WO2018181462A1 - 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ - Google Patents

芳香族化合物、有機半導体層、及び有機薄膜トランジスタ Download PDF

Info

Publication number
WO2018181462A1
WO2018181462A1 PCT/JP2018/012717 JP2018012717W WO2018181462A1 WO 2018181462 A1 WO2018181462 A1 WO 2018181462A1 JP 2018012717 W JP2018012717 W JP 2018012717W WO 2018181462 A1 WO2018181462 A1 WO 2018181462A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
general formula
sulfur
selenium
Prior art date
Application number
PCT/JP2018/012717
Other languages
English (en)
French (fr)
Inventor
渡辺真人
蜂谷斉士
宮下真人
福田貴
上田さおり
岩永和也
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018060781A external-priority patent/JP7159586B2/ja
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2018181462A1 publication Critical patent/WO2018181462A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a novel aromatic compound that can be developed into an electronic material such as an organic semiconductor material, an organic semiconductor layer using the same, and an organic thin film transistor.
  • the present invention relates to a novel aromatic compound applicable to a device manufacturing process, an organic semiconductor layer using the same, and an organic thin film transistor.
  • Organic semiconductor devices typified by organic thin film transistors have attracted attention in recent years because they have features not found in inorganic semiconductor devices such as energy saving, low cost, and flexibility.
  • This organic semiconductor device is composed of several kinds of materials such as an organic semiconductor layer, a substrate, an insulating layer, and an electrode. Among them, the organic semiconductor layer responsible for charge carrier movement has a central role of the device. And since organic-semiconductor device performance is influenced by the carrier mobility of the organic-semiconductor material which comprises this organic-semiconductor layer, the appearance of the organic-semiconductor material which gives a high carrier mobility is desired.
  • a vacuum deposition method in which an organic material is vaporized under a high temperature vacuum
  • a coating method in which an organic material is dissolved in an appropriate solvent and applied. It has been.
  • the coating method can be carried out using a printing technique without using high-temperature and high-vacuum conditions, so it can be expected to greatly reduce the manufacturing cost of device fabrication, and is an economically preferable process. It is.
  • the organic semiconductor material used in such a coating method has a high carrier mobility and a heat resistance of 130 ° C. or higher and a solubility at room temperature of 0.1% by weight or higher from the viewpoint of device fabrication process. Is preferred.
  • the HOMO level is ⁇ 5.4 eV or more, and is preferably close to the work function of the electrode.
  • a low molecular semiconductor having a rod-like molecular long axis of a condensed ring system is likely to exhibit high carrier mobility because it has higher crystallinity than a polymer semiconductor.
  • the number of condensed rings is 5 or less, there is a problem of low melting point and low HOMO level, and when the number of condensed rings is 6 or more, there is a problem of low solubility, high carrier mobility, high heat resistance, appropriate solubility and high.
  • the low molecular weight materials include 2,7-dialkyl-substituted benzothienobenzothiophene (condensed 4-ring) (see, for example, Patent Document 1 and Non-Patent Document 1), 6,6′-dialkyldinaphthothienothiophene ( Six condensed rings (for example, see Patent Document 2), terphenylene derivatives (for example, see Patent Document 3), and the like have been proposed.
  • the HOMO level is ⁇ 5.5 eV, and an improvement in the HOMO level is required. Further, there is a problem that the transistor operation is lost when heated to 130 ° C. or higher.
  • the 6,6′-dialkyldinaphthothienothiophene described in Patent Document 2 has a problem that the solubility at 60 ° C. is 0.08 g / L or less (0.01 wt% or less, toluene).
  • Non-Patent Document 2 a compound having a tetrathienobiphenylene skeleton has been reported, since it has a structure close to a disc shape, it is not structurally suitable for forming an organic semiconductor layer and is not suitable as an organic semiconductor material. (See Non-Patent Document 2).
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel coating type organic semiconductor material having high carrier mobility, high heat resistance, appropriate solubility, and a high HOMO level. It is in.
  • a 2 represents CR 7 ⁇ CR 8 , oxygen, sulfur or selenium, and
  • a 3 represents CR 5 ⁇ CR 6 , oxygen, sulfur or selenium, one of the combinations of two adjacent R 1 to R 8
  • Three groups form a single ring to four condensed rings, and all the rings constituting the single ring to four condensed rings are 4 to 6-membered rings
  • R 8 is independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an alkadienyl group having 4 to 22 carbon atoms, carbon Alkadiynyl group having 4
  • X represents a covalent bond, oxygen, sulfur, selenium, CR 10 ⁇ C, or nitrogen
  • Y represents carbon or nitrogen.
  • L is 0 when X is a covalent bond, oxygen, sulfur, selenium.
  • one group can form a single ring to a condensed three ring represented by the following general formula (4), and all the rings constituting the single ring to the condensed three rings can be 4 to 6-membered rings.
  • R 9 to R 11 and R 13 that did not form the following general formula (4) are R 1 that did not form a single ring to a condensed four ring in the above general formulas (1-I) and (1-II).
  • .X of the same groups as ⁇ R 4, or R 5 ⁇ R 8 is a covalent bond
  • the A in the formula (2) is a covalent bond
  • the positions of two adjacent combinations forming a 6-membered ring are R 1 and R 2 , R 5 and R 6.
  • R 1 to R 8 which did not form a single ring to a condensed four ring R 9 to R 11 and R 13 that did not form general formula (4), and R 14 , R 15 , and R 16 are simultaneously hydrogen.
  • Y 1 is .n showing a carbon or nitrogen
  • one group can constitute the following general formula (5) or general formula (6) to form a 4- to 6-membered ring:
  • R 17 do not configure (6) ⁇ R 20 are each independently hydrogen , A methyl group, an ethyl group, an n-propyl group, and an alkyl group having 4 to 20 carbon atoms, and only one is an alkyl group having 4 to 20 carbon atoms, provided that R 17 to R 20 Except at the same time hydrogen.
  • R 21 to R 25 each independently represents hydrogen, halogen, Selected from the group consisting of alkyl groups having 1 to 20 carbon atoms, and one or more of R 21 to R 25 are halogen or an alkyl group having 1 to 20 carbon atoms.
  • R 26 represents an alkyl group having 1 to 20 carbon atoms.
  • R 1 to R 8 are each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, Or an aryl group having 4 to 26 carbon atoms.
  • R 9 to R 13 each independently represent hydrogen, halogen, carbon, An alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or an aryl group having 4 to 26 carbon atoms)] [6] Only one set of the two adjacent combinations of R 1 to R 4 and only one set of the two adjacent combinations of R 5 to R 8 are represented by the general formula (8).
  • the biphenylene derivative according to the above [5] characterized in that it comprises.
  • a 2 represents CR 7 ⁇ CR 8 , oxygen, sulfur or selenium, and
  • a 3 represents CR 5 ⁇ CR 6 , oxygen, sulfur or selenium, one of the combinations of two adjacent R 1 to R 8
  • Three groups form a single ring to four condensed rings, and all the rings constituting the single ring to four condensed rings are 4 to 6-membered rings
  • R 8 is independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an alkadienyl group having 4 to 22 carbon atoms, carbon Alkadiynyl group having 4
  • R 21 to R 25 are each independently selected from the group consisting of hydrogen, halogen, and alkyl groups having 1 to 20 carbon atoms, and one or more of R 21 to R 25 are halogen or carbon number 1 to 20 alkyl groups.
  • a 1 , R 1 , R 2 , R 5 to R 8 , R 10 , R 11 , X 2 , R 21 , and R 25 Is the same as A 1 , R 1 , R 2 , R 5 to R 8 , R 10 , R 11 , X 2 , R 21 , and R 25 in the general formulas (11-I) and (11-II). Is shown.)
  • the present invention is described in detail below.
  • the aromatic compound of the present invention is a derivative represented by the above general formula (1-I) or (1-II).
  • 1 to 3 of the adjacent combinations of R 1 to R 8 form a single ring to a fused four ring.
  • the rings constituting the fused 4-ring are 4- to 6-membered rings.
  • the crystallinity is lowered and the carrier movement is lowered.
  • the 4- to 6-membered ring include a cyclobutene ring, a thiophene ring, a furan ring, a selenophene ring, a thiazole ring, an oxazole ring, a pyrrole ring, an imidazole ring, a benzene ring, and a pyridine ring.
  • a cyclobutene ring, a thiophene ring, a furan ring, a selenophene ring, and a benzene ring are preferable because of high mobility.
  • a 4- or 5-membered ring is preferable because of high solubility, and a cyclobutene ring, a thiophene ring, a furan ring and a selenophene ring are more preferable.
  • R 1 to R 8 that did not form the monocyclic to condensed 4 rings are independently hydrogen, halogen, carbon number 1 to 20
  • An alkyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an alkadienyl group having 4 to 22 carbon atoms, an alkadiynyl group having 4 to 22 carbon atoms, or an aryl group having 4 to 26 carbon atoms Indicates.
  • halogen in R 1 to R 8 examples include fluorine, chlorine, bromine and iodine, and fluorine and chlorine are preferable because they are stable.
  • alkyl group having 1 to 20 carbon atoms in R 1 to R 8 examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, isovaleryl group, n-hexyl, isohexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n- Examples thereof include linear, branched, or cyclic alkyl groups such as octadecyl group, 2-ethylhexyl group, 3-ethylheptyl group, 3-ethyldecyl, 2-hexyldecyl group, cyclopentyl group, cyclo
  • an alkyl group having 1 to 14 carbon atoms is preferable because it becomes a biphenylene derivative exhibiting particularly high mobility and high solubility, and is preferably a methyl group, ethyl group, n-propyl group, n-butyl group, n- A pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, an n-nonyl group, an n-decyl group, an n-dodecyl group, an n-tridecyl group, and an n-tetradecyl group having 1 to 14 carbon atoms
  • Straight chain alkyl groups are more preferred.
  • alkenyl group having 2 to 20 carbon atoms in R 1 to R 8 examples include, for example, an ethenyl group, a propenyl group, a butenyl group, a 2-methylpropenyl group, an n-pentenyl group, a 2-methylbutenyl group, an n-hexenyl group, 2-methylpentenyl, n-heptenyl, n-octenyl, 2-ethylhexenyl, n-nonel, 2-ethylheptenyl, n-decenyl, n-dodecenyl, cyclopentenyl-1-, cyclo Hexenyl-1-group, cycloheptenyl-1-group and the like can be mentioned.
  • Examples of the alkynyl group having 2 to 20 carbon atoms in R 1 to R 8 include ethynyl group, propynyl group, butynyl group, n-pentynyl group, n-hexynyl group, n-heptynyl group, n-octynyl group, n -Nonynyl group, n-decynyl group, n-dodecynyl group and the like.
  • Examples of the alkadienyl group having 4 to 22 carbon atoms in R 1 to R 8 include butadienyl group, pentadienyl group, hexadienyl group, n-heptadienyl group, n-octadienyl group, n-nonadienyl group, n-decadienyl group, n -Dodecadienyl group, n-tridecadienyl group and the like, and preferably an alka-1,3-dienyl group having 4 to 22 carbon atoms, such as a hexa-1,3-dienyl group, n-hepta-1,3- More preferred are a dienyl group, an n-octa-1,3-dienyl group, an n-nona-1,3-dienyl group and an n-deca-1,3-dienyl group.
  • Examples of the alkadiynyl group having 4 to 22 carbon atoms in R 1 to R 8 include butadiynyl group, pentadiynyl group, hexadiynyl group, n-heptadiynyl group, n-octadiynyl group, n-nonadiynyl group, n-decadiynyl group, An n-dodecadiynyl group, an n-tridecadiynyl group and the like can be mentioned, and a 1,3-alkadiinyl group having 4 to 22 carbon atoms is preferable, and a hexa-1,3-diynyl group, n-hepta-1,3- More preferred are a diynyl group, an n-octa-1,3-diynyl group, an n-nona-1,3-diyn
  • the aryl group having 4 to 26 carbon atoms in R 1 to R 8 includes a heteroaryl group having 4 to 24 carbon atoms.
  • Examples of the aryl group having 4 to 26 carbon atoms include phenyl group; p-tolyl group, p- (n-hexyl) phenyl group, p- (n-octyl) phenyl group, and p- (2-ethylhexyl) phenyl.
  • Alkyl-substituted phenyl groups such as groups; 2-furyl group, 2-thienyl group; 5-fluoro-2-furyl group, 5-methyl-2-furyl group, 5-ethyl-2-furyl group, 5- (n- Propyl) -2-furyl group, 5- (n-butyl) -2-furyl group, 5- (n-pentyl) -2-furyl group, 5- (n-hexyl) -2-furyl group, 5- ( n-octyl) -2-furyl group, 5- (2-ethylhexyl) -2-furyl group, 5-fluoro-2-thienyl group, 5-methyl-2-thienyl group, 5-ethyl-2-thienyl group, 5- (n-propyl) -2-thienyl group, 5- (n-butyl) ) -2-thienyl group, 5- (n-pentyl) -2-thieny
  • R 1 to R 8 hydrogen, halogen, and alkyl groups having 1 to 20 carbon atoms are preferable because of high mobility, and hydrogen, fluorine, chlorine, methyl group, ethyl group, n-propyl group, n- A butyl group is more preferable, and hydrogen is particularly preferable.
  • R 14 to R 16 are each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, carbon An alkynyl group having 2 to 20 carbon atoms, an alkadienyl group having 4 to 22 carbon atoms, an alkadiynyl group having 4 to 22 carbon atoms, or an aryl group having 4 to 26 carbon atoms.
  • halogen in R 14 to R 16 for example, fluorine, chlorine, bromine and iodine are shown, and fluorine and chlorine are preferable because they are stable.
  • alkyl group having 1 to 20 carbon atoms in R 14 to R 16 examples include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, isovaleryl group, n-hexyl, isohexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n- Examples thereof include linear, branched, or cyclic alkyl groups such as octadecyl group, 2-ethylhexyl group, 3-ethylheptyl group, 3-ethyldecyl, 2-hexyldecyl group, cyclopentyl group, cyclohexy
  • an alkyl group having 1 to 14 carbon atoms is preferable because it becomes an aromatic compound exhibiting particularly high mobility and high solubility, and is preferably a methyl group, ethyl group, n-propyl group, n-butyl group, n A pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, an n-nonyl group, an n-decyl group, an n-dodecyl group, an n-tridecyl group and an n-tetradecyl group having 1 to 14 carbon atoms
  • Straight chain alkyl groups are more preferred.
  • alkenyl group having 2 to 20 carbon atoms in R 14 to R 16 examples include ethenyl group, propenyl group, butenyl group, 2-methylpropenyl group, n-pentenyl group, 2-methylbutenyl group, n-hexenyl group, 2-methylpentenyl, n-heptenyl, n-octenyl, 2-ethylhexenyl, n-nonel, 2-ethylheptenyl, n-decenyl, n-dodecenyl, cyclopentenyl-1-, cyclo Hexenyl-1-group, cycloheptenyl-1-group and the like can be mentioned.
  • alkynyl group having 2 to 20 carbon atoms in R 14 to R 16 examples include ethynyl group, propynyl group, butynyl group, n-pentynyl group, n-hexynyl group, n-heptynyl group, n-octynyl group, n -Nonynyl group, n-decynyl group, n-dodecynyl group and the like.
  • Examples of the alkadienyl group having 4 to 22 carbon atoms in R 14 to R 16 include butadienyl group, pentadienyl group, hexadienyl group, n-heptadienyl group, n-octadienyl group, n-nonadienyl group, n-decadienyl group, n -Dodecadienyl group, n-tridecadienyl group and the like, and preferably an alka-1,3-dienyl group having 4 to 22 carbon atoms, such as a hexa-1,3-dienyl group, n-hepta-1,3- More preferred are a dienyl group, an n-octa-1,3-dienyl group, an n-nona-1,3-dienyl group and an n-deca-1,3-dienyl group.
  • alkadiynyl group having 4 to 22 carbon atoms in R 14 to R 16 examples include, for example, butadiynyl group, pentadiynyl group, hexadiynyl group, n-heptadiynyl group, n-octadiynyl group, n-nonadiynyl group, n-decadiynyl group, An n-dodecadiynyl group, an n-tridecadiynyl group and the like can be mentioned, and a 1,3-alkadiinyl group having 4 to 22 carbon atoms is preferable, and a hexa-1,3-diynyl group, n-hepta-1,3- More preferred are a diynyl group, an n-octa-1,3-diynyl group, an n-nona-1,3-d
  • Aryl group of the R 14 4 carbon atoms in ⁇ R 16 ⁇ 26 includes a heteroaryl group having 4 to 24 carbon atoms.
  • Examples of the aryl group having 4 to 26 carbon atoms include phenyl group; p-tolyl group, p- (n-hexyl) phenyl group, p- (n-octyl) phenyl group, and p- (2-ethylhexyl) phenyl.
  • Alkyl-substituted phenyl groups such as groups; 2-furyl group, 2-thienyl group; 5-fluoro-2-furyl group, 5-methyl-2-furyl group, 5-ethyl-2-furyl group, 5- (n- Propyl) -2-furyl group, 5- (n-butyl) -2-furyl group, 5- (n-pentyl) -2-furyl group, 5- (n-hexyl) -2-furyl group, 5- ( n-octyl) -2-furyl group, 5- (2-ethylhexyl) -2-furyl group, 5-fluoro-2-thienyl group, 5-methyl-2-thienyl group, 5-ethyl-2-thienyl group, 5- (n-propyl) -2-thienyl group, 5- (n-butyl) ) -2-thienyl group, 5- (n-pentyl) -2-thieny
  • R 14 to R 16 hydrogen, halogen, and alkyl groups having 1 to 20 carbon atoms are preferable because of high mobility.
  • the aromatic compound represented by the general formula (1-I) or (1-II) is preferably an aromatic compound represented by the following general formula (2) from the viewpoint of ease of synthesis.
  • X represents a covalent bond, oxygen, sulfur, selenium, CR 10 ⁇ C, or nitrogen
  • Y represents carbon or nitrogen.
  • L is 0 when X is a covalent bond, oxygen, sulfur, selenium.
  • one group can form a single ring to a condensed three ring represented by the following general formula (4), and all the rings constituting the single ring to the condensed three rings can be 4 to 6-membered rings.
  • R 9 to R 11 and R 13 that did not form the following general formula (4) are R 1 that did not form a single ring to a condensed four ring in the above general formulas (1-I) and (1-II).
  • .X of the same groups as ⁇ R 4, or R 5 ⁇ R 8 is a covalent bond
  • the A in the formula (2) is a covalent bond
  • the positions of two adjacent combinations forming a 6-membered ring are R 1 and R 2 , R 5 and R 6.
  • R 1 to R 8 which did not form a single ring to a condensed four ring R 9 to R 11 and R 13 that did not form general formula (4), and R 14 , R 15 , and R 16 are simultaneously hydrogen.
  • Y 1 is .n showing a carbon or nitrogen
  • one group can constitute the following general formula (5) or general formula (6) to form a 4- to 6-membered ring:
  • R 17 do not configure (6) ⁇ R 20 are each independently hydrogen , A methyl group, an ethyl group, an n-propyl group, and an alkyl group having 4 to 20 carbon atoms, and only one is an alkyl group having 4 to 20 carbon atoms, provided that R 17 to R 20 Except at the same time hydrogen.
  • R 21 to R 25 each independently represents hydrogen, halogen, Selected from the group consisting of alkyl groups having 1 to 20 carbon atoms, and one or more of R 21 to R 25 are halogen or an alkyl group having 1 to 20 carbon atoms.
  • R 26 represents an alkyl group having 1 to 20 carbon atoms.
  • R 26 represents an alkyl group having 1 to 20 carbon atoms.
  • the rings constituting the monocyclic to fused four rings are 4 to 6 membered rings.
  • Specific examples of the 4- to 6-membered ring include the same rings as those in the above (1-I) and (1-II).
  • a 4- or 5-membered ring is A cyclobutene ring, a thiophene ring, a furan ring, and a selenophene ring are more preferable.
  • R 1 to R 8 the combination of two adjacent R 1 to R 4 is easy to form a monocyclic to condensed tetracycle represented by the general formula (3).
  • R 1 and R 2 only, R 2 and R 3 only, R 3 and R 4 only, R 1 and R 2 and a combination of R 3 and R 4 are preferable.
  • R 1 to R 8 two of R 5 to R 8 are adjacent to each other. As the combination, only R 5 and R 6 , R 6 and R 7 only, R 5 and R 6 and R 7 and R 8 are preferable.
  • R 1 ⁇ R 8 for high mobility, of the combination consisting of two adjacent of R 1 ⁇ R 4, 1 pair only, and consists of two adjacent of R 5 ⁇ R 8 Of the combinations, it is preferable that only one set constitutes the general formula (3). From the viewpoint of high heat resistance and high solubility, R 1 and R 2 and R 5 and R 6 constitute the general formula (3), or R 2 and R 3, R 6 and R 7 are the general formula (3). More preferably,
  • R 1 to R 8 that is, R 1 and R 2 , R 3 and R 4 , R 5 and R 6 and R 7 and R 8 form the general formula (3).
  • the aromatic compound of the general formula (2) becomes a disc shape, and it may be difficult to express performance as an organic semiconductor material.
  • R 1 to R 8 and A that did not form the general formula (3) form a monocyclic to condensed 4-ring in the general formulas (1-I) and (1-II).
  • R 1 to R 8 and A which are not present has the same significance.
  • R 2 and R 3 and R 6 and R 7 in the general formula (2) form the general formula (3) X is preferably oxygen, sulfur, or selenium because of high solubility.
  • m is 1 when Y is carbon, and 0 when Y is nitrogen.
  • one of the adjacent combinations of R 9 to R 11 and R 13 forms a single ring to a condensed three ring represented by the general formula (4)
  • All the rings constituting the monocyclic to condensed three rings can be 4 to 6 membered rings.
  • the ring that is the 4- to 6-membered ring include a cyclobutene ring, a furan ring, a thiophene ring, a selenophene ring, a thiazole ring, a benzene ring, and a pyridine ring.
  • a furan ring, a thiophene ring, a selenophene ring, and a benzene ring are preferred.
  • R 9 to R 11 and R 13 that did not form the general formula (4) are R 1 to R that did not form the monocyclic to condensed 4-rings in the general formulas (1-I) and (1-II). 4 or a group similar to R 5 to R 8 is shown.
  • R 1 to R 8 that did not form a monocyclic to condensed four ring, and R 9 to R 11 and R 13 that did not form the general formula (4) are simultaneously hydrogen. Except that. At the same time, when it is excluded from hydrogen, it becomes highly soluble, so that it is suitable as an organic semiconductor material.
  • X 1 represents a covalent bond, oxygen, sulfur, selenium, CR 18 ⁇ C, or nitrogen
  • Y 1 represents carbon or nitrogen
  • X 1 is preferably a covalent bond, oxygen, sulfur, selenium, CR 18 ⁇ C because of high mobility
  • Y 1 is preferably carbon because of high mobility.
  • o is 1 when Y 1 is carbon, and 0 when Y 1 is nitrogen.
  • one of the adjacent combinations of R 17 to R 20 constitutes the general formula (5) or the general formula (6) to form a 4- to 6-membered ring can do.
  • the 4- to 6-membered ring include a benzocyclobutene ring, a furan ring, a thiophene ring, a selenophene ring, a thiazole ring, a benzene ring, and a pyridine ring.
  • a furan ring, a thiophene ring, a selenophene ring, and a benzene ring are preferred.
  • R 17 to R 20 are an alkyl group having 1 to 20 carbon atoms
  • an alkyl compound having 4 to 14 carbon atoms is preferable because it becomes an aromatic compound exhibiting particularly high mobility and high solubility.
  • R 17 to R 20 that did not constitute the general formula (5) or the general formula (6) are preferably not hydrogen at the same time because of high solubility.
  • R 17 to R 20 which did not constitute the general formula (5) or the general formula (6) are each independently hydrogen, methyl group , An ethyl group, an n-propyl group, and an alkyl group having 4 to 20 carbon atoms, and only one is an alkyl group having 4 to 20 carbon atoms. At this time, since it becomes high mobility, it becomes suitable as an organic semiconductor material. More preferably, only one of R 17 to R 20 is an alkyl group having 4 to 14 carbon atoms.
  • R 17 to R 20 which did not constitute the general formula (5) or the general formula (6) are excluded from being simultaneously hydrogen. At the same time, when it is excluded from hydrogen, it becomes highly soluble, so that it is suitable as an organic semiconductor material.
  • R 21 to R 25 are each independently selected from the group consisting of hydrogen, halogen, and an alkyl group having 1 to 20 carbon atoms, and one or more of R 21 to R 25 are selected. Is a halogen or an alkyl group having 1 to 20 carbon atoms. When at least one of R 21 to R 25 is a halogen or an alkyl group having 1 to 20 carbon atoms, it becomes highly soluble and suitable.
  • the halogen represents, for example, fluorine, chlorine, bromine or iodine, and is preferably fluorine or chlorine since it is stable.
  • Examples of the alkyl group having 1 to 20 carbon atoms of R 21 to R 25 include, for example, examples of the alkyl group having 1 to 20 carbon atoms in R 1 to R 8 of the above (1-I) and (1-II). Among them, an alkyl group having 4 to 14 carbon atoms is preferable, and an n-butyl group, an n-pentyl group, and an n-hexyl group are preferable because they are aromatic compounds exhibiting particularly high mobility and high solubility.
  • a group having 4 to 14 carbon atoms which is a group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group or n-tetradecyl group. More preferred are chain alkyl groups.
  • R 26 represents an alkyl group having 1 to 20 carbon atoms, and is a biphenylene derivative having high mobility and high solubility. Therefore, an alkyl group having 4 to 14 carbon atoms is preferable, and n -Butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n -A linear alkyl group having 4 to 14 carbon atoms which is a tetradecyl group is more preferred.
  • aromatic compound represented by the general formula (1-I) or the general formula (1-II) is also suitable as a biphenylene derivative represented by the following general formula (7).
  • R 1 to R 8 are each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, Or an aryl group having 4 to 26 carbon atoms.
  • R 9 to R 13 each independently represent hydrogen, halogen, carbon, An alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or an aryl group having 4 to 26 carbon atoms)]
  • R 1 to R 8 constitute the general formula (8) and form a 5- or 6-membered ring.
  • R 1 to R 8 the combination of two adjacent R 1 to R 4 is easy to construct the general formula (8), so that only R 1 and R 2 are R Only 2 and R 3 only, R 3 and R 4 only, R 1 and R 2 and a combination of R 3 and R 4 are preferable.
  • the combination of R 5 to R 8 is preferably only R 5 and R 6, only R 6 and R 7 , R 5 and R 6, and R 7 and R 8 .
  • R 1 to R 8 not constituting the general formula (8) are each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkyl group having 2 to 20 carbon atoms.
  • An alkynyl group or an aryl group having 4 to 26 carbon atoms is shown.
  • the halogen in R 1 to R 8 represents, for example, fluorine, chlorine, bromine or iodine, and fluorine is preferable because it is stable.
  • the alkyl group having 1 to 20 carbon atoms in R 1 to R 8 is, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n- Pentyl group, isovaleryl group, n-hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tetradecyl group, n-octadecyl group, 2 -Linear, branched, or cyclic alkyl groups such as ethylhexyl group, 3-ethylheptyl group, 3-ethyldecyl, 2-hexyldecyl group, cyclopentyl group, cyclohexyl group
  • an alkyl group having 1 to 14 carbon atoms is preferable because it becomes a biphenylene derivative exhibiting particularly high mobility and high solubility, and is preferably a methyl group, ethyl group, n-propyl group, n-butyl group, n- A linear alkyl group having 1 to 14 carbon atoms, which is a pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, or n-tetradecyl group; Further preferred.
  • the alkenyl group having 2 to 20 carbon atoms in R 1 to R 8 is, for example, an ethenyl group, an n-propenyl group, an n-butenyl group, a 2-methylpropenyl group, an n-pentenyl group, 2-methylbutenyl, n-hexenyl, 2-methylpentenyl, n-heptenyl, n-octenyl, 2-ethylhexenyl, n-nonel, 2-ethylheptenyl, n-decenyl, n-dodecenyl Group, cyclopentenyl-1-group, cyclohexenyl-1-group, cycloheptenyl-1-group and the like.
  • the alkynyl group having 2 to 20 carbon atoms in R 1 to R 8 is, for example, ethynyl group, n-propynyl group, n-butynyl group, n-pentynyl group, n-hexynyl group, n -Heptynyl group, n-octynyl group, n-noninyl group, n-decynyl group, n-dodecynyl group and the like.
  • the aryl group having 4 to 26 carbon atoms in R 1 to R 8 includes a heteroaryl group having 4 to 24 carbon atoms.
  • phenyl group alkyl-substituted phenyl group such as p-tolyl group, p- (n-hexyl) phenyl group, p- (n-octyl) phenyl group, p- (2-ethylhexyl) phenyl group; 2-furyl group 2-thienyl group; 5-fluoro-2-furyl group, 5-methyl-2-furyl group, 5-ethyl-2-furyl group, 5- (n-propyl) -2-furyl group, 5- (n -Butyl) -2-furyl group, 5- (n-pentyl) -2-furyl group, 5- (n-hexyl) -2-furyl group, 5- (n-octyl) -2-fur
  • R 1 to R 8 are preferably hydrogen, halogen, or an alkyl group having 1 to 20 carbon atoms because of high mobility. Hydrogen, fluorine, methyl group, ethyl group, n-propyl Group, n-butyl group is more preferable, and hydrogen is particularly preferable.
  • At least one set constitutes the general formula (8) and can form a 5- or 6-membered ring.
  • the 5- or 6-membered ring include a thiophene ring, a furan ring, a selenophene ring, a thiazole ring, an oxazole ring, a pyrrole ring, an imidazole ring, a benzene ring, and a pyridine ring.
  • a ring, a furan ring, a selenophene ring, and a benzene ring are preferable.
  • a 5-membered ring is preferable because of high solubility, and a thiophene ring, a furan ring, and a selenophene ring are more preferable.
  • R 1 and R 2 and R 5 and R 6 constitute the general formula (8), or R 2 and R 3, R 6 and R 7 are the general formula (2). More preferably,
  • X represents oxygen, sulfur, or selenium
  • Y represents CR 13 More preferably.
  • X is preferably oxygen, sulfur, or selenium because of high solubility.
  • R 1 to R 8 that is, R 1 and R 2 , R 3 and R 4 , R 5 and R 6, and R 7 and R 8 constitute the general formula (8) ( When all four adjacent groups constitute the general formula (8)), the biphenylene derivative of the general formula (7) becomes a disc shape. In order to obtain an organic semiconductor material having higher mobility and high solubility, it is preferable that the structure is not the disk shape.
  • R 9 to R 13 are each independently hydrogen, halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, Or an aryl group having 4 to 26 carbon atoms, but R 9 is halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms because of high solubility. An aryl group having 4 to 26 carbon atoms is preferable.
  • the halogen, alkyl group, alkenyl group, alkynyl group, and aryl group include the groups represented by R 1 to R 8 above.
  • R 9 to R 13 are preferably hydrogen, halogen, or an alkyl group having 1 to 14 carbon atoms because of high mobility. Hydrogen, fluorine, ethyl group, n-propyl group, n- Propyl group, n-butyl group, isobutyl group, n-pentyl group, isovaleryl group, n-hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl More preferably an n-tetradecyl group.
  • R 9 to R 13 have high mobility and high solubility, so that R 9 is an alkyl group having 1 to 14 carbon atoms, and R 10 to R 13 are hydrogen, fluorine, and methyl groups. , Ethyl group, n-propyl group and n-butyl group are preferred. R 10 to R 13 are particularly preferably hydrogen because of high mobility.
  • More preferred specific skeletons of the aromatic compound of the present invention are represented by the following general formulas (1-1) to (1-33).
  • general formulas (1-1) to (1-5), (1-11) to (1-17), (1-21) to (1- 23) and (1-29) to (1-33) are preferred, and the general formulas (1-1) to (1-3), (1-11) to (1-17), (1 -29) and (1-30) are more preferable.
  • R 1, R 3 ⁇ R 8 of the general formula (1-I) the same meaning as R 1, R 3 ⁇ R 8 in (1-II)
  • X, Y, R 9, R 13 and m have the same meaning as X, Y, R 9 , R 13 and m in the general formula (3).
  • R 3, R 4, R 7 , and R 8 has the general formula (1-I), the same meaning as R 3, R 4, R 7 , and R 8 in (1-II), X has the general formula (3) in the same meaning and X, X 1 and R 17 represents a X 1 and R 17 in the general formula (4) as defined above.
  • R 1 ⁇ R 4 is formula (1-I), the same meaning as A 3, R 1 ⁇ R 4 in (1-II), X, R 10, R 11, R 13, l is the general formula (3) in the X, R 10, R 11, R 13, l and the same meaning, X 1, R 19, n is X 1, R represented by the general formula (4) 19, n and the same meaning, R 21 ⁇ R 25 and R 21 ⁇ R 25 in the general formula (5) the same meaning, R 26 is of the same meaning as R 26 of the general formula (6) Show.
  • Specific examples of the aromatic compound of the present invention include the following.
  • any production method can be used as long as the aromatic compound can be produced.
  • R 3 , R 4 , R 7 and R 8 in the general formula (2) are hydrogen
  • A is a covalent bond
  • X in the general formula (3) is
  • the aromatic compound (1-1a) of the general formula (1-1) in which S is sulfur, Y is carbon, and R 13 is hydrogen can be produced by a method through the following steps A1 to E1.
  • Step A1 1-bromo-4-fluorophenyl-2-zinc chloride derived from 1-bromo-4-fluoro-2-iodobenzene in the presence of a palladium catalyst and 2-bromo-4-fluoro- A process for producing 2,2′-dibromo-4,5′-difluorobiphenyl from 1-iodobenzene.
  • Step B1 2,2′-dibromo-4,5′-difluorobiphenyl obtained in Step A1 is converted to a dilithium salt with butyllithium, and 2,6- A process for producing difluorobiphenylene.
  • Step C1 2,6-difluorobiphenylene obtained in Step B1 is treated with lithium diisopropylamide (hereinafter abbreviated as LDA) / iodinated to produce 2,6-difluoro-1,5-dihalobiphenylene.
  • LDA lithium diisopropylamide
  • Step D1 1,5-dialkynyl-2,6 by Sonogashira coupling of 2,6-difluoro-1,5-dihalobiphenylene obtained in Step C1 and an alkynyl compound in the presence of a palladium / copper catalyst.
  • a process for producing difluorobiphenylene. (Step E1); a step of producing a biphenylene derivative (1-1a) by subjecting 1,5-dialkynyl-2,6-difluorobiphenylene obtained in Step D1 and sodium sulfide to the reaction.
  • the step A1 comprises 1-bromo-4-fluorophenyl-2-zinc chloride derived from 1-bromo-4-fluoro-2-iodobenzene and 2-bromo-4-fluoro- in the presence of a palladium catalyst. This is a process for producing 2,2′-dibromo-4,5′-difluorobiphenyl from cross-coupling of 1-iodobenzene.
  • 1-Bromo-4-fluorophenyl-2-zinc chloride uses, for example, an organometallic reagent such as ethylmagnesium chloride and isopropylmagnesium bromide, and iodine of 1-bromo-4-fluoro-2-iodobenzene is converted to magnesium halide. After exchange (preparation of 1-bromo-4-fluorophenyl-2-magnesium halide), it can be prepared by metal exchange with zinc chloride. In addition, magnesium metal can be used in place of the organometallic reagent.
  • organometallic reagent such as ethylmagnesium chloride and isopropylmagnesium bromide
  • iodine of 1-bromo-4-fluoro-2-iodobenzene is converted to magnesium halide. After exchange (preparation of 1-bromo-4-fluorophenyl-2-magnesium halide), it can be prepared by metal exchange with zinc chlor
  • the conditions for preparing 1-bromo-4-fluorophenyl-2-magnesium halide are, for example, in a temperature range of ⁇ 80 ° C. to 20 ° C. in a solvent such as tetrahydrofuran (hereinafter referred to as THF) or diethyl ether.
  • THF tetrahydrofuran
  • 1-bromo-4-fluorophenyl-2-zinc chloride can be prepared by reacting zinc chloride with a solution of the magnesium salt (1-bromo-4-fluorophenyl-2-magnesium halide).
  • Zinc chloride may be used as it is, or it may be THF or diethyl ether solution.
  • the reaction temperature of the magnesium salt and zinc chloride can be carried out within a range of ⁇ 80 ° C. to 30 ° C.
  • Examples of the palladium catalyst in the step A1 include tetrakis (triphenylphosphine) palladium and dichlorobis (triphenylphosphine) palladium, and the reaction temperature can be in the range of 20 ° C. to 80 ° C.
  • the 2,2′-dibromo-4,5′-difluorobiphenyl obtained in the A1 step is converted to a dilithium salt with 2 equivalents or more of butyllithium and cyclized intramolecularly with copper (II) chloride.
  • This is a process for producing 2,6-difluorobiphenylene.
  • n-butyllithium or tert-butyllithium As conditions for preparing the dilithium salt, for example, 2 to 3 equivalents of n-butyllithium or tert-butyllithium is used, and the reaction is carried out in a solvent such as THF or diethyl ether at a temperature range of ⁇ 80 ° C. to 20 ° C. be able to.
  • a solvent such as THF or diethyl ether
  • Copper (II) chloride is used in an amount of 1 to 3 equivalents relative to the dilithium salt, and the intramolecular cyclization reaction can be carried out in the temperature range of ⁇ 80 ° C. to 30 ° C.
  • copper bromide (II) can be used instead of copper chloride (II).
  • Step C1 2,6-difluorobiphenylene obtained in Step B1 is reacted with LDA to generate dilithium salts at the 1-position and 5-position, and then halogenated to produce 2,6-difluoro-1,5 A process for producing dihalobiphenylene.
  • reaction with LDA for example, 2 to 4 equivalents of LDA can be used in a solvent such as THF or diethyl ether in a temperature range of ⁇ 80 ° C. to 20 ° C.
  • the reaction between the dilithium salt and the halogenating agent can be carried out in the range of ⁇ 80 ° C. to 30 ° C.
  • n-butyllithium, n-butyllithium / tetramethylethylenediamine can be used, and as halogenating agents, iodine, 1-chloro-2-iodoethane, N-iodosuccinimide, bromotrichloromethane, tetra
  • halogenating agent such as bromomethane, 1,2-dibromotetrachloroethane, N-bromosuccinimide (hereinafter abbreviated as NBS), N-fluorobenzenesulfonimide and the like can be used.
  • Step D1 comprises 1,5-dialkynyl-2, by Sonogashira coupling of 2,6-difluoro-1,5-dihalobiphenylene obtained in Step C1 and an alkynyl compound in the presence of a palladium catalyst and a copper catalyst. This is a process for producing 6-difluorobiphenylene.
  • examples of the palladium catalyst include tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, and the copper catalyst includes copper iodide (I), copper bromide (I), copper chloride. (I) etc. can be mentioned.
  • the Sonogashira coupling can be carried out in a temperature range of 20 ° C. to 80 ° C. in a solvent such as triethylamine, diisopropylamine, diisopropylethylamine, piperidine, and pyridine. Note that toluene, THF, or the like may be added as a solvent.
  • alkynyl compound in the step D1 examples include 1-propyne, 1-butyne, 1-pentyne, 1-hexyne, 1-heptin, 1-octyne, 1-nonine, 1-decyne, 1-undecin and 1-dodecin. Can be mentioned.
  • the step E1 is a step of producing an aromatic compound (1-1a) by reaction of 1,5-dialkynyl-2,6-difluorobiphenylene obtained in step D1 with sodium sulfide.
  • the reaction is carried out in a solvent such as dimethyl sulfoxide (hereinafter abbreviated as DMSO), N, N-dimethylformamide (hereinafter abbreviated as DMF), N-methylpyrrolidone (hereinafter abbreviated as NMP), and the like.
  • DMSO dimethyl sulfoxide
  • DMF N, N-dimethylformamide
  • NMP N-methylpyrrolidone
  • This step can also be carried out using known reaction conditions for synthesizing a benzothiophene ring from 2-haloalkynylbenzene (for example, Organic Letters, 2009, Vol. 11, pages 2473-2475).
  • R 9 is as defined for R 9 of the general formula (3).
  • R 3 , R 4 , R 7 , R 8 are hydrogen
  • A is a covalent bond
  • X of the general formula (3) is sulfur.
  • the aromatic compound (1-2a) of the general formula (1-2) in which Y is carbon and R 13 is hydrogen can be produced by a method through the following steps A2 to E2.
  • Step A2 1-bromo-3-fluorophenyl-2-zinc chloride derived from 1-bromo-3-fluoro-2-iodobenzene in the presence of a palladium catalyst and 2-bromo-1-fluoro-
  • Step B2 2,2′-dibromo-3,6′-difluorobiphenyl obtained in Step A2 is converted into a dilithium salt with butyllithium, and 1,5-by-molecular cyclization with copper (II) chloride.
  • Step C2 A step of producing 1,5-difluoro-2,6-dihalobiphenylene by LDA treatment / halogenation of the 1,5-difluorobiphenylene obtained in Step B2.
  • Step D2 2,6-dialkynyl-1,5 by Sonogashira coupling of 1,5-difluoro-2,6-dihalobiphenylene obtained in Step C2 and an alkynyl compound in the presence of a palladium / copper catalyst.
  • Step E2 A step of producing an aromatic compound (1-2a) by subjecting 2,6-dialkynyl-1,5-difluorobiphenylene obtained in Step D2 and sodium sulfide to the reaction.
  • Steps A2 to E2 are the same as in Step A2, except that 1-bromo-3-fluoro-2-iodobenzene and 2-bromo-1-fluoro-3-iodobenzene are used.
  • the aromatic compound represented by (1-2a) can be produced using reaction conditions and the like.
  • R 9 is as defined for R 9 of the general formula (3).
  • the biphenylene derivative (1-2a) wherein R 9 is an alkyl group having 1 to 20 carbon atoms is obtained by using 2,2′-dibromo-3,6′-difluorobiphenyl obtained in the above step A2 as a raw material.
  • it can also be produced by a method through the following steps B3 to E3.
  • Step B3; 2,2-Dibromo-3,6'-difluorobiphenyl obtained in Step A2 is dilithiated with butyllithium and reacted with N-fluorobenzenesulfonimide to give 1,5-difluorobiphenylene. Manufacturing process.
  • Step C3 1,5-difluorobiphenylene obtained in Step B3 is reacted with sodium sulfide to form dithiol, and further reacted with 2-bromoacetaldehyde dimethyl acetal to give biphenylene-1,5-bis (thioacetaldehyde dimethyl acetal ).
  • Step D3 A step of producing an unsubstituted dithienobiphenylene by cyclizing biphenylene-1,5-bis (thioacetaldehyde dimethyl acetal) obtained in Step C3 with a phosphoric acid catalyst.
  • Step E3 A step of producing an aromatic compound (1-2a) by dilithiating the unsubstituted product obtained in Step D3 with a reaction with n-butyllithium and treating with an alkyl halide.
  • step B3 2,2′-dibromo-3,6′-difluorobiphenyl obtained in step A2 is dilithiated with 2 equivalents or more of butyllithium to generate benzyne and cyclize intramolecularly.
  • This is a process for producing 1,5-difluorobiphenylene by fluorination with benzenesulfonimide.
  • n-butyllithium or tert-butyllithium are used and the reaction is carried out in a solvent such as THF or diethyl ether at a temperature range of ⁇ 80 ° C. to 20 ° C. it can.
  • Fluorination with N-fluorobenzenesulfonimide can be carried out in a temperature range of ⁇ 80 ° C. to 20 ° C. in a solvent such as THF or diethyl ether.
  • step C3 1,5-difluorobiphenylene is reacted with 2 to 6 equivalents of sodium sulfide (hydrate) at 90 ° C. to 150 ° C. in a solvent such as DMF and NMP. -Disodium salt of dithiol, further added 2-bromoacetaldehyde dimethyl acetal and treated at 90-150 ° C.
  • Step D3 includes, for example, biphenylene-1,5-bis (thioacetaldehyde dimethyl acetal) obtained in Step C3 in a solvent such as xylene and chlorobenzene under a catalyst of 5 to 20 mol% of phosphoric acid, polyphosphoric acid and the like. 110 to 140 ° C.
  • step E3 for example, the unsubstituted product obtained in step D3 is reacted in a solvent such as THF with 2 to 6 equivalents of n-butyllithium at ⁇ 10 to 65 ° C., and then 2 to 8 equivalents of alkyl halide. At -10 to 65 ° C. Thereby, the aromatic compound represented by (1-3a) can be produced.
  • a solvent such as THF
  • R 9 represents an alkyl group having 1 to 20 carbon atoms.
  • R 1 , R 4 , R 5 , R 8 are hydrogen
  • A is a covalent bond
  • X in the general formula (3) is sulfur.
  • the aromatic compound (1-3a) of the general formula (1-3) in which Y is carbon and R 13 is hydrogen is obtained by using the following C4 to C starting from 2,6-difluorobiphenylene obtained in steps A1 and B1. It can manufacture by the method of passing through the process of E4.
  • Step C4 a step of producing 2,6-dihalo-3,7-difluorobiphenylene by halogenating the 2,6-difluorobiphenylene obtained in Step B1.
  • Step D4 2,6-dialkynyl-3,7- by the Sonogashira coupling of 2,6-dihalo-3,7-difluorobiphenylene obtained in Step C4 and an alkynyl compound in the presence of a palladium / copper catalyst.
  • a process for producing difluorobiphenylene. (Step E4); A step of producing an aromatic compound (1-3a) by subjecting 2,6-dialkynyl-3,7-difluorobiphenylene obtained in Step D4 and sodium sulfide to the reaction.
  • Step C4 in the reaction step is, for example, 2,6-dihalo-3,7 by reacting 2,6-difluorobiphenylene obtained in Step B1 with a halogenating agent to halogenate positions 3 and 7.
  • a process for producing difluorobiphenylene is, for example, 2,6-dihalo-3,7 by reacting 2,6-difluorobiphenylene obtained in Step B1 with a halogenating agent to halogenate positions 3 and 7.
  • the conditions for the reaction with the halogenating agent for example, 2 to 4 equivalents of the halogenating agent can be used, and the reaction can be carried out in a temperature range of 20 ° C. to 70 ° C. in a solvent such as DMF, NMP, DMSO.
  • halogenating agent a halogenating agent such as NBS, bromine, iodine, or N-iodosuccinimide can be used.
  • the steps D4 and E4 are the same as those in (1-3a) using the reagents and reaction conditions of the steps D1 and E1 except that 2,6-dihalo-3,7-difluorobiphenylene is used in the step D4.
  • the aromatic compounds shown can be produced.
  • the aromatic compound represented by the general formula (1-11) can be produced, for example, using 2,6-difluoro-1,5-diiodobiphenylene obtained in the above (Step C1). .
  • R 3 R 4, R 7 , R 8 are hydrogen, an aromatic compound X and X 1 is sulfur (1-11a), the steps following D5 ⁇ F5 It can manufacture by the method which passes.
  • Step D5 2,3-chlorothienyl-2-zinc chloride derived from 2-bromo-3-chlorothiophene and 2,6-difluoro-1,5-diiodobiphenylene in the presence of a palladium catalyst; A process for producing 6-difluoro-1,5-bis (3-chloro-2-thienyl) biphenylene.
  • Step E5 2,6-difluoro-1,5-bis (3-chloro-2-thienyl) biphenylene obtained in Step D5 and sodium sulfide are subjected to the reaction to give an unsubstituted bis (dithieno) biphenylene.
  • Step F5 A step of producing an aromatic compound (1-11a) by dilithiating the unsubstituted product obtained in Step E5 with a reaction with n-butyllithium and treating with an alkyl halide.
  • R 17 represents an alkyl group having 1 to 20 carbon atoms.
  • the aromatic compound represented by the general formula (1-16) can be produced, for example, using 2,6-dibromo-3,7-difluorobiphenylene obtained in the above (Step C4).
  • the aromatic compound (1-16a) in which R 3 and R 7 are fluorine, R 4 and R 8 are hydrogen, and X 1 is sulfur is represented by the following steps D6 to F6: It can manufacture by the method of passing through. (Step D6); 5-alkyl-3-bromothienyl-2-zinc chloride derived from 5-alkyl-2,3-dibromothiophene in the presence of a palladium catalyst and 2,6-dibromo-3,7- A process for producing 2,6-difluoro-3,7-bis (5-alkyl-3-bromo-2-thienyl) biphenylene from difluorobiphenylene.
  • Step E6 2,6-difluoro-3,7-bis (5-alkyl-3-bromo-2-thienyl) biphenylene obtained by Step D6 in the presence of a palladium / copper catalyst and a bunker of trimethylsilylacetylene 2,6-Difluoro-3,7-bis (5-alkyl-3- (trimethylsilylethynyl) -2-thienyl) biphenylene is produced by coupling, detrimethylsilylated by dilute hydrochloric acid treatment, and 2,6-difluoro-3, Producing 7-bis (5-alkyl-3-ethynyl-2-thienyl) biphenylene; (Step F6); In the presence of a ruthenium catalyst or a platinum catalyst, the 2,6-difluoro-3,7-bis (5-alkyl-3-ethynyl-2-thienyl) biphenylene obtained in Step E6 is subjected to a cyclo
  • R 17 represents an alkyl group having 1 to 20 carbon atoms.
  • the aromatic compound represented by the general formula (1-21) includes, for example, R 1 , R 4 , R 5 , R 8 are hydrogen and X 1 is CH ⁇ C in the general formula (1-21).
  • the aromatic compound (1-21a) in which R 19 is hydrogen can be produced by a method through the following steps A7 to F7.
  • Step A7 4-alkyl-2-bromo-phenyl-2-zinc chloride derived from 4-alkyl-2-bromo-1-iodobenzene and 2-bromo-4-fluoro in the presence of a palladium catalyst
  • Step B7 4-alkyl-2,2′-dibromo-4′-fluorobiphenyl obtained in Step A7 is converted into a dilithium salt with butyllithium and cyclized intramolecularly with copper (II) chloride.
  • Step C7 Producing alkyl-7-fluorobiphenylene; (Step C7); a step of producing 2-alkyl-3,6-dihalo-7-fluorobiphenylene by halogenating 2-alkyl-7-fluorobiphenylene obtained in Step B7.
  • Step D7 2-alkyl-3,6-dihalo-7-fluorobiphenylene obtained in Step C7 is monometalated with isopropyl Grignard and homo-coupled with copper (II) chloride to obtain bi (3-fluoro -6-alkyl-7-bromo-2-biphenylenyl).
  • Step E7 Bi (3-fluoro-6-alkyl-7-bromo-2-biphenylenyl) obtained in Step D7 is dilithiated with butyllithium and protonated with methanol to give bi (3-fluoro-6 -Alkyl-2-biphenylenyl).
  • Step F7 A step of producing an aromatic compound (1-21a) by subjecting bi (3-fluoro-6-alkyl-2-biphenylenyl) obtained in Step E7 to a reaction with sodium sulfide.
  • R 17 represents an alkyl group having 1 to 20 carbon atoms.
  • the produced aromatic compound can be purified by subjecting it to column chromatography or the like, and as a separating agent at that time, for example, silica gel, activated alumina, as a solvent, hexane, heptane, toluene, dichloromethane, Examples include chloroform.
  • the produced aromatic compound can be decolorized and purified in solution by subjecting it to activated carbon, zeolite, activated alumina, etc.
  • the solvent include hexane, heptane, toluene, dichloromethane, chloroform and the like. .
  • the produced aromatic compound may be further purified by recrystallization, and the purity can be improved by increasing the number of recrystallizations.
  • the number of recrystallizations is preferably 2 to 5 times from the viewpoint of high purity and high yield. Purity can be improved by increasing the number of recrystallizations.
  • the solvent used for recrystallization include hexane, heptane, octane, toluene, xylene, chloroform, chlorobenzene, dichlorobenzene, and the like, and a mixture of any ratio thereof may be used.
  • a solution of an aromatic compound is prepared by heating (the concentration of the solution at that time is preferably in the range of 0.01 to 10.0% by weight in order to efficiently remove impurities, and 0.05 to The range of 5.0% by weight is further preferred.)
  • the concentration of the solution at that time is preferably in the range of 0.01 to 10.0% by weight in order to efficiently remove impurities, and 0.05 to The range of 5.0% by weight is further preferred.
  • the final cooling temperature at the time of isolation improves purity and recovery rate. Therefore, it is preferably in the range of ⁇ 20 ° C. to 40 ° C.
  • it is possible to analyze by liquid chromatography.
  • a compound represented by the following general formula (10-I) or (10-II) is reacted with a linear alkyl lithium to produce the following general formula (9-I) or ( It may be a method for producing an aromatic compound represented by 9-II).
  • A, A 1 ⁇ A 3 , R 1, R 2, and R 5 ⁇ R 8 is the general formula (1-I), in (1-II), A, A 1 ⁇ A 3, (It has the same meaning as R 1 , R 2 , and R 5 to R 8. )
  • A, A 1 to A 3 , R 1 , R 2 , and R 5 to R 8 are each represented by the above general formula (1-I), (It has the same meaning as A, A 1 to A 3 , R 1 , R 2 , and R 5 to R 8 in (1-II).)
  • the above manufacturing method will be described in detail below.
  • a covalent bond is preferred because of the high reaction yield.
  • Halogen in X 3 and X 4 represents, for example, fluorine, chlorine, bromine and iodine, and since benzine as a reaction active intermediate is stably generated, X 3 is preferably fluorine, chlorine or bromine, and X 4 is Bromine is preferred.
  • R 1 is preferably halogen or hydrogen, more preferably bromine or hydrogen, since it easily generates benzyne as a reaction active intermediate.
  • Examples of the linear alkyl lithium to be reacted with the compound represented by the general formula (10-I) or (10-II) include n-butyl lithium, methyl lithium, n-propyl lithium, n-pentyl lithium, n- Examples include hexyl lithium, n-heptyl lithium, n-octyl lithium, n-nonyl lithium, n-decyl lithium and the like, and n-butyl lithium is preferable because of its good availability.
  • the linear alkyl lithium reacts with a compound represented by the general formula (10-I) or (10-II) to form a dilithium salt of the compound. Although it is used in the range of 0.0 equivalents, 2.2 to 6.0 equivalents are preferable because of high yield.
  • the reaction is carried out in a solvent, and the solvent is not particularly limited as long as the dilithium salt of the compound can exist stably.
  • the solvent is not particularly limited as long as the dilithium salt of the compound can exist stably.
  • THF diethyl ether
  • tertiary butylmethyl Ether solvents such as ether, tertiary butyl ethyl ether, dimethoxyethane, dimethoxypropane and dioxane are preferred, and THF is more preferred.
  • the temperature of the reaction is, for example, ⁇ 80 ° C. to 40 ° C., and ⁇ 70 ° C. to 20 ° C. is preferable because benzyne as a reaction active intermediate is easily generated.
  • a compound represented by the following general formula (12-I) or (12-II) is used and represented by the following general formula (11-I) or (11-II).
  • the manufacturing method which manufactures an aromatic compound may be sufficient.
  • a 1, R 1, R 2, and R 5 ⁇ R 8 is the general formula (1-I), (A 1 in 1-II), R 1, R 2, and R 5 ⁇ R 8 and the same meaning .R 10 and R 11, .R 21 and R 25 as defined for R 10 and R 11 in the general formula (3) is, X 2 in the general formula (5), R And the same significance as 21 and R 25. )
  • X 3 and X 4 each independently represent halogen, A 1 , R 1 , R 2 , R 5 to R 8 , R 10 , R 11 , X 2 , R 21 , and R 25 Is the same as A 1 , R 1 , R 2 , R 5 to R 8 , R 10 , R 11 , X 2 , R 21 , and R 25 in the general formulas (11-I) and (11-II). Shows significance.
  • X 3 and X 4 each independently represent halogen.
  • the halogen include fluorine, chlorine, bromine, iodine and the like. Since benzyne as a reaction active intermediate is stably generated, X 3 is preferably fluorine, chlorine, bromine, and X 4 is bromine. preferable.
  • R 1 , R 8 , R 11 , and R 25 are preferably halogen or hydrogen, more preferably bromine or hydrogen, because they easily generate benzyne as a reaction active intermediate.
  • the linear alkyllithium is obtained in a high yield with respect to the compound. It is preferably used in the range of 6.5 equivalents, more preferably 3.8 to 6.0 equivalents.
  • the produced aromatic compound can be purified by subjecting it to column chromatography or the like, and as a separating agent at that time, for example, silica gel, activated alumina, as a solvent, hexane, heptane, toluene, dichloromethane, Examples include chloroform.
  • the produced aromatic compound can be decolorized and purified in solution by subjecting it to activated carbon, zeolite, activated alumina, etc.
  • the solvent include hexane, heptane, toluene, dichloromethane, chloroform and the like. .
  • the produced aromatic compound may be further purified by recrystallization, and the purity can be improved by increasing the number of recrystallizations.
  • the number of recrystallizations is preferably 2 to 5 times from the viewpoint of high purity and high yield. Purity can be improved by increasing the number of recrystallizations.
  • the solvent used for recrystallization include hexane, heptane, octane, toluene, xylene, chloroform, chlorobenzene, dichlorobenzene, and the like, and a mixture of any ratio thereof may be used.
  • a solution of an aromatic compound is prepared by heating (the concentration of the solution at that time is preferably in the range of 0.01 to 10.0% by weight in order to efficiently remove impurities, and 0.05 to The range of 5.0% by weight is further preferred.)
  • the concentration of the solution at that time is preferably in the range of 0.01 to 10.0% by weight in order to efficiently remove impurities, and 0.05 to The range of 5.0% by weight is further preferred.
  • the final cooling temperature at the time of isolation improves purity and recovery rate. Therefore, it is preferably in the range of ⁇ 20 ° C. to 40 ° C.
  • it is possible to analyze by liquid chromatography.
  • the compounds represented by the general formulas (12-I) and (12-II), which are raw materials for the method for producing an aromatic compound of the present invention, are prepared by, for example, preparing an arylmagnesium halide from an aryl halide and reacting with zinc chloride. After the aryl zinc halide, it can be produced by a palladium-catalyzed coupling reaction with dibromobis (trifluoromethanesulfonyloxy) naphthalene.
  • aryl halide examples include 1-chloro-2,6-dibromo-4-fluorobenzene, 1-fluoro-2,6-dibromo-4-chlorobenzene, 1-fluoro-2,6- Dibromo-4-n-hexylbenzene, 1-fluoro-2,6-dibromo-4-n-octylbenzene, 1-fluoro-2,6-dibromo-4-n-decylbenzene, tetrabromothiophene, 2-n -Hexyltribromothiophene, 2-n-octyltribromothiophene, 2-n-decyltribromothiophene, and the like.
  • dibromobis (trifluoromethanesulfonyloxy) naphthalene examples include 2,6-dibromo-1,5-bis (trifluoromethanesulfonyloxy) naphthalene, 1,5-dibromo-2,6-bis (trifluoromethanesulfone).
  • Suitable examples of the palladium catalyst include tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, 1,3-bis (diphenylphosphinopropane) dichloropalladium, and the like.
  • the palladium-catalyzed coupling reaction can be carried out in a solvent such as THF at a temperature of 40 to 65 ° C.
  • the aromatic compound of the present invention can be dissolved in an appropriate solvent to form an organic semiconductor layer forming solution containing the aromatic compound.
  • an appropriate solvent any solvent can be used as long as it can dissolve the aromatic compound represented by the general formula (1), and when the organic semiconductor layer is formed, the drying speed of the solvent is preferable. Therefore, an organic solvent having a boiling point at normal pressure of 100 ° C. or higher is preferable.
  • the solvent that can be used in the present invention is not particularly limited, and examples thereof include aromatics such as toluene, mesitylene, o-xylene, isopropylbenzene, pentylbenzene, cyclohexylbenzene, 1,2,4-trimethylbenzene, tetralin, and indane.
  • aromatics such as toluene, mesitylene, o-xylene, isopropylbenzene, pentylbenzene, cyclohexylbenzene, 1,2,4-trimethylbenzene, tetralin, and indane.
  • Aromatic ethers such as methylenedioxybenzene and 1,2-ethylenedioxybenzene; chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1 Aromatic halogen compounds such as 4-difluorobenzene; thiophene, 3-chlorothiophene, 2-chlorothiophene, 3-methylthiophene, 2-methylthiophene, benzothiophene, 2-methylbenzothiophene, 2,3-dihydrobenzothiophene, Heteroaromatics such as furan, 3-methylfuran
  • the solvent used in the present invention can be a single solvent or a mixture of two or more solvents having different properties such as boiling point, polarity and solubility parameter.
  • the temperature at which the aromatic compound represented by the general formula (1) is mixed and dissolved in the solvent is preferably 0 to 80 ° C. for the purpose of promoting dissolution, and is preferably 10 to 60 ° C. More preferably, it is performed within the range.
  • the time for dissolving and mixing the aromatic compound represented by the general formula (1) in an organic solvent is preferably 1 minute to 1 hour in order to obtain a uniform solution.
  • the concentration of the aromatic compound represented by the general formula (1) in the organic semiconductor layer forming solution of the present invention is in the range of 0.1 to 10.0% by weight, the handling becomes easy. It becomes more excellent in the efficiency at the time of forming. Further, when the viscosity of the solution for forming an organic semiconductor layer is in the range of 0.3 to 10 mPa ⁇ s, more suitable coatability is exhibited.
  • the solution can be prepared at a relatively low temperature because the aromatic compound itself has an appropriate cohesive property, and it has oxidation resistance, so it is suitable for the production of an organic thin film by a coating method. it can. That is, since it is not necessary to remove air from the atmosphere, the coating process can be simplified.
  • the solution may be, for example, polystyrene, poly ( ⁇ -methylstyrene), poly (4-methylstyrene), poly (1-vinylnaphthalene), poly (2-vinylnaphthalene), poly (styrene-block-butadiene-block).
  • polystyrene-block-isoprene-block-styrene poly (vinyltoluene), poly (styrene-co-2,4-dimethylstyrene), poly (chlorostyrene), poly (styrene-co- ⁇ -Methylstyrene), poly (styrene-co-butadiene), poly (ethylene-co-norbornene), polyphenylene ether, polycarbonate, polycarbazole, polytriarylamine, poly (9,9-dioctylfluorene-co-dimethyltriaryl) Amine), poly (N-vinylcarbazole), Methyl methacrylate, poly (styrene-co-methyl methacrylate), polyethyl methacrylate, poly (n-propyl methacrylate), poly (isopropyl methacrylate), poly (n-butyl me
  • the glass transition temperature (Tg) of the polymer binder is preferably 105 ° C. or higher, more preferably 120 ° C. or higher, and more preferably 150 ° C. or higher because it is more suitable for handling the process temperature at the time of manufacturing an electronic device. It is particularly preferred that
  • the molecular weight of the polymer is preferably 5,000 to 1,000,000, more preferably 10,000 to 500,000, because it is suitable for obtaining an organic thin film transistor having a higher carrier mobility. 20,000 to 100,000 are particularly preferred.
  • the molecular weight of the polymer means a weight average molecular weight (Mw) in terms of polystyrene.
  • the polymer has an effect as a general polymer binder and improves the film formability of the obtained organic semiconductor layer, and an insulating polymer and a semiconducting polymer can also be used.
  • polymers that can be used as the polymer binder in the present invention include, in addition to the polymers listed above, for example, polar cyclic polyolefins, polysulfones, acrylonitrile-styrene copolymers, methyl methacrylate-styrene copolymers. Examples thereof include polymers.
  • the polar cyclic polyolefin is more preferably a polymer represented by the following general formula (13).
  • R 27 to R 29 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an alkyloxycarbonyl group having 2 to 20 carbon atoms
  • X 3 represents a halogen atom, an alkyloxycarbonyl group having 2 to 20 carbon atoms, an aryloxycarbonyl group having 7 to 20 carbon atoms, a cyano group, a nitro group, an alkoxy group having 1 to 20 carbon atoms, An aryloxy group having 6 to 20 carbon atom
  • R 27 to R 29 in the general formula (13) are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an alkyloxy having 2 to 20 carbon atoms.
  • Carbonyl group, aryloxycarbonyl group having 7 to 20 carbon atoms, cyano group, nitro group, alkoxy group having 1 to 20 carbon atoms, aryloxy group having 6 to 20 carbon atoms, hydroxyl group, amino group, or 1 to carbon atoms 20 represents an alkylamino group, and a hydrogen atom and an alkyl group having 1 to 20 carbon atoms are preferred because of high heat resistance.
  • the alkyl group having 1 to 20 carbon atoms in R 27 to R 29 is, for example, a straight chain such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an isobutyl group, a sec-butyl group, or an n-pentyl group. Or a branched alkyl group is mentioned.
  • Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, p-tolyl group, p- (n-hexyl) phenyl group, p- (n-octyl) phenyl group, p- (2-ethylhexyl) phenyl group and the like.
  • Examples of the alkyloxycarbonyl group having 2 to 20 carbon atoms include a methyloxycarbonyl group, an ethyloxycarbonyl group, and an n-propyloxycarbonyl group.
  • Examples of the aryloxycarbonyl group having 7 to 20 carbon atoms include a phenoxycarbonyl group and a 4-methylphenoxycarbonyl group.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, and an n-propoxy group.
  • Examples of the aryloxy group having 6 to 20 carbon atoms include a phenoxy group and 4-methylphenoxy.
  • alkylamino group having 1 to 20 carbon atoms examples include a methylamino group, an ethylamino group, and an n-propylamino group.
  • the substituent R 27 is preferably a methyl group, an ethyl group, or an n-propyl group, and the substituents R 28 and R 29 are preferably hydrogen atoms.
  • X 3 in the general formula (13) is a halogen atom, an alkyloxycarbonyl group having 2 to 20 carbon atoms, an aryloxycarbonyl group having 7 to 20 carbon atoms, a cyano group, a nitro group, an alkoxy group having 1 to 20 carbon atoms, An aryloxy group having 6 to 20 carbon atoms, a hydroxyl group, an amino group, or an alkylamino group having 1 to 20 carbon atoms;
  • alkyloxycarbonyl group having 2 to 20 carbon atoms in the substituent X 3 examples include a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an n-butoxycarbonyl group, an n-hexyloxycarbonyl group, and a cyclohexyloxycarbonyl group.
  • aryloxycarbonyl group having 7 to 20 carbon atoms include phenoxycarbonyl group, 4-methylphenoxycarbonyl group, 2,4-dimethylphenoxycarbonyl group, 4-ethylphenoxycarbonyl group and the like. .
  • Examples of the alkoxy group having 1 to 20 carbon atoms include a methoxy group and an ethoxy group.
  • Examples of the aryloxy group having 6 to 20 carbon atoms include a phenoxy group and 4-methylphenoxy.
  • Examples of the alkylamino group having 1 to 20 carbon atoms include a methylamino group, an ethylamino group, and an n-propylamino group.
  • An alkyloxycarbonyl group having 2 to 20 carbon atoms is preferable because of high solubility and high heat resistance.
  • P represents an integer of 20 to 5,000, and is preferably 40 to 2,000 because it is suitable for obtaining an organic thin film transistor having higher carrier mobility.
  • q represents an integer of 0 to 2, and is preferably 1.
  • r represents an integer of 0 to 2, preferably 0 or 1. More preferably, it is 0.
  • the bond consisting of a solid line and a dotted line is a single bond or a double bond, and is preferably a single bond for thermal stability.
  • polysulfones used as the polymer binder in the present invention are not particularly limited as long as they have a polysulfone structure, and more specifically, polysulfones represented by the following polysulfones 1 to 5 can be mentioned.
  • the substituents R 30 to R 33 each independently represents an alkyl group having 1 to 20 carbon atoms, and s represents an integer of 10 to 20,000.
  • Examples of the alkyl group having 1 to 20 carbon atoms in the substituents R 30 to R 33 include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an isobutyl group, an n-pentyl group, an n-hexyl group, and an isohexyl group.
  • S represents an integer of 10 to 20,000, preferably an integer of 10 to 10,000.
  • the acrylonitrile-styrene copolymer used as a polymer binder in the present invention is a copolymer having an arbitrary ratio of acrylonitrile and styrene, exhibits good electrical characteristics, and has a greater change in threshold voltage when bias stress is applied. From the standpoint of improving reliability, such as being smaller, the weight ratio of acrylonitrile and styrene is preferably 10:90 to 50:50, and more preferably 20:80 to 40:60.
  • the methyl methacrylate-styrene copolymer used as a polymer binder in the present invention is a copolymer having an arbitrary ratio of methyl methacrylate and styrene, exhibits good electrical characteristics, and changes in threshold voltage when bias stress is applied.
  • the molar ratio of methyl methacrylate to styrene is preferably 1:99 to 90:10, and more preferably 1:99 to 70:30.
  • the polymer used as a polymer binder in the present invention a polymer whose surface energy is adjusted with a surface treatment agent can be used.
  • a silane coupling agent can be used. Specific examples thereof include 1,1,1,3,3,3-hexamethyldisilazane, phenyltrimethoxysilane, octyltrichlorosilane, Examples thereof include ⁇ -phenethyltrichlorosilane and ⁇ -phenethyltrimethoxysilane.
  • the polymer used by this invention can use one type of polymer independently, or can be used as a mixture of two or more types of polymers. Furthermore, it is possible to use a mixture of polymers having different molecular weights.
  • the coating method for forming the organic semiconductor layer using the organic semiconductor layer forming solution of the present invention is not particularly limited as long as it is a method capable of forming the organic semiconductor layer.
  • spin coating, drop cast, dip Simple coating methods such as coating, cast coating, etc .
  • printing methods such as dispenser, inkjet, slit coating, blade coating, flexographic printing, screen printing, gravure printing, offset printing, etc. can be mentioned. Therefore, spin coating, drop casting, and ink jet are preferable.
  • the organic semiconductor layer formed using the organic semiconductor layer forming solution can be formed by drying and removing the solvent.
  • the drying conditions are not particularly limited.
  • the solvent can be removed by drying under normal pressure or reduced pressure.
  • the organic solvent can be efficiently removed from the applied organic semiconductor layer by drying, and the organic semiconductor layer can be formed. It is preferably carried out in a temperature range of 10 to 150 ° C.
  • the thickness of the organic semiconductor layer formed by the organic semiconductor layer forming solution of the present invention is not limited, and good carrier movement is obtained. Therefore, the range is preferably 1 nm to 1 ⁇ m, and preferably 10 nm to 300 nm. More preferably.
  • the obtained organic semiconductor layer may be annealed at 40 to 180 ° C. after forming the organic semiconductor layer.
  • the organic semiconductor layer formed from the organic semiconductor layer forming solution of the present invention can be used as an organic semiconductor device including the organic semiconductor layer, particularly as an organic thin film transistor including the organic semiconductor layer.
  • the organic thin film transistor can be obtained by laminating an organic semiconductor layer provided with a source electrode and a drain electrode and a gate electrode on a substrate via an insulating layer, and the organic semiconductor layer is formed on the organic semiconductor layer according to the present invention.
  • an organic semiconductor layer formed of a solution an organic thin film transistor that exhibits excellent semiconductor and electrical characteristics can be obtained.
  • Fig. 1 shows the structure of a general organic thin film transistor in cross-sectional shape.
  • (A) is a bottom gate-top contact type
  • (B) is a bottom gate-bottom contact type
  • (C) is a top gate-top contact type
  • (D) is a top gate-bottom contact type.
  • 1 is an organic semiconductor layer
  • 2 is a substrate
  • 3 is a gate electrode
  • 4 is a gate insulating layer
  • 5 is a source electrode
  • 6 is a drain electrode, and is formed from the organic semiconductor layer forming solution of the present invention.
  • the organic semiconductor layer to be applied can be applied to any organic thin film transistor.
  • the substrate according to the present invention is not particularly limited.
  • the substrate can also serve as the gate electrode.
  • the gate electrode according to the present invention is not particularly limited.
  • inorganic materials such as doped conductive polymers (eg, PEDOT-PSS).
  • the inorganic material can be used as a metal nanoparticle ink.
  • the solvent is a polar solvent such as water, methanol, ethanol, 2-propanol, 1-butanol, and 2-butanol because of appropriate dispersibility; carbon number such as hexane, heptane, octane, decane, dodecane, and tetradecane.
  • the gate insulating layer according to the present invention is not particularly limited.
  • the solvent used for dissolving the polymer material is not particularly limited, and examples thereof include aliphatic hydrocarbon solvents having 6 to 14 carbon atoms such as hexane, heptane, octane, decane, dodecane, and tetradecane; THF, 1,2-dimethoxy Ether solvents such as ethane, dioxane; alcohol solvents such as ethanol, isopropyl alcohol, 1-butanol, 2-butanol, 2-ethylhexanol, tetrahydrofurfuryl alcohol; acetone, methyl ethyl ketone, diethyl ketone, diisopropyl ketone, acetophenone, etc.
  • aliphatic hydrocarbon solvents having 6 to 14 carbon atoms such as hexane, heptane, octane, decane, dodecane, and tetradecane
  • THF 1,2-dime
  • Ketone solvents such as ethyl acetate, ⁇ -butyrolactone, cyclohexanol acetate, 3-methoxybutyl acetate, tetrahydrofurfuryl acetate, tetrahydrofurfuryl propionate;
  • D Amide solvents such as F and NMP; dipropylene glycol dimethyl ether, dipropylene glycol diacetate, dipropylene glycol methyl-n-propyl ether, dipropylene glycol methyl ether acetate, 1,4-butanediol diacetate, 1,3- Glycol solvents such as butylene glycol diacetate, 1,6-hexanediol diacetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl l
  • the concentration of the polymer insulating material is, for example, 0.1 to 10.0% by weight at a temperature of 20 to 40 ° C.
  • the thickness of the insulating layer obtained at the concentration is not limited, and is preferably 100 nm to 1 ⁇ m, more preferably 150 nm to 900 nm from the viewpoint of insulation resistance.
  • gate insulating layers are, for example, octadecyltrichlorosilane, decyltrichlorosilane, decyltrimethoxysilane, octyltrichlorosilane, octadecyltrimethoxysilane, ⁇ -phenethyltrichlorosilane, ⁇ -phenethyltrimethoxysilane, phenyltrichlorosilane.
  • Silanes such as chlorosilane and phenyltrimethoxysilane; phosphonic acids such as octadecylphosphonic acid, decylphosphonic acid and octylphosphonic acid; and those modified with silylamines such as hexamethyldisilazane can also be used.
  • the surface treatment of the gate insulating layer is preferable in order to increase the crystal grain size and molecular orientation of the organic semiconductor material, and to improve carrier mobility, current on / off ratio, and threshold voltage. Results are obtained.
  • the material of the source electrode and the drain electrode of the organic thin film transistor of the present invention is not particularly limited, and the same material as the gate electrode can be used, which may be the same as or different from the material of the gate electrode. May be laminated.
  • surface treatment can be performed on these electrode materials. Examples of the manifestation treatment agent used for the surface treatment include benzenethiol, pentafluorobenzenethiol, 4-fluorobenzenethiol, 4-methoxybenzenethiol and the like.
  • the organic thin film transistor of the present invention preferably has a carrier mobility of 0.20 cm 2 / V ⁇ sec or more for fast operation.
  • the current on / off ratio is preferably 1.0 ⁇ 10 6 or more for high switching characteristics.
  • the organic thin film transistor of the present invention is used for organic semiconductor layers of transistors such as electronic paper, organic EL display, liquid crystal display, IC tag (RFID tag), pressure sensor, biosensor, etc .; organic EL display material; organic semiconductor laser material; It can be used for solar cell materials; electronic materials such as photonic crystal materials, and the aromatic compound represented by the general formula (1) becomes a crystalline thin film, so that it can be used as a semiconductor layer for organic thin film transistors. preferable.
  • the novel aromatic compound of the present invention has high carrier mobility and high heat resistance, suitable solubility and HOMO level. Therefore, it is possible to provide an organic thin film transistor that exhibits excellent semiconductor characteristics by coating, and the effect is extremely high.
  • the product was identified using 1 H NMR spectrum, gas chromatography-mass spectrum (GCMS), and liquid chromatography-mass spectrum (LCMS) analysis.
  • GCMS gas chromatography-mass spectrum
  • LCMS liquid chromatography-mass spectrum
  • DSC differential scanning calorimeter
  • Synthesis Example 2 (Synthesis of 2,6-difluorobiphenylene) (Step B1) Under a nitrogen atmosphere, 3.30 g (9.48 mmol) of 2,2′-dibromo-4,5′-difluorobiphenyl synthesized in Synthesis Example 1 and 160 ml of THF (dehydrated grade) were added to a 100 ml Schlenk reaction vessel. The mixture was cooled to ⁇ 78 ° C., and 12.5 ml (20.0 mmol) of a hexane solution of n-butyllithium (Kanto Chemical, 1.6M) was added dropwise. The mixture was aged at ⁇ 78 ° C. for 1 hour.
  • Synthesis Example 4 (Synthesis of 2,6-difluoro-1,5-dioctynylbiphenylene) (Step D1) In a 100 ml Schlenk reaction vessel under a nitrogen atmosphere, 453 mg (1.02 mmol) of 2,6-difluoro-1,5-diiodobiphenylene synthesized in Synthesis Example 3 and dichlorobis (triphenylphosphine) palladium (Wako Pure Chemical Industries) 64 0.3 mg (0.0916 mol), copper (I) iodide (Wako Pure Chemical Industries) 35.9 mg (0.188 mmol), toluene 9 ml, and triethylamine 9 ml were added.
  • dichlorobis triphenylphosphine
  • 287 mg (0.709 mmol) of 2,6-difluoro-1,5-dioctynylbiphenylene synthesized in Synthesis Example 4 and sodium sulfide / 9hydrate (Wako Pure Chemical Industries, Ltd.) 613 mg (2.55 mmol) and DMSO (Wako Pure Chemical Industries) 6 ml were added.
  • the mixture was heated to 80 ° C. and stirred for 5 hours. After cooling the obtained reaction mixture to 0 ° C., water and toluene were added.
  • the HOMO level was ⁇ 5.31 eV.
  • Synthesis Example 5 (Synthesis of 2,6-dibromo-3,7-difluorobiphenylene) (Step C4) Under a nitrogen atmosphere, 351 mg (1.86 mmol) of 2,6-difluorobiphenylene synthesized in Synthesis Example 2 and 7 ml of DMF (dehydrated grade) were added to a 100 ml Schlenk reaction vessel. Here, 954 mg (5.36 mmol) of NBS (Wako Pure Chemical Industries) was added at room temperature. After stirring at 40 ° C. for 10 hours, the resulting reaction mixture was cooled to room temperature. Water and toluene were added and the phases were separated.
  • Synthesis Example 6 (Synthesis of 2,6-difluoro-3,7-dioctynylbiphenylene) (Step D4) In a 100 ml Schlenk reaction vessel under a nitrogen atmosphere, 270 mg (0.780 mmol) of 2,6-dibromo-3,7-difluorobiphenylene synthesized in Synthesis Example 5 and dichlorobis (triphenylphosphine) palladium (Wako Pure Chemical Industries) 45. 3 mg (0.0645 mol), copper (I) iodide (Wako Pure Chemical Industries) 26.0 mg (0.136 mmol), toluene 3 ml, and triethylamine 5 ml were added.
  • dichlorobis triphenylphosphine
  • the HOMO level was -5.40 eV.
  • Synthesis Example 7 (Synthesis of 2,6-difluoro-1,5-didecynylbiphenylene) (Step D1) The same procedure as in Synthesis Example 4 was repeated except that 1-decyne (Wako Pure Chemical Industries) was used in place of 1-octyne in Synthesis Example 4, and the yellow of 2,6-difluoro-1,5-didecynylbiphenylene was repeated. A solid was obtained (yield 71%).
  • Example 1 is the same as Example 1 except that 2,6-difluoro-1,5-didecynylbiphenylene synthesized in Synthesis Example 7 was used instead of 2,6-difluoro-1,5-dioctynylbiphenylene. The same procedure was repeated to obtain a yellow solid of 2,7-dioctyldithienobiphenylene (1-1a, compound 3) (yield 61%). The purity was 99.3% by LC analysis.
  • HOMO level was -5.29 eV from CV measurement.
  • Synthesis Example 8 (Synthesis of 2,6-difluoro-1,5-didodecynylbiphenylene) (Step D1) The same procedure as in Synthesis Example 4 was repeated except that 1-dodecin (Wako Pure Chemical Industries) was used instead of 1-octyne in Synthesis Example 4, and 2,6-difluoro-1,5-didodecynylbiphenylene was synthesized. A yellow solid was obtained (yield 78%).
  • the HOMO level was -5.27 eV.
  • Synthesis Example 11 (Synthesis of 1,5-difluorobiphenylene) (Step B3) Under a nitrogen atmosphere, 395.5 mg (1.1 mmol) of 2,2′-dibromo-3,6′-difluorobiphenyl synthesized in Synthesis Example 10 and 20 ml of THF (dehydrated grade) were added to a 100 ml Schlenk reaction vessel. The mixture was cooled to ⁇ 78 ° C., and 2.9 ml (4.6 mmol) of a hexane solution of n-butyllithium (Kanto Chemical, 1.6M) was added dropwise. The mixture was aged at ⁇ 78 ° C. for 1 hour, then heated to ⁇ 40 ° C.
  • Synthesis Example 12 Synthesis of biphenylene-1,5-bis (thioacetaldehyde dimethyl acetal) (Step C3) In a 100 ml Schlenk reaction vessel under nitrogen atmosphere, 57.6 mg (0.31 mmol) of 1,5-difluorobiphenylene synthesized in Synthesis Example 11 and 398.0 mg of sodium sulfide 9 hydrate (Wako Pure Chemical Industries, Ltd.) 65 mmol) and 4 ml of NMP (Wako Pure Chemical Industries) were added. The mixture was stirred at 110 ° C. for 6 hours.
  • Example 5 Synthesis of dithienobiphenylene derivative (step D3)
  • step D3 Synthesis of dithienobiphenylene derivative (step D3))
  • the mixture was stirred at 130 ° C. for 5 hours. After cooling the obtained reaction mixture to room temperature, water and toluene were added. After phase separation, the organic phase was washed with water and dried over anhydrous sodium sulfate.
  • the HOMO level was ⁇ 5.30 eV.
  • Example 7 Synthesis of (bis (dithieno) biphenylene derivative) (step E5) In a 50 ml Schlenk reaction vessel under a nitrogen atmosphere, 15.1 mg (0.0358 mmol) of 1,5-bis (3-chloro-2-thienyl) -2,6-difluorobiphenylene synthesized in Synthesis Example 13 was added. Hydrate (Wako Pure Chemical Industries) 44.2 mg (0.184 mmol) and NMP (Wako Pure Chemical Industries) 2 ml were added. The mixture was heated to 170 ° C. and stirred for 4 hours. After cooling the obtained reaction mixture to 0 ° C., water and toluene were added.
  • HOMO level was ⁇ 5.12 eV from CV measurement.
  • Synthesis Example 15 (Synthesis of 2,2′-dibromo-4-hexyl-4′-fluorobiphenyl) (Step A7) Under a nitrogen atmosphere, 1.25 g (3.40 mmol) of 1-bromo-5-hexyl-2-iodobenzene synthesized in Synthesis Example 14 and 7 ml of THF (dehydrated grade) were added to a 50 ml Schlenk reaction vessel. The solution was cooled to 0 ° C., and 1.8 ml (3.6 mmol) of a THF solution of ethylmagnesium chloride (Sigma-Aldrich, 2.0 M) was added dropwise. This mixture was aged at 0 ° C. for 20 minutes to prepare 1-bromo-5-hexylphenyl-2-magnesium chloride.
  • Synthesis Example 16 (Synthesis of 2-fluoro-7-hexylbiphenylene) (Step B7) Under a nitrogen atmosphere, 1.18 g (2.85 mmol) of 2,2′-dibromo-4-hexyl-4′-fluorobiphenyl synthesized in Synthesis Example 15 and 70 ml of THF (dehydrated grade) were added to a 100 ml Schlenk reaction vessel. . The mixture was cooled to ⁇ 78 ° C., and 4.7 ml (7.5 mmol) of a hexane solution of n-butyllithium (Tokyo Chemical Industry, 1.6 M) was added dropwise. The mixture was aged at ⁇ 78 ° C. to ⁇ 70 ° C.
  • Synthesis Example 17 (Synthesis of 2,7-dibromo-3-fluoro-6-hexylbiphenylene) (Step C7) Under a nitrogen atmosphere, 481 mg (1.89 mmol) of 2-fluoro-7-hexylbiphenylene synthesized in Synthesis Example 16 and 12 ml of DMF (dehydrated grade) were added to a 200 ml one-necked eggplant flask reaction vessel. Here, 1.29 g (7.24 mmol) of NBS (Wako Pure Chemical Industries) was charged at room temperature. After stirring at room temperature for 2 days and at 40 ° C. for 6 hours, the resulting reaction mixture was ice-cooled. Water and toluene were added and the phases were separated.
  • Synthesis Example 18 (Synthesis of bi (7-bromo-3-fluoro-6-hexyl-2-biphenylenyl) (Step D7) Under a nitrogen atmosphere, 170 mg (0.412 mmol) of 2,7-dibromo-3-fluoro-6-hexylbiphenylene synthesized in Synthesis Example 17 and 10 ml of THF (dehydrated grade) were added to a 100 ml Schlenk reaction vessel. The solution was cooled to ⁇ 10 ° C., and 0.70 ml (1.4 mmol) of a THF solution of isopropylmagnesium chloride (Sigma-Aldrich, 2.0 M) was added dropwise. This mixture was aged at ⁇ 10 ° C.
  • Synthesis Example 19 (Synthesis of bi (3-fluoro-6-hexyl-2-biphenylenyl)) (Step E7) In a nitrogen atmosphere, 33.1 mg (0.0498 mmol) of bi (7-bromo-3-fluoro-6-hexyl-2-biphenylenyl) synthesized in Synthesis Example 18 and 3 ml of THF (dehydrated grade) were placed in a 50 ml Schlenk reaction vessel. Added. The solution was cooled to ⁇ 78 ° C., and 0.110 ml (0.176 mmol) of a hexane solution of n-butyllithium (Tokyo Chemical Industry, 1.6 M) was added dropwise.
  • n-butyllithium Tokyo Chemical Industry, 1.6 M
  • 15.2 mg (0.0300 mmol) of bi (3-fluoro-6-hexyl-2-biphenylenyl) synthesized in Synthesis Example 19 and sodium sulfide 9 hydrate (Wako Pure Chemical Industries, Ltd.) Industrial) 24.9 mg (0.104 mmol) and 3 ml of NMP (Wako Pure Chemical Industries) were added.
  • the mixture was heated to 170 ° C. and stirred for 4 hours.
  • the resulting reaction mixture was ice-cooled and then quenched with water and 1N hydrochloric acid.
  • the HOMO level was ⁇ 5.16 eV.
  • Example 10 (Production of aromatic compound) In a 100 ml Schlenk reaction vessel under a nitrogen atmosphere, 320 mg (0.456 mmol) of 2,6-dibromo-1,5-di (1-chloro-6-bromo-4-fluoro-2-phenyl) naphthalene synthesized in Synthesis Example 21 was used. ) And 6 ml of THF (dehydrated grade) were added. The mixture was cooled to ⁇ 70 ° C., and 1.4 ml (2.2 mmol) of a hexane solution of n-butyllithium (Tokyo Chemical Industry, 1.6 M) was added dropwise. The mixture was gradually raised to -30 ° C and held at -30 ° C for 1 hour.
  • THF dehydrated grade
  • Example 11 (Preparation of a solution for forming an organic semiconductor layer) Under air, 0.87 mg of 2,7-dihexyldithienobiphenylene (1-1a, compound 1) synthesized in Example 1 and 434 mg of toluene (Wako Pure Chemical Industries, Pure Grade) were added to a 10 ml sample tube, and 50 ml After heating and dissolving at 0 ° C., the solution was allowed to cool to room temperature (25 ° C.) to prepare an organic semiconductor layer forming solution. The solution state was maintained after 10 hours at 25 ° C. (the concentration of Compound 1 was 0.20% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Example 12 (Production of Organic Semiconductor Layer and Organic Thin Film Transistor)
  • the solution for forming an organic semiconductor layer obtained in Example 11 was formed on an n-type highly doped silicon substrate (Miyoshi, resistance value: 0.004 ⁇ , with a 200 nm silicon oxide film on the surface) having a diameter of 2 inches under air.
  • a solution filled in a syringe and passed through a 0.2 ⁇ m filter was drop-cast under air.
  • the film was naturally dried at room temperature (25 ° C.) to prepare a thin film of an aromatic compound (Compound 1) having a film thickness of 56 nm.
  • Compound 1 an aromatic compound having a film thickness of 56 nm.
  • a shadow mask having a channel length of 50 ⁇ m and a channel width of 500 ⁇ m was placed on the organic semiconductor layer, and the source and drain electrodes were formed by vacuum deposition of gold, thereby producing a bottom gate-top contact type p-type organic thin film transistor.
  • the hole carrier mobility was 0.31 cm 2 / V ⁇ sec, and the current on / off ratio was 2.0 ⁇ 10 6 .
  • the electrical properties of the organic thin film transistor after annealing at 150 ° C. for 15 minutes were measured.
  • the hole carrier mobility was 0.33 cm 2 / V ⁇ sec
  • the current on / off ratio was 1.9 ⁇ 10 6
  • almost no deterioration in performance due to heat treatment was observed.
  • Example 13 (Preparation of organic semiconductor layer forming solution) A solution for forming an organic semiconductor layer was prepared in the same manner as in Example 11 except that 0.43 mg of 2,7-dihexyldithienobiphenylene (1-3a, compound 2) synthesized in Example 2 was used. . The solution state was maintained after 10 hours at 25 ° C. (the concentration of Compound 2 was 0.10% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Example 14 (Production of Organic Semiconductor Layer and Organic Thin Film Transistor) Using the solution for forming an organic semiconductor layer obtained in Example 13, a thin film of an aromatic compound (compound 2) having a film thickness of 29 nm was produced in the same manner as in Example 12, and a bottom gate-top contact type p Type organic thin film transistor was fabricated.
  • compound 2 an aromatic compound having a film thickness of 29 nm
  • the hole carrier mobility was 0.23 cm 2 / V ⁇ sec, and the current on / off ratio was 1.0 ⁇ 10 6 .
  • the electrical properties of the organic thin film transistor after annealing at 150 ° C. for 15 minutes were measured.
  • the carrier mobility of holes was 0.22 cm 2 / V ⁇ sec
  • the current on / off ratio was 1.0 ⁇ 10 6
  • almost no deterioration in performance due to heat treatment was observed.
  • Example 15 (Preparation of organic semiconductor layer forming solution) A solution for forming an organic semiconductor layer was prepared in the same manner as in Example 11, except that 0.88 mg of 2,7-dioctyldithienobiphenylene (1-1a, compound 3) synthesized in Example 3 was used. . The solution state was maintained even after 10 hours at 25 ° C. (the concentration of Compound 3 was 0.20% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Example 16 (Production of Organic Semiconductor Layer and Organic Thin Film Transistor) Using the organic semiconductor layer forming solution obtained in Example 15, a top gate-bottom contact type p-type organic thin film transistor was produced. Table 1 shows the material and film forming method of each constituent member. The film thickness of the aromatic compound (compound 3) thin film was 58 nm.
  • the hole carrier mobility was 0.60 cm 2 / V ⁇ sec, and the current on / off ratio was 3.0 ⁇ 10 6 .
  • the electrical properties of the organic thin film transistor after annealing at 130 ° C. for 15 minutes were measured.
  • the carrier mobility of holes was 0.58 cm 2 / V ⁇ sec
  • the current on / off ratio was 2.8 ⁇ 10 6
  • almost no deterioration in performance due to heat treatment was observed.
  • Example 17 (Production of Organic Semiconductor Layer and Organic Thin Film Transistor) A bottom gate-bottom contact type p-type organic thin film transistor was fabricated using the organic semiconductor layer forming solution obtained in Example 15 and using the material and film forming method of each component shown in Example 16. The film thickness of the biphenylene derivative (compound 3) thin film was 55 nm.
  • the hole carrier mobility was 0.33 cm 2 / V ⁇ sec, and the current on / off ratio was 1.5 ⁇ 10 6 .
  • the electrical properties of the organic thin film transistor after annealing at 130 ° C. for 15 minutes were measured.
  • the hole carrier mobility was 0.31 cm 2 / V ⁇ sec
  • the current on / off ratio was 1.3 ⁇ 10 6 , and almost no deterioration in performance due to heat treatment was observed.
  • Comparative Example 1 (Preparation of organic semiconductor layer forming solution) A solution for forming an organic semiconductor layer was prepared in the same manner as in Example 11 using 2,7-dioctylbenzothienobenzothiophene (Sigma-Aldrich) in a 10 ml sample tube under air. The solution state was maintained even after 10 hours at 25 ° C. (0.20% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • 2,7-dioctylbenzothienobenzothiophene Sigma-Aldrich
  • the hole carrier mobility was 0.01 cm 2 / V ⁇ sec, and the current on / off ratio was 3.0 ⁇ 10 5 .
  • Comparative Example 2 (Production of organic semiconductor layer and organic thin film transistor) The same operation as in Comparative Example 1 was repeated except that the organic thin film transistor produced in Comparative Example 1 was annealed at 130 ° C. for 15 minutes. As a result, transistor operation was not obtained, and a significant performance degradation was observed due to heat treatment. Microscopic observation confirmed that the organic semiconductor layer was destroyed by heating.
  • A Bottom gate-top contact type organic thin film transistor
  • B Bottom gate-bottom contact type organic thin film transistor
  • C Top gate-top contact type organic thin film transistor
  • D Top gate-bottom contact type organic thin film transistor 1: Organic semiconductor layer 2: Substrate 3: Gate electrode 4: Gate insulating layer 5: Source electrode 6: Drain electrode

Abstract

高いキャリア移動度、高耐熱性、及び適当な溶解性を持つ塗布型の有機半導体材料である新規な芳香族化合物、これを用いた有機半導体層、有機薄膜トランジスタ、及び新規な芳香族化合物の製造方法を提供する。 下記一般式(1-I)または(1-II)で示される芳香族化合物。(ここで、Aは共有結合、酸素、硫黄、セレン、NR14、またはCR15=CR16を示し、A1はCR3=CR4、酸素、硫黄、またはセレンを示し、A2はCR7=CR8、酸素、硫黄、またはセレンを示し、A3はCR5=CR6、酸素、硫黄、またはセレンを示す。R1~R8の隣接する二つからなる組合せの内、1組~3組が単環~縮合4環を形成し、該単環~縮合4環を構成する全ての環が4~6員環である。該単環~縮合4環を形成しなかったR1~R8は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。R14~R16は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。)

Description

芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
 本発明は、有機半導体材料等の電子材料への展開が可能な新規な芳香族化合物、これを用いた有機半導体層、及び有機薄膜トランジスタに関するものであり、特に溶解性及び耐熱性に優れることから様々なデバイス作製プロセスに適用可能な新規な芳香族化合物、これを用いた有機半導体層、及び有機薄膜トランジスタに関するものである。
 有機薄膜トランジスタに代表される有機半導体デバイスは、省エネルギー、低コスト及びフレキシブルといった無機半導体デバイスにはない特徴を有することから近年注目されている。この有機半導体デバイスは、有機半導体層、基板、絶縁層、電極等の数種類の材料から構成され、中でも電荷のキャリア移動を担う有機半導体層は該デバイスの中心的な役割を有している。そして、有機半導体デバイス性能は、この有機半導体層を構成する有機半導体材料のキャリア移動度により左右されることから、高キャリア移動度を与える有機半導体材料の出現が所望されている。
 有機半導体層を作製する方法としては、高温真空下、有機材料を気化させて実施する真空蒸着法、有機材料を適当な溶媒に溶解させその溶液を塗布する塗布法等の方法が一般的に知られている。このうち、塗布法においては、高温高真空条件を用いることなく印刷技術を用いても実施することができるため、デバイス作製の大幅な製造コストの削減を図ることが期待でき、経済的に好ましいプロセスである。
 このような塗布法に使用される有機半導体材料は、高いキャリア移動度、及びデバイス作製のプロセス上の観点から、130℃以上の耐熱性及び室温での溶解度が0.1重量%以上を持つことが好ましい。さらに、デバイスの観点からは電極との接触抵抗を小さくするためHOMOレベル-5.4eV以上であり、電極の仕事関数に近いことが好ましい。
 ここで、一般的に、縮合環系の棒状の分子長軸を有する低分子半導体は、高分子半導体と比べて結晶性が高いため高キャリア移動度を発現しやすいことが知られている。しかし、縮合環数が5以下では低融点及びHOMOレベルが低い課題が、縮合環数が6以上では低溶解性である課題があり、高キャリア移動度、高耐熱性、適当な溶解性及び高いHOMOレベルを兼ね合わせた低分子系の有機半導体材料は殆ど知られていないのが現状である。
 現在、低分子系材料としては、2,7-ジアルキル置換ベンゾチエノベンゾチオフェン(縮合4環)(例えば、特許文献1参照及び非特許文献1参照)、6,6’-ジアルキルジナフトチエノチオフェン(縮合6環)(例えば、特許文献2参照)、ターフェニレン誘導体(例えば、特許文献3参照)等が提案されている。
 しかし、特許文献1及び非特許文献1に記載されたジアルキル置換ベンゾチエノベンゾチオフェンの場合、HOMOレベルが-5.5eVであり、HOMOレベルの向上が求められるものであった。また、130℃以上に加熱するとトランジスタ動作が失われるという問題があった。
 特許文献2に記載の6,6’-ジアルキルジナフトチエノチオフェンは、60℃での溶解度が0.08g/L以下(0.01重量%以下、トルエン)と低い課題があった。
 さらに特許文献3に記載のターフェニレン誘導体は、ベンゼン環とシクロブテン環からなる直線性の高い縮合環骨格を有するため、溶解度が低下する課題があった。
 また、テトラチエノビフェニレン骨格を有する化合物が報告されているが、円盤形状に近い構造を有することから、構造的に有機半導体の層を形成するのに適さず、有機半導体材料として適したものではなかった(非特許文献2参照)。
国際公開第2008/047896号パンフレット 国際公開第2010/098372号パンフレット 国際公開第2006/109569号パンフレット
ジャーナル オブ アメリカン ケミカル ソサエティー、2007年、129巻、15732~15733頁 ジャーナル オブ アメリカン ケミカル ソサエティー、2013年、135巻、1731~1734頁
 本発明は、上記課題に鑑みてなされたものであり、その目的は、高キャリア移動度で高耐熱性、適当な溶解性及び高いHOMOレベルを持つ新規な塗布型の有機半導体材料を提供することにある。
 本発明者は、上記課題を解決するため鋭意検討の結果、新規な芳香族化合物が高キャリア移動度を与えると共に、高耐熱性、適当な溶解性及びHOMOレベルを持つ有機半導体材料となることを見出し、本発明を完成するに到った。
 即ち、本発明は、以下の[1]及至[14]に存する。
[1] 下記一般式(1-I)または(1-II)で示される芳香族化合物。
Figure JPOXMLDOC01-appb-C000013
(ここで、Aは共有結合、酸素、硫黄、セレン、NR14、またはCR15=CR16を示し、AはCR=CR、酸素、硫黄、またはセレンを示し、AはCR=CR、酸素、硫黄、またはセレンを示し、AはCR=CR、酸素、硫黄、またはセレンを示す。R~Rの隣接する二つからなる組合せの内、1組~3組が単環~縮合4環を形成し、該単環~縮合4環を構成する全ての環が4~6員環である。該単環~縮合4環を形成しなかったR~Rは、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。R14~R16は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。)
[2] Aが共有結合であることを特徴とする上記[1]に記載の芳香族化合物。
[3] Aが酸素、硫黄、セレン、NR14、またはCR15=CR16であることを特徴とする上記[1]に記載の芳香族化合物。
[4] 上記[1]に記載の一般式(1-I)で示される芳香族化合物であり、下記一般式(2)で示されることを特徴とする芳香族化合物。
Figure JPOXMLDOC01-appb-C000014
[(ここで、R~Rの隣接する二つからなる組合せの内、1組~3組が下記一般式(3)で示される単環~縮合4環を形成し、該単環~縮合4環を構成する全ての環が4~6員環である。下記一般式(3)を形成しなかったR~R、及びAは、上記一般式(1-I)、(1-II)における単環~縮合4環を形成しなかったR~R、及びAとそれぞれ同意義を示す。)
Figure JPOXMLDOC01-appb-C000015
(ここで、Xは共有結合、酸素、硫黄、セレン、CR10=C、または窒素を示し、Yは炭素または窒素を示す。lはXが共有結合、酸素、硫黄、セレンのとき0であり、XがCR10=C、窒素のとき1である。mはYが炭素のとき1であり、Yが窒素のとき0である。R~R11及びR13の隣接する二つからなる組合せの内、1組が下記一般式(4)で示される単環~縮合3環を形成し、該単環~縮合3環を構成する全ての環が4~6員環であることができる。下記一般式(4)を形成しなかったR~R11及びR13は、上記一般式(1-I)、(1-II)における単環~縮合4環を形成しなかったR~R又はR~Rと同様の基を示す。Xが共有結合のとき、一般式(2)のAは酸素、硫黄、セレン、NR14、またはCR15=CR16であり、Xが酸素、硫黄、セレン、CR10=C、または窒素のとき、一般式(2)のAは共有結合である。XがCR10=Cのとき、6員環を形成する隣接する二つからなる組合せの位置は、R及びR、R及びRである。但し、単環~縮合4環を形成しなかったR~R、一般式(4)を形成しなかったR~R11及びR13、並びにR14、R15、及びR16が、同時に水素であることを除く。)
Figure JPOXMLDOC01-appb-C000016
(ここで、Xは共有結合、酸素、硫黄、セレン、CR18=C、または窒素を示し、Yは炭素または窒素を示す。nはXが共有結合、酸素、硫黄、またはセレンのとき0であり、XがCR18=C、または窒素のとき1である。oはYが炭素のとき1であり、Yが窒素のとき0である。R17~R20の隣接する二つからなる組合せの内、1組が下記一般式(5)または一般式(6)を構成し、4~6員環を形成することができる。一般式(2)のAが共有結合、NR14、またはCR15=CR16であるとき、一般式(5)または一般式(6)を構成しなかったR17~R20は、上記一般式(1-I)、(1-II)における単環~縮合4環を形成しなかったR~R又はR~Rと同様の基を示す。また、一般式(2)のAが酸素、硫黄、またはセレンであるとき、一般式(5)または一般式(6)を構成しなかったR17~R20は、それぞれ独立して、水素、メチル基、エチル基、n-プロピル基、炭素数4~20のアルキル基からなる群から選ばれ、一つのみが炭素数4~20のアルキル基である。但し、該R17~R20は、同時に水素であることを除く。)
Figure JPOXMLDOC01-appb-C000017
(ここで、Xは酸素、硫黄、セレン、CR22=CR23、またはNR24を示し、YはCR25または窒素を示す。R21~R25は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基からなる群から選ばれ、R21~R25のうち、1つ以上がハロゲンまたは炭素数1~20のアルキル基である。)
Figure JPOXMLDOC01-appb-C000018
(ここで、R26は、炭素数1~20のアルキル基を示す。)]
[5] 上記[1]に記載の一般式(1-I)で示される芳香族化合物であり、下記一般式(7)で示されることを特徴とするビフェニレン誘導体。
Figure JPOXMLDOC01-appb-C000019
[(ここで、R~Rの隣接する二つからなる組合せの内、1組~3組が下記一般式(8)を構成し、5又は6員環を形成する。下記一般式(8)を構成しなかったR~Rは、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基を示す。)
Figure JPOXMLDOC01-appb-C000020
(ここで、Xは酸素、硫黄、セレン、CR10=CR11、又はNR12を示し、YはCR13又は窒素を示す。R~R13は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基を示す。)]
[6] R~Rの隣接する二つからなる組合せの内、1組のみ、及びR~Rの隣接する二つからなる組合せの内、1組のみが一般式(8)を構成することを特徴とする上記[5]に記載のビフェニレン誘導体。
[7] Xが酸素、硫黄、セレン、又はCR10=CR11を示し、かつYがCR13又は窒素を示すことを特徴とする上記[5]または上記[6]に記載のビフェニレン誘導体。
[8] Xが酸素、硫黄、又はセレンを示し、かつYがCR13又は窒素を示すことを特徴とする上記[5]~上記[7]のいずれかに記載のビフェニレン誘導体。
[9] RとR及びRとRが一般式(8)を構成することを特徴とする上記[5]~上記[8]のいずれかに記載のビフェニレン誘導体。
[10] 上記[1]~上記[4]のいずれかに記載の芳香族化合物、または上記[5]~上記[9]のいずれかに記載のビフェニレン誘導体を含有することを特徴とする有機半導体層形成用溶液。
[11] 上記[10]に記載の有機半導体層形成用溶液を用いてなることを特徴とする有機半導体層。
[12] 上記[11]に記載の有機半導体層を含んでなることを特徴とする有機薄膜トランジスタ。
[13] 下記一般式(10-I)または(10-II)で示される化合物を直鎖アルキルリチウムと反応させることを特徴とする下記一般式(9-I)または(9-II)で示される芳香族化合物の製造方法。
Figure JPOXMLDOC01-appb-C000021
(ここで、Aは共有結合、酸素、硫黄、セレン、NR14、またはCR15=CR16を示し、AはCR=CR、酸素、硫黄、またはセレンを示し、AはCR=CR、酸素、硫黄、またはセレンを示し、AはCR=CR、酸素、硫黄、またはセレンを示す。R~Rの隣接する二つからなる組合せの内、1組~3組が単環~縮合4環を形成し、該単環~縮合4環を構成する全ての環が4~6員環である。該単環~縮合4環を形成しなかったR~Rは、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。R14~R16は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。)
Figure JPOXMLDOC01-appb-C000022
(ここで、X及びXは、それぞれ独立してハロゲンを示す。A、A~A、R、R、及びR~Rは、上記一般式(9-I)、(9-II)におけるA、A~A、R、R、及びR~Rと同意義を示す。)
[14] 下記一般式(12-I)または(12-II)で示される化合物を用い、下記一般式(11-I)または(11-II)で示される芳香族化合物を製造することを特徴とする芳香族化合物の製造方法。
Figure JPOXMLDOC01-appb-C000023
(ここで、A、R、R、及びR~Rは、上記一般式(9-I)、(9-II)における、A、R、R、及びR~Rと同意義を示す。R10及びR11は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。Xは酸素、硫黄、セレン、CR22=CR23、またはNR24を示す。R21~R25は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基からなる群から選ばれ、R21~R25のうち、1つ以上がハロゲンまたは炭素数1~20のアルキル基である。)
Figure JPOXMLDOC01-appb-C000024
(ここで、X及びXは、それぞれ独立して、ハロゲンを示し、A、R、R、R~R、R10、R11、X、R21、及びR25は、上記一般式(11-I)、(11-II)におけるA、R、R、R~R、R10、R11、X、R21、及びR25と同意義を示す。)
 以下に本発明を詳細に説明する。
 本発明の芳香族化合物は上記一般式(1-I)または(1-II)で示される誘導体である。
 一般式(1-I)及び(1-II)のAは、共有結合、酸素、硫黄、セレン、NR14、またはCR15=CR16を示し、高移動度のため、共有結合、酸素、硫黄が好ましい。
 一般式(1-I)及び(1-II)のAは、CR=CR、酸素、硫黄、またはセレンを示し、安定性のため、CR=CR、硫黄が好ましく、CR=CRがさらに好ましい。
 一般式(1-I)及び(1-II)のAは、CR=CR、酸素、硫黄、またはセレンを示し、安定性のため、CR=CR、硫黄が好ましく、CR=CRがさらに好ましい。
 一般式(1-I)及び(1-II)のAは、CR=CR、酸素、硫黄、またはセレンを示し、安定性のため、CR=CR、硫黄が好ましく、CR=CRがさらに好ましい。
 一般式(1-I)及び(1-II)において、R~Rの隣接する二つからなる組合せの内、1組~3組が単環~縮合4環を形成し、該単環~縮合4環を構成する全ての環が4~6員環である。本発明において、R~Rの隣接する二つからなる組合せの内、1組~3組が単環~縮合4環を形成しないとき、または、該単環~縮合4環を構成する全ての環が4~6員環でないとき、結晶性が低下し、キャリア移動が低下する原因となる。
 該4~6員環である環の具体例としてはシクロブテン環、チオフェン環、フラン環、セレノフェン環、チアゾール環、オキサゾール環、ピロール環、イミダゾール環、ベンゼン環、ピリジン環等を挙げることができ、高移動度のため、シクロブテン環、チオフェン環、フラン環、セレノフェン環、ベンゼン環が好ましい。特に高溶解性のため、4または5員環が好ましく、シクロブテン環、チオフェン環、フラン環、セレノフェン環がさらに好ましい。
 一方、一般式(1-I)及び(1-II)において、該単環~縮合4環を形成しなかったR~Rは、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。
 該R~Rにおけるハロゲンとしては、例えば、フッ素、塩素、臭素、ヨウ素を示し、安定であることからフッ素、塩素が好ましい。
 該R~Rにおける炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソバレリル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル、2-ヘキシルデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の直鎖、分岐、又は環状アルキル基が挙げられる。そして、その中でも特に高移動度及び高溶解性を示すビフェニレン誘導体となることから、炭素数1~14のアルキル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基である炭素数1~14の直鎖アルキル基がさらに好ましい。
 該R~Rにおける炭素数2~20のアルケニル基としては、例えば、エテニル基、プロペニル基、ブテニル基、2-メチルプロペニル基、n-ペンテニル基、2-メチルブテニル基、n-ヘキセニル基、2-メチルペンテニル基、n-ヘプテニル基、n-オクテニル基、2-エチルヘキセニル基、n-ノネル基、2-エチルヘプテニル基、n-デセニル基、n-ドデセニル基、シクロペンテニル-1-基、シクロヘキセニル-1-基、シクロヘプテニル-1-基等が挙げられる。
 該R~Rにおける炭素数2~20のアルキニル基としては、例えば、エチニル基、プロピニル基、ブチニル基、n-ペンチニル基、n-ヘキシニル基、n-ヘプチニル基、n-オクチニル基、n-ノニニル基、n-デシニル基、n-ドデシニル基等が挙げられる。
 該R~Rにおける炭素数4~22のアルカジエニル基としては、例えば、ブタジエニル基、ペンタジエニル基、ヘキサジエニル基、n-ヘプタジエニル基、n-オクタジエニル基、n-ノナジエニル基、n-デカジエニル基、n-ドデカジエニル基、n-トリデカジエニル基等が挙げられ、炭素数4~22のアルカ-1,3-ジエニル基であることが好ましく、ヘキサ-1,3-ジエニル基、n-ヘプタ-1,3-ジエニル基、n-オクタ-1,3-ジエニル基、n-ノナ-1,3-ジエニル基、n-デカ-1,3-ジエニル基がさらに好ましい。
 該R~Rにおける炭素数4~22のアルカジイニル基としては、例えば、ブタジイニル基、ペンタジイニル基、ヘキサジイニル基、n-ヘプタジイニル基、n-オクタジイニル基、n-ノナジイニル基、n-デカジイニル基、n-ドデカジイニル基、n-トリデカジイニル基等が挙げられ、炭素数4~22の1,3-アルカジイニル基であることが好ましく、ヘキサ-1,3-ジイニル基、n-ヘプタ-1,3-ジイニル基、n-オクタ-1,3-ジイニル基、n-ノナ-1,3-ジイニル基、n-デカ-1,3-ジイニル基がさらに好ましい。
 該R~Rにおける炭素数4~26のアリール基は、炭素数4~24のヘテロアリール基を含む。該炭素数4~26のアリール基としては、例えば、フェニル基;p-トリル基、p-(n-ヘキシル)フェニル基、p-(n-オクチル)フェニル基、p-(2-エチルヘキシル)フェニル基等のアルキル置換フェニル基;2-フリル基、2-チエニル基;5-フルオロ-2-フリル基、5-メチル-2-フリル基、5-エチル-2-フリル基、5-(n-プロピル)-2-フリル基、5-(n-ブチル)-2-フリル基、5-(n-ペンチル)-2-フリル基、5-(n-ヘキシル)-2-フリル基、5-(n-オクチル)-2-フリル基、5-(2-エチルヘキシル)-2-フリル基、5-フルオロ-2-チエニル基、5-メチル-2-チエニル基、5-エチル-2-チエニル基、5-(n-プロピル)-2-チエニル基、5-(n-ブチル)-2-チエニル基、5-(n-ペンチル)-2-チエニル基、5-(n-ヘキシル)-2-チエニル基、5-(n-オクチル)-2-チエニル基、5-(2-エチルヘキシル)-2-チエニル基等のアルキル置換ヘテロアリール基を挙げることができる。
 これらのR~Rのうち、高移動度のため、水素、ハロゲン、炭素数1~20のアルキル基が好ましく、水素、フッ素、塩素、メチル基、エチル基、n-プロピル基、n-ブチル基がさらに好ましく、水素が特に好ましい。
 一般式(1-I)及び(1-II)において、R14~R16は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。
 該R14~R16におけるハロゲンとしては、例えば、フッ素、塩素、臭素、ヨウ素を示し、安定であることからフッ素、塩素が好ましい。
 該R14~R16における炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソバレリル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル、2-ヘキシルデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の直鎖、分岐、又は環状アルキル基が挙げられる。そして、その中でも特に高移動度及び高溶解性を示す芳香族化合物となることから、炭素数1~14のアルキル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基n-テトラデシル基である炭素数1~14の直鎖アルキル基がさらに好ましい。
 該R14~R16における炭素数2~20のアルケニル基としては、例えば、エテニル基、プロペニル基、ブテニル基、2-メチルプロペニル基、n-ペンテニル基、2-メチルブテニル基、n-ヘキセニル基、2-メチルペンテニル基、n-ヘプテニル基、n-オクテニル基、2-エチルヘキセニル基、n-ノネル基、2-エチルヘプテニル基、n-デセニル基、n-ドデセニル基、シクロペンテニル-1-基、シクロヘキセニル-1-基、シクロヘプテニル-1-基等が挙げられる。
 該R14~R16における炭素数2~20のアルキニル基としては、例えば、エチニル基、プロピニル基、ブチニル基、n-ペンチニル基、n-ヘキシニル基、n-ヘプチニル基、n-オクチニル基、n-ノニニル基、n-デシニル基、n-ドデシニル基等が挙げられる。
 該R14~R16における炭素数4~22のアルカジエニル基としては、例えば、ブタジエニル基、ペンタジエニル基、ヘキサジエニル基、n-ヘプタジエニル基、n-オクタジエニル基、n-ノナジエニル基、n-デカジエニル基、n-ドデカジエニル基、n-トリデカジエニル基等が挙げられ、炭素数4~22のアルカ-1,3-ジエニル基であることが好ましく、ヘキサ-1,3-ジエニル基、n-ヘプタ-1,3-ジエニル基、n-オクタ-1,3-ジエニル基、n-ノナ-1,3-ジエニル基、n-デカ-1,3-ジエニル基がさらに好ましい。
 該R14~R16における炭素数4~22のアルカジイニル基としては、例えば、ブタジイニル基、ペンタジイニル基、ヘキサジイニル基、n-ヘプタジイニル基、n-オクタジイニル基、n-ノナジイニル基、n-デカジイニル基、n-ドデカジイニル基、n-トリデカジイニル基等が挙げられ、炭素数4~22の1,3-アルカジイニル基であることが好ましく、ヘキサ-1,3-ジイニル基、n-ヘプタ-1,3-ジイニル基、n-オクタ-1,3-ジイニル基、n-ノナ-1,3-ジイニル基、n-デカ-1,3-ジイニル基がさらに好ましい。
 該R14~R16における炭素数4~26のアリール基は、炭素数4~24のヘテロアリール基を含む。該炭素数4~26のアリール基としては、例えば、フェニル基;p-トリル基、p-(n-ヘキシル)フェニル基、p-(n-オクチル)フェニル基、p-(2-エチルヘキシル)フェニル基等のアルキル置換フェニル基;2-フリル基、2-チエニル基;5-フルオロ-2-フリル基、5-メチル-2-フリル基、5-エチル-2-フリル基、5-(n-プロピル)-2-フリル基、5-(n-ブチル)-2-フリル基、5-(n-ペンチル)-2-フリル基、5-(n-ヘキシル)-2-フリル基、5-(n-オクチル)-2-フリル基、5-(2-エチルヘキシル)-2-フリル基、5-フルオロ-2-チエニル基、5-メチル-2-チエニル基、5-エチル-2-チエニル基、5-(n-プロピル)-2-チエニル基、5-(n-ブチル)-2-チエニル基、5-(n-ペンチル)-2-チエニル基、5-(n-ヘキシル)-2-チエニル基、5-(n-オクチル)-2-チエニル基、5-(2-エチルヘキシル)-2-チエニル基等のアルキル置換ヘテロアリール基を挙げることができる。
 これらのR14~R16のうち、高移動度のため、水素、ハロゲン、炭素数1~20のアルキル基が好ましい。
 上記一般式(1-I)または(1-II)の芳香族化合物は、合成の容易さから、下記一般式(2)で示される芳香族化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
[(ここで、R~Rの隣接する二つからなる組合せの内、1組~3組が下記一般式(3)で示される単環~縮合4環を形成し、該単環~縮合4環を構成する全ての環が4~6員環である。下記一般式(3)を形成しなかったR~R、及びAは、上記一般式(1-I)、(1-II)における単環~縮合4環を形成しなかったR~R、及びAとそれぞれ同意義を示す。)
Figure JPOXMLDOC01-appb-C000026
(ここで、Xは共有結合、酸素、硫黄、セレン、CR10=C、または窒素を示し、Yは炭素または窒素を示す。lはXが共有結合、酸素、硫黄、セレンのとき0であり、XがCR10=C、窒素のとき1である。mはYが炭素のとき1であり、Yが窒素のとき0である。R~R11及びR13の隣接する二つからなる組合せの内、1組が下記一般式(4)で示される単環~縮合3環を形成し、該単環~縮合3環を構成する全ての環が4~6員環であることができる。下記一般式(4)を形成しなかったR~R11及びR13は、上記一般式(1-I)、(1-II)における単環~縮合4環を形成しなかったR~R又はR~Rと同様の基を示す。Xが共有結合のとき、一般式(2)のAは酸素、硫黄、セレン、NR14、またはCR15=CR16であり、Xが酸素、硫黄、セレン、CR10=C、または窒素のとき、一般式(2)のAは共有結合である。XがCR10=Cのとき、6員環を形成する隣接する二つからなる組合せの位置は、R及びR、R及びRである。但し、単環~縮合4環を形成しなかったR~R、一般式(4)を形成しなかったR~R11及びR13、並びにR14、R15、及びR16が、同時に水素であることを除く。)
Figure JPOXMLDOC01-appb-C000027
(ここで、Xは共有結合、酸素、硫黄、セレン、CR18=C、または窒素を示し、Yは炭素または窒素を示す。nはXが共有結合、酸素、硫黄、またはセレンのとき0であり、XがCR18=C、または窒素のとき1である。oはYが炭素のとき1であり、Yが窒素のとき0である。R17~R20の隣接する二つからなる組合せの内、1組が下記一般式(5)または一般式(6)を構成し、4~6員環を形成することができる。一般式(2)のAが共有結合、NR14、またはCR15=CR16であるとき、一般式(5)または一般式(6)を構成しなかったR17~R20は、上記一般式(1-I)、(1-II)における単環~縮合4環を形成しなかったR~R又はR~Rと同様の基を示す。また、一般式(2)のAが酸素、硫黄、またはセレンであるとき、一般式(5)または一般式(6)を構成しなかったR17~R20は、それぞれ独立して、水素、メチル基、エチル基、n-プロピル基、炭素数4~20のアルキル基からなる群から選ばれ、一つのみが炭素数4~20のアルキル基である。但し、該R17~R20は、同時に水素であることを除く。)
Figure JPOXMLDOC01-appb-C000028
(ここで、Xは酸素、硫黄、セレン、CR22=CR23、またはNR24を示し、YはCR25または窒素を示す。R21~R25は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基からなる群から選ばれ、R21~R25のうち、1つ以上がハロゲンまたは炭素数1~20のアルキル基である。)
Figure JPOXMLDOC01-appb-C000029
(ここで、R26は、炭素数1~20のアルキル基を示す。)]
 上記一般式(2)において、R~Rの隣接する二つからなる組合せの内、1組~3組が上記一般式(3)で示される単環~縮合4環を形成し、該単環~縮合4環を構成する全ての環が4~6員環である。該4~6員環である環の具体例としては、上記(1-I)、(1-II)における環と同様の環が挙げられ、特に高溶解性のため、4または5員環が好ましく、シクロブテン環、チオフェン環、フラン環、セレノフェン環がさらに好ましい。
 該R~Rのうち、R~Rの隣接する二つからなる組合わせとしては、一般式(3)で示される単環~縮合4環を形成するのが容易となることから、RとRのみ、RとRのみ、RとRのみ、RとR及びRとRの組み合わせが好ましい。該R~Rのうち、R~Rの隣接する二つからなる。組み合わせとしては、RとRのみ、RとRのみ、RとR及びRとRの組み合わせが好ましい。
 また、該R~Rのうち、高移動度のため、R~Rの隣接する二つからなる組合せの内、1組のみ、及びR~Rの隣接する二つからなる組合せの内、1組のみが一般式(3)を構成することが好ましい。高耐熱性及び高溶解性の観点からRとR及びRとRが一般式(3)を構成すること、またはRとR及びRとRが一般式(3)を構成することがさらに好ましい。
 なお、一般式(2)において、R~Rの全て、即ちRとR、RとR、RとR及びRとRが、一般式(3)を形成(隣接する4組全てが一般式(3)を形成)すると一般式(2)の芳香族化合物が円盤形状となり、有機半導体材料としての性能発現が困難になる場合がある。
 一般式(2)において、一般式(3)を形成しなかったR~R及びAは、上記一般式(1-I)、(1-II)における単環~縮合4環を形成しなかったR~R、及びAとそれぞれ同意義を示す。
 上記一般式(3)において、Xは共有結合、酸素、硫黄、セレン、CR10=C、または窒素を示し、Yは炭素または窒素を示す。高移動度のため、Xが共有結合、酸素、硫黄、セレン、またはCR10=Cを示し、かつYが炭素であることが好ましく、Xが酸素、硫黄、又はセレンを示し、かつYが炭素であることがさらに好ましい。ここで、一般式(2)におけるRとR及びRとRが一般式(3)を形成する場合は、高溶解性のため、Xは酸素、硫黄、セレンが好ましい。
 上記一般式(3)において、lはXが共有結合、酸素、硫黄、セレンのとき0であり、XがCR10=C、窒素のとき1である。mはYが炭素のとき1であり、Yが窒素のとき0である。
 上記一般式(3)において、R~R11及びR13の隣接する二つからなる組合せの内、1組が上記一般式(4)で示される単環~縮合3環を形成し、該単環~縮合3環を構成する全ての環が4~6員環であることができる。該4~6員環である環は、例えば、シクロブテン環、フラン環、チオフェン環、セレノフェン環、チアゾール環、ベンゼン環、ピリジン環等を挙げることができ、高移動度であるため、シクロブテン環、フラン環、チオフェン環、セレノフェン環、ベンゼン環が好ましい。一般式(4)を形成しなかったR~R11及びR13は、上記一般式(1-I)、(1-II)における単環~縮合4環を形成しなかったR~R又はR~Rと同様の基を示す。
 上記一般式(3)において、Xが共有結合のとき、一般式(2)のAは酸素、硫黄、セレン、NR14、またはCR15=CR16であり、Xが酸素、硫黄、セレン、CR10=C、または窒素のとき、一般式(2)のAは共有結合である。すなわち、一般式(3)のXが共有結合のとき、一般式(2)のAは、安定であることから、酸素、硫黄、セレン、NR14、CR15=CR16であることが有機半導体材料として好適なものとなり、Xが酸素、硫黄、セレン、CR10=C、窒素のとき、高移動度のため、一般式(2)のAは共有結合であることが有機半導体材料として好適なものとなる。
 上記一般式(3)において、XがCR10=Cのとき、6員環を形成する隣接する二つからなる組合せの位置は、R及びR、R及びRである。このとき、屈曲構造で高溶解性となるため、有機半導体材料として好適なものとなる。
 上記一般式(3)において、単環~縮合4環を形成しなかったR~R、並びに一般式(4)を形成しなかったR~R11及びR13は、同時に水素であることを除く。同時に水素であることを除くとき、高溶解性となるため、有機半導体材料として好適なものとなる。
 上記一般式(4)において、Xは共有結合、酸素、硫黄、セレン、CR18=C、または窒素を示し、Yは炭素または窒素を示す。Xは高移動度のため、共有結合、酸素、硫黄、セレン、CR18=Cが好ましく、Yは高移動度のため、炭素が好ましい。なお、一般式(3)のXが共有結合である時、高安定性であるため、一般式(4)のXは酸素、硫黄、セレン、CR18=C、窒素であることが好ましく、CR18=Cがさらに好ましい。
 上記一般式(4)において、nはXが共有結合、酸素、硫黄、またはセレンのとき0であり、XがCR18=C、または窒素のとき1である。oはYが炭素のとき1であり、Yが窒素のとき0である。
 上記一般式(4)において、R17~R20の隣接する二つからなる組合せの内、1組が上記一般式(5)または一般式(6)を構成し、4~6員環を形成することができる。該4~6員環としては、例えば、ベンゾシクロブテン環、フラン環、チオフェン環、セレノフェン環、チアゾール環、ベンゼン環、ピリジン環を挙げることができ、高移動度であるため、ベンゾシクロブテン環、フラン環、チオフェン環、セレノフェン環、ベンゼン環が好ましい。
 上記一般式(4)において、一般式(2)のAが共有結合、NR14、またはCR15=CR16であるとき、一般式(5)または一般式(6)を構成しなかったR17~R20は、上記一般式(1-I)、(1-II)における単環~縮合4環を形成しなかったR~R又はR~Rと同様の基を示す。このうち、該R17~R20が炭素数1~20のアルキル基であるとき、特に高移動度及び高溶解性を示す芳香族化合物となることから、炭素数4~14のアルキル基が好ましく、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基である炭素数4~14の直鎖アルキル基がさらに好ましい。なお、一般式(5)または一般式(6)を構成しなかったR17~R20は、高溶解性のため同時に水素でないことが好ましい。
 一般式(2)のAが酸素、硫黄、またはセレンであるとき、一般式(5)または一般式(6)を構成しなかったR17~R20は、それぞれ独立して、水素、メチル基、エチル基、n-プロピル基、炭素数4~20のアルキル基からなる群から選ばれ、一つのみが炭素数4~20のアルキル基である。このとき、高移動度となるため、有機半導体材料として好適なものとなる。また、該R17~R20のうち、一つのみが炭素数4~14のアルキル基であることがさらに好ましい。
 上記一般式(4)において、一般式(5)または一般式(6)を構成しなかったR17~R20は、同時に水素であることを除く。同時に水素であることを除くとき、高溶解性となるため、有機半導体材料として好適なものとなる。
 上記一般式(5)において、Xは酸素、硫黄、セレン、CR22=CR23、またはNR24を示し、YはCR25または窒素を示す。Xは高移動度のため、酸素、硫黄、セレン、CR22=CR23が好ましく、Yは高移動度のためCR25が好ましい。
 上記一般式(5)において、R21~R25は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基からなる群から選ばれ、R21~R25のうち、1つ以上がハロゲン、または炭素数1~20のアルキル基である。該R21~R25のうち、1つ以上がハロゲンまたは炭素数1~20のアルキル基であるとき、高溶解性となり、好適なものとなる。
 該ハロゲンは、例えば、フッ素、塩素、臭素、ヨウ素を示し、安定であることからフッ素、塩素が好ましい。
 該R21~R25の炭素数1~20のアルキル基としては、例えば、上述の(1-I)、(1-II)のR~Rにおける炭素数1~20のアルキル基の例を挙げることができ、その中でも特に高移動度及び高溶解性を示す芳香族化合物となることから、炭素数4~14のアルキル基が好ましく、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基である炭素数4~14の直鎖アルキル基がさらに好ましい。
 上記一般式(6)のR26は、炭素数1~20のアルキル基を示し、高移動度及び高溶解性を示すビフェニレン誘導体となることから、炭素数4~14のアルキル基が好ましく、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基である炭素数4~14の直鎖アルキル基がさらに好ましい。
 また、上記一般式(1-I)又は一般式(1-II)で示される芳香族化合物は、下記一般式(7)で示されるビフェニレン誘導体としても好適である。
Figure JPOXMLDOC01-appb-C000030
[(ここで、R~Rの隣接する二つからなる組合せの内、1組~3組が下記一般式(8)を構成し、5又は6員環を形成する。下記一般式(8)を構成しなかったR~Rは、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基を示す。)
Figure JPOXMLDOC01-appb-C000031
(ここで、Xは酸素、硫黄、セレン、CR10=CR11、又はNR12を示し、YはCR13又は窒素を示す。R~R13は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基を示す。)]
 上記一般式(7)において、R~Rの隣接する二つからなる組合せの内、1組~3組が上記一般式(8)を構成し、5又は6員環を形成する。該R~Rのうち、R~Rの隣接する二つからなる組合わせとしては、一般式(8)を構成するのが容易となることから、RとRのみ、RとRのみ、RとRのみ、RとR及びRとRの組み合わせが好ましい。該R~Rのうち、R~Rの組み合わせとしては、RとRのみ、RとRのみ、RとR及びRとRの組み合わせが好ましい。
 一般式(8)を構成しなかったR~Rは、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基を示す。
 上記一般式(7)において、R~Rにおけるハロゲンは、例えば、フッ素、塩素、臭素、ヨウ素を示し、安定であることからフッ素が好ましい。
 上記一般式(7)において、R~Rにおける炭素数1~20のアルキル基は、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソバレリル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル、2-ヘキシルデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の直鎖、分岐、又は環状アルキル基が挙げられる。そして、その中でも特に高移動度及び高溶解性を示すビフェニレン誘導体となることから、炭素数1~14のアルキル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-テトラデシル基である炭素数1~14の直鎖アルキル基がさらに好ましい。
 上記一般式(7)において、R~Rにおける炭素数2~20のアルケニル基は、例えば、エテニル基、n-プロペニル基、n-ブテニル基、2-メチルプロペニル基、n-ペンテニル基、2-メチルブテニル基、n-ヘキセニル基、2-メチルペンテニル基、n-ヘプテニル基、n-オクテニル基、2-エチルヘキセニル基、n-ノネル基、2-エチルヘプテニル基、n-デセニル基、n-ドデセニル基、シクロペンテニル-1-基、シクロヘキセニル-1-基、シクロヘプテニル-1-基等が挙げられる。
 上記一般式(7)において、R~Rにおける炭素数2~20のアルキニル基は、例えば、エチニル基、n-プロピニル基、n-ブチニル基、n-ペンチニル基、n-ヘキシニル基、n-ヘプチニル基、n-オクチニル基、n-ノニニル基、n-デシニル基、n-ドデシニル基等が挙げられる。
 上記一般式(7)において、R~Rにおける炭素数4~26のアリール基は、炭素数4~24のヘテロアリール基を含む。例えば、フェニル基;p-トリル基、p-(n-ヘキシル)フェニル基、p-(n-オクチル)フェニル基、p-(2-エチルヘキシル)フェニル基等のアルキル置換フェニル基;2-フリル基、2-チエニル基;5-フルオロ-2-フリル基、5-メチル-2-フリル基、5-エチル-2-フリル基、5-(n-プロピル)-2-フリル基、5-(n-ブチル)-2-フリル基、5-(n-ペンチル)-2-フリル基、5-(n-ヘキシル)-2-フリル基、5-(n-オクチル)-2-フリル基、5-(2-エチルヘキシル)-2-フリル基、5-フルオロ-2-チエニル基、5-メチル-2-チエニル基、5-エチル-2-チエニル基、5-(n-プロピル)-2-チエニル基、5-(n-ブチル)-2-チエニル基、5-(n-ペンチル)-2-チエニル基、5-(n-ヘキシル)-2-チエニル基、5-(n-オクチル)-2-チエニル基、5-(2-エチルヘキシル)-2-チエニル基等のアルキル置換ヘテロアリール基を挙げることができる。
 上記一般式(7)において、R~Rとしては、高移動度のため、水素、ハロゲン、炭素数1~20のアルキル基が好ましく、水素、フッ素、メチル基、エチル基、n-プロピル基、n-ブチル基がさらに好ましく、水素が特に好ましい。
 上記一般式(7)におけるR~Rの隣接する二つからなる組合せの内、少なくとも1組が一般式(8)を構成し、5又は6員環を形成することができるが、該5又は6員環の具体例としてはチオフェン環、フラン環、セレノフェン環、チアゾール環、オキサゾール環、ピロール環、イミダゾール環、ベンゼン環、ピリジン環等を挙げることができ、高移動度のため、チオフェン環、フラン環、セレノフェン環、ベンゼン環が好ましい。特に高溶解性のため、5員環が好ましく、チオフェン環、フラン環、セレノフェン環がさらに好ましい。
 一般式(7)においてR~Rの隣接する二つからなる組合せの内、1組~3組が下記一般式(8)を構成し、5又は6員環を形成することができるが、高移動度のため、R~Rの隣接する二つからなる組合せの内、1組のみ、及びR~Rの隣接する二つからなる組合せの内、1組のみが一般式(8)を構成することが好ましい。高耐熱性及び高溶解性の観点からRとR及びRとRが一般式(8)を構成すること、またはRとR及びRとRが一般式(2)を構成することがさらに好ましい。
 一般式(8)のXは酸素、硫黄、セレン、CR10=CR11、又はNR12を示し、YはCR13又は窒素を示す。高移動度のため、Xは酸素、硫黄、セレン、又はCR10=CR11を示し、かつYがCR13であることが好ましく、Xが酸素、硫黄、又はセレンを示し、かつYがCR13であることがさらに好ましい。
 ここで、RとR及びRとRが一般式(8)を構成する場合は、高溶解性のため、Xは酸素、硫黄、セレンが好ましい。
 上記一般式(7)において、R~Rの全て、即ちRとR、RとR、RとR及びRとRが、一般式(8)を構成(隣接する4組全てが一般式(8)を構成)すると一般式(7)のビフェニレン誘導体が円盤形状となるものである。より高移動度かつ高溶解性の有機半導体材料を得るため、該円盤形状の構造でないことが好ましい。
 一般式(8)において、R~R13は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基を示すが、高溶解性のため、Rはハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~26のアリール基であることが好ましい。該ハロゲン、アルキル基、アルケニル基、アルキニル基、アリール基の例は、上記R~Rで示した基を挙げることができる。
 一般式(8)において、R~R13としては、高移動度のため、水素、ハロゲン、炭素数1~14のアルキル基が好ましく、水素、フッ素、エチル基、n-プロピル基、n-プロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソバレリル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-テトラデシル基がさらに好ましい。
 一般式(8)において、R~R13としては、高移動度及び高溶解性のため、Rが炭素数1~14のアルキル基、R10~R13が、水素、フッ素、メチル基、エチル基、n-プロピル基、n-ブチル基であることが好ましい。R10~R13は、高移動度のため、水素が特に好ましい。
 本発明の芳香族化合物のより好ましい具体的な骨格は、下記一般式(1-1)~(1-33)で示される。これらの中でも高移動度の観点から、分子長軸を有する一般式(1-1)~(1-5)、(1-11)~(1-17)、(1-21)~(1-23)、及び(1-29)~(1-33)が好ましく、点対称構造の一般式(1-1)~(1-3)、(1-11)~(1-17)、(1-29)、及び(1-30)がさらに好ましい。
Figure JPOXMLDOC01-appb-C000032
(ここで、R、R~Rは、一般式(1-I)、(1-II)におけるR、R~Rと同意義を示し、X、Y、R、R13、及びmは、一般式(3)におけるX、Y、R、R13、及びmと同意義を示す。)
Figure JPOXMLDOC01-appb-C000033
(ここで、R、R、R、及びRは、一般式(1-I)、(1-II)におけるR、R、R、及びRと同意義を示し、Xは、一般式(3)におけるXと同意義を示し、X及びR17は、一般式(4)におけるX及びR17と同意義を示す。)
Figure JPOXMLDOC01-appb-C000034
(ここで、A、R~Rは、一般式(1-I)、(1-II)におけるA、R~Rと同意義を示し、R10、R11、Xは一般式(3)におけるR10、R11、Xと同意義を示し、X及びR17は、一般式(4)で示されるX及びR17と同意義を示し、X、R21、及びR25は、一般式(5)で示されるX、R21、及びR25と同意義を示す。)
Figure JPOXMLDOC01-appb-C000035
(ここで、A、R~Rは一般式(1-I)、(1-II)におけるA、R~Rと同意義を示し、X、R10、R11、R13、lは、一般式(3)におけるX、R10、R11、R13、lと同意義を示し、X、R19、nは、一般式(4)で示されるX、R19、nと同意義を示し、R21~R25は一般式(5)におけるR21~R25と同意義を示し、R26は、一般式(6)で示されるR26と同意義を示す。)
 本発明の芳香族化合物の具体的例示としては、以下のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 本発明の芳香族化合物の製造方法としては、該芳香族化合物を製造することが可能であれば如何なる製造方法を用いることも可能である。
 本発明の芳香族化合物の製造方法としては、例えば、一般式(2)のR、R、R、Rが水素で、かつAが共有結合で、一般式(3)のXが硫黄で、かつYが炭素、R13が水素である一般式(1-1)の芳香族化合物(1-1a)は、下記A1~E1の工程を経る方法により製造することができる。
(A1工程);パラジウム触媒の存在下、1-ブロモ-4-フルオロ-2-ヨードベンゼンから誘導された1-ブロモ-4-フルオロフェニル-2-亜鉛クロライドと、2-ブロモ-4-フルオロ-1-ヨードベンゼンから2,2’-ジブロモ-4,5’-ジフルオロビフェニルを製造する工程。
(B1工程);A1工程により得られた2,2’-ジブロモ-4,5’-ジフルオロビフェニルをブチルリチウムでジリチウム塩とし、塩化銅(II)で分子内環化することによる2,6-ジフルオロビフェニレンを製造する工程。
(C1工程);B1工程により得られた2,6-ジフルオロビフェニレンをリチウムジイソプロピルアミド(以後、LDAと略す。)処理/ヨウ素化で2,6-ジフルオロ-1,5-ジハロビフェニレンを製造する工程。
(D1工程);パラジウム/銅触媒の存在下、C1工程により得られた2,6-ジフルオロ-1,5-ジハロビフェニレンとアルキニル化合物の薗頭カップリングにより1,5-ジアルキニル-2,6-ジフルオロビフェニレンを製造する工程。
(E1工程);D1工程により得られた1,5-ジアルキニル-2,6-ジフルオロビフェニレンと硫化ナトリウムを反応に供し、ビフェニレン誘導体(1-1a)を製造する工程。
 各工程の詳細を以下に示す。
 該A1工程は、パラジウム触媒の存在下、1-ブロモ-4-フルオロ-2-ヨードベンゼンから誘導された1-ブロモ-4-フルオロフェニル-2-亜鉛クロライドと、2-ブロモ-4-フルオロ-1-ヨードベンゼンのクロスカップリングから2,2’-ジブロモ-4,5’-ジフルオロビフェニルを製造する工程である。
 1-ブロモ-4-フルオロフェニル-2-亜鉛クロライドは、例えば、エチルマグネシウムクロライド、イソプロピルマグネシウムブロマイド等の有機金属試薬を用い、1-ブロモ-4-フルオロ-2-ヨードベンゼンのヨウ素をマグネシウムハライドに交換後(1-ブロモ-4-フルオロフェニル-2-マグネシウムハライドの調製)、塩化亜鉛と金属交換することで調製することができる。また、該有機金属試薬の代わりにマグネシウム金属を用いることも可能である。
 1-ブロモ-4-フルオロフェニル-2-マグネシウムハライドを調製する条件としては、例えば、テトラヒドロフラン(以後、THFと記す。)又はジエチルエーテル等の溶媒中、-80℃~20℃の温度範囲内で実施することができる。該マグネシウム塩(1-ブロモ-4-フルオロフェニル-2-マグネシウムハライド)の溶液に塩化亜鉛を反応させることで1-ブロモ-4-フルオロフェニル-2-亜鉛クロライドを調製することができる。塩化亜鉛はそのままの状態でもよいし、THFまたはジエチルエーテル溶液であってもかまわない。該マグネシウム塩と塩化亜鉛との反応の温度としては、-80℃~30℃の範囲内で実施できる。
 A1工程におけるパラジウム触媒としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム等を挙げることができ、反応温度としては、20℃~80℃の範囲を挙げることができる。
 該B1工程は、A1工程により得られた2,2’-ジブロモ-4,5’-ジフルオロビフェニルを2当量以上のブチルリチウムでジリチウム塩とし、塩化銅(II)で分子内環化することによる2,6-ジフルオロビフェニレンを製造する工程である。
 該ジリチウム塩を調製する条件としては、例えば、2~3当量のn-ブチルリチウム又はtert-ブチルリチウムを用い、THF又はジエチルエーテル等の溶媒中、-80℃~20℃の温度範囲で実施することができる。
 塩化銅(II)は該ジリチウム塩に対し1~3当量使用し、分子内環化反応は-80℃~30℃の温度範囲で実施することができる。なお、塩化銅(II)の代わりに臭化銅(II)を用いることもできる。
 該C1工程は、B1工程により得られた2,6-ジフルオロビフェニレンをLDAと反応させ1位と5位にジリチウム塩を発生させた後、ハロゲン化することで2,6-ジフルオロ-1,5-ジハロビフェニレンを製造する工程である。
 LDAと反応させる条件としては、例えば、2~4当量のLDAを用い、THF又はジエチルエーテル等の溶媒中、-80℃~20℃の温度範囲で実施することができる。該ジリチウム塩とハロゲン化剤の反応は、-80℃~30℃の範囲で実施することができる。
 LDAの代わりに、n-ブチルリチウム、n-ブチルリチウム/テトラメチルエチレンジアミンを用いることができ、ハロゲン化剤としては、ヨウ素、1-クロロ-2-ヨードエタン、N-ヨードスクシンイミド、ブロモトリクロロメタン、テトラブロモメタン、1,2-ジブロモテトラクロロエタン、N-ブロモスクシンイミド(以後、NBSと略す。)、N-フルオルベンゼンスルホンイミド等のハロゲン化剤を用いることができる。
 該D1工程は、パラジウム触媒及び銅触媒の存在下、C1工程により得られた2,6-ジフルオロ-1,5-ジハロビフェニレンとアルキニル化合物の薗頭カップリングにより1,5-ジアルキニル-2,6-ジフルオロビフェニレンを製造する工程である。
 その際のパラジウム触媒としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム等が挙げられ、銅触媒としてはヨウ化銅(I)、臭化銅(I)、塩化銅(I)等を挙げることができる。また、薗頭カップリングでは、トリエチルアミン、ジイソプロピルアミン、ジイソプロピルエチルアミン、ピペリジン、ピリジン等の溶媒中、20℃~80℃の温度範囲で実施することができる。なお、溶媒としてトルエン、THF等を添加しても良い。
 D1工程におけるアルキニル化合物としては、例えば、1-プロピン、1-ブチン、1-ペンチン、1-ヘキシン、1-ヘプチン、1-オクチン、1-ノニン、1-デシン、1-ウンデシン、1-ドデシンが挙げられる。
 該E1工程は、D1工程により得られた1,5-ジアルキニル-2,6-ジフルオロビフェニレンと硫化ナトリウムの反応により芳香族化合物(1-1a)を製造する工程である。
 該反応は、例えば、ジメチルスルホフォキシド(以後、DMSOと略す。)、N,N-ジメチルホルムアミド(以後、DMFと略す。)、N-メチルピロリドン(以後、NMPと略す。)等の溶媒中、40~200℃の温度範囲で実施することができる。
 なお、該工程は、2-ハロアルキニルベンゼンからベンゾチオフェン環を合成する公知の反応条件を用いて実施することもできる(例えば、オーガニック レターズ、2009年、11巻、2473~2475頁)。
 そして、反応工程数が少ないことから好ましいより具体的な製造方法を以下の反応スキームに示す。
Figure JPOXMLDOC01-appb-C000048
(ここで、Rは、一般式(3)で示されるRと同意義を示す。)
 一方、本発明で用いられる一般式(2)の芳香族化合物の内、R、R、R、Rが水素で、Aが共有結合で、一般式(3)のXが硫黄で、Yが炭素、R13が水素である一般式(1-2)の芳香族化合物(1-2a)は、下記A2~E2の工程を経る方法により製造することができる。
(A2工程);パラジウム触媒の存在下、1-ブロモ-3-フルオロ-2-ヨードベンゼンから誘導された1-ブロモ-3-フルオロフェニル-2-亜鉛クロライドと、2-ブロモ-1-フルオロ-3-ヨードベンゼンから2,2’-ジブロモ-3,6’-ジフルオロビフェニルを製造する工程。
(B2工程);A2工程により得られた2,2’-ジブロモ-3,6’-ジフルオロビフェニルをブチルリチウムでジリチウム塩とし、塩化銅(II)で分子内環化することによる1,5-ジフルオロビフェニレンを製造する工程。
(C2工程);B2工程により得られた1,5-ジフルオロビフェニレンをLDA処理/ハロゲン化で1,5-ジフルオロ-2,6-ジハロビフェニレンを製造する工程。
(D2工程);パラジウム/銅触媒の存在下、C2工程により得られた1,5-ジフルオロ-2,6-ジハロビフェニレンとアルキニル化合物の薗頭カップリングにより2,6-ジアルキニル-1,5-ジフルオロビフェニレンを製造する工程。
(E2工程);D2工程により得られた2,6-ジアルキニル-1,5-ジフルオロビフェニレンと硫化ナトリウムを反応に供し、芳香族化合物(1-2a)を製造する工程。
 該A2~E2工程は、A2工程で、1-ブロモ-3-フルオロ-2-ヨードベンゼン及び2-ブロモ-1-フルオロ-3-ヨードベンゼンを用いること以外は、上記A1~E1工程の試薬及び反応条件等を用いて、(1-2a)で示される芳香族化合物を製造することができる。
 そして、反応工程数が少ないことから好ましいより具体的な製造方法を以下の反応スキームに示す。
Figure JPOXMLDOC01-appb-C000049
(ここで、Rは、一般式(3)で示されるRと同意義を示す。)
該ビフェニレン誘導体(1-2a)のRが炭素数1~20のアルキル基であるものは、上記A2工程で得られた2,2’-ジブロモ-3,6’-ジフルオロビフェニルを原料に、例えば、下記B3~E3の工程を経る方法により製造することもできる。
(B3工程);A2工程により得られた2,2’-ジブロモ-3,6’-ジフルオロビフェニルをブチルリチウムでジリチオ化し、N-フルオロベンゼンスルホンイミドと反応させることによる1,5-ジフルオロビフェニレンを製造する工程。
(C3工程);B3工程により得られた1,5-ジフルオロビフェニレンを硫化ナトリウムと反応させ、ジチオールとし、さらに2-ブロモアセトアルデヒドジメチルアセタールと反応させてビフェニレン-1,5-ビス(チオアセトアルデヒドジメチルアセタール)を製造する工程。
(D3工程);C3工程で得られたビフェニレン-1,5-ビス(チオアセトアルデヒドジメチルアセタール)をりん酸触媒で環化し、ジチエノビフェニレンの無置換体を製造する工程。
(E3工程);D3工程により得られた無置換体をn-ブチルリチウムとの反応で、ジリチオ化し、アルキルハライドと処理することで芳香族化合物(1-2a)を製造する工程。
 B3工程は、例えば、A2工程により得られた2,2’-ジブロモ-3,6’-ジフルオロビフェニルを2当量以上のブチルリチウムでジリチオ化し、ベンザインを発生させて分子内環化し、N-フルオロベンゼンスルホンイミドでフッ素化することによる1,5-ジフルオロビフェニレンを製造する工程である。
 該ジリチオ化の条件としては、例えば、2~3当量のn-ブチルリチウム又はtert-ブチルリチウムを用い、THF又はジエチルエーテル等の溶媒中、-80℃~20℃の温度範囲で実施することができる。N-フルオロベンゼンスルホンイミドによるフッ素化は、THF又はジエチルエーテル等の溶媒中、-80℃~20℃の温度範囲で実施することができる。
 C3工程は、例えば、1,5-ジフルオロビフェニレンを、DMF,NMP等の溶媒中、90℃~150℃で2~6当量の硫化ナトリウム(水和物)と反応させることでビフェニレン-1,5-ジチオールのジナトリウム塩とし、さらに2-ブロモアセトアルデヒドジメチルアセタールを添加し、90℃~150℃で処理する。
 D3工程は、例えば、C3工程により得られたビフェニレン-1,5-ビス(チオアセトアルデヒドジメチルアセタール)を5~20モル%のりん酸、ポリりん酸等の触媒下、キシレン、クロロベンゼン等の溶媒中、110~140℃で行う。
 E3工程は、例えば、D3工程により得られた無置換体をTHF等の溶媒中、2~6当量のn-ブチルリチウムを-10~65℃で反応させた後、2~8当量のアルキルハライドで-10~65℃で処理する。これにより、(1-3a)で示される芳香族化合物を製造することができる。
 そして、反応工程数が少ないことから好ましいより具体的な製造方法を以下の反応スキームに示す。
Figure JPOXMLDOC01-appb-C000050
(ここで、Rは、炭素数1~20のアルキル基を示す。)
 さらに、本発明で用いられる一般式(2)の芳香族化合物の内、R、R、R、Rが水素で、Aが共有結合で、一般式(3)のXが硫黄で、Yが炭素、R13が水素である一般式(1-3)の芳香族化合物(1-3a)は、上記A1及びB1工程で得られた2,6-ジフルオロビフェニレンを原料に下記C4~E4の工程を経る方法により製造することができる。
(C4工程);B1工程により得られた2,6-ジフルオロビフェニレンをハロゲン化し、2,6-ジハロ-3,7-ジフルオロビフェニレンを製造する工程。
(D4工程);パラジウム/銅触媒の存在下、C4工程により得られた2,6-ジハロ-3,7-ジフルオロビフェニレンとアルキニル化合物の薗頭カップリングにより2,6-ジアルキニル-3,7-ジフルオロビフェニレンを製造する工程。
(E4工程);D4工程により得られた2,6-ジアルキニル-3,7-ジフルオロビフェニレンと硫化ナトリウムを反応に供し、芳香族化合物(1-3a)を製造する工程。
 該反応工程におけるC4工程は、例えば、B1工程により得られた2,6-ジフルオロビフェニレンを、ハロゲン化剤と反応させ3位と7位をハロゲン化することで2,6-ジハロ-3,7-ジフルオロビフェニレンを製造する工程である。
 ハロゲン化剤と反応させる条件としては、例えば、2~4当量のハロゲン化剤を用い、DMF、NMP、DMSO等の溶媒中、20℃~70℃の温度範囲内で実施することができる。
 ハロゲン化剤としては、NBS、臭素、ヨウ素、N-ヨードスクシンイミド等のハロゲン化剤を用いることができる。
 該D4及びE4工程は、D4工程で、2,6-ジハロ-3,7-ジフルオロビフェニレンを用いること以外は、上記D1及びE1工程の試薬及び反応条件等を用いて、(1-3a)で示される芳香族化合物を製造することができる。
 そして、反応工程数が少ないことから好ましいより具体的な製造方法を以下の反応スキームに示す。
Figure JPOXMLDOC01-appb-C000051
(ここで、Rは、一般式(3)で示されるRと同意義を示す。)
 一方、上記一般式(1-11)で示される芳香族化合物は、例えば、上記(C1工程)で得られた2,6-ジフルオロ-1,5-ジヨードビフェニレンを用いて製造することができる。
 一般式(1-11)の内、R、R、R、Rが水素で、X及びXが硫黄である芳香族化合物(1-11a)は、下記D5~F5の工程を経る方法により製造することができる。
(D5工程);パラジウム触媒の存在下、2-ブロモ-3-クロロチオフェンから誘導された3-クロロチエニル-2-亜鉛クロライドと、2,6-ジフルオロ-1,5-ジヨードビフェニレンから2,6-ジフルオロ-1,5-ビス(3-クロロ-2-チエニル)ビフェニレンを製造する工程。
(E5工程);D5工程により得られた2,6-ジフルオロ-1,5-ビス(3-クロロ-2-チエニル)ビフェニレンと硫化ナトリウムを反応に供し、ビス(ジチエノ)ビフェニレンの無置換体を製造する工程。
(F5工程);E5工程により得られた無置換体をn-ブチルリチウムとの反応で、ジリチオ化し、アルキルハライドと処理することで芳香族化合物(1-11a)を製造する工程。
 そして、反応工程数が少ないことから好ましいより具体的な製造方法を以下の反応スキームに示す。
Figure JPOXMLDOC01-appb-C000052
(ここで、R17は、炭素数1~20のアルキル基を示す。)
 また、上記一般式(1-16)で示される芳香族化合物は、例えば、上記(C4工程)で得られた2,6-ジブロモ-3,7-ジフルオロビフェニレンを用いて製造することができる。
 一般式(1-16)の内、R、Rがフッ素で、R、Rが水素で、Xが硫黄である芳香族化合物(1-16a)は、下記D6~F6の工程を経る方法により製造することができる。
(D6工程);パラジウム触媒の存在下、5-アルキル-2,3-ジブロモチオフェンから誘導された5-アルキル-3-ブロモチエニル-2-亜鉛クロライドと、2,6-ジブロモ-3,7-ジフルオロビフェニレンから2,6-ジフルオロ-3,7-ビス(5-アルキル-3-ブロモ-2-チエニル)ビフェニレンを製造する工程。
(E6工程);パラジウム/銅触媒の存在下、D6工程により得られた2,6-ジフルオロ-3,7-ビス(5-アルキル-3-ブロモ-2-チエニル)ビフェニレンとトリメチルシリルアセチレンの薗頭カップリングにより2,6-ジフルオロ-3,7-ビス(5-アルキル-3-(トリメチルシリルエチニル)-2-チエニル)ビフェニレンを製造し、希塩酸処理で脱トリメチルシリル化し、2,6-ジフルオロ-3,7-ビス(5-アルキル-3-エチニル-2-チエニル)ビフェニレンを製造する工程。
(F6工程);ルテニウム触媒または白金触媒の存在下、E6工程により得られた2,6-ジフルオロ-3,7-ビス(5-アルキル-3-エチニル-2-チエニル)ビフェニレンを環化反応に供し、ビフェニレン誘導体(1-16a)ビス(ジチエノ)ビフェニレンの無置換体を製造する工程。
 そして、反応工程数が少ないことから好ましいより具体的な製造方法を以下の反応スキームに示す。
Figure JPOXMLDOC01-appb-C000053
(ここで、R17は、炭素数1~20のアルキル基を示す。)
 上記一般式(1-21)で示される芳香族化合物は、例えば、一般式(1-21)の内、R、R、R、Rが水素で、XがCH=C、R19が水素である芳香族化合物(1-21a)は、下記A7~F7の工程を経る方法により製造することができる。
(A7工程);パラジウム触媒の存在下、4-アルキル-2-ブロモ-1-ヨードベンゼンから誘導された4-アルキル-2-ブロモ-フェニル-2-亜鉛クロライドと、2-ブロモ-4-フルオロ-1-ヨードベンゼンから4-アルキル-2,2’-ジブロモ-4’-フルオロビフェニルを製造する工程。
(B7工程);A7工程により得られた4-アルキル-2,2’-ジブロモ-4’-フルオロビフェニルをブチルリチウムでジリチウム塩とし、塩化銅(II)で分子内環化することによる2-アルキル-7-フルオロビフェニレンを製造する工程。
(C7工程);B7工程により得られた2-アルキル-7-フルオロビフェニレンをハロゲン化し、2-アルキル-3,6-ジハロ-7-フルオロビフェニレンを製造する工程。
(D7工程);C7工程により得られた2-アルキル-3,6-ジハロ-7-フルオロビフェニレンをイソプロピルグリニャールでモノメタル化し、塩化銅(II)でホモカップリングさせて、ビ(3-フルオロ-6-アルキル-7-ブロモ-2-ビフェニレニル)を製造する工程。
(E7工程);D7工程により得られたビ(3-フルオロ-6-アルキル-7-ブロモ-2-ビフェニレニル)をブチルリチウムでジリチオ化し、メタノールでプロトネーションさせて、ビ(3-フルオロ-6-アルキル-2-ビフェニレニル)を製造する工程。
(F7工程);E7工程により得られたビ(3-フルオロ-6-アルキル-2-ビフェニレニル)を硫化ナトリウムと共に反応に供し、芳香族化合物(1-21a)を製造する工程。
 各工程の条件は、例えば、上記で挙げた条件を使用することができる。
 そして、反応工程数が少ないことから好ましいより具体的な製造方法を以下の反応スキームに示す。
Figure JPOXMLDOC01-appb-C000054
(ここで、R17は、炭素数1~20のアルキル基を示す。)
 さらに、製造した芳香族化合物は、カラムクロマトグラフィー等に供することにより精製することができ、その際の分離剤としては、例えば、シリカゲル、活性アルミナ、溶媒としては、ヘキサン、ヘプタン、トルエン、ジクロロメタン、クロロホルム等を挙げることができる。
 製造した芳香族化合物は、活性炭、ゼオライト、活性アルミナ等に供することにより溶液中で脱色精製することができ、その際の溶媒としては、ヘキサン、ヘプタン、トルエン、ジクロロメタン、クロロホルム等を挙げることができる。
 また、製造した芳香族化合物は、さらに再結晶により精製してもよく、再結晶の回数を増やすことで純度を向上させることができる。再結晶の回数としては、高純度、高収率の観点から、好ましくは2~5回である。再結晶の回数を増やすことで純度を向上させることができる。再結晶に用いる溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、トルエン、キシレン、クロロホルム、クロロベンゼン、ジクロロベンゼン等を挙げることができ、これらの任意の割合の混合物であってもよい。
 再結晶法では、加熱により芳香族化合物の溶液を調製し(その際の溶液の濃度は、不純物を効率よく除去するため、0.01~10.0重量%の範囲が好ましく、0.05~5.0重量%の範囲がさらに好ましい。)、該溶液を冷却することで芳香族化合物の結晶を析出させ単離するが、単離する際の最終的な冷却温度は、純度及び回収率向上のため、-20℃から40℃の範囲にあることが好ましい。なお、純度を測定する際には液体クロマトグラフィーにより分析することが可能である。
 本発明の芳香族化合物の製造方法としては、下記一般式(10-I)または(10-II)で示される化合物を直鎖アルキルリチウムと反応させて、下記一般式(9-I)または(9-II)で示される芳香族化合物の製造方法であってもよい。
Figure JPOXMLDOC01-appb-C000055
(ここで、A、A~A、R、R、及びR~Rは、上記一般式(1-I)、(1-II)における、A、A~A、R、R、及びR~Rと同意義を示す。)
Figure JPOXMLDOC01-appb-C000056
(ここで、X及びXは、それぞれ独立してハロゲンを示す。A、A~A、R、R、及びR~Rは、上記一般式(1-I)、(1-II)における、A、A~A、R、R、及びR~Rと同意義を示す。)
 上記の製造方法について、以下に詳細に説明する。
 上記一般式(9-I)、(9-II)、(10-I)、及び(10-II)のAは、共有結合、酸素、硫黄、セレン、NR14、またはCR15=CR16を示し、反応の収率が高いことから共有結合が好ましい。
 AはCR=CR、酸素、硫黄、またはセレン、AはCR=CR、酸素、硫黄、またはセレン、AはCR=CR、酸素、硫黄、またはセレンを示すが、反応が進行しやすいことから、AがCR=CR、硫黄、AがCR=CR、硫黄、AがCR=CR、硫黄であることが好ましく、AがCR=CR、AがCR=CR、AがCR=CRであることがさらに好ましい。
 X及びXにおけるハロゲンは、例えば、フッ素、塩素、臭素、ヨウ素を示し、反応活性中間体のベンザインが安定に発生することから、Xは、フッ素、塩素、臭素が好ましく、Xは臭素が好ましい。
 Rは、反応活性中間体のベンザインを発生しやすいことから、ハロゲンまたは水素が好ましく、臭素、水素がさらに好ましい。
 上記一般式(10-I)または(10-II)で示される化合物と反応させる直鎖アルキルリチウムとしては、例えば、n-ブチルリチウム、メチルリチウム、n-プロピルリチウム、n-ペンチルリチウム、n-ヘキシルリチウム、n-ヘプチルリチウム、n-オクチルリチウム、n-ノニルリチウム、n-デシルリチウム等が挙げられ、入手性が良好なことからn-ブチルリチウムが好ましい。
 該直鎖アルキルリチウムは、一般式(10-I)または(10-II)で示される化合物と反応し、該化合物のジリチウム塩を生成させることから、該化合物に対して、2.0から7.0当量の範囲で使用するが、高収率なため、2.2から6.0当量が好ましい。
 該反応は溶媒中で行うが、該溶媒としては該化合物のジリチウム塩が安定に存在できる溶媒であれば特に限定はないが、反応が進行しやすいことから、THF、ジエチルエーテル、ターシャリーブチルメチルエーテル、ターシャリーブチルエチルエーテル、ジメトキシエタン、ジメトキシプロパン、ジオキサン等のエーテル系溶媒が好ましく、THFがさらに好ましい。
 該反応の温度は、例えば、-80℃~40℃が挙げられ、反応活性中間体のベンザインが発生しやすいことから-70℃~20℃が好ましい。
 本発明の芳香族化合物の製造方法としては、下記一般式(12-I)または(12-II)で示される化合物を用い、下記一般式(11-I)または(11-II)で示される芳香族化合物を製造する製造方法であってもよい。
Figure JPOXMLDOC01-appb-C000057
(ここで、A、R、R、及びR~Rは、上記一般式(1-I)、(1-II)におけるA、R、R、及びR~Rと同意義を示す。R10及びR11は、上記一般式(3)におけるR10及びR11と同意義を示す。R21及びR25は、上記一般式(5)におけるX、R21及びR25と同意義を示す。)
Figure JPOXMLDOC01-appb-C000058
(ここで、X及びXは、それぞれ独立して、ハロゲンを示し、A、R、R、R~R、R10、R11、X、R21、及びR25は、上記一般式(11-I)、(11-II)における、A、R、R、R~R、R10、R11、X、R21、及びR25と同意義を示す。)
 上記一般式(11-I)、(11-II)、(12-I)、及び(12-II)のAは、反応が進行しやすいことから、CR=CR、硫黄であることが好ましく、CR=CRであることがさらに好ましい。Xは、反応が進行しやすいことから、CR22=CR23、硫黄であることが好ましく、CR22=CR23であることがさらに好ましい。
 上記一般式(12-I)、(12-II)において、X及びXは、それぞれ独立してハロゲンを示す。該ハロゲンとしては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられ、反応活性中間体のベンザインが安定に発生することから、Xは、フッ素、塩素、臭素が好ましく、Xは臭素が好ましい。
 R、R、R11、及びR25は、反応活性中間体のベンザインを発生しやすいことから、ハロゲンまたは水素が好ましく、臭素、水素がさらに好ましい。
 一般式(12-I)または(12-II)で示される化合物を直鎖アルキルリチウムと反応させる場合、該直鎖アルキルリチウムは、該化合物に対して、高収率なため、3.5から6.5当量の範囲で使用することが好ましく、3.8から6.0当量がさらに好ましい。
 さらに、製造した芳香族化合物は、カラムクロマトグラフィー等に供することにより精製することができ、その際の分離剤としては、例えば、シリカゲル、活性アルミナ、溶媒としては、ヘキサン、ヘプタン、トルエン、ジクロロメタン、クロロホルム等を挙げることができる。
 製造した芳香族化合物は、活性炭、ゼオライト、活性アルミナ等に供することにより溶液中で脱色精製することができ、その際の溶媒としては、ヘキサン、ヘプタン、トルエン、ジクロロメタン、クロロホルム等を挙げることができる。
 また、製造した芳香族化合物は、さらに再結晶により精製してもよく、再結晶の回数を増やすことで純度を向上させることができる。再結晶の回数としては、高純度、高収率の観点から、好ましくは2~5回である。再結晶の回数を増やすことで純度を向上させることができる。再結晶に用いる溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、トルエン、キシレン、クロロホルム、クロロベンゼン、ジクロロベンゼン等を挙げることができ、これらの任意の割合の混合物であってもよい。
 再結晶法では、加熱により芳香族化合物の溶液を調製し(その際の溶液の濃度は、不純物を効率よく除去するため、0.01~10.0重量%の範囲が好ましく、0.05~5.0重量%の範囲がさらに好ましい。)、該溶液を冷却することで芳香族化合物の結晶を析出させ単離するが、単離する際の最終的な冷却温度は、純度及び回収率向上のため、-20℃から40℃の範囲にあることが好ましい。なお、純度を測定する際には液体クロマトグラフィーにより分析することが可能である。
 本発明の芳香族化合物の製造方法の原料である一般式(12-I)、(12-II)で示される化合物は、例えば、アリールハライドからアリールマグネシウムハライドを調製し、塩化亜鉛と反応させてアリール亜鉛ハライドとした後、ジブロモビス(トリフルオロメタンスルホニロキシ)ナフタレンとのパラジウム触媒カップリング反応により製造することができる。
 該アリールハライドの具体的な化合物としては、例えば、1-クロロ-2,6-ジブロモ-4-フルオロベンゼン、1-フロオロ-2,6-ジブロモ-4-クロロベンゼン、1-フルオロ-2,6-ジブロモ-4-n-ヘキシルベンゼン、1-フルオロ-2,6-ジブロモ-4-n-オクチルベンゼン、1-フルオロ-2,6-ジブロモ-4-n-デシルベンゼン、テトラブロモチオフェン、2-n-ヘキシルトリブロモチオフェン、2-n-オクチルトリブロモチオフェン、2-n-デシルトリブロモチオフェン等を挙げることができる。
 該ジブロモビス(トリフルオロメタンスルホニロキシ)ナフタレンとしては、例えば、2,6-ジブロモ-1,5-ビス(トリフルオロメタンスルホニロキシ)ナフタレン、1,5-ジブロモ-2,6-ビス(トリフルオロメタンスルホニロキシ)ナフタレン等を挙げることができ、該ジブロモビス(トリフルオロメタンスルホニロキシ)ナフタレンの代わりに、1,2,5,6-テトラブロモナフタレン、1,5-ジブロモ-2,6-ジヨードナフタレン、2,3,5,6-テトラブロモチエノ[3,2-b]チオフェン、3,6-ジブロモチエノ[3,2-b]チオフェン、2,3,5,6-テトラブロモジチエノ[3,2-b:2’,3’-d]チオフェン、3,5-ジブロモジチエノ[3,2-b:2’,3’-d]チオフェン、2,3,6,7-テトラブロモベンゾ[1,2-b:4,5-b’]ジチオフェン、3,7-ジブロモベンゾ[1,2-b:4,5-b’]ジチオフェン等も挙げることができる。
 該パラジウム触媒は、例えば、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、1,3-ビス(ジフェニルホスフィノプロパン)ジクロロパラジウム等を好適なものとして挙げることができる。
 該パラジウム触媒カップリング反応は、THF等の溶媒中、40~65℃の温度下で実施することができる。
 本発明の芳香族化合物は、適当な溶媒に溶解させることで該芳香族化合物を含有する有機半導体層形成用溶液とすることができる。該溶媒としては、一般式(1)で示される芳香族化合物を溶解することが可能な溶媒であれば如何なる溶媒を使用してもよく、有機半導体層を形成する際、溶媒の乾燥速度を好適なものとすることができることから、常圧での沸点が100℃以上である有機溶媒が好ましい。
 本発明で用いることが可能な溶媒として、特に制限はなく、例えば、トルエン、メシチレン、o-キシレン、イソプロピルベンゼン、ペンチルベンゼン、シクロヘキシルベンゼン、1,2,4-トリメチルベンゼン、テトラリン、インダン等の芳香族炭化水素類;アニソール、2-メチルアニソール、3-メチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール、2,6-ジメチルアニソール、エチルフェニルエーテル、ブチルフェニルエーテル、1,2-メチレンジオキシベンゼン、1,2-エチレンジオキシベンゼン等の芳香族エーテル類;クロロベンゼン、1,2-ジクロロベンゼン、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、1,2-ジフルオロベンゼン、1,3-ジフルオロベンゼン、1,4-ジフルオロベンゼン等の芳香族ハロゲン化合物;チオフェン、3-クロロチオフェン、2-クロロチオフェン、3-メチルチオフェン、2-メチルチオフェン、ベンゾチオフェン、2-メチルベンゾチオフェン、2,3-ジヒドロベンゾチオフェン、フラン、3-メチルフラン、2-メチルフラン、2,5-ジメチルフラン、ベンゾフラン、2-メチルベンゾフラン、2,3-ジヒドロベンゾフラン、チアゾール、オキサゾール、ベンゾチアゾール、ベンゾオキサゾール、ピリジン等のヘテロ芳香族類;ヘキサン、シクロヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、デカリン等の飽和炭化水素類;ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジアセテート、ジプロピレングリコールメチル-n-プロピルエーテル、ジプロピレングリコールメチルエーテルアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のグリコール類;フタル酸ジメチル、フタル酸ジエチル、テレフタル酸ジメチル、酢酸フェニル、シクロヘキサノールアセテート、3-メトキシブチルアセテート、テトラヒドロフルフリルアセテート、テトラヒドロフルフリルプロピオネート、γ-ブチロラクトン等のエステル類;THF、2-メトキシメチルテトラヒドロフラン等の環状エーテルなどを挙げられることができ、その中でも適度な乾燥速度を持つことから、好ましくはトルエン、o-キシレン、メシチレン、1,2,4-トリメチルベンゼン、テトラリン、インダン、オクタン、ノナン、デカン、アニソール、2-メチルアニソール、3-メチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール、2,6-ジメチルアニソール、エチルフェニルエーテル、ブチルフェニルエーテル、1,2-メチレンジオキシベンゼン、1,2-エチレンジオキシベンゼン、クロロベンゼン、1,2-ジクロロベンゼン、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、3-メチルチオフェン、ベンゾチアゾールであり、さらに好ましくは、トルエン、o-キシレン、メシチレン、テトラリン、インダン、オクタン、ノナン、デカン、アニソール、2-メチルアニソール、3-メチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール、2,6-ジメチルアニソールである。
 なお、本発明で用いる溶媒は、1種類の溶媒を単独で使用、または沸点、極性、溶解度パラメーターなど性質の異なる溶媒を2種類以上混合して使用することが可能である。
 一般式(1)で示される芳香族化合物を溶媒に混合溶解する際の温度としては、溶解を促進させる目的のため、0~80℃の温度範囲で行うことが好ましく、10~60℃の温度範囲で行うことが更に好ましい。
 また、一般式(1)で示される芳香族化合物を有機溶媒に溶解混合する時間は、均一溶液を得るため、1分~1時間で溶解することが好ましい。
 本発明では本発明の有機半導体層形成用溶液における一般式(1)で示される芳香族化合物の濃度が0.1~10.0重量%の範囲であると、取り扱い容易になり、有機半導体層を形成する際の効率により優れるものとなる。また、有機半導体層形成用溶液の粘度が0.3~10mPa・sの範囲であると、より好適な塗工性を発現するものとなる。
 なお該溶液は、該芳香族化合物自体が適度の凝集性を有することから比較的に低温で調製することが可能、且つ耐酸化性があることから、塗布法による有機薄膜の製造に好適に適用できる。即ち、雰囲気から空気を除く必要がないことから塗布工程を簡略化することができる。さらに該溶液は、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリ(4-メチルスチレン)、ポリ(1-ビニルナフタレン)、ポリ(2-ビニルナフタレン)、ポリ(スチレン-ブロック-ブタジエン-ブロック-スチレン)、ポリ(スチレン-ブロック-イソプレン-ブロック-スチレン)、ポリ(ビニルトルエン)、ポリ(スチレン-コ-2,4-ジメチルスチレン)、ポリ(クロロスチレン)、ポリ(スチレン-コ-α-メチルスチレン)、ポリ(スチレン-コ-ブタジエン)、ポリ(エチレン-コ-ノルボルネン)、ポリフェニレンエーテル、ポリカーボネート、ポリカルバゾール、ポリトリアリールアミン、ポリ(9,9-ジオクチルフルオレン-コ-ジメチルトリアリールアミン)、ポリ(N-ビニルカルバゾール)、ポリメタクリル酸メチル、ポリ(スチレン-コ-メタクリル酸メチル)、ポリメタクリル酸エチル、ポリメタクリル酸n-プロピル、ポリメタクリル酸イソプロピル、ポリメタクリル酸n-ブチル、ポリメタクリル酸フェニル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸n-プロピル等が挙げることができ、好ましくはポリスチレン、ポリ(α-メチルスチレン)、ポリ(エチレン-コ-ノルボルネン)、ポリメタクリル酸メチル等のポリマーをバインダーとして存在させることもできる。これらのポリマーバインダーの濃度は、適度な溶液の粘度のため、0.001~10.0重量%であることが好ましい。
 該ポリマーバインダーのガラス転移温度(Tg)は、電子デバイス製造時のプロセス温度への対応により好適であることから105℃以上であることが好ましく、120℃以上であることがさらに好ましく、150℃以上であることが特に好ましい。
 また、該ポリマーの分子量は、よりキャリア移動度の大きい有機薄膜トランジスタを得るのに好適であるため、5,000~1,000,000であることが好ましく、10,000~500,000がさらに好ましく、20,000~100,000が特に好ましい。なお、本発明において、ポリマーの分子量はポリスチレン換算の重量平均分子量(Mw)をいうものである。
 該ポリマーは、一般的なポリマーバインダーとしての効果を有し、得られる有機半導体層の成膜性を向上させるものであり、絶縁性ポリマー及び半導体性ポリマーも用いることができる。
 本発明でポリマーバインダーとして用いることが可能なポリマーの具体的な例としては、上記で挙げたポリマー以外に、例えば、極性環状ポリオレフィン類、ポリスルホン類、アクリロニトリル-スチレン共重合体、メチルメタクリレート-スチレン共重合体類等を挙げることができる。
 該極性環状ポリオレフィン類はより具体的には下記一般式(13)で示されるポリマーがさらに好ましい。
Figure JPOXMLDOC01-appb-C000059
(ここで、R27~R29は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数2~20のアルキルオキシカルボニル基、炭素数7~20のアリールオキシカルボニル基、シアノ基、ニトロ基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、ヒドロキシル基、アミノ基、又は炭素数1~20のアルキルアミノ基を示し、Xは、ハロゲン原子、炭素数2~20のアルキルオキシカルボニル基、炭素数7~20のアリールオキシカルボニル基、シアノ基、ニトロ基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、ヒドロキシル基、アミノ基、又は炭素数1~20のアルキルアミノ基を示す。pは20~5,000の整数を示し、q及びrはそれぞれ独立して0~2の整数を示す。実線と点線からなる結合は、単結合又は2重結合を示す。)
 一般式(13)におけるR27~R29は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数2~20のアルキルオキシカルボニル基、炭素数7~20のアリールオキシカルボニル基、シアノ基、ニトロ基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、ヒドロキシル基、アミノ基、又は炭素数1~20のアルキルアミノ基を示し、高耐熱性のため、水素原子、炭素数1~20のアルキル基が好ましい。
 R27~R29における炭素数1~20のアルキル基は、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、イソブチル基、sec-ブチル基、n-ペンチル基等の直鎖又は分岐アルキル基が挙げられる。炭素数6~20のアリール基は、例えば、フェニル基、p-トリル基、p-(n-ヘキシル)フェニル基、p-(n-オクチル)フェニル基、p-(2-エチルヘキシル)フェニル基等が挙げられる。炭素数2~20のアルキルオキシカルボニル基は、例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、n-プロピルオキシカルボニル基等が挙げられる。炭素数7~20のアリールオキシカルボニル基は、例えば、フェノキシカルボニル基、4-メチルフェノキシカルボニル基等が挙げられる。炭素数1~20のアルコキシ基は、例えば、メトキシ基、エトキシ基、n-プロポキシ基等が挙げられる。炭素数6~20のアリールオキシ基は、例えば、フェノキシ基、4-メチルフェノキシ等が挙げられる。炭素数1~20のアルキルアミノ基は、例えば、メチルアミノ基、エチルアミノ基、n-プロピルアミノ基等が挙げられる。そして、その中でも高耐熱性のため、置換基R27はメチル基、エチル基、n-プロピル基であることが好ましく、置換基R28及びR29は水素原子であることが好ましい。
 一般式(13)におけるXは、ハロゲン原子、炭素数2~20のアルキルオキシカルボニル基、炭素数7~20のアリールオキシカルボニル基、シアノ基、ニトロ基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、ヒドロキシル基、アミノ基、又は炭素数1~20のアルキルアミノ基を示す。
 置換基Xにおける炭素数2~20のアルキルオキシカルボニル基は、例えば、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、n-ブトキシカルボニル基、n-ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基等が挙げられ、炭素数7~20のアリールオキシカルボニル基は、例えば、フェノキシカルボニル基、4-メチルフェノキシカルボニル基、2,4-ジメチルフェニキシカルボニル基、4-エチルフェノキシカルボニル基等が挙げられる。炭素数1~20のアルコキシ基は、例えば、メトキシ基、エトキシ基等が挙げられる。炭素数6~20のアリールオキシ基は、例えば、フェノキシ基、4-メチルフェノキシ等が挙げられる。炭素数1~20のアルキルアミノ基は、例えば、メチルアミノ基、エチルアミノ基、n-プロピルアミノ基等が挙げられる。高溶解性及び高耐熱性のため、炭素数2~20のアルキルオキシカルボニル基であることが好ましい。
 pは20~5,000の整数を示し、よりキャリア移動度の大きい有機薄膜トランジスタを得るのに好適であるため、好ましくは40~2,000である。qは0~2の整数を示し、好ましくは1である。rは0~2の整数を示し、好ましくは0または1である。さらに好ましくは0である。
 実線と点線からなる結合は単結合又は2重結合を示し、熱的安定性のため、好ましくは単結合である。
 本発明でポリマーバインダーとして用いられるポリスルホン類はポリスルホン構造を有していれば特に制限がなく、より具体的には下記ポリスルホン1~5で示されるポリスルホン類が挙げられる。
Figure JPOXMLDOC01-appb-C000060
(ここで、置換基R30~R33は、それぞれ独立して、炭素数1~20のアルキル基を示し、sは10~20,000の整数を示す。)
 置換基R30~R33における炭素数1~20のアルキル基は、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル基、2-ヘキシルデシル基等の直鎖又は分岐アルキル基が挙げられる。
 sは10~20,000の整数を示し、好ましくは10~10,000の整数である。
 本発明でポリマーバインダーとして用いられるアクリロニトリル-スチレン共重合体は、アクリロニトリルとスチレンの任意の比率の共重合体であり、良好な電気特性を示し、バイアスストレスをかけた時の閾値電圧の変化がより小さいものになるなど信頼性が向上することから、アクリロニトリルとスチレン重量比で10:90~50:50の比率であることが好ましく、20:80~40:60であることがさらに好ましい。
 本発明でポリマーバインダーとして用いられるメチルメタクリレート-スチレン共重合体は、メチルメタクリレートとスチレンの任意の比率の共重合体であり、良好な電気特性を示し、バイアスストレスをかけた時の閾値電圧の変化がより小さいものになるなど信頼性が向上することから、メチルメタクリレートとスチレンのモル比で1:99~90:10であることが好ましく、1:99~70:30であることがさらに好ましい。
 本発明でポリマーバインダーとして用いられるポリマーは、表面処理剤により表面エネルギーを調整したものを用いることができる。表面処理剤としては、シランカップリング剤を用いることができ、その具体例としては、例えば、1,1,1,3,3,3-ヘキサメチルジシラザン、フェニルトリメトキシシラン、オクチルトリクロロシラン、β-フェネチルトリクロロシラン、β-フェネチルトリメトキシシラン等を挙げることができる。なお、本発明で用いるポリマーは、1種類のポリマーを単独で使用、または2種類以上のポリマーの混合物として使用することが可能である。更に、異なる分子量のポリマーを混合して使用することも可能である。
 本発明の有機半導体層形成用溶液を用いて有機半導体層を形成する際の塗布方法としては、有機半導体層を形成可能な方法であれば特に制限はなく、例えば、スピンコート、ドロップキャスト、ディップコート、キャストコート等の簡易塗工法;ディスペンサー、インクジェット、スリットコート、ブレードコート、フレキソ印刷、スクリーン印刷、グラビア印刷、オフセット印刷等の印刷法を挙げることができ、中でも容易に効率よく有機半導体層とすることが可能となることから、スピンコート、ドロップキャスト、インクジェットであることが好ましい。
 本発明の有機半導体層形成用溶液を塗布後、溶媒を乾燥除去することにより、該有機半導体層形成用溶液を用いてなる有機半導体層を形成することが可能である。
 塗布した有機半導体層から溶媒を乾燥除去する際、乾燥する条件に特に制限はなく、例えば、常圧下、又は減圧下で溶媒の乾燥除去を行うことが可能である。
 塗布した有機半導体層から有機溶媒を乾燥除去する温度に特に制限はないが効率よく塗布した有機半導体層から有機溶媒を乾燥除去することができ、有機半導体層を形成することが可能であるため、10~150℃の温度範囲で行うことが好ましい。
 塗布した有機半導体層から有機溶媒を乾燥除去する際、除去する有機溶媒の気化速度を調節することで、一般式(1)で示される芳香族化合物体の結晶成長を制御することが可能である。
 本発明の有機半導体層形成用溶液により形成される有機半導体層の膜厚に制限はなく、良好なキャリア移動が得られることから、1nm~1μmの範囲であることが好ましく、10nm~300nmの範囲であることが更に好ましい。
 また、得られる有機半導体層は、有機半導体層を形成後、40~180℃でアニール処理を行ってもよい。
 本発明の有機半導体層形成用溶液より形成される有機半導体層は、該有機半導体層を含んでなる有機半導体デバイス、特に該有機半導体層を含んでなる有機薄膜トランジスタとして使用することが可能である。
 有機薄膜トランジスタは、基板上に、ソース電極及びドレイン電極を付設した有機半導体層とゲート電極とを絶縁層を介し積層することにより得ることができ、該有機半導体層に本発明の有機半導体層形成用溶液により形成した有機半導体層を用いることにより、優れた半導体・電気特性を発現する有機薄膜トランジスタとすることが可能である。
 図1に一般的な有機薄膜トランジスタの断面形状による構造を示す。ここで、(A)は、ボトムゲート-トップコンタクト型、(B)は、ボトムゲート-ボトムコンタクト型、(C)は、トップゲート-トップコンタクト型、(D)は、トップゲート-ボトムコンタクト型の有機薄膜トランジスタであり、1は有機半導体層、2は基板、3はゲート電極、4はゲート絶縁層、5はソース電極、6はドレイン電極を示し、本発明の有機半導体層形成用溶液より形成される有機半導体層は、いずれの有機薄膜トランジスタにも適用することが可能である。
 本発明に係る基板としては特に制限はなく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエチレン、ポリプロピレン、ポリスチレン、環状ポリオレフィン、フッ素化環状ポリオレフィン、ポリイミド、ポリカーボネート、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマレート)、ポリ(ジエチルフマレート)、ポリ(ジイソプロピルマレエート)、ポリエーテルスルホン、ポリフェニレンスルフィド、セルローストリアセテート等のプラスチック基板;ガラス、石英、酸化アルミニウム、シリコン、ハイドープシリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物等の無機材料基板;金、銅、クロム、チタン、アルミニウム等の金属基板等を挙げることができる。なお、ハイドープシリコンを基板に用いた場合、その基板はゲート電極を兼ねることができる。
 本発明に係るゲート電極としては特に制限はなく、例えば、アルミニウム、金、銀、銅、ハイドープシリコン、スズ酸化物、酸化インジウム、インジウムスズ酸化物、クロム、チタン、タンタル、グラフェン、カーボンナノチューブ等の無機材料;ドープされた導電性高分子(例えばPEDOT-PSS)等の有機材料を挙げることができる。
 また、上記の無機材料は、金属のナノ粒子インクとしても差し支えなく使用することができる。この場合の溶媒は、適度の分散性のため、水、メタノール、エタノール、2-プロパノール、1-ブタノール、2-ブタノール等の極性溶媒;ヘキサン、ヘプタン、オクタン、デカン、ドデカン、テトラデカン等の炭素数6~14の脂肪族炭化水素溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、オクチルベンゼン、シクロヘキシルベンゼン、テトラリン、インダン、アニソール、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、1,2-ジメチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール等の炭素数7~14の芳香族炭化水素溶媒であることが好ましい。該ナノ粒子インクを塗布後、導電性向上のため、80℃~200℃の温度範囲でアニール処理することが好ましい。
 本発明に係るゲート絶縁層としては特に制限はなく、例えば、酸化シリコン、窒化シリコン、酸化アルミニウム、窒化アルミニウム、酸化チタン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物、酸化スズ、酸化バナジウム、チタン酸バリウム、チタン酸ビスマス等の無機材料;ポリメチルメタクリレート、ポリメチルアクリレート、ポリイミド、ポリアミド酸ポリカーボネート、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマレート)、ポリ(ジエチルフマレート)、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリけい皮酸エチル、ポリけい皮酸メチル、ポリクロトン酸エチル、ポリエーテルスルホン、ポリプロピレン-コ-1-ブテン、ポリイソブチレン、ポリプロピレン、ポリシクロペンタン、ポリシクロヘキサン、ポリシクロヘキサン-エチレン共重合体、ポリフッ素化シクロペンタン、ポリフッ素化シクロヘキサン、ポリフッ素化シクロヘキサン-エチレン共重合体、BCB樹脂(商品名:サイクロテン、ダウ・ケミカル社製)、Cytop(商標)、Teflon(商標)、パリレンC等のパリレン(商標)類のポリマー絶縁材料を挙げることができ、製法が簡便であることから、塗布法が適用できるポリマー絶縁材料(ポリマーゲート絶縁層)であることが好ましい。
 該ポリマー材料を溶解させるに用いる溶媒としては特に制限がなく、例えば、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、テトラデカン等の炭素数6~14の脂肪族炭化水素溶媒;THF、1,2-ジメトキシエタン、ジオキサン等のエーテル系溶媒;エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、2-エチルヘキサノール、テトラヒドロフルフリルアルコール等のアルコール系溶媒;アセトン、メチルエチルケトン、ジエチルケトン、ジイソプロピルケトン、アセトフェノン等のケトン系溶媒;酢酸エチル、γ-ブチロラクトン、シクロヘキサノールアセテート、3-メトキシブチルアセテート、テトラヒドロフルフリルアセテート、テトラヒドロフルフリルプロピオネート等のエステル系溶媒;DMF、NMP等のアミド系溶媒;ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジアセテート、ジプロピレングリコールメチル-n-プロピルエーテル、ジプロピレングリコールメチルエーテルアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のグリコール系溶媒;パーフルオロヘキサン、パーフルオロオクタン、2-(ペンタフルオロエチル)ヘキサン、3-(ペンタフルオロエチル)ヘプタン等のフッ素化溶媒等が挙げられる。
 該ポリマー絶縁材料の濃度は、例えば、20~40℃の温度において0.1~10.0重量%である。当該濃度において得られる絶縁層の膜厚に制限はなく、耐絶縁性の観点から、好ましくは100nm~1μm、さらに好ましくは150nm~900nmである。
 そして、これらのゲート絶縁層の表面は、例えば、オクタデシルトリクロロシラン、デシルトリクロロシラン、デシルトリメトキシシラン、オクチルトリクロロシラン、オクタデシルトリメトキシシラン、β-フェネチルトリクロロシラン、β-フェネチルトリメトキシシラン、フェニルトリクロロシラン、フェニルトリメトキシシラン等のシラン類;オクタデシルホスホン酸、デシルホスホン酸、オクチルホスホン酸等のホスホン酸類;ヘキサメチルジシラザン等のシリルアミン類で修飾処理したものであっても使用することができる。一般的にゲート絶縁層の表面処理を行うことにより、有機半導体材料の結晶粒径の増大及び分子配向の向上のため、キャリア移動度、電流オン・オフ比の向上、及び閾値電圧の低下という好ましい結果が得られる。
 本発明の有機薄膜トランジスタのソース電極及びドレイン電極の材料としては特に制限がなく、ゲート電極と同様の材料を用いることができ、ゲート電極の材料と同じであっても異なっていてもよく、異種材料を積層してもよい。また、キャリアの注入効率を上げるために、これらの電極材料に表面処理を実施することもできる。表面処理に用いる表明処理剤としては、例えば、ベンゼンチオール、ペンタフルオロベンゼンチオール、4-フルオロベンゼンチオール、4-メトキシベンゼンチオール等を挙げることができる。
 本発明の有機薄膜トランジスタは、速い動作性のため、キャリア移動度が、0.20cm/V・sec以上であることが好ましい。また、高いスイッチ特性のため、電流オン・オフ比が、1.0×10以上であることが好ましい。
 本発明の有機薄膜トランジスタは、電子ペーパー、有機ELディスプレイ、液晶ディスプレイ、ICタグ(RFIDタグ)、圧力センサー、バイオセンサー等のトランジスタの有機半導体層用途;有機ELディスプレイ材料;有機半導体レーザー材料;有機薄膜太陽電池材料;フォトニック結晶材料等の電子材料に利用することができ、一般式(1)で示される芳香族化合物が結晶性の薄膜となるため、有機薄膜トランジスタの半導体層用途として用いられることが好ましい。
 本発明の新規な芳香族化合物は、高いキャリア移動度を与えると共に高耐熱性及び適当な溶解性及びHOMOレベルを持っている。従って、塗布で優れた半導体特性を発現する有機薄膜トランジスタを提供することが可能となり、その効果は極めて高いものである。
;有機薄膜トランジスタの断面形状による構造を示す図である。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 生成物の同定にはH NMRスペクトル、ガスクロマトグラフィー-マススペクトル(GCMS)、及び液体クロマトグラフィー-マススペクトル(LCMS)分析を用いた。
 <H NMRスペクトル分析>
装置;日本電子製、(商品名)Delta V5(400MHz)
測定温度;23℃(温度指定がない場合)
 <ガスクロマトグラフィー-マススペクトル分析>
装置;パーキンエルマー製、(商品名)オートシステムXL(MS部;ターボマスゴールド)(合成例1、2、4、6)
装置;島津製作所製、(商品名)QP-2010 Ultra(合成例9、11)
カラム;J&Wサイエンティフィック社製、(商品名)DB-1,30m。
MSイオン化;電子衝突(EI)法(70エレクトロンボルト)
<直接導入マススペクトル分析>
装置;島津製作所製、(商品名)QP-2010 Ultra
MSイオン化;電子衝突(EI)法(70エレクトロンボルト)
 <液体クロマトグラフィー-マススペクトル(LCMS)分析>
装置;ブルカー・ダルトニクス、(商品名)microTOF focus
MSイオン化;大気圧化学イオン化(APCI)法
LC条件;下記液体クロマトグラフィー分析の項目にて記載の条件
 反応の進行の確認等は薄層クロマトグラフィー、ガスクロマトグラフィー(GC)、液体クロマトグラフィー(LC)分析を用いた。ビフェニレン誘導体の純度測定についても液体クロマトグラフィー分析を用いた実施した。
 <薄層クロマトグラフィー分析>
 メルク社の薄層クロマトグラフィー用PLCシリカゲル60F254 0.5mmを使用し、展開溶媒として、ヘキサン及び/又はトルエンを用いた。
 <ガスクロマトグラフィー分析>
装置;島津製作所製、(商品名)GC2014
カラム;J&Wサイエンティフィック社製、(商品名)DB-1,30m
 <液体クロマトグラフィー分析>
装置;東ソー製(コントローラー;PX-8020、ポンプ;CCPM-II、デガッサー;SD-8022)
カラム;東ソー製、(商品名)ODS-100V、5μm、4.6mm×250mm
カラム温度;33℃
溶離液;ジクロロメタン:アセトニトリル=2:8(容積比)
流速;1.0ml/分
検出器;UV(東ソー製、(商品名)UV-8020、波長;254nm)。
 ビフェニレン誘導体の融点測定はDSC(示差走査熱量計)を用いた。
 <DSC測定>
装置;エスアイアイナノテクノロジー社製、型式;DSC6220
昇降温速度;10℃/min
走査範囲;-10℃~300℃
 合成例1(2,2’-ジブロモ-4,5’-ジフルオロビフェニルの合成)(A1工程)
 窒素雰囲気下、100mlシュレンク反応容器に、1-ブロモ-4-フルオロ-2-ヨードベンゼン(東京化成工業)3.95g(13.1mmol)及びTHF(脱水グレード)15mlを添加した。この溶液を0℃に冷却し、エチルマグネシウムクロライド(シグマ-アルドリッチ、2.0M)のTHF溶液6.8ml(13.6mmol)を滴下した。この混合物を0℃で15分間熟成し、1-ブロモ-4-フルオロフェニル-2-マグネシウムクロライドを調製した。
 一方、窒素雰囲気下、別の100mlシュレンク反応容器に、塩化亜鉛(和光純薬工業)2.42g(17.7mmol)及びTHF(脱水グレード)19mlを添加し、0℃に冷却した。この得られた白色微スラリー溶液中に、先に調製した1-ブロモ-4-フルオロフェニル-2-マグネシウムクロライド溶液をテフロン(登録商標)キャヌラーを用いて滴下し、さらにTHF(脱水グレード)2mlを用いて100mlシュレンク反応容器及びテフロン(登録商標)キャヌラーを洗浄しながら投入した。得られた混合物を室温まで徐々に昇温しながら攪拌した。生成した1-ブロモ-4-フルオロフェニル-2-亜鉛クロライドのスラリー液に、2-ブロモ-4-フルオロ-1-ヨードベンゼン(東京化成工業)3.18g(10.5mmol)及び触媒としてテトラキス(トリフェニルホスフィン)パラジウム(東京化成工業)115mg(0.0995mmol、2-ブロモ-4-フルオロ-1-ヨードベンゼンに対し0.948モル%)を添加した。50℃で7時間反応を実施した後、容器を水冷し1M塩酸を添加することで反応を停止させた。トルエン及び食塩水を添加し、有機相を分相し、有機相を食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒:ヘキサン)。2,2’-ジブロモ-4,5’-ジフルオロビフェニルの無色オイル3.48gを得た(収率94%)。
 MS m/z: 350(M+2、51%)、348(M、100%)、346(M-2、53)。
 H NMR(CDCl):δ=7.62(dd,J=8.7Hz,5.4Hz,1H),7.43(dd,J=8.2Hz,2.3Hz,1H),7.27~7.19(m,1H),7.11(dt,J=8.2Hz,2.7Hz,1H),7.04~6.96(m,2H)。
 合成例2 (2,6-ジフルオロビフェニレンの合成)(B1工程)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例1で合成した2,2’-ジブロモ-4,5’-ジフルオロビフェニル3.30g(9.48mmol)及びTHF(脱水グレード)160mlを添加した。この混合物を-78℃に冷却し、n-ブチルリチウム(関東化学、1.6M)のヘキサン溶液12.5ml(20.0mmol)を滴下した。この混合物を-78℃で1時間熟成した。ここへ、-78℃下で、塩化銅(II)(和光純薬工業製)3.75g(27.9mmol)を投入した。得られた混合物を室温まで徐々に昇温しながら攪拌した。反応混合物に1M塩酸を添加後、トルエンを添加し分相した。有機相を食塩水で2回洗浄し、無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン)。2,6-ジフルオロビフェニレンの淡黄色固体1.48gを得た(収率91%)。
 MS m/z: 188(M、100%)。
 H NMR(CDCl):δ=6.56(dd,J=11Hz,4.0Hz,2H),6.42~6.35(m,4H)。
 合成例3 (2,6-ジフルオロ-1,5-ジヨードビフェニレンの合成)(C1工程)
 窒素雰囲気下、100mlシュレンク反応容器に、ジイソプロピルアミン516mg(5.10mmol)及びTHF(脱水グレード)9mlを添加した。この混合物を-40℃に冷却し、n-ブチルリチウム(関東化学、1.6M)のヘキサン溶液3.1ml(5.0mmol)を滴下し、LDAを調製した。この混合物を-78℃に冷却し、ここへ、合成例2で合成した2,6-ジフルオロビフェニレン380mg(2.02mmol)を少しずつ投入し、-78℃~-60℃で2.5時間攪拌した。得られた混合物を-78℃とし、ヨウ素1.26g(4.96mmol)及びTHF(脱水グレード)4mlからなる溶液を滴下した。得られた混合物を室温まで徐々に昇温しながら攪拌した。反応混合物0℃に冷却後、水及びトルエンを添加し、分相した。水相をトルエン抽出し、合わせた有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン)、2,6-ジフルオロ-1,5-ジヨードビフェニレンの淡黄色固体471mgを得た(収率53%)。
 H NMR(CDCl):δ=6.68(dd,J=7.3Hz,3.6Hz,2H),6.44(dd,J=9.6Hz,7.3Hz,2H)。
 合成例4 (2,6-ジフルオロ-1,5-ジオクチニルビフェニレンの合成)(D1工程)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例3で合成した2,6-ジフルオロ-1,5-ジヨードビフェニレン453mg(1.02mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム(和光純薬工業)64.3mg(0.0916mol)、ヨウ化銅(I)(和光純薬工業)35.9mg(0.188mmol)、トルエン9ml、及びトリエチルアミン9mlを添加した。さらに1-オクチン(和光純薬工業)337mg(3.06mmol)を添加した。この混合物を30℃で10時間反応を実施した。得られた反応混合物にトルエン及び水を添加し、分相後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン)。2,6-ジフルオロ-1,5-ジオクチニルビフェニレンの黄色固体293mgを得た(収率71%)。
 MS m/z: 406(M+2、6.0%),405(M+1、34%),404(M、100%)。
 H NMR(CDCl):δ=6.54(dd,J=7.3Hz,4.1Hz,2H),6.40(dd,J=11Hz,7.7Hz,2H),2.44(t,J=7.7Hz,4H),1.61(m,4H),1.46(m,4H),1.32(m,8H),0.89(t,J=7.7Hz,6H)。
 実施例1 (芳香族化合物(1-1a、R=C13))の合成(E1工程)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例4で合成した2,6-ジフルオロ-1,5-ジオクチニルビフェニレン287mg(0.709mmol)、硫化ナトリウム・9水和物(和光純薬工業)613mg(2.55mmol)、及びDMSO(和光純薬工業)6mlを添加した。混合物を80℃に加熱し、5時間攪拌した。得られた反応混合物を0℃に冷却後、水及びトルエンを添加した。分相後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン)。さらにヘキサンから2回再結晶を行い、2,7-ジヘキシルジチエノビフェニレン(1-1a、化合物1)の黄色固体184mgを得た(収率61%)。LC分析より純度は99.3%であった。
 融点:155℃
 MS m/z: 434(M+2、14%),433(M+1、34%),432(M、100%),361(M-C11、90%),290(M-2C11、55%)。
 H NMR(CDCl):δ=7.04(d,J=7.3Hz,2H),6.60(s,2H),6.54(d,J=7.3Hz,2H),2.78(t,J=7.2Hz,4H),1.70(m,4H),1.39(m,4H),1.32(m,8H),0.90(t,J=6.8Hz,6H)。
 CV測定よりHOMOレベルは、-5.31eVであった。
 合成例5 (2,6-ジブロモ-3,7-ジフルオロビフェニレンの合成)(C4工程)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例2で合成した2,6-ジフルオロビフェニレン351mg(1.86mmol)及びDMF(脱水グレード)7mlを添加した。ここへ、室温下、NBS(和光純薬工業)954mg(5.36mmol)を投入した。40℃で10時間攪拌後、得られた反応混合物を室温まで冷却した。水及びトルエンを添加し、分相した。有機相を水で2回洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をヘキサン:トルエン=1:2の混合溶媒から再結晶し、2,6-ジブロモ-3,7-ジフルオロビフェニレンの黄色針状結晶302mgを得た(収率47%)。
 H NMR(CDCl):δ=6.82(d,J=5.9Hz,2H),6.49(d,J=6.4Hz,2H)。
 合成例6 (2,6-ジフルオロ-3,7-ジオクチニルビフェニレンの合成)(D4工程)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例5で合成した2,6-ジブロモ-3,7-ジフルオロビフェニレン270mg(0.780mmol)、ジクロロビス(トリフェニルホスフィン)パラジウム(和光純薬工業)45.3mg(0.0645mol)、ヨウ化銅(I)(和光純薬工業)26.0mg(0.136mmol)、トルエン3ml、及びトリエチルアミン5mlを添加した。さらに1-オクチン(和光純薬工業)560mg(5.08mmol)を添加した。この混合物を60℃で35時間反応を実施した。得られた反応混合物を室温まで冷却し、トルエン及び水を添加した。分相後、有機相を水で2回洗浄し、無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン)。2,6-ジフルオロ-3,7-ジオクチニルビフェニレンの黄色固体303mgを得た(収率96%)。
 MS m/z: 406(M+2、5.0%),405(M+1、36%),404(M、100%)。
 H NMR(CDCl):δ=6.60(d,J=6.0Hz,2H),6.42(d,J=7.3Hz,2H),2.42(t,J=6.9Hz,4H),1.59(m,4H),1.44(m,4H),1.32(m,8H),0.90(t,J=6.8Hz,6H)。
 実施例2 (芳香族化合物(1-3a、R=C13))の合成(E4工程)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例6で合成した2,6-ジフルオロ-3,7-ジオクチニルビフェニレン107mg(0.264mmol)、硫化ナトリウム・9水和物(和光純薬工業)252mg(1.05mmol)、及びDMSO(和光純薬工業)3mlを添加した。混合物を80℃に加熱し、5時間攪拌した。得られた反応混合物を0℃に冷却後、水及びトルエンを添加した。分相後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン/トルエン=1/1~0:1)。さらにトルエンから2回再結晶を行い、2,7-ジヘキシルジチエノビフェニレン(1-3a、化合物2)の黄色固体72mgを得た(収率62%)。LC分析より純度は99.2%であった。
 融点:>300℃
 MS m/z: 434(M+2、13%),433(M+1、36%),432(M、100%),361(M-C11、88%),290(M-2C11、52%)。
 H NMR(CDCl):δ=7.04(s,2H),6.95(s,2H),6.79(s,2H),2.81(t,J=7.2Hz,4H),1.70(m,4H),1.38(m,4H),1.32(m,8H),0.89(t,J=6.8Hz,6H)。
 CV測定よりHOMOレベルは、-5.40eVであった。
 合成例7 (2,6-ジフルオロ-1,5-ジデシニルビフェニレンの合成)(D1工程)
 合成例4で、1-オクチンの代わりに1-デシン(和光純薬工業)を用いた以外は、合成例4と同じ操作を繰り返して2,6-ジフルオロ-1,5-ジデシニルビフェニレンの黄色固体を得た(収率71%)。
 H NMR(CDCl):δ=6.53(dd,J=7.3Hz,4.1Hz,2H),6.39(dd,J=11Hz,7.7Hz,2H),2.43(t,J=7.7Hz,4H),1.60(m,4H),1.46(m,4H),1.32(m,16H),0.89(t,J=7.7Hz,6H)。
 実施例3 (芳香族化合物(1-1a、R=C17))の合成(E1工程)
 実施例1で、2,6-ジフルオロ-1,5-ジオクチニルビフェニレンの代わりに合成例7で合成した2,6-ジフルオロ-1,5-ジデシニルビフェニレンを用いた以外は、実施例1と同じ操作を繰り返して2,7-ジオクチルジチエノビフェニレン(1-1a、化合物3)の黄色固体を得た(収率61%)。LC分析より純度は99.3%であった。
 融点:140℃
 MS(APCI) m/z: 489(M+H)。
 H NMR(CDCl):δ=7.03(d,J=7.3Hz,2H),6.60(s,2H),6.54(d,J=7.3Hz,2H),2.77(t,J=7.2Hz,4H),1.68(m,4H),1.40-1.20(m,20H),0.87(t,J=6.8Hz,6H)。
 CV測定よりHOMOレベルは、-5.29eVであった。
 合成例8 (2,6-ジフルオロ-1,5-ジドデシニルビフェニレンの合成)(D1工程)
 合成例4で、1-オクチンの代わりに1-ドデシン(和光純薬工業)を用いた以外は、合成例4と同じ操作を繰り返して2,6-ジフルオロ-1,5-ジドデシニルビフェニレンの黄色固体を得た(収率78%)。
 H NMR(CDCl):δ=6.52(dd,J=7.3Hz,4.1Hz,2H),6.38(dd,J=11Hz,7.7Hz,2H),2.42(t,J=7.7Hz,4H),1.59(m,4H),1.46(m,4H),1.32(m,24H),0.88(t,J=7.7Hz,6H)。
 実施例4 (芳香族化合物(1-1a、R=C1021))の合成(E1工程)
 実施例1で、2,6-ジフルオロ-1,5-ジオクチニルビフェニレンの代わりに合成例8で合成した2,6-ジフルオロ-1,5-ジドデシニルビフェニレンを用いた以外は、実施例1と同じ操作を繰り返して2,7-ジデシルジチエノビフェニレン(1-1a、化合物4)の黄色固体を得た(収率61%)。LC分析より純度は99.3%であった。
 融点:132℃
 MS(APCI) m/z: 545(M+H)。
 H NMR(CDCl):δ=7.02(d,J=7.3Hz,2H),6.59(s,2H),6.53(d,J=7.3Hz,2H),2.76(t,J=7.2Hz,4H),1.68(m,4H),1.40-1.20(m,28H),0.87(t,J=6.8Hz,6H)。
 CV測定よりHOMOレベルは、-5.27eVであった。
 合成例9 (2-ブロモ-1-フルオロ-3-ヨードベンゼンの合成)
 窒素雰囲気下、500mlシュレンク反応容器に、ジイソプロピルアミン5.76g(56.9mmol)及びTHF(脱水グレード)115.0mlを添加した。この溶液を-50℃に冷却し、n-ブチルリチウム(東京化成工業、1.6M)のヘキサン溶液34.0ml(54.4mmol)を滴下し、LDAを調製した。この混合物を-78℃に冷却し、1-フルオロ-3-ヨードベンゼン(東京化成工業)11.5g(51.8mmol)を添加し、-78℃で2時間保持した。ここへ、-78℃下、テトラブロモメタン(東京化成工業)34.4g(103.6mmol)をTHF(脱水グレード)160.0mlに溶解した溶液を滴下し、室温まで徐々に昇温した。得られた反応混合物に水及びトルエンを添加し、分相した。有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒:ヘキサン)。メタノール(和光純薬工業)3.0gを加え、50℃に昇温して再結晶することで2-ブロモ-1-フルオロ-3-ヨードベンゼンの白色固体7.43gを得た(収率43.3%)。
 MS m/z: 302(M+2、75%)、300(M、78%)、175(M+2-I、38%)、173(M-I、39%)、94(M-BrI、100%)。
 H NMR(CDCl):δ=7.68~7.64(m,1H),7.12~7.08(m,1H),7.05~7.00(m,1H)
 合成例10 (2,2’-ジブロモ-3,6’-ジフルオロビフェニルの合成)(A2工程)
 窒素雰囲気下、200mlシュレンク反応容器に、1-ブロモ-3-フルオロ-2-ヨードベンゼン(東京化成工業)4.89g(16.3mmol)及びTHF(脱水グレード)50.0mlを添加した。この溶液を0℃に冷却し、エチルマグネシウムクロライド(シグマ-アルドリッチ、2.0M)のTHF溶液8.4ml(19.8mmol)を滴下した。この混合物を0℃で20分間熟成し、1-ブロモ-3-フルオロフェニル-2-マグネシウムクロライドを調製した。
 一方、窒素雰囲気下、別の300mlシュレンク反応容器に、塩化亜鉛(和光純薬工業)3.28g(24.1mmol)及びTHF(脱水グレード)30mlを添加し、0℃に冷却した。この得られた白色微スラリー溶液中に、先に調製した1-ブロモ-3-フルオロフェニル-2-マグネシウムクロライド溶液をテフロン(登録商標)キャヌラーを用いて滴下し、さらにTHF(脱水グレード)2mlを用いて100mlシュレンク反応容器及びテフロン(登録商標)キャヌラーを洗浄しながら投入した。得られた混合物を室温まで徐々に昇温しながら攪拌した。生成した1-ブロモ-3-フルオロフェニル-2-亜鉛クロライドのスラリー液に、合成例9で合成した2-ブロモ-1-フルオロ-3-ヨードベンゼン3.51g(11.7mmol)及び触媒としてテトラキス(トリフェニルホスフィン)パラジウム(東京化成工業)1.40g(1.2mmol、2-ブロモ-1-フルオロ-3-ヨードベンゼンに対し10モル%)を添加した。60℃で3時間反応を実施した後、容器を水冷し1M塩酸を添加することで反応を停止させた。トルエンを添加し、有機相を分相し、有機相を無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒:ヘキサン)。2,2’-ジブロモ-3,6’-ジフルオロビフェニルの無色固体2.90gを得た(収率71.3%)。
 H NMR(CDCl):δ=7.50(d,J=8.2Hz,1H),7.42~7.36(m,1H),7.33~7.26(m,1H),7.23~7.18(m,1H),7.17~7.12(m,1H),7.05~6.96(d,J=7.3Hz1H)。
 合成例11 (1,5-ジフルオロビフェニレンの合成)(B3工程)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例10で合成した2,2’-ジブロモ-3,6’-ジフルオロビフェニル395.5mg(1.1mmol)及びTHF(脱水グレード)20mlを添加した。この混合物を-78℃に冷却し、n-ブチルリチウム(関東化学、1.6M)のヘキサン溶液2.9ml(4.6mmol)を滴下した。この混合物を-78℃で1時間熟成した後、-40℃に10分かけて昇温し1時間熟成させた。ここへ、N-フルオロベンゼンスルホンイミド(東京化成工業)1.50g(4.8mmol)を投入した。得られた混合物を室温まで徐々に昇温しながら攪拌した。反応混合物に1M塩酸を添加後、トルエンを添加し分相した。有機相を無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン)。1,5-ジフルオロビフェニレンの淡黄色固体130.0mgを得た(収率51.7%)。
 MS m/z: 188(M、100%)、168(M-HF、15%)94(M-CF、15%)。
 H NMR(CDCl):δ=6.80(ddd,2H)δ=6.56~6.50(m,4H)。
 合成例12 (ビフェニレン-1,5-ビス(チオアセトアルデヒドジメチルアセタール)の合成(C3工程)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例11で合成した1,5-ジフルオロビフェニレン57.6mg(0.31mmol)、硫化ナトリウム・9水和物(和光純薬工業)398.0mg(1.65mmol)、及びNMP(和光純薬工業)4mlを添加した。混合物を110℃で、6時間攪拌した。得られた反応混合物に2-ブロモアセトアルデヒドジメチルアセタール(東京化成工業)578.2mg(3.42mmol)を添加し、100℃で、3時間加熱攪拌した。得られた反応混合物を室温に冷却後、水及びトルエンを添加した。分相後、有機相を無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン/酢酸エチル=10/1~10/2)。さらに低沸分を減圧除去し、ビフェニレン-1,5-ビス(チオアセトアルデヒドジメチルアセタール)の黄色固体65.4mgを得た(収率64.7%)。
 H NMR(CDCl):δ=6.70(d,J=5.5Hz,2H),6.69(d,J=1.4Hz,2H),6.54(dd,J=5.5Hz,1.4Hz,2H),4.53(t,J=5.9Hz,2H),3.38(s,12H),3.10(d,J=5.9,Hz,4H)。
 実施例5 (ジチエノビフェニレン誘導体の合成(D3工程)
 窒素雰囲気下、50mlシュレンク反応容器に、合成例12で合成したビフェニレン-1,5-ビス(チオアセトアルデヒドジメチルアセタール)57.7mg(0.15mmol)、ポリリン酸(和光純薬工業)109.4mg、及びクロロベンゼン(和光純薬工業)4mlを添加した。混合物を130℃で、5時間攪拌した。得られた反応混合物を室温に冷却後、水及びトルエンを添加した。分相後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン/酢酸エチル=10/1~10/2)、ジチエノビフェニレン誘導体の黄色固体22.5mgを得た(収率55%)。
 MS m/z: 264(M)。
 実施例6 (芳香族化合物(1-2a、R=C17))の合成(E3工程)
 窒素雰囲気下、50mlシュレンク反応容器に、実施例5で合成したジチエノビフェニレン誘導体22.5mg(0.085mmol)及びTHF(脱水グレード)4mlを添加した。この混合物を0℃に冷却し、n-ブチルリチウム(東京化成工業、1.6M)のヘキサン溶液0.20ml(0.32mmol)を滴下した。この混合物を60℃で2時間熟成した後、1-ヨードオクタン(和光純薬工業)136mg(0.567mmol)を投入した。得られた混合物を60℃で7時間、攪拌した。反応混合物氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン)、2,7-ジオクチルジチエノビフェニレン((1-2a)、化合物5))の黄色固体17mgを得た(収率41%)。
 MS(APCI) m/z: 489(M+H)。
 CV測定よりHOMOレベルは、-5.30eVであった。
 合成例13 (1,5-ビス(3-クロロ-2-チエニル)-2,6-ジフルオロビフェニレンの合成)(D5工程)
 窒素雰囲気下、100mlシュレンク反応容器に、3-クロロチオフェン4.96g(41.9mmol)、クロロホルム23ml、及び酢酸23mlを添加した。ここへ、NBS(和光純薬工業)8.16g(45.8mmol)を投入した。室温で8時間攪拌後、得られた反応混合物を氷冷し、飽和重曹水30mlを添加し、クエンチした。ジクロロメタンで2回抽出し、合わせた有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をダイヤフタムポンプを用い1700Paの減圧下で乾燥し、2-ブロモ-3-クロロチオフェンの薄赤色オイル7.94gを得た(収率96%)。
 H NMR(CDCl):δ=6.82(d,J=5.9Hz,2H),6.49(d,J=6.4Hz,2H)。
 窒素雰囲気下、50mlシュレンク反応容器に、上記で合成した2-ブロモ-3-クロロチオフェン71.2mg(0.361mmol)及びTHF(脱水グレード)3mlを添加した。この溶液を0℃に冷却し、エチルマグネシウムクロライド(シグマ-アルドリッチ、2.0M)のTHF溶液0.20ml(0.40mmol)を滴下した。この混合物を0℃で10分間熟成し、3-クロロ-2-チエニル-2-マグネシウムクロライドを調製した。
 一方、窒素雰囲気下、50mlシュレンク反応容器に、塩化亜鉛(和光純薬工業)87.8mg(0.644mmol)及びTHF(脱水グレード)2mlを添加し、0℃に冷却した。この得られた白色微スラリー溶液中に、先に調製した3-クロロ-2-チエニル-2-マグネシウムクロライド溶液をテフロン(登録商標)キャヌラーを用いて滴下し、さらにTHF(脱水グレード)1mlを用いて50mlシュレンク反応容器及びテフロン(登録商標)キャヌラーを洗浄しながら投入した。得られた混合物を室温まで徐々に昇温しながら攪拌した。生成した3-クロロ-2-チエニル-2-亜鉛クロライドのスラリー液に、合成例3で合成した2,6-ジフルオロ-1,5-ジヨードビフェニレン49.3mg(0.112mmol)及び触媒としてテトラキス(トリフェニルホスフィン)パラジウム(東京化成工業)3.4mg(0.00294mmol、2,6-ジフルオロ-1,5-ジヨードビフェニレンに対し 2.63モル%)を添加した。60℃で7時間反応を実施した後、容器を水冷し1M塩酸を添加することで反応を停止させた。トルエン及び食塩水を添加し、有機相を分相し、有機相を水および食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン/トルエン=1/0~95/5)。1,5-ビス(3-クロロ-2-チエニル)-2,6-ジフルオロビフェニレンの黄色固体 15.1mgを得た(収率32%)。
 H NMR(CDCl):δ=7.42(d,J=5.2Hz,2H),7.04(d,J=5.2Hz,2H),6.55~6.51(m,4H)。
 実施例7 (ビス(ジチエノ)ビフェニレン誘導体)の合成(E5工程)
 窒素雰囲気下、50mlシュレンク反応容器に、合成例13で合成した1,5-ビス(3-クロロ-2-チエニル)-2,6-ジフルオロビフェニレン15.1mg(0.0358mmol)、硫化ナトリウム・9水和物(和光純薬工業)44.2mg(0.184mmol)、及びNMP(和光純薬工業)2mlを添加した。混合物を170℃に加熱し、4時間攪拌した。得られた反応混合物を0℃に冷却後、水及びトルエンを添加した。分相後、有機相を水、食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン/トルエン=1/1)、ビス(ジチエノ)ビフェニレン誘導体の黄色固体7.6mgを得た(収率56.7%)。
 H NMR(CDCl):δ=7.55(d,J=4.8Hz,2H),7.01(d,J=6.8Hz,2H),6.82(d,J=8.0Hz,2H),6.58(d,J=6.8Hz,2H)。
 実施例8 (芳香族化合物(1-11a、R=C17))の合成(F5工程)
 窒素雰囲気下、50mlシュレンク反応容器に、合成例14で合成したビス(ジチエノ)ビフェニレン誘導体7.3mg(0.0194mmol)及びTHF(脱水グレード)3mlを添加した。この混合物を0℃に冷却し、n-ブチルリチウム(東京化成工業、1.6M)のヘキサン溶液0.05ml(0.08mmol)を滴下した。この混合物を60℃で2時間熟成した後、1-ヨードオクタン(和光純薬工業)57.7mg(0.240mmol)を投入した。得られた混合物を60℃で8時間、攪拌した。反応混合物を氷冷し、飽和炭酸水素ナトリウム水溶液を添加後、トルエンを添加し分相した。有機相を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン)、2,8-ジオクチルビス(ジチエノ)ビフェニレン((1-11a)、化合物6)の赤色固体を7.0mgを得た(収率60.1%)。
 H NMR(CDCl):δ=7.16(d,J=8.0Hz,2H),6.91(s,2H),6.74(d,J=8.0Hz,2H),2.92(t,J=7.6Hz,4H),1.74(m,J=7.2Hz,J=8.4Hz,4H),1.41~1.27(m,20H),0.88(t,J=6.8Hz,6H)。
 CV測定よりHOMOレベルは、-5.12eVであった。
 合成例14 (1-ブロモ-5-ヘキシル-2-ヨードベンゼンの合成)
 窒素雰囲気下、300ml一口ナスフラスコ反応容器に、酢酸アンモニウム444mg(5.78mmol)、アセトニトリル170ml、及び4-ヘキシルアニリン(東京化成工業)10.6g(59.7mmol)を添加した。氷冷後、NBS(和光純薬工業)11.2g(62.7mmol)を添加し、室温で7時間攪拌した。得られた反応混合物をロータリーエバポレーターで濃縮し、低沸分を除去した。トルエン及び水を添加し、分相後、有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン/トルエン=10/1~2/1)、2-ブロモ-4-ヘキシルアニリンの赤色オイル11.9gを得た(収率78%)。
 1l一口ナスフラスコに、上記で得られた2-ブロモ-4-ヘキシルアニリン11.7g(45.8mmol)及び水210mlを添加した。この混合物を氷冷し、硫酸(和光純薬工業)23.2gを添加し、10分間攪拌した。この混合物を5℃に冷却し、亜硝酸ナトリウム(和光純薬工業)4.17g(60.4mmol)と水140mlからなる水溶液を投入し、5~10℃で3時間、攪拌した。ここへ、ヨウ化カリウム(和光純薬工業)61.8g(372mmol)と水140mlからなる水溶液を5℃下で投入し、室温で2時間攪拌した。さらに、得られた混合物を加熱還流下で20分間、攪拌後、室温に冷却し、亜硫酸ナトリウム4.17g(60.4mmol)と水210mlからなる水溶液を投入した。得られた反応混合物をトルエン抽出し、有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン)、1-ブロモ-5-ヘキシル-2-ヨードベンゼンの薄赤色オイル9.16gを得た(収率54%)。
 H NMR(CDCl):δ=7.72(d,J=7.8Hz,1H),7.45(d,J=1.8Hz,1H),6.81(dd,J=8.0Hz,J=1.8Hz,1H),2.52(t,J=7.8Hz,2H),1.55(m,2H)、1.31(m,6H),0.89(t,J=7.3Hz,3H)。
 合成例15 (2,2’-ジブロモ-4-ヘキシル-4’-フルオロビフェニルの合成)(A7工程)
 窒素雰囲気下、50mlシュレンク反応容器に、合成例14で合成した1-ブロモ-5-ヘキシル-2-ヨードベンゼン1.25g(3.40mmol)及びTHF(脱水グレード)7mlを添加した。この溶液を0℃に冷却し、エチルマグネシウムクロライド(シグマ-アルドリッチ、2.0M)のTHF溶液1.8ml(3.6mmol)を滴下した。この混合物を0℃で20分間熟成し、1-ブロモ-5-ヘキシルフェニル-2-マグネシウムクロライドを調製した。
 一方、窒素雰囲気下、100mlシュレンク反応容器に、塩化亜鉛(和光純薬工業)668mg(4.90mmol)及びTHF(脱水グレード)11mlを添加し、0℃に冷却した。この得られた白色微スラリー溶液中に、先に調製した1-ブロモ-5-ヘキシルフェニル-2-マグネシウムクロライド溶液をテフロン(登録商標)キャヌラーを用いて滴下し、さらにTHF(脱水グレード)2mlを用いて100mlシュレンク反応容器及びテフロン(登録商標)キャヌラーを洗浄しながら投入した。得られた混合物を室温まで徐々に昇温しながら攪拌した。生成した1-ブロモ-5-ヘキシルフェニル-2-亜鉛クロライドのスラリー液に、2-ブロモ-4-フルオロ-1-ヨードベンゼン(東京化成工業)1.19g(3.96mmol)及び触媒としてテトラキス(トリフェニルホスフィン)パラジウム(東京化成工業)28.4mg(0.0245mmol、2-ブロモ-4-フルオロ-1-ヨードベンゼンに対し0.618モル%)を添加した。50℃で 7時間反応を実施した後、容器を水冷し1M塩酸を添加することで反応を停止させた。トルエン及び食塩水を添加し、有機相を分相し、有機相を食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒:ヘキサン)。2,2’-ジブロモ-4-ヘキシル-4’-フルオロビフェニルの無色オイル1.18gを得た(収率72%)。
 H NMR(CDCl):δ=7.48(d,J=1.4Hz,1H),7.40(dd,J=8.2Hz,2.4Hz,1H),7.22(dd,J=8.7Hz,6.0Hz,1H),7.18(dd,J=7.8Hz,1.6Hz,1H),7.13(s,1H),7.07(dd,J=8.5Hz,2.4Hz,1H),2.63(t,J=7.9Hz,2H),1.63(m,2H)、1.33(m,6H),0.90(t,J=6.9Hz,3H)。
 合成例16 (2-フルオロ-7-ヘキシルビフェニレンの合成)(B7工程)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例15で合成した2,2’-ジブロモ-4-ヘキシル-4’-フルオロビフェニル1.18g(2.85mmol)及びTHF(脱水グレード)70mlを添加した。この混合物を-78℃に冷却し、n-ブチルリチウム(東京化成工業、1.6M)のヘキサン溶液4.7ml(7.5mmol)を滴下した。この混合物を-78℃~―70℃で1時間熟成した。ここへ、-78℃下で、塩化銅(II)(和光純薬工業製)1.46g(10.8mmol)を投入した。得られた混合物を室温まで徐々に昇温しながら攪拌した。反応混合物に1M塩酸を添加後、トルエンを添加し分相した。有機相を食塩水で2回洗浄し、無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン)。2-フルオロ-7-ヘキシルビフェニレンの淡黄色固体485mgを得た(収率67%)。
 H NMR(CDCl):δ=6.56(d,J=6.9Hz,1H),6.52(s,1H),6.50-6.45(m,2H),6.40(dd,J=7.3Hz,2.2Hz,1H),6.34(m,1H),2.40(t,J=7.8Hz,2H),1.52(m,2H)、1.31(m,6H),0.89(t,J=7.1Hz,3H)。
 合成例17 (2,7-ジブロモ-3-フルオロ-6-ヘキシルビフェニレンの合成)(C7工程)
 窒素雰囲気下、200ml一口ナスフラスコ反応容器に、合成例16で合成した2-フルオロ-7-ヘキシルビフェニレン481mg(1.89mmol)及びDMF(脱水グレード)12mlを添加した。ここへ、室温下、NBS(和光純薬工業)1.29g(7.24mmol)を投入した。室温で2日間及び40℃で6時間攪拌後、得られた反応混合物を氷冷した。水及びトルエンを添加し、分相した。有機相を水で2回洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン)、2,7-ジブロモ-3-フルオロ-6-ヘキシルビフェニレンの黄色固体284mgを得た(収率36%)。
 H NMR(CDCl):δ=6.78(s,1H),6.74(d,J=5.8Hz,1H),6.57(s,1H),6.50(d,J=6.9Hz,1H),2.56(d,J=7.8Hz,2H),1.50(m,2H)、1.32(m,6H),0.90(t,J=6.8Hz,3H)。
 合成例18 (ビ(7-ブロモ-3-フルオロ-6-ヘキシル-2-ビフェニレニル)の合成)(D7工程)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例17で合成した2,7-ジブロモ-3-フルオロ-6-ヘキシルビフェニレン170mg(0.412mmol)及びTHF(脱水グレード)10mlを添加した。この溶液を-10℃に冷却し、イソプロピルマグネシウムクロライド(シグマ-アルドリッチ、2.0M)のTHF溶液0.70ml(1.4mmol)を滴下した。この混合物を-10℃で70分間熟成し、7-ブロモ-3-フルオロ-6-ヘキシルビフェニレニル-2-マグネシウムクロライドを調製した。ここへ、0℃下で、塩化銅(II)(和光純薬工業)183mg(1.36mmol)を投入した。得られた混合物を室温まで徐々に昇温しながら一晩攪拌した。反応混合物に1M塩酸を添加後、トルエンを添加し分相した。有機相を食塩水で2回洗浄し、無水硫酸ナトリウムで乾燥し、有機相を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン)、ビ(7-ブロモ-3-フルオロ-6-ヘキシル-2-ビフェニレニル)の黄色固体66.4mgを得た(収率48.5%)。
 H NMR(CDCl):δ=6.79(s,2H),6.57(s,2H),6.56-6.50(m,4H),2.56(d,J=7.8Hz,4H),1.52(m,4H)、1.31(m,12H),0.90(t,J=6.8Hz,6H)。
 合成例19 (ビ(3-フルオロ-6-ヘキシル-2-ビフェニレニル)の合成)(E7工程)
 窒素雰囲気下、50mlシュレンク反応容器に、合成例18で合成したビ(7-ブロモ-3-フルオロ-6-ヘキシル-2-ビフェニレニル)33.1mg(0.0498mmol)及びTHF(脱水グレード)3mlを添加した。この溶液を-78℃に冷却し、n-ブチルリチウム(東京化成工業、1.6M)のヘキサン溶液0.110ml(0.176mmol)を滴下した。この混合物を-50℃まで1時間かけて昇温した後、メタノール0.5mlを添加し、反応をクエンチした。得られた反応混合物に水及びトルエンを添加し、分相した。有機相を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン/トルエン=1/0~9/1)、ビ(3-フルオロ-6-ヘキシル-2-ビフェニレニル)の黄色固体15.2mgを得た(収率60.2%)。
 H NMR(CDCl):δ=6.59(d,J=7.2Hz,2H),6.56(s,2H),6.54(d,J=6.8Hz,2H),6.52~6.50(m,2H),6.48~6.46(m,2H),2.41(t,J=7.6Hz,4H),1.58~1.50(m,4H),1.31~1.26(m,12H),0.89(t,J=7.2Hz,6H)。
 実施例9 (芳香族化合物(1-21a、R17=C13))の合成(F7工程)
 窒素雰囲気下、50mlシュレンク反応容器に、合成例19で合成したビ(3-フルオロ-6-ヘキシル-2-ビフェニレニル)15.2mg(0.0300mmol)、硫化ナトリウム・9水和物(和光純薬工業)24.9mg(0.104mmol)、及びNMP(和光純薬工業)3mlを添加した。混合物を170℃に加熱し、4時間攪拌した。得られた反応混合物を氷冷後、水及び1N塩酸でクエンチした。得られた橙色懸濁反応液を吸引濾過し、濾取した固体を水、冷メタノール、冷ヘキサンで順次リンス洗浄した。得られた残渣をヘキサン/トルエン=6/4から再結晶精製し、化合物7(1-21a)の黄色固体10.3mgを得た(収率68.6%)。
 MS(APCI) m/z: 501(M+H)。
 H NMR(THF-d、50℃):δ=7.21(s,2H),7.00(s,2H),6.67~6.62(m,6H),2.45(t,J=7.6Hz,4H),1.62~1.55(m,4H),1.38~1.30(m,12H),0.90(t,J=7.0Hz,6H)。
 CV測定よりHOMOレベルは、-5.16eVであった。
 合成例20 (2,6-ジブロモ-1,5-ビス(トリフルオロメタンスルホニロキシ)ナフタレンの合成)
 窒素雰囲気下、300mlシュレンク反応容器に、2,6-ジブロモ-1,5-ジヒドロキシナフタレン(東京化成工業)6.01g(18.9mmol)、ジクロロメタン(脱水グレード)180ml、及びピリジン9.0mlを添加した。この混合物を氷冷後、トリフルオロメタンスルホン酸無水物(東京化成工業)11.5g(41.0mmol)を添加した。この混合物を室温で18時間反応を実施した。得られた反応混合物に水20ml及び1M塩酸20mlを添加し、反応をクエンチした。ジクロロメタンで2回抽出し、分相後、有機相を無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン/トルエン=10/1~2/1)。2,6-ジブロモ-1,5-ビス(トリフルオロメタンスルホニロキシ)ナフタレンの淡黄色固体7.28gを得た(収率66%)。
 H NMR(CDCl):δ=8.02(d,J=8.7Hz,2H),7.88(d,J=9.1Hz,2H)。
 合成例21 (2,6-ジブロモ-1,5-ジ(1-クロロ-6-ブロモ-4-フルオロ-2-フェニル)ナフタレンの合成)
 窒素雰囲気下、50mlシュレンク反応容器に、1-クロロ-2,6-ジブロモ-4-フルオロベンゼン(フルオロケム)1.10g(3.81mmol)及びTHF(脱水グレード)8mlを添加した。この溶液を0℃に冷却し、エチルマグネシウムクロライド(シグマ-アルドリッチ、2.0M)のTHF溶液1.9ml(3.8mmol)を滴下した。この混合物を0℃で15分間熟成し、1-クロロ-6-ブロモ-4-フルオロフェニル-2-マグネシウムクロライドを調製した。
 一方、窒素雰囲気下、別の100mlシュレンク反応容器に、塩化亜鉛(和光純薬工業)667mg(4.90mmol)及びTHF(脱水グレード)8mlを添加し、0℃に冷却した。この得られた白色微スラリー溶液中に、先に調製した1-クロロ-6-ブロモ-4-フルオロフェニル-2-マグネシウムクロライド溶液をテフロン(登録商標)キャヌラーを用いてフィードし、さらにTHF(脱水グレード)2mlを用いて50mlシュレンク反応容器及びテフロン(登録商標)キャヌラーを洗浄しながら投入した。得られた混合物を室温まで徐々に昇温しながら攪拌した。生成した1-クロロ-6-ブロモ-4-フルオロフェニル-2-亜鉛クロライドのスラリー液に、合成例1で合成した2,6-ジブロモ-1,5-ビス(トリフルオロメタンスルホニロキシ)ナフタレン739mg(1.26mmol)及び触媒としてテトラキス(トリフェニルホスフィン)パラジウム(東京化成工業)29.1mg(0.0252mmol、2,6-ジブロモ-1,5-ビス(トリフルオロメタンスルホニロキシ)ナフタレンに対し2.0モル%)を添加した。50℃で14時間反応を実施した後、反応容器を氷冷し1M塩酸を添加することで反応を停止させた。トルエン及び食塩水を添加し、有機相を分相し、有機相を食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒:ヘキサン/トルエン=10/1~4/1)、2,6-ジブロモ-1,5-ジ(1-クロロ-6-ブロモ-4-フルオロ-2-フェニル)ナフタレンの白色固体415mgを得た(収率47%)。
 MS m/z: 699(M、100%)、697(M、70)。
 実施例10 (芳香族化合物の製造)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例21で合成した2,6-ジブロモ-1,5-ジ(1-クロロ-6-ブロモ-4-フルオロ-2-フェニル)ナフタレン320mg(0.456mmol)及びTHF(脱水グレード)6mlを添加した。この混合物を-70℃に冷却し、n-ブチルリチウム(東京化成工業、1.6M)のヘキサン溶液1.4ml(2.2mmol)を滴下した。この混合物を-30℃まで徐々に温度を上げ、-30℃で1時間保持した。ここへ、メタノール0.2mlを添加し、反応をクエンチした。得られた混合物を室温まで徐々に昇温しながら攪拌した。反応混合物に水及びトルエンを添加し、得られた懸濁溶液を濾過した。濾取した固体を水及びトルエンで洗浄し、減圧乾燥後、化合物8の黄色固体94mgを得た(収率66%)。
 実施例11 (有機半導体層形成用溶液の作製)
 空気下、10mlサンプル管に、実施例1で合成した2,7-ジヘキシルジチエノビフェニレン(1-1a、化合物1)0.87mg及びトルエン(和光純薬工業、ピュアーグレード)434mgを添加し、50℃に加熱溶解後、室温下(25℃)に放冷し、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物1の濃度は0.20重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例12 (有機半導体層及び有機薄膜トランジスタの作製)
 空気下、直径2インチのn型にハイドープしたシリコン基板(ミヨシ、抵抗値;0.004Ω、表面に200nmのシリコン酸化膜付き)上に、実施例11で得られた有機半導体層形成用溶液をシリンジに充填し、0.2μmのフィルターを通した溶液を、空気下、ドロップキャストした。室温下(25℃)で自然乾燥し、膜厚56nmの芳香族化合物(化合物1)の薄膜を作製した。
 該有機半導体層にチャネル長50μm、チャネル幅500μmのシャドウマスクを置き、金を真空蒸着することでソース及びドレイン電極を形成し、ボトムゲート-トップコンタクト型のp型有機薄膜トランジスタを作製した。
 作製した有機薄膜トランジスタの電気物性を半導体パラメーターアナライザー(ケースレー4200SCS)を用いて、ドレイン電圧(Vd=-50V)で、ゲート電圧(Vg)を+5~-70Vまで1V刻みで走査し、伝達特性の評価を行った。正孔のキャリア移動度は0.31cm/V・sec、電流オン・オフ比は2.0×10であった。
 さらにこの有機薄膜トランジスタを150℃で15分間アニール処理した後の電気物性を測定した。正孔のキャリア移動度は0.33cm/V・sec、電流オン・オフ比は1.9×10であり、熱処理による性能の低下はほとんど見られなかった。
 実施例13 (有機半導体層形成用溶液の作製)
 実施例2で合成した2,7-ジヘキシルジチエノビフェニレン(1-3a、化合物2)の0.43mgを用いた以外は、実施例11と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物2の濃度は0.10重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例14 (有機半導体層及び有機薄膜トランジスタの作製)
 実施例13で得られた有機半導体層形成用溶液を用い、実施例12と同様の方法により、膜厚29nmの芳香族化合物(化合物2)の薄膜を作製し、ボトムゲート-トップコンタクト型のp型有機薄膜トランジスタを作製した。
 該トランジスタ素子の伝達特性の評価を行った結果、正孔のキャリア移動度は0.23cm/V・sec、電流オン・オフ比は1.0×10であった。
 さらにこの有機薄膜トランジスタを150℃で15分間アニール処理した後の電気物性を測定した。正孔のキャリア移動度は0.22cm/V・sec、電流オン・オフ比は1.0×10であり、熱処理による性能の低下はほとんど見られなかった。
 実施例15 (有機半導体層形成用溶液の作製)
 実施例3で合成した2,7-ジオクチルジチエノビフェニレン(1-1a、化合物3)の0.88mgを用いた以外は、実施例11と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物3の濃度は0.20重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例16 (有機半導体層及び有機薄膜トランジスタの作製)
 実施例15で得られた有機半導体層形成用溶液を用い、トップゲート-ボトムコンタクト型のp型有機薄膜トランジスタを作製した。各構成部材の材質及び成膜方法を表1に示した。芳香族化合物(化合物3)の薄膜の膜厚は58nmであった。
Figure JPOXMLDOC01-appb-T000061

 該トランジスタ素子の伝達特性の評価を行った結果、正孔のキャリア移動度は0.60cm/V・sec、電流オン・オフ比は3.0×10であった。
 さらにこの有機薄膜トランジスタを130℃で15分間アニール処理した後の電気物性を測定した。正孔のキャリア移動度は0.58cm/V・sec、電流オン・オフ比は2.8×10であり、熱処理による性能の低下はほとんど見られなかった。
 実施例17 (有機半導体層及び有機薄膜トランジスタの作製)
 実施例15で得られた有機半導体層形成用溶液を用い、実施例16に示した各構成部材の材質及び成膜方法を用いボトムゲート-ボトムコンタクト型のp型有機薄膜トランジスタを作製した。ビフェニレン誘導体(化合物3)の薄膜の膜厚は55nmであった。
 該トランジスタ素子の伝達特性の評価を行った結果、正孔のキャリア移動度は0.33cm/V・sec、電流オン・オフ比は1.5×10であった。
 さらにこの有機薄膜トランジスタを130℃で15分間アニール処理した後の電気物性を測定した。正孔のキャリア移動度は0.31cm/V・sec、電流オン・オフ比は1.3×10であり、熱処理による性能の低下はほとんど見られなかった。
 比較例1
 (有機半導体層形成用溶液の作製)
 空気下、10mlサンプル管に、2,7-ジオクチルベンゾチエノベンゾチオフェン(シグマ-アルドリッチ)を用い、実施例11と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(0.20重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 (有機半導体層及び有機薄膜トランジスタの作製)
 該有機半導体層形成用溶液を用い、実施例12と同様の方法により、膜厚60nmの2,7-ジオクチルベンゾチエノベンゾチオフェンの薄膜を作製し、ボトムゲート-トップコンタクト型のp型有機薄膜トランジスタを作製した。
 該トランジスタ素子の伝達特性の評価を行った結果、正孔のキャリア移動度は0.01cm/V・sec、電流オン・オフ比は3.0×10であった。
 さらにこの有機薄膜トランジスタを150℃で15分間アニール処理した後の電気物性を測定した。その結果、トランジスタ動作は得られず、熱処理による著しい性能の低下が見られた。顕微鏡観察から有機半導体層が加熱により破壊されていることが確認された。
 比較例2
 (有機半導体層及び有機薄膜トランジスタの作製)
 比較例1で作製した有機薄膜トランジスタを130℃で15分間アニール処理した以外は、比較例1と同様の操作を繰り返した。その結果、トランジスタ動作は得られず、熱処理による著しい性能の低下が見られた。顕微鏡観察から有機半導体層が加熱により破壊されていることが確認された。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 なお、2017年3月31日に出願された日本特許出願2017-071227号及び2018年3月27日に出願された日本特許出願2018-060781号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 (A):ボトムゲート-トップコンタクト型有機薄膜トランジスタ
 (B):ボトムゲート-ボトムコンタクト型有機薄膜トランジスタ
 (C):トップゲート-トップコンタクト型有機薄膜トランジスタ
 (D):トップゲート-ボトムコンタクト型有機薄膜トランジスタ
 1:有機半導体層
 2:基板
 3:ゲート電極
 4:ゲート絶縁層
 5:ソース電極
 6:ドレイン電極

Claims (14)

  1. 下記一般式(1-I)または(1-II)で示される芳香族化合物。
    Figure JPOXMLDOC01-appb-C000001
    (ここで、Aは共有結合、酸素、硫黄、セレン、NR14、またはCR15=CR16を示し、AはCR=CR、酸素、硫黄、またはセレンを示し、AはCR=CR、酸素、硫黄、またはセレンを示し、AはCR=CR、酸素、硫黄、またはセレンを示す。R~Rの隣接する二つからなる組合せの内、1組~3組が単環~縮合4環を形成し、該単環~縮合4環を構成する全ての環が4~6員環である。該単環~縮合4環を形成しなかったR~Rは、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。R14~R16は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。)
  2. Aが共有結合であることを特徴とする請求項1に記載の芳香族化合物。
  3. Aが酸素、硫黄、セレン、NR14、またはCR15=CR16であることを特徴とする請求項1に記載の芳香族化合物。
  4. 請求項1に記載の一般式(1-I)で示される芳香族化合物であり、下記一般式(2)で示されることを特徴とする芳香族化合物。
    Figure JPOXMLDOC01-appb-C000002
    [(ここで、R~Rの隣接する二つからなる組合せの内、1組~3組が下記一般式(3)で示される単環~縮合4環を形成し、該単環~縮合4環を構成する全ての環が4~6員環である。下記一般式(3)を形成しなかったR~R、及びAは、上記一般式(1-I)、(1-II)における単環~縮合4環を形成しなかったR~R、及びAとそれぞれ同意義を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (ここで、Xは共有結合、酸素、硫黄、セレン、CR10=C、または窒素を示し、Yは炭素または窒素を示す。lはXが共有結合、酸素、硫黄、セレンのとき0であり、XがCR10=C、窒素のとき1である。mはYが炭素のとき1であり、Yが窒素のとき0である。R~R11及びR13の隣接する二つからなる組合せの内、1組が下記一般式(4)で示される単環~縮合3環を形成し、該単環~縮合3環を構成する全ての環が4~6員環であることができる。下記一般式(4)を形成しなかったR~R11及びR13は、上記一般式(1-I)、(1-II)における単環~縮合4環を形成しなかったR~R又はR~Rと同様の基を示す。Xが共有結合のとき、一般式(2)のAは酸素、硫黄、セレン、NR14、またはCR15=CR16であり、Xが酸素、硫黄、セレン、CR10=C、または窒素のとき、一般式(2)のAは共有結合である。XがCR10=Cのとき、6員環を形成する隣接する二つからなる組合せの位置は、R及びR、R及びRである。但し、単環~縮合4環を形成しなかったR~R、一般式(4)を形成しなかったR~R11及びR13、並びにR14、R15、及びR16が、同時に水素であることを除く。)
    Figure JPOXMLDOC01-appb-C000004
    (ここで、Xは共有結合、酸素、硫黄、セレン、CR18=C、または窒素を示し、Yは炭素または窒素を示す。nはXが共有結合、酸素、硫黄、またはセレンのとき0であり、XがCR18=C、または窒素のとき1である。oはYが炭素のとき1であり、Yが窒素のとき0である。R17~R20の隣接する二つからなる組合せの内、1組が下記一般式(5)または一般式(6)を構成し、4~6員環を形成することができる。一般式(2)のAが共有結合、NR14、またはCR15=CR16であるとき、一般式(5)または一般式(6)を構成しなかったR17~R20は、上記一般式(1-I)、(1-II)における単環~縮合4環を形成しなかったR~R又はR~Rと同様の基を示す。また、一般式(2)のAが酸素、硫黄、またはセレンであるとき、一般式(5)または一般式(6)を構成しなかったR17~R20は、それぞれ独立して、水素、メチル基、エチル基、n-プロピル基、炭素数4~20のアルキル基からなる群から選ばれ、一つのみが炭素数4~20のアルキル基である。但し、該R17~R20は、同時に水素であることを除く。)
    Figure JPOXMLDOC01-appb-C000005
    (ここで、Xは酸素、硫黄、セレン、CR22=CR23、またはNR24を示し、YはCR25または窒素を示す。R21~R25は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基からなる群から選ばれ、R21~R25のうち、1つ以上がハロゲンまたは炭素数1~20のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000006
    (ここで、R26は、炭素数1~20のアルキル基を示す。)]
  5. 請求項1に記載の一般式(1-I)で示される芳香族化合物であり、下記一般式(7)で示されることを特徴とするビフェニレン誘導体。
    Figure JPOXMLDOC01-appb-C000007
    [(ここで、R~Rの隣接する二つからなる組合せの内、1組~3組が下記一般式(8)を構成し、5又は6員環を形成する。下記一般式(8)を構成しなかったR~Rは、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基を示す。)
    Figure JPOXMLDOC01-appb-C000008
    (ここで、Xは酸素、硫黄、セレン、CR10=CR11、又はNR12を示し、YはCR13又は窒素を示す。R~R13は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基を示す。)]
  6. ~Rの隣接する二つからなる組合せの内、1組のみ、及びR~Rの隣接する二つからなる組合せの内、1組のみが一般式(8)を構成することを特徴とする請求項5に記載のビフェニレン誘導体。
  7. Xが酸素、硫黄、セレン、又はCR10=CR11を示し、かつYがCR13又は窒素を示すことを特徴とする請求項5または請求項6に記載のビフェニレン誘導体。
  8. Xが酸素、硫黄、又はセレンを示し、かつYがCR13又は窒素を示すことを特徴とする請求項5~請求項7のいずれかに記載のビフェニレン誘導体。
  9. とR及びRとRが一般式(8)を構成することを特徴とする請求項5~請求項8のいずれかに記載のビフェニレン誘導体。
  10. 請求項1~請求項4のいずれかに記載の芳香族化合物、または請求項5~請求項9のいずれかに記載のビフェニレン誘導体を含有することを特徴とする有機半導体層形成用溶液。
  11. 請求項10に記載の有機半導体層形成用溶液を用いてなることを特徴とする有機半導体層。
  12. 請求項11に記載の有機半導体層を含んでなることを特徴とする有機薄膜トランジスタ。
  13. 下記一般式(10-I)または(10-II)で示される化合物を直鎖アルキルリチウムと反応させることを特徴とする下記一般式(9-I)または(9-II)で示される芳香族化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000009
    (ここで、Aは共有結合、酸素、硫黄、セレン、NR14、またはCR15=CR16を示し、AはCR=CR、酸素、硫黄、またはセレンを示し、AはCR=CR、酸素、硫黄、またはセレンを示し、AはCR=CR、酸素、硫黄、またはセレンを示す。R~Rの隣接する二つからなる組合せの内、1組~3組が単環~縮合4環を形成し、該単環~縮合4環を構成する全ての環が4~6員環である。該単環~縮合4環を形成しなかったR~Rは、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。R14~R16は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。)
    Figure JPOXMLDOC01-appb-C000010
    (ここで、X及びXは、それぞれ独立してハロゲンを示す。A、A~A、R、R、及びR~Rは、上記一般式(9-I)、(9-II)におけるA、A~A、R、R、及びR~Rと同意義を示す。)
  14. 下記一般式(12-I)または(12-II)で示される化合物を用い、下記一般式(11-I)または(11-II)で示される芳香族化合物を製造することを特徴とする芳香族化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000011
    (ここで、A、R、R、及びR~Rは、上記一般式(9-I)、(9-II)における、A、R、R、及びR~Rと同意義を示す。R10及びR11は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基を示す。Xは酸素、硫黄、セレン、CR22=CR23、またはNR24を示す。R21~R25は、それぞれ独立して、水素、ハロゲン、炭素数1~20のアルキル基からなる群から選ばれ、R21~R25のうち、1つ以上がハロゲンまたは炭素数1~20のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000012
    (ここで、X及びXは、それぞれ独立して、ハロゲンを示し、A、R、R、R~R、R10、R11、X、R21、及びR25は、上記一般式(11-I)、(11-II)におけるA、R、R、R~R、R10、R11、X、R21、及びR25と同意義を示す。)
PCT/JP2018/012717 2017-03-31 2018-03-28 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ WO2018181462A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-071227 2017-03-31
JP2017071227 2017-03-31
JP2018-060781 2018-03-27
JP2018060781A JP7159586B2 (ja) 2017-03-31 2018-03-27 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ

Publications (1)

Publication Number Publication Date
WO2018181462A1 true WO2018181462A1 (ja) 2018-10-04

Family

ID=63677807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012717 WO2018181462A1 (ja) 2017-03-31 2018-03-28 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ

Country Status (1)

Country Link
WO (1) WO2018181462A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029450A (ja) * 2018-03-27 2020-02-27 東ソー株式会社 芳香族化合物の製造方法
WO2021177417A1 (ja) * 2020-03-04 2021-09-10 東ソー株式会社 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
US20220059768A1 (en) * 2018-12-20 2022-02-24 Tosoh Corporation Composition containing organic semiconductor, solution for forming organic semiconductor layer, organic semiconductor layer, and organic thin film transistor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156980A (ja) * 2004-11-02 2006-06-15 Tosoh Corp 有機薄膜及びその製造方法
WO2006109569A1 (ja) * 2005-04-08 2006-10-19 Tosoh Corporation ターフェニレン誘導体、テトラハロターフェニル誘導体及びそれらの製造方法
JP2006290786A (ja) * 2005-04-08 2006-10-26 Tosoh Corp 2,3−ジハロビフェニレン誘導体、その前駆化合物及び製造方法
JP2007197400A (ja) * 2006-01-30 2007-08-09 Tosoh Corp ジベンゾチオフェン誘導体、製造方法及びその用途
JP2007224011A (ja) * 2006-01-30 2007-09-06 Tosoh Corp ビフェニレン誘導体、その用途、及びその製造方法
WO2008047896A1 (fr) * 2006-10-20 2008-04-24 Nippon Kayaku Kabushiki Kaisha Transistor à effet de champ
JP2009227652A (ja) * 2008-02-28 2009-10-08 Tosoh Corp ビフェニレン誘導体、その用途、及びその製造方法
JP2010070473A (ja) * 2008-09-17 2010-04-02 Tosoh Corp ターフェニレン誘導体の製造方法
WO2010098372A1 (ja) * 2009-02-27 2010-09-02 国立大学法人広島大学 電界効果トランジスタ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156980A (ja) * 2004-11-02 2006-06-15 Tosoh Corp 有機薄膜及びその製造方法
WO2006109569A1 (ja) * 2005-04-08 2006-10-19 Tosoh Corporation ターフェニレン誘導体、テトラハロターフェニル誘導体及びそれらの製造方法
JP2006290786A (ja) * 2005-04-08 2006-10-26 Tosoh Corp 2,3−ジハロビフェニレン誘導体、その前駆化合物及び製造方法
JP2007197400A (ja) * 2006-01-30 2007-08-09 Tosoh Corp ジベンゾチオフェン誘導体、製造方法及びその用途
JP2007224011A (ja) * 2006-01-30 2007-09-06 Tosoh Corp ビフェニレン誘導体、その用途、及びその製造方法
WO2008047896A1 (fr) * 2006-10-20 2008-04-24 Nippon Kayaku Kabushiki Kaisha Transistor à effet de champ
JP2009227652A (ja) * 2008-02-28 2009-10-08 Tosoh Corp ビフェニレン誘導体、その用途、及びその製造方法
JP2010070473A (ja) * 2008-09-17 2010-04-02 Tosoh Corp ターフェニレン誘導体の製造方法
WO2010098372A1 (ja) * 2009-02-27 2010-09-02 国立大学法人広島大学 電界効果トランジスタ

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
BARTON, W. JOHN ET AL.: "Polycyclic biphenylenes. Part V. The PMR spectra of annelated bipheny lenes", TETRAHEDRON, vol. 41, no. 7, 1985, pages 1323 - 1328, ISSN: 0040-4020 *
CHRISTOPHE, STEPHANIE ET AL.: "Design of new anticancer drugs. II. Easy arynic access to benzocyclobutacarbazoles, a new family of anti tumor agents", TETRAHEDRON LETTERS, vol. 39, no. 51, 1998, pages 9431 - 9434, XP004144219, ISSN: 0040-4039 *
DATABASE CAS [o] 14 March 2001 (2001-03-14), retrieved from STN Database accession no. 327046-20-8 *
DATABASE CAS [o] 16 November 1984 (1984-11-16), Database accession no. 259-55-2 *
DATABASE CAS [o] 16 November 1984 (1984-11-16), Database accession no. 85410-22-6 *
DATABASE CAS [o] 16 November 1984 (1984-11-16), retrieved from STN Database accession no. 50921-91-0 *
DATABASE CAS [o] 19 May 2014 (2014-05-19), retrieved from STN Database accession no. 1606992-76-0 *
DATABASE CAS [o] 21 December 1990 (1990-12-21), retrieved from STN Database accession no. 131106-94-0 *
DATABASE CAS [o] 22 October 2009 (2009-10-22), retrieved from STN Database accession no. 1189534-72-2 *
DATABASE CAS [o] 3 October 1997 (1997-10-03), retrieved from STN Database accession no. 194869-28-8 *
DATABASE CAS [o] 9 July 1988 (1988-07-09), retrieved from STN Database accession no. 115186-82-8 *
EISENBRAUN, E. J. ET AL.: "Synthesis and catalytic dehydrogenation of trimethylnaphthalenones, Preprints- American Chemical Society", DIVISION OF PETROLEUM CHEMISTRY, vol. 10, no. 1, 1965, pages 33 - 35 *
FUKAZAWA, A. ET AL.: "Thiophene-Fused Bisdehydro [12] annulene That Undergoes Transannular Alkyne Cycloaddi tion by Either Light or Heat", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 135, no. 5, 28 January 2013 (2013-01-28), pages 1731 - 1734, XP055556788, ISSN: 0002-7863 *
JIN, ZEXIN ET AL.: "Regioselective Synthesis of [3]Naphthylenes and Tuning of Their Antiaromaticity", JOURNAL OF THE AMERICA L CHEMICAL SOCIETY, vol. 139, no. 44, 2017, pages 15933 - 15939, XP055556794, ISSN: 0002-7863 *
NICOLAIDES, D. N.: "Bis-Wittig Reactions of Thiophene-2, 3- dicarbaldehyde with 1, 2- and 1, 4-Bis-y lids", SYNTHESIS, vol. 2, 1977, pages 127 - 129, XP055556776, ISSN: 0039-7881 *
SHEPHERD, K. MICHAEL: "Cyclobutarenes. Part 4, Bipheny leno [2, 1-a] bipheny lene", JOURNAL OF THE CHEMICAL SOCIETY, PARKIN TRANSACTIONS 1: ORGANIC AND BIO-ORGANIC CHEMISTRY, 1994, pages 1055 - 1059, ISSN: 0300-922X *
WATANABE, MASATO ET AL.: "Synthesis of terphenylene compounds and solution processable terphenylene semiconductors for TFT", TOSOH RESEARCH & TECHNOLOGY REVIEW, vol. 51, 2007, pages 21 - 25, XP055556756 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029450A (ja) * 2018-03-27 2020-02-27 東ソー株式会社 芳香族化合物の製造方法
JP7279412B2 (ja) 2018-03-27 2023-05-23 東ソー株式会社 芳香族化合物の製造方法
US20220059768A1 (en) * 2018-12-20 2022-02-24 Tosoh Corporation Composition containing organic semiconductor, solution for forming organic semiconductor layer, organic semiconductor layer, and organic thin film transistor
WO2021177417A1 (ja) * 2020-03-04 2021-09-10 東ソー株式会社 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
CN115210239A (zh) * 2020-03-04 2022-10-18 东曹株式会社 芳香族化合物、有机半导体层和有机薄膜晶体管

Similar Documents

Publication Publication Date Title
JP7159586B2 (ja) 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
JP5867583B2 (ja) 新規なカルコゲン含有有機化合物およびその用途
CN105102462B (zh) 含有氧族元素的有机化合物、其制造方法以及用途
JP2014531435A (ja) 半導体特性を有する化合物、ならびに関連する組成物およびデバイス
JP2011508967A (ja) アントラセンを主成分とする溶液加工性有機半導体
JP2011079827A (ja) ベンゾジチオフェンを製造する方法および半導体ポリマを製造する方法
WO2018181462A1 (ja) 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
KR102564943B1 (ko) 유기 화합물, 유기 박막 및 전자 소자
JP2020057787A (ja) ビフェニレン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP6252032B2 (ja) ベンゾジフラン誘導体及び有機薄膜トランジスタ
JP6962090B2 (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
WO2021177417A1 (ja) 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
JP7342565B2 (ja) 共役ポリマー、有機半導体層形成用溶液、有機半導体層、及び有機薄膜トランジスタ
JP5617296B2 (ja) ビ(アントラカルコゲノフェニル)誘導体、その前駆化合物及びそれらの製造方法
JP6364876B2 (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP7443747B2 (ja) 有機半導体を含む組成物、有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ
JP2018008885A (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP7318320B2 (ja) 共役ポリマー、有機半導体層形成用溶液、有機半導体層、及び有機薄膜トランジスタ
JP5637985B2 (ja) ジアザボロール化合物、およびそれを含有した電界効果トランジスタ
윤채영 Synthesis and Characterization of Organic Molecules for Organic Thin-Film Transistors.
JP2021158315A (ja) 共役ポリマー、有機半導体層形成用溶液、有機半導体層、及び有機薄膜トランジスタ
JP6421429B2 (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP2017226629A (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
Jin Synthesis of Novel Hydrogen-Bonding Unit for Organic Field-Effect Transistors
JP2018030800A (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775741

Country of ref document: EP

Kind code of ref document: A1