WO2014054214A1 - シリコン単結晶育成装置及びシリコン単結晶育成方法 - Google Patents

シリコン単結晶育成装置及びシリコン単結晶育成方法 Download PDF

Info

Publication number
WO2014054214A1
WO2014054214A1 PCT/JP2013/005009 JP2013005009W WO2014054214A1 WO 2014054214 A1 WO2014054214 A1 WO 2014054214A1 JP 2013005009 W JP2013005009 W JP 2013005009W WO 2014054214 A1 WO2014054214 A1 WO 2014054214A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
graphite
insulating member
heat insulating
single crystal
Prior art date
Application number
PCT/JP2013/005009
Other languages
English (en)
French (fr)
Inventor
星 亮二
孝世 菅原
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN201380047665.1A priority Critical patent/CN104619893A/zh
Priority to US14/425,394 priority patent/US9783912B2/en
Priority to DE112013004069.7T priority patent/DE112013004069B4/de
Priority to KR1020157006011A priority patent/KR101997608B1/ko
Publication of WO2014054214A1 publication Critical patent/WO2014054214A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • C30B15/12Double crucible methods
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1052Seed pulling including a sectioned crucible [e.g., double crucible, baffle]

Definitions

  • the present invention relates to a silicon single crystal growth apparatus and a silicon single crystal growth method by the Czochralski method.
  • a floating zone (FZ) method in which a silicon rod is locally heated and melted with an induction coil to form a single crystal, and a silicon crystal in a crucible is heated with a heater to melt the single crystal.
  • FZ floating zone
  • CZ Czochralski
  • the crucible in the CZ method generally has a double structure of a quartz crucible made of silicon and oxygen and a graphite crucible that supports the quartz crucible in order to prevent the quartz crucible from being softened and deformed at high temperatures. It is.
  • the CZ method oxygen grown from a quartz crucible is taken into silicon in the grown crystal, and oxygen precipitates are formed in the wafer cut from the crystal by heat treatment in the device, which is the device process. Demonstrates gettering effect for trapping impurities.
  • the CZ method is relatively easy to increase in diameter compared to the FZ method, and the CZ method is the mainstream method for growing silicon single crystals industrially.
  • the causes of dislocations during crystal growth in the CZ method are thought to be due to internal stress during crystal growth or due to various hardly soluble substances.
  • the internal stress that is one of the causes of dislocation of crystals is, for example, if the crystal growth rate is very high, the latent heat of solidification generated when changing from liquid to solid increases, and is an isotherm of the melting point.
  • the crystal growth interface becomes convex upward and its height increases. When the height of the crystal growth interface increases, the temperature gradient in the direction perpendicular to the crystal growth axis increases, and the stress at the center of the crystal increases. It is empirically known that dislocations occur if this stress exceeds a certain level.
  • Patent Document 1 the pressure inside the furnace during operation is optimized to prevent deterioration against the generation of SiO 2 insoluble matter due to the deterioration of the quartz crucible.
  • Various techniques for improving the quality of the quartz crucible itself have been disclosed.
  • Patent Document 2 To solve the problem of volatile SiO solidifying and dropping, for example, in Patent Document 2, a cylinder (rectifier cylinder) surrounding a crystal and a collar at the lower end thereof are attached to the volatile SiO by argon gas flowing from the upper part. And a technique for preventing the adhesion of components such as CO and CO 2 generated in the heater section to components above the crucible. Patent Document 3 also discloses that the upper end portion of the straight body portion of the crucible is kept warm by extending the outer peripheral portion of the collar to the upper portion of the straight body portion of the crucible, thereby preventing the adhesion of SiO.
  • Patent Document 4 discloses a structure in which an inverted conical heat shielding member having a heat insulating material is combined with a heat insulating member outside the straight body portion of the crucible.
  • a heat insulating member projecting to the vicinity of the straight body portion Patent Document 7 discloses a radiation shield projecting to the upper side and the inner side of the crucible.
  • Patent Document 8 discloses a technique for keeping the vicinity of the interface by reflecting radiant heat using a heat shield ring.
  • Patent Document 9 discloses a technique in which the space below the upper ring is kept warm by the upper ring installed above the quartz crucible, and solidification of the raw material melt can be suppressed.
  • An object of the present invention is to provide a silicon single crystal growth apparatus and a silicon single crystal growth method capable of maintaining and suppressing dislocation due to solidification or the like.
  • This is a silicon single crystal growth apparatus based on the Czochralski method in which a graphite crucible is placed inside a heating graphite heater, and a quartz crucible is placed inside the graphite crucible, and crystals are grown from a raw material melt filled in the quartz crucible. And A heater outer heat insulating member outside the graphite heater, a crucible lower heat insulating member below the graphite crucible, a crucible upper heat insulating member above the straight crucible portion of the graphite crucible and the quartz crucible, and when the graphite crucible rises.
  • a crucible outer heat insulating member located outside the body portion, a crucible inner heat insulating member inside the straight body portion of the graphite crucible and the quartz crucible, a heat shield member above the liquid surface of the raw material melt, and the crucible
  • the silicon wherein the graphite crucible and the quartz crucible can be moved up and down in the crystal growth axis direction in a space formed inside the upper heat insulating member, the crucible outer heat insulating member, and the crucible inner heat insulating member.
  • a single crystal growth apparatus is provided.
  • the heater outer heat insulating member, the crucible lower heat insulating member, the crucible upper heat insulating member, the crucible outer heat insulating member, the crucible inner heat insulating member, and the heat insulating member are preferably made of carbon fiber or glass fiber, Moreover, what each surface protected by the graphite material or the quartz material is preferable.
  • the temperature gradient in the crystal growth axis direction of the graphite crucible at the height of the liquid surface of the raw material melt is 11 ° C./cm or less.
  • Such a temperature gradient of the graphite crucible can reduce the temperature gradient of the raw material melt and reduce the number of dislocations caused by solidification of the raw material melt.
  • the present invention also provides a silicon by Czochralski method in which a graphite crucible is arranged inside a graphite heater for heating, a quartz crucible is arranged inside the graphite crucible, and crystals are grown from a raw material melt filled in the quartz crucible.
  • a method for growing a single crystal the method comprising growing a crystal using the above-described silicon single crystal growing apparatus is provided.
  • the present invention provides a silicon by the Czochralski method in which a graphite crucible is arranged inside a graphite heater for heating, a quartz crucible is arranged inside the graphite crucible, and crystals are grown from a raw material melt filled in the quartz crucible.
  • a method for growing a single crystal the method comprising growing a silicon single crystal, wherein a temperature gradient in a crystal growth axis direction of the graphite crucible at a height of a liquid surface of the raw material melt is 11 ° C./cm or less.
  • a crystal growth method is provided.
  • a silicon single crystal can be obtained by reducing the temperature gradient of the raw material melt and reliably suppressing dislocation due to solidification of the raw material melt. Can do.
  • the silicon single crystal growth apparatus and the silicon single crystal growth method of the present invention even when the distance between the rectifying cylinder or the heat shield member and the liquid surface of the raw material melt is large, the heat retention of the liquid surface of the raw material melt is maintained.
  • a silicon single crystal can be obtained while maintaining and suppressing dislocation due to solidification or the like.
  • FIG. 2 is a schematic view of a silicon single crystal growing apparatus used in Comparative Example 1.
  • FIG. 6 is a schematic view of a silicon single crystal growing apparatus used in Comparative Example 2.
  • FIG. It is sectional drawing which shows the place which calculated the temperature gradient of the graphite crucible in an Example and a comparative example. It is the graph which showed the correlation of the result of the temperature gradient in a Example and a comparative example, and a transposition index.
  • the present inventors investigated in detail the state of dislocation formation under various operating conditions. First, dislocation was indexed for each operating condition, and various data under the operating condition were compared. The cause of dislocations that have not been completely removed is presumed to be solidification caused by fluctuations in the temperature of the raw material melt, and the correlation between the temperature around the raw material melt and various indicators was investigated. As a result, there is a correlation between the temperature gradient of the graphite crucible, especially the temperature gradient in the crystal growth axis direction of the graphite crucible at the level of the raw material melt and the dislocation index, and the smaller the temperature gradient, the more dislocations. I found it difficult to convert. If the temperature gradient of the graphite crucible is large, when the temperature of the raw material melt is fluctuated, the width of the fluctuation also increases, and it is considered that solidification is likely to occur.
  • a heat insulating member is disposed outside the graphite heater to reduce heat loss of the graphite heater and the graphite crucible.
  • the inventors have arranged a heat insulating member around and below the straight body of the graphite crucible and the quartz crucible, and by keeping the temperature firmly, crystals of the graphite crucible at the height of the liquid surface of the raw material melt It was found that the temperature gradient in the growth axis direction can be reduced.
  • the present inventors have provided a heater outer heat insulating member outside the graphite heater, a crucible lower heat insulating member at the lower portion of the graphite crucible, and a crucible upper heat insulating member above the straight body portion of the graphite crucible and quartz crucible.
  • a crucible outer heat insulating member located outside the straight body portion when the graphite crucible is raised, a crucible inner heat insulating member inside the straight crucible portion of the graphite crucible and the quartz crucible, and a heat shielding member above the liquid surface of the raw material melt If the silicon single crystal growth apparatus having the above, it is conceived that the temperature gradient in the crystal growth axis direction of the graphite crucible at the height of the liquid surface of the raw material melt can be reduced, thereby improving the dislocation transformation of the single crystal. The present invention has been completed.
  • FIG. 1 is a schematic view showing an example of a silicon single crystal growing apparatus of the present invention.
  • a feature of the present invention is a technique for firmly keeping the temperature of the straight body portion of the graphite crucible.
  • the graphite crucible 6 and the quartz crucible 5 can move up and down in the crystal growth axis direction, and are raised so as to compensate for the lowering of the liquid level of the raw material melt 4 that has been crystallized and decreased during crystal growth.
  • the upper end of the straight barrel portion of the graphite crucible 6 approaches the cooling cylinder 10 cooled by the upper cooling water or the ceiling of the main chamber 1.
  • the heat loss from here increases.
  • the crucible lower heat insulating member 14 in addition to the heater outer heat insulating member 13 outside the graphite heater 7, the crucible lower heat insulating member 14, the crucible upper heat insulating member 15, the crucible outer heat insulating member 16, and the crucible inner heat insulating member 17 are provided.
  • the crucible lower heat insulating member 14 is intended to reduce heat loss from the graphite crucible 6 to the lower side.
  • the power of the graphite heater 7 is increased so as to compensate for the heat loss, and as a result, the temperature gradient of the graphite crucible 6 is increased.
  • the crucible lower heat insulating member 14 is essential.
  • a heat shield member 12 having a heat insulating material made of carbon fiber or glass fiber is disposed so as to surround the single crystal rod 3.
  • the heat shield member 12 can suppress radiant heat from the raw material melt 4 to the growing single crystal rod 3.
  • the material of the heat shield member 12 is not particularly limited, but for example, graphite, molybdenum, tungsten, silicon carbide, or a material obtained by protecting the surface of graphite with silicon carbide or the like is used. be able to.
  • the above structure has the first advantage that heat loss can be reduced, but another advantage is prevention of adhesion of a volatile silicon oxide (SiO) crucible above the crucible.
  • SiO volatile silicon oxide
  • volatile SiO adheres and hardens in a cold place, falls into the raw material melt, and causes dislocation.
  • the crucible upper heat insulating member as described above, there is no low temperature portion above the graphite crucible and the quartz crucible, and it is possible to prevent the adhesion of SiO.
  • SiO flows out from the gas inlet 9 and flows through the flow straightening tube 11 to the Ar gas flow that is sucked into the vacuum pump at the tip of the gas outlet 8, and is transported downward from the raw material melt 4. It prevents it from sticking to the top.
  • each heat insulating member described above is a heat insulating material that can be used at a high temperature such as carbon fiber or glass fiber.
  • the surface of such a heat insulating member is in a fibrous form, and when it is deteriorated, dust is likely to be generated, and it may be silicified by reacting with silicon. Therefore, when it is necessary to suppress silicidation of the heat insulating member, it is more preferable to protect the surface with a high-temperature stable material such as a plate-like graphite material or quartz material.
  • each heat insulating member When protecting the surface of each heat insulating member with a graphite material or quartz material, the heat insulating member may be surrounded and protected, or only on the surface closer to the raw material melt that causes problems when the fibers fall easily. May be protected.
  • Crystals are grown using a silicon single crystal growth apparatus that is equipped with the above-described equipment and that has a temperature gradient in the crystal growth axis direction of the graphite crucible 6 at the level of the liquid surface of the raw material melt 4 of 11 ° C./cm or less. For example, the number of dislocations can be reduced.
  • the temperature gradient in the crystal growth axis direction of the graphite crucible at the height of the liquid surface of the raw material melt is a value obtained by temperature analysis simulation such as FEMAG. Specifically, the position at which the temperature gradient is obtained is the portion indicated by “A” in FIG.
  • the temperature gradient of the raw material melt should be reduced rather than the temperature gradient of the graphite crucible or quartz crucible.
  • the calculation is difficult to use as an index because the gradient value changes greatly depending on whether convection such as natural convection or forced convection is considered. Therefore, the temperature gradient of a graphite crucible or quartz crucible that is proportional to the temperature gradient of the raw material melt, particularly the temperature gradient of a graphite crucible having a high thermal conductivity was used as an index.
  • the thermal conductivity of the quartz material is different from that of the graphite crucible, so when using the temperature gradient of the quartz crucible as an index, it is necessary to set a value different from the above-mentioned value.
  • the value of the temperature gradient in the crystal growth axis direction of the graphite crucible at the level of the liquid surface of the raw material melt is a temperature gradient in which the temperature decreases from below to above, and the graphite material forming the graphite crucible It fluctuates due to changes in physical properties such as thermal conductivity and emissivity. Therefore, the simulation is performed taking these into consideration.
  • each heat insulating member when each heat insulating member is disposed, it is ideal that these heat insulating members surround the graphite crucible, the quartz crucible, and the graphite heater without any gap.
  • the heat insulation members in reality, it is not necessary to arrange the heat insulation members without gaps for various reasons, such as for the convenience of raising and lowering the quartz crucible and the graphite heater, for the convenience of setting, and for the convenience of observing the inside of the furnace. difficult. Therefore, the above-mentioned various heat insulating members can be provided with a gap or the like within a range satisfying the above temperature gradient. Also, some of the various heat insulating members may be divided or combined to increase or decrease the number of parts.
  • the thicker the heat insulating members the better.
  • the thickness can be appropriately selected within a range that satisfies the above-described temperature gradient.
  • the silicon single crystal growth apparatus of the present invention can be combined with other techniques based on the CZ method as long as it does not conflict with the above equipment.
  • a technique described in Patent Document 10 that improves the cooling capacity of the cooling cylinder, increases the pulling speed, thereby improving the productivity and yield of single crystals, and suppressing power consumption. Can be combined.
  • a silicon single crystal is grown by setting the temperature gradient in the crystal growth axis direction of the graphite crucible at the height of the liquid surface of the raw material melt to 11 ° C./cm or less, preferably 10 ° C./cm or less. To do.
  • the above-mentioned equipment for firmly keeping the temperature of the straight body portion and the lower portion of the graphite crucible is applied. It can be mentioned that the silicon single crystal growing apparatus is used. As a result, the temperature gradient of the raw material melt can be reduced, and a silicon single crystal in which dislocations due to solidification of the raw material melt are reliably suppressed can be obtained.
  • Such a silicon single crystal growth method is a method performed by the CZ method, and can be performed by, for example, a magnetic field application CZ (MCZ) method in which a single crystal is grown by applying a magnetic field to the raw material melt.
  • MCZ magnetic field application CZ
  • dislocation index (obtained product length / design product length) ⁇ 100.
  • Comparative Example 1 When the above dislocation index was obtained in Comparative Example 1, it was a very low value of 64. On the other hand, Comparative Example 2 had a slightly low value of 88. Moreover, in Comparative Example 1, in addition to the large number of dislocations, the number of dislocations in the first half of the straight body was also large. On the other hand, in Comparative Example 2, the number of dislocations was smaller than that in Comparative Example 1, but dislocations were confirmed mainly from the latter half of the straight body portion.
  • the temperature gradient used was a value calculated when a straight body of a single crystal was grown 100 cm (see FIG. 4).
  • the temperature gradient does not change significantly except when the straight body has started growing or when the situation changes drastically, and comparison is possible by calculating the temperature gradient at representative positions. It is. From the comparison of the temperature gradient values of the two, it is considered that in each comparative example, heat loss is generated in the upper portion along the straight body of the graphite crucible, and as a result, solidification occurs and dislocations frequently occur.
  • Example 2 From the above results, the apparatus shown in FIG. 1 was prepared.
  • This device has a thicker crucible lower heat insulating member 14 than the device of FIG. 3 used in Comparative Example 2, and the crucible upper heat insulating member 15 and the crucible outer heat insulating member 16 at the portion where the crucibles 5 and 6 are raised.
  • the crucible inner heat insulating member 17 are disposed, and the straight crucible portions of the rising graphite crucible 6 and the quartz crucible 5 are kept warm so as to reduce heat loss.
  • the temperature gradient of the graphite crucible at the height of the liquid surface of the raw material melt in the examples was as very small as 6.6 ° C./cm, which was a value of 11 ° C./cm or less.
  • FIG. 5 shows a plot of the survey results including the above comparative examples and the results of the examples. It can be seen that there is a correlation between the temperature gradient of the graphite crucible and the dislocation index. From the correlation shown in FIG.
  • this invention is not limited to the said embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明は、加熱用の黒鉛ヒーターの内側に黒鉛ルツボ、その内側に石英ルツボを配置し、石英ルツボ内に満たされる原料溶融液から結晶を育成するチョクラルスキー法によるシリコン単結晶育成装置であって、黒鉛ヒーターの外側にヒーター外側断熱部材、黒鉛ルツボの下部にルツボ下部断熱部材、黒鉛ルツボ及び石英ルツボの直胴部の上方にルツボ上部断熱部材、黒鉛ルツボの直胴部の外側に位置するルツボ外側断熱部材、黒鉛ルツボ及び石英ルツボの直胴部の内側にルツボ内側断熱部材、原料溶融液の液面の上方に遮熱部材を有し、ルツボ上部断熱部材とルツボ外側断熱部材とルツボ内側断熱部材との内側に形成される空間において、黒鉛ルツボ及び石英ルツボが昇降可能なものであるシリコン単結晶育成装置である。これにより、原料溶融液の液面の保温性を維持し、固化等による有転位化を抑制することのできるシリコン単結晶育成装置及びシリコン単結晶育成方法が提供される。

Description

シリコン単結晶育成装置及びシリコン単結晶育成方法
 本発明はチョクラルスキー法によるシリコン単結晶育成装置及びシリコン単結晶育成方法に関する。
 半導体産業においては、シリコンウェーハが多数用いられており、その元となるシリコン単結晶の育成は重要な技術である。シリコン単結晶の育成にはシリコン棒を誘導コイルで局所的に加熱溶融して単結晶化させるフローティングゾーン(FZ)法と、ルツボの中のシリコン原料をヒーターで加熱し溶融させた溶液から単結晶を引き上げるチョクラルスキー(CZ)法とがある。CZ法におけるルツボは、シリコンと酸素からなる石英ルツボと、石英ルツボが高温で軟化し形状が崩れてしまうのを防ぐために石英ルツボを支持する黒鉛ルツボの2重構造になっているのが一般的である。CZ法では、育成された結晶には石英ルツボから溶出した酸素がシリコン中に取り込まれており、この結晶から切り出されたウェーハではデバイス中の熱処理などによって酸素析出物が形成され、それがデバイス工程中の不純物を捕獲するゲッタリング効果を発揮する。また、FZ法に比べCZ法では大口径化が比較的容易であることなどもあり、工業的にシリコン単結晶を育成する方法としてはCZ法が主流となっている。
 シリコンウェーハ上に形成されるデバイスは電子やホールが移動することで動作するため、ウェーハに転位があると電流がリークするなどの問題が生じる。そのため、デバイスを形成する際の出発原料となるシリコンウェーハには転位が無いことが要求される。従って、シリコンウェーハを切り出す元の結晶は転位の無い単結晶であることが必須である。結晶は高温で育成されるので、結晶育成時に有転位化すると、転位がすべったり、増殖したりして、多くの転位が発生してしまう。このような有転位化結晶から切り出したウェーハは、多数の転位を含んでいるため、先端デバイスを作製することができない。従って、結晶育成における有転位化は大きな問題である。しかし、長年多くの研究がなされてきているが、未だに完全に有転位化を防ぐことはできていない。
 CZ法における結晶育成中の有転位化の原因としては、結晶成長時の内部応力によるものや、種々の難溶物によるものなどが考えられている。結晶の有転位化の原因の一つである内部応力は、例えば結晶の成長速度を非常に高速化すると、液体から固体へ変化する際に発せられる固化潜熱が増加し、融点の等温線である結晶成長界面が上凸形状となりその高さが高くなっていく。結晶成長界面の高さが高くなると、結晶成長軸に対して垂直の方向における温度勾配が大きくなるので、結晶の中心部の応力が大きくなってしまう。この応力が一定以上になれば有転位化が発生してしまうことが経験的に知られている。これを防ぐためには例えば結晶の冷却を強化するなどして、発生した固化潜熱を結晶側から抜くことで、結晶成長界面の高さが低下し、その結果応力が低下して有転位化の抑制が可能となる。更に容易な方法は、成長速度を低下させることで固化潜熱を減らすことである。一般的には、内部応力による有転位化が起こらない範囲の成長速度で結晶を育成することが常識的に行われており、内部応力による有転位化は特に大きな問題ではない。
 もう一つの有転位化の原因である難溶物としては、炉内にある黒鉛材や断熱材、ワイヤーなど炉内部品由来の不純物、石英ルツボの結晶化・劣化・気泡の開口等により石英ルツボの一部が剥離したSiO、石英ルツボからシリコン溶融液中に溶出した酸素とシリコンが反応した揮発性の酸化シリコン(SiO)がルツボの直胴部の先端やチャンバーなどの冷却された部分に付着して固まったものが再度原料溶融液中に落下したSiO、原料溶融液の温度の不均一性や揺らぎなどによって生じる原料溶融液の固化などが考えられている。このうち炉内部品に由来の不純物は部品形状の工夫などにより比較的容易に解決可能である。
 石英ルツボの劣化によるSiO難溶物の発生に対しては、例えば特許文献1では操業中の炉内圧を適正化して劣化防止が講じられている。また石英ルツボそのものの品質を改善する技術が種々開示されている。
 揮発性SiOが固まって落下する問題に対しては、例えば特許文献2には結晶を囲繞する円筒(整流筒)とその下端にカラーを装着することで、上部から流れるアルゴンガスなどにより揮発性SiOやヒーター部で生成されるCOやCO等のガスを整流して、ルツボより上部の部品への付着を防止する技術が開示されている。また、特許文献3ではカラーの外周部をルツボの直胴部の上部まで伸ばすことでルツボの直胴部の上端部を保温し、SiOの付着を防止することも開示されている。また、目的は異なるが特許文献4には断熱材を有する逆円錐状遮熱部材とルツボの直胴部の外側の断熱部材とを組合せた構造、特許文献5、6にはヒーターの上部でルツボの直胴部の近くまで張り出した断熱部材、特許文献7にはルツボの側壁上部と内側に張り出している輻射シールドが開示されている。これらの特許文献はルツボの直胴部を保温する効果がありSiOの付着を予防していると考えられる。
 最後に、原料溶融液が固化する問題に対しては、例えば特許文献8には遮熱リングによって輻射熱を反射して界面近傍を保温する技術が開示されている。更に特許文献9では石英ルツボの上方に設置されるアッパーリングによってアッパーリングより下方の空間が保温され、原料溶融液の固化が抑制できる技術が開示されている。
 上記のように、いくつか考えられる有転位化の原因に対して、これまで様々な手段を講じてこれを防ぐことを試みている。しかしながら、これらの方策を施しても、未だに結晶の有転位化が完全に治まることは無く、石英ルツボの改質・各種操業条件の最適化など日々有転位化の低減のための努力が継続されている。また、近年、結晶を育成した時点で無欠陥である結晶の需要の伸びが顕著となっている。この無欠陥結晶を育成するためには、結晶面内の温度勾配を均一に保つ必要がある。この結晶面内の温度勾配を均一化するために、前述の整流筒や遮熱リングと原料溶融液の液面との距離を大きめに取ることが行われており、その結果、原料溶融液の液面の保温性が低下して、原料溶融液の固化が発生し有転位化の原因となっている。
特開平5-9097号公報 特開昭64-65086号公報 特開平9-183686号公報 特開平6-340490号公報 特開2001-10890号公報 特開平9-278581号公報 特開2000-119089号公報 特開平5-105578号公報 特開平5-221779号公報 特開2012-148918号公報
 本発明は、上記のような問題点を鑑みてなされたもので、整流筒や遮熱部材と原料溶融液の液面との距離が大きい場合においても、原料溶融液の液面の保温性を維持し、固化等による有転位化を抑制することのできるシリコン単結晶育成装置及びシリコン単結晶育成方法を提供することを目的とする。
 上記課題を解決するために、本発明によれば、
 加熱用の黒鉛ヒーターの内側に黒鉛ルツボ、該黒鉛ルツボの内側に石英ルツボを配置し、該石英ルツボ内に満たされる原料溶融液から結晶を育成するチョクラルスキー法によるシリコン単結晶育成装置であって、
 前記黒鉛ヒーターの外側にヒーター外側断熱部材、前記黒鉛ルツボの下部にルツボ下部断熱部材、前記黒鉛ルツボ及び前記石英ルツボの直胴部の上方にルツボ上部断熱部材、前記黒鉛ルツボが上昇した時にその直胴部の外側に位置するルツボ外側断熱部材、前記黒鉛ルツボ及び前記石英ルツボの直胴部の内側にルツボ内側断熱部材、前記原料溶融液の液面の上方に遮熱部材を有し、前記ルツボ上部断熱部材と前記ルツボ外側断熱部材と前記ルツボ内側断熱部材との内側に形成される空間において、前記黒鉛ルツボ及び前記石英ルツボが結晶成長軸方向に昇降可能なものであることを特徴とするシリコン単結晶育成装置を提供する。
 このようなシリコン単結晶育成装置であれば、整流筒や遮熱部材と原料溶融液の液面との距離が大きい場合においても、原料溶融液の液面の保温性を維持し、固化等による有転位化を抑制することができる。
 また、前記ヒーター外側断熱部材、前記ルツボ下部断熱部材、前記ルツボ上部断熱部材、前記ルツボ外側断熱部材、前記ルツボ内側断熱部材、及び前記遮熱部材がそれぞれ炭素繊維又はガラス繊維からなるものが好ましく、また、それぞれの表面が黒鉛材又は石英材により保護されたものが好ましい。
 このような断熱材を用いることで、より高温域での保温性を維持することができ、さらに、断熱材のシリコンとの反応による珪化を抑制することができる上に、不純物ともなりにくい。
 また、前記原料溶融液の液面の高さにおける前記黒鉛ルツボの結晶成長軸方向の温度勾配が11℃/cm以下であることが好ましい。
 このような黒鉛ルツボの温度勾配であれば、原料溶融液の温度勾配を小さくし、原料溶融液の固化による有転位化の回数を減らすことができる。
 また、本発明は、加熱用の黒鉛ヒーターの内側に黒鉛ルツボ、該黒鉛ルツボの内側に石英ルツボを配置し、該石英ルツボ内に満たされる原料溶融液から結晶を育成するチョクラルスキー法によるシリコン単結晶育成方法であって、上記のシリコン単結晶育成装置を用いて結晶を育成することを特徴とするシリコン単結晶育成方法を提供する。
 このようなシリコン単結晶育成方法であれば、整流筒や遮熱部材と原料溶融液の液面との距離が大きい場合においても、原料溶融液の液面の保温性を維持し、固化等による有転位化の回数を減らしたシリコン単結晶を得ることができる。
 さらに、本発明は、加熱用の黒鉛ヒーターの内側に黒鉛ルツボ、該黒鉛ルツボの内側に石英ルツボを配置し、該石英ルツボ内に満たされる原料溶融液から結晶を育成するチョクラルスキー法によるシリコン単結晶育成方法であって、前記原料溶融液の液面の高さにおける前記黒鉛ルツボの結晶成長軸方向の温度勾配が11℃/cm以下としてシリコン単結晶を育成することを特徴とするシリコン単結晶育成方法を提供する。
 このような黒鉛ルツボの温度勾配としたシリコン単結晶育成方法であれば、原料溶融液の温度勾配を小さくし、原料溶融液の固化による有転位化を確実に抑制してシリコン単結晶を得ることができる。
 本発明のシリコン単結晶育成装置及びシリコン単結晶育成方法であれば、整流筒や遮熱部材と原料溶融液の液面との距離が大きい場合においても、原料溶融液の液面の保温性を維持し、固化等による有転位化を抑制してシリコン単結晶を得ることができる。
本発明のシリコン単結晶育成装置の一例を示す概略図である。 比較例1で用いたシリコン単結晶育成装置の概略図である。 比較例2で用いたシリコン単結晶育成装置の概略図である。 実施例及び比較例における黒鉛ルツボの温度勾配を計算した場所を示す断面図である。 実施例及び比較例における温度勾配及び有転位化指標の結果の相関関係を示したグラフである。
 以下、本発明についてより具体的に説明する。
 本発明者らは種々の操業条件における有転位化の状況を詳細に調査した。まず、操業条件ごとに有転位化を指標化して、その操業条件における種々のデータを比較した。未だに除去し切れていない有転位化の要因は原料溶融液の温度の揺らぎによって生じる固化と推定し、原料溶融液周辺の温度と種々の指標の相関関係を調査した。その結果、黒鉛ルツボの温度勾配、特に原料溶融液の液面の高さにおける黒鉛ルツボの結晶成長軸方向の温度勾配と有転位化指標との間に相関があり、温度勾配が小さいほど有転位化しにくいことを見出した。黒鉛ルツボの温度勾配が大きいと、原料溶融液の温度の揺らぎが生じた場合に、その揺らぎの幅も大きくなるため、固化が発生しやすくなっていると考えられる。
 ここで、黒鉛ルツボの温度勾配、ひいては原料溶融液の温度勾配を小さくするためには、これらの熱ロスを小さくすることが重要である。従来のCZ法によるシリコン単結晶育成装置においては、黒鉛ヒーターの外側に断熱部材を配置し、黒鉛ヒーター及び黒鉛ルツボの熱ロスの低減を図るのが一般的であった。
 本発明者らはこれに加え、黒鉛ルツボ及び石英ルツボの直胴部の周辺及び下部に断熱部材を配置し、強固に保温することで、原料溶融液の液面の高さにおける黒鉛ルツボの結晶成長軸方向の温度勾配を小さくできることを見出した。
 以上のような知見に基づき、本発明者らは、黒鉛ヒーターの外側にヒーター外側断熱部材、黒鉛ルツボの下部にルツボ下部断熱部材、黒鉛ルツボ及び石英ルツボの直胴部の上方にルツボ上部断熱部材、黒鉛ルツボが上昇した時にその直胴部の外側に位置するルツボ外側断熱部材、黒鉛ルツボ及び石英ルツボの直胴部の内側にルツボ内側断熱部材、原料溶融液の液面の上方に遮熱部材を有するシリコン単結晶育成装置であれば、原料溶融液の液面の高さにおける黒鉛ルツボの結晶成長軸方向の温度勾配を小さくでき、これによって単結晶の有転位化を改善できることに想到し、本発明を完成させた。
 以下、本発明について図面を参照して更に詳細に説明するが、本発明はこれらに限定されるものではない。
 図1は、本発明のシリコン単結晶育成装置の一例を示す概略図である。
 本発明の特徴は、黒鉛ルツボの直胴部を強固に保温する技術である。CZ法によるシリコン単結晶育成装置では、メインチャンバー1内において、黒鉛ルツボ6に支持される石英ルツボ5に満たされた原料溶融液4に種結晶を浸漬した後、原料溶融液4から単結晶棒3が引き上げられる。黒鉛ルツボ6及び石英ルツボ5は結晶成長軸方向に昇降可能であり、結晶成長中に結晶化して減少した原料溶融液4の液面下降分を補うように上昇させていく。従って、育成中の単結晶棒3の長さが長くなると、黒鉛ルツボ6の直胴部上端は、上部の冷却水等で冷やされている冷却筒10やメインチャンバー1の天井部に近づいていき、ここからの熱ロスが増大する。本発明では、これを防ぐために、黒鉛ヒーター7の外側のヒーター外側断熱部材13に加え、ルツボ下部断熱部材14、ルツボ上部断熱部材15、ルツボ外側断熱部材16、及びルツボ内側断熱部材17を有し、ルツボ上部断熱部材15とルツボ外側断熱部材16とルツボ内側断熱部材17との内側に黒鉛ルツボ6及び石英ルツボ5が結晶成長軸方向に昇降可能な空間を形成することで、黒鉛ルツボ6の直胴部を保温し、ここからの熱ロスを低減する。
 尚、ルツボ下部断熱部材14は、黒鉛ルツボ6から下側への熱ロスの低減を図るものである。黒鉛ルツボ6から下側への熱ロスが大きいと、その熱ロスを補うように黒鉛ヒーター7のパワーが高くなり、結果として黒鉛ルツボ6の温度勾配が高くなってしまうので、この熱ロスを低減するルツボ下部断熱部材14は必須である。
 更に、原料溶融液4と単結晶棒3との界面近傍において、単結晶棒3を囲繞するように、炭素繊維又はガラス繊維からなる断熱材を有する遮熱部材12を配置する。この遮熱部材12によって、原料溶融液4から成長中の単結晶棒3への輻射熱を抑制することができる。遮熱部材12の材質としては、特に限定されるわけではないが、前記断熱材を例えば黒鉛、モリブデン、タングステン、炭化ケイ素、または黒鉛の表面を炭化ケイ素で被覆したもの等で保護したものを用いることができる。
 上記のような構造は熱ロスを低減できることを第一の利点としているが、その他の利点として揮発性の酸化シリコン(SiO)のルツボの上方における付着防止を挙げることができる。前述したように揮発性SiOは冷えているところに付着して固まり、原料溶融液に落下して有転位化の原因となる。しかし、上記のように黒鉛ルツボ及び石英ルツボの上方をルツボ上部断熱部材により覆うことで、黒鉛ルツボ及び石英ルツボの上方には低温部がなくなり、SiOの付着を防止することが可能である。また、SiOは、ガス導入口9から流れ出し整流筒11を通じてガス流出口8の先にある真空ポンプに吸い込まれているArガスの流れに乗って、下方へと運ばれることで原料溶融液4より上部に付着しないようにしている。
 また、前述した各断熱部材は炭素繊維もしくはガラス繊維など高温で使用可能な断熱材であることが好ましい。ただし、このような断熱部材の表面は繊維状になっており、劣化するとゴミが発生しやすい上、シリコンと反応して珪化してしまうことがある。従って断熱部材の珪化を抑制する必要がある場合には、板状の黒鉛材もしくは石英材など高温で安定な物質で表面を保護するとより好ましい。
 各断熱部材の表面を黒鉛材や石英材で保護する場合には、断熱部材全体を囲んで保護しても良いし、珪化しやすく繊維が落下すると問題となる原料溶融液に近いほうの面のみを保護しても良い。
 以上のような装備を施し、原料溶融液4の液面の高さにおける黒鉛ルツボ6の結晶成長軸方向の温度勾配が11℃/cm以下であるシリコン単結晶育成装置を用いて結晶を育成すれば、有転位化の回数を減らすことが可能である。
 ここでの原料溶融液の液面の高さにおける黒鉛ルツボの結晶成長軸方向の温度勾配は、FEMAGなど温度解析シミュレーションによって求められた値である。具体的に温度勾配を求めた位置は図4の「A」で示した部分である。
 原料溶融液の固化発生抑制の指標としては、本来、黒鉛ルツボや石英ルツボの温度勾配ではなく、原料溶融液の温度勾配とし、その値を小さくするべきであるが、シミュレーションにおける原料溶融液の温度計算は、自然対流や強制対流などの対流を考慮するか否かで大きく勾配値が変化してしまうため、指標として用いるのが難しい。そこで原料溶融液の温度勾配と比例の関係にある黒鉛ルツボ又は石英ルツボの温度勾配、特に熱伝導率が大きい黒鉛ルツボの温度勾配を指標とした。石英ルツボの場合には石英材の熱伝導率が黒鉛ルツボと異なるので、石英ルツボの温度勾配を指標に用いる場合には前述の値とは異なる値とする必要がある。
 尚、上記の原料溶融液の液面の高さにおける黒鉛ルツボの結晶成長軸方向の温度勾配の値は下方から上方に向かって温度が低下する温度勾配であって黒鉛ルツボを形成する黒鉛材の熱伝導率、放射率等の物性値が変わることにより変動するものである。従って、これらについても勘案してシミュレーションを行う。
 また、各断熱部材を配置する場合には、これらの断熱部材が隙間なく黒鉛ルツボ、石英ルツボ、及び黒鉛ヒーターを囲む様になっているのが理想的である。しかし現実的には石英ルツボ、及び黒鉛ヒーターの昇降する都合上や、セットする際の都合上の他、炉内を観察する都合上など、様々な理由で隙間なく各断熱部材を配置するのは難しい。従って、前述の各種の断熱部材は、上記の温度勾配を満たす範囲で隙間等を設けることができる。また、各種の断熱部材のうち、幾つかを分割又は結合して部品点数を増減させてもかまわない。
 また、各断熱部材の厚みは厚ければ厚いほど好ましい。しかし前述した理由や、メインチャンバーの大きさなどの制約で際限なく大きくすることは不可能である。そのような場合でも、前述した温度勾配を満たす範囲で厚さを適宜選択できる。
 また、本発明のシリコン単結晶育成装置には、上記の装備に抵触しない範囲であれば、CZ法による他の技術と組み合わせることができる。例えば、特許文献10に記載の、冷却筒の冷却能力を向上させ、引上げ速度を高速度とし、それによって単結晶の生産性及び歩留まりを向上させ、かつ消費電力を抑制することができる技術等と組み合わせることができる。
 本発明のシリコン単結晶育成方法では、原料溶融液の液面の高さにおける黒鉛ルツボの結晶成長軸方向の温度勾配を11℃/cm以下、好ましくは10℃/cm以下としてシリコン単結晶を育成する。
 原料溶融液の液面の高さにおける黒鉛ルツボの結晶成長軸方向の温度勾配を11℃/cm以下とする方法としては、前述の黒鉛ルツボの直胴部及び下部を強固に保温する装備を施したシリコン単結晶育成装置を用いることを挙げることができる。それによって、原料溶融液の温度勾配を小さくすることができ、原料溶融液の固化による有転位化を確実に抑制したシリコン単結晶を得ることができる。
 このようなシリコン単結晶育成方法は、CZ法により行われる方法であり、例えば、原料溶融液に磁場を印加して単結晶を育成する磁場印加CZ(MCZ)法等により行うことができる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれに限定されるものではない。
(比較例1)
 図2に示した単結晶育成装置を用いて、口径32インチ(813mm)のルツボから300mm結晶(実際の太さは305-307mm程度)を多数育成した。図2の装置は、ヒーター外側断熱部材113と薄いルツボ下部断熱部材114を有しているが、黒鉛ルツボ106及び石英ルツボ105の直胴部や上部を保温する断熱部材は有していない。
(比較例2)
 図3に示した単結晶育成装置を用いて、口径32インチ(813mm)のルツボから300mm結晶(実際の太さは305-307mm程度)を多数育成した。図3の装置は、ヒーター外側断熱部材213、薄いルツボ下部断熱部材214、石英ルツボ205の内側に大きな遮熱部材212を有しており、それと対向するように黒鉛ルツボ206の外側にも小さな断熱部材216を有している。しかし、ルツボ上部断熱部材及びルツボ内側断熱部材は有していない。
(調査)
 以上の比較例について多数の結晶を育成した際の有転位化の状況を指標化した。同じ有転位化でも、有転位化した位置によってその重大性が異なる。例えば170cmの単結晶棒を育成した際に、直胴部分では有転位化せず、丸めの先端部で有転位化が発生し、スリップバックが直胴部まで戻らなければ、はじめに設計した製品が全て得られる。しかしながら例えば同様に170cmの単結晶棒を育成した際に、直胴部の120cmの位置で有転位化し、40cm程度スリップバックしたとすると、得られる製品ははじめに設計した長さである170cmの半分程度になってしまう。そこで、これらの有転位化の重大さを反映するために、以下のような有転位化指標を設けた。
 はじめに設計した製品長さを100として、実際に得られた製品長さを%で表す。つまり有転位化指標=(得られた製品長さ/設計製品長さ)x100である。これを育成した結晶全てで平均化したものを有転位化指標とする。例えば10本中9本が有転位化せず、有転位化した1本の製品長さが半分であったとすれば、有転位化指標は(100x9+50x1)/10=95である。
 上記の有転位化指標を比較例1にて求めると64と非常に低い値であった。一方で比較例2では88と若干低い値であった。また、比較例1では有転位化回数が多いことに加えて、直胴部の前半での有転位化も多かった。一方で比較例2では比較例1と比べて転位化回数は少なかったが、主に直胴部の後半から有転位化が確認された。この理由は比較例2では単結晶棒の直胴部の後半で黒鉛ルツボ及び石英ルツボの直胴部上端が遮熱部材とルツボ外側断熱部材により保温される領域を抜けて上部に出てしまったため、石英ルツボ上端部が冷えてSiOの析出や、黒鉛ルツボの温度勾配が大きくなったためと考えられる。
 このように有転位化指標が異なる条件において、何が異なっているか種々のパラメータとの相関を調査した。特に比較例1と比較例2の条件での有転位化の様子の違いから、黒鉛ルツボ及び石英ルツボの熱ロスが大きくなると、わずかな温度揺らぎによって固化が発生し有転位化するのではないかと推定された。そこでFEMAGによって求めた原料溶融液および黒鉛ルツボの温度勾配との関連性を調べた結果強い相関が見られた。比較例1はこの黒鉛ルツボの温度勾配値が14.6℃/cm、比較例2は11.8℃/cmであった。なお温度勾配は単結晶の直胴部が100cm育成された時の計算値を用いた(図4参照)。直胴部の育成が始まって間もない頃や状況が極端に変化する場合などを除けば、温度勾配が大きく変化することは無く、代表的な位置での温度勾配を計算すれば比較が可能である。両者の温度勾配値の比較から、各比較例では黒鉛ルツボの直胴部を伝って上方部へ熱ロスが生じており、その結果固化が発生し、有転位化が多発したと考えられる。
(実施例)
 以上のような結果から、図1に示した装置を用意した。この装置は比較例2で用いた図3の装置と比較してルツボ下部断熱部材14を厚くしたことと、ルツボ5、6が上昇していく部分にルツボ上部断熱部材15とルツボ外側断熱部材16とルツボ内側断熱部材17とを配置し、上昇していく黒鉛ルツボ6及び石英ルツボ5の直胴部も保温して熱ロスの低減を図ったものである。実施例における原料溶融液の液面の高さにおける黒鉛ルツボの温度勾配は6.6℃/cmと非常に小さく、11℃/cm以下の値であった。
 実施例の条件で多数の結晶を育成した。その結果、有転位化指標は97と非常に良い値となった。これは黒鉛ルツボからの熱ロス低減を図ったことにより、原料溶融液の液面の高さにおける黒鉛ルツボの温度勾配が小さくなり、固化による有転位化回数が減ったためと考えられる。以上の比較例を含む調査結果と実施例の結果をプロットした図を図5に示した。黒鉛ルツボの温度勾配と有転位化指標の間に相関があることがわかる。図5の相関関係から、黒鉛ルツボの温度勾配を11℃/cm以下とすれば、有転位化指標が確実に90以上となり、始めに設定した製品量の90%以上のアウトプットが確実に確保できることがわかる。これは有転位化によってアウトプット量が低下しやすく、製品生産量が変動しやすいCZ単結晶製造にとっては、安定的な生産が可能な数字と言える。
 以上のことから、本発明のシリコン単結晶育成装置及びシリコン単結晶育成方法を用いれば、原料溶融液の液面の保温性を維持し、固化等による有転位化を抑制することのできることが実証された。
 尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  加熱用の黒鉛ヒーターの内側に黒鉛ルツボ、該黒鉛ルツボの内側に石英ルツボを配置し、該石英ルツボ内に満たされる原料溶融液から結晶を育成するチョクラルスキー法によるシリコン単結晶育成装置であって、
     前記黒鉛ヒーターの外側にヒーター外側断熱部材、前記黒鉛ルツボの下部にルツボ下部断熱部材、前記黒鉛ルツボ及び前記石英ルツボの直胴部の上方にルツボ上部断熱部材、前記黒鉛ルツボが上昇した時にその直胴部の外側に位置するルツボ外側断熱部材、前記黒鉛ルツボ及び前記石英ルツボの直胴部の内側にルツボ内側断熱部材、前記原料溶融液の液面の上方に遮熱部材を有し、前記ルツボ上部断熱部材と前記ルツボ外側断熱部材と前記ルツボ内側断熱部材との内側に形成される空間において、前記黒鉛ルツボ及び前記石英ルツボが結晶成長軸方向に昇降可能なものであることを特徴とするシリコン単結晶育成装置。
  2.  前記ヒーター外側断熱部材、前記ルツボ下部断熱部材、前記ルツボ上部断熱部材、前記ルツボ外側断熱部材、前記ルツボ内側断熱部材、及び前記遮熱部材がそれぞれ炭素繊維又はガラス繊維からなるものであり、前記ヒーター外側断熱部材、前記ルツボ下部断熱部材、前記ルツボ上部断熱部材、前記ルツボ外側断熱部材、前記ルツボ内側断熱部材、及び前記遮熱部材のそれぞれの表面が黒鉛材又は石英材により保護されたものであることを特徴とする請求項1に記載のシリコン単結晶育成装置。
  3.  前記原料溶融液の液面の高さにおける前記黒鉛ルツボの結晶成長軸方向の温度勾配が11℃/cm以下であることを特徴とする請求項1又は請求項2に記載のシリコン単結晶育成装置。
  4.  加熱用の黒鉛ヒーターの内側に黒鉛ルツボ、該黒鉛ルツボの内側に石英ルツボを配置し、該石英ルツボ内に満たされる原料溶融液から結晶を育成するチョクラルスキー法によるシリコン単結晶育成方法であって、請求項1乃至請求項3のいずれか1項に記載のシリコン単結晶育成装置を用いて結晶を育成することを特徴とするシリコン単結晶育成方法。
  5.  加熱用の黒鉛ヒーターの内側に黒鉛ルツボ、該黒鉛ルツボの内側に石英ルツボを配置し、該石英ルツボ内に満たされる原料溶融液から結晶を育成するチョクラルスキー法によるシリコン単結晶育成方法であって、前記原料溶融液の液面の高さにおける前記黒鉛ルツボの結晶成長軸方向の温度勾配が11℃/cm以下としてシリコン単結晶を育成することを特徴とするシリコン単結晶育成方法。
PCT/JP2013/005009 2012-10-03 2013-08-26 シリコン単結晶育成装置及びシリコン単結晶育成方法 WO2014054214A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380047665.1A CN104619893A (zh) 2012-10-03 2013-08-26 单晶硅生长装置以及单晶硅生长方法
US14/425,394 US9783912B2 (en) 2012-10-03 2013-08-26 Silicon single crystal growing apparatus and method for growing silicon single crystal
DE112013004069.7T DE112013004069B4 (de) 2012-10-03 2013-08-26 Vorrichtung zum Züchten eines Silizium-Einkristalls und Verfahren zum Züchten eines Silizium-Einkristalls
KR1020157006011A KR101997608B1 (ko) 2012-10-03 2013-08-26 실리콘 단결정 육성장치 및 실리콘 단결정 육성방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-221472 2012-10-03
JP2012221472A JP5904079B2 (ja) 2012-10-03 2012-10-03 シリコン単結晶育成装置及びシリコン単結晶育成方法

Publications (1)

Publication Number Publication Date
WO2014054214A1 true WO2014054214A1 (ja) 2014-04-10

Family

ID=50434560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005009 WO2014054214A1 (ja) 2012-10-03 2013-08-26 シリコン単結晶育成装置及びシリコン単結晶育成方法

Country Status (6)

Country Link
US (1) US9783912B2 (ja)
JP (1) JP5904079B2 (ja)
KR (1) KR101997608B1 (ja)
CN (2) CN104619893A (ja)
DE (1) DE112013004069B4 (ja)
WO (1) WO2014054214A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561697A (zh) * 2022-03-02 2022-05-31 宁夏高创特能源科技有限公司 细小柱状晶硅靶材基体的铸锭制备方法及其制备设备

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104630880A (zh) * 2015-02-15 2015-05-20 英利集团有限公司 形成单晶棒的直拉系统与生长单晶棒的工艺方法
CN106319621A (zh) * 2016-09-22 2017-01-11 东莞市联洲知识产权运营管理有限公司 一种大尺寸直拉硅单晶生长方法
CN108018600A (zh) * 2016-10-28 2018-05-11 上海新昇半导体科技有限公司 单晶生长炉热屏及其制造方法
CN109930198A (zh) * 2017-12-18 2019-06-25 上海新昇半导体科技有限公司 热屏及单晶硅生长炉结构
KR102187817B1 (ko) * 2018-10-19 2020-12-08 한국세라믹기술원 증착공정에서 발생되는 탄화규소 부산물을 단결정 원료로 재생하는 방법
JP7155968B2 (ja) * 2018-12-04 2022-10-19 Tdk株式会社 単結晶育成用ルツボ及び単結晶製造方法
TWI683042B (zh) * 2018-12-28 2020-01-21 環球晶圓股份有限公司 矽單晶長晶設備
JP7059967B2 (ja) * 2019-02-28 2022-04-26 信越半導体株式会社 単結晶育成装置及び単結晶育成方法
JP6777908B1 (ja) * 2019-11-19 2020-10-28 Ftb研究所株式会社 単結晶成長装置、該単結晶成長装置の使用方法および単結晶成長方法
CN110983430A (zh) * 2019-12-23 2020-04-10 大同新成新材料股份有限公司 一种单晶硅用便于调控的生长设备及其生长方法
JP7359720B2 (ja) 2020-02-28 2023-10-11 信越石英株式会社 測定冶具及び測定方法
CN111778549B (zh) * 2020-06-10 2022-02-25 湖南宇星碳素有限公司 一种直拉法制备硅单晶用单晶炉
KR102443802B1 (ko) 2020-09-25 2022-09-19 주식회사 솔레드 반도체 링 제조장치 및 그를 이용한 반도체 링 제조방법
KR102443805B1 (ko) 2020-11-03 2022-09-19 주식회사 솔레드 반도체 링 제조장치 및 그를 이용한 반도체 링 제조방법
CN113061983A (zh) * 2021-04-21 2021-07-02 姜益群 一种半导体单晶硅的拉晶炉
CN115233306B (zh) * 2022-09-25 2023-02-03 杭州中欣晶圆半导体股份有限公司 能够有效降低硅片中碳杂质含量的加热装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09309789A (ja) * 1996-05-22 1997-12-02 Komatsu Electron Metals Co Ltd 半導体単結晶製造装置
JP2001139392A (ja) * 1999-11-11 2001-05-22 Mitsubishi Materials Silicon Corp 単結晶引上装置
JP2002154895A (ja) * 2000-11-13 2002-05-28 Toshiba Ceramics Co Ltd Si単結晶引上装置
JP2002220296A (ja) * 2000-11-24 2002-08-09 Sumitomo Metal Ind Ltd 単結晶引上げ装置
JP2003212691A (ja) * 2002-01-17 2003-07-30 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法及びシリコン単結晶の製造装置
JP2003243404A (ja) * 2002-02-21 2003-08-29 Shin Etsu Handotai Co Ltd アニールウエーハの製造方法及びアニールウエーハ
JP2009263197A (ja) * 2008-04-30 2009-11-12 Sumco Corp シリコン単結晶インゴット及びエピタキシャル成長用シリコンウェーハ並びにシリコン単結晶インゴットの製造方法
JP2011020882A (ja) * 2009-07-15 2011-02-03 Sumco Corp シリコン単結晶の育成方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639351B2 (ja) 1987-09-05 1994-05-25 信越半導体株式会社 単結晶棒の製造装置及び方法
JP2635456B2 (ja) 1991-06-28 1997-07-30 信越半導体株式会社 シリコン単結晶の引上方法
US5373805A (en) 1991-10-17 1994-12-20 Shin-Etsu Handotai Co., Ltd. Single crystal pulling apparatus
JP2620999B2 (ja) 1991-10-17 1997-06-18 信越半導体株式会社 単結晶引上装置
JP2795036B2 (ja) 1992-02-04 1998-09-10 信越半導体株式会社 単結晶引上装置
JPH06340490A (ja) 1993-05-31 1994-12-13 Sumitomo Sitix Corp シリコン単結晶製造装置
JPH09183686A (ja) 1995-12-27 1997-07-15 Shin Etsu Handotai Co Ltd 単結晶引き上げ方法及び装置
JP3129187B2 (ja) 1996-04-05 2001-01-29 住友金属工業株式会社 単結晶製造装置および単結晶製造方法
JPH10152389A (ja) * 1996-11-21 1998-06-09 Komatsu Electron Metals Co Ltd 半導体単結晶の製造装置および製造方法
US5922127A (en) 1997-09-30 1999-07-13 Memc Electronic Materials, Inc. Heat shield for crystal puller
JP3670493B2 (ja) 1998-10-09 2005-07-13 東芝セラミックス株式会社 単結晶引上装置
US6197111B1 (en) * 1999-02-26 2001-03-06 Memc Electronic Materials, Inc. Heat shield assembly for crystal puller
JP2001010890A (ja) 1999-06-23 2001-01-16 Mitsubishi Materials Silicon Corp 単結晶引上装置
JP4055362B2 (ja) 2000-12-28 2008-03-05 信越半導体株式会社 単結晶育成方法および単結晶育成装置
JP2002326888A (ja) 2001-05-01 2002-11-12 Shin Etsu Handotai Co Ltd 半導体単結晶の製造装置およびそれを用いたシリコン単結晶の製造方法
CN1215203C (zh) * 2001-11-01 2005-08-17 北京有色金属研究总院 直拉硅单晶炉热屏方法及热屏蔽器
JP2005336021A (ja) * 2004-05-28 2005-12-08 Sumco Corp 単結晶引き上げ装置
CN2744697Y (zh) 2004-09-20 2005-12-07 江苏顺大半导体发展有限公司 硅单晶炉热系统装置
CN2804129Y (zh) 2005-03-28 2006-08-09 荀建华 单晶炉的保温装置
DE102006002682A1 (de) 2006-01-19 2007-08-02 Siltronic Ag Vorrichtung und Verfahren zur Herstellung eines Einkristalls, Einkristall und Halbleiterscheibe
US8152921B2 (en) * 2006-09-01 2012-04-10 Okmetic Oyj Crystal manufacturing
JP4813313B2 (ja) * 2006-09-29 2011-11-09 Sumco Techxiv株式会社 シリコン単結晶引上げ装置及び該装置に使用される黒鉛部材並びに黒鉛部材の劣化防止方法
JP4582149B2 (ja) 2008-01-10 2010-11-17 信越半導体株式会社 単結晶製造装置
ATE539182T1 (de) * 2009-05-13 2012-01-15 Siltronic Ag Verfahren und vorrichtung zur züchtung eines siliciumeinzelkristalls durch schmelzung
CN101560691A (zh) 2009-05-27 2009-10-21 芜湖升阳光电科技有限公司 Cz直拉法单晶炉石墨热场结构
JP5047227B2 (ja) * 2009-05-27 2012-10-10 ジャパンスーパークォーツ株式会社 シリコン単結晶の製造方法及びシリコン単結晶引き上げ装置
KR101275382B1 (ko) * 2010-03-02 2013-06-14 주식회사 엘지실트론 단결정 냉각장치 및 단결정 냉각장치를 포함하는 단결정 성장장치
CN101864591B (zh) 2010-06-04 2012-02-29 浙江芯能光伏科技有限公司 一种改进的800型硅单晶炉热场系统
JP5724400B2 (ja) 2011-01-19 2015-05-27 信越半導体株式会社 単結晶製造装置及び単結晶製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09309789A (ja) * 1996-05-22 1997-12-02 Komatsu Electron Metals Co Ltd 半導体単結晶製造装置
JP2001139392A (ja) * 1999-11-11 2001-05-22 Mitsubishi Materials Silicon Corp 単結晶引上装置
JP2002154895A (ja) * 2000-11-13 2002-05-28 Toshiba Ceramics Co Ltd Si単結晶引上装置
JP2002220296A (ja) * 2000-11-24 2002-08-09 Sumitomo Metal Ind Ltd 単結晶引上げ装置
JP2003212691A (ja) * 2002-01-17 2003-07-30 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法及びシリコン単結晶の製造装置
JP2003243404A (ja) * 2002-02-21 2003-08-29 Shin Etsu Handotai Co Ltd アニールウエーハの製造方法及びアニールウエーハ
JP2009263197A (ja) * 2008-04-30 2009-11-12 Sumco Corp シリコン単結晶インゴット及びエピタキシャル成長用シリコンウェーハ並びにシリコン単結晶インゴットの製造方法
JP2011020882A (ja) * 2009-07-15 2011-02-03 Sumco Corp シリコン単結晶の育成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561697A (zh) * 2022-03-02 2022-05-31 宁夏高创特能源科技有限公司 细小柱状晶硅靶材基体的铸锭制备方法及其制备设备

Also Published As

Publication number Publication date
JP5904079B2 (ja) 2016-04-13
KR20150060690A (ko) 2015-06-03
US9783912B2 (en) 2017-10-10
DE112013004069B4 (de) 2023-02-02
DE112013004069T5 (de) 2015-07-23
US20150240379A1 (en) 2015-08-27
CN104619893A (zh) 2015-05-13
JP2014073925A (ja) 2014-04-24
KR101997608B1 (ko) 2019-07-08
CN108823636A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
JP5904079B2 (ja) シリコン単結晶育成装置及びシリコン単結晶育成方法
US9217208B2 (en) Apparatus for producing single crystal
KR20080072548A (ko) 실리콘 반도체 웨이퍼 및 그 제조 방법
CN108779577B (zh) 单晶硅的制造方法
US10100430B2 (en) Method for growing silicon single crystal
WO2017069112A1 (ja) シリコン単結晶インゴットの引上げ装置およびシリコン単結晶インゴットの製造方法
JP4867173B2 (ja) シリコン結晶の製造方法およびその製造装置
WO2018186150A1 (ja) 熱遮蔽部材、単結晶引き上げ装置および単結晶シリコンインゴットの製造方法
US20120279438A1 (en) Methods for producing single crystal silicon ingots with reduced incidence of dislocations
US20060191468A1 (en) Process for producing single crystal
JP5375636B2 (ja) シリコン単結晶の製造方法
KR101348483B1 (ko) 적어도 450 ㎜의 직경을 갖고 실리콘으로 구성된 반도체 웨이퍼를 제조하는 방법 및 450 ㎜의 직경을 갖고 실리콘으로 구성된 반도체 웨이퍼
JP5776587B2 (ja) 単結晶製造方法
JP2011219300A (ja) シリコン単結晶の製造方法及びそれに用いられるシリコン単結晶引上装置
WO2022249614A1 (ja) 単結晶製造装置
WO2021162046A1 (ja) シリコン単結晶の製造方法
JP5500138B2 (ja) 炭素ドープシリコン単結晶の製造方法
JP4702266B2 (ja) 単結晶の引上げ方法
KR20110095599A (ko) 도가니 변형 방지 장치
KR20120050672A (ko) 잉곳 성장장치
JP2018177628A (ja) 熱遮蔽部材、単結晶引き上げ装置および単結晶シリコンインゴットの製造方法
TW201713804A (zh) 長晶裝置
KR20100086322A (ko) 석영 도가니의 변형을 방지하는 구조를 가진 잉곳 성장장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14425394

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157006011

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130040697

Country of ref document: DE

Ref document number: 112013004069

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843829

Country of ref document: EP

Kind code of ref document: A1