a step of forming a catalyst layer having at least a part of the alkaline earth metal supporting region, and a step of firing the substrate on which the catalyst layer is formed.
  • inorganic compound particles as a material constituting the porous carrier, catalyst metal (PGM) particles as the catalyst metal material, or a precursor for precipitating the metal (for example, water solubility of the catalyst metal) Salt), an alkaline earth metal water-soluble compound and an S-containing water-soluble organic compound are mixed with an aqueous solvent to prepare a raw material suspension.
  • the alkaline earth metal water-soluble compound includes various salts such as Ba, Sr or Ca hydroxide, acetate, nitrate, nitrite and the like. Those having high solubility in water (for example, for Ba, acetate and nitrite) are particularly preferred.
  • examples of the precursor for precipitating the catalytic metal include water-soluble complexes and salts of Pd, Rh, or Pt.
  • the S-containing water-soluble organic compound is not particularly limited as long as it can form an alkaline earth metal sulfate in the process of preparing the above-mentioned raw material suspension, drying, and firing.
  • Preferred examples include taurine (2-aminoethanesulfonic acid), aminobenzenesulfonic acid, aminomethanesulfonic acid, 1-amino-2-naphthol-4-sulfonic acid, cysteic acid, methionine, cystine, dimethyl sulfate, dimethyl sulfide, Examples thereof include dimethyl trisulfide, 2-mercaptoethanol, diphenyl sulfide, dithiothreitol, allyl disulfide, sulfolane, furfuryl mercaptan, dipropyl disulfide, dimethyl sulfone, dimethyl sulfoxide, and the like.
  • At least one functional group of a sulfo group (—SO 3 H), a sulfonyl group (—S ( ⁇ O) 2 —), and a sulfinyl group (—S ( ⁇ O) —) is included in the molecule.
  • a water-soluble organic substance having a good reactivity for the production of sulfate is preferred.
  • those having a basic group such as an amino group (-NH 2) has a high effect of preventing lowering of the pH of the raw material suspension (i.e. strongly acidic reduction), preferred.
  • the slurry-like raw material suspension can be prepared by adding and stirring well using a stirrer.
  • the inorganic compound particles (powder) constituting the porous carrier and water are mixed and stirred, then the catalyst metal precursor is added, and further the alkaline earth metal water-soluble compound is added to the predetermined Stir well for a long time (for example, 10 to 60 minutes), then add S-containing water-soluble organic compound, and dry sufficiently in a temperature range of about 90 to 130 ° C.
  • firing is performed in a temperature range of about 400 to 600 ° C. for several hours (for example, about 1 to 3 hours).
  • a powder material on which catalyst metal and alkaline earth metal sulfate are supported (fixed) can be prepared.
  • the obtained powder material can be subjected to a pulverization treatment as necessary, and adjusted to a desired particle size (for example, a particle size of 10 ⁇ m or less).
  • the particle size of the alkaline earth metal sulfate supported on the outer surface and the pores of the porous carrier particles can be made extremely smaller than before.
  • (Eg, barium sulfate) particles can be supported in a highly dispersed state on the outer surface and pores of porous carrier particles.
  • a highly dispersed state in which the correlation coefficient: R Ae / M is 0.5 or more, more preferably 0.6 or more, and even more preferably 0.7 or more is realized. Can do.
  • a slurry for forming a catalyst layer (alkaline earth metal supporting region) is prepared using the obtained powder material (appropriately pulverized).
  • the preparation of such a slurry may be the same as in the case of forming a catalyst layer of a conventional exhaust gas purifying catalyst, and there is no particular limitation.
  • the lower layer 6B which is an alkaline-earth metal carrying
  • Alkaline earth metal supporting region including the prepared powder material and, if necessary, a carrier powder not supporting an alkaline earth metal (for example, an OSC material such as alumina, zirconia, or CZ composite oxide).
  • the honeycomb substrate 1 is coated with the forming slurry by a known wash coat method or the like.
  • the desired catalytic metal component typically a solution containing another PGM ion different from the PGM used to form the alkaline earth metal supporting region (lower layer) 6B
  • the desired support powder alumina, zirconia,
  • a laminated structure type catalyst layer 6 having an alkaline earth metal supporting region (lower layer) 6B and an upper layer 6A on the substrate 1 is formed.
  • a slurry for forming an alkaline earth metal supporting region (lower layer) is coated on the surface of the base material, followed by drying and firing, and then the alkaline earth metal supporting region (lower layer) ), And then the upper layer forming slurry is coated on the surface of the lower layer, followed by drying and firing to form an upper layer of the catalyst layer.
  • the firing conditions of the wash-coated slurry are not particularly limited because it varies depending on the shape and size of the substrate or carrier, but typically, by firing at about 400 to 1000 ° C. for about 1 to 5 hours, The target alkaline earth metal supporting region and the catalyst layer in other regions can be formed.
  • the drying conditions before firing are not particularly limited, but drying at a temperature of 80 to 300 ° C. for about 1 to 12 hours is preferable.
  • the slurry is preferably adhered to the surface of the base material 1 and further to the surface of the lower layer 6B in the case of a laminated structure catalyst layer. Is preferred.
  • a binder for example, use of alumina sol, silica sol or the like is preferable.
  • the viscosity of the slurry may be adjusted as appropriate so that the slurry can easily flow into the cell 2 of the substrate (for example, honeycomb substrate) 1.
  • ⁇ Test Example 1 Preparation of exhaust gas purification catalyst>
  • a cylindrical honeycomb substrate having a diameter of 103 mm and a total length of 105 mm as shown in FIG. 1 that is, a cordierite honeycomb substrate having a catalyst volume of 0.875 L
  • An exhaust gas purification catalyst having such a two-layered catalyst layer was produced as follows.
  • any one of (1) barium hydroxide, (2) barium acetate, (3) barium nitrate, and (4) strontium hydroxide is used.
  • an S-containing water-soluble organic compound (1) taurine, (2) dimethyl sulfone, (3) sulfolane, (4) cysteic acid, (5) dimethyl sulfoxide, (6) aminobenzene sulfonic acid, (7) aminomethane sulfonic acid
  • a slurry for forming the lower layer (alkaline earth metal supporting region) of the catalyst layer was prepared as follows.
  • a total of 23 types of slurry-like material suspensions were prepared. All the raw material suspensions had a pH of 5 or more. Next, each raw material suspension was dried at 110 ° C. for 8 hours or longer, and then calcined at 500 ° C. for 2 hours. Thereafter, appropriate pulverization treatment was performed until the particle size became 10 ⁇ m or less, thereby preparing powder materials corresponding to the respective raw material suspensions (Examples 1 to 23 in Table 1).
  • Powder material (Comparative Example 1) prepared by the same process using barium sulfate particles from the beginning instead of the alkaline earth metal water-soluble compound and without using the S-containing water-soluble organic compound
  • Powder material (Comparative Example 2) prepared by the same process using barium acetate as the water-soluble Ba compound, but using ammonium sulfate instead of the S-containing water-soluble organic compound
  • barium acetate is used as the water-soluble Ba compound
  • a powder material (Comparative Example 3) prepared by a similar process using sulfuric acid instead of the S-containing water-soluble organic compound
  • barium hydroxide is used as the water-soluble Ba compound
  • a powder material (Comparative Example 4) prepared by the same process using sulfuric acid instead of the S-containing water-soluble organic compound
  • Powder material (Comparative Example 5) prepared by the same process using barium acetate as the water-soluble Ba compound, but without using any raw materials related to the S-containing water-soluble organic compound.
  • Example 1 to 23 and Comparative Examples 1 to 5 in Table 1 For each powder material (Examples 1 to 23 and Comparative Examples 1 to 5 in Table 1), 860 g of alumina powder, 970 g of a CZ composite oxide powder having a molar ratio (Ce: Zr, etc.) of Ce and Zr (including La, Y and other rare earth elements contained in a trace amount) of 3: 7; 30 g of an alumina binder, was added to 2.4 L of pure water, and wet pulverization was performed using a magnetic ball mill until the particle size became 5 ⁇ m or less, for a total of 28 types (ie, Examples 1 to 23 and Comparative Examples 1 to 3 in Table 1). 28 types of lower layer forming slurries corresponding to each of No. 5 were prepared.
  • the slurry for forming the upper layer of the catalyst layer was prepared as follows. That is, 104 g of an aqueous rhodium nitrate solution having an Rh concentration of 2 wt%, 400 g of alumina powder, 1240 g of the CZ composite oxide powder, was added to 5 L of pure water, and wet pulverization was performed using a magnetic ball mill until the particle size became 5 ⁇ m or less, thereby preparing an upper layer forming slurry according to this test example.
  • the base material is washed with the lower layer forming slurry and dried at 150 ° C. for about 1 hour, so that the lower surface (non-fired coating layer) is formed on the surface of the base material (rib wall surface in the cell). Formed.
  • the upper layer forming slurry was used to wash coat the substrate and dried at 150 ° C. for about 1 hour to form an upper layer (non-baked coat layer) on the lower layer surface.
  • firing was performed at 500 ° C. for 1 hour to obtain an exhaust gas purifying catalyst in which a catalyst layer composed of two upper and lower layers (the coating amount was 210 g / L in total for the upper and lower layers) was formed. That is, by using different lower layer forming slurries, a total of 28 types of exhaust gas purifying catalysts (Examples 1 to 23 and Comparative Examples 1 to 5) having different configurations of the lower layer of the catalyst layer were produced.
  • ⁇ Test Example 2 Confirmation of dispersibility of barium sulfate by FE-EPMA> Using an apparatus (JXA-8530F) manufactured by JEOL Ltd. according to the manual, each powder material produced in Test Example 1 was subjected to surface analysis. That is, a predetermined amount of each powder material was embedded using an epoxy resin. After the resin was cured, the surface to be analyzed was polished, and carbon as a conductive material was deposited on the polished surface using a commercially available carbon coater (vacuum device product: VC-100W). Then, a region corresponding to the lower layer of the catalyst layer on the carbon deposition surface was appropriately determined, and surface analysis was performed on the region by FE-EPMA.
  • a commercially available carbon coater vacuum device product: VC-100W
  • the measurement conditions are Pixel size: 0.34 ⁇ m ⁇ 0.34 ⁇ m, Number of measurement pixels: 256 ⁇ 256, Accelerating voltage: 20 kV Irradiation current: 100 nA, Probe diameter: set to the minimum under the relevant measurement conditions, Unit measurement time: 50 ms / 1 pixel, Measurement magnification: x1000 It was.
  • the characteristic X-ray intensity ( ⁇ : cps) was measured.
  • the characteristic X-ray intensity ( ⁇ : cps) of the S element was also measured for each pixel.
  • the threshold value of the X-ray intensity per pixel (area) was set to 15 cps, and pixels that showed an intensity below the threshold value were excluded from the data for calculating the correlation coefficient.
  • the correlation coefficient R Ba / Al or R Ba / Zr (R Sr / Zr only in Example 24) for the exhaust gas purification catalysts of the examples and comparative examples described in Table 1. is there. That is, the correlation coefficient RBa / Al or RBa / Zr ( Rsr / Zr only in Example 24) according to each example is 0.5 or more, preferably 0.6 or more, particularly preferably 0.8. A high correlation of 7 or more was shown. On the other hand, except for Comparative Example 5 that does not contain Ba sulfate, the correlation coefficient R Ba / Al according to each Comparative Example in which Ba sulfate is not highly dispersed is extremely low, 0.1 to 0.33. Correlation coefficient.
  • the catalyst layer (alkaline earth metal-supporting region) by the process disclosed here, the entire surface of the porous support as well as the inside (in the pores) of BaSO 4 It shows that alkaline earth metal sulfate such as SrSO 4 can be supported in a highly dispersed state. Therefore, no matter where the catalyst metal particles are supported on the porous carrier, the alkaline earth metal is present in the vicinity thereof, and the function of the alkaline earth metal as a promoter component is more effective. Can be demonstrated.
  • Example 3 Measurement of average particle size of alkaline earth metal sulfate supported on porous carrier> Using a commercially available X-ray diffractometer (Rigaku Corporation: RINT-2500), the average particle size of barium sulfate (Example 24 is strontium sulfate) contained in the exhaust gas purifying catalyst of each Example and Comparative Example is expressed as X Measurement was performed based on the line diffraction method. That is, it was calculated using analysis software (Rigaku Corporation: PDXL) from the result of a specific peak of each sulfate (for example, around 22 to 25 ° for barium sulfate). The results are shown in the corresponding column of Table 1.
  • the average particle diameter of barium sulfate was 25 nm or less, and the fine size was good.
  • the average particle size was 20 nm or less (minimum 15 nm).
  • such a fine size could not be realized, and all were 30 nm or more.
  • Example 4 Evaluation of NO x purification performance> Regarding the exhaust gas purifying catalysts of each Example and Comparative Example except Example 24, the NO x purification performance after the following durability test was evaluated. That is, first, the exhaust gas purifying catalysts of the examples and comparative examples were installed in the exhaust system of a 2.5 L engine, the engine was operated, and the catalyst bed temperature was maintained at 1000 ° C. for 46 hours. After the endurance test, each exhaust gas purification catalyst was transferred to the exhaust system of another 2.5 L engine for evaluation. Then, after switching the air-fuel ratio A / F of the mixed gas supplied to the 2.5L engine for evaluation from the lean 15.1 to the rich 14.1, the average NO x emission amount for 3 minutes was measured. .
  • the NO x purification rate (%) is - calculated by (NO x emissions from the engine NO x emissions from the catalyst) / (NO x emissions from the engine). The results are shown in the corresponding column of Table 1.
  • the NO x purification rates of the exhaust gas purification catalysts of all the examples tested are the NO x of the exhaust gas purification catalysts of all the comparative examples. x The purification rate exceeded. This means that the presence of fine barium sulfate in a highly dispersed state in the catalyst layer (alkaline earth metal supporting region) improved the performance as a promoter component (herein, NO x purification performance). Show.
  • ⁇ Test Example 5 Evaluation of exhaust gas purification performance (temperature characteristics)> Using the exhaust gas purification catalyst of Example 14 and the exhaust gas purification catalyst of Comparative Example 1, temperature characteristics (T50: ° C.), which is one index of the superiority and inferiority of the exhaust gas purification performance, were examined. Specifically, in the engine bench test, each exhaust gas purification catalyst was subjected to an endurance test at 1000 ° C. for 46 hours, and then the gas temperature of the catalyst was changed from 200 ° C. to a heating rate of 50 ° C./50° C. using a heat exchanger. While increasing the temperature to 450 ° C.
  • the exhaust gas purifying catalyst of Example 14 was lower than the exhaust gas purifying catalyst of Comparative Example 1 for any T50 related to HC, CO, and NO x .
  • the porous carrier is provided in a state in which fine barium sulfate is highly dispersed, which is provided by the production method disclosed herein. It shows that the exhaust gas purifying catalyst characterized by being supported throughout can exhibit high purifying performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本発明は、アルカリ土類金属を高度な分散状態で多孔質担体に担持させた排ガス浄化用触媒を提供する。本発明により提供される排ガス浄化用触媒の触媒層は、多孔質担体と、白金族に属する触媒金属と、当該多孔質担体に担持された少なくとも一種のアルカリ土類金属の硫酸塩とを備えるアルカリ土類金属担持領域を有しており、 当該領域の断面について、 ピクセルサイズ 0.34μm×0.34μm; 測定ピクセル数 256×256; の条件でFE-EPMAによる面分析を行い、前記アルカリ土類金属の元素(Ae)の特性X線の強度(α:cps)および前記多孔質担体を構成する無機化合物の主構成元素(M)の特性X線の強度(β:cps)を各ピクセルについて測定し、得られた各ピクセルにおけるαおよびβを用いて算出したピアソンの相関係数RAe/M値が0.5以上であることを特徴とする。

