JP2004508186A - 排気ガス浄化用触媒組成物 - Google Patents

排気ガス浄化用触媒組成物 Download PDF

Info

Publication number
JP2004508186A
JP2004508186A JP2002526486A JP2002526486A JP2004508186A JP 2004508186 A JP2004508186 A JP 2004508186A JP 2002526486 A JP2002526486 A JP 2002526486A JP 2002526486 A JP2002526486 A JP 2002526486A JP 2004508186 A JP2004508186 A JP 2004508186A
Authority
JP
Japan
Prior art keywords
component
present
amount
weight
catalyst composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002526486A
Other languages
English (en)
Other versions
JP4292005B2 (ja
JP2004508186A5 (ja
Inventor
サング,シアング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Catalysts LLC
Original Assignee
Engelhard Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engelhard Corp filed Critical Engelhard Corp
Publication of JP2004508186A publication Critical patent/JP2004508186A/ja
Publication of JP2004508186A5 publication Critical patent/JP2004508186A5/ja
Application granted granted Critical
Publication of JP4292005B2 publication Critical patent/JP4292005B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本発明は、セリウムとジルコニウムとサマリウム成分の複合体、この複合体を含有させた触媒組成物そしてこの触媒組成物を用いて気体流れを処理してそれに含まれている汚染物を減少させることに関する。本触媒組成物は、炭化水素および一酸化炭素の酸化と窒素酸化物の還元に実質的に同時に触媒作用を及ぼす能力を有する。

