WO2018185932A1 - 半導体の製造方法 - Google Patents

半導体の製造方法 Download PDF

Info

Publication number
WO2018185932A1
WO2018185932A1 PCT/JP2017/014523 JP2017014523W WO2018185932A1 WO 2018185932 A1 WO2018185932 A1 WO 2018185932A1 JP 2017014523 W JP2017014523 W JP 2017014523W WO 2018185932 A1 WO2018185932 A1 WO 2018185932A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
semiconductor manufacturing
protrusion
back surface
cutting
Prior art date
Application number
PCT/JP2017/014523
Other languages
English (en)
French (fr)
Inventor
毅 大佐賀
保夫 阿多
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/466,458 priority Critical patent/US10964524B2/en
Priority to DE112017007411.8T priority patent/DE112017007411T5/de
Priority to PCT/JP2017/014523 priority patent/WO2018185932A1/ja
Priority to CN201780089207.2A priority patent/CN110476224B/zh
Priority to JP2019511038A priority patent/JP6647452B2/ja
Publication of WO2018185932A1 publication Critical patent/WO2018185932A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76862Bombardment with particles, e.g. treatment in noble gas plasmas; UV irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding

Definitions

  • the present invention relates to a semiconductor manufacturing method using a wafer on which ring-shaped protrusions are formed.
  • Thinning of wafers used for manufacturing power semiconductors used for electric power is progressing. In general, the thinner the wafer, the easier it is to warp the wafer. When the wafer is warped, the wafer may not be processed normally.
  • Patent Document 1 discloses a configuration for reducing wafer warpage (hereinafter also referred to as “related configuration A”).
  • Related Configuration A only the region corresponding to the device region is ground on the back surface of the wafer. Thereby, a recess is formed on the back surface of the wafer, and a ring-shaped reinforcing portion is formed on the back surface of the wafer. Note that the ring-shaped reinforcing portion needs to be separated from the wafer before the dicing process is performed on the wafer.
  • the wafer In order to separate the ring-shaped protrusion (reinforcing portion) from the wafer, generally, the wafer is cut by a blade from the surface side with the surface of the wafer facing upward. A device such as a semiconductor device is formed on the surface of the wafer. For this reason, the above-described cutting method has a problem that the cutting waste generated when the wafer is cut is scattered on the surface of the wafer and easily adheres to a device such as a semiconductor device.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a semiconductor manufacturing method capable of suppressing the scattering of cutting waste on the surface of a wafer.
  • a semiconductor manufacturing method is a manufacturing method using the wafer in which a ring-shaped protrusion is formed on the back surface of the wafer.
  • the semiconductor manufacturing method includes a holding step of holding the wafer by supporting the protrusion of the wafer with the back surface facing upward, and a surface of the wafer so that the protrusion is separated from the wafer. And a cutting step of cutting the wafer with a blade from the side.
  • the wafer is cut by the blade from the front surface side of the wafer in a state where the protrusion of the wafer with the back surface facing upward is supported. That is, the wafer is cut with the wafer surface facing downward.
  • FIG. 1 is a diagram showing a configuration of a wafer W1 used in the first embodiment of the present invention.
  • FIG. 1A is a perspective view of the wafer W1.
  • FIG. 1B is a cross-sectional view of the wafer W1 taken along line A1-A2 of FIG.
  • wafer W1 includes a front surface W1a and a back surface W1b.
  • a plurality of semiconductor devices Dv1 are formed on the surface W1a.
  • a dicing street S1 is formed between the plurality of semiconductor devices Dv1.
  • a region where a plurality of semiconductor devices Dv1 are formed in the wafer W1 is also referred to as “device region RgD”.
  • the device region RgD is a region corresponding to the central portion of the wafer W1.
  • the back surface W1b is a surface of the wafer W1 opposite to the front surface W1a.
  • a protrusion X1 is formed on the back surface W1b.
  • the shape of the protrusion X1 is a ring shape (closed loop shape).
  • the shape of the wafer W1 in a plan view is a circle.
  • the peripheral portion of the wafer W1 in plan view is also referred to as “peripheral portion Wp”.
  • the shape of the peripheral edge Wp in plan view is a ring shape.
  • the protrusion X1 is formed on the peripheral edge Wp of the wafer W1. Therefore, the wafer W1 has a disk-shaped recess V1.
  • the recess V1 is a portion inside the ring-shaped protrusion X1 in the back surface W1b of the wafer W1.
  • the bottom surface of the recess V1 is also referred to as “bottom surface V1b”.
  • the bottom surface V1b is a part of the back surface W1b.
  • the depth of the recess V1 is also referred to as “depth d1”.
  • a cutting line CL1 is shown.
  • the cutting line CL1 is a line used for separating the protrusion X1 from the wafer W1.
  • the cutting line CL1 is a line indicating a position of the wafer W1 that is cut by a blade BL1 described later.
  • the shape of the cutting line CL1 is a circle. Note that a region surrounded by the cutting line CL1 in the wafer W1 is a device region RgD.
  • the process for removing the protrusion X1 from the wafer W1 is also referred to as “semiconductor manufacturing method Pr”.
  • the semiconductor manufacturing method Pr is a process included in a manufacturing method for manufacturing the semiconductor device Dv1.
  • the semiconductor manufacturing method Pr is a manufacturing method using the wafer W1.
  • FIG. 2 is a diagram for explaining the semiconductor manufacturing method Pr according to the first embodiment of the present invention.
  • the semiconductor manufacturing method Pr is performed by a grinding apparatus (not shown).
  • the grinding apparatus includes a blade BL1, a chuck table Tb1, and a stage St1 shown in FIG.
  • the stage St1 is fixed to the grinding device.
  • FIG. 2 two blades BL1 are shown for easy understanding of the position where the wafer W1 is cut. However, in practice, the grinding apparatus performs a cutting process described later using one blade BL1.
  • the grinding device has a function of moving the chuck table Tb1.
  • the X direction, the Y direction, and the Z direction are orthogonal to each other.
  • the X direction, Y direction, and Z direction shown in the following figures are also orthogonal to each other.
  • a direction including the X direction and a direction opposite to the X direction is also referred to as an “X-axis direction”.
  • the direction including the Y direction and the direction opposite to the Y direction is also referred to as “Y-axis direction”.
  • a direction including the Z direction and the direction opposite to the Z direction ( ⁇ Z direction) is also referred to as “Z-axis direction”.
  • a plane including the X-axis direction and the Y-axis direction is also referred to as an “XY plane”.
  • a plane including the X-axis direction and the Z-axis direction is also referred to as an “XZ plane”.
  • a plane including the Y-axis direction and the Z-axis direction is also referred to as a “YZ plane”.
  • the chuck table Tb1 has a cylindrical shape.
  • the size of the chuck table Tb1 in plan view (XY plane) is smaller than the size of the recess V1 in plan view (XY plane).
  • a through hole H1 is provided in the stage St1.
  • the shape of the through hole H1 is a columnar shape.
  • the space in which the through hole H1 exists is also referred to as “space Sp1”.
  • the part of the stage St1 that is in contact with the space Sp1 (through hole H1) is also referred to as “peripheral part Stp”.
  • the shape of the peripheral portion Stp in plan view (XY plane) is a ring shape.
  • an apparatus having a function of moving the wafer W1 is also referred to as a “wafer moving apparatus”.
  • the wafer moving device also has a function of gripping the wafer W1.
  • the dicing tape Tp1 is attached to the entire back surface W1b of the wafer W1 in advance. Therefore, when the semiconductor manufacturing method Pr is performed, as shown in FIG. 2, the dicing tape Tp1 is attached to the entire back surface W1b of the wafer W1. That is, the dicing tape Tp1 is attached to the back surface W1b of the wafer W1 so that the dicing tape Tp1 covers the protrusion X1.
  • the dicing tape Tp1 is also attached to the bottom surface V1b of the recess V1.
  • the state of the wafer W1 in which the dicing tape Tp1 is attached to the entire back surface W1b of the wafer W1 is also referred to as “taped state”.
  • the dicing tape Tp1 has a property that the adhesive strength of the dicing tape Tp1 is reduced when the dicing tape Tp1 is irradiated with ultraviolet rays.
  • FIG. 3 is a flowchart of the semiconductor manufacturing method Pr according to the first embodiment of the present invention.
  • the process of step S110 is performed.
  • step S110 a holding process is performed.
  • the wafer W1 is placed on the peripheral edge Stp of the stage St1 by the wafer moving device.
  • the state of the wafer W1 with the back surface W1b facing upward is also referred to as a “back surface upward state”.
  • the holding step is a step of holding the wafer W1 by supporting the protrusion X1 of the wafer W1 with the stage St1 (peripheral portion Stp) facing upward on the back surface.
  • the grinding apparatus places the chuck table Tb1 inside the concave portion V1 of the wafer W1.
  • the chuck table Tb1 is contained in the recess V1 of the wafer W1.
  • the chuck table Tb1 sucks and holds the bottom surface V1b of the wafer W1 through the dicing tape Tp1. Therefore, the wafer W1 is securely fixed (held) by the stage St1 and the chuck table Tb1.
  • step S120 is performed.
  • step S120 a cutting process is performed.
  • the cutting step is a step in which the grinding apparatus cuts the wafer W1 with the blade BL1. As shown in FIG. 2, the cutting process is performed with the surface W1a of the wafer W1 facing downward.
  • the grinding device cuts the wafer W1 with the blade BL1 from the surface W1a side of the wafer W1 so that the protrusion X1 is cut off from the wafer W1.
  • the grinding apparatus cuts the wafer W1 by moving the blade BL1 along the cutting line CL1 described above.
  • the semiconductor manufacturing method Pr ends.
  • the wafer W1 is cut by the blade BL1 from the front surface W1a side of the wafer W1 while the protrusion X1 of the wafer W1 with the back surface W1b facing upward is supported. To do. That is, the wafer W1 is cut with the surface W1a of the wafer W1 facing downward.
  • FIG. 8 is a diagram for explaining a semiconductor manufacturing method Prn as a comparative example.
  • the wafer W1 is supported by the chuck table Tb1 and the support member 10 with the surface W1a of the wafer W1 in a taped state facing upward.
  • the chuck table Tb1 supports the bottom surface V1b of the recess V1 of the wafer W1 via the dicing tape Tp1.
  • the support member 10 holds the protrusion X1 by supporting the protrusion X1 of the wafer W1 via the dicing tape Tp1.
  • the thickness of the protrusion X1 of the wafer W1 is likely to vary from wafer W1 to wafer W1. Further, the thickness of the device region RgD of the wafer W1 is different for each type of the semiconductor device Dv1. Therefore, in the semiconductor manufacturing method Prn, the spacer 11 is used to adjust the height of the surface of the support member 10 that supports the protrusion X1.
  • the spacer 11 is a member corresponding to the variation in the thickness of the protrusion X1. Therefore, spacers 11 having different heights are used according to variations in the thickness of the protrusion X1.
  • the spacer 11 is also a member corresponding to a step corresponding to the difference between the thickness of the protrusion X1 of the wafer W1 and the thickness of the device region RgD. That is, the spacer 11 is a member corresponding to the thickness of the device region RgD of the wafer W1 and the thickness of the protrusion X1.
  • the cutting process N is performed in the state of FIG.
  • the grinding apparatus cuts the wafer W1 with the blade BL1 from the surface W1a side of the wafer W1.
  • the protrusion X1 is not securely fixed.
  • the wafer W1 vibrates and a crack occurs in the wafer W1. In this case, a malfunction may occur in the semiconductor device Dv1.
  • the problem is, for example, a problem that the electrical characteristics of the semiconductor device Dv1 deteriorate.
  • the cutting step N is performed in the state shown in FIG. Therefore, there is a high possibility that cutting waste generated when the cutting process N is performed adheres to the semiconductor device Dv1.
  • the wafer W1 in the upward state on the back surface is reliably fixed (held) by the stage St1 and the chuck table Tb1. Therefore, unlike the semiconductor manufacturing method Prn, the protrusion X1 can be reliably fixed (held) without using the spacer 11.
  • the above-described cutting process is performed in a state where the wafer W1 is securely held. Therefore, it is possible to prevent the wafer W1 from vibrating when the cutting process is performed. Therefore, it is possible to prevent cracks from occurring in the wafer W1.
  • the spacer 11 corresponding to the step corresponding to the difference between the thickness of the protrusion X1 of the wafer W1 and the thickness of the device region RgD is not used. Therefore, it is not necessary to replace the spacer 11 for each type of the semiconductor device Dv1 on the wafer W1. Therefore, working efficiency can be improved.
  • the cutting process is performed in the state shown in FIG. Therefore, the cutting waste generated when the cutting process is performed falls below the wafer W1. Therefore, it is possible to suppress the cutting waste from adhering to the semiconductor device Dv1. Therefore, the appearance defect of the semiconductor device Dv1 can be prevented.
  • the configuration of the present embodiment is a configuration in which a process using ultraviolet rays is added to the above-described semiconductor manufacturing method Pr (hereinafter also referred to as “configuration CtA”).
  • configuration CtA semiconductor manufacturing method
  • semiconductor manufacturing method Pr to which the configuration CtA is applied is also referred to as “semiconductor manufacturing method Pra”.
  • FIG. 4 is a diagram for explaining the semiconductor manufacturing method Pra according to the second embodiment of the present invention.
  • FIG. 5 is a flowchart of the semiconductor manufacturing method Pra according to the second embodiment of the present invention. In FIG. 5, the process with the same step number as the step number of FIG. Hereinafter, a description will be given focusing on differences from the first embodiment.
  • the wafer W1 with a tape is used as in the first embodiment.
  • the holding step in step S110 is performed as in the first embodiment.
  • the peripheral edge Wp (projection X1) of the wafer W1 is placed on the stage St1 (peripheral part Stp) so that the space Sp1 exists below the center part of the wafer W1 facing upward.
  • Step S200 includes step S120 and step S130.
  • step S120 a cutting process is performed as in the first embodiment.
  • an ultraviolet irradiation process is performed.
  • the ultraviolet irradiation process is performed in parallel with the cutting process (S120). Specifically, the cutting process and the ultraviolet irradiation process are performed simultaneously. “Simultaneous” in the present embodiment includes the meaning of “substantially simultaneous”.
  • an ultraviolet irradiation device 7 is used.
  • the ultraviolet irradiation device 7 is a device having a function of irradiating the entire ring-shaped protrusion X1 with ultraviolet rays.
  • the ultraviolet irradiation device 7 irradiates ultraviolet rays toward the protrusion X1 of the wafer W1 with the tape. Specifically, in the ultraviolet irradiation process, the ultraviolet irradiation device 7 irradiates ultraviolet rays from above the ring-shaped protrusion X1 toward the entire ring-shaped protrusion X1.
  • the semiconductor manufacturing method Pra is completed because the process of peeling the dicing tape Tp1 from the protrusion X1 can be easily performed.
  • the cutting process and the ultraviolet irradiation process are performed simultaneously. Therefore, the process of peeling the dicing tape Tp1 from the protrusion X1 can be easily performed, and the protrusion X1 is separated from the wafer W1. Accordingly, it is possible to shorten the time required for completing the manufacture of the semiconductor device Dv1. As a result, the productivity of the semiconductor device Dv1 can be improved.
  • the configuration of the present embodiment is a configuration in which a chuck table having a large size is used in the semiconductor manufacturing method Pr (hereinafter also referred to as “configuration CtB”).
  • configuration CtB the semiconductor manufacturing method Pr to which the configuration CtB is applied is also referred to as “semiconductor manufacturing method Prb”.
  • FIG. 6 is a diagram for explaining a semiconductor manufacturing method Prb according to Embodiment 3 of the present invention.
  • FIG. 7 is a flowchart of the semiconductor manufacturing method Prb according to the third embodiment of the present invention.
  • the process with the same step number as the step number in FIG. 3 is performed in the same way as the process described in the first embodiment, and therefore detailed description will not be repeated.
  • a description will be given focusing on differences from the first embodiment.
  • step S110B the process of step S110B is performed.
  • step S110B a holding process B is performed.
  • the holding process B the chuck table Tb1m is used.
  • the chuck table Tb1m has a cylindrical shape.
  • the size of the chuck table Tb1m in the plan view (XY plane) is smaller than the size of the recess V1 in the plan view (XY plane).
  • the volume of the chuck table Tb1m is larger than the volume of the chuck table Tb1 in FIG.
  • the diameter of the chuck table Tb1m in the plan view (XY plane) is larger than the diameter of the chuck table Tb1 in the plan view (XY plane).
  • the peripheral portion Wp (protrusion portion X1) of the wafer W1 is placed on the stage St1 (peripheral portion Stp) so that the space Sp1 exists below the central portion of the wafer W1 in the upward state on the back surface by the wafer moving device. Placed on top.
  • the grinding apparatus puts the chuck table Tb1m inside the recess V1 of the wafer W1. Specifically, the grinding device places the chuck table Tb1m inside the recess V1 so that the peripheral edge of the chuck table Tb1m overlaps the peripheral edge Stp of the stage St1 by a length Ln in plan view (XY plane). I can.
  • the cutting step (S120) is performed as in the first embodiment. Therefore, when the cutting step (S120) is performed, the peripheral edge Wp (projection part X1) of the wafer W1 is placed on the stage St1 (so that the space Sp1 exists below the center part of the wafer W1 facing upward. It is placed on the peripheral edge portion (Stp).
  • the chuck table Tb1m is contained in the recess V1 of the wafer W1. Further, when the cutting process is performed, the peripheral portion of the chuck table Tb1m overlaps the peripheral portion Stp of the stage St1 in a plan view (XY plane). Thus, the wafer W1 is securely fixed by the stage St1 and the chuck table Tb1m in a state where the surface W1a of the wafer W1 is parallel to the upper surface of the stage St1.
  • the cutting process (S120) is performed in a state where the wafer W1 is securely fixed. Therefore, when the wafer W1 is cut, the wafer W1 can be prevented from vibrating. Therefore, it is possible to prevent cracks from occurring on the wafer W1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

ウエハW1の裏面W1bに、リング状の突起部X1が形成されている。裏面W1bが上向きであるウエハW1の突起部X1が支持された状態で、当該ウエハW1の表面W1a側から、ブレードBL1により当該ウエハW1を切断する。

Description

半導体の製造方法
 本発明は、リング状の突起部が形成されているウエハを使用した、半導体の製造方法に関する。
 電力用に用いられるパワー半導体の製造に使用されるウエハの薄厚化が進んでいる。一般的に、ウエハが薄い程、当該ウエハに反りが生じやすい。ウエハに反りが存在する場合、当該ウエハの加工を正常に行うことができない可能性がある。
 特許文献1には、ウエハの反りを低減するための構成(以下、「関連構成A」ともいう)が開示されている。関連構成Aでは、ウエハの裏面のうち、デバイス領域に相当する領域のみが研削される。これにより、ウエハの裏面に凹部が形成されるとともに、ウエハの裏面にリング状補強部が形成される。なお、ウエハに対しダイシング処理が行われる前に、リング状補強部は、当該ウエハから切り離される必要がある。
特許第5390740号明細書
 リング状の突起部(補強部)をウエハから切り離すためには、一般的に、当該ウエハの表面を上向きにした状態で、当該表面側から、ブレードにより当該ウエハが切断される。なお、ウエハの表面には、半導体装置等のデバイスが形成されている。そのため、上記のような切断方法では、ウエハの切断の際に生じる切削屑が、当該ウエハの表面において飛び散って、半導体装置等のデバイスに付着しやすいという問題がある。
 そこで、ウエハの表面において切削屑が飛び散ることを抑制することが要求される。なお、関連構成Aでは、この要求を満たすことはできない。
 本発明は、このような問題を解決するためになされたものであり、ウエハの表面において切削屑が飛び散ることを抑制することが可能な半導体の製造方法を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る半導体の製造方法は、ウエハの裏面に、リング状の突起部が形成されている当該ウエハを使用した製造方法である。前記半導体の製造方法は、前記裏面が上向きである前記ウエハの前記突起部を支持することにより、当該ウエハを保持する保持工程と、前記突起部が前記ウエハから切り離されるように、当該ウエハの表面側から、ブレードにより当該ウエハを切断する切断工程とを含む。
 本発明によれば、前記裏面が上向きである前記ウエハの前記突起部が支持された状態で、当該ウエハの表面側から、ブレードにより当該ウエハを切断する。すなわち、ウエハの表面が下向きの状態で、当該ウエハが切断される。
 これにより、ウエハの切断の際に生じる切削屑は当該ウエハの下方へ落ちる。したがって、ウエハの表面において切削屑が飛び散ることを抑制することができる。
 この発明の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態1において使用されるウエハの構成を示す図である。 本発明の実施の形態1に係る半導体製造方法Prを説明するための図である。 本発明の実施の形態1に係る半導体製造方法Prのフローチャートである。 本発明の実施の形態2に係る半導体製造方法Praを説明するための図である。 本発明の実施の形態2に係る半導体製造方法Praのフローチャートである。 本発明の実施の形態3に係る半導体製造方法Prbを説明するための図である。 本発明の実施の形態3に係る半導体製造方法Prbのフローチャートである。 比較例としての半導体製造方法Prnを説明するための図である。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の図面では、同一の各構成要素には同一の符号を付してある。同一の符号が付されている各構成要素の名称および機能は同じである。したがって、同一の符号が付されている各構成要素の一部についての詳細な説明を省略する場合がある。
 なお、実施の形態において例示される各構成要素の寸法、材質、形状、当該各構成要素の相対配置などは、本発明が適用される装置の構成、各種条件等により適宜変更されてもよい。
 <実施の形態1>
 図1は、本発明の実施の形態1において使用されるウエハW1の構成を示す図である。図1(a)は、ウエハW1の斜視図である。図1(b)は、図1(a)のA1-A2線に沿ったウエハW1の断面図である。
 図1(a)および図1(b)を参照して、ウエハW1は、表面W1aと、裏面W1bとを含む。表面W1aには、複数の半導体装置Dv1が形成されている。複数の半導体装置Dv1の間には、ダイシングストリートS1が形成されている。以下においては、ウエハW1のうち、複数の半導体装置Dv1が形成されている領域を、「デバイス領域RgD」ともいう。デバイス領域RgDは、ウエハW1の中央部に相当する領域である。
 裏面W1bは、ウエハW1のうち、表面W1aと反対側の面である。裏面W1bには、突起部X1が形成されている。突起部X1の形状は、リング状(閉ループ状)である。
 平面視における、ウエハW1の形状は、円である。以下においては、平面視における、ウエハW1の周縁部を、「周縁部Wp」ともいう。平面視における周縁部Wpの形状は、リング状である。突起部X1は、ウエハW1の周縁部Wpに形成されている。そのため、ウエハW1は、円盤状の凹部V1を有する。凹部V1は、ウエハW1の裏面W1bのうち、リング状の突起部X1の内側の部分である。以下においては、凹部V1の底面を、「底面V1b」ともいう。底面V1bは、裏面W1bの一部である。また、以下においては、凹部V1の深さを、「深さd1」ともいう。
 なお、図1(a)には、切断線CL1が示される。切断線CL1は、ウエハW1から、突起部X1を切り離すために使用される線である。具体的には、切断線CL1は、ウエハW1のうち、後述のブレードBL1により切断される位置を示す線である。切断線CL1の形状は、円状である。なお、ウエハW1のうち、切断線CL1で囲まれる領域が、デバイス領域RgDである。
 以下においては、ウエハW1から突起部X1を除去するための工程を、「半導体製造方法Pr」ともいう。
 次に、本実施の形態における半導体製造方法Prについて説明する。半導体製造方法Prは、半導体装置Dv1を製造するための製造方法に含まれる工程である。半導体製造方法Prは、ウエハW1を使用した製造方法である。
 図2は、本発明の実施の形態1に係る半導体製造方法Prを説明するための図である。半導体製造方法Prは、研削装置(図示せず)により行われる。研削装置は、図2に示される、ブレードBL1と、チャックテーブルTb1と、ステージSt1とを含む。ステージSt1は、研削装置に固定されている。
 なお、図2には、ウエハW1を切断する位置をわかり易くするために、2つのブレードBL1が示されている。しかしながら、実際には、研削装置は、1つのブレードBL1を使用して、後述の切断工程を行う。また、研削装置は、チャックテーブルTb1を移動させる機能を有する。
 図2において、X方向、Y方向およびZ方向は、互いに直交する。以下の図に示されるX方向、Y方向およびZ方向も、互いに直交する。以下においては、X方向と、当該X方向の反対の方向(-X方向)とを含む方向を「X軸方向」ともいう。また、以下においては、Y方向と、当該Y方向の反対の方向(-Y方向)とを含む方向を「Y軸方向」ともいう。また、以下においては、Z方向と、当該Z方向の反対の方向(-Z方向)とを含む方向を「Z軸方向」ともいう。
 また、以下においては、X軸方向およびY軸方向を含む平面を、「XY面」ともいう。また、以下においては、X軸方向およびZ軸方向を含む平面を、「XZ面」ともいう。また、以下においては、Y軸方向およびZ軸方向を含む平面を、「YZ面」ともいう。
 チャックテーブルTb1の形状は、円柱状である。平面視(XY面)におけるチャックテーブルTb1のサイズは、平面視(XY面)における凹部V1のサイズより小さい。ステージSt1には、貫通孔H1が設けられている。貫通孔H1の形状は、円柱状である。
 以下においては、貫通孔H1が存在する空間を、「空間Sp1」ともいう。また、以下においては、ステージSt1のうち空間Sp1(貫通孔H1)に接する部分を、「周縁部Stp」ともいう。平面視(XY面)における周縁部Stpの形状は、リング状である。また、以下においては、ウエハW1を移動させる機能を有する装置を、「ウエハ移動装置」ともいう。ウエハ移動装置は、ウエハW1をつかむ機能等も有する。
 なお、半導体製造方法Prが行われる前に、ウエハW1の裏面W1b全体には、予め、ダイシングテープTp1が張り付けられる。そのため、半導体製造方法Prが行われる際には、図2のように、ウエハW1の裏面W1b全体には、ダイシングテープTp1が張り付けられている。すなわち、ウエハW1の裏面W1bには、ダイシングテープTp1が突起部X1を覆うように、当該ダイシングテープTp1が張り付けられている。また、凹部V1の底面V1bにも、ダイシングテープTp1が張り付けられている。
 以下においては、ウエハW1の裏面W1b全体にダイシングテープTp1が張り付けられている、当該ウエハW1の状態を、「テープ付状態」ともいう。なお、ダイシングテープTp1は、当該ダイシングテープTp1に紫外線が照射された場合、当該ダイシングテープTp1の粘着力が低下する性質を有する。
 図3は、本発明の実施の形態1に係る半導体製造方法Prのフローチャートである。半導体製造方法Prでは、まず、ステップS110の処理が行われる。
 ステップS110では、保持工程が行われる。保持工程では、ウエハ移動装置により、ウエハW1がステージSt1の周縁部Stp上に載置される。以下においては、裏面W1bが上向きであるウエハW1の状態を、「裏面上向き状態」ともいう。
 具体的には、保持工程では、ウエハ移動装置により、裏面上向き状態のウエハW1の中央部の下方に空間Sp1(貫通孔H1)が存在するように、当該ウエハW1の周縁部Wp(突起部X1)がステージSt1(周縁部Stp)上に載置される。すなわち、保持工程は、ステージSt1(周縁部Stp)が裏面上向き状態のウエハW1の突起部X1を支持することにより、当該ウエハW1を保持する工程である。
 また、保持工程では、ウエハW1がステージSt1に載置された後、研削装置は、チャックテーブルTb1を、ウエハW1の凹部V1の内部にいれる。これにより、ウエハW1の凹部V1には、チャックテーブルTb1が入っている。チャックテーブルTb1は、ウエハW1の底面V1bを、ダイシングテープTp1を介して、吸引保持する。したがって、ウエハW1は、ステージSt1およびチャックテーブルTb1により確実に固定(保持)される。次に、ステップS120の処理が行われる。
 ステップS120では、切断工程が行われる。切断工程は、研削装置が、ブレードBL1によりウエハW1を切断する工程である。切断工程は、図2のように、ウエハW1の表面W1aが下向きの状態で、行われる。
 具体的には、切断工程では、突起部X1がウエハW1から切り離されるように、研削装置が、ウエハW1の表面W1a側から、ブレードBL1により当該ウエハW1を切断する。なお、研削装置は、前述の切断線CL1に沿ってブレードBL1を移動させることにより、ウエハW1を切断する。以上により、半導体製造方法Prは終了する。
 以上説明したように、本実施の形態によれば、裏面W1bが上向きであるウエハW1の突起部X1が支持された状態で、当該ウエハW1の表面W1a側から、ブレードBL1により当該ウエハW1を切断する。すなわち、ウエハW1の表面W1aが下向きの状態で、当該ウエハW1が切断される。
 これにより、ウエハの切断の際に生じる切削屑は当該ウエハの下方へ落ちる。したがって、ウエハの表面において切削屑が飛び散ることを抑制することができる。
 ここで、本実施の形態の比較の対象となる比較例について説明する。以下においては、比較例としての半導体製造方法Prを、「半導体製造方法Prn」ともいう。半導体製造方法Prnは、本実施の形態の半導体製造方法Prと、比較の対象となる製造方法である。図8は、比較例としての半導体製造方法Prnを説明するための図である。
 半導体製造方法Prnでは、図8のように、テープ付状態のウエハW1の表面W1aを上向きにして、当該ウエハW1が、チャックテーブルTb1および支持部材10により支持される。具体的には、チャックテーブルTb1は、ダイシングテープTp1を介して、ウエハW1の凹部V1の底面V1bを支持する。また、支持部材10は、ダイシングテープTp1を介して、ウエハW1の突起部X1を支持することにより、当該突起部X1を保持する。
 ウエハW1の突起部X1の厚みは、ウエハW1毎にばらつきやすい。また、ウエハW1のデバイス領域RgDの厚みは、半導体装置Dv1の種類毎に、異なる。そのため、半導体製造方法Prnでは、突起部X1を支持する、支持部材10の表面の高さを調整するために、スペーサー11が使用される。
 スペーサー11は、突起部X1の厚みのばらつきに対応する部材である。そのため、突起部X1の厚みのばらつきに応じて、異なる高さのスペーサー11が使用される。また、スペーサー11は、ウエハW1の突起部X1の厚みとデバイス領域RgDの厚みとの差に相当する段差に対応する部材でもある。すなわち、スペーサー11は、ウエハW1のデバイス領域RgDの厚み、および、突起部X1の厚みに対応する部材である。
 半導体製造方法Prnでは、図8の状態で、切断工程Nが行われる。切断工程Nでは、研削装置が、ウエハW1の表面W1a側から、ブレードBL1により当該ウエハW1を切断する。なお、半導体製造方法Prnにおいて使用されるスペーサー11の高さが適切でない場合、突起部X1が確実に固定されない。
 突起部X1が確実に固定されていない状態で、切断工程Nが行われた場合、ウエハW1が振動し、当該ウエハW1にクラックが発生する。この場合、半導体装置Dv1に不具合が発生する可能性がある。当該不具合は、例えば、半導体装置Dv1の電気特性が悪化するという不具合である。
 そのため、半導体製造方法Prnでは、ウエハW1における半導体装置Dv1の種類毎に、スペーサー11を交換する作業が必要なため、作業効率が悪いという問題がある。
 また、半導体製造方法Prnでは、図8の状態で、切断工程Nが行われる。そのため、切断工程Nが行われる際に生じる切削屑が、半導体装置Dv1に付着する可能性が高い。
 一方、本実施の形態の半導体製造方法Prでは、図2のように、ステージSt1およびチャックテーブルTb1により、裏面上向き状態のウエハW1が、確実に固定(保持)される。そのため、半導体製造方法Prnのように、スペーサー11を使用することなく、突起部X1を確実に固定(保持)することができる。
 また、半導体製造方法Prでは、ウエハW1が確実に保持された状態で、前述の切断工程が行われる。そのため、切断工程が行われる際にウエハW1が振動することを防ぐことができる。そのため、ウエハW1にクラックが発生することを防ぐことができる。
 また、半導体製造方法Prでは、ウエハW1の突起部X1の厚みとデバイス領域RgDの厚みとの差に相当する段差に対応するスペーサー11を使用しない。そのため、ウエハW1における半導体装置Dv1の種類毎に、スペーサー11を交換する作業が不要である。したがって、作業効率を向上させることができる。
 また、半導体製造方法Prでは、図2の状態で、切断工程が行われる。そのため、切断工程が行われ際に生じる切削屑は、ウエハW1の下方へ落ちる。そのため、切削屑が、半導体装置Dv1に付着することを抑制することができる。したがって、半導体装置Dv1の外観不良の発生を防ぐことができる。
 <実施の形態2>
 本実施の形態の構成は、前述の半導体製造方法Prにおいて、紫外線を使用する工程を追加した構成(以下、「構成CtA」ともいう)である。以下においては、構成CtAが適用された半導体製造方法Prを、「半導体製造方法Pra」ともいう。
 図4は、本発明の実施の形態2に係る半導体製造方法Praを説明するための図である。図5は、本発明の実施の形態2に係る半導体製造方法Praのフローチャートである。図5において、図3のステップ番号と同じステップ番号の処理は、実施の形態1で説明した処理と同様な処理が行われるので詳細な説明は繰り返さない。以下、実施の形態1と異なる点を中心に説明する。
 半導体製造方法Praでは、実施の形態1と同様に、テープ付状態のウエハW1が使用される。半導体製造方法Praでは、実施の形態1と同様に、ステップS110の保持工程が行われる。これにより、裏面上向き状態のウエハW1の中央部の下方に空間Sp1が存在するように、当該ウエハW1の周縁部Wp(突起部X1)がステージSt1(周縁部Stp)上に載置される。
 ステップS110の後、ステップS200の処理が行われる。ステップS200は、ステップS120と、ステップS130とを含む。ステップS120では、実施の形態1と同様に、切断工程が行われる。
 ステップS130では、紫外線照射工程が行われる。紫外線照射工程は、切断工程(S120)と並列的に行われる。具体的には、切断工程および紫外線照射工程は、同時に行われる。本実施の形態における「同時」とは、「ほぼ同時」という意味も含まれる。紫外線照射工程では、紫外線照射装置7が使用される。紫外線照射装置7は、リング状の突起部X1全体に、紫外線を照射する機能を有する装置である。
 紫外線照射工程では、図4のように、紫外線照射装置7が、前述のテープ付状態のウエハW1の突起部X1に向けて紫外線を照射する。具体的には、紫外線照射工程では、紫外線照射装置7が、リング状の突起部X1の上方から、当該リング状の突起部X1全体に向けて、紫外線を照射する。
 これにより、ダイシングテープTp1に紫外線が照射されるため、当該ダイシングテープTp1の粘着力が低下する。したがって、突起部X1からダイシングテープTp1を剥がす処理が容易に行うことができる以上により、半導体製造方法Praは終了する。
 以上説明したように、本実施の形態によれば、切断工程および紫外線照射工程は、同時に行われる。そのため、突起部X1からダイシングテープTp1を剥がす処理を容易に行うことができるとともに、ウエハW1から突起部X1が切り離される。したがって、半導体装置Dv1の製造が完了するまでに要する時間を短縮できる。その結果、半導体装置Dv1の生産性を向上させることができる。
 <実施の形態3>
 本実施の形態の構成は、前述の半導体製造方法Prにおいて、サイズの大きいチャックテーブルを使用する構成(以下、「構成CtB」ともいう)である。以下においては、構成CtBが適用された半導体製造方法Prを、「半導体製造方法Prb」ともいう。
 図6は、本発明の実施の形態3に係る半導体製造方法Prbを説明するための図である。図7は、本発明の実施の形態3に係る半導体製造方法Prbのフローチャートである。図7において、図3のステップ番号と同じステップ番号の処理は、実施の形態1で説明した処理と同様な処理が行われるので詳細な説明は繰り返さない。以下、実施の形態1と異なる点を中心に説明する。
 半導体製造方法Prbでは、まず、ステップS110Bの処理が行われる。ステップS110Bでは、保持工程Bが行われる。保持工程Bでは、チャックテーブルTb1mが使用される。
 チャックテーブルTb1mの形状は、円柱状である。平面視(XY面)におけるチャックテーブルTb1mのサイズは、平面視(XY面)における凹部V1のサイズより小さい。また、チャックテーブルTb1mの体積は、図2のチャックテーブルTb1の体積より大きい。具体的には、平面視(XY面)におけるチャックテーブルTb1mの直径は、平面視(XY面)におけるチャックテーブルTb1の直径より大きい。
 保持工程Bでは、ウエハ移動装置により、裏面上向き状態のウエハW1の中央部の下方に空間Sp1が存在するように、当該ウエハW1の周縁部Wp(突起部X1)がステージSt1(周縁部Stp)上に載置される。
 また、保持工程Bでは、ウエハW1がステージSt1に載置された後、研削装置は、チャックテーブルTb1mを、ウエハW1の凹部V1の内部にいれる。具体的には、研削装置は、平面視(XY面)において、チャックテーブルTb1mの周縁部がステージSt1の周縁部Stpと、長さLn分だけ重なるように、チャックテーブルTb1mを凹部V1の内部にいれる。
 保持工程Bが行われた後、実施の形態1と同様に、切断工程(S120)が行われる。そのため、切断工程(S120)が行われる際には、裏面上向き状態のウエハW1の中央部の下方に空間Sp1が存在するように、当該ウエハW1の周縁部Wp(突起部X1)がステージSt1(周縁部Stp)上に載置されている。
 また、切断工程が行われる際には、ウエハW1の凹部V1には、チャックテーブルTb1mが入っている。また、切断工程が行われる際には、平面視(XY面)において、チャックテーブルTb1mの周縁部は、ステージSt1の周縁部Stpと重なっている。これにより、ウエハW1の表面W1aがステージSt1の上面と平行な状態で、ステージSt1およびチャックテーブルTb1mにより、当該ウエハW1が確実に固定される。
 ウエハW1が確実に固定されている状態において、切断工程(S120)が行われる。そのため、ウエハW1が切断される際において、当該ウエハW1が振動することを防ぐことができる。したがって、ウエハW1にクラックが発生することを防ぐことができる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 この発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 BL1 ブレード、Tb1,Tb1m チャックテーブル、Tp1 ダイシングテープ、W1 ウエハ、X1 突起部。

Claims (3)

  1.  ウエハ(W1)の裏面(W1b)に、リング状の突起部(X1)が形成されている当該ウエハ(W1)を使用した、半導体の製造方法であって、
     前記裏面(W1b)が上向きである前記ウエハ(W1)の前記突起部(X1)を支持することにより、当該ウエハ(W1)を保持する保持工程(S110,S110B)と、
     前記突起部(X1)が前記ウエハ(W1)から切り離されるように、当該ウエハ(W1)の表面(W1a)側から、ブレード(BL1)により当該ウエハ(W1)を切断する切断工程(S120)とを含む
     半導体の製造方法。
  2.  前記ウエハ(W1)の裏面(W1b)には、ダイシングテープ(Tp1)が前記突起部(X1)を覆うように、当該ダイシングテープ(Tp1)が張り付けられており、
     前記半導体の製造方法は、さらに、
      前記切断工程(S120)と並列的に行われる紫外線照射工程(S130)を含み、
     前記紫外線照射工程では、前記突起部(X1)に向けて紫外線を照射する
     請求項1に記載の半導体の製造方法。
  3.  前記突起部(X1)は、前記ウエハ(W1)の周縁部(Wp)に形成されており、
     前記切断工程(S120)が行われる際には、
     (a1)前記裏面(W1b)が上向きである前記ウエハ(W1)の中央部の下方に空間(Sp1)が存在するように、当該ウエハ(W1)の周縁部(Wp)がステージ(St1)上に載置されており、
     (a2)前記ウエハ(W1)の裏面(W1b)のうち、リング状の前記突起部(X1)の内側の部分には、チャックテーブル(Tb1m)が入っており、
     (a3)平面視において、前記チャックテーブル(Tb1m)の周縁部は、前記ステージ(St1)のうち前記空間(Sp1)に接する部分と重なっている
     請求項1に記載の半導体の製造方法。
PCT/JP2017/014523 2017-04-07 2017-04-07 半導体の製造方法 WO2018185932A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/466,458 US10964524B2 (en) 2017-04-07 2017-04-07 Semiconductor manufacturing method for cutting a wafer
DE112017007411.8T DE112017007411T5 (de) 2017-04-07 2017-04-07 Halbleiter-Herstellungsverfahren
PCT/JP2017/014523 WO2018185932A1 (ja) 2017-04-07 2017-04-07 半導体の製造方法
CN201780089207.2A CN110476224B (zh) 2017-04-07 2017-04-07 半导体的制造方法
JP2019511038A JP6647452B2 (ja) 2017-04-07 2017-04-07 半導体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014523 WO2018185932A1 (ja) 2017-04-07 2017-04-07 半導体の製造方法

Publications (1)

Publication Number Publication Date
WO2018185932A1 true WO2018185932A1 (ja) 2018-10-11

Family

ID=63712977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014523 WO2018185932A1 (ja) 2017-04-07 2017-04-07 半導体の製造方法

Country Status (5)

Country Link
US (1) US10964524B2 (ja)
JP (1) JP6647452B2 (ja)
CN (1) CN110476224B (ja)
DE (1) DE112017007411T5 (ja)
WO (1) WO2018185932A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019211540A1 (de) * 2019-08-01 2021-02-04 Disco Corporation Verfahren zum bearbeiten eines substrats
JP7464472B2 (ja) * 2020-07-17 2024-04-09 株式会社ディスコ 加工装置
JP7517936B2 (ja) * 2020-10-01 2024-07-17 株式会社ディスコ 加工装置
JP2023025560A (ja) * 2021-08-10 2023-02-22 株式会社ディスコ 加工装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275712A (ja) * 1993-03-24 1994-09-30 Nec Kansai Ltd ダイシング装置
JP2016157903A (ja) * 2015-02-26 2016-09-01 株式会社ディスコ ウエーハの分割方法及びチャックテーブル

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390740A (en) 1977-01-19 1978-08-09 Murata Manufacturing Co Elastic surface wave device
JP5390740B2 (ja) 2005-04-27 2014-01-15 株式会社ディスコ ウェーハの加工方法
JP2007019379A (ja) * 2005-07-11 2007-01-25 Disco Abrasive Syst Ltd ウェーハの加工方法
JP4741332B2 (ja) * 2005-09-30 2011-08-03 株式会社ディスコ ウエーハの加工方法
JP2010186971A (ja) * 2009-02-13 2010-08-26 Disco Abrasive Syst Ltd ウエーハの加工方法
JP5654810B2 (ja) * 2010-09-10 2015-01-14 株式会社ディスコ ウェーハの加工方法
JP5981154B2 (ja) * 2012-02-02 2016-08-31 三菱電機株式会社 半導体装置の製造方法
JP6479532B2 (ja) * 2015-03-30 2019-03-06 ルネサスエレクトロニクス株式会社 半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275712A (ja) * 1993-03-24 1994-09-30 Nec Kansai Ltd ダイシング装置
JP2016157903A (ja) * 2015-02-26 2016-09-01 株式会社ディスコ ウエーハの分割方法及びチャックテーブル

Also Published As

Publication number Publication date
DE112017007411T5 (de) 2019-12-19
US20200075311A1 (en) 2020-03-05
CN110476224B (zh) 2023-06-09
JPWO2018185932A1 (ja) 2019-06-27
JP6647452B2 (ja) 2020-02-14
US10964524B2 (en) 2021-03-30
CN110476224A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2018185932A1 (ja) 半導体の製造方法
TWI640036B (zh) 晶圓之加工方法
JP6304243B2 (ja) 半導体装置、半導体装置の製造方法
JP2019110198A (ja) 被加工物の加工方法
US20170011965A1 (en) Wafer processing method
JP6782617B2 (ja) 被加工物の固定方法、及び被加工物の加工方法
JP6957109B2 (ja) デバイスチップの製造方法及びピックアップ装置
JP6013859B2 (ja) ウェーハの加工方法
JP2016035965A (ja) 板状部材の分割装置および板状部材の分割方法
JP2018085434A (ja) ウェーハの加工方法
KR20190019839A (ko) 웨이퍼의 가공 방법
JP2017059586A (ja) ウェーハの加工方法
KR20200125444A (ko) 웨이퍼의 브레이크 방법 및 브레이크 장치
JP2015072994A (ja) ウェーハの加工方法
JP7221778B2 (ja) ウエーハの加工方法
JP7051222B2 (ja) チップの製造方法
JP2015126022A (ja) 加工方法
JP6633447B2 (ja) ウエーハの加工方法
JP7305276B2 (ja) 被加工物の保持方法
JP2020129642A (ja) エキスパンドシートの拡張方法
TW201835990A (zh) 被加工物的加工方法
TWI810862B (zh) 工件載具
JP7286233B2 (ja) チップの製造方法
KR102680920B1 (ko) 피가공물의 절삭 방법
JP6291334B2 (ja) 被加工物の加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511038

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17904896

Country of ref document: EP

Kind code of ref document: A1