Description

排ガス浄化用触媒
 本発明は、内燃機関の排気系に設けられる排ガス浄化用触媒に関する。詳しくは、触媒金属として少なくとも一種の白金族に属する金属を含み、さらに助触媒成分としてバリウム(Ba)、ストロンチウム(Sr)等のアルカリ土類金属を含む排ガス浄化用触媒に関する。なお、本出願は2017年4月11日に出願された日本国特許出願第2017-078366号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 自動車エンジン等の内燃機関から排出される排ガスから炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NO)等の有害成分を酸化または還元反応によって除去するための排ガス浄化用触媒として、いわゆる三元触媒が用いられている。三元触媒としては、例えばアルミナ(Al)、ジルコニア(ZrO)等の無機酸化物からなる多孔質担体に、酸化触媒及び/又は還元触媒として機能する金属(典型的にはパラジウム(Pd)、ロジウム(Rh)等の白金族に属する貴金属。以下、「触媒金属」ということがある。)を担持させたものが利用されている。例えば、酸化触媒としてPdおよび還元触媒としてRhを多孔質担体に担持させた三元触媒が広く利用されている。
 さらに、この種の排ガス浄化触媒には、排ガス浄化機能を向上させ得る助触媒成分が用いられている。その一例として、バリウム(Ba)、ストロンチウム(Sr)等のアルカリ土類金属が挙げられる。例えば、Ba等のアルカリ土類金属成分を触媒層の少なくとも一部の領域に適量(例えば当該領域全体の1質量%以上10質量%以下程度)含有することによって、排ガス中に含まれるNOを一時的に吸蔵することができるとともに、Pdと共存させることによって、BaからPdへの電子供与によりPdのシンタリングを抑制し、Pdの触媒活性を維持、向上することができる。例えば、以下の特許文献1,2には、助触媒としてBa、Sr等のアルカリ土類金属を含む従来の排ガス浄化用触媒が記載されている。
日本国特許出願公開平5-237390号公報 日本国特許出願公開平11-285639号公報
 ところで、上述したようなアルカリ土類金属の助触媒としての効果を発揮するには、排ガス浄化用触媒の触媒層中においてアルカリ土類金属が触媒金属の近傍に存在していることが必要である。そしてまた、排ガス浄化用触媒の全体において助触媒としての効果を発揮するには、触媒金属とともにアルカリ土類触媒が高度に分散した状態で存在することが重要である。
 しかしながら、従来の触媒層の形成技法によると、触媒層(アルカリ土類金属担持領域)中にアルカリ土類金属成分の偏在が生じており、高度な分散状態で多孔質担体の外表面および細孔内に担持させることができなかった。このことを換言すれば、触媒層(アルカリ土類金属担持領域)中において多孔質担体の外表面および細孔内に高度に分散した状態で担持された触媒金属の近傍にアルカリ土類金属を同様に高分散状態で担持(固定)することができなかった。例えば、多孔質担体の外表面に大半のアルカリ土類金属が偏在するなどの不都合があった。
 そこで本発明は、かかる従来の課題を解決するべく創出されたものであり、助触媒成分たるアルカリ土類金属を高度な分散状態で多孔質担体に担持させた排ガス浄化用触媒の提供と、そのような高分散な担持を実現し得る製法を提供することを目的とする。
 本発明者は、助触媒たるBa等のアルカリ土類金属の触媒層中における存在形態について詳細に検討した。そして、Ba等のアルカリ土類金属を原料段階から水に不溶性の硫酸塩として使用すると、触媒層においてアルカリ土類金属の偏在を招き、高度な分散状態を実現できないことが確認された。また、Baの硝酸塩のような水溶性化合物を含む原料スラリーを使用し、硫酸や硫酸アンモニウム溶液を当該スラリーに供給してBa等のアルカリ土類金属の硫酸塩(不溶体)を生成する場合には、その後の乾燥および焼成段階において当該原料スラリーが酸性に偏りすぎ、結果、高分散状態を維持できずにアルカリ土類金属の偏在が生じ、やはり高度な分散状態は実現できなかった。
 そこで、本発明者は、Ba等のアルカリ土類金属の原料段階から検討し、アルカリ土類金属の水溶性化合物を、ある種のS含有水溶性有機化合物と共存させた原料を用いることにより、触媒層(アルカリ土類金属担持領域)中において触媒金属とともに高度な分散状態でBa等のアルカリ土類金属硫酸塩を多孔質担体に配置(担持)することができることを見出し、本発明を完成するに至った。
 本発明によって、内燃機関の排気管に配置されて当該内燃機関から排出される排ガスの浄化を行う排ガス浄化用触媒が提供される。
 即ち、ここで開示される排ガス浄化用触媒は、基材と、当該基材上に形成された触媒層とを備えている。かかる触媒層は、
 無機化合物から構成される多孔質担体と、
 当該多孔質担体上に担持された、酸化及び/又は還元触媒として機能する少なくとも一種の白金族に属する触媒金属と、
 当該多孔質担体上に担持された、少なくとも一種のアルカリ土類金属の硫酸塩と、
を備えるアルカリ土類金属担持領域を有している。
 そして、ここで開示される排ガス浄化用触媒は、上記触媒層のアルカリ土類金属担持領域の断面について、
  ピクセル(区画)サイズ 0.34μm×0.34μm;
  測定ピクセル(区画)数 256×256:
の条件でFE-EPMAによる面分析を行い、上記アルカリ土類金属の元素(Ae)の特性X線の強度(α:cps)および上記多孔質担体を構成する無機化合物の主構成元素(M:即ち、当該無機化合物を確定する主要構成金属元素または半金属元素をいう。)の特性X線の強度(β:cps)を各ピクセルについて測定し、得られた各ピクセルにおけるαおよびβを用いて算出したピアソンの相関係数をRAe/Mとしたとき、当該RAe/Mの値が0.5以上であることを特徴とする。
 ここで開示される排ガス浄化用触媒は、本発明によって提供される排ガス浄化用触媒製造方法(詳細は後述する。)により製造され得る触媒製品であり、上述のとおり、FE-EPMAによる面分析の結果に基づいて算出されたピアソンの相関係数(積率相関係数)であるRAe/Mが0.5以上であることを特徴とする。
 かかる相関係数RAe/Mは、第1変数をFE-EPMAによる面分析におけるアルカリ土類金属元素(Ae)の特性X線強度(α)とし、第2変数を同じ面分析における多孔質担体を構成する無機化合物の主構成元素(M)の特性X線強度(β)としたとき、
 RAe/M=(共分散)/(αの標準偏差×βの標準偏差)
で求められる相関係数である。
 本構成の排ガス浄化用触媒では、触媒層のアルカリ土類金属担持領域において、多孔質担体を構成する主構成元素の存在位置(分布)とアルカリ土類金属元素存在位置(分布)との間に高い相関があること、換言すれば、多孔質担体粒子の全体(即ち担体粒子の外表面および内部(細孔内)の両方)にわたって高度に分散した状態でアルカリ土類金属(硫酸塩)が存在していることを特徴とする。これにより、触媒層のアルカリ土類金属担持領域において触媒金属粒子の近傍に高頻度でアルカリ土類金属が存在し得るため、当該アルカリ土類金属の助触媒成分としての作用効果を高レベルに発揮させることができる。
 したがって、例えばBa等のアルカリ土類金属成分によって、排ガス中に含まれるNOを一時的に吸蔵し、それをRh等の触媒金属によって効果的に還元浄化処理することができる。或いは、Pd等の近傍に高頻度にアルカリ土類金属を配置し得ることにより、Pd等の触媒金属のシンタリングを抑制し、触媒活性を維持ならびに向上することができる。
 多孔質担体に担持されたアルカリ土類金属硫酸塩のX線回折法に基づく平均粒径が25nm以下であることが特に好ましい。かかる微細な平均粒径のアルカリ土類金属成分は、助触媒成分として特に高い性能を発揮し得る。
 ここで開示される排ガス浄化用触媒の好適な他の一態様では、上記算出したピアソンの相関係数RAe/Mの値が0.7以上であることを特徴とする。
 RAe/Mの値が0.7以上で示されるように、本構成の排ガス浄化用触媒は、アルカリ土類金属成分の分散性が高い。このため、助触媒成分としての性能(機能)を触媒層(アルカリ土類金属担持領域)中において高レベルに発揮させることができる。
 特に上記AeがBa、上記MがAlまたはZrである場合に、高いRAe/M(即ち、RBa/AlまたはRBa/Zrと記載することができる。)を好適に実現することができる。
 また、ここで開示される排ガス浄化用触媒の好適な一態様では、触媒金属として少なくともパラジウム(Pd)及び/又はロジウム(Rh)を有しており、且つ、上記アルカリ土類金属硫酸塩として少なくとも硫酸バリウム(BaSO)を有していることを特徴とする。
 かかる構成の排ガス浄化用触媒によると、高度に分散したバリウム成分(硫酸バリウム)によって、NOを安定的に一時的に吸蔵することができるとともに、当該成分に一時的に吸蔵されたNO成分をRhにより効果的に還元浄化処理することができる。また、高度に分散して担体に担持されることにより、NO還元作用を向上させることができる。したがって、本構成の排ガス浄化用触媒は、高性能なNO浄化触媒として好適に採用することができる。
 また、PdとBaを共存させることによって、Baの電子的作用によりPdのシンタリングを抑制し、Pdの活性を維持することができる。したがって、本構成の排ガス浄化用触媒は、耐久性に優れる高性能な排ガス浄化用触媒として好適に採用することができる。
 また、本発明は、上記目的を実現するべく、ここで開示される排ガス浄化用触媒を好適に製造し得る方法を提供する。即ち、ここで開示される製造方法は、
 内燃機関の排気管に配置されて当該内燃機関から排出される排ガスの浄化を行う排ガス浄化用触媒を製造する方法であって、
 基材上に、
  無機化合物から構成される多孔質担体と、
  当該多孔質担体に担持された酸化及び/又は還元触媒として機能する少なくとも一種の白金族に属する触媒金属と、
  当該多孔質担体に担持された少なくとも一種のアルカリ土類金属の硫酸塩と、
を備えるアルカリ土類金属担持領域を少なくとも一部に有する触媒層を形成する工程、および
 上記触媒層が形成された基材を焼成する工程、
を包含する方法である。
 そして、ここで開示される製造方法では、上記触媒層の形成工程において、
(1)以下の成分:
  上記多孔質担体を構成する無機化合物粒子;
  上記触媒金属粒子、または、当該触媒金属を析出させるための前駆物質;
  上記アルカリ土類金属の水溶性化合物;および
  構成元素としてSを含有し、上記アルカリ土類金属の硫酸塩を生成可能なS含有水溶性有機化合物;
を水系溶媒と混合し、原料懸濁物を調製すること、
(2)上記原料懸濁物を乾燥し、さらに焼成することによって、上記多孔質担体と触媒金属とアルカリ土類金属の硫酸塩とが混在する粉末材料を調製すること、
(3)少なくとも上記粉末材料と水系溶媒を含むアルカリ土類金属担持領域形成用スラリーを調製すること、および
(4)上記スラリーを用いて上記基材上に上記アルカリ土類金属担持領域を形成すること、
を包含する。
 かかる構成の排ガス浄化用触媒製造方法では、アルカリ土類金属の水溶性化合物と上記のように規定されるS含有水溶性有機化合物とを担体成分(無機化合物粒子)ならびに触媒金属成分(触媒金属粒子または当該触媒金属の前駆体である化合物)とともに混合させた原料(懸濁物)をアルカリ土類金属担持領域形成用途に使用する。
 調製した原料懸濁物では、アルカリ土類金属水溶性化合物とS含有水溶性有機化合物とがともに水系溶媒に溶解している。このとき、S含有水溶性有機化合物は、原料懸濁物のpHを急激に低下(即ち懸濁液の酸性化)させることが無く、アルカリ土類金属水溶性化合物とS含有水溶性有機化合物は、ともに水溶性を保ったまま、担体成分である無機化合物粒子(二次粒子)の内部(細孔内)にまで行き渡ることができる。
 そして、調製した原料懸濁物を乾燥させ、焼成する。その課程において、含有成分であるアルカリ土類金属の水溶性化合物と上記S含有水溶性有機化合物とが反応し、不溶性のアルカリ土類金属硫酸塩が無機化合物粒子の内部および外部において形成され、その存在部位において固定される。
 したがって、本構成の製造方法によると、多孔質担体粒子の全体(即ち担体粒子の外表面および内部(細孔内)の両方)にわたって高度に分散した状態でアルカリ土類金属が存在していることを特徴とするアルカリ土類金属担持領域を触媒層の全体又は一部に有する排ガス浄化用触媒を、好適に製造することができる。
 ここで開示される排ガス浄化用触媒製造方法の好適な一態様では、S含有水溶性有機化合物として、スルホ基(-SOH)、スルホニル基(-S(=O)-)およびスルフィニル基(-S(=O)-)のうちの少なくとも一つの官能基を有する水溶性有機物が使用されることを特徴とする。
 かかるSを含む官能基を有する有機化合物は、上記原料懸濁物を調製するためのS含有水溶性有機化合物として好ましい。
 また、ここで開示される排ガス浄化用触媒製造方法の好適な他の一態様では、上記アルカリ土類金属の水溶性化合物として、Ba、SrおよびCaのうちから選択される何れかのアルカリ土類金属の水酸化物、酢酸塩、または硝酸塩が使用されることを特徴とする。
 かかる水酸化物、酢酸塩および硝酸塩は、良好な水溶性を有し、上記原料懸濁物を調製するためのアルカリ土類金属の水溶性化合物として好ましい。
一実施形態に係る排ガス浄化用触媒を模式的に示す斜視図である。 一実施形態に係る排ガス浄化用触媒の触媒層を模式的に示す断面図である。 実施例14に係る排ガス浄化用触媒の触媒層(アルカリ土類金属担持領域)について実施したFE-EPMAの面分析(256×256ピクセル)におけるBa元素マッピング結果を示す画像である。 実施例14に係る排ガス浄化用触媒の触媒層(アルカリ土類金属担持領域)について実施したFE-EPMAの面分析(256×256ピクセル)におけるS元素マッピング結果を示す画像である。 比較例1に係る排ガス浄化用触媒の触媒層(アルカリ土類金属担持領域)について実施したFE-EPMAの面分析(256×256ピクセル)におけるBa元素マッピング結果を示す画像である。 比較例1に係る排ガス浄化用触媒の触媒層(アルカリ土類金属担持領域)について実施したFE-EPMAの面分析(256×256ピクセル)におけるS元素マッピング結果を示す画像である。 比較例2に係る排ガス浄化用触媒の触媒層(アルカリ土類金属担持領域)について実施したFE-EPMAの面分析(256×256ピクセル)におけるBa元素マッピング結果を示す画像である。 比較例2に係る排ガス浄化用触媒の触媒層(アルカリ土類金属担持領域)について実施したFE-EPMAの面分析(256×256ピクセル)におけるS元素マッピング結果を示す画像である。 一実施例に係る排ガス浄化用触媒のHC、COおよびNOの浄化性能(T50:℃)を比較例の性能と比較したグラフである。
 以下、図面を適宜参照しつつ本発明の好適ないくつかの実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術知識とに基づいて実施することができる。なお、後述する図1~図2は、本発明の内容を理解するために模式的に示したものであり、各図における寸法関係(長さ、幅、厚さなど)は、実際の寸法関係を反映するものではない。
 ここで開示される排ガス浄化用触媒は、上述した性状でアルカリ土類金属の硫酸塩が触媒層の少なくとも一部(即ち、触媒層中における予め設計されたアルカリ土類金属担持領域)において高度に分散した状態で備えられていることで特徴づけられる排ガス浄化用触媒であり、その他の構成は特に限定されない。ここで開示される排ガス浄化用触媒は、後述する触媒金属、担体、基材の種類を適宜選択し、用途に応じて所望する形状に成形することによって種々の内燃機関、特に自動車エンジンの排気系(排気管)に配置することができる。
 以下の説明では、主として本発明の排ガス浄化用触媒を自動車のガソリンエンジンの排気管に設けられる三元触媒に適用することを前提として説明しているが、ここで開示される排ガス浄化用触媒をかかる用途に限定することを意図したものではない。
<基材>
  ここで開示される排ガス浄化用触媒の骨格を構成する基材としては、従来この種の用途に用いられる種々の素材及び形態のものを採用することができる。例えば、高耐熱性を有するコージェライト、炭化ケイ素(SiC)等のセラミックスが好適である。或いは、合金(ステンレス鋼等)製の基材を使用することができる。形状についても従来の排ガス浄化用触媒と同様でよい。一例として図1に示す排ガス浄化用触媒10のように、外形が円筒形状であるハニカム基材1であって、その筒軸方向に排ガス流路としての貫通孔(セル)2が設けられ、各セル2を仕切る隔壁(リブ壁)4に排ガスが接触可能となっているものが挙げられる。基材1の形状はハニカム形状の他にフォーム形状、ペレット形状などとすることができる。或いは、排ガスが一方の入り側セルからセル隔壁を通過して他方の出側セルに流れていく所謂ウォールスルー型(ウォールフロー型ともいう。)の基材であってもよい。また、基材全体の外形については、円筒形に代えて楕円筒形、多角筒形を採用してもよい。
<触媒金属>
 ここで開示される排ガス浄化用触媒の触媒層に備えられる触媒金属は、酸化触媒や還元触媒として機能し得る少なくとも一種の白金族に属する触媒金属(以下「PGM」ともいう。)が採用される。典型的には、ロジウム(Rh)、パラジウム(Pd)、白金(Pt)等が挙げられる。ルテニウム(Ru)、オスミウム(Os)、イリジウム(Ir)、或いは他の触媒機能を有するPGM以外の金属を使用してもよい。PGMの2種以上が合金化されたものを用いてもよい。この中で、還元活性が高いRhと、酸化活性が高いPdまたはPtとを組み合わせて用いることが三元触媒を構築するうえで特に好ましい。
 かかる触媒金属は、排ガスとの接触面積を高める観点から十分に小さい粒径の微粒子として使用されることが好ましい。典型的には平均粒径(例えばTEM観察により求められる粒径の平均値、或いは、X線回折法に基づく平均値であることが好ましい。)は1nm以上15nm以下程度であり、10nm以下、7nm以下、更には5nm以下であることが特に好ましい。
 かかる触媒金属の担持率(担体を100質量%としたときのPGM含有率)は、特に限定されないが、2質量%以下、例えば0.05質量%以上2質量%以下であることが適当であり、0.2質量%以上1質量%以下程度であることが好ましい。担持率が上記範囲より少なすぎると、触媒金属による触媒効果が得られにくい。かかる担持率が上記範囲より多すぎるとコスト面で不利となる。
<担体>
  触媒層を構成し、上述した触媒金属ならびにその他の成分(例えばアルカリ土類金属)を担持する多孔質担体としては、従来の排ガス浄化用触媒と同様の無機化合物が使用される。
 比表面積(BET法により測定される比表面積。以下同じ。)がある程度大きい多孔質担体が好適に用いられる。好適なものとして、例えば、アルミナ(Al)、ジルコニア(ZrO)、セリア(CeO)、シリカ(SiO)、チタニア(TiO)、それらの固溶体(例えばセリア-ジルコニア複合酸化物(CZ複合酸化物)、或いはそれらの組み合わせが挙げられる。上記のとおり、本明細書においては、「多孔質担体を構成する無機化合物の主構成元素(M)」は、当該無機化合物を確定する主要構成金属元素または半金属元素をいう。したがって、例えば、上記列挙したアルミナ、ジルコニア、セリア、シリカ、チタニア、CZ複合酸化物についての主構成元素(M)は、それぞれ、Al、Zr、Ce、Si、Ti、Ce&Zrであることは、当業者には容易に理解されることである。
 排ガス浄化用触媒の熱安定性を高めるという観点からは、耐熱性のよいアルミナ、ジルコニア等の無機化合物を担体若しくは非担持体(即ち、触媒金属やアルカリ土類金属を担持させていない触媒層の構成成分をいう。以下同じ。)として触媒層に含ませることが好ましい。
 担体又は非担持体の粒子(例えばアルミナ粉末やCZ複合酸化物粉末)としては、比表面積が50~500m/g(例えば200~400m/g)であることが耐熱性、構造安定性の観点から好ましい。また、担体粒子のTEM観察に基づく平均粒径は、1nm以上500nm以下(より好ましくは5nm以上300nm以下)程度であることが好ましい。
 また、このような無機化合物(セラミックス)を担体として使用する場合、好ましくは触媒容積が1Lあたりの触媒金属含有量が0.1~5g/L程度が適当であり、0.2~2g/L程度が好ましい。触媒金属含有量が多すぎるとコスト的に好ましくなく、少なすぎると排ガス浄化能が低いために好ましくない。なお、本明細書において触媒容積が1Lというときは、基材の純容積に加えて内部の空隙(セル)容積を含む(即ち当該空隙(セル)内に形成された触媒層を含む)嵩容積が1Lであることをいう。
<触媒層およびアルカリ土類金属担持領域>
 基材上に形成される触媒層は、排ガスを浄化する場として、排ガス浄化用触媒の主体をなすものであるが、ここで開示される排ガス浄化用触媒においては、上記のとおり、触媒層の少なくとも一部(又は全部)が、アルカリ土類金属担持領域を構成する。
 本明細書において「アルカリ土類金属担持領域」は、多孔質担体と触媒金属とアルカリ土類金属硫酸塩(硫酸バリウム、硫酸ストロンチウム等)とを備える触媒層の一部又は全部をいう。ここで「触媒層の一部」とは、排ガス浄化用触媒として機能し得る一区画をいうのであって、例えば担体粒子数個~数十個のような機能的に一区画と呼べないような微視的な一部を意味しない用語である。例えば、一例として図2に示す触媒層6のように、基材1上に形成された相互に内容の異なる上下二層を有する積層構造タイプの触媒層6の場合、基材1に近接する下層6Bと触媒層6の表層部分を構成する上層6Aのうちのいずれか一層若しくは両方をアルカリ土類金属担持領域として形成することができる。或いは、図示されるような積層構造若しくは単層構造の触媒層において、その排ガスが流れる方向に沿って、上流側(又は下流側)の一部(例えば全体の10vol%以上)をアルカリ土類金属担持領域としてもよい。
 なお、アルカリ土類金属担持領域に含ませる好適な硫酸塩を構成するアルカリ土類金属元素としては、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)が挙げられる。助触媒成分として高い機能を発揮させ得る観点から、BaおよびSrが好適であり、Baが特に好ましい。硫酸バリウム(BaSO)は、融点が極めて高く安定であり、さらには水への溶解度は極めて低いため、担体に担持させるアルカリ土類金属として好適である。
 触媒層に担持される触媒金属の種類、配置(分布)、等についてもアルカリ土類金属担持領域の決定と同様、種々の目的に応じて適宜設定することができる。例えば、図2に示す積層構造の触媒層6において、従来品と同様、上層6Aと下層6Bとで担体の種類や当該担体に担持される触媒金属の種類や含有割合を異ならせることができる。例えば、下層6Bをアルカリ土類金属担持領域とした場合、アルカリ土類金属成分(例えば硫酸バリウム)とPGMのうちの少なくとも一種の触媒金属(例えばPd或いはPt)とを共存させる。これにより、シンタリングに対するPd等の耐久性を向上させることができる。
 また、触媒金属としてのRhは、アルカリ土類金属担持領域ではない上層6A側に含ませることができる。これにより、RhとBa等のアルカリ土類金属(特にBa)とが近接することを防ぎ、RhのNO浄化作用の機能低下やRhの過度な酸化を防止することができる。
 触媒層には、触媒金属、アルカリ土類金属の他に、種々の補助的成分を配置することができる。典型例として、酸素吸蔵放出成分(Oxygen  Storage  Component:OSC)が挙げられる。OSC材として、酸化ジルコニウム(ジルコニア)、酸化セリウム(セリア)、ゼオライト等の使用が好適である。また、高い耐熱性および吸蔵・放出速度の観点から、上記のセリア-ジルコニア複合酸化物(CZ複合酸化物)をOSC材として利用することが好ましい。
 ここで開示される排ガス浄化用触媒のアルカリ土類金属担持領域におけるアルカリ土類金属の分散性は、上述したピアソンの相関係数:RAe/Mを求めることによって容易に把握することができる。かかる相関係数は、FE-EPMAによる面分析を行い、アルカリ土類金属の元素(Ae)の特性X線の強度(α:cps)および多孔質担体を構成する無機化合物の主構成元素(M)の特性X線の強度(β:cps)を各ピクセルについて測定し、得られた各ピクセルにおけるαおよびβを用いて算出することができる。
 FE(Field Emission)-EPMA(Electron Probe Micro Analysis)は、電界放出型電子線マイクロアナライザとも呼ばれる分析法であり、高い精度で試料の所定の領域における元素分析とマッピングを行うことができる。かかるFE-EPMAを採用して、排ガス浄化用触媒の触媒層(アルカリ土類金属担持領域)における上記αとβを所定のピクセル数で測定し、得られたデータを用いた計算によってRAe/Mを求めることができる。
 即ち、ピアソンの相関係数(積率相関係数)であるRAe/Mは、
 RAe/M=(共分散)/(αの標準偏差×βの標準偏差)であり、具体的には、以下の式(1)によって求めることができる。
Figure JPOXMLDOC01-appb-M000001
 かかる式(1)に基づく相関係数RAe/Mの算出は、市販される一般的な表計算ソフトを用いることにより、特に難しい計算処理を手計算で行うことなく導き出すことができる。例えば、マイクロソフト社製品であるエクセル(商標)のCORREL 関数機能を利用することによって簡単に導き出すことができる。
 また、相関係数算出のためのデータ収集に関しては、FE-EPMAによる面分析を市販装置のマニュアルにしたがって操作することによって行うことができる。
 概略すれば、先ず、面分析用の排ガス浄化用触媒の触媒層(アルカリ土類金属担持領域)を切り出して用いるか、或いは上記粉末材料を使用し、エポキシ樹脂等の硬化樹脂材料を用いてこれらを包埋することによって面分析用の包埋試料を調製する。樹脂の硬化後、分析する面を研磨するとともに、導電性物質(典型的には炭素)を蒸着させ、EPMA分析用試料とする。そして、市販の装置(例えば日本電子株式会社製の型式:JXA-8530F等の電子線マイクロアナライザ)を使用して、面分析を行う。
 ここで、ピクセル(区画)サイズは0.34μm×0.34μmとし、測定ピクセル(区画)数は200×200以上、例えば256×256とすることができる。測定条件は、分析装置にもよるので特に限定しないが、典型的ないくつかの測定条件として、
 加速電圧:10kV~30kV(例えば20kV)、
 照射電流:50nA~500nA(例えば100nA)、
 最小プローブ径:500nm以下(例えば100nm)、
 単位測定時間:40ms~100ms(例えば50ms)、
が挙げられる。
 また、市販装置に添付のアプリケーション(コンピュータソフトウェア)を用いてFE-EPMAによる面分析の結果を元素マッピングとして表示することもできる(後述する図面参照)。
 本実施形態に係る排ガス浄化用触媒は、基材上に多孔質担体と、少なくとも一種のPGMからなる触媒金属と、当該多孔質担体に担持された少なくとも一種のアルカリ土類金属の硫酸塩と備えるアルカリ土類金属担持領域を少なくとも一部に有する触媒層を形成する工程と、その触媒層が形成された基材を焼成する工程とを包含する。