Description

【0001】
(発明の背景)
(発明の分野)
本発明はセリウムとジルコニウムとサマリウム成分の複合体およびこの複合体を含んで成る触媒組成物ばかりでなく前記触媒組成物を用いて気体流れを処理してそれに入っている汚染物を減少させることに関する。より詳細には、本発明は、スリーウエイ(three−way)変換または「TWC」と一般に呼ばれる種類の前記複合体を含有させた触媒組成物そして気体流れ、特に内燃機関が発生する排気ガス流れに存在する炭化水素および一酸化炭素の酸化および窒素酸化物の還元に実質的に同時に触媒作用を及ぼす方法に関する。
【0002】
(関連技術の考察)
スリーウエイ変換触媒(TWC)は、内燃機関、例えば自動車、トラックおよび他のガソリン燃料エンジンなどから出る排気ガス流れの処理を包含する数多くの分野で有用である。いろいろな統治機関が未燃焼炭化水素、一酸化炭素および窒素酸化物汚染物に関して排出基準を設定しており、新車ばかりでなく中古車もそれに合致させる必要がある。前記基準に合致させる目的で、TWC触媒が備わっている触媒コンバーターを内燃機関の排気ガスライン内に位置させることが行われている。そのような触媒は、その排気ガス流れ中で起こる酸素による未燃焼炭化水素および一酸化炭素の酸化ばかりでなく窒素酸化物から窒素への還元も助長する。
【0003】
エンジンの排気ガスは、このガスが排気多岐管の出口から排気パイプを通って触媒コンバーターに至るまでに、前記多岐管の所または近くの温度に比べて有意に冷え、その結果として、前記触媒コンバーターに含まれる触媒が前記排気ガスによってそれのライトオフ(light−off)温度にまで熱せられる時までは前記排気ガスの流れに含まれる汚染物が変換を受ける速度が遅い期間が有意な時間存在することが良く知られている。従って、このようなエンジン作動の冷機始動期間中には汚染物が相対的に多い量で入っているエンジン排気ガスが有意な量で放出される。
【0004】
また、排気ガス流れに入っている汚染物の酸化を補助する空気ポンプ(air pump)をエンジンと協力させて用いるとそのような汚染物の濃度、特に炭化水素および一酸化炭素の濃度が低下することも本分野で良く知られている。しかしながら、車製造業者は空気ポンプの如き機械的汚染制御装置の使用を好まないであろう、と言うのは、それらに関連した鉛加工および機械部品を伴うことでエンジンの構成が影響を受けかつそれの制御をエンジンの最適な性能に悪影響を与えることなく行うのは困難であるからである。従って、車製造業者は、いやしくも可能ならば、機械型の汚染制御装置を用いないでエンジンを性能が最適になるように調整しかつその代わりに単に触媒部材を用いることで以下に考察する車排出基準(vehicle emission standards)を満足させる方を好むであろう。しかしながら、以下に考察するように、政府の排出基準は益々厳しくなってきていることから、冷機始動時の排出量を少なくする必要がある。
【0005】
カリフォルニア以外の州全部で実施されている現在の「LEV」(低排気車)基準では、車がメタンでない炭化水素を1マイル当たり0.08グラムを超える量で放出し、一酸化炭素を1マイル当たり3.4グラムを超える量で放出しかつNO(窒素酸化物)を1マイル当たり0.2グラムを超える量で放出することを禁止している。数多くの車製造業者は、入手可能な上流および/または下流触媒組成物を追加的機械装置、例えば空気ポンプなどの同時使用なしに単独で用いて現在の基準を満足させるには困難さを有する。更により大きな関心を集めている事項は、California Air Resource Board(「CARB」)が公表した新規な「ULEV」(超低排気車)基準であり、この基準では、車がメタンでない炭化水素を1マイル当たり0.04グラムを超える量で放出し、一酸化炭素を1マイル当たり1.7グラムを超える量で放出しかつNOを1マイル当たり0.2グラムを超える量で放出することを禁止している。その上、車排出基準における歴史的な傾向を基にすると、そのような新規なULEV基準が数年以内に全国的に求められるようになる可能性がある。車製造業者は、そのような新規なULEV基準を満足させるに有効な方法を迅速に開発して実施することができない限り、エンジン/排気構成の有意な変更、追加的な機械的汚染制御装置の組み込みおよび高価な貴金属を基にした触媒系を多量に用いることなしにそのような基準を達成するのが困難になると言った問題に直面するであろう。
【0006】
大部分の車で、炭化水素放出の大部分(即ち約80%に及ぶ)はU.S.Federal Test Procedure(「FTP」)の1番目の段階(エンジン作動の冷機始動期間を包含)中に起こり、前記FTPでは、冷機始動、ウォームアップ、加速、経済速度における走行、減速および同様なエンジン作動様式を特定期間に渡って模擬する必要がある。冷機始動時の炭化水素放出量を減少させる多様な技術が開発下にあり、そのような技術には、Ball,D.J.「Distribution of warm−up and Underfloor Catalyst Volumes」、SAE 922338、1992に開示されている如き直動式触媒;Piotrowski,G.K.「Evaluation of a Resistivity Heated Metal Monolith Catalytic Converter on a Gasoline−Fueled Vehicle」、EPA/AA/CTAAB/88−12、1988およびHurley,R.G.「Evaluation of Metallic and Electrically Heated Metallic Catalysts on a Gasoline Fueled Vehicle」、SAE 900504、1990に開示されている如き電気加熱触媒;Heimrich,M.J.、Smith,L.R.およびKitowski,J.「Cold Start Hydrocarbon Collection for Advanced Exhaust Emission Control」、SAE 920847、1992およびHochmuth,J.K.、Burk,P.L.、Telentino,C.およびMignano,M.J.「Hydrocarbon Traps for Controlling Cold Start Emissions」、SAE 930739、1993に開示されている如き炭化水素吸収装置;Fraidl,G.K.、Quissrk,F.およびWinklhofer,E.「Improvement of LEV/ULEV Potential of Fuel Efficient High Performance Engines」、SAE 920416、1992に開示されている如きバイパス触媒;そしてMa,T.、Colling,N.およびHands,T.「Exhaust Gas Ignition(EGI)−A New Concept for Rapid Light−off of Automotive Exhaust Catalyst」、SAE 920400、1992に開示されている如きバーナーが含まれる。Ball,D.J.「Distribution of warm−up and Underfloor Catalyst Volumes」、SAE 922338、1992;Summers,J.C.、Skowron,J.F.およびMiller,M.J.「Use of Light−Off Catalysts to Meet the California LEV/ULEV Standards」、SAE 930386、1993およびBall,D.J.「A Warm−up and Underfloor Converter Parametric Study」、SAE 932765、1993に開示されたように、FTPサイクルの冷機始動中の炭化水素放出量を減少させるには直動式触媒、特にPd含有触媒が非常に有効であると報告された。最近、Fordは、Dettling,J.Hu,Z,Lui,Y.、Smaling,R.、Wan,CおよびPunke,A.がCAPoC Third International Congress on Catalyst and Automobile Pollution Control(1994年4月20−22日、ブリュッセル)で提出した「SMART Pd TWC Technology to Meet Stringent Standards」に開示したように、厳格な排出基準を満足させる目的でPdのみの触媒を成功裏に用いることができると報告した。
【0007】
自動車の典型的な触媒は、排気ガスに含まれる酸素によって未燃焼炭化水素および一酸化炭素が受ける酸化に触媒作用を及ぼしかつ窒素酸化物が窒素になる還元に触媒作用を及ぼす床下のTWC触媒である。良好な活性と長い寿命を有するTWC触媒は、高い表面積を有する耐火性酸化物支持体、例えば高い表面積を有するアルミナ被膜などの上に位置している1種以上の貴金属成分、例えば白金族金属成分、例えば白金、パラジウム、ロジウム、ルテニウムおよびイリジウムなどを含んで成る。前記支持体は、適切な担体または基質、例えば耐火性セラミックまたは金属製ハニカム(honeycomb)構造を含んで成るモノリス型(monolithic)担体、または耐火性粒子、例えば適切な耐火性材料の球または押し出し加工短片などの上に担持されている。
【0008】
米国特許第4,134,860号は触媒構造物の製造に関する。その触媒組成物は白金族金属、卑金属、希土類金属および耐火性支持体、例えばアルミナ支持体などを含有し得る。この組成物を比較的不活性な担体、例えばハニカムなどの上に位置させることができる。
【0009】
高い表面積を有するアルミナ支持体材料(これをまた「ガンマアルミナ」または「活性アルミナ」とも呼ぶ)は、典型的に1グラム当たり60平方メートル(「m/g」)を超えるBET表面積を有し、しばしば約200m/g以上に及ぶ。このような活性アルミナは、通常、ガンマアルミナ相とデルタアルミナ相の混合物であるが、また実質的量でイータ、カッパおよびシータアルミナ相も含有する可能性もある。所定触媒内の触媒成分の少なくともいくらかを支持する支持体として活性アルミナ以外の耐火性金属酸化物を利用することが開示されている。例えば、このような使用ではバルクな(bulk)セリア、ジルコニア、アルファアルミナおよび他の材料が知られている。これらの材料の多くは活性アルミナよりもBET表面積がかなり低いと言った欠点を有するが、このような欠点は、結果として得られる触媒が示す耐久性が向上することで相殺される傾向がある。
【0010】
動いている車の排気ガス温度は1000℃に到達する可能性があり、温度がこのように高くなると、活性アルミナ(または他の)支持体材料は、特に蒸気の存在下で、体積収縮を伴う相転移が原因で熱劣化を受け、それによって収縮した支持体媒体の中にその触媒金属が吸蔵され、その結果として触媒の露出表面積が失われ、それに相当して触媒活性が低下する。ジルコニア、チタニア、アルカリ土類金属の酸化物、例えばバリア、カルシアまたはストロンチアなど、或は希土類金属の酸化物、例えばセリア、ランタナなど、そして2種以上の希土類金属酸化物の混合物などの如き材料を用いてアルミナ支持体をそのような熱劣化に対して安定にすることは、本分野で公知の手段である。例えばC.D.Keith他の米国特許第4,171,288号を参照のこと。
【0011】
バルクな酸化セリウム(セリア)はロジウム以外の白金族金属を支持する優れた耐火性酸化物支持体になることが開示されており、これを用いると、白金の小さい結晶子をセリア粒子の上に高度に分散させることができ、そしてアルミニウム化合物の溶液を含浸させた後に焼成を受けさせることでそのバルクなセリアに安定化を受けさせることができる。C.Z.Wan他の米国特許第4,714,694号にはアルミニウムによる安定化を受けさせたバルクなセリアが開示されており、そこでは、それを白金族金属成分を浸み込ませる耐火性酸化物支持体として用いており、それを場合により活性アルミナと組み合わせて用いることも可能である。ロジウム以外の白金族金属触媒を支持する触媒支持体としてバルクなセリアを用いることがまたC.Z.Wan他の米国特許第4,727,052号およびOhata他の米国特許第4,708,946号にも開示されている。
【0012】
米国特許第4,923,842号には排気ガス処理用の触媒組成物が開示されており、この組成物には、少なくとも1種の酸素貯蔵成分(oxygen storage component)と少なくとも1種の貴金属成分が上に分散しておりそしてその直ぐ上に酸化ランタンを含んで成る上塗り層が分散している1番目の支持体と、場合により2番目の支持体が含まれている。前記触媒層と酸化ランタン層は離れて位置する。その貴金属には白金、パラジウム、ロジウム、ルテニウムおよびイリジウムが含まれ得る。その酸素貯蔵成分には鉄、ニッケル、コバルトおよび希土類から成る群の金属の酸化物が含まれ得る。これらの具体例はセリウム、ランタン、ネオジム、プラセオジムなどである。特にセリウムの酸化物およびプラセオジムの酸化物が酸素貯蔵成分として用いるに有用である。
【0013】
米国特許第4,808,564号には、向上した耐久性を示す排気ガス浄化用触媒が開示されており、その触媒は、支持体基質と、この支持体基質の上に形成させた触媒担体層と、その触媒担体層の上に担持されている触媒材料を含んで成る。前記触媒担体層はランタンとセリウムの酸化物を含んで成っており、全希土類原子に対するランタン原子のモル分率は0.05から0.20であり、そしてアルミニウム原子数に対する全希土類原子数の比率は0.05から0.25である。
【0014】
米国特許第4,438,219号には、基質上で用いられるアルミナ支持触媒が開示されている。この触媒は高温で安定である。安定化用の材料はバリウム、ケイ素、希土類金属、アルカリ金属、アルカリ土類金属、ホウ素、トリウム、ハフニウムおよびジルコニウムから誘導される化合物を包含する数種の化合物の1つであると開示されている。その安定化用材料の中で酸化バリウム、二酸化ケイ素および希土類(ランタン、セリウム、プラセオジム、ネオジムなどを包含)の酸化物が好適であることが示されている。それらをある焼成アルミナ膜に接触させておくと前記焼成アルミナ膜が高い表面積をより高い温度に及んで維持し得ると開示されている。
【0015】
米国特許第4,476,246号、4,591,578号および4,591,580号にはスリーウエイ触媒組成物が開示されており、それはアルミナ、セリア、アルカリ金属酸化物助触媒および貴金属を含んで成る。米国特許第4,591,518号には、アルミナ支持体と、その上に位置させたランタナ成分、セリア、アルカリ金属酸化物および白金族金属から本質的に成る構成要素を含んで成る触媒が開示されている。米国特許第4,591,580号にはアルミナに支持させた白金族金属触媒が開示されている。前記支持体の改質が逐次的に行われており、このような改質には、ランタナまたはランタナが豊富な希土類酸化物による支持体の安定化、セリアとアルカリ金属酸化物の二重助触媒作用(double promotion)および場合により酸化ニッケルを用いることが含まれる。
【0016】
パラジウム含有触媒組成物(例えば米国特許第4,624,940号を参照)は高温用途で有用であることが確認されている。ランタンとバリウムを組み合わせると触媒成分であるパラジウムを支持するアルミナの優れた熱水安定化が得られることが確認されている。
【0017】
米国特許第4,780,447号には、触媒コンバーター装備自動車のテールパイプから出る排出物に入っているHC、COおよびNOxに加えてHSを制御する能力を有する触媒が開示されている。硫化水素を吸収する化合物としてニッケルおよび/または鉄の酸化物を用いることが開示されている。
【0018】
米国特許第4,965,243号には、セリアおよびアルミナと一緒にバリウム化合物およびジルコニウム化合物を組み込むことによって貴金属含有TWC触媒の熱安定性を向上させる方法が開示されている。それによってアルミナのウオッシュコート(washcoat)が高温暴露時に示す安定性を高める触媒部分が生じると述べられている。
【0019】
J01210032(およびAU−615721)には、パラジウム、ロジウム、活性アルミナ、セリウム化合物、ストロンチウム化合物およびジルコニウム化合物を含んで成る触媒組成物が開示されている。前記特許には、熱安定性を示すアルミナ支持パラジウム含有ウオッシュコートを生じさせる目的でセリア、ジルコニアと組み合わせてアルカリ土類金属を利用することが提案されている。
【0020】
米国特許第4,624,940号および5,057,483号にはセリア−ジルコニア含有粒子が言及されている。そのセリア−ジルコニア複合体全重量の30重量パーセントに及んでセリアがそのジルコニアマトリックス全体に均一に分散して固溶体が生じ得ることが確認されている。共生成(例えば共沈させた)粒子状のセリア−ジルコニア複合体を用いると、セリア−ジルコニア混合物含有粒子におけるセリアの利用度が高くなり得る。このセリアはジルコニアを安定にしており、そしてこのセリアはまた酸素貯蔵成分としても作用する。この’483特許には、そのセリア−ジルコニア複合体にネオジムおよび/またはイットリウムを添加することで結果として生じる酸化物の特性を所望に応じて改善することができると開示されている。
【0021】
米国特許第4,504,598号には、高温耐性を示すTWC触媒の製造方法が開示されている。この方法は、ガンマもしくは活性アルミナの粒子が入っている水性スラリーを生じさせた後、このアルミナに、セリウムと、ジルコニウムと、鉄およびニッケルの少なくとも1つと、白金、パラジウムおよびロジウムの少なくとも1つと、場合によりネオジム、ランタンおよびプラセオジムの少なくとも1つを包含する選択した金属の可溶塩類を含浸させることを包含する。この含浸させたアルミナに焼成を600℃で受けさせた後、これを水中に分散させることでスラリーを生じさせ、このスラリーをハニカム担体に被覆した後、乾燥させることで、完成触媒を得ている。
【0022】
米国特許第4,587,231号には排気ガス浄化用モノリス型スリーウエイ触媒を製造する方法が開示されている。最初に、酸化セリウム含有活性アルミナ粉末をセリア粉末と一緒に分散させることで生じさせたコーティングスリップ(coating slip)で担体を処理した後、この処理した担体を焼くことによって、モノリス型担体に混合酸化物被膜を与える。次に、熱分解により、その酸化物被膜の上に白金、ロジウムおよび/またはパラジウムを配置する。場合により、前記コーティングスリップにジルコニア粉末を添加してもよい。
【0023】
機械的排気制御装置、例えば空気ポンプなどを必要とせずかつエンジン/排気構成にも性能にも悪影響を与えることなくULEV基準の達成を可能にする安価で安定なTWC触媒系を開発することが継続して存在する目標である。
【0024】
(発明の要約)
本発明は、セリウムとジルコニウムとサマリウム成分の複合体そしてこの複合体を含有させた触媒組成物ばかりでなくこの触媒組成物を用いて気体流れを処理してそれに含まれている汚染物を減少させることに関する。本触媒組成物は、エンジンの排気多岐管に隣接して位置するか或は近くに位置する直動式および/または中間連結式および/または車の「床下」に位置していて排気多岐管の下流に位置する触媒コンバーターで使用可能である。本触媒組成物は単一もしくは複数のブリック、単一もしくは複数のカニスター(canisters)などの形態で使用可能である。
【0025】
単一もしくは複数のブリックもしくはカニスターの形態の本触媒組成物の個々の様式(即ちエンジンの排気多岐管を基準にした位置)および使用は、いろいろな要因、例えば始動(outset)時の排気ガス流れに含まれる汚染物の濃度、エンジン作動の冷機始動段階の時の所望汚染物最大濃度、補助的な機械的排気制御装置、例えば空気ポンプなど、エンジン/排気構成などに依存する。
【0026】
本発明の触媒組成物の設計を、より詳細には、これが自動車のエンジンの排気ガス流れに含まれる汚染物を350℃、好適には300℃、より好適には200℃の如き低い温度でも減少させるような設計にする。本発明の触媒組成物は、低温の反応に触媒作用を及ぼす成分を含んで成る。それをライトオフ温度で示す。特定成分のライトオフ温度は、その成分の50%が反応を起こす時の温度である。本発明の触媒組成物は従来技術のTWC触媒組成物に比べて窒素酸化物変換率を有意に向上させるばかりでなくライトオフ温度を低くすることを見いだした。その上、本発明の触媒組成物はエンジンの作動寿命に渡って1100℃以上に及ぶ温度にさらされた時でも熱に安定である。それと同時に、本発明の触媒組成物は、比較的高い炭化水素変換速度を与えるばかりでなく窒素酸化物から窒素への変換に関しても高い変換速度を与える。
【0027】
(発明の詳細な記述)
本発明の複合体はセリウム成分とジルコニウム成分とサマリウム成分の複合体を含んで成る。この複合体は、好適には、セリアとジルコニアとサマリアを含んで成る粒子状酸化物複合体の形態である。この複合体の重量を基準にして前記セリウム成分を10から約90重量%、好適には15から70重量%の量で存在させ、前記ジルコニウム成分を約10から約90重量%、好適には15から70重量%の量で存在させかつ前記サマリウム成分を約1から約40重量%、好適には7から20重量%の量で存在させる。本発明の触媒組成物は(a)前記複合体と(b)触媒有効量の少なくとも1種の貴金属成分と(c)耐火性金属酸化物である支持体の混合物を含んで成る。本触媒組成物を好適には担体、典型的には金属もしくはハニカムの上に所望量で位置させる。例えば、本触媒組成物と支持体が完成担体の重量、即ち触媒組成物の重量と支持体の重量と担体の重量を基準にして約2から約50重量%、好適には5から20重量%を構成するようにしてもよい。本複合体を典型的には担体1立方インチ当たり約0.01から約3g、好適には1立方インチ当たり0.1から1gの量で存在させる。
【0028】
貴金属成分を好適には前記支持体の上に位置する層または被膜として生じさせた後、その結果として被覆された支持体を本複合体と一緒に混合する。この貴金属で被覆された支持体と本複合体の混合物を担体の上に一般にその接触している担体の表面の全部でないにしてもほとんどを覆う被覆層として位置させる。次に、この一緒にした構造物、即ち貴金属で被覆された支持体と本複合体と担体の混合物に乾燥を約110℃の温度で2から5時間受けさせた後、焼成を400から600℃の温度の空気中で受けさせる。
【0029】
本触媒組成物では一般に適切な如何なる担体も使用可能であり、例えばハニカム構造を有するモノリス型担体、即ち流体が中を通って流れるように通路が開放されている様式で担体の入り口面または出口面から全体に渡って伸びている複数の気体流路が備わっているモノリス型担体などを用いることができる。前記通路は壁で限定されており、前記壁に本触媒材料を「ウォッシュコート」として被覆し、その結果として、前記通路を通って流れる気体は本触媒材料に接触する。そのようなモノリス型担体の流路は薄壁通路であり、これの断面形状および大きさは適切な如何なる形状および大きさであってもよく、例えば台形、長方形、正方形、正弦形、六角形、楕円形、円形などであってもよい。そのような構造物が含む気体流入開口部(「セル」)の数は断面1平方インチ当たり約60から約700以上、通常は約200から400であり得る。
【0030】
本発明の目的で、本発明の触媒組成物をそのような担体の上に典型的にはウォッシュコートとして被覆する時、いろいろな成分の量を体積当たりのグラムを基準にして表す。これらの材料を薄被膜として担体基質に塗布する時、これらの材料の量を通常は貴金属成分1種または2種以上の場合には担体1立方フィート当たりのグラム(g/立方フィート)で表しそして他の材料(即ち本複合体および支持体)の場合には担体1立方インチ当たりのグラム(g/立方インチ)で表す、と言うのは、このような尺度を用いるとモノリス型担体基質が異なることで気体流路のセルの大きさが異なっても受け入れられるからである。
【0031】
このような担体は耐火性セラミックまたは金属を含んで成っていてもよく、これにハニカム構造を持たせてもよい。適切な耐火性セラミック材料には、アルミナ、シリカ、チタニアおよびジルコニア化合物、例えばコージライト(cordierite)(これが好適である)、コージライト−アルファアルミナ、窒化ケイ素、ジルコンムライト、スポジュメン、アルミナ−シリカマグネシア、ケイ酸ジルコン、シリマナイト、ケイ酸マグネシウム、ジルコンペタライト、アルファアルミナおよびアルミノシリケートが含まれる。金属製ハニカムは耐火性金属、例えばステンレス鋼または鉄を基とする他の適切な耐食性合金などで作られていてもよい。
【0032】
耐火性金属酸化物支持体には、アルミナ(これが好適である)、シリカ、チタニア、シリカ−アルミナ、アルミナ−シリケート、アルミナ−ジルコニア、アルミナ−クロミア、アルミナ−セリアおよびこれらの混合物から成る群から選択される活性化合物の如き材料が含まれる。この耐火性金属酸化物支持体を典型的には担体1立方インチ当たり約0.1から約4.0gの量で存在させ、かつ粒子サイズが10−15ミクロメートルを超える高表面積の微細粒子形態で存在させる。好適には、アルミナ相が高温で望ましくなくガンマからアルファに変化するのを遅らせる目的で、活性アルミナに希土類成分、例えばランタン(好適)、ネオジムまたはそれらの混合物を担体1立方インチ当たり約0.02から約0.5gの量で添加することで前記活性アルミナに熱安定化を受けさせておく。
【0033】
本触媒組成物の貴金属成分に金、銀および白金族金属から成る群から選択される1種以上の金属を含める。白金族金属には白金、パラジウム、ロジウム、ルテニウムおよびイリジウム成分およびこれらの混合物が含まれる。この貴金属成分1種または2種以上を典型的には担体1立方フィート当たり約0.1から約250g、好適には1立方フィート当たり0.5から100gの量で存在させる。好適な貴金属成分は白金、ロジウムまたは白金とロジウム金属成分の混合物であり、これらを典型的には白金:ロジウムの比率が約0.1:1から約20:1、好適には1:1から10:1になるように存在させる。
【0034】
本発明の複合体を調製する時に使用可能な方法は、水酸化ジルコニウムゾルの調製から開始する方法である。このゾルの調製は、水酸化ナトリウムを用いて硫酸ジルコニウムを高温還流、典型的には90から100℃の還流下で沈澱させてナノメートル(典型的には100ナノメートル以下)の大きさの結晶を生じさせることを通して実施可能である。水性液を用いて不純物、例えばナトリウム、硫黄などを洗い流してもよい。酸、例えば硝酸などを用いて凝集物を分解させて水酸化ジルコニウムを得ることに加えて液体のpHを低くしてもよい。この段階で、セリウム成分およびサマリウム成分を塩、例えば硝酸塩などの形態で加える。この時点で、前記複合体のゾルを前記塩が溶液の中に入っているままであるに充分なほど酸性にすべきであり、例えばpHを0.5から3、好適には0.5から2.0にすべきである。その後、例えばアンモニアなどを用いてpHを急速に高くして複合化合物を沈澱させてもよい。好適には、pHを調節して大きな凝集物が生じないようにする。次に、沈澱して来た複合体を水性液、例えば脱イオン水などで洗浄した後、オーブンに入れて250℃以下、典型的には150℃の温度の空気中で適切な条件下で必要な時間、通常は一晩乾燥させる。次に、この沈澱させた複合体に焼成を高温の空気中で受けさせることで前記複合体をセリアとジルコニアとサマリアを含んで成る粒子状の酸化物複合体に変化させてもよい。この焼成過程を典型的には450から750℃、好適には550℃の温度で0.5から10時間、好適には2時間実施する。次に、その結果として生じたセリアとジルコニアとサマリアの複合体を貴金属成分(これを好適には耐火性金属酸化物支持体の上に位置させておく、即ち層または被膜として位置させておく)と混合してもよい。
【0035】
本触媒組成物の調製は、この上に挙げたようにして調製した複合体と貴金属成分と耐火性金属酸化物支持体を水性スラリーの形態で混合し、このスラリーを粉砕(即ちボールミリングで)し、この粉砕したスラリーを担体と混合した後、乾燥および焼成を行うことで実施可能である。しかしながら、前以て耐火性金属酸化物支持体の上に位置させておいた貴金属成分を本複合体と混合するのが好適である。
【0036】
耐火性金属酸化物支持体の上に位置する貴金属成分1種または2種以上の調製は、貴金属成分1種または2種以上と耐火性金属酸化物支持体の水性スラリーを生じさせることを伴う下記の様式で実施可能である。この方法は、貴金属成分1種または2種以上を少なくとも1種の支持体に固着させることを伴う。この固着段階は従来技術で公知の適切な如何なる固着段階であってもよく、例えば化学的または熱による固着であってもよい。好適な固着段階は貴金属成分1種または2種以上を支持体に熱で固着させる段階である。これを好適には50から500℃の温度の空気中で約0.5から約2時間実施する。
【0037】
この耐火性金属酸化物支持体、例えば活性アルミナなどに、典型的には、貴金属成分が化合物または錯体として存在する水溶液もしくは分散液を含浸させる。この選択した貴金属化合物もしくは錯体は、焼成または使用時に分解または他の様式で変化して触媒活性形態、通常は金属または金属酸化物になる化合物または錯体でなければならない。そのような金属成分を耐火性金属酸化物支持体粒子に含浸または付着させる目的で用いる液状媒体が本触媒組成物に存在し得る金属またはそれの化合物またはそれの錯体または他の成分と不利な反応を起こさずかつ加熱および/または真空をかけた時に蒸発または分解を起こすことで前記金属成分から取り除かれ得る限り、そのような金属成分の水溶性化合物または水分散性化合物もしくは錯体を用いてもよい。ある場合には、前記触媒を使用に供してそれが運転中に遭遇する高温にさらされるまでは前記液体の完全な除去が起こらない可能性もある。一般に、経済性および環境面の両方の観点から、白金族金属の可溶化合物もしくは錯体の水溶液が好適である。適切な化合物は、例えばクロロ白金酸、アミン可溶化(amine−solubilized)水酸化白金、硝酸パラジウムもしくは塩化パラジウム、塩化ロジウム、硝酸ロジウム、ヘキサミン塩化ロジウムなどである。前記触媒に焼成を受けさせている段階中か或は少なくとも初期使用段階中に前記化合物は触媒活性形態の白金族金属またはそれの化合物に変化する。
【0038】
本発明の触媒組成物を調製する好適な方法は、少なくとも1種の白金族金属、例えば白金とアミンの錯体および/または硝酸ロジウムなどが入っている溶液と少なくとも1種の微細で高表面積の耐火性金属酸化物支持体、例えば活性アルミナなど(これは前記溶液の実質的に全部を吸収するに充分なほど乾燥している)の混合物を調製してスラリーを生じさせる。好適には、前記スラリーを酸性にして、これに約2から7未満のpHを持たせる。前記スラリーに無機もしくは有機酸、例えば酢酸(好適)、塩酸または硝酸などを少量添加して前記スラリーのpHを下げてもよい。その後、望まれるならば、前記スラリーに耐火性金属酸化物支持体用の安定剤、例えば硝酸ランタンなどおよび/または結合剤、例えば酢酸ジルコニウムなどおよび/または助触媒であるアルカリ土類金属化合物、例えば硝酸ストロンチウムなどを添加してもよい。その後、この上に記述したようにして調製したセリア−ジルコニア−サマリア複合体を加える。この時点で、本発明の触媒組成物が入っているスラリーの固体濃度は約45−50重量%であり、pHは4−5でありそして20℃における粘度は50−100センチポイズであろう。
【0039】
その後、前記触媒組成物のスラリーを粉砕する。この粉砕はバールミルまたは他の同様な装置を用いて4−8時間で達成可能であり、その結果として、最終粒子サイズが典型的に最終粒子の90%が約10ミクロン未満であるようにする。次に、このスラリーを用いて好適には低い表面積を有する巨大サイズの担体を被覆してもよい。例えば、ハニカム担体、例えばコージライトなどを前記スラリーに浸漬した後、その被覆されたハニカム担体を乾燥用オーブンに入れて、約110℃で約2から5時間乾燥させる。次に、この乾燥させたハニカムに焼成を約400−600℃の空気中で約1時間受けさせる。
【0040】
以下に示す実施例を用いて本発明を説明するが、それで本発明の範囲を限定することを意図するものでない。特に明記しない限り、量およびパーセントは全部重量が基準である。
【0041】
(実施例)
実施例1−参考触媒Aの調製
混合装置に表面積が150m/gの高純度(>99.5%)ガンマ−アルミナを400g、表面積が100m/gのランタン安定化アルミナを80gおよびW.R.Grace Co.から入手した製品コード表示が「MI−560」のセリア/ジルコニア複合体を700g入れた。MI−560はセリアを58.7%含有し、ジルコニアを42.3%含有しかつPr、La、Nd、Sm、Y、Si、NaおよびSを痕跡量で含有していた。この複合体の表面積は138m/gであり、そしてこれを900℃に4時間加熱した後の表面積は37m/gであった。これらの材料を徹底的に混合した後、この混合物の撹拌を維持しながらこれに白金アミン溶液の水溶液を77.2g滴下した。その後、この白金溶液の添加が終了した後の混合物に酢酸を40g加えた。次に、水を結果として固体濃度が50%になりかつpHが4−5になるように加えた。
【0042】
次に、その結果として生じたスラリーをボール媒体(ball media)が2000g入っている1ガロンのボールミルに入れた。このスラリーに粉砕を約6−8時間受けさせると、この粉砕を受けさせたスラリーの最終粒子サイズは90%<10ミクロンであった。
【0043】
ロジウムのスラリーでは、高表面積(150m/g)と低表面積(90m/g)のアルミナが等しい量の混合物を160g、米国特許第5,898,014号に従って調製したセリア−ジルコニア複合体(Ce/Zr=20/80)を160gおよび酢酸ジルコニウム溶液(結合剤として使用)を170g用いて前記手順を繰り返した。このスラリーでは硝酸ロジウムの溶液(29g)を用いた。
【0044】
次に、前記PtのスラリーとRhのスラリーを混合して固体含有量が45−50%でpHが4−5で20℃における粘度が50−100センチポイズの最終スラリーを生じさせた。このスラリーに直径が3.66インチで長さが4.5インチでセル密度が400で壁厚が6.5ミルのコージライト製ハニカムを浸漬することで被覆を行った後、エアガンを用いてその通路からスラリー残渣を除去した。次に、前記被覆を受けさせたハニカムを乾燥用オーブンに入れて120℃で4から8時間乾燥させた。その後、この乾燥させたハニカムに焼成を500℃の空気中で1時間受けさせた。
【0045】
追加的に、直径が1.5インチで長さが3インチのハニカムを用いてコアサンプル(core samples)を調製した。参考触媒Aから生じさせた触媒ブリックの貴金属充填率は40g/立方インチでPt:Rh比は5:1であった。
実施例2−発明触媒Bの調製
W.R.Grace Co.から入手した製品コード表示が「MI−560−Sm」のセリウム/ジルコニウム/サマリウム複合体を用いて実施例1を繰り返した。MI−560−Smはセリアを58.1%含有し、ジルコニアを42.3%含有し、サマリアを9.2%含有しかつPr、La、Nd、Sm、Y、Si、NaおよびSを痕跡量で含有していた。この複合体の表面積は134m/gであり、そしてこれを900℃に4時間加熱した後の表面積は38m/gであった。
実施例3−触媒熟成/評価
触媒Aおよび触媒BのコアサンプルをInconel Reactorに入れ、そして流入温度が850℃のエンジンダイナモメータ(dynamometer)を用いて、それに濃厚および希薄の4モード熟成サイクルを50時間受けさせた。次に、その結果として得たコアサイクルに評価を実験室のマルチサイクル酸化還元反応槽内で空気/燃料比を化学量論点にして0.5Hzのフリクエンシー(frequency)および±0.1の摂動で受けさせた。流入ガスの濃度は定常状態で下記の通りであった:CO/H:0.3%、O:0.3%、CO:15%、C:235ppm、NO:1500ppm、SO:45ppm、HO:10%、N:残り。摂動中、濃度運転の時にはCO/H:0.75%そして希薄運転の時にはO:0.6%。温度上昇速度を10℃/分にした。コアの空間速度を25,000時−1にした。下記の表I−IVに挙げた結果は、本発明のCe/Zr/Sm複合体(触媒Bと表示)の方がサマリウムを全く含有しないCe/Zr複合体(触媒Aと表示)よりもライトオフおよびNO変換性能が高いことを明らかに示している。
【0046】
【表1】
Figure 2004508186

Claims (47)

  1. セリウム成分とジルコニウム成分とサマリウム成分の複合体。
  2. 複合体の重量を基準にして前記セリウム成分が10から約90重量%の量で存在し、前記ジルコニウム成分が約10から約90重量%の量で存在しかつ前記サマリウム成分が約1から約40重量%の量で存在する請求項1記載の複合体。
  3. 複合体の重量を基準にして前記セリウム成分が15から70重量%の量で存在し、前記ジルコニウム成分が15から70重量%の量で存在しかつ前記サマリウム成分が7から20重量%の量で存在する請求項2記載の複合体。
  4. 前記セリウム成分がセリアを含んで成り、前記ジルコニウム成分がジルコニアを含んで成りそして前記サマリウム成分がサマリアを含んで成る請求項1記載の複合体。
  5. セリアとジルコニアとサマリアを含んで成る粒状酸化物複合体の形態である請求項1記載の複合体。
  6. (a)セリウム成分とジルコニウム成分とサマリウム成分の複合体と(b)触媒有効量の少なくとも1種の貴金属成分と(c)耐火性金属酸化物支持体の混合物を含んで成る触媒組成物。
  7. 前記複合体の重量を基準にして前記セリウム成分が10から約90重量%の量で存在し、前記ジルコニウム成分が約10から約90重量%の量で存在しかつ前記サマリウム成分が約1から約40重量%の量で存在する請求項6記載の触媒組成物。
  8. 前記複合体の重量を基準にして前記セリウム成分が15から70重量%の量で存在し、前記ジルコニウム成分が15から70重量%の量で存在しかつ前記サマリウム成分が7から20重量%の量で存在する請求項7記載の触媒組成物。
  9. 前記セリウム成分がセリアを含んで成り、前記ジルコニウム成分がジルコニアを含んで成りそして前記サマリウム成分がサマリアを含んで成る請求項6記載の触媒組成物。
  10. 前記貴金属成分と前記耐火性金属酸化物支持体が前記成分が前記支持体の上に位置する形態で存在する請求項6記載の触媒組成物。
  11. 担体の上に位置する請求項6記載の触媒組成物。
  12. 前記複合体が前記担体1立方インチ当たり約0.01から約3gの量で存在する請求項11記載の触媒組成物。
  13. 前記複合体が前記担体1立方インチ当たり0.1から1gの量で存在する請求項12記載の触媒組成物。
  14. 前記貴金属成分が白金族金属成分を含んで成る請求項6記載の触媒組成物。
  15. 前記白金族金属成分が白金、パラジウム、ロジウム、ルテニウムおよびイリジウム成分およびこれらの混合物から成る群から選択される請求項14記載の触媒組成物。
  16. 前記白金族金属成分が白金金属成分、ロジウム金属成分または白金金属成分とロジウム金属成分の混合物を含んで成る請求項15記載の触媒組成物。
  17. 前記白金族金属成分が白金金属成分とロジウム金属成分の混合物を含んで成っていて前記白金金属成分とロジウム金属成分の比率が約0.1:1から約20:1の範囲である請求項16記載の触媒組成物。
  18. 前記白金金属成分とロジウム金属成分の比率が1:1から10:1の範囲である請求項17記載の触媒組成物。
  19. 前記貴金属成分が前記担体1立方フィート当たり約0.1から約250gの量で存在する請求項11記載の触媒組成物。
  20. 前記貴金属成分が前記担体1立方フィート当たり0.5から100gの量で存在する請求項19記載の触媒組成物。
  21. 前記担体がハニカム構造を有する耐火性セラミックもしくは金属を含んで成るモノリス型担体である請求項11記載の触媒組成物。
  22. 前記担体がコージライトを含んで成る請求項21記載の触媒組成物。
  23. 前記耐火性金属酸化物支持体がアルミナ、シリカ、チタニアおよびジルコニア化合物から成る群から選択される請求項11記載の触媒組成物。
  24. 前記耐火性金属酸化物支持体がアルミナ、シリカ、チタニア、シリカ−アルミナ、アルミナ−シリケート、アルミナ−ジルコニア、アルミナ−クロミア、アルミナ−セリアおよびこれらの混合物から成る群から選択される活性化合物から成る群から選択される請求項23記載の触媒組成物。
  25. 前記耐火性金属酸化物支持体が活性アルミナを含んで成る請求項24記載の触媒組成物。
  26. 前記活性アルミナが前記担体1立方インチ当たり約0.1から約4.0gの量で存在する請求項25記載の触媒組成物。
  27. 炭化水素、一酸化炭素および窒素酸化物を含んで成る気体流れを処理する方法であって、(a)前記気体流れを(i)セリウム成分とジルコニウム成分とサマリウム成分の複合体と(ii)触媒有効量の貴金属成分と(iii)耐火性金属酸化物支持体の混合物を含んで成る触媒組成物を含んで成る触媒部材に流し込みそして(b)前記触媒部材の存在下で前記気体に含まれている前記炭化水素および一酸化炭素に触媒作用による酸化を受けさせかつ前記窒素酸化物に触媒作用による還元を受けさせることを含んで成る方法。
  28. 前記複合体の重量を基準にして前記セリウム成分を10から約90重量%の量で存在させ、前記ジルコニウム成分を約10から約90重量%の量で存在させかつ前記サマリウム成分を約1から約40重量%の量で存在させる請求項27記載の方法。
  29. 前記複合体の重量を基準にして前記セリウム成分を15から70重量%の量で存在させ、前記ジルコニウム成分を15から70重量%の量で存在させかつ前記サマリウム成分を7から20重量%の量で存在させる請求項28記載の方法。
  30. 前記セリウム成分にセリアを含め、前記ジルコニウム成分にジルコニアを含めそして前記サマリウム成分にサマリアを含める請求項29記載の方法。
  31. 前記触媒組成物を担体の上に位置させる請求項27記載の方法。
  32. 前記貴金属成分と前記耐火性金属酸化物支持体を前記成分が前記支持体の上に位置する形態で存在させる請求項31記載の方法。
  33. 前記複合体を前記担体1立方インチ当たり約0.01から約3gの量で存在させる請求項31記載の方法。
  34. 前記複合体を前記担体1立方インチ当たり0.1から1gの量で存在させる請求項33記載の方法。
  35. 前記貴金属成分に白金族金属成分を含める請求項27記載の方法。
  36. 前記白金族金属成分を白金、パラジウム、ロジウム、ルテニウムおよびイリジウム成分およびこれらの混合物から成る群から選択する請求項35記載の方法。
  37. 前記白金族金属成分に白金金属成分、ロジウム金属成分または白金金属成分とロジウム金属成分の混合物を含める請求項36記載の方法。
  38. 前記白金族金属成分に白金金属成分とロジウム金属成分の混合物を含めて前記白金金属成分とロジウム金属成分の比率を約0.1:1から約20:1の範囲にする請求項37記載の方法。
  39. 前記白金金属成分とロジウム金属成分の比率を1:1から10:1の範囲にする請求項38記載の方法。
  40. 前記貴金属成分を前記担体1立方フィート当たり約0.1から約250gの量で存在させる請求項39記載の方法。
  41. 前記貴金属成分を前記担体1立方フィート当たり0.5から100gの量で存在させる請求項40記載の方法。
  42. 前記担体がハニカム構造を有する耐火性セラミックもしくは金属を含んで成るモノリス型担体である請求項31記載の方法。
  43. 前記担体にコージライトを含める請求項42記載の方法。
  44. 前記耐火性金属酸化物支持体をアルミナ、シリカ、チタニアおよびジルコニア化合物から成る群から選択する請求項27記載の方法。
  45. 前記耐火性金属酸化物支持体をアルミナ、シリカ、チタニア、シリカ−アルミナ、アルミナ−シリケート、アルミナ−ジルコニア、アルミナ−クロミア、アルミナ−セリアおよびこれらの混合物から成る群から選択される活性化合物から成る群から選択する請求項44記載の方法。
  46. 前記耐火性金属酸化物支持体に活性アルミナを含める請求項45記載の方法。
  47. 前記活性アルミナを前記担体1立方インチ当たり約0.1から約4.0gの量で存在させる請求項46記載の方法。
JP2002526486A 2000-09-15 2001-09-07 排気ガス浄化用触媒組成物 Expired - Fee Related JP4292005B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/663,312 US6492297B1 (en) 2000-09-15 2000-09-15 Catalyst composition for purifying exhaust gas
PCT/US2001/028074 WO2002022242A1 (en) 2000-09-15 2001-09-07 Catalyst composition for purifying exhaust gas

Publications (3)

Publication Number Publication Date
JP2004508186A true JP2004508186A (ja) 2004-03-18
JP2004508186A5 JP2004508186A5 (ja) 2005-12-22
JP4292005B2 JP4292005B2 (ja) 2009-07-08

Family

ID=24661276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002526486A Expired - Fee Related JP4292005B2 (ja) 2000-09-15 2001-09-07 排気ガス浄化用触媒組成物

Country Status (12)

Country Link
US (2) US6492297B1 (ja)
EP (1) EP1333909B1 (ja)
JP (1) JP4292005B2 (ja)
KR (1) KR100795267B1 (ja)
AT (1) ATE392944T1 (ja)
AU (1) AU2001290673A1 (ja)
DE (1) DE60133760T2 (ja)
DK (1) DK1333909T3 (ja)
ES (1) ES2305105T3 (ja)
PT (1) PT1333909E (ja)
WO (1) WO2002022242A1 (ja)
ZA (1) ZA200302090B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512249A (ja) * 2008-02-14 2011-04-21 ビー・エイ・エス・エフ、コーポレーション 低い白金/パラジウム比を有するcsf
US9550171B2 (en) 2013-08-29 2017-01-24 Mazda Motor Corporation Exhaust gas purification catalyst and method for manufacturing same

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864214B2 (en) * 2000-09-26 2005-03-08 Daihatsu Motor Co., Ltd. Exhaust gas purifying catalyst
EP1199096A1 (en) * 2000-10-21 2002-04-24 Degussa AG Catalyst for destruction of CO, VOC, and halogenated organic emissions
JP2002177781A (ja) * 2000-12-12 2002-06-25 Ict:Kk 排ガス浄化用触媒
JP4648566B2 (ja) * 2001-05-11 2011-03-09 Jx日鉱日石エネルギー株式会社 オートサーマルリフォーミング触媒および燃料電池用燃料ガスの製造方法
JP4648567B2 (ja) * 2001-05-11 2011-03-09 Jx日鉱日石エネルギー株式会社 オートサーマルリフォーミング触媒および燃料電池用燃料ガスの製造方法
JP3845274B2 (ja) * 2001-06-26 2006-11-15 ダイハツ工業株式会社 排ガス浄化用触媒
DE60211260T2 (de) * 2001-08-30 2007-05-24 Kabushiki Kaisha Toyota Chuo Kenkyusho, Nagakute Mischoxid, Verfahren zu seiner Herstellung und Abgas Reduktions-CO-Katalysator
EP1287889B1 (en) * 2001-09-03 2012-11-14 Nissan Motor Co., Ltd. Catalyst for selectively oxidizing carbon monoxide
JP3758601B2 (ja) * 2002-05-15 2006-03-22 トヨタ自動車株式会社 吸蔵還元型NOx浄化用触媒
WO2004000454A1 (en) * 2002-06-20 2003-12-31 The Regents Of The University Of California Supported metal catalyst with improved thermal stability
JP4584555B2 (ja) * 2002-10-17 2010-11-24 株式会社デンソー セラミック触媒体
US6660683B1 (en) * 2002-10-21 2003-12-09 W.R. Grace & Co.-Conn. NOx reduction compositions for use in FCC processes
JP3797313B2 (ja) 2002-10-28 2006-07-19 トヨタ自動車株式会社 金属酸化物粒子の製造法及び排ガス浄化用触媒
US20040180782A1 (en) * 2003-03-10 2004-09-16 Cataler Corporation Exhaust-gas purifying catalyst
US7030055B2 (en) * 2003-08-18 2006-04-18 W.R. Grace & Co.-Conn. NOx reduction compositions for use in FCC processes
US20050100494A1 (en) 2003-11-06 2005-05-12 George Yaluris Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
DE102004024026A1 (de) * 2004-03-11 2005-09-29 W.C. Heraeus Gmbh Katalysator zur N2O-Zersetzung beim Ostwaldprozess
JP3795895B2 (ja) * 2004-03-25 2006-07-12 田中貴金属工業株式会社 触媒の製造方法
US7811961B2 (en) * 2004-08-12 2010-10-12 Ford Global Technologies, Llc Methods and formulations for enhancing NH3 adsorption capacity of selective catalytic reduction catalysts
EP1786560A4 (en) * 2004-09-01 2010-09-29 Emisense Technologies Llc CERAMIC CATALYST FOR NOX-OXIDATION AND NOX CONVERSION IN EMISSION CONTROL SYSTEMS
EP1632288B1 (en) * 2004-09-03 2012-06-20 Mazda Motor Corporation Exhaust gas purification catalyst and oxygen storage component for the same
DE102004043421A1 (de) * 2004-09-06 2006-03-23 W.C. Heraeus Gmbh Katalysator für 2-Takt-Motoren oder Kleinmotoren
EP1712278B1 (en) * 2004-12-20 2017-08-16 Tanaka Kikinzoku Kogyo Kabushiki Kaisha Combustion catalyst for treating diesel exhaust gas and method for treating diesel exhaust gas
KR100665606B1 (ko) * 2005-04-14 2007-01-09 희성엥겔하드주식회사 내연기관 배기가스 정화용 촉매조성물 제조용 400ppm 이상 이리듐 성분이 불순물로 포함된 로듐용액
JP5021188B2 (ja) * 2005-08-01 2012-09-05 株式会社キャタラー 排ガス浄化用触媒
JP4686316B2 (ja) * 2005-09-27 2011-05-25 田中貴金属工業株式会社 触媒の製造方法
JP4835193B2 (ja) 2006-02-20 2011-12-14 マツダ株式会社 ディーゼルパティキュレートフィルタ
US7749472B2 (en) * 2006-08-14 2010-07-06 Basf Corporation Phosgard, a new way to improve poison resistance in three-way catalyst applications
US7758834B2 (en) * 2006-08-21 2010-07-20 Basf Corporation Layered catalyst composite
US7550124B2 (en) * 2006-08-21 2009-06-23 Basf Catalysts Llc Layered catalyst composite
US7820583B2 (en) * 2006-08-24 2010-10-26 Millennium Inorganic Chemicals, Inc. Nanocomposite particle and process of preparing the same
TWI449572B (zh) * 2006-11-29 2014-08-21 Umicore Shokubai Japan Co Ltd Oxidation catalyst and the oxidation catalyst using an exhaust gas purification system
EP2055367A3 (en) * 2007-01-25 2009-05-27 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and manufacturing method thereof
US8007750B2 (en) 2007-07-19 2011-08-30 Basf Corporation Multilayered catalyst compositions
US7922988B2 (en) * 2007-08-09 2011-04-12 Michel Deeba Multilayered catalyst compositions
US7622096B2 (en) * 2007-08-09 2009-11-24 Basf Catalysts Llc Multilayered catalyst compositions
US7879755B2 (en) * 2007-08-09 2011-02-01 Basf Corporation Catalyst compositions
US8038951B2 (en) 2007-08-09 2011-10-18 Basf Corporation Catalyst compositions
US20090175773A1 (en) * 2008-01-08 2009-07-09 Chen Shau-Lin F Multilayered Catalyst Compositions
US8568675B2 (en) * 2009-02-20 2013-10-29 Basf Corporation Palladium-supported catalyst composites
US8940242B2 (en) * 2009-04-17 2015-01-27 Basf Corporation Multi-zoned catalyst compositions
US8530372B2 (en) * 2009-07-22 2013-09-10 Basf Corporation Oxygen storage catalyst with decreased ceria reduction temperature
US8758695B2 (en) * 2009-08-05 2014-06-24 Basf Se Treatment system for gasoline engine exhaust gas
US20110209466A1 (en) * 2010-02-26 2011-09-01 General Electric Company Catalyst composition and catalytic reduction system comprising yttrium
JP5567923B2 (ja) * 2010-07-23 2014-08-06 トヨタ自動車株式会社 排ガス浄化用触媒
KR101106973B1 (ko) * 2011-07-05 2012-01-19 에프피지코리아(주) 가압식 소화기
US9956526B2 (en) * 2015-03-24 2018-05-01 Tecogen Inc. Poison-resistant catalyst and systems containing same
JP6698602B2 (ja) 2017-09-27 2020-05-27 イビデン株式会社 排ガス浄化用ハニカム触媒
JP6684257B2 (ja) 2017-09-27 2020-04-22 イビデン株式会社 排ガス浄化用ハニカム触媒
JP2019058876A (ja) * 2017-09-27 2019-04-18 イビデン株式会社 ハニカム触媒
JP2019058875A (ja) 2017-09-27 2019-04-18 イビデン株式会社 ハニカム触媒
WO2020041289A1 (en) 2018-08-20 2020-02-27 University Of Florida Research Foundation Single-atom-based catalyst systems
US11772078B2 (en) * 2022-01-21 2023-10-03 GM Global Technology Operations LLC Layered catalyst structures and methods of making the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049583A (en) * 1974-04-25 1977-09-20 E. I. Du Pont De Nemours And Company Metal oxide catalytic compositions having perovskite crystal structures and containing metals of the platinum group
JPH0675676B2 (ja) 1986-12-24 1994-09-28 トヨタ自動車株式会社 排気ガス浄化用触媒
CA1319141C (en) 1987-11-07 1993-06-15 Makoto Horiuchi Exhaust gas purification catalyst
CA1334962C (en) 1988-04-14 1995-03-28 Tomohisa Ohata Catalyst for purifying exhaust gas and method for production thereof
JPH0644999B2 (ja) * 1988-04-30 1994-06-15 株式会社豊田中央研究所 排気ガス浄化用触媒
US5286699A (en) 1988-12-09 1994-02-15 Nippon Shokubai Kagaku Kogyo Co., Ltd. Exhaust gas purifying catalyst suppressing the generation of hydrogen sulfide and method of making the catalyst
JP2773193B2 (ja) * 1989-03-03 1998-07-09 住友電気工業株式会社 透光性イツトリア焼結体の製造方法
US5232890A (en) 1990-01-02 1993-08-03 Ganguli Partha S Precious metal catalysts with oxygen-ion conducting support
ZA909211B (en) 1990-02-23 1991-09-25 Grace W R & Co High surface area ceria
DE69226581T2 (de) * 1991-09-12 1999-02-04 Agency Ind Science Techn Katalysator zur Reduktion von Stickoxiden
FI90501C (fi) 1992-02-13 1994-02-25 Kemira Oy Menetelmä tehostaa kolmitoimikatalysaattorin toimintaa
DE69412780T2 (de) 1994-01-28 1999-05-12 Constantinos G Vayenas Dreiwegkatalysator mit Pt, Rh und Pd, alle mit separatem Träger
FR2730175B1 (fr) * 1995-02-03 1997-04-04 Inst Francais Du Petrole Catalyseurs de reduction des oxydes d'azote en azote moleculaire dans un milieu surstoechiometrique en composes oxydants, procede de preparation et utilisations
JP3386621B2 (ja) 1995-03-30 2003-03-17 トヨタ自動車株式会社 ディーゼルエンジン用排ガス浄化触媒
US5837642A (en) 1995-12-26 1998-11-17 Daihatsu Motor Co., Ltd. Heat-resistant oxide
JPH09276703A (ja) 1996-04-19 1997-10-28 Honda Motor Co Ltd 排気ガス浄化用触媒
US5898014A (en) 1996-09-27 1999-04-27 Engelhard Corporation Catalyst composition containing oxygen storage components
JP4053623B2 (ja) * 1996-12-27 2008-02-27 阿南化成株式会社 ジルコニウム−セリウム系複合酸化物及びその製造方法
US6072074A (en) 1998-05-08 2000-06-06 Sumitomo Chemical Company Limited Process for producing 3-propynyl-2-2-dimethylcycloprophane-carboxylic acid and its lower akyl esters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512249A (ja) * 2008-02-14 2011-04-21 ビー・エイ・エス・エフ、コーポレーション 低い白金/パラジウム比を有するcsf
US9550171B2 (en) 2013-08-29 2017-01-24 Mazda Motor Corporation Exhaust gas purification catalyst and method for manufacturing same

Also Published As

Publication number Publication date
DE60133760T2 (de) 2009-07-02
US20030083194A1 (en) 2003-05-01
DE60133760D1 (de) 2008-06-05
KR20030034185A (ko) 2003-05-01
JP4292005B2 (ja) 2009-07-08
PT1333909E (pt) 2008-06-16
DK1333909T3 (da) 2008-07-14
US6492297B1 (en) 2002-12-10
EP1333909A1 (en) 2003-08-13
KR100795267B1 (ko) 2008-01-15
EP1333909B1 (en) 2008-04-23
WO2002022242A1 (en) 2002-03-21
ATE392944T1 (de) 2008-05-15
ES2305105T3 (es) 2008-11-01
AU2001290673A1 (en) 2002-03-26
US7041263B2 (en) 2006-05-09
ZA200302090B (en) 2004-02-16

Similar Documents

Publication Publication Date Title
JP4292005B2 (ja) 排気ガス浄化用触媒組成物
JP3274688B2 (ja) 分離した白金及びロジウム成分を含有する触媒組成物
JP4911893B2 (ja) 層状触媒複合体
US6248688B1 (en) Catalyst composition containing oxygen storage components
US5898014A (en) Catalyst composition containing oxygen storage components
EP1438135B1 (en) Layered catalyst composite and use thereof
CA2696004C (en) Catalyst compositions
EP0765189B1 (en) Layered catalyst composite
US5948723A (en) Layered catalyst composite
JP2002542015A (ja) セリアと白金族金属を含んで成る触媒組成物
WO2011109676A2 (en) Carbon monoxide conversion catalyst
EP0951352A1 (en) Catalyst composition and method for its manufacturing
JP2018513781A (ja) 担持されたパラジウムをアルミナ不含層中に有する自動車用触媒
WO2022103805A1 (en) Zoned catalytic article

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080529

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080813

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees