WO2018186150A1 - 熱遮蔽部材、単結晶引き上げ装置および単結晶シリコンインゴットの製造方法 - Google Patents

熱遮蔽部材、単結晶引き上げ装置および単結晶シリコンインゴットの製造方法 Download PDF

Info

Publication number
WO2018186150A1
WO2018186150A1 PCT/JP2018/010519 JP2018010519W WO2018186150A1 WO 2018186150 A1 WO2018186150 A1 WO 2018186150A1 JP 2018010519 W JP2018010519 W JP 2018010519W WO 2018186150 A1 WO2018186150 A1 WO 2018186150A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
shielding member
silicon ingot
heat shielding
crystal silicon
Prior art date
Application number
PCT/JP2018/010519
Other languages
English (en)
French (fr)
Inventor
梶原 薫
良太 末若
俊二 倉垣
一美 田邉
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to CN201880022285.5A priority Critical patent/CN110573662A/zh
Priority to KR1020197028145A priority patent/KR102253607B1/ko
Priority to US16/500,183 priority patent/US11473210B2/en
Priority to DE112018001896.2T priority patent/DE112018001896T5/de
Publication of WO2018186150A1 publication Critical patent/WO2018186150A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a heat shielding member, a single crystal pulling apparatus, and a method for manufacturing a single crystal silicon ingot using the single crystal pulling apparatus.
  • a silicon wafer obtained by subjecting a single crystal silicon ingot grown by a Czochralski (CZ) method to wafer processing is used as a substrate of a semiconductor device.
  • CZ Czochralski
  • FIG. 1 shows an example of a general single crystal pulling apparatus for growing a single crystal silicon ingot by the CZ method.
  • the single crystal pulling apparatus 100 shown in this figure is provided with a crucible 52 for containing the raw material of the single crystal silicon ingot I in a chamber 51.
  • the crucible 52 shown in this figure is a quartz crucible 52a. And a graphite crucible 52b.
  • a crucible rotation elevating shaft 53 for rotating the crucible 52 in the circumferential direction and raising and lowering the crucible 52 in the vertical direction is attached to the lower part of the crucible 52.
  • a heater 54 is disposed around the crucible 52, and the raw material contained in the crucible 52 is heated to form the silicon melt M.
  • a pulling shaft 55 for pulling up the single crystal silicon ingot I is provided, and a seed crystal S is held by a seed crystal holder 56 fixed to the tip.
  • a gas inlet 57 and a gas outlet 58 are respectively provided at the upper and lower portions of the chamber 51, and inert gas is introduced into the chamber 51 from the gas inlet 57 during the growth of the single crystal silicon ingot I. It is configured to be supplied, passed along the outer peripheral surface of the ingot I, and discharged from the gas discharge port 58.
  • FIG. 2 shows an example of the configuration of a conventional heat shielding member 60.
  • the heat shielding member 60 shown in this figure includes a cylindrical tube portion 61 that surrounds the outer peripheral surface of the single crystal silicon ingot I, and a bulging portion 62 at the lower portion of the tube portion 61 (for example, Patent Document 1). reference).
  • the cylinder part 61 has the inner wall 61a and the outer wall 61b.
  • the bulging portion 62 has an upper wall 62a, a bottom wall 62b, and two vertical walls 62c and 62d.
  • the heat insulating material (heat storage member) H is provided in the space enclosed by these walls.
  • Such a heat shielding member 60 shields the radiant heat from the heater 54, the silicon melt M, and the side wall of the crucible 52, and promotes cooling of the single crystal silicon ingot I to be pulled up.
  • the outer peripheral surface of the ingot I is kept warm by the heat insulating material H of the bulged portion 62 that has been heated, and the difference in the temperature gradient in the crystal axis direction between the central portion and the outer peripheral portion of the single crystal silicon ingot I is suppressed.
  • the single crystal silicon ingot I is grown using the apparatus 100 as follows. First, in a state where the inside of the chamber 51 is maintained in an inert gas atmosphere such as Ar gas under reduced pressure, a raw material material such as polycrystalline silicon accommodated in the crucible 52 is heated and melted by the heater 54 to obtain a silicon melt. Let it be M. Next, the pulling shaft 55 is lowered, the seed crystal S is immersed in the silicon melt M, and the pulling shaft 55 is pulled upward while rotating the crucible 52 and the pulling shaft 55 in a predetermined direction. Thus, the single crystal silicon ingot I can be grown below the seed crystal S.
  • an inert gas atmosphere such as Ar gas under reduced pressure
  • FIG. 3 is a diagram showing the relationship between the ratio V / G of the pulling rate V to the temperature gradient G at the solid-liquid interface and the crystal regions constituting the single crystal silicon ingot I.
  • V / G the single crystal silicon ingot is a crystal region where vacancies are formed and particles originating from the crystal (Crystal Originated Particles, COP) are detected. It is dominated by the COP generation area 71.
  • an oxygen precipitation promoting region (hereinafter also referred to as “Pv region”) 73, which is a crystal region where oxygen precipitates are present and COP is not detected, is followed by oxygen precipitation that is unlikely to occur.
  • An oxygen precipitation suppression region (hereinafter also referred to as “Pi region”) 74 that is a crystal region that is not detected is formed, and a dislocation cluster region 75 that is a crystal region where a dislocation cluster is detected is formed.
  • the crystal regions other than the COP generation region 71 and the dislocation cluster region 75 are generally defect-free without defects. These are crystal regions that are regarded as regions. Generally, a silicon wafer taken from these crystal regions is a defect-free silicon wafer.
  • the pulling speed V is strictly Management is required.
  • the management of the pulling speed V is extremely difficult, and there is a demand for a way to expand the range (margin) of the pulling speed V of the crystal from which the defect-free single crystal silicon ingot I can be obtained.
  • an object of the present invention is to provide a heat shielding member, a single crystal pulling apparatus, and a single crystal silicon ingot using the single crystal pulling apparatus capable of expanding a crystal pulling speed margin for obtaining defect-free single crystal silicon. This is to propose a manufacturing method.
  • a heat shielding member provided in a single crystal pulling apparatus that pulls up a single crystal silicon ingot from a silicon melt stored in the quartz crucible by being heated by a heater arranged around the quartz crucible,
  • the member includes a cylindrical tube portion surrounding an outer peripheral surface of the single crystal silicon ingot, and an annular bulge portion at a lower portion of the tube portion.
  • the bulging portion has an upper wall, a bottom wall, and two vertical walls, and has an annular heat insulating material in a space surrounded by the walls,
  • a heat shielding member having a gap between the vertical wall adjacent to the single crystal silicon ingot and the heat insulating material.
  • a heat shielding member provided in a single crystal pulling apparatus for pulling up a single crystal silicon ingot from a silicon melt stored in the quartz crucible by being heated by a heater disposed around the quartz crucible,
  • the member includes a cylindrical tube portion surrounding an outer peripheral surface of the single crystal silicon ingot, and an annular bulge portion at a lower portion of the tube portion.
  • the bulging portion has an upper wall, a bottom wall, and two vertical walls, and has an annular heat insulating material in a space surrounded by the walls, The surface of the heat insulating material side of the vertical wall on the side adjacent to the single crystal silicon ingot is in contact with the heat insulating material, The difference between the opening diameter of the said heat shielding member and the opening diameter of the said heat insulating material is over 5 mm,
  • the heat shielding member characterized by the above-mentioned.
  • a single crystal pulling apparatus including the heat shielding member according to any one of [1] to [4].
  • the margin of the pulling speed of the crystal from which a defect-free single crystal silicon ingot can be obtained can be increased.
  • FIG. 1 It is a figure which shows an example of a common single crystal pulling apparatus. It is a figure which shows an example of a heat shielding member. It is a figure which shows the relationship between the ratio of the raising speed
  • (A) is a figure which shows an example of the stress distribution in a single-crystal silicon ingot
  • (b) is a figure which shows an example of ideal temperature gradient G ideal . It is a figure which shows an example of the heat shielding member by this invention. It is a figure which shows another example of the heat shielding member by this invention.
  • a heat shielding member according to the present invention is a heat shielding member provided in a single crystal pulling apparatus that pulls up a single crystal silicon ingot from a silicon melt stored in the quartz crucible by being heated by a heater arranged around the quartz crucible.
  • the heat shielding member includes a cylindrical tube portion that surrounds the outer peripheral surface of the single crystal silicon ingot, and an annular bulge portion at a lower portion of the tube portion.
  • the said bulging part has an upper wall, a bottom wall, and two vertical walls, and has a cyclic
  • the radial distribution of crystal defects in the single crystal silicon ingot I depends on the ratio V / G of the pulling speed V to the temperature gradient G.
  • the pulling speed V determines the amount of interstitial silicon and holes introduced into the ingot I.
  • the temperature gradient G determines the diffusion rate of interstitial silicon and vacancies.
  • the margin of the crystal pulling speed V (hereinafter also simply referred to as “pulling speed margin”) from which a defect-free single crystal silicon ingot I is obtained makes the radial distribution of crystal defects in the ingot I flat (flat). Can be enlarged.
  • the critical (V / G) cri for realizing flattening of the radial distribution of crystal defects can be theoretically obtained from the condition that the concentration of vacancies and the concentration of interstitial silicon are equal. 1) (see, for example, K. Nakamura, R. Suewaka and B. Ko, ECS Solid State Letters, 3 (3) N5-N7 (2014)).
  • ⁇ mean is the stress at an arbitrary position in the crystal.
  • the interstitial silicon concentration and the vacancy concentration become equal (V / G) cri depends on the stress in the crystal.
  • the (V / G) cri can be obtained by obtaining the stress distribution in the crystal by heat transfer calculation or the like.
  • an ideal temperature gradient hereinafter also referred to as “ideal temperature gradient G ideal ” that realizes flattening of the radial distribution of crystal defects, the pulling speed V is constant in the radial direction of the ingot I. From the above equation (1), It can be asked.
  • FIG. 4A shows an example of the stress distribution in the crystal
  • FIG. 4B shows an example of the ideal temperature gradient. If the ideal temperature gradient G ideal as shown in FIG. 4B can be realized, the radial distribution of crystal defects in the ingot I is flattened by pulling up the single crystal silicon ingot I at the corresponding pulling speed V. Thus, the lifting speed margin can be maximized.
  • the temperature gradient G of the single crystal silicon ingot I depends on the configuration of the heat shielding member 60.
  • the present inventors investigated in detail the relationship between the structure of the heat shielding member 60 and the temperature gradient G in order to realize the ideal temperature gradient G ideal .
  • the temperature gradient G approaches G ideal by increasing the diameter (hereinafter also referred to as “opening diameter”) R s of the opening O through which the ingot I is inserted in the heat shielding member 60. found.
  • the opening diameter R s is the opening diameter at the bulged portion 62.
  • the pulling speed margin could be increased by increasing the opening diameter R s , problems such as crystal bending and crystal deformation were newly generated. This is because, by increasing the opening diameter R s, which increases the cold portion of the single crystal pulling apparatus 100 seen from the silicon melt M, the silicon melt M is cooled temperature of the silicon melt M becomes unstable it is conceivable that. The stabilization of the temperature of such a silicon melt M, it is effective to reduce the opening diameter R s.
  • the present inventors diligently studied how to increase the pulling speed margin without causing crystal bending or crystal deformation.
  • the opening diameter R s of the heat shield member 60 without changing, it was conceived to increase the opening diameter R h insulation H.
  • the temperature gradient G of the single crystal silicon ingot I depends on the configuration of the heat shielding member 60.
  • the temperature gradient G is determined by heat insulation that controls heat input to the surface of the single crystal silicon ingot I. Material H.
  • it is effective to increase the flow rate of an inert gas such as Ar gas flowing between the single crystal silicon ingot I and the heat shielding member 60.
  • the flow rate of the inert gas depends on the outer shape of the heat shielding member 60.
  • the present inventors have found that without changing the opening diameter R S of the heat shield member 60, by increasing the opening diameter R h insulation H, while suppressing the bend and crystal deformation of the crystal, The present inventors have found that the temperature gradient G can be made closer to the ideal temperature gradient G ideal to increase the pulling speed margin, and the present invention has been completed.
  • FIG. 5 shows an example of the heat shielding member according to the present invention.
  • the heat shielding member 1 shown in this figure includes a cylindrical tube portion 2 that surrounds the outer peripheral surface of the single crystal silicon ingot I, and a bulging portion 3 at the lower portion of the tube portion 2.
  • the cylinder part 2 has the inner wall 2a and the outer wall 2b, and the heat insulating material H is provided between these.
  • the bulging portion 3 has an upper wall 3a, a bottom wall 3b, and two vertical walls 3c, 3d, and an annular heat insulating material H is provided in a space surrounded by these walls.
  • the said heat shielding member 1 is comprised so that the vertical wall 3c may adjoin the ingot I.
  • a gap (space) V is provided between the vertical wall 3 c and the heat insulating material H. This allows the opening diameter R h insulation H increased to close to the temperature gradient G of the crystal I to the ideal temperature gradient G ideal, to enlarge the pulling rate margin.
  • the opening diameter R s of the heat shielding member 1 is made the same as that of the conventional one, and the flow rate of the inert gas flowing between the ingot I and the heat shielding member 1 is maintained, so Deformation can be suppressed.
  • the wall covering the heat insulating material H is a mere cover member for preventing a part of the heat insulating material H from falling into the silicon melt M, and the opening diameter R of the heat shielding member 60. s is unchanged, by increasing the opening diameter R h insulation H, are those not thought so far of the present invention of providing a difference in the opening diameter.
  • the opening diameter R s of the heat shielding member 1 is the distance from the central axis A of the ingot I (that is, the lifting axis of the lifting device) to the surface of the vertical wall 3c on the ingot I side.
  • the opening diameter R h of the heat insulating material H is the distance from the central axis A of the ingot I to the inner wall surface of the heat insulating material H.
  • the difference R d between the opening diameter R s of the heat shielding member 1 and the opening diameter R h of the heat insulating material H may be larger than that of the conventional heat shielding member 60. This can be achieved by providing the air gap V between the vertical wall 3c and the heat insulating material H in the heat shielding member 1 shown in FIG.
  • the walls 62 a to 62 d are merely cover members for preventing a part of the heat insulating material H from falling into the silicon melt M.
  • the space surrounded by these walls was filled with a heat insulating material without any gaps.
  • Each of these walls has a thickness of about 5 mm to 10 mm, although it differs depending on any of the walls 62a to 62d.
  • the difference R d between the opening diameter R s of the heat shielding member 1 and the opening diameter R h of the heat insulating material H can be, for example, more than 5 mm, and more than 6 mm, depending on the thickness of the vertical wall 3 c.
  • the diameter of the crystal defects is flattened to be larger than the opening diameter of the heat insulating material H in the conventional heat shielding member 60, and the pulling speed margin is expanded.
  • the difference R d of the opening diameter in that a larger scale the pulling rate margin, preferably at 25mm or more, and more preferably 70mm or more.
  • the difference R d of the opening diameter it is preferably 200mm or less, it is 150mm or less Is more preferable.
  • At least the vertical wall 3 c is made of a material having high thermal conductivity in order to satisfactorily transmit the radiant heat from the silicon melt M to the outer peripheral surface of the single crystal silicon ingot I. It is preferable to configure. Also, the bottom wall 3b is more preferably made of a material having high thermal conductivity.
  • Examples of the material having high thermal conductivity include carbon materials such as graphite and metals such as molybdenum (Mo). Among these, since there is little contamination, it is preferable to comprise a wall with the said carbon material.
  • the opening diameter at the bulging portion of the heat shielding member 1 is preferably 340 mm or more and 460 mm or less. Thereby, the flow rate of the inert gas such as Ar gas flowing between the single crystal silicon ingot I and the heat shielding member can be increased, and the temperature stability of the silicon melt M can be increased. More preferably, it is 350 mm or more and 450 mm or less.
  • the opening diameter of the heat insulating material H is preferably 355 mm or more and 475 mm or less.
  • the flow rate of the inert gas such as Ar gas flowing between the single crystal silicon ingot I and the heat shielding member can be increased, and the temperature stability of the silicon melt M can be increased. More preferably, it is 365 mm or more and 465 mm or less.
  • FIG. 6 shows another example of the heat shielding member according to the present invention.
  • symbol is attached
  • the heat shielding member 10 shown in this figure unlike the heat shielding member 1 shown in FIG. 5, no gap (space) V is provided between the vertical wall 3 c and the heat insulating material H.
  • the thickness of the vertical wall 3c is configured to be larger than that of the conventional one, and the vertical wall 3c and the heat insulating material H are configured to contact each other.
  • the opening diameter R h insulation H is made larger than the conventional, while suppressing tortuosity and crystal defects of the crystal, the margin of a pulling speed crystal silicon defect-free can be obtained Can be enlarged.
  • the vertical wall 3c and the bottom wall 3b on the side adjacent to the single crystal silicon ingot I are integrally formed as in the heat shielding member 20 shown in FIG. Thereby, the radiant heat from the bottom wall 3b can be more easily transmitted to the ingot I, and the temperature gradient G can be made closer to the ideal temperature gradient G ideal .
  • the bulging portion 3 bulges in the cylinder, but the heat shielding member in which the bulging portion 3 bulges outside the cylinder is also used. Included in the invention.
  • the single crystal pulling apparatus includes the above-described heat shielding member according to the present invention. Therefore, the configuration other than the heat shielding member is not limited, and can be appropriately configured so that a desired single crystal silicon ingot can be grown.
  • the heat shielding members 1, 10 and 20 according to the present invention illustrated in FIGS. A single crystal pulling apparatus can be used.
  • the single crystal pulling apparatus according to the present invention a defect-free single crystal silicon ingot can be grown while suppressing crystal deformation.
  • the method for producing single crystal silicon according to the present invention is characterized in that a silicon crystal is produced using the above-described single crystal pulling apparatus according to the present invention. Therefore, it is not limited except using the above-described single crystal pulling apparatus according to the present invention, and it can be appropriately configured so that a desired single crystal silicon ingot can be grown.
  • the heat shielding member 1 according to the present invention illustrated in FIG. 5 or the heat shielding member 10 according to the present invention illustrated in FIG. 6 is applied.
  • a single crystal silicon ingot can be manufactured using the apparatus described below. First, in a state where the inside of the chamber 51 is maintained in an inert gas atmosphere such as Ar gas under reduced pressure, a raw material material such as polycrystalline silicon accommodated in the crucible 52 is heated and melted by the heater 54 to obtain a silicon melt. Let it be M.
  • the pulling shaft 55 is lowered, the seed crystal S is immersed in the silicon melt M, and the pulling shaft 55 is pulled upward while rotating the crucible 52 and the pulling shaft 55 in a predetermined direction.
  • a defect-free single crystal silicon ingot can be grown while suppressing crystal bends and crystal deformation.
  • Invention Example 2 In the same manner as in Invention Example 1, single crystal silicon was produced. However, as the single crystal pulling apparatus, in the single crystal pulling apparatus 100 shown in FIG. 1, an apparatus to which the heat shielding member 10 shown in FIG. 6 is applied instead of the heat shielding member 60 was used. And the thickness of the vertical wall 3c was 50 mm. Other conditions are the same as those of Invention Example 1.
  • FIG. 8 shows the relationship between the temperature gradient G of the single crystal silicon ingot and the ideal temperature gradient G ideal when grown using the single crystal pulling apparatus provided with the heat shielding member 1 shown in FIG. For comparison, the case of growing using the apparatus shown in FIG. 1 is also shown.
  • To evaluate the deviation of the temperature gradient G from the ideal temperature gradient G ideal for 41 sample points of the temperature gradient profile shown in FIG. 8, obtains a difference between the temperature gradient G and the ideal temperature gradient G ideal, their Average values and standard deviations were determined.
  • FIG. 9 shows the relationship between the temperature gradient G of the single crystal silicon ingot and the ideal temperature gradient G ideal when grown using the single crystal pulling apparatus including the heat shielding member 10 shown in FIG.
  • the case of growing using the apparatus shown in FIG. 1 is also shown. Evaluation similar to the case of the heat shielding member 1 shown in FIG. 5 was performed for the case of the heat shielding member 10 shown in FIG. The obtained results are shown in Table 1.
  • the standard deviation value of both the heat shielding member 1 shown in FIG. 5 and the heat shielding member 10 shown in FIG. 6 is smaller than that of the comparative example, and the temperature gradient G is larger than that of the comparative example. Is close to the ideal temperature gradient G ideal .
  • ⁇ Evaluation of crystal deformation> In any of Invention Examples 1 and 2 and Comparative Example, a defect-free single crystal silicon ingot could be grown. Specifically, the deformation was evaluated using the deformation rate, which is an index indicating the degree of deformation of the single crystal silicon ingot obtained by the inventive example and the comparative example (see, for example, Japanese Patent Laid-Open No. 09-87083). .
  • the deformation rate is a value defined by ((maximum diameter ⁇ minimum diameter) / minimum diameter) ⁇ 100 (%) for the diameter of the single crystal silicon ingot, and 0.10 to 0.13% for Invention Example 1 Inventive Example 2 was 0.11 to 0.15%, and Comparative Example was 0.09 to 0.16%, which satisfied the quality standards.
  • the margin of the pulling speed of the crystal from which defect-free single crystal silicon can be obtained can be expanded, it is useful in the semiconductor industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

無欠陥の単結晶シリコンが得られる結晶の引き上げ速度のマージンを拡大することができる熱遮蔽部材、単結晶引き上げ装置および該単結晶引き上げ装置を用いた単結晶シリコンインゴットの製造方法を提案する。石英るつぼの周囲に配置されたヒータにより加熱されて石英るつぼに貯留されたシリコン融液から単結晶シリコンインゴットIを引き上げる単結晶引き上げ装置に設けられる熱遮蔽部材1であって、該熱遮蔽部材1は、単結晶シリコンインゴットの外周面を包囲する円筒状の筒部2と、筒部2の下部にて環状の膨出部3とを備え、膨出部2は、上壁3aと底壁3bと2つの縦壁3c、3dとを有し、それらの壁によって囲まれた空間に環状の断熱材Hを有し、単結晶シリコンインゴットIに隣接する側の縦壁3cと断熱材Hとの間に空隙を有することを特徴とする。

Description

熱遮蔽部材、単結晶引き上げ装置および単結晶シリコンインゴットの製造方法
 本発明は、熱遮蔽部材、単結晶引き上げ装置および該単結晶引き上げ装置を用いた単結晶シリコンインゴットの製造方法に関する。
 一般に、半導体デバイスの基板としては、チョクラルスキー(Czochralski,CZ)法により育成した単結晶シリコンインゴットに対してウェーハ加工処理を施して得られたシリコンウェーハが使用されている。
 図1は、CZ法により単結晶シリコンインゴットを育成する一般的な単結晶引き上げ装置の一例を示している。この図に示した単結晶引き上げ装置100は、チャンバ51内に、単結晶シリコンインゴットIの原料物質を収容するためのるつぼ52が設けられており、この図に示したるつぼ52は、石英るつぼ52aと黒鉛るつぼ52bとで構成されている。このるつぼ52の下部には、るつぼ52を円周方向に回転させるとともに、るつぼ52を鉛直方向に昇降させるるつぼ回転昇降軸53が取り付けられている。また、るつぼ52の周囲には、ヒータ54が配置されており、るつぼ52内に収容された原料物質を加熱してシリコン融液Mにする。
 チャンバ51の上部には、単結晶シリコンインゴットIを引き上げるための引き上げ軸55が設けられており、この先端に固定された種結晶保持器56に種結晶Sが保持されている。また、チャンバ51の上部および下部には、ガス導入口57およびガス排出口58がそれぞれ設けられており、単結晶シリコンインゴットIの育成中に、ガス導入口57からチャンバ51内に不活性ガスを供給し、インゴットIの外周面に沿って通過させてガス排出口58から排出するように構成されている。
 さらに、チャンバ51内には、育成中のインゴットIの外周面を包囲する円筒形の熱遮蔽部材60が設けられている。図2は、従来の熱遮蔽部材60の構成の一例を示している。この図に示した熱遮蔽部材60は、単結晶シリコンインゴットIの外周面を包囲する円筒状の筒部61と、筒部61の下部にて膨出部62とを備える(例えば、特許文献1参照)。ここで、筒部61は内壁61aと外壁61bとを有している。また、膨出部62は上壁62aと底壁62bと2つの縦壁62c、62dとを有している。そして、これらの壁によって囲まれた空間に断熱材(蓄熱部材)Hが設けられている。
 このような熱遮蔽部材60は、ヒータ54やシリコン融液M、るつぼ52の側壁からの輻射熱を遮蔽して、引き上げる単結晶シリコンインゴットIの冷却を促進する一方、ヒータ54やシリコン融液Mにより加熱された膨出部62の断熱材HによりインゴットIの外周面を保温し、単結晶シリコンインゴットIの中心部と外周部における結晶軸方向の温度勾配の差が大きくなるのを抑制する。
 上記装置100を用いて、単結晶シリコンインゴットIの育成は以下のように行う。まず、チャンバ51内を減圧下のArガス等の不活性ガス雰囲気に維持した状態で、ヒータ54によってるつぼ52内に収容された多結晶シリコン等の原料物質を加熱して溶融し、シリコン融液Mとする。次いで、引き上げ軸55を下降させて種結晶Sをシリコン融液Mに浸漬し、るつぼ52および引き上げ軸55を所定の方向に回転させながら、引き上げ軸55を上方に引き上げる。こうして、種結晶Sの下方に単結晶シリコンインゴットIを育成することができる。
 上記装置100を用いて育成された単結晶シリコンインゴットIには、デバイス形成工程で問題となる様々の種類のGrown-in欠陥が形成される。このGrown-in欠陥のインゴットIの径方向面内の分布は、2つの要因、すなわち、結晶の引き上げ速度Vおよび固液界面における単結晶内の引き上げ方向の温度勾配Gに依存することが知られている(例えば、非特許文献1参照)。
 図3は、固液界面における温度勾配Gに対する引き上げ速度Vの比V/Gと単結晶シリコンインゴットIを構成する結晶領域との関係を示す図である。この図に示すように、単結晶シリコンインゴットは、V/Gの値が大きい場合には、空孔が形成されて結晶に起因したパーティクル(Crystal Originated Particles,COP)が検出される結晶領域であるCOP発生領域71に支配される。
 V/Gの値を小さくすると、特定の酸化熱処理を施すと、酸化誘起積層欠陥(OSF:Oxidation Induced Stacking Fault)と呼ばれるリング状に分布するOSF潜在核領域72が形成され、このOSF領域72にはCOPは検出されない。
 さらにV/Gの値を小さくすると、酸素析出物が存在しCOPが検出されない結晶領域である酸素析出促進領域(以下、「Pv領域」ともいう)73が、次いで酸素の析出が起きにくくCOPが検出されない結晶領域である酸素析出抑制領域(以下、「Pi領域」ともいう)74が形成され、転位クラスターが検出される結晶領域である転位クラスター領域75が形成される。
 V/Gに応じてこのような欠陥分布を示す単結晶シリコンインゴットIから採取されるシリコンウェーハにおいて、COP発生領域71および転位クラスター領域75以外の結晶領域は、一般的には欠陥のない無欠陥領域と見なされる結晶領域であり、一般に、これらの結晶領域から採取されるシリコンウェーハは、無欠陥のシリコンウェーハとされる。
特開2004-107132号公報
"The Mechanism of Swirl Defects Formation in Silicon", Journal of Crystal Growth, Vol. 59, 1982, pp.625-643
 上記COP発生領域71に対するV/Gの値と、転位クラスター領域75に対するV/Gの値の差は極めて小さいため、無欠陥の単結晶シリコンインゴットIを育成するためには、引き上げ速度Vの厳密な管理が必要となる。しかしながら、こうした引き上げ速度Vの管理は極めて困難であり、無欠陥の単結晶シリコンインゴットIが得られる結晶の引き上げ速度Vの範囲(マージン)を拡大することができる方途の提案が望まれている。
 そこで、本発明の目的は、無欠陥の単結晶シリコンが得られる結晶の引き上げ速度のマージンを拡大することができる熱遮蔽部材、単結晶引き上げ装置および該単結晶引き上げ装置を用いた単結晶シリコンインゴットの製造方法を提案することにある。
 上記課題を解決する本発明の要旨構成は以下の通りである。
[1]石英るつぼの周囲に配置されたヒータにより加熱されて前記石英るつぼに貯留されたシリコン融液から単結晶シリコンインゴットを引き上げる単結晶引き上げ装置に設けられる熱遮蔽部材であって、該熱遮蔽部材は、前記単結晶シリコンインゴットの外周面を包囲する円筒状の筒部と、前記筒部の下部にて環状の膨出部とを備える、熱遮蔽部材において、
 前記膨出部は、上壁と底壁と2つの縦壁とを有し、それらの壁によって囲まれた空間に環状の断熱材を有し、
 前記単結晶シリコンインゴットに隣接する側の縦壁と前記断熱材との間に空隙を有することを特徴とする熱遮蔽部材。
[2]石英るつぼの周囲に配置されたヒータにより加熱されて前記石英るつぼに貯留されたシリコン融液から単結晶シリコンインゴットを引き上げる単結晶引き上げ装置に設けられる熱遮蔽部材であって、該熱遮蔽部材は、前記単結晶シリコンインゴットの外周面を包囲する円筒状の筒部と、前記筒部の下部にて環状の膨出部とを備える、熱遮蔽部材において、
 前記膨出部は、上壁と底壁と2つの縦壁とを有し、それらの壁によって囲まれた空間に環状の断熱材を有し、
 前記単結晶シリコンインゴットに隣接する側の縦壁の前記断熱材側の表面と前記断熱材とが接触しており、
 前記熱遮蔽部材の開口径と前記断熱材の開口径との差が5mm超えであることを特徴とする熱遮蔽部材。
[3]前記単結晶シリコンインゴットに隣接する側の縦壁と前記底壁とが一体に形成されている、前記[1]または[2]に記載の熱遮蔽部材。
[4]前記単結晶シリコンインゴットに隣接する側の縦壁が炭素材料を有する、前記[1]~[3]のいずれか1項に記載の熱遮蔽部材。
[5]前記[1]~[4]のいずれかに記載の熱遮蔽部材を備える単結晶引き上げ装置。
[6]前記[5]に記載の単結晶引き上げ装置を用いて製造することを特徴とする単結晶シリコンインゴットの製造方法。
 本発明によれば、無欠陥の単結晶シリコンインゴットが得られる結晶の引き上げ速度のマージンを拡大することができる。
一般的な単結晶引き上げ装置の一例を示す図である。 熱遮蔽部材の一例を示す図である。 固液界面における温度勾配に対する引き上げ速度の比と単結晶シリコンインゴットを構成する結晶領域との関係を示す図である。 (a)は単結晶シリコンインゴット内の応力分布の一例を示す図であり、(b)は、理想温度勾配Gidealの一例を示す図である。 本発明による熱遮蔽部材の一例を示す図である。 本発明による熱遮蔽部材の別の例を示す図である。 縦壁と底壁とが一体に形成された熱遮蔽部材を示す図である。 図5に示した熱遮蔽部材を備える単結晶引き上げ装置を用いて育成した場合の単結晶シリコンインゴットの温度勾配を示す図である。 図6に示した熱遮蔽部材を備える単結晶引き上げ装置を用いて育成した場合の単結晶シリコンインゴットの温度勾配を示す図である。
 以下、図面を参照して本発明の実施形態について説明する。本発明による熱遮蔽部材は、石英るつぼの周囲に配置されたヒータにより加熱されて前記石英るつぼに貯留されたシリコン融液から単結晶シリコンインゴットを引き上げる単結晶引き上げ装置に設けられる熱遮蔽部材であって、該熱遮蔽部材は、単結晶シリコンインゴットの外周面を包囲する円筒状の筒部と、筒部の下部にて環状の膨出部とを備える。ここで、上記膨出部は、上壁と底壁と2つの縦壁とを有し、それらの壁によって囲まれた空間に環状の断熱材を有する。
 上述のように、単結晶シリコンインゴットI内の結晶欠陥の径方向分布は、温度勾配Gに対する引き上げ速度Vの比V/Gに依存する。ここで、引き上げ速度Vは、インゴットIへの格子間シリコンと空孔の導入量を決定する。これに対して、温度勾配Gは、格子間シリコンと空孔の拡散速度を決定する。
 無欠陥の単結晶シリコンインゴットIが得られる結晶の引き上げ速度Vのマージン(以下、単に「引き上げ速度マージン」とも言う。)は、インゴットI内の結晶欠陥の径方向分布をフラット(平坦)にすることによって拡大することができる。この結晶欠陥の径方向分布の平坦化を実現する臨界(V/G)criは、空孔の濃度と格子間シリコンの濃度とが等しくなる条件から理論的に求めることができ、以下の式(1)で与えられる(例えば、K. Nakamura, R. Suewaka and B. Ko, ECS Solid State Letters, 3 (3) N5-N7 (2014)参照)。
Figure JPOXMLDOC01-appb-M000001
ここで、σmeanは結晶内の任意の位置の応力である。
 式(1)から明らかなように、格子間シリコン濃度と空孔濃度とが等しくなる(V/G)criは、結晶内の応力に依存する。上記(V/G)criは、伝熱計算等により結晶内の応力分布を求めて得ることができる。また、結晶欠陥の径方向分布の平坦化を実現する理想的な温度勾配(以下、「理想温度勾配Gideal」とも言う。)についても、引き上げ速度VはインゴットIの径方向で一定であるため、上記式(1)から、
Figure JPOXMLDOC01-appb-M000002
と求めることができる。
 図4(a)は、結晶内の応力分布の一例を示しており、図4(b)は、理想温度勾配の一例を示している。図4(b)に示したような理想温度勾配Gidealを実現することができれば、対応する引き上げ速度Vで単結晶シリコンインゴットIを引き上げることによって、インゴットI内の結晶欠陥の径方向分布をフラットにして、引き上げ速度マージンを最大化することができる。
 単結晶シリコンインゴットIの温度勾配Gは、熱遮蔽部材60の構成に依存する。本発明者らは、上記理想の温度勾配Gidealを実現すべく、熱遮蔽部材60の構成と温度勾配Gとの関係を詳細に調査した。その結果、熱遮蔽部材60における、インゴットIが挿通されている開口部Oの径(以下、「開口径」とも言う。)Rを大きくすることにより、温度勾配GはGidealに近づくことが判明した。なお、上記開口径Rは、膨出部62での開口径である。
 そして、開口径Rが従来のものよりも大きな熱遮蔽部材を用いて単結晶シリコンインゴットIを育成すると、結晶欠陥の径方向分布がよりフラットになり、引き上げ速度マージンが拡大することを見出したのである。
 こうして、開口径Rを大きくすることにより、引き上げ速度マージンを拡大することはできたが、今度は結晶のくねりや結晶変形等の問題が新たに生じた。これは、開口径Rを大きくすると、シリコン融液Mから見える単結晶引き上げ装置100内の冷温部分が多くなり、シリコン融液Mが冷却されてシリコン融液Mの温度が不安定になったためと考えられる。こうしたシリコン融液Mの温度の安定化には、開口径Rを小さくすることが有効である。
 このように、引き上げ速度マージンを拡大するためには、熱遮蔽部材60の膨出部62での開口径Rを大きくすることが有効であるのに対して、結晶のくねりや結晶の変形を抑制する点では、開口径Rを小さくすることが有効であり、引き上げ速度マージンの拡大と、結晶のくねりや結晶変形の抑制とはトレードオフの関係にあることが判明したのである。
 そこで、本発明者らは、結晶のくねりや結晶変形を生じさせることなく、引き上げ速度マージンを拡大する方途について鋭意検討した。その結果、熱遮蔽部材60の開口径Rは変更せずに、断熱材Hの開口径Rを大きくすることに想到したのである。
 上述のように、単結晶シリコンインゴットIの温度勾配Gは、熱遮蔽部材60の構成に依存するが、温度勾配Gを決定するのは、単結晶シリコンインゴットI表面への入熱を制御する断熱材Hである。これに対して、シリコン融液Mの温度の安定化のためには、単結晶シリコンインゴットIと熱遮蔽部材60との間を流れるArガス等の不活性ガスの流速が高めることが有効であり、不活性ガスの流速は、熱遮蔽部材60の外形に依存する。
 こうしたことから、本発明者らは、熱遮蔽部材60の開口径Rを変更せずに、断熱材Hの開口径Rを大きくすることによって、結晶のくねりや結晶変形の抑制しつつ、温度勾配Gを理想温度勾配Gidealに近づけて引き上げ速度マージンを拡大できることを見出し、本発明を完成させたのである。
 図5は、本発明による熱遮蔽部材の一例を示している。この図に示した熱遮蔽部材1は、単結晶シリコンインゴットIの外周面を包囲する円筒状の筒部2と、筒部2の下部にて膨出部3とを備える。ここで、筒部2は、内壁2aと外壁2bとを有し、これらの間には、断熱材Hが設けられている。また、膨出部3は、上壁3aと底壁3bと2つの縦壁3c、3dとを有しており、それらの壁で囲まれた空間に環状の断熱材Hが設けられている。なお、上記熱遮蔽部材1は、縦壁3cがインゴットIに隣接するように構成されている。
 図5に示した熱遮蔽部材1においては、縦壁3cと断熱材Hとの間に、空隙(空間)Vが設けられている。これにより、断熱材Hの開口径Rを大きくして結晶Iの温度勾配Gを理想温度勾配Gidealに近づけて、引き上げ速度マージンを拡大することができる。また、熱遮蔽部材1の開口径Rは従来のものと同じにすることにより、インゴットIと熱遮蔽部材1との間を流れる不活性ガスの流速を維持することにより、結晶のくねりや結晶変形を抑制できる。
 従来の熱遮蔽部材60においては、断熱材Hを覆う壁は、断熱材Hの一部がシリコン融液Mに落下するのを防ぐための単なるカバー部材であり、熱遮蔽部材60の開口径Rは変更せずに、断熱材Hの開口径Rを大きくして、上記開口径に差を設けるという本発明の思想はこれまでにないものである。
 なお、図5に示すように、熱遮蔽部材1の開口径Rは、インゴットIの中心軸A(すなわち、引き上げ装置の引き上げ軸)から縦壁3cのインゴットI側の表面までの距離であり、断熱材Hの開口径Rは、インゴットIの中心軸Aから断熱材Hの内壁面までの距離である。
 本発明による熱遮蔽部材1において、熱遮蔽部材1の開口径Rと、断熱材Hの開口径Rとの差Rは、従来の熱遮蔽部材60よりも大きければよい。これは、図5に示した熱遮蔽部材1においては、縦壁3cと断熱材Hとの間に空隙Vを設けたこと自体によって達成することができる。
 上述のように、図2に例示した従来の熱遮蔽部材60において、壁62a~62dは、断熱材Hの一部がシリコン融液M中に落下するのを防止するための単なるカバー部材に過ぎず、これらの壁で囲まれた空間には断熱材が隙間なく充填されていた。そして、これらの壁のそれぞれは、壁62a~62dの何れかによっても異なるが、概ね5mm~10mm程度の厚みで構成されていた。
 よって、熱遮蔽部材1の開口径Rと、断熱材Hの開口径Rとの差Rは、縦壁3cの厚みにもよるが、例えば5mm超えとすることができ、6mm超えとすることができ、7mm超えとすることができ、8m超えとすることができ、9mm超えとすることができ、10mm超えとすることができ、12mm以上とすることができ、15mm以上とすることができる。
 本発明においては、こうした従来の熱遮蔽部材60における断熱材Hの開口径よりも大きくして、結晶欠陥の径方向分布をフラットにして、引き上げ速度マージンを拡大する。上記開口径の差Rは、引き上げ速度マージンをより拡大する点で、25mm以上であることが好ましく、70mm以上であることがより好ましい。また、断熱材を抜くことによる石英ルツボの熱負荷の増加、それに伴う引上げ結晶の有転位化防止の点で、開口径の差Rは、200mm以下であることが好ましく、150mm以下であることがより好ましい。
 熱遮蔽部材1の外形を構成する壁のうち、少なくとも縦壁3cは、シリコン融液Mからの輻射熱を単結晶シリコンインゴットIの外周面に良好に伝達するために、熱伝導率が高い材料で構成することが好ましい。また、底壁3bについても、熱伝導率が高い材料で構成することがより好ましい。
 上記熱伝導率が高い材料としては、グラファイト等の炭素材料やモリブデン(Mo)等の金属を挙げることができる。これらの中でも、汚染が少ないことから、上記炭素材料で壁を構成することが好ましい。
 熱遮蔽部材1の膨出部での開口径は、340mm以上460mm以下とすることが好ましい。これにより、単結晶シリコンインゴットIと熱遮蔽部材との間を流れるArガス等の不活性ガスの流速を高めて、シリコン融液Mの温度の安定性を高めることができる。より好ましくは350mm以上450mm以下である。
 また、断熱材Hの開口径は、355mm以上475mm以下とすることが好ましい。これにより、単結晶シリコンインゴットIと熱遮蔽部材との間を流れるArガス等の不活性ガスの流速を高めて、シリコン融液Mの温度の安定性を高めることができる。より好ましくは365mm以上465mm以下である。
 図6は、本発明による熱遮蔽部材の別の例を示している。なお、図5に示した熱遮蔽部材1と同じ構成には同じ符号が付されている。この図に示した熱遮蔽部材10においては、図5に示した熱遮蔽部材1とは異なり、縦壁3cと断熱材Hとの間に空隙(空間)Vが設けられていない。その代わりに、縦壁3cの厚みを従来のものよりも大きく構成されており、縦壁3cと断熱材Hとが接触するように構成されている。これにより、熱遮蔽部材1と同様に、断熱材Hの開口径Rを従来よりも大きくして、結晶のくねりや結晶欠陥を抑制しつつ、無欠陥の結晶シリコンが得られる引き上げ速度のマージンを拡大することができる。
 なお、図7に示した熱遮蔽部材20のように、単結晶シリコンインゴットIに隣接する側の縦壁3cと底壁3bとが一体に形成されていることが好ましい。これにより、底壁3bからの輻射熱をインゴットIにさらに伝達しやすくすることができ、温度勾配Gを理想温度勾配Gidealにより近づけることができる。これは、図5に示した熱遮蔽部材1についても同様である。
 また、図5~7に示した熱遮蔽部材1、10および20においては、膨出部3は筒内に膨出しているが、膨出部3が筒外に膨出する熱遮蔽部材も本発明に含まれる。
(単結晶引き上げ装置)
 本発明による単結晶引き上げ装置は、上述した本発明による熱遮蔽部材を備えることを特徴としている。よって、熱遮蔽部材以外の構成については限定されず、所望の単結晶シリコンインゴットを育成できるように適切に構成することができる。
 例えば、図1に示した単結晶引き上げ装置100において、熱遮蔽部材60に代えて、図5~図7に例示した本発明による熱遮蔽部材1、10および20を適用することにより、本発明による単結晶引き上げ装置とすることができる。そして、本発明による単結晶引き上げ装置を用いることにより、結晶の変形を抑制しつつ無欠陥の単結晶シリコンインゴットを育成することができる。
(単結晶シリコンの製造方法)
 また、本発明による単結晶シリコンの製造方法は、上述した本発明による単結晶引き上げ装置を用いてシリコン結晶を製造することを特徴としている。よって、上述した本発明による単結晶引き上げ装置を用いること以外については限定されず、所望の単結晶シリコンインゴットを育成できるように適切に構成することができる。
 例えば、図1に示した単結晶引き上げ装置100において、熱遮蔽部材60に代えて、図5に例示した本発明による熱遮蔽部材1や、図6に例示した本発明による熱遮蔽部材10を適用した装置を用いて、以下のように単結晶シリコンインゴットを製造することができる。まず、チャンバ51内を減圧下のArガス等の不活性ガス雰囲気に維持した状態で、ヒータ54によってるつぼ52内に収容された多結晶シリコン等の原料物質を加熱して溶融し、シリコン融液Mとする。次いで、引き上げ軸55を下降させて種結晶Sをシリコン融液Mに浸漬し、るつぼ52および引き上げ軸55を所定の方向に回転させながら、引き上げ軸55を上方に引き上げる。こうして、結晶のくねりや結晶変形を抑制して無欠陥の単結晶シリコンインゴットを育成することができる。
 以下、本発明の実施例について説明するが、本発明は実施例に限定されるものではない。
<単結晶シリコンインゴットの育成>
(発明例1)
 本発明による単結晶シリコンの製造方法により、単結晶シリコンの製造を行った。具体的には、単結晶引き上げ装置として、図1に示した単結晶引き上げ装置100において、熱遮蔽部材60に代えて、図5に示した熱遮蔽部材1を適用した装置を用いた。この熱遮蔽部材1の上壁3a、底壁3bおよび縦壁3d、3dとして、表面にSiCコートを施したグラファイト材を用い、上壁3aの厚みを7mm、底壁3bの厚みを5mm、縦壁3cの厚みを5mm、3dの厚みを7mmとした。また、縦壁3cと断熱材Hとの間の空隙の径方向の幅を100mmとした。
(発明例2)
 発明例1と同様に、単結晶シリコンの製造を行った。ただし、単結晶引き上げ装置として、図1に示した単結晶引き上げ装置100において、熱遮蔽部材60に代えて、図6に示した熱遮蔽部材10を適用した装置を用いた。そして、縦壁3cの厚みは50mmとした。その他の条件は、発明例1と全て同じである。
(比較例)
 図1に示した単結晶引き上げ装置100を用いて単結晶シリコンを製造した。その他の条件は、発明例と全て同じである。
<温度勾配の評価>
 図8は、図5に示した熱遮蔽部材1を備える単結晶引き上げ装置を用いて育成した場合の単結晶シリコンインゴットの温度勾配Gと理想温度勾配Gidealとの関係を示している。比較のために、図1に示した装置を用いて育成した場合についても示している。理想温度勾配Gidealからの温度勾配Gのずれを評価するために、図8に示した温度勾配プロファイルの41のサンプル点について、温度勾配Gと理想温度勾配Gidealとの差を求め、それらの平均値および標準偏差を求めた。
Figure JPOXMLDOC01-appb-T000003
 図9は、図6に示した熱遮蔽部材10を備える単結晶引き上げ装置を用いて育成した場合の単結晶シリコンインゴットの温度勾配Gと理想温度勾配Gidealとの関係を示している。比較のために、図1に示した装置を用いて育成した場合についても示している。上記図5に示した熱遮蔽部材1の場合と同様の評価を、図6に示した熱遮蔽部材10の場合についても行った。得られた結果を表1に示す。
 表1から明らかなように、図5に示した熱遮蔽部材1および図6に示した熱遮蔽部材10の双方について、標準偏差の値が比較例よりも小さく、比較例に比べて温度勾配Gが理想温度勾配Gidealに近いことが分かる。
<結晶変形の評価>
 発明例1、2および比較例のいずれにおいても、無欠陥の単結晶シリコンインゴットを育成することができた。具体的には、発明例および比較例により得られた単結晶シリコンインゴットの変形の度合いを示す指標である変形率を用いて変形について評価を行った(例えば、特開平09-87083号公報参照)。変形率は、単結晶シリコンインゴットの直径について、((最大直径-最小直径)/最小直径)×100(%)で定義される値であり、発明例1については0.10~0.13%、発明例2については0.11~0.15%、比較例については0.09~0.16%となり、品質基準を満たしていた。
<引き上げ速度マージンの評価>
 発明例1、2および比較例について、無欠陥の結晶シリコンが得られる引き上げ速度Vのマージンを測定した。その結果、発明例1については0.019mm/分、発明例2については0.018mm/分、比較例については0.016mm/分であった。このように、本発明により、無欠陥の結晶シリコンが得られる引き上げ速度のマージンが拡大できることが分かる。
 本発明によれば、無欠陥の単結晶シリコンが得られる結晶の引き上げ速度のマージンを拡大できるため、半導体産業において有用である。
1,10,20,60 熱遮蔽部材
2,61 筒部
2a,61a 内壁
2b,61b 外壁
3,62 膨出部
3a,62a 上壁
3b,62b 底壁
3c,3d,62c,62d 縦壁
51 チャンバ
52 るつぼ
52a 石英るつぼ
52b 黒鉛るつぼ
53 るつぼ回転昇降軸
54 ヒータ
55 引き上げ軸
56 種結晶保持器
57 ガス導入口
58 ガス導出口
71 COP発生領域
72 OSF潜在核領域
73 酸素析出促進領域(Pv領域)
74 酸素析出抑制領域(Pi領域)
75 転位クラスター領域
100 単結晶引き上げ装置
A インゴットの中心軸
H 断熱材
I 単結晶シリコンインゴット
M シリコン融液
O 開口部
 熱遮蔽部材の開口径
 断熱材の開口径
S 種結晶

Claims (6)

  1.  石英るつぼの周囲に配置されたヒータにより加熱されて前記石英るつぼに貯留されたシリコン融液から単結晶シリコンインゴットを引き上げる単結晶引き上げ装置に設けられる熱遮蔽部材であって、該熱遮蔽部材は、前記単結晶シリコンインゴットの外周面を包囲する円筒状の筒部と、前記筒部の下部にて環状の膨出部とを備える、熱遮蔽部材において、
     前記膨出部は、上壁と底壁と2つの縦壁とを有し、それらの壁によって囲まれた空間に環状の断熱材を有し、
     前記単結晶シリコンインゴットに隣接する側の縦壁と前記断熱材との間に空隙を有することを特徴とする熱遮蔽部材。
  2.  石英るつぼの周囲に配置されたヒータにより加熱されて前記石英るつぼに貯留されたシリコン融液から単結晶シリコンインゴットを引き上げる単結晶引き上げ装置に設けられる熱遮蔽部材であって、該熱遮蔽部材は、前記単結晶シリコンインゴットの外周面を包囲する円筒状の筒部と、前記筒部の下部にて環状の膨出部とを備える、熱遮蔽部材において、
     前記膨出部は、上壁と底壁と2つの縦壁とを有し、それらの壁によって囲まれた空間に環状の断熱材を有し、
     前記単結晶シリコンインゴットに隣接する側の縦壁の前記断熱材側の表面と前記断熱材とが接触しており、
     前記熱遮蔽部材の開口径と前記断熱材の開口径との差が5mm超えであることを特徴とする熱遮蔽部材。
  3.  前記単結晶シリコンインゴットに隣接する側の縦壁と前記底壁とが一体に形成されている、請求項1または2に記載の熱遮蔽部材。
  4.  前記単結晶シリコンインゴットに隣接する側の縦壁が炭素材料を有する、請求項1~3のいずれか1項に記載の熱遮蔽部材。
  5.  請求項1~4のいずれかに記載の熱遮蔽部材を備える単結晶引き上げ装置。
  6.  請求項5に記載の単結晶引き上げ装置を用いて製造することを特徴とする単結晶シリコンインゴットの製造方法。
PCT/JP2018/010519 2017-04-05 2018-03-16 熱遮蔽部材、単結晶引き上げ装置および単結晶シリコンインゴットの製造方法 WO2018186150A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880022285.5A CN110573662A (zh) 2017-04-05 2018-03-16 热屏蔽部件、单晶提拉装置及单晶硅锭的制造方法
KR1020197028145A KR102253607B1 (ko) 2017-04-05 2018-03-16 열 차폐 부재, 단결정 인상 장치 및 단결정 실리콘 잉곳 제조 방법
US16/500,183 US11473210B2 (en) 2017-04-05 2018-03-16 Heat shielding member, single crystal pulling apparatus, and method of producing single crystal silicon ingot
DE112018001896.2T DE112018001896T5 (de) 2017-04-05 2018-03-16 Wärmeabschirmbauteil, Einkristall-Ziehvorrichtung und Verfahren zur Herstellung eines Silicium-Einkristall-Ingots

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017075534A JP6304424B1 (ja) 2017-04-05 2017-04-05 熱遮蔽部材、単結晶引き上げ装置および単結晶シリコンインゴットの製造方法
JP2017-075534 2017-04-05

Publications (1)

Publication Number Publication Date
WO2018186150A1 true WO2018186150A1 (ja) 2018-10-11

Family

ID=61828586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010519 WO2018186150A1 (ja) 2017-04-05 2018-03-16 熱遮蔽部材、単結晶引き上げ装置および単結晶シリコンインゴットの製造方法

Country Status (7)

Country Link
US (1) US11473210B2 (ja)
JP (1) JP6304424B1 (ja)
KR (1) KR102253607B1 (ja)
CN (1) CN110573662A (ja)
DE (1) DE112018001896T5 (ja)
TW (1) TWI664326B (ja)
WO (1) WO2018186150A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680788B (zh) * 2019-10-17 2022-02-01 上海新昇半导体科技有限公司 一种半导体晶体生长装置
CN110965118B (zh) * 2019-12-25 2022-04-15 西安奕斯伟材料科技有限公司 一种导流筒装置和拉晶炉
US11618971B2 (en) 2020-09-29 2023-04-04 Sumco Corporation Method and apparatus for manufacturing defect-free monocrystalline silicon crystal
US11873575B2 (en) * 2020-11-30 2024-01-16 Globalwafers Co., Ltd. Ingot puller apparatus having heat shields with voids therein

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327479A (ja) * 1999-05-26 2000-11-28 Komatsu Electronic Metals Co Ltd 単結晶製造装置及び単結晶製造方法
JP2004107132A (ja) * 2002-09-18 2004-04-08 Sumitomo Mitsubishi Silicon Corp シリコン単結晶引上げ装置の熱遮蔽部材
JP2004123516A (ja) * 2002-09-13 2004-04-22 Toshiba Ceramics Co Ltd 単結晶引上装置
JP2005213097A (ja) * 2004-01-30 2005-08-11 Sumitomo Mitsubishi Silicon Corp シリコン単結晶の引上げ方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2979462B2 (ja) 1995-09-29 1999-11-15 住友金属工業株式会社 単結晶引き上げ方法
SG64470A1 (en) * 1997-02-13 1999-04-27 Samsung Electronics Co Ltd Methods of manufacturing monocrystalline silicon ingots and wafers by controlling pull rate profiles in a hot zone furnace and ingots and wafers manufactured thereby
JP2000032747A (ja) * 1998-07-09 2000-01-28 Canon Inc スイッチング電源装置
US6197111B1 (en) * 1999-02-26 2001-03-06 Memc Electronic Materials, Inc. Heat shield assembly for crystal puller
KR100358029B1 (ko) 2000-08-16 2002-10-25 미쯔비시 마테리알 실리콘 가부시끼가이샤 열 차폐 부재 및 이를 이용한 실리콘 단결정 인상 장치
US7077905B2 (en) 2002-09-13 2006-07-18 Toshiba Ceramics Co., Ltd. Apparatus for pulling a single crystal
US6797062B2 (en) * 2002-09-20 2004-09-28 Memc Electronic Materials, Inc. Heat shield assembly for a crystal puller
JP2007018235A (ja) * 2005-07-07 2007-01-25 Nec System Technologies Ltd 不正使用検出システム、被管理端末及び管理端末
JP2007182355A (ja) 2006-01-10 2007-07-19 Sumco Corp シリコン単結晶引上げ装置の熱遮蔽部材
US8152921B2 (en) 2006-09-01 2012-04-10 Okmetic Oyj Crystal manufacturing
KR20090008969A (ko) 2007-07-19 2009-01-22 주식회사 실트론 실리콘 단결정 성장 장치 및 실리콘 단결정 성장 방법
JP5302556B2 (ja) 2008-03-11 2013-10-02 Sumco Techxiv株式会社 シリコン単結晶引上装置及びシリコン単結晶の製造方法
US9074298B2 (en) 2008-08-18 2015-07-07 Sumco Techxiv Corporation Processes for production of silicon ingot, silicon wafer and epitaxial wafer, and silicon ingot
JP5446277B2 (ja) 2009-01-13 2014-03-19 株式会社Sumco シリコン単結晶の製造方法
JP5708171B2 (ja) 2010-04-26 2015-04-30 株式会社Sumco シリコン単結晶引き上げ装置及びシリコン単結晶の製造方法
JP5678635B2 (ja) 2010-12-13 2015-03-04 株式会社Sumco シリコン単結晶の製造装置、シリコン単結晶の製造方法
JP2013075785A (ja) * 2011-09-30 2013-04-25 Globalwafers Japan Co Ltd 単結晶引上装置の輻射シールド
CN102352530B (zh) * 2011-11-09 2014-04-16 内蒙古中环光伏材料有限公司 用于直拉硅单晶炉的热屏装置
JP6078974B2 (ja) 2012-04-04 2017-02-15 株式会社Sumco シリコン単結晶の製造方法
JP6268936B2 (ja) 2013-11-05 2018-01-31 株式会社Sumco シリコン単結晶製造方法
TWM489366U (en) * 2014-08-08 2014-11-01 Nano Bit Tech Co Ltd Etching apparatus for linear laser source
DE102014226297A1 (de) 2014-12-17 2016-06-23 Sgl Carbon Se Doppelwandiger Graphit-Trichter
CN105239150A (zh) * 2015-09-10 2016-01-13 上海超硅半导体有限公司 单晶硅生长炉用导流筒及其应用
JP6631406B2 (ja) 2016-05-20 2020-01-15 株式会社Sumco シリコン単結晶の製造方法
JP6604338B2 (ja) 2017-01-05 2019-11-13 株式会社Sumco シリコン単結晶の引き上げ条件演算プログラム、シリコン単結晶のホットゾーンの改良方法、およびシリコン単結晶の育成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327479A (ja) * 1999-05-26 2000-11-28 Komatsu Electronic Metals Co Ltd 単結晶製造装置及び単結晶製造方法
JP2004123516A (ja) * 2002-09-13 2004-04-22 Toshiba Ceramics Co Ltd 単結晶引上装置
JP2004107132A (ja) * 2002-09-18 2004-04-08 Sumitomo Mitsubishi Silicon Corp シリコン単結晶引上げ装置の熱遮蔽部材
JP2005213097A (ja) * 2004-01-30 2005-08-11 Sumitomo Mitsubishi Silicon Corp シリコン単結晶の引上げ方法

Also Published As

Publication number Publication date
KR102253607B1 (ko) 2021-05-18
DE112018001896T5 (de) 2019-12-19
JP6304424B1 (ja) 2018-04-04
TW201837246A (zh) 2018-10-16
US11473210B2 (en) 2022-10-18
KR20190120316A (ko) 2019-10-23
US20200224327A1 (en) 2020-07-16
CN110573662A (zh) 2019-12-13
TWI664326B (zh) 2019-07-01
JP2018177560A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2018186150A1 (ja) 熱遮蔽部材、単結晶引き上げ装置および単結晶シリコンインゴットの製造方法
WO2014054214A1 (ja) シリコン単結晶育成装置及びシリコン単結晶育成方法
JP6202119B2 (ja) シリコン単結晶の製造方法
JP5163459B2 (ja) シリコン単結晶の育成方法及びシリコンウェーハの検査方法
JP5636168B2 (ja) シリコン単結晶の育成方法
JP5417965B2 (ja) 単結晶成長方法
WO2015083327A1 (ja) シリコン単結晶の育成方法
KR20170126004A (ko) 실리콘 에피택셜 웨이퍼, 그의 제조 방법
JP2004338979A (ja) 単結晶の製造方法及び単結晶
CN109415842B (zh) 单晶硅的制造方法
JP6658780B2 (ja) 熱遮蔽部材、単結晶引き上げ装置および単結晶シリコンインゴットの製造方法
JP3719088B2 (ja) 単結晶育成方法
JP5489064B2 (ja) シリコン単結晶の育成方法
JP4688984B2 (ja) シリコンウエーハ及び結晶育成方法
JP6597857B1 (ja) 熱遮蔽部材、単結晶引き上げ装置及び単結晶の製造方法
JP5428608B2 (ja) シリコン単結晶の育成方法
JP6702169B2 (ja) 熱遮蔽部材、単結晶引き上げ装置および単結晶シリコンインゴットの製造方法
JP4453756B2 (ja) 結晶育成方法
JP6699620B2 (ja) シリコン単結晶の製造方法
WO2021162046A1 (ja) シリコン単結晶の製造方法
KR20070064210A (ko) 단결정 잉곳 성장장치
JP2023127894A (ja) 炭化珪素単結晶およびその製造方法
JP2022182823A (ja) 単結晶製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028145

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18781632

Country of ref document: EP

Kind code of ref document: A1