 そのうち触媒層形成工程では、先ず、多孔質担体を構成する材料としての無機化合物粒子、触媒金属材料としての触媒金属(PGM)粒子または当該金属を析出させるための前駆物質(例えば触媒金属の水溶性の塩)、アルカリ土類金属の水溶性化合物およびS含有水溶性有機化合物を水系溶媒と混合し、原料懸濁物を調製する。
 使用する材料であるが、アルカリ土類金属の水溶性化合物としては、種々の塩、例えばBa、SrまたはCaの水酸化物、酢酸塩、硝酸塩、亜硝酸塩等が挙げられる。水に対する溶解度が高いもの(例えばBaについては、酢酸塩や亜硝酸塩)が特に好ましい。
 また、触媒金属を析出させるための前駆物質としては、例えばPd、RhまたはPtの水溶性の錯体や塩が挙げられる。
 S含有水溶性有機化合物としては、上記原料懸濁物を調製し、乾燥、焼成する過程においてアルカリ土類金属の硫酸塩を形成し得るものであれば特に制限はない。好適例として、タウリン(2-アミノエタンスルホン酸)、アミノベンゼンスルホン酸、アミノメタンスルホン酸、1-アミノ-2-ナフトール-4-スルホン酸、システイン酸、メチオニン、シスチン、硫酸ジメチル、ジメチルスルフィド、ジメチルトリスルフィド、2-メルカプトエタノール、ジフェニルスルフィド、ジチオトレイトール、二硫化アリル、スルホラン、フルフリルメルカプタン、ジプロピルジスルフィド、ジメチルスルホン、ジメチルスルホキシド、等が挙げられる。
 これらのうち、分子内にスルホ基(-SOH)、スルホニル基(-S(=O)-)、スルフィニル基(-S(=O)-)のうちの何れか少なくとも一つの官能基を有する水溶性有機物の使用が硫酸塩の生成のための反応性がよく、好適である。
 また、アミノ基(-NH)等の塩基性基を有するものは、原料懸濁物のpHの低下(即ち強酸性化)を防止する効果が高いため、好ましい。
 そして、上述した各種材料(担体構成材料、触媒金属材料、アルカリ土類金属の水溶性化合物、S含有水溶性有機化合物)を水系溶媒(典型的には水、例えば純水や脱イオン水)に添加し、攪拌機を用いてよく攪拌することにより、スラリー状の原料懸濁物を調製することができる。例えば、最初に多孔質担体を構成する無機化合物粒子(粉末)と水とを混合して攪拌し、その後、触媒金属の前駆物質を添加、さらにアルカリ土類金属の水溶性化合物を添加して所定時間(例えば10分~60分間)よく攪拌し、その後、S含有水溶性有機化合物を添加し、90~130℃程度の温度域で十分に(例えば6時間以上、好適には8時間以上)乾燥させ、さらに400~600℃程度の温度域で数時間(例えば1~3時間程度)かけて焼成する。
 このようなプロセスによって、触媒層(アルカリ土類金属担持領域を含む)を形成する前段階で、多孔質担体粒子(二次粒子)の外表面および内部(細孔内)に高度に分散した状態で触媒金属およびアルカリ土類金属硫酸塩が担持(固定)された粉末材料を調製することができる。得られた粉末材料は、必要に応じて粉砕処理に供し、所望の粒子サイズ(例えば粒径が10μm以下)に調整することができる。
 かかるプロセスによると、多孔質担体粒子の外表面および細孔内に担持されるアルカリ土類金属硫酸塩の粒径を従来よりも極めて小さいものとすることができる。
 典型的には、ここで開示される技術によると、X線回折法に基づく平均粒径が25nm以下(例えば10nm以上25nm以下)、好ましくは20nm以下であるような微細なアルカリ土類金属硫酸塩(例えば硫酸バリウム)粒子を、多孔質担体粒子の外表面および細孔内に高度な分散状態で担持させることができる。
 そして、上記プロセスによると、上記相関係数:RAe/Mが0.5以上、より好ましくは0.6以上、さらに好ましくは0.7以上であるような、高度な分散状態を実現することができる。
 次に、得られた上記粉末材料(適宜に粉砕処理を施したもの)を用いて、触媒層(アルカリ土類金属担持領域)形成用のスラリーを調製する。かかるスラリーの調製は、従来の排ガス浄化用触媒の触媒層を形成する場合と同様でよく、特別な制限はない。
 例えば、図2に示すような上下二層構造タイプの触媒層6の構成が相互に異なる排ガス浄化用触媒10の基材1上にアルカリ土類金属担持領域である下層6Bを形成する場合、  上記調製した粉末材料と、さらに必要に応じて、アルカリ土類金属が担持されていない担体粉末(例えば、アルミナやジルコニア、或いはCZ複合酸化物等のOSC材)と、を含むアルカリ土類金属担持領域形成用スラリーを公知のウォッシュコート法等によってハニカム基材1にコートする。
 次いで、所望の触媒金属成分(典型的にはアルカリ土類金属担持領域(下層)6Bの形成に使用したPGMとは異なる別のPGMイオンを含む溶液)と、所望の担体粉末(アルミナ、ジルコニア、CZ複合酸化物からなるOSC材、等)とを含む上層形成用スラリーをウォッシュコート法等によって下層6Bの表面に積層コートする。
 そして、所定の温度及び時間で乾燥し焼成することによって、基材1上にアルカリ土類金属担持領域(下層)6Bおよび上層6Aを有する積層構造タイプの触媒層6が構成される。
 或いは、このような一度の焼成プロセスに代えて、アルカリ土類金属担持領域(下層)形成用のスラリーを基材の表面にコートした後に乾燥及び焼成を行って先ずアルカリ土類金属担持領域(下層)を形成し、次いで、上層形成用スラリーを下層の表面にコートして乾燥及び焼成を行って触媒層の上層を形成する二段階の焼成を行うプロセスでもよい。
 ウォッシュコートされたスラリーの焼成条件は基材または担体の形状及びサイズによっても変動するので特に限定しないが、典型的には400~1000℃程度で約1~5時間程度の焼成を行うことによって、目的のアルカリ土類金属担持領域および他の領域の触媒層を形成することができる。また、焼成前の乾燥条件については特に限定されるものではないが、80~300℃の温度で1~12時間程度の乾燥が好ましい。
  また、触媒層6をウォッシュコート法により形成する場合、基材1の表面、さらに積層構造触媒層の場合には下層6Bの表面にスラリーを好適に密着させるため、スラリーにはバインダーを含有させることが好ましい。かかる目的のバインダーとしては、例えばアルミナゾル、シリカゾル等の使用が好ましい。なお、スラリーの粘度は当該スラリーが基材(例えばハニカム基材)1のセル2内へ容易に流入し得るように適宜調整するとよい。
 以下、本発明に関するいくつかの実施例につき説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。
<試験例1:排ガス浄化用触媒の作製>
 本試験例では、図1に示すような直径:103mm、全長:105mmである円筒形状のハニカム基材(即ち触媒容積が0.875Lのコージェライト製ハニカム基材)を使用し、図2に示すような二層構造触媒層を備える排ガス浄化用触媒を以下のとおり作製した。
 表1の該当欄に示すように、アルカリ土類金属の水溶性化合物として、(1)水酸化バリウム、(2)酢酸バリウム、(3)硝酸バリウム、(4)水酸化ストロンチウム、の何れかを使用し、
且つ、
 S含有水溶性有機化合物として、
(1)タウリン、(2)ジメチルスルホン、(3)スルホラン、(4)システイン酸、(5)ジメチルスルホキシド、(6)アミノベンゼンスルホン酸、(7)アミノメタンスルホン酸の何れかを使用して、先ず、触媒層の下層(アルカリ土類金属担持領域)形成用スラリーを次のように調製した。
 即ち、アルミナ600gまたはジルコニア600gを純水2Lに添加し、30分間攪拌することによって全体が等しく懸濁した液を調製した。その後、Pd濃度が2wt%である硝酸パラジウム水溶液535gを懸濁液に添加し、さらに上記(1)~(3)のうちのいずれかの水溶性Ba化合物または上記(4)の水溶性Sr化合物107gを添加した。そして、攪拌機を用いて30分間攪拌した。その後、上記(1)~(7)のうちのいずれかのS含有水溶性有機化合物63gを添加し、攪拌することにより、各原料の組合せが表1の実施例1~23のそれぞれに対応する計23種類のスラリー状の原料懸濁物を調製した。いずれの原料懸濁物もpHは5以上であった。
 次に、各原料懸濁物を、110℃で8時間以上乾燥し、続いて500℃で2時間焼成した。その後、粒径が10μm以下になるまで適当な粉砕処理を施すことにより、各原料懸濁物(表1中の実施例1~23)にそれぞれ対応する粉末材料を調製した。
 なお、比較例として、
 アルカリ土類金属の水溶性化合物に代えて最初から硫酸バリウム粒子を使用し且つS含有水溶性有機化合物を使用せずに同様のプロセスで調製した粉末材料(比較例1)、
 水溶性Ba化合物として酢酸バリウムを使用するが、S含有水溶性有機化合物に代えて硫酸アンモニウムを使用して同様のプロセスで調製した粉末材料(比較例2)、
 水溶性Ba化合物として酢酸バリウムを使用するが、S含有水溶性有機化合物に代えて硫酸を使用して同様のプロセスで調製した粉末材料(比較例3)、
 水溶性Ba化合物として水酸化バリウムを使用するが、S含有水溶性有機化合物に代えて硫酸を使用して同様のプロセスで調製した粉末材料(比較例4)、
 水溶性Ba化合物として酢酸バリウムを使用するが、S含有水溶性有機化合物に関する原料は全く使用しないで同様のプロセスで調製した粉末材料(比較例5)、
 についても同時に用意した。
 そして、各粉末材料(表1中の実施例1~23および比較例1~5)のそれぞれに対して、
 アルミナ粉末860gと、
 CeとZr(La、Yその他の微量に含まれる希土類元素を包含する。)とのモル比(Ce:Zr等)が3:7であるCZ複合酸化物粉末970gと、
 アルミナバインダー30gと、
を純水2.4Lに添加し、磁性ボールミルを用いて粒径が5μm以下になるまで湿式粉砕を行うことによって、計28種類(即ち、表1中の実施例1~23および比較例1~5のそれぞれに対応する28種類)の下層形成用スラリーを調製した。
 一方、触媒層の上層形成用スラリーは、以下のとおり、調製した。即ち、
 Rh濃度が2wt%である硝酸ロジウム水溶液104gと、
 アルミナ粉末400gと、
 上記CZ複合酸化物粉末1240gと、
を純水5Lに添加し、磁性ボールミルを用いて粒径が5μm以下になるまで湿式粉砕を行うことによって、本試験例に係る上層形成用スラリーを調製した。
 そして、先ず下層形成用スラリーを用いて基材に対してウォッシュコートを施し、150℃で1時間ほど乾燥することにより、基材の表面(セル内のリブ壁面)に下層(非焼成コート層)を形成した。次いで、上層形成用スラリーを用いて基材に対してウォッシュコートを施し、150℃で1時間ほど乾燥することにより下層の表面に上層(非焼成コート層)を積層形成した。その後、500℃で1時間の焼成を行い、上下二層からなる触媒層(コート量は上下層あわせて210g/Lとした)が形成された排ガス浄化用触媒を得た。
 即ち、下層形成用スラリーを異ならせて使用することにより、触媒層の下層の構成が相互に異なる計28種類(実施例1~23および比較例1~5)の排ガス浄化用触媒を作製した。
<試験例2:FE-EPMAによる硫酸バリウムの分散性の確認>
 日本電子株式会社製の装置(JXA-8530F)をマニュアルどおりに使用し、試験例1で作製した各粉末材料について面分析を行った。
 即ち、所定量の各粉末材料をエポキシ樹脂を用いて包埋した。樹脂硬化後、分析する表面を研磨し、さらに研磨した面に対して、市販のカーボンコーター(株式会社真空デバイス製品:VC-100W)を使用して導電性物質としての炭素を蒸着した。そして、炭素蒸着面のうちの触媒層の下層に該当する領域を適宜定め、かかる領域に対してFE-EPMAによる面分析を行った。測定条件は、
 ピクセルサイズ:0.34μm×0.34μm、
 測定ピクセル数:256×256、
 加速電圧:20kV、
 照射電流:100nA、
 プローブ径:当該測定条件における最小に設定、
 単位測定時間:50ms/1ピクセル、
 測定倍率:×1000
とした。そして、ピクセル毎にBa元素(実施例24はSr元素)の特性X線の強度(α:cps)および多孔質担体を構成する無機化合物の主構成元素(図3の表に示すAlまたはZr)の特性X線の強度(β:cps)を測定した。また、本試験例においては、さらに、ピクセル毎にS元素の特性X線の強度(γ:cps)についても測定した。
 なお、かかる面分析において、1ピクセル(区域)あたりのX線強度の閾値を15cpsと設定し、閾値以下の強度を示したピクセルは、相関係数の算出のためのデータから除外した。
 こうして面分析を行い、得られたデータを表計算ソフト「エクセル」のCORREL 関数機能を用いて相関係数RBa/AlまたはRBa/Zr(実施例24のみRSr/Zr)を求めた。
 同時に、本試験例ではピクセル毎に求めたS元素の特性X線の強度(γ:cps)を第3の変数として採用し、RBa/S(実施例24のみRSr/S)を求めた。結果を表1の該当欄に示す。
 また、実施例14の試料、ならびに比較例1と2の試料については、BaとSの元素マッピングについてのデータ(画像)を図3~8に示す。
Figure JPOXMLDOC01-appb-T000002
 図示された元素マッピングから明らかなように、実施例14の排ガス浄化用触媒では、画像に示された多孔質担体(二次粒子)の全体にわたってBa元素およびS元素が高度に分散した状態で存在していることがわかる(図3~4)。他方、比較例1、2の排ガス浄化用触媒では、多孔質担体(二次粒子)の輪郭に沿った外表面もしくは担体粒子からは少し離れた部位に凝集してBa元素およびS元素が存在していることがわかる(図5~8)。 
 このことは、表1に記載した各実施例、比較例の排ガス浄化用触媒についての相関係数RBa/AlまたはRBa/Zr(実施例24のみRSr/Zr)の値からも明らかである。
 即ち、各実施例に係る相関係数RBa/AlまたはRBa/Zr(実施例24のみRSr/Zr)は、いずれも0.5以上、好ましくは0.6以上、特に好ましくは0.7以上という高い相関を示した。他方、Ba硫酸塩を含まない比較例5を除き、Ba硫酸塩が高度に分散されていない各比較例に係る相関係数RBa/Alは、いずれも0.1~0.33という極めて低い相関係数であった。
 これらの結果から明らかなように、ここで開示されるプロセスによって触媒層(アルカリ土類金属担持領域)を形成することにより、多孔質担体の外表面ならびに内部(細孔内)の全体にわたってBaSO、SrSO等のアルカリ土類金属硫酸塩を高度に分散した状態で担持させることができることを示している。したがって、触媒金属粒子が多孔質担体のどの位置に担持されていても、その近傍にアルカリ土類金属が存在していることとなり、当該アルカリ土類金属の助触媒成分としての機能をいっそう効果的に発揮させることができる。
<試験例3:多孔質担体に担持されたアルカリ土類金属硫酸塩の平均粒径の測定>
 市販のX線回折装置(株式会社リガク製品:RINT-2500)を使用し、各実施例および比較例の排ガス浄化用触媒に含まれる硫酸バリウム(実施例24は硫酸ストロンチウム)の平均粒径をX線回折法に基づいて測定した。即ち、各硫酸塩の特有のピーク(例えば硫酸バリウムで22~25°付近)結果から解析ソフト(株式会社リガク製品:PDXL)を用いて算出した。結果を表1の該当欄に示す。
 表に示すように、各実施例では、いずれも硫酸バリウムの平均粒径は、25nm以下であり、良好な微細サイズであった。特に好適なものでは、かかる平均粒径は20nm以下(最小で15nm)であった。他方、各比較例では、このような微細なサイズは実現できず、いずれも30nm以上であった。
<試験例4:NO浄化性能の評価>
 実施例24を除く各実施例および比較例の排ガス浄化用触媒について、以下の耐久試験を行った後のNO浄化性能を評価した。
 即ち、先ず、各実施例および比較例の排ガス浄化用触媒を2.5Lエンジンの排気系に設置し、エンジンを稼働させ触媒床温度を1000℃で46時間保持した。
 かかる耐久試験後、各排ガス浄化用触媒を、別の評価用2.5Lエンジンの排気系に移設した。そして、評価用2.5Lエンジンに供給する混合ガスの空燃比A/Fをリーン状態の15.1からリッチ状態である14.1に切り替えた後、3分間の平均NO排出量を測定した。かかるリッチガスNO浄化率(%)は、(エンジンからのNO排出量-触媒からのNO排出量)/(エンジンからのNO排出量)によって算出した。結果を表1の該当欄に示す。
 表1に示すNO浄化率(%)の数値から明らかなように、試験を行った全ての実施例の排ガス浄化用触媒のNO浄化率は、全ての比較例の排ガス浄化用触媒のNO浄化率を上回った。このことは、触媒層(アルカリ土類金属担持領域)において高度に分散した状態で微細な硫酸バリウムが存在することによって、助触媒成分としての性能(ここではNO浄化性能)が向上したことを示している。
<試験例5:排ガス浄化性能(温度特性)の評価>
 実施例14の排ガス浄化用触媒と、比較例1の排ガス浄化用触媒とを用いて、排ガス浄化性能の優劣の一つの指標である温度特性(T50:℃)を調べた。具体的には、エンジンベンチ試験において、各排ガス浄化用触媒を1000℃で46時間の耐久試験に供した後、熱交換器を用いて触媒の入りガス温度を200℃から昇温速度50℃/分で450℃まで上昇させながら、模擬排ガスを流入させ(Ga=23g/s、2600rpm)、触媒の出側におけるHC(ここではプロピレン)濃度、CO濃度およびNO濃度を測定した。そして、流入ガスの濃度に対して出側のガス濃度が50mol%に到達したときの温度(50%浄化率到達温度℃;T50)を評価した。結果を図9に示す。T50は低温であるほど浄化性能が優れていることを表している。
 図9に示すように、HC、CO、NOに関するいずれのT50についても、実施例14の排ガス浄化用触媒の方が比較例1の排ガス浄化用触媒よりも低いことが確認できた。
このことは、従来法で作製された硫酸バリウムを備える排ガス浄化用触媒と比較して、ここで開示される製造方法により提供される、微細な硫酸バリウムが高度に分散した状態で多孔質担体の全体にわたって担持されたことを特徴とする排ガス浄化用触媒が、高い浄化性能を発揮できることを示している。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。

Claims (7)

  1.  内燃機関の排気管に配置されて当該内燃機関から排出される排ガスの浄化を行う排ガス浄化用触媒であって、
     基材と、
     当該基材上に形成された触媒層と、
    を備えており、
     前記触媒層は、
      無機化合物から構成される多孔質担体と、
      前記多孔質担体に担持された、酸化及び/又は還元触媒として機能する少なくとも一種の白金族に属する触媒金属と、
      前記多孔質担体に担持された、少なくとも一種のアルカリ土類金属の硫酸塩と、
    を備えるアルカリ土類金属担持領域を有しており、
     ここで、前記触媒層のアルカリ土類金属担持領域の断面について、
      ピクセルサイズ 0.34μm×0.34μm;
      測定ピクセル数 256×256;
    の条件でFE-EPMAによる面分析を行い、前記アルカリ土類金属の元素(Ae)の特性X線の強度(α:cps)および前記多孔質担体を構成する無機化合物の主構成元素(M)の特性X線の強度(β:cps)を各ピクセルについて測定し、得られた各ピクセルにおけるαおよびβを用いて算出したピアソンの相関係数をRAe/Mとしたとき、
     当該RAe/Mの値が0.5以上であることを特徴とする、排ガス浄化用触媒。
  2.  前記相関係数RAe/Mの値が0.7以上である、請求項1に記載の排ガス浄化用触媒。
  3.  前記多孔質担体に担持されたアルカリ土類金属硫酸塩のX線回折法に基づく平均粒径が、25nm以下である、請求項1に記載の排ガス浄化用触媒。
  4.  前記触媒金属として少なくともパラジウム(Pd)及び/又はロジウム(Rh)を有しており、
     前記アルカリ土類金属硫酸塩として少なくとも硫酸バリウム(BaSO)を有している、請求項1に記載の排ガス浄化用触媒。
  5.  内燃機関の排気管に配置されて当該内燃機関から排出される排ガスの浄化を行う排ガス浄化用触媒を製造する方法であって、
     基材上に、
      無機化合物から構成される多孔質担体と、
      当該多孔質担体に担持された酸化及び/又は還元触媒として機能する少なくとも一種の白金族に属する触媒金属と、
      当該多孔質担体に担持された少なくとも一種のアルカリ土類金属の硫酸塩と、
    を備えるアルカリ土類金属担持領域を少なくとも一部に有する触媒層を形成する工程、および
     前記触媒層が形成された基材を焼成する工程、
    を包含し、
     ここで、前記触媒層の形成工程は、
     以下の成分:
      前記多孔質担体を構成する無機化合物粒子;
      前記触媒金属粒子または当該触媒金属を析出させるための前駆物質;
      前記アルカリ土類金属の水溶性化合物;および
      構成元素としてSを含有し、前記アルカリ土類金属の硫酸塩を生成可能なS含有水溶性有機化合物;
    を水系溶媒と混合し、原料懸濁物を調製すること、
     前記原料懸濁物を乾燥し、さらに焼成することによって、前記多孔質担体と触媒金属とアルカリ土類金属の硫酸塩とが混在する粉末材料を調製すること、
     少なくとも前記粉末材料と水系溶媒を含むアルカリ土類金属担持領域形成用スラリーを調製すること、および
     前記スラリーを用いて前記基材上に前記アルカリ土類金属担持領域を形成すること、
    を包含する、排ガス浄化用触媒の製造方法。
  6.  前記S含有水溶性有機化合物として、スルホ基(-SOH)、スルホニル基(-S(=O)-)およびスルフィニル基(-S(=O)-)のうちの少なくとも一つの官能基を有する水溶性有機物が使用される、請求項5に記載の排ガス浄化用触媒の製造方法。
  7.  前記アルカリ土類金属の水溶性化合物として、Ba、SrおよびCaのうちから選択される何れかのアルカリ土類金属の水酸化物、酢酸塩、または硝酸塩が使用される、請求項5に記載の排ガス浄化用触媒の製造方法。
PCT/JP2018/014939 2017-04-11 2018-04-09 排ガス浄化用触媒 WO2018190300A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18783833.9A EP3581269B1 (en) 2017-04-11 2018-04-09 Catalyst for exhaust gas purification and method of preparation
JP2019512500A JP7062642B2 (ja) 2017-04-11 2018-04-09 排ガス浄化用触媒
CN201880024001.6A CN110494215A (zh) 2017-04-11 2018-04-09 排气净化用催化剂
US16/603,380 US11504700B2 (en) 2017-04-11 2018-04-09 Exhaust gas purification catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-078366 2017-04-11
JP2017078366 2017-04-11

Publications (1)

Publication Number Publication Date
WO2018190300A1 true WO2018190300A1 (ja) 2018-10-18

Family

ID=63793628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014939 WO2018190300A1 (ja) 2017-04-11 2018-04-09 排ガス浄化用触媒

Country Status (5)

Country Link
US (1) US11504700B2 (ja)
EP (1) EP3581269B1 (ja)
JP (1) JP7062642B2 (ja)
CN (1) CN110494215A (ja)
WO (1) WO2018190300A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071059A1 (ja) * 2018-10-04 2020-04-09 株式会社キャタラー 排ガス浄化用触媒
DE102021126689A1 (de) 2020-10-19 2022-04-21 Cataler Corporation Abgasreinigungsvorrichtung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372052B2 (ja) * 2019-05-15 2023-10-31 株式会社キャタラー 排ガス浄化触媒装置
JP7211893B2 (ja) 2019-05-24 2023-01-24 トヨタ自動車株式会社 排ガス浄化装置
JP7213198B2 (ja) * 2020-03-09 2023-01-26 日本碍子株式会社 焼成前又は焼成後の柱状ハニカム成形体を検査する方法
JP7381372B2 (ja) * 2020-03-12 2023-11-15 トヨタ自動車株式会社 排ガス浄化装置
US11786885B2 (en) * 2021-08-13 2023-10-17 Johnson Matthey Public Limited Company Sulfur-containing organic compound assisted metal nanoparticle synthesis for three-way catalysis application

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285639A (ja) 1988-05-09 1989-11-16 Kokusan Denki Co Ltd 内燃機関用速度制御装置
JPH05237390A (ja) 1992-02-28 1993-09-17 Nippon Shokubai Co Ltd 排気ガス浄化用触媒
WO2010137658A1 (ja) * 2009-05-27 2010-12-02 株式会社 キャタラー 排ガス浄化用触媒及びその製造方法
WO2010147163A1 (ja) * 2009-06-16 2010-12-23 株式会社 キャタラー 排ガス浄化用触媒、粉末材料、及び排ガス浄化用触媒の製造方法
WO2011030831A1 (ja) * 2009-09-10 2011-03-17 株式会社 キャタラー 排ガス浄化用触媒
JP2014505587A (ja) * 2010-12-27 2014-03-06 ビーエーエスエフ コーポレーション 硫酸バリウムを備える熱的に安定した触媒担体
WO2014156746A1 (ja) * 2013-03-28 2014-10-02 エヌ・イーケムキャット株式会社 硫酸バリウムを含むアルミナ材料とその製造方法、それを用いた排気ガス浄化用触媒
CN104741135A (zh) * 2013-12-31 2015-07-01 西北大学 一种硫酸钡-碳气凝胶复合载体负载钯催化剂的制备方法
JP2017078366A (ja) 2015-10-21 2017-04-27 Kyb株式会社 ベーンポンプ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932309A (en) * 1974-06-05 1976-01-13 W. R. Grace & Co. Auto exhaust catalysts prepared from sulfite treated platinum and palladium salt solutions
JPS5154919A (ja) 1974-11-08 1976-05-14 Fuji Zoki Seiyaku Kogenkotaikansetsugyoshuhannokensayokishakubo
JP3812132B2 (ja) 1998-04-03 2006-08-23 松下電器産業株式会社 排ガス浄化用触媒及びその製造方法
DE19847008A1 (de) 1998-10-13 2000-04-20 Degussa Stickoxid-Speicherkatalysator
JP2001232208A (ja) 2000-02-25 2001-08-28 Toyota Motor Corp 排ガス浄化用触媒及びその製造方法
JP4082559B2 (ja) * 2001-11-22 2008-04-30 日本碍子株式会社 触媒体及びその製造方法
JP4200768B2 (ja) 2003-01-22 2008-12-24 マツダ株式会社 排気ガス浄化用三元触媒
JP4329432B2 (ja) * 2003-07-15 2009-09-09 トヨタ自動車株式会社 排ガス浄化用触媒
EP1989263A1 (de) 2006-02-21 2008-11-12 Sachtleben Chemie GmbH Bariumsulfat
US8404049B2 (en) 2007-12-27 2013-03-26 Memc Electronic Materials, Inc. Epitaxial barrel susceptor having improved thickness uniformity
JP5322526B2 (ja) 2008-07-17 2013-10-23 エヌ・イーケムキャット株式会社 自動車から排出される排気ガスを浄化するためのハニカム構造型触媒及びその製造方法、並びに、その触媒を使用した排気ガス浄化方法
WO2010071205A1 (ja) * 2008-12-19 2010-06-24 株式会社 キャタラー 排ガス浄化用触媒
CN102448606B (zh) * 2009-05-27 2014-03-26 株式会社科特拉 废气净化用催化剂
JP5558199B2 (ja) 2010-05-13 2014-07-23 ユミコア日本触媒株式会社 排ガス浄化用触媒
CN103459017A (zh) 2011-03-24 2013-12-18 优美科触媒日本有限公司 废气净化用氧化催化剂、其制备方法以及使用该催化剂的废气净化方法
BR112014007734A2 (pt) 2011-10-31 2017-04-04 N E Chemcat Corp catalisador purificador de gás de escape
US9016019B2 (en) * 2012-03-29 2015-04-28 Kerry VonDross Composite masonry block and method of making the same
JP5777690B2 (ja) * 2013-12-02 2015-09-09 田中貴金属工業株式会社 排ガス浄化触媒及びその製造方法
JP6742751B2 (ja) * 2016-02-19 2020-08-19 株式会社キャタラー 排ガス浄化用触媒材料及び排ガス浄化用触媒
EP3424592A4 (en) * 2016-03-01 2019-11-27 Cataler Corporation EMISSION CONTROL CATALYST

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285639A (ja) 1988-05-09 1989-11-16 Kokusan Denki Co Ltd 内燃機関用速度制御装置
JPH05237390A (ja) 1992-02-28 1993-09-17 Nippon Shokubai Co Ltd 排気ガス浄化用触媒
WO2010137658A1 (ja) * 2009-05-27 2010-12-02 株式会社 キャタラー 排ガス浄化用触媒及びその製造方法
WO2010147163A1 (ja) * 2009-06-16 2010-12-23 株式会社 キャタラー 排ガス浄化用触媒、粉末材料、及び排ガス浄化用触媒の製造方法
WO2011030831A1 (ja) * 2009-09-10 2011-03-17 株式会社 キャタラー 排ガス浄化用触媒
JP2014505587A (ja) * 2010-12-27 2014-03-06 ビーエーエスエフ コーポレーション 硫酸バリウムを備える熱的に安定した触媒担体
WO2014156746A1 (ja) * 2013-03-28 2014-10-02 エヌ・イーケムキャット株式会社 硫酸バリウムを含むアルミナ材料とその製造方法、それを用いた排気ガス浄化用触媒
CN104741135A (zh) * 2013-12-31 2015-07-01 西北大学 一种硫酸钡-碳气凝胶复合载体负载钯催化剂的制备方法
JP2017078366A (ja) 2015-10-21 2017-04-27 Kyb株式会社 ベーンポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3581269A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071059A1 (ja) * 2018-10-04 2020-04-09 株式会社キャタラー 排ガス浄化用触媒
JP2020054982A (ja) * 2018-10-04 2020-04-09 株式会社キャタラー 排ガス浄化用触媒
JP6990161B2 (ja) 2018-10-04 2022-02-15 株式会社キャタラー 排ガス浄化用触媒
US11821349B2 (en) 2018-10-04 2023-11-21 Cataler Corporation Exhaust gas purification catalyst
DE102021126689A1 (de) 2020-10-19 2022-04-21 Cataler Corporation Abgasreinigungsvorrichtung
CN114377694A (zh) * 2020-10-19 2022-04-22 丰田自动车株式会社 排气净化装置
US11759769B2 (en) 2020-10-19 2023-09-19 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device

Also Published As

Publication number Publication date
US20200030780A1 (en) 2020-01-30
US11504700B2 (en) 2022-11-22
EP3581269A1 (en) 2019-12-18
JP7062642B2 (ja) 2022-05-06
EP3581269A4 (en) 2019-12-18
EP3581269B1 (en) 2022-09-28
JPWO2018190300A1 (ja) 2020-05-14
CN110494215A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2018190300A1 (ja) 排ガス浄化用触媒
RU2549402C1 (ru) Каталитический нейтрализатор выхлопных газов
JP3274688B2 (ja) 分離した白金及びロジウム成分を含有する触媒組成物
RU2515542C2 (ru) Катализатор очистки выхлопных газов и способ его изготовления
JP6822890B2 (ja) 排ガス浄化触媒、排ガス浄化方法、及び排ガス浄化システム
KR20170110100A (ko) 자동차 배출 처리를 위한 로듐-함유 촉매
KR20170110099A (ko) 자동차 배출 처리를 위한 백금족 금속 (pgm) 촉매
JP2004508186A (ja) 排気ガス浄化用触媒組成物
JP2002535135A (ja) 酸素貯蔵成分を含有する触媒組成物
JP5942233B2 (ja) Co選択メタン化触媒
KR20150023708A (ko) 산소 저장을 위한 혼합 금속 산화물의 복합체
KR20150131017A (ko) 분리된 워시코트를 갖는 촉매 물품 및 이의 제조 방법
WO2020071059A1 (ja) 排ガス浄化用触媒
JP2000271480A (ja) 排ガス浄化用触媒
JP6715351B2 (ja) 排気ガス浄化触媒用デラフォサイト型酸化物及びこれを用いた排気ガス浄化触媒
EP3616791A1 (en) Exhaust gas purification catalyst and exhaust gas purification method using same
JP4507717B2 (ja) 排気ガス浄化用触媒
US20150174555A1 (en) Exhaust gas purifying catalyst and method for producing same
JP2007301471A (ja) 排ガス浄化用触媒
JP2007136420A (ja) 排気ガス浄化用触媒及びその製造方法
JP5589320B2 (ja) 排気ガス浄化用触媒及びその製造方法
JP7336053B2 (ja) 排ガス浄化用触媒組成物及び排ガス浄化用触媒
US20240157340A1 (en) Exhaust gas purifying catalyst composition and exhaust gas purifying catalyst
WO2024014409A1 (ja) 排ガス浄化用触媒組成物、排ガス浄化用触媒及び排ガス浄化システム
JP2024517672A (ja) 近接結合エンジン用途の白金含有三元触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018783833

Country of ref document: EP

Effective date: 20190912

ENP Entry into the national phase

Ref document number: 2019512500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE