WO2021177417A1 - 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ - Google Patents

芳香族化合物、有機半導体層、及び有機薄膜トランジスタ Download PDF

Info

Publication number
WO2021177417A1
WO2021177417A1 PCT/JP2021/008511 JP2021008511W WO2021177417A1 WO 2021177417 A1 WO2021177417 A1 WO 2021177417A1 JP 2021008511 W JP2021008511 W JP 2021008511W WO 2021177417 A1 WO2021177417 A1 WO 2021177417A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
atom
represented
Prior art date
Application number
PCT/JP2021/008511
Other languages
English (en)
French (fr)
Inventor
真人 宮下
渡辺 真人
慎也 奥
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to CN202180017812.5A priority Critical patent/CN115210239A/zh
Priority to JP2022504462A priority patent/JPWO2021177417A1/ja
Priority to KR1020227032469A priority patent/KR20220150316A/ko
Priority to US17/905,455 priority patent/US20230142592A1/en
Priority to EP21764551.4A priority patent/EP4116304A4/en
Publication of WO2021177417A1 publication Critical patent/WO2021177417A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D517/00Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D517/02Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains two hetero rings
    • C07D517/04Ortho-condensed systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a novel aromatic compound that can be applied to electronic materials such as organic semiconductor materials, an organic semiconductor layer using the same, and an organic thin film, and is particularly excellent in solubility and heat resistance. It relates to an aromatic compound having a specific substituent applicable to a device fabrication process, an organic semiconductor layer using the same, and an organic thin film.
  • Organic semiconductor devices represented by organic thin film transistors have been attracting attention in recent years because they have features such as energy saving, low cost, and flexibility that are not found in inorganic semiconductor devices.
  • This organic semiconductor device is composed of several kinds of materials such as an organic semiconductor layer, a substrate, an insulating layer, and an electrode. Among them, the organic semiconductor layer responsible for charge carrier transfer plays a central role in the device. Since the performance of an organic semiconductor device depends on the carrier mobility of the organic semiconductor material constituting the organic semiconductor layer, the appearance of an organic semiconductor material that gives high carrier mobility is desired.
  • the coating method can be carried out by using printing technology without using high-temperature and high-vacuum conditions, so that it can be expected to significantly reduce the manufacturing cost of device fabrication, which is an economically preferable process.
  • the organic semiconductor material used in such a coating method has a heat resistance of 130 ° C. or higher and a solubility at room temperature of 0.1% by weight or more from the viewpoint of high carrier mobility and device manufacturing process. Is preferable.
  • the carrier mobility is preferably 1.0 cm 2 / V ⁇ sec or more.
  • a small molecule semiconductor having a rod-shaped molecular major axis of a condensed ring system tends to exhibit high carrier mobility because it has higher crystallinity than a polymer semiconductor.
  • small molecule semiconductors have a problem of low solubility, and although semiconductors in which an alkyl group is introduced to improve solubility have been reported, there is a problem that carrier mobility and heat resistance are lowered. .. Further, a semiconductor having an aromatic substituent introduced for the purpose of developing high carrier mobility by ⁇ stack has been reported, but it has been reported that the solubility is significantly reduced in exchange for the development of high mobility.
  • Non-Patent Document 2 The 2,7-diphenyl [1] benzothiophene [3,2-b] [1] benzothiophene described in Non-Patent Document 2 is generally hardly soluble in an organic solvent, and has a problem in solubility.
  • alkyl-substituted dithienobiphenylene derivative described in Patent Document 2 has both high heat resistance and appropriate solubility and can be suitably used for organic semiconductors, but a compound having even higher carrier mobility has been desired. ..
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a novel coating type organic semiconductor material having high carrier mobility, high heat resistance, and appropriate solubility.
  • the present invention relates to an aromatic compound represented by either the following formula (1-I) or formula (1-II), an organic semiconductor layer containing the aromatic compound, and an organic thin film transistor provided with the semiconductor layer. It is a thing.
  • Ar indicates a single ring or 2 to 6 fused rings.
  • Y 1 and Y 2 each independently indicate either CR 6 or a nitrogen atom.
  • R 1 to R 6 independently indicate a hydrogen atom, a halogen atom, and the like.
  • L and n are independent of each other.
  • Indicates 0 or 1 m represents an integer from 1 to 20.
  • Z 1 and Z 2 represent one of a group consisting of a hydrogen atom, a halogen atom, and an alkyl group having 1 to 20 carbon atoms, which are the same or different in their respective appearances. )]
  • the novel aromatic compound of the present invention provides high carrier mobility, high heat resistance and appropriate solubility. Therefore, it is possible to provide an organic thin film transistor that exhibits excellent semiconductor characteristics by coating, and the effect is extremely high.
  • the present invention is an aromatic compound represented by either the above formula (1-I) or the above formula (1-II) (hereinafter, referred to as "the compound of the present invention").
  • Ar in formulas (1-I) and (1-II) represents a single ring or 2 to 6 fused rings.
  • Ar is preferably 2 to 4 fused rings in order to show higher carrier mobility, and more preferably 2 to 3 fused rings to show higher solubility.
  • the individual rings constituting the single ring or 2 to 6 fused rings are 4 to 8 membered rings, and 4 to 6 membered rings are preferable because ⁇ stacking is facilitated.
  • Specific examples of the monocyclic ring or 2 to 6 fused rings represented by Ar include a cyclobutene ring, a thiophene ring, a furan ring, a selenophene ring, a thiazole ring, an oxazole ring, a pyrrole ring, an imidazole ring, a benzene ring, a pyridine ring and the like.
  • Fused rings such as monocyclic, thienothiophene ring, naphthalene ring, biphenylene ring, anthracene ring, dithienothiophene ring, dithienobenzo ring, benzothienobenzothiophene ring, tetracene ring, bis (dithieno) benzo ring, bis (benzothieno) benzo ring, etc.
  • thienothiophene ring In order to exhibit higher carrier mobility, 2 to 4 fused rings of thienothiophene ring, naphthalene ring, biphenylene ring, anthracene ring, dithienothiophene ring, and benzothienobenzothiophene ring are preferable, and thieno. Two or three fused rings of a thiophene ring, a naphthalene ring, a biphenylene ring, and an anthracene ring are more preferable.
  • R 1 to R 6 in the formulas (1-I) and (1-II) are independently hydrogen atom, halogen atom, alkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, respectively.
  • At least one of R 1 to R 6 is a group represented by the formula (2).
  • halogen atom in R 1 to R 6 for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are shown, and any of a fluorine atom and a chlorine atom is preferable because they are stable.
  • Examples of the alkyl group having 1 to 20 carbon atoms in R 1 to R 6 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group and an isovaleryl group.
  • n-hexyl group isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n- Examples thereof include linear, branched or cyclic alkyl groups such as octadecyl group, 2-ethylhexyl group, 3-ethylheptyl group, 3-ethyldecyl, 2-hexyldecyl group, cyclopentyl group, cyclohexyl group and cycloheptyl group.
  • an alkyl group having 1 to 14 carbon atoms is preferable, and a methyl group, an ethyl group, an n-propyl group, an n-butyl group, etc. n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group having 1 to 1 carbon atoms.
  • a linear alkyl group of 14 is even more preferred.
  • Examples of the alkenyl group having 2 to 20 carbon atoms in R 1 to R 6 include an ethenyl group, a propenyl group, a butenyl group, a 2-methylpropenyl group, an n-pentenyl group, a 2-methylbutenyl group and an n-hexenyl group.
  • Examples of the alkynyl group having 2 to 20 carbon atoms in R 1 to R 6 include an ethynyl group, a propynyl group, a butynyl group, an n-pentynyl group, an n-hexynyl group, an n-heptinyl group, an n-octynyl group, and n.
  • -Noninyl group, n-decynyl group, n-dodecynyl group and the like can be mentioned.
  • Examples of the alkazienyl group having 4 to 22 carbon atoms in R 1 to R 6 include a butadienyl group, a pentadienyl group, a hexadienyl group, an n-heptadienyl group, an n-octadienyl group, an n-nonazienyl group, an n-decadienyl group, and n.
  • -Dodecadienyl group, n-tridecadienyl group and the like can be mentioned, and an arc-1,3-dienyl group having 4 to 22 carbon atoms is preferable, and a hexa-1,3-dienyl group and an n-hepta-1,3- A dienyl group, an n-octa-1,3-dienyl group, an n-nona-1,3-dienyl group, and an n-deca-1,3-dienyl group are more preferable.
  • Examples of the alkadynyl group having 4 to 22 carbon atoms in R 1 to R 6 include a butadynyl group, a pentadiynyl group, a hexadiynyl group, an n-heptadinyl group, an n-octadynyl group, an n-nonadynyl group, and an n-decadinyl group.
  • Examples thereof include an n-dodecadynyl group and an n-tridecadynyl group, preferably a 1,3-alkadynyl group having 4 to 22 carbon atoms, a hexa-1,3-diynyl group and an n-hepta-1,3-.
  • a diynyl group, an n-octa-1,3-diynyl group, an n-nona-1,3-diynyl group, and an n-deca-1,3-diynyl group are more preferable.
  • the aryl groups having 4 to 26 carbon atoms in R 1 to R 6 include heteroaryl groups having 4 to 24 carbon atoms.
  • Examples of the aryl group having 4 to 26 carbon atoms include a phenyl group; a p-tolyl group, a p- (n-hexyl) phenyl group, a p- (n-octyl) phenyl group, and a p- (2-ethylhexyl) phenyl group.
  • Alkyl-substituted phenyl groups such as groups; 2-furyl group, 2-thienyl group; 5-fluoro-2-furyl group, 5-methyl-2-furyl group, 5-ethyl-2-furyl group, 5- (n-) Propyl) -2-furyl group, 5- (n-butyl) -2-furyl group, 5- (n-pentyl) -2-furyl group, 5- (n-hexyl) -2-furyl group, 5-( n-octyl) -2-furyl group, 5- (2-ethylhexyl) -2-furyl group, 5-fluoro-2-thienyl group, 5-methyl-2-thienyl group, 5-ethyl-2-thienyl group, 5- (n-propyl) -2-thienyl group, 5- (n-butyl) -2-thienyl group, 5- (n-pentyl) -2-thienyl
  • R 1 to R 6 hydrogen atom, halogen atom, alkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, alkynyl group having 2 to 20 carbon atoms, and 4 carbon atoms for stability. It is preferably one of a group consisting of an aryl group of up to 26 or a group represented by the formula (2), and has a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a formula (2) because of its high solubility.
  • R 1 and R 2 indicates a group represented by the formula (2), and R 3 It is more preferable that ⁇ R 6 is a hydrogen atom.
  • a in the formula (2) represents one of a group consisting of an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or an aryl group having 4 to 26 carbon atoms, and exhibits a higher carrier mobility. Therefore, an aryl group having 4 to 26 carbon atoms is more preferable.
  • Examples of the alkenyl group having 2 to 20 carbon atoms in the formula (2) include an ethenyl group, a propenyl group, a butenyl group, a 2-methylpropenyl group, an n-pentenyl group, a 2-methylbutenyl group, an n-hexenyl group and 2-.
  • Examples of the alkynyl group having 2 to 20 carbon atoms in the formula (2) include an ethynyl group, a propynyl group, a butynyl group, an n-pentynyl group, an n-hexynyl group, an n-heptinyl group, an n-octynyl group and an n-noninyl group.
  • Examples thereof include a group, an n-decynyl group, an n-dodecynyl group, a 2-phenylethynyl group, a 1-phenylethynyl group, a 2- (4-methylphenyl) ethynyl, a 2- (4-n-butyl) ethynyl and the like.
  • the aryl group having 4 to 26 carbon atoms in the formula (2) contains a heteroaryl group having 4 to 24 carbon atoms.
  • Examples of the aryl group having 4 to 26 carbon atoms include a phenyl group; a p-tolyl group, a p-ethylphenyl group, a p- (n-propyl) phenyl group, a p- (isopropyl) phenyl group, and a p- (n).
  • -Butyl) phenyl group p- (2-methylpropyl) phenyl group, p- (n-pentyl) phenyl group, p- (3-methylbutyl) phenyl group, p- (n-hexyl) phenyl group, p-( 4-Methylpentyl) phenyl group, p- (n-heptyl) phenyl group, p- (n-octyl) phenyl group, p- (2-ethylhexyl) phenyl group, m-ethylphenyl group, m- (n-propyl) ) Alkyl such as phenyl group, m- (n-butyl) phenyl group, m- (2-methylpropyl) phenyl group, o-ethylphenyl group, o- (n-propyl) phenyl group, indanyl-5-y
  • phenyl group substituted phenyl group; p-methoxyphenyl group, p-ethoxyphenyl group, p- (n-propyloxy) phenyl group, p- (n-butylphenyloxy) phenyl group, p- (n-pentyloxy) phenyl group, p- (n-hexyloxy) phenyl group, p- (n-heptyloxy) phenyl group, p- (n-octyloxy) phenyl group, m-methoxyphenyl group, m- (n-propyloxy) phenyl group, o-methoxyphenyl group, o- (n-propyloxy) phenyl group, 3,4-methylenedioxyphenyl group, 3,4-ethylenedioxyphenyl group, 2,3-dihydrobenzofuran-5-yl, 2, Alkyloxy-substituted phen
  • L and n in the formula (2) independently represent 0 or 1, respectively, and n is preferably 0 for ease of synthesis, and both l and n are 0 for high carrier mobility.
  • m represents an integer of 1 to 20
  • m is preferably an integer of 1 to 8 due to high solubility
  • m is more preferably an integer of 1 to 4 due to high carrier mobility. Is even more preferable.
  • Z 1 and Z 2 in the formula (2) are the same or different in their respective appearances, and represent one of a group consisting of a hydrogen atom, a halogen atom, and an alkyl group having 1 to 20 carbon atoms.
  • a halogen atom in Z 1 and Z 2 for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom are shown, and any of a fluorine atom and a chlorine atom is preferable because they are stable.
  • Examples of the alkyl group having 1 to 20 carbon atoms in Z 1 and Z 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group and an isovaleryl group.
  • n-hexyl group isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n- Examples thereof include linear, branched or cyclic alkyl groups such as octadecyl group, 2-ethylhexyl group, 3-ethylheptyl group, 3-ethyldecyl, 2-hexyldecyl group, cyclopentyl group, cyclohexyl group and cycloheptyl group.
  • an alkyl group having 1 to 8 carbon atoms is preferable, and a methyl group, an ethyl group, and an n-propyl group are more preferable because the aromatic compound exhibits high carrier mobility and high solubility.
  • the Z 1 and Z 2 are preferably either hydrogen atoms or halogen atoms because of their high carrier mobility, and more preferably hydrogen atoms.
  • A is either a phenyl group or an alkyl-substituted phenyl group, l and n are both 0, m is an integer of 1 to 4, and Z 1 and Z 2 are hydrogen atoms or halogens. It is preferably one of the atoms.
  • the group represented by the formula (2) is preferably a 2-phenylethyl group or a 2-alkyl-substituted phenylethyl group because of its high carrier mobility, and a 2-phenylethyl group or 2- (2) because of its high heat resistance and high solubility.
  • the aromatic compound of the formula (1-I) or the formula (1-II) is represented by one of the groups consisting of the following formulas (3-1) to (3-6) because of its ease of synthesis. Is preferable.
  • R 7 Of the two adjacent combinations of ⁇ R 10 only one set constitutes the following formula (4), and of the two adjacent combinations of R 11 to R 14 , only one set has the following formula. (4-2) is formed to form a 5- or 6-membered ring, respectively.
  • R 7 to R 14 and R 15 to R 19 which do not form the following formula (4) and the following formula (4-2) are Independently, a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an alkazienyl group having 4 to 22 carbon atoms, and 4 carbon atoms.
  • Y 3 indicates either CR 24 or a nitrogen atom.
  • ⁇ R 24 independently have a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, and an alkazienyl having 4 to 22 carbon atoms.
  • Arukajii alkenyl group having a carbon number of 4 to 22 represents one of the group consisting of groups represented by the aryl group having 4 to 26 carbon atoms, or the formula, (2), R 20 in the formula (2) It is a group represented.)
  • R 20b represents a hydrogen atom, a halogen atom, a carbon Alkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, alkynyl group having 2 to 20 carbon atoms, alkadienyl group having 4 to 22 carbon atoms, alkaziyl group having 4 to 22 carbon atoms, and 4 to 26 carbon atoms.
  • R 20 is a group represented by the formula (2).
  • R 20b is a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an alkazienyl group having 4 to 22 carbon atoms, and 4 to 22 carbon atoms.
  • the formula (4-2) is preferably the following formula (4-3).
  • R 20c is a hydrogen atom, a halogen atom, a carbon
  • R 20c is a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an alkazienyl group having 4 to 22 carbon atoms, and 4 to 22 carbon atoms. It is one of a group consisting of 22 alkadynyl groups or groups represented by aryl groups having 4 to 26 carbon atoms, and is preferably a hydrogen atom or a fluorine atom because of its high mobility. Is more preferable.
  • the formula (4-2) is preferably the following formula (4-4).
  • R 21 ⁇ R 24 represents a X 6, Y 3, R 21 ⁇ R 24 and as defined in the formula (4)
  • R 20d is represented by the formula (2) Is the basis.
  • Examples of the halogen atom in the R 7 to R 19 , R 21 to R 24 , R 20b , and R 20c indicate a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and since they are stable, they are a fluorine atom or a chlorine atom. Is preferable.
  • Examples of the alkyl group having 1 to 20 carbon atoms in R 7 to R 19 , R 21 to R 24 , R 20b , and R 20c include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • Branched or cyclic alkyl groups can be mentioned.
  • an alkyl group having 1 to 14 carbon atoms is preferable, and a methyl group, an ethyl group, an n-propyl group, an n-butyl group, etc.
  • a linear alkyl group of 14 is even more preferred.
  • Examples of the alkenyl group having 2 to 20 carbon atoms in R 7 to R 24 include an ethenyl group, a propenyl group, a butenyl group, a 2-methylpropenyl group, an n-pentenyl group, a 2-methylbutenyl group and an n-hexenyl group.
  • Examples of the alkynyl group having 2 to 20 carbon atoms in R 7 to R 19 , R 21 to R 24 , R 20b , and R 20c include an ethynyl group, a propynyl group, a butynyl group, an n-pentynyl group, and an n-hexynyl group. , N-heptynyl group, n-octynyl group, n-noninyl group, n-decynyl group, n-dodecynyl group and the like.
  • Examples of the alkazienyl group having 4 to 22 carbon atoms in R 7 to R 19 , R 21 to R 24 , R 20b , and R 20c include a butadienyl group, a pentadienyl group, a hexadienyl group, an n-heptadienyl group, and an n-octadienyl group.
  • N-nonadienyl group, n-decadienyl group, n-dodecadienyl group, n-tridecadienyl group and the like preferably an alka-1,3-dienyl group having 4 to 22 carbon atoms, and hexa-1,3 -Dienyl group, n-hepta-1,3-dienyl group, n-octa-1,3-dienyl group, n-nona-1,3-dienyl group, n-deca-1,3-dienyl group are more preferable. ..
  • Examples of the alkaziyl group having 4 to 22 carbon atoms in the R 7 to R 19 , R 21 to R 24 , R 20b , and R 20c include a butadynyl group, a pentadiynyl group, a hexadiynyl group, an n-heptadiynyl group, and an n-octadinyl group.
  • Examples thereof include a group, an n-nonadynyl group, an n-decadynyl group, an n-dodecadynyl group, an n-toridecadynyl group, and the like, preferably a 1,3-alkadynyl group having 4 to 22 carbon atoms, preferably hexa-1,3. -Diynyl group, n-hepta-1,3-diynyl group, n-octa-1,3-diynyl group, n-nona-1,3-diynyl group, n-deca-1,3-diynyl group are more preferable. ..
  • the aryl groups having 4 to 26 carbon atoms in the R 7 to R 19 , R 21 to R 24 , R 20b , and R 20c include heteroaryl groups having 4 to 24 carbon atoms.
  • Examples of the aryl group having 4 to 26 carbon atoms include a phenyl group; a p-tolyl group, a p- (n-hexyl) phenyl group, a p- (n-octyl) phenyl group, and a p- (2-ethylhexyl) phenyl group.
  • Alkyl-substituted phenyl groups such as groups; 2-furyl group, 2-thienyl group; 5-fluoro-2-furyl group, 5-methyl-2-furyl group, 5-ethyl-2-furyl group, 5- (n-) Propyl) -2-furyl group, 5- (n-butyl) -2-furyl group, 5- (n-pentyl) -2-furyl group, 5- (n-hexyl) -2-furyl group, 5-( n-octyl) -2-furyl group, 5- (2-ethylhexyl) -2-furyl group, 5-fluoro-2-thienyl group, 5-methyl-2-thienyl group, 5-ethyl-2-thienyl group, 5- (n-propyl) -2-thienyl group, 5- (n-butyl) -2-thienyl group, 5- (n-pentyl) -2-thienyl
  • the R 7 to R 19 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, and 4 to 26 carbon atoms.
  • One of the group consisting of the aryl group of the above or the group represented by the formula (2) is preferable, and an alkyl group having a hydrogen atom and 1 to 20 carbon atoms is more preferable because of its high solubility.
  • the R 21 to R 24 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, and 4 to 26 carbon atoms.
  • One of the group consisting of the aryl group of the above or the group represented by the formula (2) is preferable, and R 21 to R 24 are selected from one of the group consisting of a hydrogen atom and a methyl group because of the high carrier mobility. More preferably, and even more preferably, a hydrogen atom.
  • Y 3 in the formula (4) and (4-2) - (4-3) indicates either a CR 24 or nitrogen atom, for stability CR 24 is preferred.
  • aromatic compounds represented by the formulas (3-1) to (3-6) have high carrier mobility, a structure that is point-symmetrical or axisymmetric is preferable, and a point-symmetrical structure is more preferable.
  • the aromatic compounds represented by the formulas (3-1) to (3-6) are preferably the formula (3-1) or the formula (3-2) because of their high solubility and high heat resistance.
  • the aromatic compound represented by the formula (1-I) or the formula (1-II) is preferably an aromatic compound represented by the following formula (5) or the following formula (5-2).
  • R 33b represents a hydrogen atom, a halogen atom, a carbon Alkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, alkynyl group having 2 to 20 carbon atoms, alkadienyl group having 4 to 22 carbon atoms, alkaziyl group having 4 to 22 carbon atoms, and 4 to 26 carbon atoms. Indicates one of the group consisting of the aryl group of the above, or the group represented by the above formula (2).
  • R 33 is a group represented by the formula (2).
  • R 33b is a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an alkazienyl group having 4 to 22 carbon atoms, and 4 to 22 carbon atoms.
  • the formula (6-2) is preferably the following formula (6-3).
  • R 34 ⁇ R 37 are the same meaning as X 7, Y 4, R 34 ⁇ R 37 in the formula (6)
  • R 33c is a hydrogen atom, a halogen atom, a carbon
  • R 33c is a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an alkazienyl group having 4 to 22 carbon atoms, and 4 to 22 carbon atoms. It is one of a group consisting of 22 alkadynyl groups or groups represented by aryl groups having 4 to 26 carbon atoms, and is preferably a hydrogen atom or a fluorine atom because of its high mobility. Is more preferable.
  • the formula (6-2) is preferably the following formula (6-4). (Wherein, X 7, Y 4, R 34 ⁇ R 37 are the same meaning as X 7, Y 4, R 34 ⁇ R 37 in the formula (6), R 33d is represented by the formula (2) Is the basis.)
  • the halogen atoms in the R 25 to R 32 , R 34 to R 37 , R 69 , R 70 , R 33b , and R 33c show, for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and are stable. Preferably either a fluorine atom or a chlorine atom.
  • Examples of the alkyl group having 1 to 20 carbon atoms in R 25 to R 32 , R 34 to R 37 , R 69 , R 70 , R 33b , and R 33c include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • n-butyl group isobutyl group, n-pentyl group, isovaleryl group, n-hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group , N-dodecyl group, n-tridecyl group, n-tetradecyl group, n-octadecyl group, 2-ethylhexyl group, 3-ethylheptyl group, 3-ethyldecyl, 2-hexyldecyl group, cyclopentyl group, cyclohexyl group, cycloheptyl Examples include linear, branched, or cyclic alkyl groups such as groups.
  • an alkyl group having 1 to 14 carbon atoms is preferable, and a methyl group, an ethyl group, an n-propyl group, an n-butyl group, etc. n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group having 1 to 1 carbon atoms.
  • a linear alkyl group of 14 is even more preferred.
  • Examples of the alkenyl group having 2 to 20 carbon atoms in the R 25 to R 32 , R 34 to R 37 , R 69 , R 70 , R 33b , and R 33c include an ethenyl group, a propenyl group, a butenyl group, and 2-methyl.
  • Examples of the alkynyl group having 2 to 20 carbon atoms in the R 25 to R 32 , R 34 to R 37 , R 69 , R 70 , R 33b , and R 33c include an ethynyl group, a propynyl group, a butynyl group, and an n-pentynyl group. Examples thereof include a group, an n-hexynyl group, an n-heptinyl group, an n-octynyl group, an n-noninyl group, an n-decynyl group, an n-dodecynyl group and the like.
  • Examples of the alkazienyl group having 4 to 22 carbon atoms in R 25 to R 32 , R 34 to R 37 , R 69 , R 70 , R 33b , and R 33c include a butadienyl group, a pentadienyl group, a hexadienyl group, and an n-heptadienyl group.
  • Examples thereof include a group, an n-octadienyl group, an n-nonazienyl group, an n-decadienyl group, an n-dodecadienyl group, an n-tridecadienyl group and the like, and an arc-1,3-dienyl group having 4 to 22 carbon atoms is preferable.
  • Hexa-1,3-dienyl group, n-hepta-1,3-dienyl group, n-octa-1,3-dienyl group, n-nona-1,3-dienyl group, n-deca-1,3 -Dienyl groups are more preferred.
  • Examples of the alkadynyl group having 4 to 22 carbon atoms in the R 25 to R 32 , R 34 to R 37 , R 69 , R 70 , R 33b , and R 33c include a butadynyl group, a pentadiynyl group, a hexadiynyl group, and n-.
  • Examples thereof include a heptadiynyl group, an n-octadynyl group, an n-nonadynyl group, an n-decadynyl group, an n-dodecadynyl group, an n-toridecadynyl group, and the like, preferably a 1,3-alkadynyl group having 4 to 22 carbon atoms.
  • Hexa-1,3-diynyl group, n-hepta-1,3-diynyl group, n-octa-1,3-diynyl group, n-nona-1,3-diynyl group, n-deca-1,3 -Diynyl groups are more preferred.
  • the aryl groups having 4 to 26 carbon atoms in the R 25 to R 32 , R 34 to R 37 , R 69 , R 70 , R 33b , and R 33c include heteroaryl groups having 4 to 24 carbon atoms.
  • Examples of the aryl group having 4 to 26 carbon atoms include a phenyl group; a p-tolyl group, a p- (n-hexyl) phenyl group, a p- (n-octyl) phenyl group, and a p- (2-ethylhexyl) phenyl group.
  • Alkyl-substituted phenyl groups such as groups; 2-furyl group, 2-thienyl group; 5-fluoro-2-furyl group, 5-methyl-2-furyl group, 5-ethyl-2-furyl group, 5- (n-) Propyl) -2-furyl group, 5- (n-butyl) -2-furyl group, 5- (n-pentyl) -2-furyl group, 5- (n-hexyl) -2-furyl group, 5-( n-octyl) -2-furyl group, 5- (2-ethylhexyl) -2-furyl group, 5-fluoro-2-thienyl group, 5-methyl-2-thienyl group, 5-ethyl-2-thienyl group, 5- (n-propyl) -2-thienyl group, 5- (n-butyl) -2-thienyl group, 5- (n-pentyl) -2-thienyl
  • the R 25 to R 32 , R 69 , and R 70 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an alkynyl group having 2 to 20 carbon atoms.
  • One of the group consisting of an aryl group having 4 to 26 carbon atoms or a group represented by the formula (2) is preferable, and a hydrogen atom and an alkyl group having 1 to 20 carbon atoms are more preferable because of high solubility, and hydrogen. It is more preferable to be selected from one of the group consisting of an atom and a methyl group.
  • R 34 to R 37 have a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, and 4 to 26 carbon atoms.
  • One of the group consisting of the aryl group of the above, or the group represented by the formula (2) is preferable, and because of its high carrier mobility, it is represented by a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or the formula (2). Groups are more preferred, and R 34 to R 37 are even more preferably hydrogen atoms.
  • Y 4 in formula (6) and (6-2) - (6-4) represents a CR 37 or nitrogen atom, for stability CR 37 is preferred.
  • aromatic compounds represented by the formulas (5) and (5-2) have high carrier mobility, a structure that is point-symmetrical or axisymmetric is preferable, and a point-symmetrical structure is more preferable.
  • the aromatic compound represented by the formula (5) and the formula (5-2) is preferably the formula (5) because of its high solubility.
  • the aromatic compound represented by the formula (5) or the formula (5-2) is one of the compounds in the group consisting of the following formulas (7-1) to (7-5) due to the ease of synthesis. Is preferable.
  • X 8 and X 9 independently represent one of a group consisting of an oxygen atom, a sulfur atom, a selenium atom, or an NR 44.
  • Y 5 and Y 6 are independent and CR. Indicates either 45 or a nitrogen atom.
  • R 38 to R 45 , R 71 , and R 72 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkenyl having 2 to 20 carbon atoms.
  • an alkynyl group having 2 to 20 carbon atoms From a group, an alkynyl group having 2 to 20 carbon atoms, an alkadienyl group having 4 to 22 carbon atoms, an alkadiynyl group having 4 to 22 carbon atoms, an aryl group having 4 to 26 carbon atoms, or a group represented by the formula (2).
  • At least one of R 38 to R 45 is a group represented by the formula (2)
  • at least one of R 38 and R 41 is a group represented by the formula (2). .
  • X 8 and X 9 of the formulas (7-1) to (7-5) independently represent one of a group consisting of an oxygen atom, a sulfur atom, a selenium atom, and an NR 44, and sulfur for stability. Atoms, oxygen atoms, sulfur atoms and selenium atoms are preferable, and sulfur atoms are more preferable because of high carrier mobility.
  • Y 5 and Y 6 of the formulas (7-1) to (7-5) independently represent either CR 45 or a nitrogen atom, and CR 45 is preferable for stability.
  • R 38 to R 45 , R 71 , and R 72 of the formulas (7-1) to (7-5) are independently hydrogen atom, halogen atom, alkyl group having 1 to 20 carbon atoms, and 2 to 20 carbon atoms, respectively.
  • R 38 and R 41 of the formulas (7-1) to (7-5) are groups represented by the formula (2) in only one or both of them.
  • the definition of the group represented by the formula (2) in the formulas (7-1) to (7-5) is the definition of the formula (2) in the above formulas (1-I) and (1-II). It has the same meaning as.
  • halogen atom in the R 38 to R 45 , R 71 , and R 72 for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are shown, and any of a fluorine atom and a chlorine atom is preferable because they are stable.
  • alkyl group having 1 to 20 carbon atoms in the R 38 to R 45 , R 71 , and R 72 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and n-.
  • Pentyl group isovaleryl group, n-hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n -A straight chain, branched or cyclic alkyl group such as a tetradecyl group, an n-octadecyl group, a 2-ethylhexyl group, a 3-ethylheptyl group, a 3-ethyldecyl, a 2-hexyldecyl group, a cyclopentyl group, a cyclohexyl group and a cycloheptyl group.
  • an alkyl group having 1 to 14 carbon atoms is preferable, and a methyl group, an ethyl group, an n-propyl group, an n-butyl group, etc. n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group having 1 to 1 carbon atoms.
  • a linear alkyl group of 14 is even more preferred.
  • Examples of the alkenyl group having 2 to 20 carbon atoms in the R 38 to R 45 , R 71 and R 72 include an ethenyl group, a propenyl group, a butenyl group, a 2-methylpropenyl group, an n-pentenyl group and a 2-methylbutenyl group.
  • N-hexenyl group 2-methylpentenyl group, n-heptenyl group, n-octenyl group, 2-ethylhexenyl group, n-nonel group, 2-ethylheptenyl group, n-decenyl group, n-dodecenyl group, cyclopentenyl
  • Examples thereof include a -1- group, a cyclohexenyl-1- group, a cycloheptenyl-1- group and the like.
  • Examples of the alkynyl group having 2 to 20 carbon atoms in the R 38 to R 45 , R 71 , and R 72 include an ethynyl group, a propynyl group, a butynyl group, an n-pentynyl group, an n-hexynyl group, and an n-heptinyl group. Examples thereof include an n-octynyl group, an n-noninyl group, an n-decynyl group and an n-dodecynyl group.
  • Examples of the alkadienyl group having 4 to 22 carbon atoms in the R 38 to R 45 , R 71 , and R 72 include a butadienyl group, a pentadienyl group, a hexadienyl group, an n-heptadienyl group, an n-octadienyl group, and an n-nonazienyl group.
  • Examples thereof include an n-decadienyl group, an n-dodecadienyl group, an n-toridecadienyl group, and the like, preferably an alka-1,3-dienyl group having 4 to 22 carbon atoms, and a hexa-1,3-dienyl group, n-. Hepta-1,3-dienyl group, n-octa-1,3-dienyl group, n-nona-1,3-dienyl group and n-deca-1,3-dienyl group are more preferable.
  • Examples of the alkadynyl group having 4 to 22 carbon atoms in the R 38 to R 45 , R 71 , and R 72 include a butadynyl group, a pentadiynyl group, a hexadiynyl group, an n-heptadinyl group, an n-octadynyl group, and an n-nonadynyl group.
  • N-decadynyl group, n-dodecadynyl group, n-tridecadynyl group and the like preferably 1,3-alkadynyl group having 4 to 22 carbon atoms, hexa-1,3-diynyl group, n- Hepta-1,3-diynyl group, n-octa-1,3-diynyl group, n-nona-1,3-diynyl group and n-deca-1,3-diynyl group are more preferable.
  • the aryl groups having 4 to 26 carbon atoms in the R 38 to R 45 , R 71 , and R 72 include heteroaryl groups having 4 to 24 carbon atoms.
  • Examples of the aryl group having 4 to 26 carbon atoms include a phenyl group; a p-tolyl group, a p- (n-hexyl) phenyl group, a p- (n-octyl) phenyl group, and a p- (2-ethylhexyl) phenyl group.
  • Alkyl-substituted phenyl groups such as groups; 2-furyl group, 2-thienyl group; 5-fluoro-2-furyl group, 5-methyl-2-furyl group, 5-ethyl-2-furyl group, 5- (n-) Propyl) -2-furyl group, 5- (n-butyl) -2-furyl group, 5- (n-pentyl) -2-furyl group, 5- (n-hexyl) -2-furyl group, 5-( n-octyl) -2-furyl group, 5- (2-ethylhexyl) -2-furyl group, 5-fluoro-2-thienyl group, 5-methyl-2-thienyl group, 5-ethyl-2-thienyl group, 5- (n-propyl) -2-thienyl group, 5- (n-butyl) -2-thienyl group, 5- (n-pentyl) -2-thienyl
  • the R 38 to R 45 , R 71 , and R 72 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an alkynyl group having 2 to 20 carbon atoms.
  • One of the group consisting of an aryl group having 4 to 26 carbon atoms or a group represented by the formula (2) is preferable, and because of its high solubility, a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a formula (2). ) Is more preferable.
  • R 38 and R 41 are preferably one of a group consisting of a group represented by the above formula (2), a hydrogen atom and a fluorine atom, and are represented by the above formula (2). It is more preferable that it is one of a group consisting of a group and a hydrogen atom, and it is further preferable that both R 38 and R 41 are represented by the above formula (2). It is even more preferable that R 39 , R 40 , R 42 to R 45 , R 71 , and R 72 be selected from one of the group consisting of a hydrogen atom and a methyl group, and a hydrogen atom is even more preferable.
  • aromatic compounds represented by the above formulas (7-1) to (7-5) have high carrier mobility, a structure that is point-symmetrical or axisymmetric is preferable, and a point-symmetrical structure is more preferable.
  • any of the formulas (7-1), (7-2) or (7-5) is preferable because of high solubility, and high carrier mobility is used. It is more preferable that the equation (7-1) is used because of the mobility.
  • a more preferable compound structure of the compound of the present invention is represented by one of the groups consisting of the following formulas (8-1) to (8-11) in addition to the above formulas (7-1) to (7-5).
  • a group consisting of (7-1) to (7-5) and (8-2) to (8-9) having 4 to 5 fused rings It is preferable that it is one of the aromatic compounds of the above, and the formulas (7-1) to (7-5), (8-2) to (8-3), ( It is more preferable that it is one kind of aromatic compound in the group consisting of 8-5) to (8-8).
  • R 46 to R. 61 are independently hydrogen atoms, halogen atoms, alkyl groups having 1 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, alkynyl groups having 2 to 20 carbon atoms, and alkazienyl groups having 4 to 22 carbon atoms.
  • It represents one of a group consisting of an alkadynyl group having 4 to 22 carbon atoms, an aryl group having 4 to 26 carbon atoms, or a group represented by the formula (2), and at least one of R 46 to R 61 is of the formula ( It is a group represented by 2), and at least one of R 46 and R 47 is a group represented by the formula (2).
  • O represents 0 or 1).
  • One of the group consisting of a sulfur atom and a selenium atom is preferable, and a sulfur atom is more preferable because of high carrier mobility.
  • Y in the formulas (8-1) to (8-11) represents either CR 61 or a nitrogen atom, and CR 61 is preferable for stability.
  • R 46 to R 61 of the formulas (8-1) to (8-11) are independently hydrogen atom, halogen atom, alkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, and carbon.
  • the definition of the group represented by the formula (2) in the formulas (8-1) to (8-11) has the same meaning as the definitions of the above formulas (1-I) and (1-II). ..
  • halogen atom in R 46 to R 61 for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are shown, and any of a fluorine atom and a chlorine atom is preferable because they are stable.
  • alkyl group having 1 to 20 carbon atoms in R 46 to R 61 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group and an isovaleryl group.
  • n-hexyl group isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n- Examples thereof include linear, branched or cyclic alkyl groups such as octadecyl group, 2-ethylhexyl group, 3-ethylheptyl group, 3-ethyldecyl, 2-hexyldecyl group, cyclopentyl group, cyclohexyl group and cycloheptyl group.
  • an alkyl group having 1 to 14 carbon atoms is preferable, and a methyl group, an ethyl group, an n-propyl group, an n-butyl group, etc. n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group having 1 to 1 carbon atoms.
  • a linear alkyl group of 14 is even more preferred.
  • Examples of the alkenyl group having 2 to 20 carbon atoms in R 46 to R 61 include an ethenyl group, a propenyl group, a butenyl group, a 2-methylpropenyl group, an n-pentenyl group, a 2-methylbutenyl group and an n-hexenyl group.
  • Examples of the alkynyl group having 2 to 20 carbon atoms in R 46 to R 61 include an ethynyl group, a propynyl group, a butynyl group, an n-pentynyl group, an n-hexynyl group, an n-heptinyl group, an n-octynyl group, and n.
  • -Noninyl group, n-decynyl group, n-dodecynyl group and the like can be mentioned.
  • Examples of the alkadienyl group having 4 to 22 carbon atoms in R 46 to R 61 include a butadienyl group, a pentadienyl group, a hexadienyl group, an n-heptadienyl group, an n-octadienyl group, an n-nonazienyl group, an n-decadienyl group, and n.
  • -Dodecadienyl group, n-tridecadienyl group and the like can be mentioned, and an arc-1,3-dienyl group having 4 to 22 carbon atoms is preferable, and a hexa-1,3-dienyl group and an n-hepta-1,3- A dienyl group, an n-octa-1,3-dienyl group, an n-nona-1,3-dienyl group, and an n-deca-1,3-dienyl group are more preferable.
  • Examples of the alkadynyl group having 4 to 22 carbon atoms in R 46 to R 61 include a butadynyl group, a pentadiynyl group, a hexadiynyl group, an n-heptadinyl group, an n-octadynyl group, an n-nonadynyl group, and an n-decadinyl group.
  • Examples thereof include an n-dodecadynyl group and an n-tridecadynyl group, preferably a 1,3-alkadynyl group having 4 to 22 carbon atoms, a hexa-1,3-diynyl group and an n-hepta-1,3-.
  • a diynyl group, an n-octa-1,3-diynyl group, an n-nona-1,3-diynyl group, and an n-deca-1,3-diynyl group are more preferable.
  • the aryl group having 4 to 26 carbon atoms in the R 46 to R 61 contains a heteroaryl group having 4 to 24 carbon atoms.
  • Examples of the aryl group having 4 to 26 carbon atoms include a phenyl group; a p-tolyl group, a p- (n-hexyl) phenyl group, a p- (n-octyl) phenyl group, and a p- (2-ethylhexyl) phenyl group.
  • Alkyl-substituted phenyl groups such as groups; 2-furyl group, 2-thienyl group; 5-fluoro-2-furyl group, 5-methyl-2-furyl group, 5-ethyl-2-furyl group, 5- (n-) Propyl) -2-furyl group, 5- (n-butyl) -2-furyl group, 5- (n-pentyl) -2-furyl group, 5- (n-hexyl) -2-furyl group, 5-( n-octyl) -2-furyl group, 5- (2-ethylhexyl) -2-furyl group, 5-fluoro-2-thienyl group, 5-methyl-2-thienyl group, 5-ethyl-2-thienyl group, 5- (n-propyl) -2-thienyl group, 5- (n-butyl) -2-thienyl group, 5- (n-pentyl) -2-thienyl
  • the R 46 to R 61 have a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, and 4 to 26 carbon atoms. It is preferably one of the group consisting of the aryl group of the above, or the group represented by the formula (2). From the viewpoint of high carrier mobility, R 46 and R 47 are preferably one of a group consisting of a group represented by the formula (2), a hydrogen atom and a fluorine atom, and the group represented by the formula (2).
  • R 48 to R 61 are preferably selected from one of the group consisting of a hydrogen atom and a methyl group, and more preferably a hydrogen atom.
  • O in the formulas (8-5) and (8-6) indicates 0 or 1, and 1 is preferable because of high carrier mobility.
  • any production method can be used as long as the compound can be produced.
  • X 8 and X 9 of the formula (7-1) are sulfur atoms
  • Y 5 and Y 6 are CH
  • R 38 and R 41 are formulas ( The groups represented by 2)
  • R 39 , R 40 , R 42 , and R 43 are hydrogen atoms
  • l and n in the formula (2) are 0, respectively
  • Z 1 and Z 2 are hydrogen atoms.
  • a certain aromatic compound (7-1a) can be produced by the method of going through the following steps A1 to C1.
  • Step A1 A method of synthesizing a dibromodibiphenylene derivative (Compound 2) with butyl lithium as a dilithium salt and synthesizing a dibromodithionovylene derivative (Compound 3) with a bromoating agent (Step B1); reacting an alkyl bromide derivative with magnesium.
  • Step B1 A method for producing an alkylmagnesium bromide.
  • Step C1 Aromatic by reacting the alkylzinc chloride derived from the alkylmagnesium bromide obtained in the B1 step with the dibromodithienobiphenylene derivative (Compound 3) synthesized in the A1 step in the presence of a palladium catalyst.
  • the A1 step is a method for producing a dibromo compound by converting a dithienobiphenylene derivative into a dilithium salt with 2 equivalents or more of butyllithium and reacting it with a bromoating agent.
  • a dilithium salt for example, 2 to 3 equivalents of n-butyllithium or tert-butyllithium are used, and the dilithium salt is prepared in a solvent such as THF or diethyl ether in a temperature range of ⁇ 80 ° C. to 20 ° C. be able to.
  • the brominating agent tetrabromomethane, 1,2-dibromotetrachloroethane, N-bromosuccinimide (hereinafter abbreviated as "NBS" and the like can be used.
  • the B1 step is a method for producing an alkylmagnesium bromide by reacting an alkyl bromide derivative with magnesium.
  • a condition for preparing the magnesium salt for example, 1 to 2 equivalents of magnesium can be used, and the magnesium salt can be prepared in a solvent such as THF or diethyl ether in a temperature range of 25 ° C. to 60 ° C.
  • alkyl bromide derivative in the B1 step examples include benzyl bromide, 2-phenylethyl bromide, 3-phenylpropyl bromide, 4-phenylbutyl bromide, 4-methylphenethyl bromide, 1- (2-bromoethyl) -4-ethylbenzene, and 1 -(2-Bromoethyl) -4-propylbenzene, 1- (2-bromoethyl) -4-butylbenzene, 1- (2-bromoethyl) -4-pentylbenzene, 1- (2-bromoethyl) -4-hexylbenzene , 1- (2-bromoethyl) -4-heptylbenzene, 1- (2-bromoethyl) -4-octylbenzene, 5- (2-bromoethyl) -2,3-dihydrobenzofuran and the like.
  • Examples of the palladium catalyst in the C1 step include [1,1'-bis (diphenylphosphino) ferrocene] dichloropalladium (II), tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium and the like.
  • the reaction temperature can be in the range of 20 ° C. to 60 ° C.
  • X 8 and X 9 of the formula (7-2) are sulfur atoms
  • Y 5 and Y 6 are CH
  • R 38 and R 41 are groups represented by the formula (2)
  • R 40 , R 42 , and R 43 are hydrogen atoms
  • l and n in the formula (2) are 0, respectively
  • the aromatic compound (7-2a) in which Z 1 and Z 2 are hydrogen atoms is the following D1. It can be produced by a method that goes through the steps of ⁇ G1.
  • Step D1 1,5-bis (trimethylsilylethynyl) -2,6- by sonogashira coupling of 1,5-difluoro-2,6-diiodohalobiphenylene and trimethylsilylacetylene in the presence of palladium / copper catalyst.
  • Step E1; 1,5-bis (trimethylsilylethynyl) -2,6-difluorobiphenylene obtained by step D1 and sodium sulfide were subjected to the reaction, and biphenyleno [2,1-b: 6,5-b'].
  • the process of producing dithiophene 1,5-bis (trimethylsilylethynyl) -2,6- by sonogashira coupling of 1,5-difluoro-2,6-diiodohalobiphenylene and trimethylsilylacetylene in the presence of palladium / copper catalyst.
  • the D1 step is 1,5-bis (trimethylsilylethynyl) -2,6 by sonogashira coupling of 2,6-difluoro-1,5-diiodohalobiphenylene and trimethylsilylacetylene in the presence of palladium catalyst and copper catalyst.
  • -A process for producing difluorobiphenylene examples include tetrakis (triphenylphosphine) palladium and dichlorobis (triphenylphosphine) palladium, and examples of the copper catalyst include copper iodide (I), copper bromide (I), and copper chloride. (I) and the like can be mentioned.
  • the Sonogashira coupling can be carried out in a solvent such as triethylamine, diisopropylamine, diisopropylethylamine, piperidine, and pyridine in a temperature range of 20 ° C. to 80 ° C.
  • a solvent such as triethylamine, diisopropylamine, diisopropylethylamine, piperidine, and pyridine in a temperature range of 20 ° C. to 80 ° C.
  • toluene, THF and the like may be added as a solvent.
  • E1 process In the E1 step, biphenyleno [2,1-b: 6,5-b'] dithiophene was produced by the reaction of 1,5-bis (trimethylsilylethynyl) -2,6-difluorobiphenylene obtained in the D1 step with sodium sulfide. This is the manufacturing process.
  • the reaction is carried out in a solvent such as dimethyl sulfoxide (hereinafter abbreviated as DMSO), N, N-dimethylformamide (hereinafter abbreviated as DMF), N-methylpyrrolidone (hereinafter abbreviated as NMP) and the like.
  • DMSO dimethyl sulfoxide
  • DMF N-dimethylformamide
  • NMP N-methylpyrrolidone
  • the step can also be carried out using known reaction conditions for synthesizing a benzothiophene ring from 2-haloalkynylbenz
  • biphenyleno [2,1-b: 6,5-b'] dithiophene obtained by the E1 step is converted into a dilithium salt with 2 equivalents or more of butyllithium and reacted with a bromoating agent to form a dibromo compound.
  • a manufacturing method As conditions for preparing the dilithium salt, for example, 2 to 3 equivalents of n-butyllithium or tert-butyllithium are used, and the dilithium salt is prepared in a solvent such as THF or diethyl ether in a temperature range of ⁇ 80 ° C. to 20 ° C. be able to.
  • the brominating agent tetrabromomethane, 1,2-dibromotetrachloroethane, NBS and the like can be used.
  • Examples of the palladium catalyst in the G1 step include [1,1'-bis (diphenylphosphino) ferrocene] dichloropalladium (II), tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium and the like.
  • the reaction temperature can be in the range of 20 ° C. to 60 ° C.
  • X 8 and X 9 are sulfur atoms
  • Y 5 and Y 6 are CH
  • R 38 and R 41 are groups represented by formula (2)
  • R 39 and R are groups represented by formula (2)
  • Step A2 Method of synthesizing a dibromoanthradithiophene derivative (Compound 20) with a dilithium salt of anthradithiophene derivative (Compound 19) with butyllithium and a bromoating agent (Step C2); Alkyl obtained by Step B1.
  • the A2 step is a method for producing a dibromo compound by converting an anthradithiophene derivative into a dilithium salt with 2 equivalents or more of butyllithium and reacting it with a bromoating agent.
  • a bromoating agent for example, 2 to 3 equivalents of n-butyllithium or tert-butyllithium are used, and the dilithium salt is prepared in a solvent such as THF or diethyl ether in a temperature range of ⁇ 80 ° C. to 20 ° C. be able to.
  • the brominating agent tetrabromomethane, 1,2-dibromotetrachloroethane and the like can be used.
  • Examples of the palladium catalyst in the C2 step include [1,1'-bis (diphenylphosphino) ferrocene] dichloropalladium (II), tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium and the like.
  • the reaction temperature can be in the range of 20 ° C. to 60 ° C.
  • X 8 and X 9 are sulfur atoms
  • Y 5 and Y 6 are CH
  • R 38 is a group represented by formula (2)
  • R 39 to R 43 are hydrogen.
  • Step A3 A method of synthesizing a monobromodiphenylene biphenylene derivative (Compound 21) with a monolithium salt of butyllithium and a monobromodithienobiphenylene derivative (Compound 21) with a brominating agent (Step C3); A method for producing an aromatic compound (7-1b) by reacting an alkylzinc bromide derived from an alkylmagnesium bromide with a monobromodithienobiphenylene derivative (Compound 21) synthesized in the A3 step in the presence of a palladium catalyst.
  • the A3 step is a method for producing a monobromo compound by converting a dithienobiphenylene derivative into a monolithium salt with 1.0 equivalent of butyllithium and reacting it with a bromoating agent.
  • a bromoating agent for example, 0.5 to 1.5 equivalents of n-butyllithium or tert-butyllithium are used, and the temperature is -80 ° C to 20 ° C in a solvent such as THF or diethyl ether. It can be carried out in the temperature range.
  • the brominating agent tetrabromomethane, 1,2-dibromotetrachloroethane and the like can be used.
  • Examples of the palladium catalyst in the C3 step include [1,1'-bis (diphenylphosphino) ferrocene] dichloropalladium (II), tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium and the like.
  • the reaction temperature can be in the range of 20 ° C. to 60 ° C.
  • X 8 and X 9 are sulfur atoms
  • Y 5 and Y 6 are CH
  • R 38 is a group represented by formula (2), R 39 to R 41 , R.
  • the aromatic compound (7-5b) in which 42, R 43 , R 71 , and R 72 are hydrogen atoms, l and n in the formula (2) are 0, respectively, and Z 1 and Z 2 are hydrogen atoms is described above. It can be produced by isolation as a by-product of the C2 step, or by the method of going through the steps of A4 below, B1 below, and C4 below.
  • An aromatic compound (7-5b) is produced by reacting an alkylzinc bromide derived from the above alkylmagnesium bromide with a monobromoanthradithiophene derivative (Compound 22) synthesized in the A4 step in the presence of a palladium catalyst.
  • the A4 step is a method for producing a monobromo compound by converting an anthradithiophene derivative into a monolithium salt with 1 equivalent of butyllithium and reacting it with a bromoating agent.
  • a bromoating agent for example, 0.5-1.5 equivalents of n-butyllithium or tert-butyllithium are used, and the temperature is ⁇ 80 ° C. to 20 ° C. in a solvent such as THF or diethyl ether. It can be carried out in the temperature range.
  • the brominating agent tetrabromomethane, 1,2-dibromotetrachloroethane and the like can be used.
  • an aromatic compound is formed by reacting an alkylzinc chloride derived from the alkylmagnesium bromide obtained in the B1 step with a monobromoanthradithiophene derivative (Compound 22) synthesized in the A4 step in the presence of a palladium catalyst.
  • 7-5b) is a method for producing.
  • zinc chloride can be used and carried out in a solvent such as THF or diethyl ether in a temperature range of 0 ° C. to 25 ° C.
  • Examples of the palladium catalyst in the C4 step include [1,1'-bis (diphenylphosphino) ferrocene] dichloropalladium (II), tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium and the like.
  • the reaction temperature can be in the range of 20 ° C. to 60 ° C.
  • the compound of the present invention can be made into a solution for forming an organic semiconductor layer containing the compound by dissolving it in an appropriate solvent.
  • the solvent any solvent may be used as long as it can dissolve the aromatic compound represented by the formula (1-I) or the formula (1-II), and an organic semiconductor layer is formed.
  • an organic solvent having a boiling point at normal pressure of 100 ° C. or higher is preferable because the drying speed of the solvent can be made suitable.
  • the solvent that can be used in the present invention is not particularly limited, and for example, aromatics such as toluene, mesityrene, o-xylene, isopropylbenzene, pentylbenzene, cyclohexylbenzene, 1,2,4-trimethylbenzene, tetralin, and indan.
  • aromatics such as toluene, mesityrene, o-xylene, isopropylbenzene, pentylbenzene, cyclohexylbenzene, 1,2,4-trimethylbenzene, tetralin, and indan.
  • Aromatic ethers such as methylenedioxybenzene and 1,2-ethylenedioxybenzene; chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2-difluorobenzene, Aromatic halogen compounds such as 1,3-difluorobenzene and 1,4-difluorobenzene; thiophene, 3-chlorothiophene, 2-chlorothiophene, 3-methylthiophene, 2-methylthiophene, benzothiophene, 2-methylbenzothiophene , 2,3-Dihydrobenzothiophene, furan, 3-methylfuran, 2-methylfuran
  • the temperature at which the aromatic compound represented by the formula (1-I) or the formula (1-II) is mixed and dissolved in the solvent may be in the temperature range of 0 to 80 ° C. for the purpose of accelerating the dissolution. It is preferable, and it is more preferable to carry out in the temperature range of 10 to 60 ° C.
  • the time for dissolving and mixing the aromatic compound represented by the formula (1-I) or the formula (1-II) in an organic solvent is preferably 1 minute to 1 hour in order to obtain a uniform solution.
  • the concentration of the aromatic compound represented by the formula (1-I) or the formula (1-II) in the solution for forming an organic semiconductor layer of the present invention is in the range of 0.1 to 10.0% by weight. It becomes easy to handle and becomes more efficient in forming the organic semiconductor layer. Further, when the viscosity of the solution for forming an organic semiconductor layer is in the range of 0.3 to 10 mPa ⁇ s, more suitable coatability is exhibited. Since the aromatic compound itself has appropriate cohesiveness, the solution can be prepared at a relatively low temperature, and since it has oxidation resistance, it is suitably applied to the production of an organic thin film by a coating method. can. That is, since it is not necessary to remove air from the atmosphere, the coating process can be simplified.
  • the solution is, for example, polystyrene, poly ( ⁇ -methylstyrene), poly (4-methylstyrene), poly (1-vinylnaphthalene), poly (2-vinylnaphthalene), poly (styrene-block-butadiene-block).
  • the glass transition temperature (Tg) of the polymer binder is preferably 105 ° C. or higher, more preferably 120 ° C. or higher, and more preferably 150 ° C. or higher, because it is more suitable for dealing with the process temperature during the manufacture of electronic devices. Is particularly preferable.
  • the molecular weight of the polymer is preferably 5,000 to 1,000,000, more preferably 10,000 to 500,000, because it is suitable for obtaining an organic thin film transistor having a higher carrier mobility. Of particular preference is 20,000 to 100,000.
  • the molecular weight of the polymer refers to the polystyrene-equivalent weight average molecular weight (Mw).
  • the polymer has an effect as a general polymer binder and improves the film forming property of the obtained organic semiconductor layer, and an insulating polymer and a semiconductor polymer can also be used.
  • Specific examples of the polymer that can be used as the polymer binder in the present invention include, for example, polar cyclic polyolefins, polysulfones, acrylonitrile-styrene copolymers, and methyl methacrylate-styrenes, in addition to the polymers listed above. Polymers and the like can be mentioned.
  • the polar cyclic polyolefins are more preferably polymers represented by the following formula (9).
  • R 62 to R 64 are independently hydrogen atom, halogen atom, alkyl group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, and alkyloxycarbonyl group having 2 to 20 carbon atoms.
  • Z represents a halogen atom, an alkyloxycarbonyl group having 2 to 20 carbon atoms, an aryloxycarbonyl group having 7 to 20 carbon atoms, a cyano group, a nitro group, and 1 to 1 carbon atoms.
  • P is an integer of 20 to 5,000. Shown, q and r each independently represent an integer of 0 to 2.
  • a bond consisting of a solid line and a dotted line indicates a single bond or a double bond.
  • R 62 to R 64 in the formula (9) are independently hydrogen atom, halogen atom, alkyl group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, and alkyloxycarbonyl having 2 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms in R 62 to R 64 is, for example, a linear chain such as a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an isobutyl group, a sec-butyl group, or an n-pentyl group.
  • a branched alkyl group can be mentioned.
  • the aryl group having 6 to 20 carbon atoms includes, for example, a phenyl group, a p-tolyl group, a p- (n-hexyl) phenyl group, a p- (n-octyl) phenyl group, a p- (2-ethylhexyl) phenyl group and the like. Can be mentioned.
  • Examples of the alkyloxycarbonyl group having 2 to 20 carbon atoms include a methyloxycarbonyl group, an ethyloxycarbonyl group, an n-propyloxycarbonyl group and the like.
  • Examples of the aryloxycarbonyl group having 7 to 20 carbon atoms include a phenoxycarbonyl group and a 4-methylphenoxycarbonyl group.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group and the like.
  • Examples of the aryloxy group having 6 to 20 carbon atoms include a phenoxy group and 4-methylphenoxy.
  • Examples of the alkylamino group having 1 to 20 carbon atoms include a methylamino group, an ethylamino group, an n-propylamino group and the like.
  • the substituent R 60 is preferably a methyl group, an ethyl group, or an n-propyl group, and the substituents R 63 and R 64 are preferably hydrogen atoms because of high heat resistance.
  • Z in the formula (9) is a halogen atom, an alkyloxycarbonyl group having 2 to 20 carbon atoms, an aryloxycarbonyl group having 7 to 20 carbon atoms, a cyano group, a nitro group, an alkoxy group having 1 to 20 carbon atoms, and a carbon number of carbon atoms.
  • the alkyloxycarbonyl group having 2 to 20 carbon atoms in the substituent Z includes, for example, a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an n-butoxycarbonyl group, an n-hexyloxycarbonyl group, a cyclohexyloxycarbonyl group and the like.
  • Examples of the aryloxycarbonyl group having 7 to 20 carbon atoms include a phenoxycarbonyl group, a 4-methylphenoxycarbonyl group, a 2,4-dimethylphenoxycarbonyl group, and a 4-ethylphenoxycarbonyl group.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include a methoxy group and an ethoxy group.
  • Examples of the aryloxy group having 6 to 20 carbon atoms include a phenoxy group and 4-methylphenoxy.
  • Examples of the alkylamino group having 1 to 20 carbon atoms include a methylamino group, an ethylamino group, an n-propylamino group and the like.
  • It is preferably an alkyloxycarbonyl group having 2 to 20 carbon atoms because of its high solubility and high heat resistance.
  • p represents an integer of 20 to 5,000 and is preferably 40 to 2,000 because it is suitable for obtaining an organic thin film transistor having a higher carrier mobility.
  • q represents an integer of 0 to 2, preferably 1.
  • r represents an integer of 0 to 2, preferably 0 or 1. More preferably, it is 0.
  • the bond consisting of a solid line and a dotted line indicates a single bond or a double bond, and is preferably a single bond because of thermal stability.
  • the polysulfones used as the polymer binder in the present invention are not particularly limited as long as they have a polysulfone structure, and more specific examples thereof include the polysulfones represented by the following polysulfones 1 to 5.
  • substituents R 65 to R 68 independently represent an alkyl group having 1 to 20 carbon atoms, and s represents an integer of 10 to 20,000.
  • the alkyl groups having 1 to 20 carbon atoms in the substituents R 65 to R 68 are, for example, methyl group, ethyl group, n-propyl group, n-butyl group, isobutyl group, n-pentyl group, n-hexyl group and isohexyl.
  • s represents an integer of 10 to 20,000, preferably an integer of 10 to 10,000.
  • the acrylonitrile-styrene copolymer used as the polymer binder in the present invention is a copolymer of an arbitrary ratio of acrylonitrile and styrene, exhibits good electrical properties, and changes in the threshold voltage when bias stress is applied.
  • the ratio of acrylonitrile to styrene is preferably 10:90 to 50:50, and more preferably 20:80 to 40:60, because reliability is improved such as a smaller one.
  • the methyl methacrylate-styrene copolymer used as the polymer binder in the present invention is a copolymer of any ratio of methyl methacrylate and styrene, exhibits good electrical characteristics, and changes in threshold voltage when bias stress is applied.
  • the molar ratio of methyl methacrylate to styrene is preferably 1:99 to 90:10, and more preferably 1:99 to 70:30, because reliability is improved, such as a smaller ratio.
  • a polymer whose surface energy is adjusted with a surface treatment agent can be used.
  • a silane coupling agent can be used, and specific examples thereof include 1,1,1,3,3,3-hexamethyldisilazane, phenyltrimethoxysilane, and octyltrichlorosilane.
  • polystyrene resin examples thereof include ⁇ -phenyltilt trichlorosilane and ⁇ -phenyltilt trimethoxysilane.
  • the polymer used in the present invention can be used alone or as a mixture of two or more kinds of polymers. Furthermore, it is also possible to use a mixture of polymers having different molecular weights.
  • the coating method for forming the organic semiconductor layer using the solution for forming the organic semiconductor layer of the present invention is not particularly limited as long as it can form the organic semiconductor layer, and is, for example, spin coating, drop casting, or dipping.
  • Simple coating methods such as coating and cast coating; printing methods such as dispenser, inkjet, slit coating, blade coating, flexo printing, screen printing, gravure printing, offset printing, etc. can be mentioned, and among them, easily and efficiently with organic semiconductor layers.
  • Spin coating, drop casting, and inkjet are preferable because they can be used.
  • the drying conditions are not particularly limited, and for example, the solvent can be dried and removed under normal pressure or reduced pressure.
  • the temperature at which the organic solvent is dried and removed from the applied organic semiconductor layer is not particularly limited, but the organic solvent can be efficiently dried and removed from the applied organic semiconductor layer, and the organic semiconductor layer can be formed. It is preferably carried out in a temperature range of 10 to 150 ° C.
  • the crystal growth of the aromatic compound represented by the formula (1-I) or the formula (1-II) is performed by adjusting the vaporization rate of the organic solvent to be removed. It is possible to control.
  • the film thickness of the organic semiconductor layer formed by the solution for forming an organic semiconductor layer of the present invention is not limited, and good carrier transfer can be obtained. Therefore, the range is preferably in the range of 1 nm to 1 ⁇ m, and in the range of 10 nm to 300 nm. Is more preferable. Further, the obtained organic semiconductor layer may be annealed at 40 to 180 ° C. after forming the organic semiconductor layer.
  • the organic semiconductor layer formed from the solution for forming an organic semiconductor layer of the present invention can be used as an organic semiconductor device including the organic semiconductor layer, particularly as an organic thin film transistor including the organic semiconductor layer.
  • the organic thin film can be obtained by laminating an organic semiconductor layer having a source electrode and a drain electrode attached on a substrate and a gate electrode via an insulating layer, and is used for forming the organic semiconductor layer of the present invention on the organic semiconductor layer.
  • the organic semiconductor layer formed by the solution it is possible to obtain an organic thin film exhibiting excellent semiconductor and electrical characteristics.
  • FIG. 1 shows a structure of a general organic thin film transistor based on the cross-sectional shape.
  • (A) is a bottom gate-top contact type
  • (B) is a bottom gate-bottom contact type
  • (C) is a top gate-top contact type
  • (D) is a top gate-bottom contact type.
  • 1 is an organic semiconductor layer
  • 2 is a substrate
  • 3 is a gate electrode
  • 4 is a gate insulating layer
  • 5 is a source electrode
  • 6 is a drain electrode, which are formed from the organic semiconductor layer forming solution of the present invention.
  • the organic semiconductor layer to be formed can be applied to any organic thin film transistor.
  • the substrate according to the present invention is not particularly limited, and for example, polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, polymethyl acrylate, polyethylene, polypropylene, polystyrene, cyclic polyolefin, fluorinated cyclic polyolefin, polyimide, polycarbonate, polyvinylphenol, etc.
  • Plastic substrates such as polyvinyl alcohol, poly (diisopropyl fumarate), poly (diethyl fumarate), poly (diisopropyl maleate), polyether sulfone, polyphenylene sulfide, cellulose triacetate; glass, quartz, aluminum oxide, silicon, high-doped silicon , Inorganic material substrates such as silicon oxide, tantalum dioxide, tantalum pentoxide, indium tin oxide; metal substrates such as gold, copper, chromium, titanium and aluminum. When high-doped silicon is used for the substrate, the substrate can also serve as a gate electrode.
  • the gate electrode according to the present invention is not particularly limited, and for example, aluminum, gold, silver, copper, high-doped silicon, tin oxide, indium oxide, indium tin oxide, chromium, titanium, tantalum, graphene, carbon nanotubes and the like.
  • Inorganic materials organic materials such as doped conductive polymers (eg PEDOT-PSS) can be mentioned. Further, the above-mentioned inorganic material can be used as a metal nanoparticle ink without any problem.
  • the solvent is a polar solvent such as water, methanol, ethanol, 2-propanol, 1-butanol, 2-butanol, etc.
  • the gate insulating layer according to the present invention is not particularly limited, and for example, silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, titanium oxide, tantalum dioxide, tantalum pentoxide, indium tin oxide, tin oxide, vanadium oxide, and titanium oxide.
  • Inorganic materials such as barium acid acid, bismuth titanate; polymethylmethacrylate, polymethylacrylate, polyimide, polycarbonate polyamic acid, polyvinylphenol, polyvinyl alcohol, poly (diisopropylfumarate), poly (diethylfumarate), polyethylene terephthalate, polyethylene na Phtalate, ethyl polysilicate, methyl polysilicate, ethyl polycrotonate, polyethersulfone, polypropylene-co-1-butene, polyisobutylene, polypropylene, polycyclopentane, polycyclohexane, polycyclohexane-ethylene copolymer, Polyfluorinated cyclopentane, polyfluorinated cyclohexane, polyfluorinated cyclohexane-ethylene copolymer, BCB resin (trade name: cycloten, manufactured by Dow Chemical Co., Ltd.), Cytop TM,
  • the solvent used for dissolving the polymer material is not particularly limited, and is, for example, an aliphatic hydrocarbon solvent having 6 to 14 carbon atoms such as hexane, heptane, octane, decane, dodecane, tetradecane; THF, 1,2-dimethoxy.
  • Ether-based solvents such as ethane and dioxane; alcohol-based solvents such as ethanol, isopropyl alcohol, 1-butanol, 2-butanol, 2-ethylhexanol and tetrahydrofurfuryl alcohol; Ketone solvent; ester solvent such as ethyl acetate, ⁇ -butyrolactone, cyclohexanol acetate, 3-methoxybutyl acetate, tetrahydrofurfuryl acetate, tetrahydrofurfuryl propionate; amide solvent such as DMF, NMP; dipropylene glycol Dimethyl ether, dipropylene glycol diacetate, dipropylene glycol methyl-n-propyl ether, dipropylene glycol methyl ether acetate, 1,4-butanediol diacetate, 1,3-butylene glycol diacetate, 1,6-hexanediol di Glycol-
  • the concentration of the polymer insulating material is, for example, 0.1 to 10.0% by weight at a temperature of 20 to 40 ° C.
  • the film thickness of the insulating layer obtained at this concentration is not limited, and is preferably 100 nm to 1 ⁇ m, more preferably 150 nm to 900 nm from the viewpoint of insulation resistance.
  • gate insulating layers are, for example, octadecyltrichlorosilane, decyltrichlorosilane, decyltrimethoxysilane, octyltrichlorosilane, octadecyltrimethoxysilane, ⁇ -phenethyllichlorosilane, ⁇ -phenetyltrimethoxysilane, and phenyltri.
  • Silanes such as chlorosilane and phenyltrimethoxysilane; phosphonic acids such as octadecylphosphonic acid, decylphosphonic acid and octylphosphonic acid; those modified with silylamines such as hexamethyldisilazane can also be used.
  • phosphonic acids such as octadecylphosphonic acid, decylphosphonic acid and octylphosphonic acid
  • those modified with silylamines such as hexamethyldisilazane
  • the material of the source electrode and the drain electrode of the organic thin film transistor of the present invention is not particularly limited, and the same material as the gate electrode can be used, and the material may be the same as or different from that of the gate electrode, and different materials. May be laminated.
  • surface treatment can be performed on these electrode materials in order to increase the efficiency of carrier injection. Examples of the expression treatment agent used for the surface treatment include benzenethiol, pentafluorobenzenethiol, 4-fluorobenzenethiol, 4-methoxybenzenethiol and the like.
  • the organic thin film transistor of the present invention preferably has a carrier mobility of 1.00 cm 2 / V ⁇ sec or more because of its high operability. Moreover, because of the high switching characteristics, current on-off ratio, is preferably 1.0 ⁇ 10 6 or more.
  • the organic thin film transistor of the present invention is used for organic semiconductor layers of transistors such as electronic papers, organic EL displays, liquid crystal displays, IC tags (RFID tags), pressure sensors, and biosensors; organic EL display materials; organic semiconductor laser materials; organic thin films.
  • a thin film transistor that can be used as an electronic material such as a solar cell material; a photonic crystal material; a semiconductor material for an image pickup element, and an aromatic compound represented by the formula (1-I) or the formula (1-II) is crystalline. Therefore, it is preferable to use it as a semiconductor layer application of an organic thin film transistor.
  • a DSC Densilic Acid Meltiometer was used to measure the melting point of aromatic compounds.
  • Synthesis Example 1 Synthesis of dibromodithienobiphenylene derivative (Compound 3) (A1 step) 89.0 mg (0.336 mmol) of a dithienobiphenylene derivative (Compound 2 in the publication) synthesized by the method described in JP-A-2018-174322 in a 100 ml Schlenk reaction vessel under a nitrogen atmosphere, THF (Fuji Film Wako Pure Chemical Industries, Ltd.) (Derivative grade) 9 ml was added. The mixture was cooled to ⁇ 80 ° C., 0.75 mL (1.20 mmol) of 1.6 M normal butyllithium (Tokyo Chemical Industry) was added, and the mixture was stirred for 5 minutes and then stirred at room temperature for 25 minutes.
  • THF Fluji Film Wako Pure Chemical Industries, Ltd.
  • the mixture was aged at 0 ° C. for 220 minutes to prepare a 5-octylthiophene-2-ylmagnesium chloride solution.
  • 527 mg (3.86 mmol) of zinc chloride (Fujifilm Wako Pure Chemical Industries, Ltd.) and 7 ml of THF (dehydration grade) were added to a 100 ml Schlenk reaction vessel, and the mixture was cooled to 0 ° C.
  • the previously prepared 5-octylthiophene-2-ylmagnesium chloride solution was added dropwise to the obtained white fine slurry solution using a Teflon (registered trademark) cannula, and further using 2 ml of THF (dehydrated grade).
  • Synthesis Example 5 1,4-Bis (5-octylthiophene-2-yl) -2,5-dietinylbenzene Under a nitrogen atmosphere, the 1,4-bis (5-) synthesized in Synthesis Example 4 was placed in a 100 ml Schlenk reaction vessel. 540 mg (0.819 mmol) of octylthiophene-2-yl) -2,5-bis (trimethylsilylethynyl) benzene, 7 ml of THF, 3.5 ml of methanol, and 45.8 mg (0.331 mmol) of potassium carbonate were added. The mixture was stirred at room temperature for 3 hours.
  • Example 2 (Preparation of a solution for forming an organic semiconductor layer)
  • Compound 1 2,7-di (2-phenylethyl) dithienobiphenylene
  • 434 mg of toluene (Fuji Film Wako Pure Chemical Industries, Ltd., Pure Grade) synthesized in Example 1 were added.
  • the mixture was added, dissolved by heating at 50 ° C., and then allowed to cool at room temperature (25 ° C.) to prepare a solution for forming an organic semiconductor layer.
  • the solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 1 was 0.20% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Example 3 (Preparation of Organic Semiconductor Layer and Organic Thin Film Transistor) A top gate-bottom contact type p-type organic thin film transistor was produced using the solution for forming an organic semiconductor layer obtained in Example 2.
  • Table 1 shows the materials of each component and the film forming method. Results were evaluated in the transfer characteristics of the transistor element, the carrier mobility of holes 1.45 cm 2 / V ⁇ sec, the current on-off ratio was 1.6 ⁇ 10 6. Further, the electrical characteristics of this organic thin film transistor after being annealed at 130 ° C. for 10 minutes were measured. Carrier mobility of holes 1.40cm 2 / V ⁇ sec, the current on-off ratio was 1.2 ⁇ 10 6, was hardly observed performance degradation due to heat treatment.
  • Example 4 (Preparation of Organic Semiconductor Layer and Organic Thin Film Transistor) Using the organic semiconductor layer forming solution obtained in Example 2, a bottom gate-bottom contact type p-type organic thin film transistor was produced using the materials and film forming methods of the constituent members shown in Example 3. Results were evaluated in the transfer characteristics of the transistor element, the carrier mobility of holes 2.29cm 2 / V ⁇ sec, the current on-off ratio was 1.5 ⁇ 10 6. Further, the electrical characteristics of this organic thin film transistor after being annealed at 130 ° C. for 10 minutes were measured. Carrier mobility of holes 2.25cm 2 / V ⁇ sec, the current on-off ratio was 1.0 ⁇ 10 6, was hardly observed performance degradation due to heat treatment.
  • Synthesis Example 7 Synthesis of 4-propylbenzene Ethanol In a nitrogen atmosphere, in a 100 ml Schlenk reaction vessel, 5.03 g (25.3 mmol) of 1-bromo-4-propylbenzene (Tokyo Chemical Industry) and THF (Fuji Film Wako Pure Chemical Industries, Ltd., dehydration) Grade) 80 ml was added. The mixture was cooled to ⁇ 78 ° C., 19.0 mL (30.4 mmol) of 1.6 M normal butyllithium (Tokyo Chemical Industry) was added, and the mixture was stirred at ⁇ 78 ° C. for 90 minutes.
  • Synthesis Example 8 Synthesis of 1- (2-bromoethyl) -4-propylbenzene 1.07 g (6.54 mmol) of 4-propylbenzene ethanol synthesized in Synthesis Example 7 and dichloromethane (Fuji Film) in a 100 ml two-necked flask under a nitrogen atmosphere. Wako Pure Chemical Industries, Ltd. (dehydrated grade) 30 ml was added. This solution was ice-cooled, 0.60 ml (6.32 mmol) of phosphorus tribromide was added, and the mixture was stirred for 20 minutes and then at room temperature for 22 hours.
  • the reaction solution was poured into ice, neutralized with saturated aqueous sodium hydrogen carbonate solution, and dichloromethane was added to separate the phases.
  • the organic phase was washed with saturated aqueous sodium hydrogen carbonate solution and water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography (solvent; dichloromethane) to obtain 489 mg of a colorless liquid of 1- (2-bromoethyl) -4-propylbenzene (yield 33%).
  • Synthesis Example 9 Synthesis of 2- (4-propylphenyl) ethylmagnesium bromide (B1 step) Synthesis of magnesium (Fuji Film Wako Pure Chemical Industries, Ltd., shavings) 42.1 mg (1.73 mmol) in a 100 mL two-necked flask under a nitrogen atmosphere. Was added and stirred under vacuum for 2 hours. Under a nitrogen atmosphere, add 5 mL of a THF (Fujifilm Wako Pure Chemical Industries, Ltd., dehydration grade) solution of 1- (2-bromoethyl) -4-propylbenzene 231 mg (1.02 mmol) synthesized in Synthesis Example 8 at room temperature for 90 minutes. The mixture was stirred at 40 ° C. for 1 hour. The solid was removed by filtration to give a 0.2M 2- (4-propylphenyl) ethylmagnesium bromide / THF solution.
  • THF Flujifilm Wako Pure Chemical Industries, Ltd
  • Synthesis Example 10 Synthesis of 4-butylbenzene ethanol In a nitrogen atmosphere, in a 300 ml Schlenk reaction vessel, 4.34 g (20.4 mmol) of 1-bromo-4-butylbenzene (Tokyo Chemical Industry) and THF (Fuji Film Wako Pure Chemical Industries, Ltd., dehydration) Grade) 80 ml was added. The mixture was cooled to ⁇ 78 ° C., 26.0 mL (41.6 mmol) of 1.6 M normal butyllithium (Tokyo Chemical Industry) was added, and the mixture was stirred at ⁇ 78 ° C. for 2 hours.
  • Synthesis Example 11 Synthesis of 1- (2-bromoethyl) -4-butylbenzene 2.20 g (12.3 mmol) and dichloromethane (Fuji film) of 4-butylbenzene ethanol synthesized in Synthesis Example 10 in a 100 ml two-necked flask under a nitrogen atmosphere. Wako Pure Chemical Industries, dehydration grade) 30 ml was added. This solution was ice-cooled, 2.40 ml (25.2 mmol) of phosphorus tribromide was added, and the mixture was stirred for 10 minutes and then at room temperature for 25 hours.
  • the reaction solution was poured into ice, neutralized with saturated aqueous sodium hydrogen carbonate solution, and dichloromethane was added to separate the phases.
  • the organic phase was washed with saturated aqueous sodium hydrogen carbonate solution and water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography (solvent; dichloromethane) to obtain 922 mg of a colorless liquid of 1- (2-bromoethyl) -4-butylbenzene (yield 31%).
  • Synthesis Example 12 Synthesis of 2- (4-butylphenyl) ethylmagnesium bromide (B1 step) Synthesis of magnesium (Fuji Film Wako Pure Chemical Industries, Ltd., shavings) 41.2 mg (1.69 mmol) in a 100 mL two-necked flask under a nitrogen atmosphere. Was added and stirred under vacuum for 2 hours. Under a nitrogen atmosphere, add 5 mL of a 1- (2-bromoethyl) -4-butylbenzene 248 mg (1.03 mmol) THF (Fujifilm Wako Pure Chemical Industries, Ltd. dehydration grade) solution synthesized in Synthesis Example 11 and leave at room temperature for 30 minutes. The mixture was stirred at 40 ° C. for 1 hour. The solid was removed by filtration to give a 0.2M 2- (4-butylphenyl) ethylmagnesium bromide / THF solution.
  • the reaction solution was poured into ice, neutralized with saturated aqueous sodium hydrogen carbonate solution, and dichloromethane was added to separate the phases.
  • the organic phase was washed with saturated aqueous sodium hydrogen carbonate solution and water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography (solvent; dichloromethane) to obtain 1.74 g of a colorless liquid of 1- (2-bromoethyl) -4-heptylbenzene (yield 43%).
  • Synthesis Example 15 Synthesis of 2- (4-heptylphenyl) ethylmagnesium bromide (B1 step) Synthesis of magnesium (Fujifilm Wako Pure Chemical Industries, Ltd., shavings) 42.1 mg (1.73 mmol) in a 100 mL two-necked flask under a nitrogen atmosphere. Was added and stirred under vacuum for 2 hours. Under a nitrogen atmosphere, 5 mL of a THF (Fujifilm Wako Pure Chemical Industries, Ltd., dehydration grade) solution of 1- (2-bromoethyl) -4-heptylbenzene synthesized in Synthesis Example 14 of 288 mg (1.02 mmol) was added, and the mixture was added at room temperature for 40 minutes. The mixture was stirred at 40 ° C. for 1 hour. The solid was removed by filtration to give a 0.2M 2- (4-heptylphenyl) ethylmagnesium bromide / THF solution.
  • Synthesis Example 16 Synthesis of 2- (2,3-dihydrobenzofuran-5-yl) ethylmagnesium bromide (B1 step) Synthesis of magnesium (Fuji Film Wako Pure Chemical Industries, Ltd., shavings) 369 mg (Fuji Film Wako Pure Chemical Industries, Ltd.) in a 100 mL two-necked flask under a nitrogen atmosphere. 15.2 mmol) was added, and the mixture was stirred under vacuum for 2 hours.
  • Example 8 Synthesis of aromatic compound (Compound 7) (C1 step) Under a nitrogen atmosphere, 173 mg (1.30 mmol) of zinc chloride (Fujifilm Wako Pure Chemical Industries, Ltd.) and 5 mL of THF (Fujifilm Wako Pure Chemical Industries, Ltd., dehydration grade) were added to a 50 mL Schlenk tube, and the mixture was stirred under ice cooling. Add 2.50 mL (1.00 mmol) of the 0.4M 2- (2,3-dihydrobenzofuran-5-yl) ethylmagnesium bromide / THF solution synthesized in Synthesis Example 16 under ice-cooling for 30 minutes under ice-cooling.
  • zinc chloride Flujifilm Wako Pure Chemical Industries, Ltd.
  • THF Flujifilm Wako Pure Chemical Industries, Ltd., dehydration grade
  • Synthesis Example 18 4- (2-bromoethyl) -1,2-methylenedioxybenzene synthesis 2- (1,2-methylenedioxybenzene-4-) synthesized in Synthesis Example 17 in a 100 ml two-necked flask under a nitrogen atmosphere. Ill) 2.78 g (16.7 mmol) of ethanol and 20 ml of dichloromethane (Fuji Film Wako Pure Chemical Industries, Ltd., dehydration grade) were added. This solution was ice-cooled, 1.60 ml (16.8 mmol) of phosphorus tribromide was added, and the mixture was stirred for 30 minutes and then stirred at room temperature for 20 hours.
  • dichloromethane Fluji Film Wako Pure Chemical Industries, Ltd., dehydration grade
  • the reaction solution was poured into ice, neutralized with saturated aqueous sodium hydrogen carbonate solution, and dichloromethane was added to separate the phases.
  • the organic phase was washed with saturated aqueous sodium hydrogen carbonate solution and water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • a zinc reagent solution was prepared by stirring for 1 hour at room temperature for 15 hours.
  • (Sigma-Aldrich) 10.8 mg (0.0148 mmol) and THF (Fuji Film Wako Pure Chemical Industries, Ltd., dehydration grade) 8 mL were added.
  • Synthesis Example 21 Synthesis of 1,4-bis (thiophene-2-yl) -2,5-dietinylbenzene Under a nitrogen atmosphere, 1,4-bis (thiophene-2-yl) synthesized in Synthesis Example 20 was placed in a 300 ml eggplant flask. 5.38 g (12.4 mmol) of benzene-2,5-bis (trimethylsilylethynyl) benzene, 100 ml of THF, 50 ml of methanol, and 801 mg (5.79 mmol) of potassium carbonate were added. The mixture was stirred at room temperature for 6 hours. The obtained reaction mixture was ice-cooled and the reaction was stopped by adding 1M hydrochloric acid.
  • Synthesis Example 22 Synthesis of anthra [1,2-b: 5,6-b'] dithiophene (Compound 19) 1,4-bis (thiophene-2) synthesized in Synthesis Example 21 in a 200 ml Schlenk reaction vessel under a nitrogen atmosphere.
  • -Il) -2,5-dietinylbenzene 1.74 g (6.00 mmol), N, N-dimethylformamide 60 ml, and platinum chloride (Fuji Film Wako Pure Chemical Industries, Ltd.) 323 mg (1.21 mmol) were added.
  • the obtained mixture was stirred at 80 ° C. for 4 hours, and then the solvent was distilled off under reduced pressure.
  • Synthesis Example 23 Synthesis of 2,8-dibromoanthra [1,2-b: 5,6-b'] dithiophene (Compound 20) (step A-2) Anthra [1,2-b: 5,6-b'] dithiophene (Compound 19) 602 mg (2.07 mmol) synthesized in Synthesis Example 22 and THF (Fujifilm Wako Pure Chemical Industries, Ltd.) were placed in a 100 ml Schlenk reaction vessel under a nitrogen atmosphere. , Dehydration grade) 50 ml was added.
  • the mixture was cooled to ⁇ 78 ° C., 6.00 mL (9.60 mmol) of 1.6 M normal butyllithium (Tokyo Chemical Industry) was added, and the mixture was stirred for 20 minutes and then stirred at room temperature for 50 minutes.
  • the mixture was cooled to ⁇ 78 ° C., 25 mL of a THF solution (Fujifilm Wako Pure Chemical Industries, Ltd., dehydrated grade) of 3.45 g (10.6 mmol) of 1,2-dibromotetrachloroethane was added, and the mixture was stirred while raising the temperature to room temperature.
  • a THF solution Flujifilm Wako Pure Chemical Industries, Ltd., dehydrated grade
  • the obtained solid was rinsed with methanol, recrystallized from toluene and purified from 2,8-di (2-phenylethyl) anthra [1,2-b: 5,6-b'] dithiophene (Compound 10). 73.2 mg of a yellow solid was obtained (yield 42%).
  • Example 11 Synthesis of 2- (2-phenylethyl) anthra [1,2-b: 5,6-b'] dithiophene (Compound 15) (C2 step) Another component obtained by silica gel column chromatography of Example 10 was recrystallized from hexane to purify 2- (2-phenylethyl) anthra [1,2-b: 5,6-b'] dithiophene (Compound 15). ) was obtained in an amount of 2.0 mg (yield 1.5%).
  • reaction mixture was ice-cooled, 1M hydrochloric acid was added, and then toluene was added to separate the phases.
  • the organic phase was washed with water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • Example 13 Synthesis of 2- (2- (4-normal butylphenyl) ethyl) anthra [1,2-b: 5,6-b'] dithiophene (Compound 17) (C2 step) Another component obtained by silica gel column chromatography of Example 12 was recrystallized from hexane and purified into 2- (2- (4-normal butylphenyl) ethyl) anthra [1,2-b: 5,6-b. '] 5.8 mg of a yellow solid of dithiophene (Compound 17) was obtained (yield 15%).
  • Example 15 Synthesis of 2- (2- (4-normal heptylphenyl) ethyl) anthra [1,2-b: 5,6-b'] dithiophene (Compound 18) (step C2) Another component obtained by silica gel column chromatography of Example 14 was recrystallized from hexane and purified to 2- (2- (4-normal heptylphenyl) ethyl) anthra [1,2-b: 5,6-b. '] 3.5 mg of a yellow solid of dithiophene (Compound 18) was obtained (yield 10%).
  • the zinc reagent solution prepared above was added dropwise using a Teflon (registered trademark) cannula, and the mixture was stirred at room temperature for 5 hours.
  • the reaction mixture was ice-cooled, 1M hydrochloric acid was added, and then toluene was added to separate the phases.
  • the organic phase was washed with water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography (solvent; hexane).
  • the obtained solid was rinsed with methanol to obtain 15.1 mg of a yellow solid of 2- (2-phenylethyl) dithienobiphenylene (Compound 13) (yield 39%).
  • Synthesis Example 26 Synthesis of 2- (4-methylphenyl) ethylmagnesium bromide (B1 step) Under a nitrogen atmosphere, 228 mg (9.36 mmol) of magnesium (Fujifilm Wako Pure Chemical Industries, Ltd., shavings) was added to a 50 mL two-necked flask, and the mixture was stirred under vacuum for 1 hour. Under a nitrogen atmosphere, add 20 mL of a solution of 1.60 g (8.02 mmol) of 1- (2-bromoethyl) -4-methylbenzene synthesized in Synthesis Example 25 in THF (Fujifilm Wako Pure Chemical Industries, Ltd., dehydration grade), and add 90 at room temperature. Stir for minutes. The solid was removed by filtration to give a 0.4M 2- (4-methylphenyl) ethylmagnesium bromide / THF solution.
  • Synthesis Example 27 Synthesis of 2-bromoanthra [1,2-b: 5,6-b'] dithiophene (Compound 22) (Step A-4) In a 100 ml Schlenk reaction vessel under a nitrogen atmosphere, 481 mg (1.66 mmol) of anthra [1,2-b: 5,6-b'] dithiophene (Compound 19) synthesized in Synthesis Example 22, THF (Fujifilm Wako Pure Chemical Industries, Ltd.) , Dehydration grade) 57 ml was added.
  • Synthesis Example 28 Synthesis of 1,5-bis (trimethylsilylethynyl) -2,6-difluorobiphenylene (D1 step) 2,6-Difluoro-1,5-diiodobiphenylene 260 mg (0.591 mmol), bis (triphenylphosphine) dichloro synthesized in a 50 mL Schlenck reaction vessel under a nitrogen atmosphere using the method described in JP-A-2018-174322.
  • Example 20 (Preparation of a solution for forming an organic semiconductor layer) Organic semiconductor by the same method as in Example 2 except that 0.44 mg of 2,7-di (2- (4-propylphenyl) ethyl) dithienobiphenylene (Compound 4) synthesized in Example 5 was used. A layering solution was prepared. The solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 4 was 0.10% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Compound 4 2,7-di (2- (4-propylphenyl) ethyl) dithienobiphenylene
  • Example 21 (Preparation of Organic Semiconductor Layer and Organic Thin Film Transistor) Using the organic semiconductor layer forming solution obtained in Example 20, a bottom gate-bottom contact type p-type organic thin film transistor was produced using the materials and film forming methods of the constituent members shown in Example 3. Results were evaluated in the transfer characteristics of the transistor element, the carrier mobility of holes 1.86cm 2 / V ⁇ sec, the current on-off ratio was 1.1 ⁇ 10 6. Further, the electrical characteristics of this organic thin film transistor after being annealed at 130 ° C. for 10 minutes were measured. Carrier mobility of holes 1.70cm 2 / V ⁇ sec, the current on-off ratio was 1.0 ⁇ 10 6, was hardly observed performance degradation due to heat treatment.
  • Example 22 (Preparation of Organic Semiconductor Layer and Organic Thin Film Transistor) Add 0.87 mg of 2,7-di (2- (4-propylphenyl) ethyl) dithienobiphenylene (Compound 4) and 440 mg of anisole (Sigma-Aldrich) synthesized in Example 5 to a 10 ml sample tube under air. Then, the mixture was heated at 60 ° C. to prepare a 0.20% by weight solution of Compound 4. Using the obtained solution, a bottom gate-bottom contact type p-type organic thin film transistor was produced using the materials and film forming methods of the constituent members shown in Example 3.
  • Results were evaluated in the transfer characteristics of the transistor element, the carrier mobility of holes 2.48cm 2 / V ⁇ sec, the current on-off ratio was 1.6 ⁇ 10 6. Further, the electrical characteristics of this organic thin film transistor after being annealed at 130 ° C. for 10 minutes were measured. Carrier mobility of holes 2.40cm 2 / V ⁇ sec, the current on-off ratio was 1.4 ⁇ 10 6, was hardly observed performance degradation due to heat treatment.
  • Example 23 (Preparation of a solution for forming an organic semiconductor layer) Organic semiconductor by the same method as in Example 2 except that 1.74 mg of 2,7-di (2- (4-butylphenyl) ethyl) dithienobiphenylene (Compound 5) synthesized in Example 6 was used. A layer-forming solution was prepared. The solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 5 was 0.40% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Compound 5 2,7-di (2- (4-butylphenyl) ethyl) dithienobiphenylene
  • Example 24 (Preparation of Solution for Forming Organic Semiconductor Layer) Organic semiconductor by the same method as in Example 2 except that 0.87 mg of 2,7-di (2- (4-heptylphenyl) ethyl) dithienobiphenylene (Compound 6) synthesized in Example 7 was used. A layering solution was prepared. The solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 6 was 0.20% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Compound 6 2,7-di (2- (4-heptylphenyl) ethyl) dithienobiphenylene
  • Example 25 (Preparation of Organic Semiconductor Layer and Organic Thin Film Transistor) Using the organic semiconductor layer forming solution obtained in Example 24, a bottom gate-bottom contact type p-type organic thin film transistor was produced using the materials and film forming methods of the constituent members shown in Example 3. Results were evaluated in the transfer characteristics of the transistor element, the carrier mobility of holes 1.19 cm 2 / V ⁇ sec, the current on-off ratio was 1.1 ⁇ 10 6. Further, the electrical characteristics of this organic thin film transistor after being annealed at 130 ° C. for 10 minutes were measured. Carrier mobility of holes 1.15cm 2 / V ⁇ sec, the current on-off ratio was 1.0 ⁇ 10 6, was hardly observed performance degradation due to heat treatment.
  • Example 26 (Preparation of Solution for Forming Organic Semiconductor Layer) Example 2 except that 0.87 mg of 2,8-di (2-phenylethyl) anthra [1,2-b: 5,6-b'] dithiophene (Compound 10) synthesized in Example 10 was used. A solution for forming an organic semiconductor layer was prepared by the same method as in the above. The solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 10 was 0.20% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Compound 10 2,8-di (2-phenylethyl) anthra [1,2-b: 5,6-b'] dithiophene synthesized in Example 10 was used.
  • a solution for forming an organic semiconductor layer was prepared by the same method as in the above. The solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 10 was 0.20% by weight), and it was confirmed that the compound was suitable for film formation by drop
  • Example 27 (Preparation of Solution for Forming Organic Semiconductor Layer) A solution for forming an organic semiconductor layer was prepared by the same method as in Example 2 except that 4.35 mg of 2- (2-phenylethyl) dithienobiphenylene (Compound 13) synthesized in Example 16 was used. The solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 13 was 1.00% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Compound 13 2- (2-phenylethyl) dithienobiphenylene
  • Example 28 (Preparation of a solution for forming an organic semiconductor layer) For forming an organic semiconductor layer by the same method as in Example 2 except that 4.35 mg of 2- (2- (4-methylphenyl) ethyl) dithienobiphenylene (Compound 14) synthesized in Example 17 was used. The solution was prepared. The solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 14 was 1.00% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Example 29 (Preparation of a solution for forming an organic semiconductor layer) Same as in Example 2 except that 1.74 mg of 2- (2-phenylethyl) anthra [1,2-b: 5,6-b'] dithiophene (Compound 15) synthesized in Example 11 was used. A solution for forming an organic semiconductor layer was prepared by the method. The solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 15 was 0.40% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Example 30 (Preparation of a solution for forming an organic semiconductor layer) This was carried out except that 2.18 mg of 2- (2- (4-methylphenyl) ethyl) anthra [1,2-b: 5,6-b'] dithiophene (Compound 16) synthesized in Example 18 was used.
  • a solution for forming an organic semiconductor layer was prepared by the same method as in Example 2. The solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 16 was 0.50% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Example 31 (Preparation of a solution for forming an organic semiconductor layer) Except for using 4.35 mg of 2- (2- (4-normalbutylphenyl) ethyl) anthra [1,2-b: 5,6-b'] dithiophene (Compound 17) synthesized in Example 13.
  • a solution for forming an organic semiconductor layer was prepared by the same method as in Example 2. The solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 17 was 1.00% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Example 32 (Preparation of Organic Semiconductor Layer and Organic Thin Film Transistor) Except for using 0.87 mg of 2- (2- (4-normalbutylphenyl) ethyl) anthra [1,2-b: 5,6-b'] dithiophene (Compound 17) synthesized in Example 13.
  • a solution for forming an organic semiconductor layer was prepared by the same method as in Example 2 (concentration of compound 17 was 0.20% by weight). Using the obtained solution for forming an organic semiconductor layer, a bottom gate-bottom contact type p-type organic thin film transistor was produced using the materials and film forming methods of the constituent members shown in Example 3.
  • Results were evaluated in the transfer characteristics of the transistor element, the carrier mobility of holes 1.13 cm 2 / V ⁇ sec, the current on-off ratio was 8.1 ⁇ 10 7. Further, the electrical characteristics of this organic thin film transistor after being annealed at 130 ° C. for 10 minutes were measured. Carrier mobility of holes 1.10cm 2 / V ⁇ sec, the current on-off ratio was 8.0 ⁇ 10 7, was hardly observed performance degradation due to heat treatment.
  • Example 33 (Preparation of a solution for forming an organic semiconductor layer) Except for using 0.87 mg of 2- (2- (4-normal heptylphenyl) ethyl) anthra [1,2-b: 5,6-b'] dithiophene (Compound 18) synthesized in Example 15.
  • a solution for forming an organic semiconductor layer was prepared by the same method as in Example 2. The solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 18 was 0.20% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Synthesis Example 31 Synthesis of 4-propoxybenzene ethanol In a nitrogen atmosphere, in a 300 ml Schlenk reaction vessel, 4.51 g (21.0 mmol) of 1-bromo-4-propoxybenzene (Tokyo Chemical Industry) and THF (Fuji Film Wako Pure Chemical Industries, Ltd., dehydration) Grade) 80 ml was added. The mixture was cooled to ⁇ 78 ° C., 22.0 mL (35.0 mmol) of 1.6 M normal butyllithium (Tokyo Chemical Industry) was added, and the mixture was stirred at ⁇ 78 ° C. for 2 hours.
  • Synthesis Example 33 Synthesis of 2- (4-propoxyphenyl) ethylmagnesium bromide (B1 step) Under a nitrogen atmosphere, 172 mg (7.06 mmol) of magnesium (Fujifilm Wako Pure Chemical Industries, Ltd., shavings) was added to a 20 mL two-necked flask, and the mixture was stirred under vacuum for 1 hour. Under a nitrogen atmosphere, add 15 mL of a solution of 1.46 g (6.00 mmol) of 1- (2-bromoethyl) -4-propoxybenzene synthesized in Synthesis Example 32 in THF (Fujifilm Wako Pure Chemical Industries, Ltd., dehydration grade), and add 1 at room temperature. Stirred for hours. The solid was removed by filtration to give a 0.4M 2- (4-propoxyphenyl) ethylmagnesium bromide / THF solution.
  • Example 36 (Preparation of a solution for forming an organic semiconductor layer) Except for using 4.35 mg of 2- (2- (4-propoxyphenyl) ethyl) anthra [1,2-b: 5,6-b'] dithiophene (Compound 23) synthesized in Example 34.
  • a solution for forming an organic semiconductor layer was prepared by the same method as in Example 2. The solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 23 was 1.00% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Example 37 (Preparation of a solution for forming an organic semiconductor layer) Except for the use of 0.44 mg of 2- (2- (4-methoxyphenyl) ethyl) anthra [1,2-b: 5,6-b'] dithiophene (Compound 24) synthesized in Example 35.
  • a solution for forming an organic semiconductor layer was prepared by the same method as in Example 2. The solution state was maintained even after 10 hours at 25 ° C. (concentration of compound 24 was 0.10% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Comparative Example 2 (Preparation of solution for forming organic semiconductor layer) Using 2,7-dioctyl [1] benzothiophene [3,2-b] [1] benzothiophene (Sigma-Aldrich) in a 10 ml sample tube under air, an organic semiconductor layer is formed by the same method as in Example 2. A solution was prepared. The solution state was maintained at 25 ° C. for 10 hours (0.20% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Comparative Example 3 (Preparation of solution for forming organic semiconductor layer)
  • 2,7-di (normal octyl) dithienobiphenylene (Compound 3 in the publication) described in JP-A-2018-174322 was used, and an organic semiconductor layer was used in the same manner as in Example 2.
  • a forming solution was prepared. The solution state was maintained at 25 ° C. for 10 hours (0.20% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • Comparative Example 4 (Preparation of solution for forming organic semiconductor layer)
  • 2,8-dioctyl anthra [1,2-b: 5,6-b'] dithiophene synthesized in Synthesis Example 6 was used, and an organic semiconductor layer was used in the same manner as in Example 2.
  • a forming solution was prepared. The solution state was maintained at 25 ° C. for 10 hours (0.20% by weight), and it was confirmed that the compound was suitable for film formation by drop casting and inkjet.
  • the aromatic compound of the present invention provides high carrier mobility and is excellent in heat resistance and solubility, so that it can be expected to be applied as a semiconductor device material represented by an organic thin film transistor.
  • A Bottom gate-top contact type organic thin film transistor
  • B Bottom gate-bottom contact type organic thin film transistor
  • C Top gate-top contact type organic thin film transistor
  • D Top gate-bottom contact type organic thin film transistor 1: Organic semiconductor layer 2: Substrate 3: Gate electrode 4: Gate insulating layer 5: Source electrode 6: Drain electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Thin Film Transistor (AREA)

Abstract

高いキャリア移動度、高耐熱性、及び適当な溶解性を持つ塗布型の有機半導体材料である特定の置換基を含有した芳香族化合物、これを用いた有機半導体層、及び有機薄膜トランジスタを提供することを目的とする。 目的は、下記式(1-I)または(1-II)で示される芳香族化合物によって達成された。式(1-I)および(1-II)中、Arは単環等、X、Xは酸素原子等、Y、YはCR等、R~Rは水素原子等を示し、R~Rの少なくとも1つは下記式(2)で表される基である。式(2)中、Aは所定のアルケニル基等、l,nは0または1、mは1~20の整数、Z、Zは水素原子等を示す。

Description

芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
 本発明は、有機半導体材料等の電子材料への展開が可能な新規な芳香族化合物、これを用いた有機半導体層、及び有機薄膜トランジスタに関するものであり、特に溶解性及び耐熱性に優れることから様々なデバイス作製プロセスに適用可能な特定の置換基を有する芳香族化合物、これを用いた有機半導体層、及び有機薄膜トランジスタに関するものである。
 有機薄膜トランジスタに代表される有機半導体デバイスは、省エネルギー、低コスト及びフレキシブルといった無機半導体デバイスにはない特徴を有することから近年注目されている。この有機半導体デバイスは、有機半導体層、基板、絶縁層、電極等の数種類の材料から構成され、中でも電荷のキャリア移動を担う有機半導体層は該デバイスの中心的な役割を有している。そして、有機半導体デバイス性能は、この有機半導体層を構成する有機半導体材料のキャリア移動度により左右されることから、高キャリア移動度を与える有機半導体材料の出現が所望されている。
 有機半導体層を作製する方法としては、高温真空下、有機材料を気化させて実施する真空蒸着法、有機材料を適当な溶媒に溶解させその溶液を塗布する塗布法等の方法が一般的に知られている。このうち、塗布法においては、高温高真空条件を用いることなく印刷技術を用いても実施することができるため、デバイス作製の大幅な製造コストの削減を図ることが期待でき、経済的に好ましいプロセスである。
 このような塗布法に使用される有機半導体材料は、高いキャリア移動度、及びデバイス作製のプロセス上の観点から、130℃以上の耐熱性及び室温での溶解度が0.1重量%以上を持つことが好ましい。さらに、電子ペーパーや有機EL用途に使用するトランジスタの場合は、キャリア移動度が1.0cm/V・sec以上であることが好ましい。
 ここで、一般的に、縮合環系の棒状の分子長軸を有する低分子半導体は、高分子半導体と比べて結晶性が高いため高キャリア移動度を発現しやすいことが知られている。しかし、一般的に低分子半導体は溶解性が低いことが課題であり、溶解性を向上させるためにアルキル基を導入した半導体が報告されているがキャリア移動度や耐熱性が低下する問題がある。また、πスタックによる高キャリア移動度の発現を目的として芳香族置換基を導入した半導体が報告されているが、高移動度の発現と引き換えに溶解性が著しく低下することが報告されている。そのため高キャリア移動度、高耐熱性、適当な溶解性を兼ね合わせた低分子系の有機半導体材料は殆ど知られていないのが現状である。
 現在、低分子系材料としては、2,7-ジアルキル置換ベンゾチエノベンゾチオフェン(例えば、特許文献1参照及び非特許文献1参照)、2,7-ジフェニル[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン(例えば、非特許文献2参照)、ジチエノビフェニレン誘導体(例えば、特許文献2参照)等が提案されている。
 しかし、特許文献1及び非特許文献1に記載されたジアルキル置換ベンゾチエノベンゾチオフェンの場合、130℃以上に加熱するとトランジスタ動作が失われるという耐熱性の問題があった。
 非特許文献2に記載の2,7-ジフェニル[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェンは一般に有機溶媒に殆ど溶解せず、溶解性に課題があった。
 さらに特許文献2に記載のアルキル置換ジチエノビフェニレン誘導体は、高耐熱性と適度な溶解性を兼ね備え、有機半導体に好適に用いることができるが、さらに高いキャリア移動度を有する化合物が望まれていた。
WO2008/047896号公報 特開2018/174322号公報
ジャーナル オブ アメリカン ケミカル ソサエティー、2007年、129巻、15732~15733頁 ジャーナル オブ アメリカン ケミカル ソサエティー、2006年、128巻、12604~12605頁
 本発明は、上記課題に鑑みてなされたものであり、その目的は、高キャリア移動度で高耐熱性、適当な溶解性を持つ新規な塗布型の有機半導体材料を提供することにある。
 本発明者は、上記課題を解決するため鋭意検討した結果、特定の置換基を有する新規な芳香族化合物が高キャリア移動度を与えると共に、高耐熱性、適当な溶解性を持つ有機半導体材料となることを見出し、本発明を完成するに到った。
 即ち、本発明は、以下の式(1-I)または式(1-II)のいずれかで示される芳香族化合物、該芳香族化合物を含む有機半導体層、該半導体層を備えた有機薄膜トランジスタに関するものである。
Figure JPOXMLDOC01-appb-C000014
[(ここで、Arは単環または2~6個の縮合環を示す。X、Xは、それぞれ独立して、酸素原子、硫黄原子、セレン原子、NR、またはCR=CRからなる群の1種を示す。Y、Yは、それぞれ独立して、CR又は窒素原子のいずれかを示す。R1~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または下記式(2)で表される基からなる群の1種を示し、R1~Rの少なくとも1つは下記式(2)で示される基である。)
Figure JPOXMLDOC01-appb-C000015
(ここで、Aは炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基からなる群の1種を示す。l,nは、それぞれ独立して、0または1を示し、
mは1~20の整数を示す。Z、Zは、それぞれの出現において同一または異なって、水素原子、ハロゲン原子、炭素数1~20のアルキル基からなる群の1種を示す。)]
 本発明の新規な芳香族化合物は、高いキャリア移動度を与えると共に高耐熱性及び適当な溶解性を持っている。従って、塗布で優れた半導体特性を発現する有機薄膜トランジスタを提供することが可能となり、その効果は極めて高いものである。
有機薄膜トランジスタの断面形状による構造を示す図である。
 以下に本発明を詳細に説明する。
 本発明は、上記式(1-I)または式(1-II)のいずれかで示される芳香族化合物(以下、「本発明の化合物」という。)である。
 式(1-I)及び式(1-II)におけるArは単環または2~6個の縮合環を示す。より高いキャリア移動度を示すため、Arは2~4個の縮合環であることが好ましく、より高い溶解性を示すため2乃至3個の縮合環であることがより好ましい。
 該単環または2~6個の縮合環を構成する個々の環は4~8員環であり、πスタッキングが容易になることから4~6員環が好ましい。
 Arで示される単環または2~6個の縮合環の具体例として、シクロブテン環、チオフェン環、フラン環、セレノフェン環、チアゾール環、オキサゾール環、ピロール環、イミダゾール環、ベンゼン環、ピリジン環等の単環、チエノチオフェン環、ナフタレン環、ビフェニレン環、アントラセン環、ジチエノチオフェン環、ジチエノベンゾ環、ベンゾチエノベンゾチオフェン環、テトラセン環、ビス(ジチエノ)ベンゾ環、ビス(ベンゾチエノ)ベンゾ環等の縮合環を挙げることができ、より高いキャリア移動度を示すため、チエノチオフェン環、ナフタレン環、ビフェニレン環、アントラセン環、ジチエノチオフェン環、ベンゾチエノベンゾチオフェン環の2~4個の縮合環が好ましく、チエノチオフェン環、ナフタレン環、ビフェニレン環、アントラセン環の2乃至3個の縮合環がより好ましい。
 式(1-I)及び式(1-II)におけるX、Xは、それぞれ独立して、酸素原子、硫黄原子、セレン原子、NR、またはCR=CRからなる群の1種を示す。本発明の化合物がより高い安定性を発現するため、X及びXの少なくともいずれかは、硫黄原子またはCR=CRのいずれかであることが好ましく、硫黄原子であることがさらに好ましい。
 式(1-I)及び式(1-II)におけるY、Yは、それぞれ独立して、CR又は窒素原子のいずれかを示す。本発明の化合物がより高い安定性を発現するため、Y及びYの少なくともいずれかはCRであることが好ましい。
 式(1-I)及び式(1-II)におけるR1~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基または式(2)で表される基からなる群の1種を示し、R1~Rの少なくとも1つは式(2)で示される基である。
 該R~Rにおけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を示し、安定であることからフッ素原子または塩素原子のいずれかが好ましい。
 該R~Rにおける炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソバレリル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル、2-ヘキシルデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の直鎖、分岐、又は環状アルキル基が挙げられる。そして、その中でも特に高キャリア移動度及び高溶解性を示す芳香族化合物となることから、炭素数1~14のアルキル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基である炭素数1~14の直鎖アルキル基がさらに好ましい。
 該R~Rにおける炭素数2~20のアルケニル基としては、例えば、エテニル基、プロペニル基、ブテニル基、2-メチルプロペニル基、n-ペンテニル基、2-メチルブテニル基、n-ヘキセニル基、2-メチルペンテニル基、n-ヘプテニル基、n-オクテニル基、2-エチルヘキセニル基、n-ノネル基、2-エチルヘプテニル基、n-デセニル基、n-ドデセニル基、シクロペンテニル-1-基、シクロヘキセニル-1-基、シクロヘプテニル-1-基等が挙げられる。
 該R~Rにおける炭素数2~20のアルキニル基としては、例えば、エチニル基、プロピニル基、ブチニル基、n-ペンチニル基、n-ヘキシニル基、n-ヘプチニル基、n-オクチニル基、n-ノニニル基、n-デシニル基、n-ドデシニル基等が挙げられる。
 該R~Rにおける炭素数4~22のアルカジエニル基としては、例えば、ブタジエニル基、ペンタジエニル基、ヘキサジエニル基、n-ヘプタジエニル基、n-オクタジエニル基、n-ノナジエニル基、n-デカジエニル基、n-ドデカジエニル基、n-トリデカジエニル基等が挙げられ、炭素数4~22のアルカ-1,3-ジエニル基であることが好ましく、ヘキサ-1,3-ジエニル基、n-ヘプタ-1,3-ジエニル基、n-オクタ-1,3-ジエニル基、n-ノナ-1,3-ジエニル基、n-デカ-1,3-ジエニル基がさらに好ましい。
 該R~Rにおける炭素数4~22のアルカジイニル基としては、例えば、ブタジイニル基、ペンタジイニル基、ヘキサジイニル基、n-ヘプタジイニル基、n-オクタジイニル基、n-ノナジイニル基、n-デカジイニル基、n-ドデカジイニル基、n-トリデカジイニル基等が挙げられ、炭素数4~22の1,3-アルカジイニル基であることが好ましく、ヘキサ-1,3-ジイニル基、n-ヘプタ-1,3-ジイニル基、n-オクタ-1,3-ジイニル基、n-ノナ-1,3-ジイニル基、n-デカ-1,3-ジイニル基がさらに好ましい。
 該R~Rにおける炭素数4~26のアリール基は、炭素数4~24のヘテロアリール基を含む。該炭素数4~26のアリール基としては、例えば、フェニル基;p-トリル基、p-(n-ヘキシル)フェニル基、p-(n-オクチル)フェニル基、p-(2-エチルヘキシル)フェニル基等のアルキル置換フェニル基;2-フリル基、2-チエニル基;5-フルオロ-2-フリル基、5-メチル-2-フリル基、5-エチル-2-フリル基、5-(n-プロピル)-2-フリル基、5-(n-ブチル)-2-フリル基、5-(n-ペンチル)-2-フリル基、5-(n-ヘキシル)-2-フリル基、5-(n-オクチル)-2-フリル基、5-(2-エチルヘキシル)-2-フリル基、5-フルオロ-2-チエニル基、5-メチル-2-チエニル基、5-エチル-2-チエニル基、5-(n-プロピル)-2-チエニル基、5-(n-ブチル)-2-チエニル基、5-(n-ペンチル)-2-チエニル基、5-(n-ヘキシル)-2-チエニル基、5-(n-オクチル)-2-チエニル基、5-(2-エチルヘキシル)-2-チエニル基等のアルキル置換ヘテロアリール基を挙げることができる。
 これらのR~Rのうち、安定性のため水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~26のアリール基、または式(2)で表される基からなる群の1種であることが好ましく、高溶解性のため水素原子、炭素数1~20のアルキル基、または式(2)で表される基のいずれかであることがより好ましく、高キャリア移動度の観点からR及びRのいずれか一方のみまたは両方のみが式(2)で表される基を示し、R~Rが水素原子であることが更に好ましい。
 式(2)におけるAは炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基からなる群の1種を示し、より高キャリア移動度を示すため炭素数4~26のアリール基がより好ましい。
 式(2)における炭素数2~20のアルケニル基としては、例えば、エテニル基、プロペニル基、ブテニル基、2-メチルプロペニル基、n-ペンテニル基、2-メチルブテニル基、n-ヘキセニル基、2-メチルペンテニル基、n-ヘプテニル基、n-オクテニル基、2-エチルヘキセニル基、n-ノネル基、2-エチルヘプテニル基、n-デセニル基、n-ドデセニル基、シクロペンテニル-1-基、シクロヘキセニル-1-基、シクロヘプテニル-1-基、2-フェニルエテニル基、1-フェニルエテニル基、2-(4-メチルフェニル)エテニル、2-(4-n-ブチル)エテニル等が挙げられる。
 式(2)における炭素数2~20のアルキニル基としては、例えば、エチニル基、プロピニル基、ブチニル基、n-ペンチニル基、n-ヘキシニル基、n-ヘプチニル基、n-オクチニル基、n-ノニニル基、n-デシニル基、n-ドデシニル基、2-フェニルエチニル基、1-フェニルエチニル基、2-(4-メチルフェニル)エチニル、2-(4-n-ブチル)エチニル等が挙げられる。
 式(2)における炭素数4~26のアリール基は、炭素数4~24のヘテロアリール基を含む。該炭素数4~26のアリール基としては、例えば、フェニル基;p-トリル基、p-エチルフェニル基、p-(n-プロピル)フェニル基、p-(イソプロピル)フェニル基、p-(n-ブチル)フェニル基、p-(2-メチルプロピル)フェニル基、p-(n-ペンチル)フェニル基、p-(3-メチルブチル)フェニル基、p-(n-ヘキシル)フェニル基、p-(4-メチルペンチル)フェニル基、p-(n-ヘプチル)フェニル基、p-(n-オクチル)フェニル基、p-(2-エチルヘキシル)フェニル基、m-エチルフェニル基、m-(n-プロピル)フェニル基、m-(n-ブチル)フェニル基、m-(2-メチルプロピル)フェニル基、o-エチルフェニル基、o-(n-プロピル)フェニル基、インダニル-5-イル基等のアルキル置換フェニル基;p-メトキシフェニル基、p-エトキシフェニル基、p-(n-プロピルオキシ)フェニル基、p-(n-ブチルフェニルオキシ)フェニル基、p-(n-ペンチルオキシ)フェニル基、p-(n-ヘキシルオキシ)フェニル基、p-(n-ヘプチルオキシ)フェニル基、p-(n-オクチルオキシ)フェニル基、m-メトキシフェニル基、m-(n-プロピルオキシ)フェニル基、o-メトキシフェニル基、o-(n-プロピルオキシ)フェニル基、3,4-メチレンジオキシフェニル基、3,4-エチレンジオキシフェニル基、2,3-ジヒドロベンゾフラン-5-イル、2,3-ジヒドロベンゾフラン-6-イル等のアルキルオキシ置換フェニル基;p-フルオロフェニル基、m-フルオロフェニル基、o-フルオロフェニル基、3,5-ジフルオロフェニル基、パーフルオロフェニル基、p-(トリフルオロメチル)フェニル基、m-(トリフルオロメチル)フェニル基、o-(トリフルオロメチル)フェニル基等のフッ素置換フェニル基;2-フリル基、2-チエニル基;5-フルオロ-2-フリル基、5-メチル-2-フリル基、5-エチル-2-フリル基、5-(n-プロピル)-2-フリル基、5-(n-ブチル)-2-フリル基、5-(n-ペンチル)-2-フリル基、5-(n-ヘキシル)-2-フリル基、5-(n-オクチル)-2-フリル基、5-(2-エチルヘキシル)-2-フリル基、5-フルオロ-2-チエニル基、5-メチル-2-チエニル基、5-エチル-2-チエニル基、5-(n-プロピル)-2-チエニル基、5-(n-ブチル)-2-チエニル基、5-(n-ペンチル)-2-チエニル基、5-(n-ヘキシル)-2-チエニル基、5-(n-オクチル)-2-チエニル基、5-(2-エチルヘキシル)-2-チエニル基、チエノ[3,2-b]チオフェン-2-イル、5-メチルチエノ[3,2-b]チオフェン-2-イル、5-エチルチエノ[3,2-b]チオフェン-2-イル、5-(n-ブチル)チエノ[3,2-b]チオフェン-2-イル等のアルキル置換ヘテロアリール基を挙げることができる。そして、その中でも特に高キャリア移動度及び高溶解性を示すことからフェニル基、アルキル置換フェニル基がより好ましい。
 式(2)におけるl,nはそれぞれ独立して0または1を示し、合成の容易さからnが0であることが好ましく、高キャリア移動度のためlとnが共に0であることがより好ましい。
 式(2)におけるmは1~20の整数を示し、高溶解性のためmは1~8の整数が好ましく、高キャリア移動度のためmは1~4の整数がより好ましく、2であることがさらに好ましい。
 式(2)におけるZ、Zはそれぞれの出現において同一または異なって、水素原子、ハロゲン原子、炭素数1~20のアルキル基からなる群の1種を示す。
 該Z、Zにおけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を示し、安定であることからフッ素原子または塩素原子のいずれかが好ましい。
 該Z、Zにおける炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソバレリル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル、2-ヘキシルデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の直鎖、分岐、又は環状アルキル基が挙げられる。そして、その中でも特に高キャリア移動度及び高溶解性を示す芳香族化合物となることから、炭素数1~8のアルキル基が好ましく、メチル基、エチル基、n-プロピル基がさらに好ましい。
 該Z、Zは高キャリア移動度のため水素原子またはハロゲン原子のいずれかであることが好ましく、水素原子であることがより好ましい。
 式(2)において、Aがフェニル基またはアルキル置換フェニル基のいずれかであり、lとnが共に0であり、mは1~4の整数であり、Z、Zは水素原子またはハロゲン原子のいずれかであることが好ましい。これにより、本発明の化合物がより高いキャリア移動度を発現する。
 式(2)で表される基は高キャリア移動度のため2-フェニルエチル基、2-アルキル置換フェニルエチル基が好ましく、高耐熱性、高溶解性のため2-フェニルエチル基、2-(4-メチルフェニル)エチル基、2-(4-エチルフェニル)エチル基、2-(4-n-プロピルフェニル)エチル基、2-(4-n-ブチルフェニル)エチル基、2-(4-n-ペンチルフェニル)エチル基、2-(4-n-ヘキシルフェニル)エチル基、2-(4-n-ヘプチルフェニル)エチル基、2-(4-n-オクチルフェニル)エチル基、2-(4-n-ノニルフェニル)エチル基、2-(4-n-デシルフェニル)エチル基がより好ましく、2-フェニルエチル基、2-(4-n-プロピルフェニル)エチル基、2-(4-n-ブチルフェニル)エチル基、2-(4-n-ペンチルフェニル)エチル基、2-(4-n-ヘキシルフェニル)エチル基、2-(4-n-ヘプチルフェニル)エチル基が更に好ましい。
 式(1-I)または式(1-II)の芳香族化合物は、合成の容易さから、下記式(3-1)~(3-6)からなる群の1種で示される芳香族化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
[(ここで、X、X、Xはそれぞれ独立して酸素原子、硫黄原子、セレン原子、単結合、NR17、またはCR18=CR19からなる群の1種を示す。R~R10の隣接する二つからなる組合せの内、1組のみが下記式(4)を構成し、及びR11~R14の隣接する二つからなる組合せの内、1組のみが下記式(4-2)を構成し、それぞれ5又は6員環を形成する。下記式(4)及び下記式(4-2)を構成しなかったR~R14、及びR15~R19はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または前記式(2)で表される基からなる群の1種を示す。)
Figure JPOXMLDOC01-appb-C000017
(ここで、Xは酸素原子、硫黄原子、セレン原子、CR21=CR22、又はNR23からなる群の1種を示す。YはCR24又は窒素原子のいずれかを示す。R21~R24は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または前記式(2)で表される基からなる群の1種を示し、R20は前記式(2)で表される基である。)
Figure JPOXMLDOC01-appb-C000018
(ここで、X、Y、R21~R24は前記式(4)のX、Y、R21~R24と同意義を示し、R20bは、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または前記式(2)で表される基からなる群の1種を示す。)]
 式(3-1)~(3-6)において、R~R10の隣接する二つからなる組合せの内、1組のみが上記式(4)を構成し、及びR11~R14の隣接する二つからなる組合せの内、1組のみが上記式(4-2)を構成し、それぞれ5又は6員環を形成する。
 式(4)及び式(4-2)を構成しなかったR~R14、R15~R19、式(4)及び式(4-2)におけるR21~R24は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基、または式(2)で表される基からなる群の1種を示す。
 R20は、式(2)で表される基である。
 R20bは、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または式(2)で表される基からなる群の1種で表される基であり、高移動度であることから、水素原子、フッ素原子、式(2)で表される基からなる群の1種であることが好ましい。
 式(3-1)~(3-6)からなる群の1種で示される化合物において、式(4-2)は下記式(4-3)であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
(ここで、X、Y、R21~R24は前記式(4)のX、Y、R21~R24と同意義を示し、R20cは、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基で表される基からなる群の1種を示す。)
 R20cは、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基で表される基からなる群の1種であり、高移動度であることから、水素原子またはフッ素原子であることが好ましく、水素原子であることがより好ましい。
 式(3-1)~(3-6)からなる群の1種で示される化合物において、式(4-2)は下記式(4-4)であることも好ましい。
Figure JPOXMLDOC01-appb-C000020
(ここで、X、Y、R21~R24は前記式(4)のX、Y、R21~R24と同意義を示し、R20dは前記式(2)で表される基である。)
 なお、式(3-1)~(3-6)における式(2)で表される基の定義は、前述の式(1-I)及び式(1-II)における式(2)の定義と同義である。
 該R~R19、R21~R24、R20b、R20cにおけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を示し、安定であることからフッ素原子または塩素原子のいずれかが好ましい。
 該R~R19、R21~R24、R20b、R20cにおける炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソバレリル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル、2-ヘキシルデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の直鎖、分岐、又は環状アルキル基が挙げられる。そして、その中でも特に高キャリア移動度及び高溶解性を示す芳香族化合物となることから、炭素数1~14のアルキル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基である炭素数1~14の直鎖アルキル基がさらに好ましい。
 該R~R24における炭素数2~20のアルケニル基としては、例えば、エテニル基、プロペニル基、ブテニル基、2-メチルプロペニル基、n-ペンテニル基、2-メチルブテニル基、n-ヘキセニル基、2-メチルペンテニル基、n-ヘプテニル基、n-オクテニル基、2-エチルヘキセニル基、n-ノネル基、2-エチルヘプテニル基、n-デセニル基、n-ドデセニル基、シクロペンテニル-1-基、シクロヘキセニル-1-基、シクロヘプテニル-1-基等が挙げられる。
 該R~R19、R21~R24、R20b、R20cにおける炭素数2~20のアルキニル基としては、例えば、エチニル基、プロピニル基、ブチニル基、n-ペンチニル基、n-ヘキシニル基、n-ヘプチニル基、n-オクチニル基、n-ノニニル基、n-デシニル基、n-ドデシニル基等が挙げられる。
 該R~R19、R21~R24、R20b、R20cにおける炭素数4~22のアルカジエニル基としては、例えば、ブタジエニル基、ペンタジエニル基、ヘキサジエニル基、n-ヘプタジエニル基、n-オクタジエニル基、n-ノナジエニル基、n-デカジエニル基、n-ドデカジエニル基、n-トリデカジエニル基等が挙げられ、炭素数4~22のアルカ-1,3-ジエニル基であることが好ましく、ヘキサ-1,3-ジエニル基、n-ヘプタ-1,3-ジエニル基、n-オクタ-1,3-ジエニル基、n-ノナ-1,3-ジエニル基、n-デカ-1,3-ジエニル基がさらに好ましい。
 該R~R19、R21~R24、R20b、R20cにおける炭素数4~22のアルカジイニル基としては、例えば、ブタジイニル基、ペンタジイニル基、ヘキサジイニル基、n-ヘプタジイニル基、n-オクタジイニル基、n-ノナジイニル基、n-デカジイニル基、n-ドデカジイニル基、n-トリデカジイニル基等が挙げられ、炭素数4~22の1,3-アルカジイニル基であることが好ましく、ヘキサ-1,3-ジイニル基、n-ヘプタ-1,3-ジイニル基、n-オクタ-1,3-ジイニル基、n-ノナ-1,3-ジイニル基、n-デカ-1,3-ジイニル基がさらに好ましい。
 該R~R19、R21~R24、R20b、R20cにおける炭素数4~26のアリール基は、炭素数4~24のヘテロアリール基を含む。該炭素数4~26のアリール基としては、例えば、フェニル基;p-トリル基、p-(n-ヘキシル)フェニル基、p-(n-オクチル)フェニル基、p-(2-エチルヘキシル)フェニル基等のアルキル置換フェニル基;2-フリル基、2-チエニル基;5-フルオロ-2-フリル基、5-メチル-2-フリル基、5-エチル-2-フリル基、5-(n-プロピル)-2-フリル基、5-(n-ブチル)-2-フリル基、5-(n-ペンチル)-2-フリル基、5-(n-ヘキシル)-2-フリル基、5-(n-オクチル)-2-フリル基、5-(2-エチルヘキシル)-2-フリル基、5-フルオロ-2-チエニル基、5-メチル-2-チエニル基、5-エチル-2-チエニル基、5-(n-プロピル)-2-チエニル基、5-(n-ブチル)-2-チエニル基、5-(n-ペンチル)-2-チエニル基、5-(n-ヘキシル)-2-チエニル基、5-(n-オクチル)-2-チエニル基、5-(2-エチルヘキシル)-2-チエニル基等のアルキル置換ヘテロアリール基を挙げることができる。
 該R~R19は、安定性のため水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~26のアリール基、または式(2)で表される基からなる群の1種が好ましく、高溶解性のため水素原子、炭素数1~20のアルキル基がより好ましい。
 該R21~R24は、安定性のため水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~26のアリール基、または式(2)で表される基からなる群の1種が好ましく、高キャリア移動度のため、R21~R24が水素原子、メチル基からなる群の1種から選ばれることがより好ましく、水素原子がさらにより好ましい。
 式(3-1)~(3-6)におけるX、X、Xは、酸素原子、硫黄原子、セレン原子、単結合、NR17、またはCR18=CR19からなる群の1種を示し、高キャリア移動度のため硫黄原子、単結合、またはCR18=CR19のいずれかが好ましく、硫黄原子またはCR18=CR19がより好ましく、硫黄原子がさらにより好ましい。
 式(4)及び(4-2)~(4-3)におけるXは、酸素原子、硫黄原子、セレン原子、CR21=CR22、又はNR23からなる群の1種を示す、高キャリア移動度のため硫黄原子またはCR21=CR22が好ましく、硫黄原子がより好ましい。
 式(4)及び(4-2)~(4-3)におけるYは、CR24又は窒素原子のいずれかを示し、安定性のためCR24が好ましい。
 式(3-1)~(3-6)で示される芳香族化合物は、高キャリア移動度のため、点対称または軸対称である構造が好ましく、点対称構造がより好ましい。
 式(3-1)~(3-6)で示される芳香族化合物は、高溶解性、高耐熱性のため式(3-1)または式(3-2)が好ましい。
 また、式(1-I)または式(1-II)で示される芳香族化合物は、好ましくは下記式(5)または下記式(5-2)で示される芳香族化合物である。
Figure JPOXMLDOC01-appb-C000021
[(ここで、R25~R28の隣接する二つからなる組合せの内、1組のみが下記式(6)を構成し、及びR29~R32の隣接する二つからなる組合せの内、1組のみが下記式(6-2)を構成し、それぞれ5又は6員環を形成する。下記式(6)及び下記式(6-2)を構成しなかったR25~R32及びR69、R70は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または前記式(2)で表される基からなる群の1種を示す。)
Figure JPOXMLDOC01-appb-C000022
(ここで、Xは酸素原子、硫黄原子、セレン原子、CR34=CR35、又はNR36を示す。YはCR37又は窒素原子のいずれかを示す。R34~R37は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または前記式(2)で表される基からなる群の1種を示し、R33は前記式(2)で表される基である。)
Figure JPOXMLDOC01-appb-C000023
(ここで、X、Y、R34~R37は前記式(6)のX、Y、R34~R37と同意義を示し、R33bは、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または前記式(2)で表される基からなる群の1種を示す。)]
式(5)及び(5-2)において、R25~R28の隣接する二つからなる組合せの内、1組のみが上記式(6)を構成し、及びR29~R32の隣接する二つからなる組合せの内、1組のみが上記式(6-2)を構成し、それぞれ5又は6員環を形成する。
 式(6)及び式(6-2)を構成しなかったR25~R32及びR69、R70、式(6)及び式(6-2)におけるR34~R37は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基、または式(2)で表される基からなる群の1種を示す。
 R33は、式(2)で表される基である。
 R33bは、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または式(2)で表される基からなる群の1種で表される基であり、高移動度であることから、水素原子、フッ素原子、式(2)で表される基からなる群の1種であることが好ましい。
 式(5)または式(5-2)で示される芳香族化合物において、式(6-2)は下記式(6-3)であることが好ましい。
Figure JPOXMLDOC01-appb-C000024
(ここで、X、Y、R34~R37は前記式(6)のX、Y、R34~R37と同意義を示し、R33cは、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基からなる群の1種を示す。)
 R33cは、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基で表される基からなる群の1種であり、高移動度であることから、水素原子またはフッ素原子であることが好ましく、水素原子であることがより好ましい。
 式(5)または式(5-2)で示される芳香族化合物において、式(6-2)は下記式(6-4)であることも好ましい。
Figure JPOXMLDOC01-appb-C000025
(ここで、X、Y、R34~R37は前記式(6)のX、Y、R34~R37と同意義を示し、R33dは前記式(2)で表される基である。)
 なお、式(5)及び式(5-2)における式(2)で表される基の定義は、前述の式(1-I)及び式(1-II)における式(2)の定義と同義である。
 該R25~R32、R34~R37、R69、R70、R33b、R33cにおけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を示し、安定であることからフッ素原子または塩素原子のいずれかが好ましい。
 該R25~R32、R34~R37、R69、R70、R33b、R33cにおける炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソバレリル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル、2-ヘキシルデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の直鎖、分岐、又は環状アルキル基が挙げられる。そして、その中でも特に高キャリア移動度及び高溶解性を示す芳香族化合物となることから、炭素数1~14のアルキル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基である炭素数1~14の直鎖アルキル基がさらに好ましい。
 該R25~R32、R34~R37、R69、R70、R33b、R33cにおける炭素数2~20のアルケニル基としては、例えば、エテニル基、プロペニル基、ブテニル基、2-メチルプロペニル基、n-ペンテニル基、2-メチルブテニル基、n-ヘキセニル基、2-メチルペンテニル基、n-ヘプテニル基、n-オクテニル基、2-エチルヘキセニル基、n-ノネル基、2-エチルヘプテニル基、n-デセニル基、n-ドデセニル基、シクロペンテニル-1-基、シクロヘキセニル-1-基、シクロヘプテニル-1-基等が挙げられる。
 該R25~R32、R34~R37、R69、R70、R33b、R33cにおける炭素数2~20のアルキニル基としては、例えば、エチニル基、プロピニル基、ブチニル基、n-ペンチニル基、n-ヘキシニル基、n-ヘプチニル基、n-オクチニル基、n-ノニニル基、n-デシニル基、n-ドデシニル基等が挙げられる。
 該R25~R32、R34~R37、R69、R70、R33b、R33cにおける炭素数4~22のアルカジエニル基としては、例えば、ブタジエニル基、ペンタジエニル基、ヘキサジエニル基、n-ヘプタジエニル基、n-オクタジエニル基、n-ノナジエニル基、n-デカジエニル基、n-ドデカジエニル基、n-トリデカジエニル基等が挙げられ、炭素数4~22のアルカ-1,3-ジエニル基であることが好ましく、ヘキサ-1,3-ジエニル基、n-ヘプタ-1,3-ジエニル基、n-オクタ-1,3-ジエニル基、n-ノナ-1,3-ジエニル基、n-デカ-1,3-ジエニル基がさらに好ましい。
 該R25~R32、R34~R37、R69、R70、R33b、R33cにおける炭素数4~22のアルカジイニル基としては、例えば、ブタジイニル基、ペンタジイニル基、ヘキサジイニル基、n-ヘプタジイニル基、n-オクタジイニル基、n-ノナジイニル基、n-デカジイニル基、n-ドデカジイニル基、n-トリデカジイニル基等が挙げられ、炭素数4~22の1,3-アルカジイニル基であることが好ましく、ヘキサ-1,3-ジイニル基、n-ヘプタ-1,3-ジイニル基、n-オクタ-1,3-ジイニル基、n-ノナ-1,3-ジイニル基、n-デカ-1,3-ジイニル基がさらに好ましい。
 該R25~R32、R34~R37、R69、R70、R33b、R33cにおける炭素数4~26のアリール基は、炭素数4~24のヘテロアリール基を含む。該炭素数4~26のアリール基としては、例えば、フェニル基;p-トリル基、p-(n-ヘキシル)フェニル基、p-(n-オクチル)フェニル基、p-(2-エチルヘキシル)フェニル基等のアルキル置換フェニル基;2-フリル基、2-チエニル基;5-フルオロ-2-フリル基、5-メチル-2-フリル基、5-エチル-2-フリル基、5-(n-プロピル)-2-フリル基、5-(n-ブチル)-2-フリル基、5-(n-ペンチル)-2-フリル基、5-(n-ヘキシル)-2-フリル基、5-(n-オクチル)-2-フリル基、5-(2-エチルヘキシル)-2-フリル基、5-フルオロ-2-チエニル基、5-メチル-2-チエニル基、5-エチル-2-チエニル基、5-(n-プロピル)-2-チエニル基、5-(n-ブチル)-2-チエニル基、5-(n-ペンチル)-2-チエニル基、5-(n-ヘキシル)-2-チエニル基、5-(n-オクチル)-2-チエニル基、5-(2-エチルヘキシル)-2-チエニル基等のアルキル置換ヘテロアリール基を挙げることができる。
 該R25~R32、R69、R70は、安定性のため水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~26のアリール基、または式(2)で表される基からなる群の1種が好ましく、高溶解性のため水素原子、炭素数1~20のアルキル基がより好ましく、水素原子、メチル基からなる群の1種から選ばれることがさらに好ましい。
 該R34~R37は、安定性のため水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~26のアリール基、または式(2)で表される基からなる群の1種が好ましく、高キャリア移動度のため、水素原子、炭素数1~20のアルキル基、または式(2)で表される基がより好ましく、R34~R37は水素原子であることがさらにより好ましい。
式(6)及び(6-2)~(6-4)のXは、酸素原子、硫黄原子、セレン原子、CR34=CR35、又はNR36を示し、高溶解性のため硫黄原子、酸素原子、硫黄原子、セレン原子が好ましく、高キャリア移動度のため硫黄原子がさらに好ましい。
 式(6)及び(6-2)~(6-4)のYは、CR37又は窒素原子を示し、安定性のためCR37が好ましい。
 式(5)及び式(5-2)で示される芳香族化合物は、高キャリア移動度のため、点対称または軸対称である構造が好ましく、点対称構造がより好ましい。
 式(5)及び式(5-2)で示される芳香族化合物は、高溶解性のため式(5)が好ましい。
 また、式(5)または式(5-2)で示される芳香族化合物は、合成の容易性から下記式(7-1)~(7-5)からなる群の1種の化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000026
 
(ここで、X、Xは、それぞれ独立して、酸素原子、硫黄原子、セレン原子、又はNR44からなる群の1種を示す。Y、Yは、それぞれ独立して、CR45又は窒素原子のいずれかを示す。R38~R45、R71、R72は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または式(2)で表される基からなる群の1種を示し、R38~R45の少なくとも1つは式(2)で表される基であり、R38及びR41の少なくとも1つが式(2)で表される基である。)
 式(7-1)~(7-5)のX、Xは、それぞれ独立して、酸素原子、硫黄原子、セレン原子、NR44からなる群の1種を示し、安定性のため硫黄原子、酸素原子、硫黄原子、セレン原子が好ましく、高キャリア移動度のため硫黄原子がさらに好ましい。
 式(7-1)~(7-5)のY、Yは、それぞれ独立して、CR45又は窒素原子のいずれかを示し、安定性のためCR45が好ましい。
 式(7-1)~(7-5)のR38~R45、R71、R72は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または上記式(2)で表される基からなる群の1種を示し、R38~R45の少なくとも1つは上記式(2)で表される基である。
式(7-1)~(7-5)のR38、R41は、いずれか一つのみ、または両方が式(2)で示される基である。
 なお、式(7-1)~(7-5)における式(2)で表される基の定義は、前述の式(1-I)及び式(1-II)における式(2)の定義と同意義である。
 該R38~R45、R71、R72におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を示し、安定であることからフッ素原子または塩素原子のいずれかが好ましい。
 該R38~R45、R71、R72における炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソバレリル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル、2-ヘキシルデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の直鎖、分岐、又は環状アルキル基が挙げられる。そして、その中でも特に高キャリア移動度及び高溶解性を示す芳香族化合物となることから、炭素数1~14のアルキル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基である炭素数1~14の直鎖アルキル基がさらに好ましい。
 該R38~R45、R71、R72における炭素数2~20のアルケニル基としては、例えば、エテニル基、プロペニル基、ブテニル基、2-メチルプロペニル基、n-ペンテニル基、2-メチルブテニル基、n-ヘキセニル基、2-メチルペンテニル基、n-ヘプテニル基、n-オクテニル基、2-エチルヘキセニル基、n-ノネル基、2-エチルヘプテニル基、n-デセニル基、n-ドデセニル基、シクロペンテニル-1-基、シクロヘキセニル-1-基、シクロヘプテニル-1-基等が挙げられる。
 該R38~R45、R71、R72における炭素数2~20のアルキニル基としては、例えば、エチニル基、プロピニル基、ブチニル基、n-ペンチニル基、n-ヘキシニル基、n-ヘプチニル基、n-オクチニル基、n-ノニニル基、n-デシニル基、n-ドデシニル基等が挙げられる。
 該R38~R45、R71、R72における炭素数4~22のアルカジエニル基としては、例えば、ブタジエニル基、ペンタジエニル基、ヘキサジエニル基、n-ヘプタジエニル基、n-オクタジエニル基、n-ノナジエニル基、n-デカジエニル基、n-ドデカジエニル基、n-トリデカジエニル基等が挙げられ、炭素数4~22のアルカ-1,3-ジエニル基であることが好ましく、ヘキサ-1,3-ジエニル基、n-ヘプタ-1,3-ジエニル基、n-オクタ-1,3-ジエニル基、n-ノナ-1,3-ジエニル基、n-デカ-1,3-ジエニル基がさらに好ましい。
 該R38~R45、R71、R72における炭素数4~22のアルカジイニル基としては、例えば、ブタジイニル基、ペンタジイニル基、ヘキサジイニル基、n-ヘプタジイニル基、n-オクタジイニル基、n-ノナジイニル基、n-デカジイニル基、n-ドデカジイニル基、n-トリデカジイニル基等が挙げられ、炭素数4~22の1,3-アルカジイニル基であることが好ましく、ヘキサ-1,3-ジイニル基、n-ヘプタ-1,3-ジイニル基、n-オクタ-1,3-ジイニル基、n-ノナ-1,3-ジイニル基、n-デカ-1,3-ジイニル基がさらに好ましい。
 該R38~R45、R71、R72における炭素数4~26のアリール基は、炭素数4~24のヘテロアリール基を含む。該炭素数4~26のアリール基としては、例えば、フェニル基;p-トリル基、p-(n-ヘキシル)フェニル基、p-(n-オクチル)フェニル基、p-(2-エチルヘキシル)フェニル基等のアルキル置換フェニル基;2-フリル基、2-チエニル基;5-フルオロ-2-フリル基、5-メチル-2-フリル基、5-エチル-2-フリル基、5-(n-プロピル)-2-フリル基、5-(n-ブチル)-2-フリル基、5-(n-ペンチル)-2-フリル基、5-(n-ヘキシル)-2-フリル基、5-(n-オクチル)-2-フリル基、5-(2-エチルヘキシル)-2-フリル基、5-フルオロ-2-チエニル基、5-メチル-2-チエニル基、5-エチル-2-チエニル基、5-(n-プロピル)-2-チエニル基、5-(n-ブチル)-2-チエニル基、5-(n-ペンチル)-2-チエニル基、5-(n-ヘキシル)-2-チエニル基、5-(n-オクチル)-2-チエニル基、5-(2-エチルヘキシル)-2-チエニル基等のアルキル置換ヘテロアリール基を挙げることができる。
 該R38~R45、R71、R72は、安定性のため水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~26のアリール基、または式(2)で表される基からなる群の1種が好ましく、高溶解性のため水素原子、炭素数1~20のアルキル基、または式(2)で表される基がより好ましい。高キャリア移動度の観点からR38、R41が上記式(2)で表される基、水素原子、フッ素原子からなる群の1種であることが好ましく、上記式(2)で表される基、水素原子からなる群の1種であることがより好ましく、R38及びR41の両方が上記式(2)で表される基がさらに好ましい。R39、R40、R42~R45、R71、R72が水素原子、メチル基からなる群の1種から選ばれることがさらにより好ましく、水素原子が一層より好ましい。
 上記式(7-1)~(7-5)で示される芳香族化合物は、高キャリア移動度のため、点対称または軸対称である構造が好ましく、点対称構造がより好ましい。
 式(7-1)~(7-5)のうち、高溶解性のため式(7-1)、(7-2)または(7-5)のいずれかであることが好ましく、高キャリア移動度のため式(7-1)であることがより好ましい。
 本発明の化合物のより好ましい化合物構造は、上記式(7-1)~(7-5)に加え下記式(8-1)~(8-11)からなる群の1種で示される。これらの中でも高耐熱性、高溶解性の観点から、縮合環数が4~5個である(7-1)~(7-5)、(8-2)~(8-9)からなる群の1種の芳香族化合物であることが好ましく、高キャリア移動度の観点から点対称構造の式(7-1)~(7-5)、(8-2)~(8-3)、(8-5)~(8-8)からなる群の1種の芳香族化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000027
(ここで、Xは酸素原子、硫黄原子、セレン原子、NR58、またはCR59=CR60からなる群の1種を示す。YはCR61又は窒素原子のいずれかを示す。R46~R61は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または式(2)で表される基からなる群の1種を示し、R46~R61の少なくとも1つは式(2)で表される基であり、R46及びR47の少なくとも1つが式(2)で表される基である。oは0または1を示す。)
 式(8-1)~(8-11)のXは、酸素原子、硫黄原子、セレン原子、NR58、またはCR59=CR60からなる群の1種を示し、安定性のため酸素原子、硫黄原子、セレン原子からなる群の1種が好ましく、高キャリア移動度のため硫黄原子がさらに好ましい。
 式(8-1)~(8-11)のYは、CR61又は窒素原子のいずれかを示し、安定性のためCR61が好ましい。
 式(8-1)~(8-11)のR46~R61は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または式(2)で表される基からなる群の1種を示し、R46~R61の少なくとも1つは式(2)で表される基である。
 なお、式(8-1)~(8-11)における式(2)で表される基の定義は、前述の式(1-I)及び式(1-II)の定義と同意義である。
 該R46~R61におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子を示し、安定であることからフッ素原子または塩素原子のいずれかが好ましい。
 該R46~R61における炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソバレリル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル、2-ヘキシルデシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の直鎖、分岐、又は環状アルキル基が挙げられる。そして、その中でも特に高キャリア移動度及び高溶解性を示す芳香族化合物となることから、炭素数1~14のアルキル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基である炭素数1~14の直鎖アルキル基がさらに好ましい。
 該R46~R61における炭素数2~20のアルケニル基としては、例えば、エテニル基、プロペニル基、ブテニル基、2-メチルプロペニル基、n-ペンテニル基、2-メチルブテニル基、n-ヘキセニル基、2-メチルペンテニル基、n-ヘプテニル基、n-オクテニル基、2-エチルヘキセニル基、n-ノネル基、2-エチルヘプテニル基、n-デセニル基、n-ドデセニル基、シクロペンテニル-1-基、シクロヘキセニル-1-基、シクロヘプテニル-1-基等が挙げられる。
 該R46~R61における炭素数2~20のアルキニル基としては、例えば、エチニル基、プロピニル基、ブチニル基、n-ペンチニル基、n-ヘキシニル基、n-ヘプチニル基、n-オクチニル基、n-ノニニル基、n-デシニル基、n-ドデシニル基等が挙げられる。
 該R46~R61における炭素数4~22のアルカジエニル基としては、例えば、ブタジエニル基、ペンタジエニル基、ヘキサジエニル基、n-ヘプタジエニル基、n-オクタジエニル基、n-ノナジエニル基、n-デカジエニル基、n-ドデカジエニル基、n-トリデカジエニル基等が挙げられ、炭素数4~22のアルカ-1,3-ジエニル基であることが好ましく、ヘキサ-1,3-ジエニル基、n-ヘプタ-1,3-ジエニル基、n-オクタ-1,3-ジエニル基、n-ノナ-1,3-ジエニル基、n-デカ-1,3-ジエニル基がさらに好ましい。
 該R46~R61における炭素数4~22のアルカジイニル基としては、例えば、ブタジイニル基、ペンタジイニル基、ヘキサジイニル基、n-ヘプタジイニル基、n-オクタジイニル基、n-ノナジイニル基、n-デカジイニル基、n-ドデカジイニル基、n-トリデカジイニル基等が挙げられ、炭素数4~22の1,3-アルカジイニル基であることが好ましく、ヘキサ-1,3-ジイニル基、n-ヘプタ-1,3-ジイニル基、n-オクタ-1,3-ジイニル基、n-ノナ-1,3-ジイニル基、n-デカ-1,3-ジイニル基がさらに好ましい。
 該R46~R61における炭素数4~26のアリール基は、炭素数4~24のヘテロアリール基を含む。該炭素数4~26のアリール基としては、例えば、フェニル基;p-トリル基、p-(n-ヘキシル)フェニル基、p-(n-オクチル)フェニル基、p-(2-エチルヘキシル)フェニル基等のアルキル置換フェニル基;2-フリル基、2-チエニル基;5-フルオロ-2-フリル基、5-メチル-2-フリル基、5-エチル-2-フリル基、5-(n-プロピル)-2-フリル基、5-(n-ブチル)-2-フリル基、5-(n-ペンチル)-2-フリル基、5-(n-ヘキシル)-2-フリル基、5-(n-オクチル)-2-フリル基、5-(2-エチルヘキシル)-2-フリル基、5-フルオロ-2-チエニル基、5-メチル-2-チエニル基、5-エチル-2-チエニル基、5-(n-プロピル)-2-チエニル基、5-(n-ブチル)-2-チエニル基、5-(n-ペンチル)-2-チエニル基、5-(n-ヘキシル)-2-チエニル基、5-(n-オクチル)-2-チエニル基、5-(2-エチルヘキシル)-2-チエニル基等のアルキル置換ヘテロアリール基を挙げることができる。
 該R46~R61は、安定性のため水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~26のアリール基、または式(2)で表される基からなる群の1種であることが好ましい。高キャリア移動度の観点からR46とR47が式(2)で表される基、水素原子、フッ素原子からなる群の1種であることが好ましく、式(2)で表される基、水素原子からなる群の1種であることがより好ましく、R46及びR47の両方が式(2)で表される基が更に好ましい。R48~R61は水素原子、メチル基からなる群の1種から選ばれることが好ましく、水素原子であることが更に好ましい。
 式(8-5)及び(8-6)におけるoは、0または1を示し、高キャリア移動度のため、1が好ましい。
 本発明の化合物の具体的例示としては、以下のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 本発明の化合物の製造方法としては、該化合物を製造することが可能であれば如何なる製造方法を用いることも可能である。
 本発明の芳香族化合物の製造方法としては、例えば、式(7-1)のX、Xが硫黄原子であり、Y、YがCHであり、R38、R41が式(2)で表される基であり、R39、R40、R42、R43が水素原子であり、式(2)におけるl、nがそれぞれ0であり、Z及びZが水素原子である芳香族化合物(7-1a)は下記A1~C1の工程を経る方法により製造することができる。
(A1工程);ジチエノビフェニレン誘導体(化合物2)をブチルリチウムでジリチウム塩とし、ブロモ化剤によりジブロモジチエノビフェニレン誘導体(化合物3)を合成する方法
(B1工程);アルキルブロミド誘導体をマグネシウムと反応させアルキルマグネシウムブロミドを製造する方法。
(C1工程);B1工程により得られたアルキルマグネシウムブロミドから誘導されたアルキル亜鉛クロリドを、パラジウム触媒の存在下、A1工程で合成したジブロモジチエノビフェニレン誘導体(化合物3)と反応させることで芳香族化合物(7-1a)を製造する方法
 各工程の詳細を以下に示す。
(A1工程)
 該A1工程は、ジチエノビフェニレン誘導体を2当量以上のブチルリチウムでジリチウム塩とし、ブロモ化剤と反応させることでジブロモ体を製造する方法である。
 該ジリチウム塩を調製する条件としては、例えば、2~3当量のn-ブチルリチウム又はtert-ブチルリチウムを用い、THF又はジエチルエーテル等の溶媒中、-80℃~20℃の温度範囲で実施することができる。
 ブロモ化剤としては、テトラブロモメタン、1,2-ジブロモテトラクロロエタン、N-ブロモスクシンイミド(以後、「NBS」と略す。)等を用いることができる。
(B1工程)
 該B1工程は、アルキルブロミド誘導体をマグネシウムと反応させアルキルマグネシウムブロミドを製造する方法である。
 該マグネシウム塩を調製する条件としては、例えば、1~2当量のマグネシウムを用い、THF又はジエチルエーテル等の溶媒中、25℃~60℃の温度範囲で実施することができる。
 B1工程におけるアルキルブロミド誘導体としては、例えばベンジルブロミド、2-フェニルエチルブロミド、3-フェニルプロピルブロミド、4-フェニルブチルブロミド、4-メチルフェネチルブロミド、1-(2-ブロモエチル)-4-エチルベンゼン、1-(2-ブロモエチル)-4-プロピルベンゼン、1-(2-ブロモエチル)-4-ブチルベンゼン、1-(2-ブロモエチル)-4-ペンチルベンゼン、1-(2-ブロモエチル)-4-ヘキシルベンゼン、1-(2-ブロモエチル)-4-ヘプチルベンゼン、1-(2-ブロモエチル)-4-オクチルベンゼン、5-(2-ブロモエチル)-2,3-ジヒドロベンゾフラン等を挙げることができる。
(C1工程)
 該C1工程はパラジウム触媒の存在下、B1工程により得られたアルキルマグネシウムブロミドから誘導されたアルキル亜鉛クロリドをA1工程で合成したジブロモジチエノビフェニレン誘導体(化合物3)と反応させることで芳香族化合物(7-1a)を製造する方法である。
 アルキル亜鉛クロリドを調製する方法としては塩化亜鉛を用いて、例えばTHF又はジエチルエーテル等の溶媒中、0℃~25℃の温度範囲で実施することができる。
 C1工程におけるパラジウム触媒としては、例えば、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム等を挙げることができ、反応温度としては、20℃~60℃の範囲を挙げることができる。
 そして、反応工程数が少ないことから好ましいより具体的な製造方法を以下の反応スキームに示す。
Figure JPOXMLDOC01-appb-C000039
(ここで、A、mは、式(2)で示されるA、mと同意義を示す。)
 また、式(7-2)のX、Xが硫黄原子であり、Y、YがCHであり、R38、R41が式(2)で表される基であり、R39、R40、R42、R43が水素原子であり、式(2)におけるl、nがそれぞれ0であり、Z及びZが水素原子である芳香族化合物(7-2a)は下記D1~G1の工程を経る方法により製造することができる。
(D1工程);パラジウム/銅触媒の存在下、1,5-ジフルオロ-2,6-ジヨードハロビフェニレンとトリメチルシリルアセチレンの薗頭カップリングにより1,5-ビス(トリメチルシリルエチニル)-2,6-ジフルオロビフェニレンを製造する工程。
(E1工程);D1工程により得られた1,5-ビス(トリメチルシリルエチニル)-2,6-ジフルオロビフェニレンと硫化ナトリウムを反応に供し、ビフェニレノ[2,1-b:6,5-b’]ジチオフェンを製造する工程。
(F1工程);E1工程により得られたビフェニレノ[2,1-b:6,5-b’]ジチオフェンをブチルリチウムでジリチウム塩とし、ブロモ化剤により2,7-ジブロモビフェニレノ[2,1-b:6,5-b’]ジチオフェンを製造する工程。
(G1工程);前述のB1工程により得られたアルキルマグネシウムブロミドから誘導されたアルキル亜鉛クロリドを、パラジウム触媒の存在下、F1工程で合成した2,7-ジブロモビフェニレノ[2,1-b:6,5-b’]ジチオフェンと反応させることで芳香族化合物(7-2a)を製造する工程。
 各工程の詳細を以下に示す。
(D1工程)
 該D1工程は、パラジウム触媒及び銅触媒の存在下、2,6-ジフルオロ-1,5-ジヨードハロビフェニレンとトリメチルシリルアセチレンの薗頭カップリングにより1,5-ビス(トリメチルシリルエチニル)-2,6-ジフルオロビフェニレンを製造する工程である。
 その際のパラジウム触媒としては、例えば、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム等が挙げられ、銅触媒としてはヨウ化銅(I)、臭化銅(I)、塩化銅(I)等を挙げることができる。また、薗頭カップリングでは、トリエチルアミン、ジイソプロピルアミン、ジイソプロピルエチルアミン、ピペリジン、ピリジン等の溶媒中、20℃~80℃の温度範囲で実施することができる。なお、溶媒としてトルエン、THF等を添加しても良い。
(E1工程)
 該E1工程は、D1工程により得られた1,5-ビス(トリメチルシリルエチニル)-2,6-ジフルオロビフェニレンと硫化ナトリウムの反応によりビフェニレノ[2,1-b:6,5-b’]ジチオフェンを製造する工程である。
 該反応は、例えば、ジメチルスルホフォキシド(以後、DMSOと略す。)、N,N-ジメチルホルムアミド(以後、DMFと略す。)、N-メチルピロリドン(以後、NMPと略す。)等の溶媒中、20~200℃の温度範囲で実施することができる。
 なお、該工程は、2-ハロアルキニルベンゼンからベンゾチオフェン環を合成する公知の反応条件を用いて実施することもできる(例えば、オーガニック レターズ、2009年、11巻、2473~2475頁)。
(F1工程)
 該F1工程は、E1工程により得られたビフェニレノ[2,1-b:6,5-b’]ジチオフェンを2当量以上のブチルリチウムでジリチウム塩とし、ブロモ化剤と反応させることでジブロモ体を製造する方法である。
 該ジリチウム塩を調製する条件としては、例えば、2~3当量のn-ブチルリチウム又はtert-ブチルリチウムを用い、THF又はジエチルエーテル等の溶媒中、-80℃~20℃の温度範囲で実施することができる。
 ブロモ化剤としては、テトラブロモメタン、1,2-ジブロモテトラクロロエタン、NBS等を用いることができる。
(G1工程)
 該G1工程はパラジウム触媒の存在下、B1工程により得られたアルキルマグネシウムブロミドから誘導されたアルキル亜鉛クロリドをF1工程で合成した2,7-ジブロモビフェニレノ[2,1-b:6,5-b’]ジチオフェンと反応させることで芳香族化合物(7-2a)を製造する方法である。
 アルキル亜鉛クロリドを調製する方法としては塩化亜鉛を用いて、例えばTHF又はジエチルエーテル等の溶媒中、0℃~25℃の温度範囲で実施することができる。
 G1工程におけるパラジウム触媒としては、例えば、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム等を挙げることができ、反応温度としては、20℃~60℃の範囲を挙げることができる。
 そして、反応工程数が少ないことから好ましいより具体的な製造方法を以下の反応スキームに示す。
Figure JPOXMLDOC01-appb-C000040
(ここで、A、mは、式(2)で示されるA、mと同意義を示す。)
 式(7-5)のX、Xが硫黄原子であり、Y、YがCHであり、R38、R41が式(2)で表される基であり、R39、R40、R42、R43、R71、R72が水素原子であり、式(2)におけるl、nがそれぞれ0であり、Z及びZが水素原子である芳香族化合物(7-5a)は下記A2、上記B1、下記C2の工程を経る方法により製造することができる。
(A2工程);アントラジチオフェン誘導体(化合物19)をブチルリチウムでジリチウム塩とし、ブロモ化剤によりジブロモアントラジチオフェン誘導体(化合物20)を合成する方法
(C2工程);B1工程により得られたアルキルマグネシウムブロミドから誘導されたアルキル亜鉛ブロミドを、パラジウム触媒の存在下、A2工程で合成したジブロモアントラジチオフェン誘導体(化合物20)と反応させることで芳香族化合物(7-5a)を製造する方法
 各工程の詳細を以下に示す。
(A2工程)
 該A2工程は、アントラジチオフェン誘導体を2当量以上のブチルリチウムでジリチウム塩とし、ブロモ化剤と反応させることでジブロモ体を製造する方法である。
 該ジリチウム塩を調製する条件としては、例えば、2~3当量のn-ブチルリチウム又はtert-ブチルリチウムを用い、THF又はジエチルエーテル等の溶媒中、-80℃~20℃の温度範囲で実施することができる。
 ブロモ化剤としては、テトラブロモメタン、1,2-ジブロモテトラクロロエタン等を用いることができる。
(C2工程)
 該C2工程はパラジウム触媒の存在下、B1工程により得られたアルキルマグネシウムブロミドから誘導されたアルキル亜鉛クロリドをA2工程で合成したジブロモアントラジチオフェン誘導体(化合物20)と反応させることで芳香族化合物(7-5a)を製造する方法である。
 アルキル亜鉛ブロミドを調製する方法としては塩化亜鉛を用いて、例えばTHF又はジエチルエーテル等の溶媒中、0℃~25℃の温度範囲で実施することができる。
 C2工程におけるパラジウム触媒としては、例えば、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム等を挙げることができ、反応温度としては、20℃~60℃の範囲を挙げることができる。
 そして、反応工程数が少ないことから好ましいより具体的な製造方法を以下の反応スキームに示す。
Figure JPOXMLDOC01-appb-C000041
(ここで、A、mは、式(2)で示されるA、mと同意義を示す。)
 式(7-1)のX、Xが硫黄原子であり、Y、YがCHであり、R38が式(2)で表される基であり、R39~R43が水素原子であり、式(2)におけるl、nがそれぞれ0であり、Z及びZが水素原子である芳香族化合物(7-1b)は下記A3、上記B1、下記C3の工程を経る方法により製造することができる。
(A3工程);ジチエノビフェニレン誘導体(化合物2)をブチルリチウムでモノリチウム塩とし、ブロモ化剤によりモノブロモジチエノビフェニレン誘導体(化合物21)を合成する方法
(C3工程);B1工程により得られたアルキルマグネシウムブロミドから誘導されたアルキル亜鉛ブロミドを、パラジウム触媒の存在下、A3工程で合成したモノブロモジチエノビフェニレン誘導体(化合物21)と反応させることで芳香族化合物(7-1b)を製造する方法
 各工程の詳細を以下に示す。
(A3工程)
 該A3工程は、ジチエノビフェニレン誘導体を1.0当量のブチルリチウムでモノリチウム塩とし、ブロモ化剤と反応させることでモノブロモ体を製造する方法である。
 該モノリチウム塩を調製する条件としては、例えば、0.5~1.5当量のn-ブチルリチウム又はtert-ブチルリチウムを用い、THF又はジエチルエーテル等の溶媒中、-80℃~20℃の温度範囲で実施することができる。
 ブロモ化剤としては、テトラブロモメタン、1,2-ジブロモテトラクロロエタン等を用いることができる。
(C3工程)
 該C3工程はパラジウム触媒の存在下、B1工程により得られたアルキルマグネシウムブロミドから誘導されたアルキル亜鉛クロリドをA3工程で合成したモノブロモジチエノビフェニレン誘導体(化合物21)と反応させることで芳香族化合物(7-1b)を製造する方法である。
 アルキル亜鉛ブロミドを調製する方法としては塩化亜鉛を用いて、例えばTHF又はジエチルエーテル等の溶媒中、0℃~25℃の温度範囲で実施することができる。
 C3工程におけるパラジウム触媒としては、例えば、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム等を挙げることができ、反応温度としては、20℃~60℃の範囲を挙げることができる。
 そして、反応工程数が少ないことから好ましいより具体的な製造方法を以下の反応スキームに示す。
Figure JPOXMLDOC01-appb-C000042
(ここで、A、mは、式(2)で示されるA、mと同意義を示す。)
 式(7-5)のX、Xが硫黄原子であり、Y、YがCHであり、R38が式(2)で表される基であり、R39~R41、R42、R43、R71、R72が水素原子であり、式(2)におけるl、nがそれぞれ0であり、Z及びZが水素原子である芳香族化合物(7-5b)は上記C2工程の副生成物としての単離、或いは下記A4、上記B1、下記C4の工程を経る方法により製造することができる。
(A4工程);アントラジチオフェン誘導体(化合物19)をブチルリチウムでモノリチウム塩とし、ブロモ化剤によりモノブロモアントラジチオフェン誘導体(化合物22)を合成する方法
(C4工程);B1工程により得られたアルキルマグネシウムブロミドから誘導されたアルキル亜鉛ブロミドを、パラジウム触媒の存在下、A4工程で合成したモノブロモアントラジチオフェン誘導体(化合物22)と反応させることで芳香族化合物(7-5b)を製造する方法
 各工程の詳細を以下に示す。
(A4工程)
 該A4工程は、アントラジチオフェン誘導体を1当量のブチルリチウムでモノリチウム塩とし、ブロモ化剤と反応させることでモノブロモ体を製造する方法である。
 該モノリチウム塩を調製する条件としては、例えば、0.5-1.5当量のn-ブチルリチウム又はtert-ブチルリチウムを用い、THF又はジエチルエーテル等の溶媒中、-80℃~20℃の温度範囲で実施することができる。
 ブロモ化剤としては、テトラブロモメタン、1,2-ジブロモテトラクロロエタン等を用いることができる。
(C4工程)
 該C4工程はパラジウム触媒の存在下、B1工程により得られたアルキルマグネシウムブロミドから誘導されたアルキル亜鉛クロリドをA4工程で合成したモノブロモアントラジチオフェン誘導体(化合物22)と反応させることで芳香族化合物(7-5b)を製造する方法である。
 アルキル亜鉛ブロミドを調製する方法としては塩化亜鉛を用いて、例えばTHF又はジエチルエーテル等の溶媒中、0℃~25℃の温度範囲で実施することができる。
 C4工程におけるパラジウム触媒としては、例えば、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム等を挙げることができ、反応温度としては、20℃~60℃の範囲を挙げることができる。
 そして、反応工程数が少ないことから好ましいより具体的な製造方法を以下の反応スキームに示す。
Figure JPOXMLDOC01-appb-C000043
(ここで、A、mは、式(2)で示されるA、mと同意義を示す。)
 本発明の化合物は、適当な溶媒に溶解させることで該化合物を含有する有機半導体層形成用溶液とすることができる。該溶媒としては、式(1-I)または式(1-II)で示される芳香族化合物を溶解することが可能な溶媒であれば如何なる溶媒を使用してもよく、有機半導体層を形成する際、溶媒の乾燥速度を好適なものとすることができることから、常圧での沸点が100℃以上である有機溶媒が好ましい。
 本発明で用いることが可能な溶媒として、特に制限はなく、例えば、トルエン、メシチレン、o-キシレン、イソプロピルベンゼン、ペンチルベンゼン、シクロヘキシルベンゼン、1,2,4-トリメチルベンゼン、テトラリン、インダン等の芳香族炭化水素類;アニソール、2-メチルアニソール、3-メチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール、2,6-ジメチルアニソール、エチルフェニルエーテル、ブチルフェニルエーテル、1,2-メチレンジオキシベンゼン、1,2-エチレンジオキシベンゼン等の芳香族エーテル類;クロロベンゼン、1,2-ジクロロベンゼン、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、1,2-ジフルオロベンゼン、1,3-ジフルオロベンゼン、1,4-ジフルオロベンゼン等の芳香族ハロゲン化合物;チオフェン、3-クロロチオフェン、2-クロロチオフェン、3-メチルチオフェン、2-メチルチオフェン、ベンゾチオフェン、2-メチルベンゾチオフェン、2,3-ジヒドロベンゾチオフェン、フラン、3-メチルフラン、2-メチルフラン、2,5-ジメチルフラン、ベンゾフラン、2-メチルベンゾフラン、2,3-ジヒドロベンゾフラン、チアゾール、オキサゾール、ベンゾチアゾール、ベンゾオキサゾール、ピリジン等のヘテロ芳香族類;ヘキサン、シクロヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、デカリン等の飽和炭化水素類;ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジアセテート、ジプロピレングリコールメチル-n-プロピルエーテル、ジプロピレングリコールメチルエーテルアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のグリコール類;フタル酸ジメチル、フタル酸ジエチル、テレフタル酸ジメチル、酢酸フェニル、シクロヘキサノールアセテート、3-メトキシブチルアセテート、テトラヒドロフルフリルアセテート、テトラヒドロフルフリルプロピオネート、γ-ブチロラクトン等のエステル類;THF、2-メトキシメチルテトラヒドロフラン等の環状エーテルなどを挙げられることができ、その中でも適度な乾燥速度を持つことから、好ましくはトルエン、o-キシレン、メシチレン、1,2,4-トリメチルベンゼン、テトラリン、インダン、オクタン、ノナン、デカン、アニソール、2-メチルアニソール、3-メチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール、2,6-ジメチルアニソール、エチルフェニルエーテル、ブチルフェニルエーテル、1,2-メチレンジオキシベンゼン、1,2-エチレンジオキシベンゼン、クロロベンゼン、1,2-ジクロロベンゼン、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン、3-メチルチオフェン、ベンゾチアゾールであり、さらに好ましくは、トルエン、o-キシレン、メシチレン、テトラリン、インダン、オクタン、ノナン、デカン、アニソール、2-メチルアニソール、3-メチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール、2,6-ジメチルアニソールである。
 なお、本発明で用いる溶媒は、1種類の溶媒を単独で使用、または沸点、極性、溶解度パラメーターなど性質の異なる溶媒を2種類以上混合して使用することが可能である。
 式(1-I)または式(1-II)で示される芳香族化合物を溶媒に混合溶解する際の温度としては、溶解を促進させる目的のため、0~80℃の温度範囲で行うことが好ましく、10~60℃の温度範囲で行うことが更に好ましい。
 また、式(1-I)または式(1-II)で示される芳香族化合物を有機溶媒に溶解混合する時間は、均一溶液を得るため、1分~1時間で溶解することが好ましい。
 本発明では本発明の有機半導体層形成用溶液における式(1-I)または式(1-II)で示される芳香族化合物の濃度が0.1~10.0重量%の範囲であると、取り扱い容易になり、有機半導体層を形成する際の効率により優れるものとなる。また、有機半導体層形成用溶液の粘度が0.3~10mPa・sの範囲であると、より好適な塗工性を発現するものとなる。
 なお該溶液は、該芳香族化合物自体が適度の凝集性を有することから比較的に低温で調製することが可能、且つ耐酸化性があることから、塗布法による有機薄膜の製造に好適に適用できる。即ち、雰囲気から空気を除く必要がないことから塗布工程を簡略化することができる。さらに該溶液は、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリ(4-メチルスチレン)、ポリ(1-ビニルナフタレン)、ポリ(2-ビニルナフタレン)、ポリ(スチレン-ブロック-ブタジエン-ブロック-スチレン)、ポリ(スチレン-ブロック-イソプレン-ブロック-スチレン)、ポリ(ビニルトルエン)、ポリ(スチレン-コ-2,4-ジメチルスチレン)、ポリ(クロロスチレン)、ポリ(スチレン-コ-α-メチルスチレン)、ポリ(スチレン-コ-ブタジエン)、ポリ(エチレン-コ-ノルボルネン)、ポリフェニレンエーテル、ポリカーボネート、ポリカルバゾール、ポリトリアリールアミン、ポリ(9,9-ジオクチルフルオレン-コ-ジメチルトリアリールアミン)、ポリ(N-ビニルカルバゾール)、ポリメタクリル酸メチル、ポリ(スチレン-コ-メタクリル酸メチル)、ポリメタクリル酸エチル、ポリメタクリル酸n-プロピル、ポリメタクリル酸イソプロピル、ポリメタクリル酸n-ブチル、ポリメタクリル酸フェニル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸n-プロピル等が挙げることができ、好ましくはポリスチレン、ポリ(α-メチルスチレン)、ポリ(エチレン-コ-ノルボルネン)、ポリメタクリル酸メチル等のポリマーをバインダーとして存在させることもできる。これらのポリマーバインダーの濃度は、適度な溶液の粘度のため、0.001~10.0重量%であることが好ましい。
 該ポリマーバインダーのガラス転移温度(Tg)は、電子デバイス製造時のプロセス温度への対応により好適であることから105℃以上であることが好ましく、120℃以上であることがさらに好ましく、150℃以上であることが特に好ましい。
 また、該ポリマーの分子量は、よりキャリア移動度の大きい有機薄膜トランジスタを得るのに好適であるため、5,000~1,000,000であることが好ましく、10,000~500,000がさらに好ましく、20,000~100,000が特に好ましい。なお、本発明において、ポリマーの分子量はポリスチレン換算の重量平均分子量(Mw)をいうものである。
 該ポリマーは、一般的なポリマーバインダーとしての効果を有し、得られる有機半導体層の成膜性を向上させるものであり、絶縁性ポリマー及び半導体性ポリマーも用いることができる。
 本発明でポリマーバインダーとして用いることが可能なポリマーの具体的な例としては、上記で挙げたポリマー以外に、例えば、極性環状ポリオレフィン類、ポリスルホン類、アクリロニトリル-スチレン共重合体、メチルメタクリレート-スチレン共重合体類等を挙げることができる。
 該極性環状ポリオレフィン類はより具体的には下記式(9)で示されるポリマーがさらに好ましい。
Figure JPOXMLDOC01-appb-C000044
(ここで、R62~R64は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数2~20のアルキルオキシカルボニル基、炭素数7~20のアリールオキシカルボニル基、シアノ基、ニトロ基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、ヒドロキシル基、アミノ基、又は炭素数1~20のアルキルアミノ基からなる群の1種を示す。Zは、ハロゲン原子、炭素数2~20のアルキルオキシカルボニル基、炭素数7~20のアリールオキシカルボニル基、シアノ基、ニトロ基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、ヒドロキシル基、アミノ基、又は炭素数1~20のアルキルアミノ基からなる群の1種を示す。pは20~5,000の整数を示し、q及びrはそれぞれ独立して0~2の整数を示す。実線と点線からなる結合は、単結合又は2重結合を示す。)
 式(9)におけるR62~R64は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数2~20のアルキルオキシカルボニル基、炭素数7~20のアリールオキシカルボニル基、シアノ基、ニトロ基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、ヒドロキシル基、アミノ基、又は炭素数1~20のアルキルアミノ基からなる群の1種を示し、高耐熱性のため、水素原子、炭素数1~20のアルキル基が好ましい。
 R62~R64における炭素数1~20のアルキル基は、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、イソブチル基、sec-ブチル基、n-ペンチル基等の直鎖又は分岐アルキル基が挙げられる。炭素数6~20のアリール基は、例えば、フェニル基、p-トリル基、p-(n-ヘキシル)フェニル基、p-(n-オクチル)フェニル基、p-(2-エチルヘキシル)フェニル基等が挙げられる。炭素数2~20のアルキルオキシカルボニル基は、例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、n-プロピルオキシカルボニル基等が挙げられる。炭素数7~20のアリールオキシカルボニル基は、例えば、フェノキシカルボニル基、4-メチルフェノキシカルボニル基等が挙げられる。炭素数1~20のアルコキシ基は、例えば、メトキシ基、エトキシ基、n-プロポキシ基等が挙げられる。炭素数6~20のアリールオキシ基は、例えば、フェノキシ基、4-メチルフェノキシ等が挙げられる。炭素数1~20のアルキルアミノ基は、例えば、メチルアミノ基、エチルアミノ基、n-プロピルアミノ基等が挙げられる。そして、その中でも高耐熱性のため、置換基R60はメチル基、エチル基、n-プロピル基であることが好ましく、置換基R63及びR64は水素原子であることが好ましい。
 式(9)におけるZは、ハロゲン原子、炭素数2~20のアルキルオキシカルボニル基、炭素数7~20のアリールオキシカルボニル基、シアノ基、ニトロ基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、ヒドロキシル基、アミノ基、又は炭素数1~20のアルキルアミノ基からなる群の1種を示す。
 置換基Zにおける炭素数2~20のアルキルオキシカルボニル基は、例えば、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、n-ブトキシカルボニル基、n-ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基等が挙げられ、炭素数7~20のアリールオキシカルボニル基は、例えば、フェノキシカルボニル基、4-メチルフェノキシカルボニル基、2,4-ジメチルフェニキシカルボニル基、4-エチルフェノキシカルボニル基等が挙げられる。炭素数1~20のアルコキシ基は、例えば、メトキシ基、エトキシ基等が挙げられる。炭素数6~20のアリールオキシ基は、例えば、フェノキシ基、4-メチルフェノキシ等が挙げられる。炭素数1~20のアルキルアミノ基は、例えば、メチルアミノ基、エチルアミノ基、n-プロピルアミノ基等が挙げられる。高溶解性及び高耐熱性のため、炭素数2~20のアルキルオキシカルボニル基であることが好ましい。
 pは20~5,000の整数を示し、よりキャリア移動度の大きい有機薄膜トランジスタを得るのに好適であるため、好ましくは40~2,000である。qは0~2の整数を示し、好ましくは1である。rは0~2の整数を示し、好ましくは0または1である。さらに好ましくは0である。
 実線と点線からなる結合は単結合又は2重結合を示し、熱的安定性のため、好ましくは単結合である。
 本発明でポリマーバインダーとして用いられるポリスルホン類はポリスルホン構造を有していれば特に制限がなく、より具体的には下記ポリスルホン1~5で示されるポリスルホン類が挙げられる。
Figure JPOXMLDOC01-appb-C000045
(ここで、置換基R65~R68は、それぞれ独立して、炭素数1~20のアルキル基を示し、sは10~20,000の整数を示す。)
 置換基R65~R68における炭素数1~20のアルキル基は、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル基、2-ヘキシルデシル基等の直鎖又は分岐アルキル基が挙げられる。
 sは10~20,000の整数を示し、好ましくは10~10,000の整数である。
 本発明でポリマーバインダーとして用いられるアクリロニトリル-スチレン共重合体は、アクリロニトリルとスチレンの任意の比率の共重合体であり、良好な電気特性を示し、バイアスストレスをかけた時の閾値電圧の変化がより小さいものになるなど信頼性が向上することから、アクリロニトリルとスチレン重量比で10:90~50:50の比率であることが好ましく、20:80~40:60であることがさらに好ましい。
 本発明でポリマーバインダーとして用いられるメチルメタクリレート-スチレン共重合体は、メチルメタクリレートとスチレンの任意の比率の共重合体であり、良好な電気特性を示し、バイアスストレスをかけた時の閾値電圧の変化がより小さいものになるなど信頼性が向上することから、メチルメタクリレートとスチレンのモル比で1:99~90:10であることが好ましく、1:99~70:30であることがさらに好ましい。
 本発明でポリマーバインダーとして用いられるポリマーは、表面処理剤により表面エネルギーを調整したものを用いることができる。表面処理剤としては、シランカップリング剤を用いることができ、その具体例としては、例えば、1,1,1,3,3,3-ヘキサメチルジシラザン、フェニルトリメトキシシラン、オクチルトリクロロシラン、β-フェネチルトリクロロシラン、β-フェネチルトリメトキシシラン等を挙げることができる。なお、本発明で用いるポリマーは、1種類のポリマーを単独で使用、または2種類以上のポリマーの混合物として使用することが可能である。更に、異なる分子量のポリマーを混合して使用することも可能である。
 本発明の有機半導体層形成用溶液を用いて有機半導体層を形成する際の塗布方法としては、有機半導体層を形成可能な方法であれば特に制限はなく、例えば、スピンコート、ドロップキャスト、ディップコート、キャストコート等の簡易塗工法;ディスペンサー、インクジェット、スリットコート、ブレードコート、フレキソ印刷、スクリーン印刷、グラビア印刷、オフセット印刷等の印刷法を挙げることができ、中でも容易に効率よく有機半導体層とすることが可能となることから、スピンコート、ドロップキャスト、インクジェットであることが好ましい。
 本発明の有機半導体層形成用溶液を塗布後、溶媒を乾燥除去することにより、該有機半導体層形成用溶液を用いてなる有機半導体層を形成することが可能である。
 塗布した有機半導体層から溶媒を乾燥除去する際、乾燥する条件に特に制限はなく、例えば、常圧下、又は減圧下で溶媒の乾燥除去を行うことが可能である。
 塗布した有機半導体層から有機溶媒を乾燥除去する温度に特に制限はないが効率よく塗布した有機半導体層から有機溶媒を乾燥除去することができ、有機半導体層を形成することが可能であるため、10~150℃の温度範囲で行うことが好ましい。
 塗布した有機半導体層から有機溶媒を乾燥除去する際、除去する有機溶媒の気化速度を調節することで、式(1-I)または式(1-II)で示される芳香族化合物体の結晶成長を制御することが可能である。
 本発明の有機半導体層形成用溶液により形成される有機半導体層の膜厚に制限はなく、良好なキャリア移動が得られることから、1nm~1μmの範囲であることが好ましく、10nm~300nmの範囲であることが更に好ましい。
 また、得られる有機半導体層は、有機半導体層を形成後、40~180℃でアニール処理を行ってもよい。
 本発明の有機半導体層形成用溶液より形成される有機半導体層は、該有機半導体層を含んでなる有機半導体デバイス、特に該有機半導体層を含んでなる有機薄膜トランジスタとして使用することが可能である。
 有機薄膜トランジスタは、基板上に、ソース電極及びドレイン電極を付設した有機半導体層とゲート電極とを絶縁層を介し積層することにより得ることができ、該有機半導体層に本発明の有機半導体層形成用溶液により形成した有機半導体層を用いることにより、優れた半導体・電気特性を発現する有機薄膜トランジスタとすることが可能である。
 図1に一般的な有機薄膜トランジスタの断面形状による構造を示す。ここで、(A)は、ボトムゲート-トップコンタクト型、(B)は、ボトムゲート-ボトムコンタクト型、(C)は、トップゲート-トップコンタクト型、(D)は、トップゲート-ボトムコンタクト型の有機薄膜トランジスタであり、1は有機半導体層、2は基板、3はゲート電極、4はゲート絶縁層、5はソース電極、6はドレイン電極を示し、本発明の有機半導体層形成用溶液より形成される有機半導体層は、いずれの有機薄膜トランジスタにも適用することが可能である。
 本発明に係る基板としては特に制限はなく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエチレン、ポリプロピレン、ポリスチレン、環状ポリオレフィン、フッ素化環状ポリオレフィン、ポリイミド、ポリカーボネート、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマレート)、ポリ(ジエチルフマレート)、ポリ(ジイソプロピルマレエート)、ポリエーテルスルホン、ポリフェニレンスルフィド、セルローストリアセテート等のプラスチック基板;ガラス、石英、酸化アルミニウム、シリコン、ハイドープシリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物等の無機材料基板;金、銅、クロム、チタン、アルミニウム等の金属基板等を挙げることができる。なお、ハイドープシリコンを基板に用いた場合、その基板はゲート電極を兼ねることができる。
 本発明に係るゲート電極としては特に制限はなく、例えば、アルミニウム、金、銀、銅、ハイドープシリコン、スズ酸化物、酸化インジウム、インジウムスズ酸化物、クロム、チタン、タンタル、グラフェン、カーボンナノチューブ等の無機材料;ドープされた導電性高分子(例えばPEDOT-PSS)等の有機材料を挙げることができる。
 また、上記の無機材料は、金属のナノ粒子インクとしても差し支えなく使用することができる。この場合の溶媒は、適度の分散性のため、水、メタノール、エタノール、2-プロパノール、1-ブタノール、2-ブタノール等の極性溶媒;ヘキサン、ヘプタン、オクタン、デカン、ドデカン、テトラデカン等の炭素数6~14の脂肪族炭化水素溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、オクチルベンゼン、シクロヘキシルベンゼン、テトラリン、インダン、アニソール、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、1,2-ジメチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール等の炭素数7~14の芳香族炭化水素溶媒であることが好ましい。該ナノ粒子インクを塗布後、導電性向上のため、80℃~200℃の温度範囲でアニール処理することが好ましい。
 本発明に係るゲート絶縁層としては特に制限はなく、例えば、酸化シリコン、窒化シリコン、酸化アルミニウム、窒化アルミニウム、酸化チタン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物、酸化スズ、酸化バナジウム、チタン酸バリウム、チタン酸ビスマス等の無機材料;ポリメチルメタクリレート、ポリメチルアクリレート、ポリイミド、ポリアミド酸ポリカーボネート、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマレート)、ポリ(ジエチルフマレート)、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリけい皮酸エチル、ポリけい皮酸メチル、ポリクロトン酸エチル、ポリエーテルスルホン、ポリプロピレン-コ-1-ブテン、ポリイソブチレン、ポリプロピレン、ポリシクロペンタン、ポリシクロヘキサン、ポリシクロヘキサン-エチレン共重合体、ポリフッ素化シクロペンタン、ポリフッ素化シクロヘキサン、ポリフッ素化シクロヘキサン-エチレン共重合体、BCB樹脂(商品名:サイクロテン、ダウ・ケミカル社製)、Cytop(商標)、Teflon(商標)、パリレンC等のパリレン(商標)類のポリマー絶縁材料を挙げることができ、製法が簡便であることから、塗布法が適用できるポリマー絶縁材料(ポリマーゲート絶縁層)であることが好ましい。
 該ポリマー材料を溶解させるに用いる溶媒としては特に制限がなく、例えば、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、テトラデカン等の炭素数6~14の脂肪族炭化水素溶媒;THF、1,2-ジメトキシエタン、ジオキサン等のエーテル系溶媒;エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、2-エチルヘキサノール、テトラヒドロフルフリルアルコール等のアルコール系溶媒;アセトン、メチルエチルケトン、ジエチルケトン、ジイソプロピルケトン、アセトフェノン等のケトン系溶媒;酢酸エチル、γ-ブチロラクトン、シクロヘキサノールアセテート、3-メトキシブチルアセテート、テトラヒドロフルフリルアセテート、テトラヒドロフルフリルプロピオネート等のエステル系溶媒;DMF、NMP等のアミド系溶媒;ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジアセテート、ジプロピレングリコールメチル-n-プロピルエーテル、ジプロピレングリコールメチルエーテルアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のグリコール系溶媒;パーフルオロヘキサン、パーフルオロオクタン、2-(ペンタフルオロエチル)ヘキサン、3-(ペンタフルオロエチル)ヘプタン等のフッ素化溶媒等が挙げられる。
 該ポリマー絶縁材料の濃度は、例えば、20~40℃の温度において0.1~10.0重量%である。当該濃度において得られる絶縁層の膜厚に制限はなく、耐絶縁性の観点から、好ましくは100nm~1μm、さらに好ましくは150nm~900nmである。
 そして、これらのゲート絶縁層の表面は、例えば、オクタデシルトリクロロシラン、デシルトリクロロシラン、デシルトリメトキシシラン、オクチルトリクロロシラン、オクタデシルトリメトキシシラン、β-フェネチルトリクロロシラン、β-フェネチルトリメトキシシラン、フェニルトリクロロシラン、フェニルトリメトキシシラン等のシラン類;オクタデシルホスホン酸、デシルホスホン酸、オクチルホスホン酸等のホスホン酸類;ヘキサメチルジシラザン等のシリルアミン類で修飾処理したものであっても使用することができる。一般的にゲート絶縁層の表面処理を行うことにより、有機半導体材料の結晶粒径の増大及び分子配向の向上のため、キャリア移動度、電流オン・オフ比の向上、及び閾値電圧の低下という好ましい結果が得られる。
 本発明の有機薄膜トランジスタのソース電極及びドレイン電極の材料としては特に制限がなく、ゲート電極と同様の材料を用いることができ、ゲート電極の材料と同じであっても異なっていてもよく、異種材料を積層してもよい。また、キャリアの注入効率を上げるために、これらの電極材料に表面処理を実施することもできる。表面処理に用いる表明処理剤としては、例えば、ベンゼンチオール、ペンタフルオロベンゼンチオール、4-フルオロベンゼンチオール、4-メトキシベンゼンチオール等を挙げることができる。
 本発明の有機薄膜トランジスタは、速い動作性のため、キャリア移動度が、1.00cm/V・sec以上であることが好ましい。また、高いスイッチ特性のため、電流オン・オフ比が、1.0×10以上であることが好ましい。
 本発明の有機薄膜トランジスタは、電子ペーパー、有機ELディスプレイ、液晶ディスプレイ、ICタグ(RFIDタグ)、圧力センサー、バイオセンサー等のトランジスタの有機半導体層用途;有機ELディスプレイ材料;有機半導体レーザー材料;有機薄膜太陽電池材料;フォトニック結晶材料;撮像素子用の半導体材料等の電子材料に利用することができ、式(1-I)または式(1-II)で示される芳香族化合物が結晶性の薄膜となるため、有機薄膜トランジスタの半導体層用途として用いられることが好ましい。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 生成物の同定にはH NMRスペクトル及び液体クロマトグラフィー-マススペクトル(LCMS)分析を用いた。
 <H NMRスペクトル分析>
装置;日本電子製、(商品名)Delta V5(400MHz)
測定温度;23℃(温度指定がない場合)
 <液体クロマトグラフィー-マススペクトル(LCMS)分析>
装置;ブルカー・ダルトニクス、(商品名)microTOF focus
MSイオン化;大気圧化学イオン化(APCI)法
LC条件;下記液体クロマトグラフィー分析の項目にて記載の条件
 反応の進行の確認等は薄層クロマトグラフィー、ガスクロマトグラフィー(GC)、液体クロマトグラフィー(LC)分析を用いた。芳香族化合物の純度測定についても液体クロマトグラフィー分析を用いた実施した。
 <薄層クロマトグラフィー分析>
 メルク社の薄層クロマトグラフィー用PLCシリカゲル60F254 0.5mmを使用し、展開溶媒として、ヘキサン又は/及びトルエンを用いた。
 <ガスクロマトグラフィー分析>
装置;島津製作所製、(商品名)GC2014
カラム;RESTEK社製、(商品名)Rxi-1HT、30m
 <液体クロマトグラフィー分析>
装置;東ソー製(コントローラー;PX-8020、ポンプ;CCPM-II、デガッサー;SD-8022)
カラム;東ソー製、(商品名)ODS-100V、5μm、4.6mm×250mm
カラム温度;33℃
溶離液;ジクロロメタン:アセトニトリル=2:8(容積比)
流速;1.0ml/分
検出器;UV(東ソー製、(商品名)UV-8020、波長;254nm)。
 芳香族化合物の融点測定はDSC(示差走査熱量計)を用いた。
 <DSC測定>
装置;エスアイアイナノテクノロジー社製、型式;DSC6220
昇降温速度;10℃/min
走査範囲;-10℃~300℃
 合成例1 ジブロモジチエノビフェニレン誘導体(化合物3)の合成(A1工程)
 窒素雰囲気下、100mlシュレンク反応容器に、特開2018-174322記載の方法で合成したジチエノビフェニレン誘導体(該公報中の化合物2)89.0mg(0.336mmol)、THF(富士フィルム和光純薬、脱水グレード)9mlを添加した。混合物を-80℃に冷却し、1.6Mノルマルブチルリチウム(東京化成工業)0.75mL(1.20mmol)を加え5分間攪拌後、室温で25分攪拌した。-78℃に冷却し、1,2-ジブロモテトラクロロエタン436mg(1.34mmol)のTHF溶液(富士フィルム和光純薬、脱水グレード)5mLを加え室温まで昇温しながら攪拌した。水を加え、固体をろ過し水、メタノール、ヘキサンで洗浄しジブロモジチエノビフェニレン誘導体の黄色固体122mgを得た(収率87%)。
 MS(APCI) m/z: 423(M+H)。
 H NMR(CDCl、58℃):δ=7.07(d,J=7.4Hz,2H),7.05(s,2H),δ=6.65(d,J=7.4Hz,2H)。
 合成例2 2-フェニルエチルマグネシウムブロミドの合成(B1工程)
 窒素雰囲気下、100mL2つ口フラスコにマグネシウム(富士フィルム和光純薬、削り状)738mg(30.4mmol)を加え真空下で3時間攪拌した。窒素雰囲気下、(2-ブロモエチル)ベンゼン(東京化成工業)3.70g(20.0mmol)のTHF(富士フィルム和光純薬、脱水グレード)溶液50mLを加え、室温で1時間、45℃で1.5時間攪拌した。固体をろ過により除去することで0.4M 2-フェニルエチルマグネシウムブロミド/THF溶液を得た。
 実施例1 2,7-ジ(2-フェニルエチル)ジチエノビフェニレン(化合物1)の合成(C1工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)136mg(0.997mmol)及びTHF(富士フィルム和光純薬、脱水グレード)3mLを加えて氷冷下で攪拌した。氷冷下、合成例2で合成した0.4M 2-フェニルエチルマグネシウムブロミド/THF溶液1.90mL(0.760mmol)を加え、室温で14時間攪拌し、亜鉛試薬溶液を調製した。
 一方、100mLのシュレンク管に合成例1で合成したジブロモジチエノビフェニレン誘導体41.2mg(0.0976mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)5.20mg(0.00711mmol)、THF(富士フィルム和光純薬、脱水グレード)4mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で5時間、55℃で1.5時間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/0~5/1)した。得られた固体をメタノールでリンス洗浄し、ヘキサン/トルエン=12/7から再結晶精製し、芳香族化合物(化合物1)の黄色固体を16.0mg得た(収率35%)。
 MS(APCI) m/z: 473(M+H)。
 H NMR(CDCl):δ=7.32-7.22(m,10H),7.00(d,J=7.4Hz,2H),6.69(s,2H),δ=6.64(d,J=7.4Hz,2H),δ=3.11(t,J=7.4Hz,4H),δ=3.03(t,J=7.4Hz,4H)。
 融点:195℃
(化合物1)
Figure JPOXMLDOC01-appb-C000046
 合成例3 1,4-ジブロモ-2,5-ビス(トリメチルシリルエチニル)ベンゼン
 窒素雰囲気下、100mlシュレンク反応容器に、1,4-ジブロモ-2,5-ジヨードベンゼン物(東京化成工業)2.62g(5.36mmol)、ビス(トリフェニルホスフィン)ジクロロパラジウム(富士フィルム和光純薬)55.8mg(0.0794mmol)、ヨウ化銅(I)(富士フィルム和光純薬)20.9mg(0.110mmol)、トルエン(富士フィルム和光純薬、脱水グレード)10ml、及びトリエチルアミン(富士フィルム和光純薬)5mlを添加した。混合物にトリメチルシリルアセチレン(富士フィルム和光純薬)1.67g(17.0mmol)を添加し、室温(25℃)で50時間攪拌した。得られた反応混合物を氷冷し、1M塩酸を添加し反応をクエンチした。トルエン抽出し、有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン)し、目的物の固体1.14gを得た(収率50%)。
 H NMR(CDCl):δ=7.67(s,2H),0.27(s,18H)。
 合成例4 1,4-ビス(5-オクチルチオフェン-2-イル)-2,5-ビス(トリメチルシリルエチニル)ベンゼン
 窒素雰囲気下、50mlシュレンク反応容器に、2-ブロモ-5-オクチルチオフェン(東京化成工業)833mg(3.02mmol)及びTHF(富士フィルム和光純薬、脱水グレード)6mlを添加した。この溶液を氷冷し、エチルマグネシウムクロライド(シグマ-アルドリッチ、2.0M)のTHF溶液1.6ml(3.2mmol)を滴下した。この混合物を0℃で220分間熟成し、5-オクチルチオフェン-2-イルマグネシウムクロライド溶液を調製した。
 一方、窒素雰囲気下、100mlシュレンク反応容器に、塩化亜鉛(富士フィルム和光純薬)527mg(3.86mmol)及びTHF(脱水グレード)7mlを添加し、0℃に冷却した。この得られた白色微スラリー溶液中に、先に調製した5-オクチルチオフェン-2-イルマグネシウムクロライド溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、さらにTHF(脱水グレード)2mlを用いて100mlシュレンク反応容器及びテフロン(登録商標)キャヌラーを洗浄しながら投入した。得られた混合物を室温まで徐々に昇温しながら攪拌した。生成した5-オクチルチオフェン-2-イル亜鉛クロライドのスラリー液に、合成例3で合成した1,4-ジブロモ-2,5-ビス(トリメチルシリルエチニル)ベンゼン400mg(0.933mmol)及び触媒としてテトラキス(トリフェニルホスフィン)パラジウム(東京化成工業)24.0mg(0.0207mmol、1,4-ジブロモ-2,5-ビス(トリメチルシリルエチニル)ベンゼンに対し2.2モル%)を添加した。60℃で11時間反応を実施した後、容器を水冷し1M塩酸を添加することで反応を停止させた。トルエンを添加し、有機相を分相し、有機相を水洗浄及び無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒:ヘキサン:トルエン=1/0~20/1)。1,4-ビス(5-オクチルチオフェン-2-イル)-2,5-ビス(トリメチルシリルエチニル)ベンゼンの黄色固体541mgを得た(収率87%)。
 H NMR(CDCl):δ=7.68(s,2H),7.52(d,J=3.7Hz,2H),6.74(d,J=3.7Hz,2H),2.83(t,J=7.8Hz,4H),1.71(m,4H),1.43~1.28(m,20H),0.90(t,J=7.3Hz,6H),0.27(s.18H)。
 合成例5 1,4-ビス(5-オクチルチオフェン-2-イル)-2,5-ジエチニルベンゼン
 窒素雰囲気下、100mlシュレンク反応容器に、合成例4で合成した1,4-ビス(5-オクチルチオフェン-2-イル)-2,5-ビス(トリメチルシリルエチニル)ベンゼン540mg(0.819mmol)、THF7ml、メタノール3.5ml、及び炭酸カリウム45.8mg(0.331mmol)を添加した。この混合物を室温で3時間攪拌した。得られた反応混合物を氷冷し、1M塩酸を添加することで反応を停止させた。トルエンを添加し、有機相を分相し、有機相を2回水洗浄及び無水硫酸ナトリウムで乾燥した。減圧濃縮し、1,4-ビス(5-オクチルチオフェン-2-イル)-2,5-ジエチニルベンゼンの黄色固体422mgを得た(定量的)。
 H NMR(CDCl):δ=7.71(s,2H),7.50(d,J=3.6Hz,2H),6.76(d,J=3.5Hz,2H),3.37(s,2H),2.83(t,J=7.8Hz,4H),1.71(m,4H),1.43~1.22(m,20H),0.89(t,J=7.0Hz,6H)。
 合成例6 2,8-ジオクチルアントラ[1,2-b:5,6-b’]ジチオフェン
 窒素雰囲気下、50mlシュレンク反応容器に、合成例5で合成した1,4-ビス(5-オクチルチオフェン-2-イル)-2,5-ジエチニルベンゼン190mg(0.370mmol)、N,N-ジメチルホルムアミド6ml、及び塩化白金(富士フィルム和光純薬)20.4mgを添加した。得られた混合物を80℃で4時間攪拌した後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒:ヘキサン:トルエン=10/1)。さらにヘキサン/トルエン=4/1から2回再結晶精製し、2,8-ジオクチルアントラ[1,2-b:5,6-b’]ジチオフェンの赤黄色固体を82mg得た(収率43%)。
 H NMR(CDCl):δ=8.58(s,2H),7.83(d,J=8.7Hz,2H),6.69(d,J=8.7Hz,2H),7.14(s,2H),3.00(t,J=7.6Hz,4H),1.81(m,4H),1.45~1.22(m,20H),0.90(t,J=7.0Hz,6H)。
 融点:124℃
(2,8-ジオクチルアントラ[1,2-b:5,6-b’]ジチオフェン)
Figure JPOXMLDOC01-appb-C000047
 実施例2 (有機半導体層形成用溶液の作製)
 空気下、10mlサンプル管に、実施例1で合成した2,7-ジ(2-フェニルエチル)ジチエノビフェニレン(化合物1)0.87mg及びトルエン(富士フィルム和光純薬工業、ピュアーグレード)434mgを添加し、50℃に加熱溶解後、室温下(25℃)に放冷し、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物1の濃度は0.20重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例3 (有機半導体層及び有機薄膜トランジスタの作製)
 実施例2で得られた有機半導体層形成用溶液を用い、トップゲート-ボトムコンタクト型のp型有機薄膜トランジスタを作製した。各構成部材の材質及び成膜方法を表1に示した。
Figure JPOXMLDOC01-appb-T000048
 該トランジスタ素子の伝達特性の評価を行った結果、正孔のキャリア移動度は1.45cm/V・sec、電流オン・オフ比は1.6×10であった。
 さらにこの有機薄膜トランジスタを130℃で10分間アニール処理した後の電気物性を測定した。正孔のキャリア移動度は1.40cm/V・sec、電流オン・オフ比は1.2×10であり、熱処理による性能の低下はほとんど見られなかった。
 実施例4 (有機半導体層及び有機薄膜トランジスタの作製)
 実施例2で得られた有機半導体層形成用溶液を用い、実施例3に示した各構成部材の材質及び成膜方法を用いボトムゲート-ボトムコンタクト型のp型有機薄膜トランジスタを作製した。
 該トランジスタ素子の伝達特性の評価を行った結果、正孔のキャリア移動度は2.29cm/V・sec、電流オン・オフ比は1.5×10であった。
 さらにこの有機薄膜トランジスタを130℃で10分間アニール処理した後の電気物性を測定した。正孔のキャリア移動度は2.25cm/V・sec、電流オン・オフ比は1.0×10であり、熱処理による性能の低下はほとんど見られなかった。
 合成例7 4-プロピルベンゼンエタノールの合成
 窒素雰囲気下、100mlシュレンク反応容器に1-ブロモ-4-プロピルベンゼン(東京化成工業)5.03g(25.3mmol)及びTHF(富士フィルム和光純薬、脱水グレード)80mlを添加した。混合物を-78℃に冷却し、1.6Mノルマルブチルリチウム(東京化成工業)19.0mL(30.4mmol)を加え、-78℃で90分攪拌した。-78℃で1.2MエチレンオキシドのTHF溶液(東京化成工業)25.0ml(30.0mmol)を加え室温まで昇温しながら攪拌した。1M塩酸を添加後、ジエチルエーテルを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ジクロロメタン)し、4-プロピルベンゼンエタノールの無色液体2.55g得た(収率58%)。
 H NMR(CDCl):δ=7.11(s,4H),3.85(m,2H),2.85(t,J=6.5Hz,2H),2.57(t,J=7.5Hz,2H),1.69-1.59(m,2H),1.51-1.47(m,1H),0.95(t,J=7.3Hz,3H)。
 合成例8 1-(2-ブロモエチル)-4-プロピルベンゼンの合成
 窒素雰囲気下、100ml2つ口フラスコに合成例7で合成した4-プロピルベンゼンエタノール1.07g(6.54mmol)及びジクロロメタン(富士フィルム和光純薬、脱水グレード)30mlを添加した。この溶液を氷冷し、三臭化りん0.60ml(6.32mmol)を加えて20分攪拌後、室温で22時間攪拌した。反応溶液を氷に注ぎ、飽和炭酸水素ナトリウム水溶液で中和後、ジクロロメタンを添加し分相した。有機相を飽和炭酸水素ナトリウム水溶液、水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ジクロロメタン)し、1-(2-ブロモエチル)-4-プロピルベンゼンの無色液体489mg得た(収率33%)。
 H NMR(CDCl):δ=7.13(s,4H),3.56(t,J=7.7Hz,2H),3.14(t,J=7.7Hz,2H),2.57(t,J=7.6Hz,2H),1.64(dt,J=7.6Hz,J=7.3Hz,2H),0.95(t,J=7.3Hz,3H)。
 合成例9 2-(4-プロピルフェニル)エチルマグネシウムブロミドの合成(B1工程)の合成
 窒素雰囲気下、100mL2つ口フラスコにマグネシウム(富士フィルム和光純薬、削り状)42.1mg(1.73mmol)を加え真空下で2時間攪拌した。窒素雰囲気下、合成例8で合成した1-(2-ブロモエチル)-4-プロピルベンゼン231mg(1.02mmol)のTHF(富士フィルム和光純薬、脱水グレード)溶液5mLを加え、室温で90分、40℃で1時間攪拌した。固体をろ過により除去することで0.2M 2-(4-プロピルフェニル)エチルマグネシウムブロミド/THF溶液を得た。
 実施例5 2,7-ジ(2-(4-プロピルフェニル)エチル)ジチエノビフェニレン(化合物4)の合成(C1工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)169mg(1.24mmol)及びTHF(富士フィルム和光純薬、脱水グレード)2mLを加えて氷冷下で攪拌した。氷冷下、合成例9で合成した0.2M 2-(4-プロピルフェニル)エチルマグネシウムブロミド/THF溶液5.00mL(1.00mmol)を加え、氷冷下で30分、室温で14時間攪拌し、亜鉛試薬溶液を調製した。
 一方、100mLのシュレンク管に合成例1で合成したジブロモジチエノビフェニレン誘導体51.0mg(0.121mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)8.60mg(0.0131mmol)、THF(富士フィルム和光純薬、脱水グレード)6mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で8時間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/0~2/1)した。得られた固体をメタノールでリンス洗浄し、トルエンから再結晶精製し、2,7-ジ(2-(4-プロピルフェニル)エチル)ジチエノビフェニレン(化合物4)の黄色固体を43.6mg得た(収率65%)。
 H NMR(CDCl):δ=7.13(m,8H),6.99(d,J=7.6Hz,2H),6.69(s,2H),6.64(d,J=7.6Hz,2H),3.09(t,J=6.7Hz,4H),2.99(t,J=6.7Hz,4H),2.57(t,J=7.4Hz,4H),1.64(dt,J=7.4Hz,J=7.2Hz,4H),0.95(t,J=7.2Hz,6H)。
 融点:230℃
(化合物4)
Figure JPOXMLDOC01-appb-C000049
 合成例10 4-ブチルベンゼンエタノールの合成
 窒素雰囲気下、300mlシュレンク反応容器に1-ブロモ-4-ブチルベンゼン(東京化成工業)4.34g(20.4mmol)及びTHF(富士フィルム和光純薬、脱水グレード)80mlを添加した。混合物を-78℃に冷却し、1.6Mノルマルブチルリチウム(東京化成工業)26.0mL(41.6mmol)を加え、-78℃で2時間攪拌した。-78℃で1.2MエチレンオキシドのTHF溶液(東京化成工業)25.0ml(30.0mmol)を加え室温まで昇温しながら攪拌した。1M塩酸を添加後、ジエチルエーテルを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:ジクロロメタン=1/1~0/1、酢酸エチル)し、4-ブチルベンゼンエタノールの無色液体2.20g得た(収率60%)。
 H NMR(CDCl):δ=7.14(s,4H),3.85(m,2H),2.84(t,J=6.5Hz,2H),2.59(t,J=7.8Hz,2H),1.63-1.56(m,2H),1.41-1.32(m,1H),0.93(t,J=7.3Hz,3H)。
 合成例11 1-(2-ブロモエチル)-4-ブチルベンゼンの合成
 窒素雰囲気下、100ml2つ口フラスコに合成例10で合成した4-ブチルベンゼンエタノール2.20g(12.3mmol)及びジクロロメタン(富士フィルム和光純薬、脱水グレード)30mlを添加した。この溶液を氷冷し、三臭化りん2.40ml(25.2mmol)を加えて10分攪拌後、室温で25時間攪拌した。反応溶液を氷に注ぎ、飽和炭酸水素ナトリウム水溶液で中和後、ジクロロメタンを添加し分相した。有機相を飽和炭酸水素ナトリウム水溶液、水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ジクロロメタン)し、1-(2-ブロモエチル)-4-ブチルベンゼンの無色液体922mg得た(収率31%)。
 H NMR(CDCl):δ=7.13(m,4H),3.56(t,J=7.7Hz,2H),3.14(t,J=7.7Hz,2H),2.59(t,J=7.7Hz,2H),1.61-1.57(m,2H),1.41-1.31(m,2H),0.93(t,J=7.3Hz,3H)。
 合成例12 2-(4-ブチルフェニル)エチルマグネシウムブロミドの合成(B1工程)の合成
 窒素雰囲気下、100mL2つ口フラスコにマグネシウム(富士フィルム和光純薬、削り状)41.2mg(1.69mmol)を加え真空下で2時間攪拌した。窒素雰囲気下、合成例11で合成した1-(2-ブロモエチル)-4-ブチルベンゼン248mg(1.03mmol)のTHF(富士フィルム和光純薬、脱水グレード)溶液5mLを加え、室温で30分、40℃で1時間攪拌した。固体をろ過により除去することで0.2M 2-(4-ブチルフェニル)エチルマグネシウムブロミド/THF溶液を得た。
 実施例6 2,7-ジ(2-(4-ブチルフェニル)エチル)ジチエノビフェニレン(化合物5)の合成(C1工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)189mg(1.39mmol)及びTHF(富士フィルム和光純薬、脱水グレード)4mLを加えて氷冷下で攪拌した。氷冷下、合成例12で合成した0.2M 2-(4-ブチルフェニル)エチルマグネシウムブロミド/THF溶液5.00mL(1.00mmol)を加え、氷冷下で30分、室温で17時間攪拌し、亜鉛試薬溶液を調製した。
 一方、100mLのシュレンク管に合成例1で合成したジブロモジチエノビフェニレン誘導体50.6mg(0.120mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)9.40mg(0.0128mmol)、THF(富士フィルム和光純薬、脱水グレード)6mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で4時間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/0~2/1)した。得られた固体をメタノールでリンス洗浄し、ヘキサン/トルエン=1/1から再結晶精製し、2,7-ジ(2-(4-ブチルフェニル)エチル)ジチエノビフェニレン(化合物5)の黄色固体を37.4mg得た(収率53%)。
 H NMR(CDCl):δ=7.12(m,8H),6.99(d,J=7.4Hz,2H),6.69(s,2H),6.64(d,J=7.4Hz,2H),3.09(t,J=6.6Hz,4H),2.99(t,J=6.6Hz,4H),2.59(t,J=7.7Hz,4H),1.61-1.57(m,4H),1.40-1.31(m,4H),0.93(t,J=7.3Hz,6H)。
融点:211℃
(化合物5)
Figure JPOXMLDOC01-appb-C000050
 合成例13 4-ヘプチルベンゼンエタノールの合成
 窒素雰囲気下、300mlシュレンク反応容器に1-ブロモ-4-ヘプチルベンゼン(東京化成工業)5.18g(20.3mmol)及びTHF(富士フィルム和光純薬、脱水グレード)80mlを添加した。混合物を-78℃に冷却し、1.6Mノルマルブチルリチウム(東京化成工業)26.0mL(41.6mmol)を加え、-78℃で4時間攪拌した。-78℃で1.2MエチレンオキシドのTHF溶液(東京化成工業)25.0ml(30.0mmol)を加え室温まで昇温しながら攪拌した。1M塩酸を添加後、ジエチルエーテルを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ジクロロメタン、酢酸エチル)し、4-ヘプチルベンゼンエタノールの無色液体3.30g得た(収率74%)。
 H NMR(CDCl):δ=7.14(s,4H),3.85(m,2H),2.85(t,J=6.6Hz,2H),2.58(t,J=7.6Hz,2H),1.60(m,2H),1.46(bs,1H),1.30(m,8H),0.89(t,J=6.8Hz,3H)。
 合成例14 1-(2-ブロモエチル)-4-ヘプチルベンゼンの合成
 窒素雰囲気下、100ml2つ口フラスコに合成例13で合成した4-ヘプチルベンゼンエタノール3.15g(14.3mmol)及びジクロロメタン(富士フィルム和光純薬、脱水グレード)30mlを添加した。この溶液を氷冷し、三臭化りん1.40ml(14.7mmol)を加えて30分攪拌後、室温で19時間攪拌した。反応溶液を氷に注ぎ、飽和炭酸水素ナトリウム水溶液で中和後、ジクロロメタンを添加し分相した。有機相を飽和炭酸水素ナトリウム水溶液、水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ジクロロメタン)し、1-(2-ブロモエチル)-4-ヘプチルベンゼンの無色液体1.74g得た(収率43%)。
 H NMR(CDCl):δ=7.12(m,4H),3.56(t,J=7.4Hz,2H),3.13(t,J=7.4Hz,2H),2.58(t,J=7.6Hz,2H),1.60(m,2H),1.30(m,8H),0.88(t,J=7.0Hz,3H)。
 合成例15 2-(4-ヘプチルフェニル)エチルマグネシウムブロミドの合成(B1工程)の合成
 窒素雰囲気下、100mL2つ口フラスコにマグネシウム(富士フィルム和光純薬、削り状)42.1mg(1.73mmol)を加え真空下で2時間攪拌した。窒素雰囲気下、合成例14で合成した1-(2-ブロモエチル)-4-ヘプチルベンゼン288mg(1.02mmol)のTHF(富士フィルム和光純薬、脱水グレード)溶液5mLを加え、室温で40分、40℃で1時間攪拌した。固体をろ過により除去することで0.2M 2-(4-ヘプチルフェニル)エチルマグネシウムブロミド/THF溶液を得た。
 実施例7 2,7-ジ(2-(4-ヘプチルフェニル)エチル)ジチエノビフェニレン(化合物6)の合成(C1工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)190mg(1.40mmol)及びTHF(富士フィルム和光純薬、脱水グレード)4mLを加えて氷冷下で攪拌した。氷冷下、合成例15で合成した0.2M 2-(4-ヘプチルフェニル)エチルマグネシウムブロミド/THF溶液5.00mL(1.00mmol)を加え、氷冷下で1時間、室温で16時間攪拌し、亜鉛試薬溶液を調製した。
 一方、50mLのシュレンク管に合成例1で合成したジブロモジチエノビフェニレン誘導体49.8mg(0.118mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)9.60mg(0.0131mmol)、THF(富士フィルム和光純薬、脱水グレード)6mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で23時間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/0~2/1)した。得られた固体をメタノールでリンス洗浄し、ヘキサン/トルエン=1/1から再結晶精製し、2,7-ジ(2-(4-ヘプチルフェニル)エチル)ジチエノビフェニレン(化合物6)の黄色固体を36.1mg得た(収率46%)。
 H NMR(CDCl):δ=7.12(m,8H),6.99(d,J=7.5Hz,2H),6.69(s,2H),6.64(d,J=7.5Hz,2H),3.09(t,J=6.8Hz,4H),2.99(t,J=6.8Hz,4H),2.58(t,J=7.6Hz,4H),1.60(m,4H),1.31(m,16H),0.88(t,J=7.1Hz,6H)。
融点:198℃
(化合物6)
Figure JPOXMLDOC01-appb-C000051
 合成例16 2-(2,3-ジヒドロベンゾフラン-5-イル)エチルマグネシウムブロミドの合成(B1工程)の合成
 窒素雰囲気下、100mL2つ口フラスコにマグネシウム(富士フィルム和光純薬、削り状)369mg(15.2mmol)を加え真空下で2時間攪拌した。窒素雰囲気下、5-(2-ブロモエチル)-2,3-ジヒドロベンゾフラン(東京化成工業)2.27g(10.0mmol)のTHF(富士フィルム和光純薬、脱水グレード)溶液25mLを加え、室温で1時間、40℃で1時間攪拌した。固体をろ過により除去することで0.4M 2-(2,3-ジヒドロベンゾフラン-5-イル)エチルマグネシウムブロミド/THF溶液を得た。
 実施例8 芳香族化合物(化合物7)の合成(C1工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)173mg(1.30mmol)及びTHF(富士フィルム和光純薬、脱水グレード)5mLを加えて氷冷下で攪拌した。氷冷下、合成例16で合成した0.4M 2-(2,3-ジヒドロベンゾフラン-5-イル)エチルマグネシウムブロミド/THF溶液2.50mL(1.00mmol)を加え、氷冷下で30分間、室温で16時間攪拌し、亜鉛試薬溶液を調製した。
 一方、50mLのシュレンク管に合成例1で合成したジブロモジチエノビフェニレン誘導体(化合物3)50.8mg(0.120mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)10.4mg(0.0142mmol)、THF(富士フィルム和光純薬、脱水グレード)8mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で6時間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/2~0/1)した。得られた固体をメタノールでリンス洗浄し、トルエンから再結晶精製し、芳香族化合物(化合物7)の黄色固体を4.0mg得た(収率6%)。
(化合物7)
Figure JPOXMLDOC01-appb-C000052
 合成例17 2-(1,2-メチレンジオキシベンゼン-4-イル)エタノールの合成
 窒素雰囲気下、300mlシュレンク反応容器に4-ブロモ-1,2-メチレンジオキシベンゼン(東京化成工業)4.03g(20.1mmol)及びTHF(富士フィルム和光純薬、脱水グレード)80mlを添加した。混合物を-78℃に冷却し、1.6Mノルマルブチルリチウム(東京化成工業)26.0mL(41.6mmol)を加え、-78℃で4時間攪拌した。-78℃で1.2MエチレンオキシドのTHF溶液(東京化成工業)25.0ml(30.0mmol)を加え室温まで昇温しながら攪拌した。1M塩酸を添加後、ジエチルエーテルを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ジクロロメタン、酢酸エチル)し、2-((1,2-メチレンジオキシベンゼン-4-イル)エタノールの無色液体2.91g得た(収率72%)。
 H NMR(CDCl):δ=6.76(d,J=7.8Hz,1H),6.72(s,1H),6.68(d,J=7.8Hz,1H),5.94(s,2H),3.82(m,2H),2.79(t,J=6.4Hz,2H),1.43(m,1H)。
 合成例18 4-(2-ブロモエチル)-1,2-メチレンジオキシベンゼンの合成
 窒素雰囲気下、100ml2つ口フラスコに合成例17で合成した2-(1,2-メチレンジオキシベンゼン-4-イル)エタノール2.78g(16.7mmol)及びジクロロメタン(富士フィルム和光純薬、脱水グレード)20mlを添加した。この溶液を氷冷し、三臭化りん1.60ml(16.8mmol)を加えて30分攪拌後、室温で20時間攪拌した。反応溶液を氷に注ぎ、飽和炭酸水素ナトリウム水溶液で中和後、ジクロロメタンを添加し分相した。有機相を飽和炭酸水素ナトリウム水溶液、水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ジクロロメタン/ヘキサン=1:5)し、4-(2-ブロモエチル)-1,2-メチレンジオキシベンゼンの無色液体1.03g得た(収率33%)。
 H NMR(CDCl):δ=6.76(d,J=7.9Hz,1H),6.69(s,1H),6.66(d,J=7.9Hz,1H),5.95(s,2H),2.52(t,J=7.6Hz,2H),3.08(t,J=7.6Hz,2H)。
 合成例19 2-(1,2-メチレンジオキシベンゼン-4-イル)エチルマグネシウムブロミドの合成(B1工程)の合成
 窒素雰囲気下、100mL2つ口フラスコにマグネシウム(富士フィルム和光純薬、削り状)39.1mg(1.61mmol)を加え真空下で2時間攪拌した。窒素雰囲気下、合成例18で合成した4-(2-ブロモエチル)-1,2-メチレンジオキシベンゼン229mg(1.00mmol)のTHF(富士フィルム和光純薬、脱水グレード)溶液5mLを加え、室温で30分間、40℃で1時間攪拌した。固体をろ過により除去することで0.2M 2-(1,2-メチレンジオキシベンゼン-4-イル)エチルマグネシウムブロミド/THF溶液を得た。
 実施例9 芳香族化合物(化合物8)の合成(C1工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)187mg(1.38mmol)及びTHF(富士フィルム和光純薬、脱水グレード)7mLを加えて氷冷下で攪拌した。氷冷下、合成例19で合成した0.2M 2-(1,2-メチレンジオキシベンゼン-4-イル)エチルマグネシウムブロミド/THF溶液5.0mL(1.00mmol)を加え、氷冷下で1時間、室温で15時間攪拌し、亜鉛試薬溶液を調製した。
 一方、50mLのシュレンク管に合成例1で合成したジブロモジチエノビフェニレン誘導体(化合物3)50.6mg(0.112mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)10.8mg(0.0148mmol)、THF(富士フィルム和光純薬、脱水グレード)8mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で8時間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/2~0/1)した。得られた固体をメタノールでリンス洗浄し、トルエンから再結晶精製し、芳香族化合物(化合物8)の黄色固体を34.7mg得た(収率55%)。
(化合物8)
Figure JPOXMLDOC01-appb-C000053
 合成例20 1,4-ビス(チオフェン-2-イル)-2,5-ビス(トリメチルシリルエチニル)ベンゼンの合成
 窒素雰囲気下、300mlシュレンク反応容器に、2-ブロモ-チオフェン(東京化成工業)8.18g(50.2mmol)及びTHF(富士フィルム和光純薬、脱水グレード)90mlを添加した。この溶液を氷冷し、エチルマグネシウムクロライド(シグマ-アルドリッチ、2.0M)のTHF溶液28.0ml(56.0mmol)を滴下した。この混合物を0℃で3時間熟成し、チオフェン-2-イルマグネシウムクロライド溶液を調製した。
 一方、窒素雰囲気下、500mlシュレンク反応容器に、塩化亜鉛(富士フィルム和光純薬)9.31g(68.3mmol)及びTHF(脱水グレード)110mlを添加し、0℃に冷却した。この得られた白色微スラリー溶液中に、先に調製したチオフェン-2-イルマグネシウムクロライド溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、さらにTHF(脱水グレード)40mlを用いて100mlシュレンク反応容器及びテフロン(登録商標)キャヌラーを洗浄しながら投入した。得られた混合物を室温まで徐々に昇温しながら攪拌した。生成したチオフェン-2-イル亜鉛クロライドのスラリー液に、合成例3で合成した1,4-ジブロモ-2,5-ビス(トリメチルシリルエチニル)ベンゼン6.56g(15.3mmol)及び触媒としてテトラキス(トリフェニルホスフィン)パラジウム(東京化成工業)515mg(0.445mmol、1,4-ジブロモ-2,5-ビス(トリメチルシリルエチニル)ベンゼンに対し2.9モル%)を添加した。60℃で7時間反応を実施した後、容器を水冷し1M塩酸を添加することで反応を停止させた。トルエンを添加し、有機相を分相し、有機相を水洗浄及び無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒:ヘキサン:トルエン=1/10)。1,4-ビス(チオフェン-2-イル)-2,5-ビス(トリメチルシリルエチニル)ベンゼンの黄色固体5.44を得た(収率82%)。
 H NMR(CDCl):δ=7.74(s,2H),7.70(dd,J=1.4Hz,J=3.7Hz,2H),7.37(dd,J=1.3Hz,J=5.1Hz,2H),7.09(dd,J=3.7Hz,J=5.1Hz,2H),0.26(s,18H)。
 合成例21 1,4-ビス(チオフェン-2-イル)-2,5-ジエチニルベンゼンの合成
 窒素雰囲気下、300mlナスフラスコに、合成例20で合成した1,4-ビス(チオフェン-2-イル)-2,5-ビス(トリメチルシリルエチニル)ベンゼン5.38g(12.4mmol)、THF100ml、メタノール50ml、及び炭酸カリウム801mg(5.79mmol)を添加した。この混合物を室温で6時間攪拌した。得られた反応混合物を氷冷し、1M塩酸を添加することで反応を停止させた。トルエンを添加し、有機相を分相し、有機相を2回水洗浄及び無水硫酸ナトリウムで乾燥した。減圧濃縮し、1,4-ビス(チオフェン-2-イル)-2,5-ジエチニルベンゼンの黄色固体3.53gを得た(定量的)。
 H NMR(CDCl):δ=7.78(s,2H),7.67(dd,J=1.3Hz,J=3.7Hz,2H),7.39(dd,J=1.0Hz,J=5.1Hz,2H),7.12(dd,J=3.7Hz,J=5.1Hz,2H),3.37(s,2H)。
 合成例22 アントラ[1,2-b:5,6-b’]ジチオフェン(化合物19)の合成
 窒素雰囲気下、200mlシュレンク反応容器に、合成例21で合成した1,4-ビス(チオフェン-2-イル)-2,5-ジエチニルベンゼン1.74g(6.00mmol)、N,N-ジメチルホルムアミド60ml、及び塩化白金(富士フィルム和光純薬)323mg(1.21mmol)を添加した。得られた混合物を80℃で4時間攪拌した後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒:ヘキサン:トルエン=10/1~2/1)、アントラ[1,2-b:5,6-b’]ジチオフェン(化合物19)の黄色固体を701mg得た(収率40%)。
H NMR(CDCl):δ=8.73(s,2H),7.92(d,J=8.9Hz,2H),7.84(d,J=8.9Hz,2H),7.56(d,J=5.4Hz,2H),7.56(d,J=5.4Hz,2H)。
 合成例23 2,8-ジブロモアントラ[1,2-b:5,6-b’]ジチオフェン(化合物20)の合成(A-2工程)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例22で合成したアントラ[1,2-b:5,6-b’]ジチオフェン(化合物19)602mg(2.07mmol)、THF(富士フィルム和光純薬、脱水グレード)50mlを添加した。混合物を-78℃に冷却し、1.6Mノルマルブチルリチウム(東京化成工業)6.00mL(9.60mmol)を加え20分間攪拌後、室温で50分攪拌した。-78℃に冷却し、1,2-ジブロモテトラクロロエタン3.45g(10.6mmol)のTHF溶液(富士フィルム和光純薬、脱水グレード)25mLを加え室温まで昇温しながら攪拌した。水を加え、固体をろ過し水、メタノール、ヘキサンで洗浄し2,8-ジブロモアントラ[1,2-b:5,6-b’]ジチオフェン(化合物20)の黄色固体761mgを得た(収率82%)。
H NMR(CDCl,50℃):δ=8.53(s,2H),7.87(d,J=8.9Hz,2H),7.87(d,J=8.9Hz,2H),7.47(s,2H)。
 実施例10 2,8-ジ(2-フェニルエチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物10)の合成(C2工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)413mg(3.02mmol)及びTHF(富士フィルム和光純薬、脱水グレード)4mLを加えて氷冷下で攪拌した。氷冷下、合成例2で合成した0.4M 2-フェニルエチルマグネシウムブロミド/THF溶液5.60mL(2.34mmol)を加え0℃で40分、室温で16時間攪拌し、亜鉛試薬溶液を調製した。
 一方、100mLのシュレンク管に合成例23で合成した2,8-ジブロモアントラ[1,2-b:5,6-b’]ジチオフェン(化合物20)156mg(0.348mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)48.5mg(0.0662mmol)、THF(富士フィルム和光純薬、脱水グレード)20mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で24時間間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/0~5/1)した。得られた固体をメタノールでリンス洗浄し、トルエンから再結晶精製し、2,8-ジ(2-フェニルエチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物10)の黄色固体を73.2mg得た(収率42%)。
H NMR(CDCl):δ=8.59(s,2H),7.85(d,J=8.8Hz,2H),7.69(d,J=8.8Hz,2H),7.28(m,10H),7.14(s,2H),3.34(t,J=7.6Hz,4H),3.15(t,J=7.6Hz,4H)。
融点:221℃
(化合物10)
Figure JPOXMLDOC01-appb-C000054
 実施例11 2-(2-フェニルエチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物15)の合成(C2工程)
 実施例10のシリカゲルカラムクロマトグラフィーで得られた別の成分をヘキサンから再結晶精製し、2-(2-フェニルエチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物15)の黄色固体を2.0mg得た(収率1.5%)。
H NMR(CDCl):δ=8.70(s,1H),8.62(s,1H),7.90(d,J=8.6Hz,1H),7.88(d,J=8.4Hz,1H),7.82(d,J=8.7Hz,1H),7.71(d,J=8.8Hz,1H),7.54(d,J=5.1Hz,1H),7.49(d,J=5.4Hz,1H),7.30(m,5H),7.15(s,1H),3.34(t,J=7.7Hz,4H),3.16(t,J=7.3Hz,4H)。
融点:174℃
(化合物15)
Figure JPOXMLDOC01-appb-C000055
 実施例12 2,8-ジ(2-(4-ノルマルブチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物11)の合成(C2工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)194mg(1.42mmol)及びTHF(富士フィルム和光純薬、脱水グレード)4mLを加えて氷冷下で攪拌した。氷冷下、合成例12で合成した0.2M 2-(4-ブチルフェニル)エチルマグネシウムブロミド/THF溶液4.5mL(0.90mmol)を加え0℃で30分、室温で16時間攪拌し、亜鉛試薬溶液を調製した。
 一方、100mLのシュレンク管に合成例23で合成した2,8-ジブロモアントラ[1,2-b:5,6-b’]ジチオフェン(化合物20)39.7mg(0.0886mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)7.96mg(0.0109mmol)、THF(富士フィルム和光純薬、脱水グレード)3mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で24時間間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/0~5/1)した。得られた固体をメタノールでリンス洗浄し、ヘキサン/トルエン=6/5から再結晶精製し、2,8-ジ(2-(4-ノルマルブチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物11)の黄色固体を12.6mg得た(収率23%)。
H NMR(CDCl):δ=8.59(s,2H),7.85(d,J=8.7Hz,2H),7.69(d,J=8.9Hz,2H),7.19(d,J=8.0Hz,2H),7.15(s,2H),7.13(d,J=8.0Hz,2H),3.32(t,J=7.5Hz,4H),3.12(t,J=8.5Hz,4H),2.61(t,J=7.6Hz,4H),1.61(m,4H),1.37(m,4H),0.94(t,J=7.3Hz,6H)。
融点:227℃
(化合物11)
Figure JPOXMLDOC01-appb-C000056
 実施例13 2-(2-(4-ノルマルブチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物17)の合成(C2工程)
 実施例12のシリカゲルカラムクロマトグラフィーで得られた別の成分をヘキサンから再結晶精製し、2-(2-(4-ノルマルブチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物17)の黄色固体を5.8mg得た(収率15%)。
H NMR(CDCl):δ=8.70(s,1H),8.62(s,1H),7.89(d,J=8.5Hz,1H),7.87(d,J=8.0Hz,1H),7.82(d,J=8.8Hz,1H),7.71(d,J=8.8Hz,1H),7.54(d,J=5.4Hz,1H),7.49(d,J=5.1Hz,1H),7.19(d,J=8.0Hz,2H),7.16(s,1H),7.13(d,J=8.1Hz,2H),3.32(t,J=7.4Hz,2H),3.12(t,J=8.6Hz,2H),2.61(t,J=7.7Hz,2H),1.60(m,2H),1.37(m,2H),0.94(t,J=7.3Hz,3H)。
融点:161℃
(化合物17)
Figure JPOXMLDOC01-appb-C000057
 実施例14 2,8-ジ(2-(4-ノルマルヘプチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物12)の合成(C2工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)124mg(0.909mmol)及びTHF(富士フィルム和光純薬、脱水グレード)2mLを加えて氷冷下で攪拌した。氷冷下、合成例15で合成した0.2M 2-(4-ヘプチルフェニル)エチルマグネシウムブロミド/THF溶液3.4mL(0.68mmol)を加え0℃で20分、室温で16時間攪拌し、亜鉛試薬溶液を調製した。
 一方、100mLのシュレンク管に合成例23で合成した2,8-ジブロモアントラ[1,2-b:5,6-b’]ジチオフェン(化合物20)31.4mg(0.0701mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)5.20mg(0.00711mmol)、THF(富士フィルム和光純薬、脱水グレード)3mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で90分、50℃で1時間間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮し、得られた固体をメタノールでリンス洗浄した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/0~5/1)した。得られた固体をメタノールでリンス洗浄し、ヘキサン/トルエン=5/4から再結晶精製し、2,8-ジ(2-(4-ノルマルヘプチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物12)の黄色固体を3.5mg得た(収率7%)。
H NMR(CDCl):δ=8.59(s,2H),7.85(d,J=9.0Hz,2H),7.69(d,J=8.8Hz,2H),7.19(d,J=7.9Hz,2H),7.15(s,2H),7.13(d,J=8.0Hz,2H),3.32(t,J=7.6Hz,4H),3.11(t,J=8.5Hz,4H),2.59(t,J=7.6Hz,4H),1.61(m,4H),1.29(m,16H),0.89(t,J=6.5Hz,6H)。
(化合物12)
Figure JPOXMLDOC01-appb-C000058
 実施例15 2-(2-(4-ノルマルヘプチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物18)の合成(C2工程)
 実施例14のシリカゲルカラムクロマトグラフィーで得られた別の成分をヘキサンから再結晶精製し、2-(2-(4-ノルマルヘプチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物18)の黄色固体を3.5mg得た(収率10%)。
H NMR(CDCl):δ=8.70(s,1H),8.62(s,1H),7.90(d,J=8.5Hz,1H),7.88(d,J=8.0Hz,1H),7.82(d,J=8.9Hz,1H),7.71(d,J=8.9Hz,1H),7.54(d,J=5.4Hz,1H),7.49(d,J=5.1Hz,1H),7.19(d,J=8.0Hz,2H),7.16(s,1H),7.13(d,J=8.2Hz,2H),3.32(t,J=7.7Hz,2H),3.12(t,J=8.4Hz,2H),2.59(t,J=7.5Hz,2H),1.61(m,4H),1.29(m,8H),0.89(t,J=6.8Hz,3H)。
(化合物18)
Figure JPOXMLDOC01-appb-C000059
 合成例24 ブロモジチエノビフェニレン誘導体(化合物21)の合成(A3工程)
 窒素雰囲気下、50mlシュレンク反応容器に、特開2018-174322記載の方法で合成したジチエノビフェニレン誘導体(該公報中の化合物2)126mg(0.476mmol)、THF(富士フィルム和光純薬、脱水グレード)15mlを添加した。混合物を-78℃に冷却し、1.6Mノルマルブチルリチウム(東京化成工業)0.30mL(0.480mmol)を加え-78℃で15分間攪拌後、室温で30分攪拌した。-78℃に冷却し、1,2-ジブロモテトラクロロエタン186mg(0.571mmol)のTHF溶液(富士フィルム和光純薬、脱水グレード)6mLを加え室温まで昇温しながら攪拌した。氷冷後、水を加え反応を停止し、トルエンを添加し分相した。有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン)し、ヘキサンから再結晶精製することでブロモジチエノビフェニレン誘導体(化合物21)の黄色固体85.1mg得た(収率47%)。
H NMR(CDCl):δ=7.23(d,J=7.1Hz,1H),7.21(d,J=5.4Hz,1H),7.05(d,J=5.8Hz,2H),7.04(s,1H),6.71(d,J=7.5Hz,1H),6.67(d,J=7.3Hz,1H)。
 実施例16 2-(2-フェニルエチル)ジチエノビフェニレン(化合物13)の合成(C3工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)118mg(0.866mmol)及びTHF(富士フィルム和光純薬、脱水グレード)2mLを加えて氷冷下で攪拌した。氷冷下、合成例2で合成した0.4M 2-フェニルエチルマグネシウムブロミド/THF溶液1.90mL(0.760mmol)を加え0℃で30分攪拌し、室温で14時間攪拌し、亜鉛試薬溶液を調製した。
 一方、50mLのシュレンク管に合成例24で合成したブロモジチエノビフェニレン誘導体36.2mg(0.105mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)10.1mg(0.0138mmol)、THF(富士フィルム和光純薬、脱水グレード)5mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で5時間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン)した。得られた固体をメタノールでリンス洗浄し、2-(2-フェニルエチル)ジチエノビフェニレン(化合物13)の黄色固体を15.1mg得た(収率39%)。
H NMR(CDCl):δ=7.30(m,2H),7.21-7.18(m,5H),7.04(d,J=5.6Hz,1H),7.01(d,J=7.5Hz,1H),6.71(d,J=7.3Hz,1H),6.69(s,1H),6.66(d,J=7.3Hz,1H),3.12(t,J=6.4Hz,2H),3.03(t,J=6.4Hz,2H)。
融点:161℃
(化合物13)
Figure JPOXMLDOC01-appb-C000060
 合成例25 1-(2-ブロモエチル)-4-メチルベンゼンの合成
 窒素雰囲気下、100ml2つ口フラスコに2-(p-トリル)エタノール(東京化成工業)5.36g(39.3mmol)及びジクロロメタン(富士フィルム和光純薬、脱水グレード)80mlを添加した。この溶液を氷冷し、三臭化りん4.00ml(42.1mmol)を加えて30分攪拌後、室温で21時間攪拌した。反応溶液を氷に注ぎ、飽和炭酸水素ナトリウム水溶液で中和後、ジクロロメタンを添加し分相した。有機相を飽和炭酸水素ナトリウム水溶液、水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ジクロロメタン)し、1-(2-ブロモエチル)-4-メチルベンゼンの無色液体4.05g得た(収率52%)。
H NMR(CDCl):δ=7.15(d,J=8.2Hz,2H),7.11(d,J=8.2Hz,2H),3.56(t,J=7.7Hz,2H),3.14(t,J=7.7Hz,2H),2.35(s,3H)。
 合成例26 2-(4-メチルフェニル)エチルマグネシウムブロミドの合成(B1工程)
 窒素雰囲気下、50mL2つ口フラスコにマグネシウム(富士フィルム和光純薬、削り状)228mg(9.36mmol)を加え真空下で1時間攪拌した。窒素雰囲気下、合成例25で合成した1-(2-ブロモエチル)-4-メチルベンゼン1.60g(8.02mmol)のTHF(富士フィルム和光純薬、脱水グレード)溶液20mLを加え、室温で90分攪拌した。固体をろ過により除去することで0.4M 2-(4-メチルフェニル)エチルマグネシウムブロミド/THF溶液を得た。
 実施例17 2-(2-(4-メチルフェニル)エチル)ジチエノビフェニレン(化合物14)の合成(C3工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)114mg(0.836mmol)及びTHF(富士フィルム和光純薬、脱水グレード)2mLを加えて氷冷下で攪拌した。氷冷下、合成例26で合成した0.4M 2-(4-メチルフェニル)エチルマグネシウムブロミド/THF溶液1.80mL(0.720mmol)を加え0℃で15分攪拌し、室温で14時間攪拌し、亜鉛試薬溶液を調製した。
 一方、50mLのシュレンク管に合成例24で合成したブロモジチエノビフェニレン誘導体24.4mg(0.0711mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)9.00mg(0.0123mmol)、THF(富士フィルム和光純薬、脱水グレード)7mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で5時間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン)した。得られた固体をメタノールでリンス洗浄し、2-(2-(4-メチルフェニル)エチル)ジチエノビフェニレン(化合物14)の黄色固体を4.9mg得た(収率18%)。
H NMR(CDCl):δ=7.20(d,J=8.3Hz,1H),7.19(d,J=5.4Hz,1H),7.04(d,J=5.5Hz,1H),7.01(d,J=7.4Hz,1H),6.71(d,J=7.3Hz,1H),6.69(s,1H),6.66(d,J=7.4Hz,1H),3.09(t,J=7.0Hz,2H),2.99(t,J=7.8Hz,2H),2.33(s,3H)。
融点:151℃
(化合物14)
Figure JPOXMLDOC01-appb-C000061
 合成例27 2-ブロモアントラ[1,2-b:5,6-b’]ジチオフェン(化合物22)の合成(A-4工程)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例22で合成したアントラ[1,2-b:5,6-b’]ジチオフェン(化合物19)481mg(1.66mmol)、THF(富士フィルム和光純薬、脱水グレード)57mlを添加した。混合物を-78℃に冷却し、1.6Mノルマルブチルリチウム(東京化成工業)1.05mL(1.68mmol)を加え―78℃で2時間攪拌した。-78℃に冷却で1,2-ジブロモテトラクロロエタン634mg(1.95mmol)のTHF溶液(富士フィルム和光純薬、脱水グレード)24mLを加え室温まで昇温しながら攪拌した。氷冷後、水を加え反応を停止し、トルエンを添加し分相した。有機相を水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/0~2/1)し、トルエンから再結晶精製することで2-ブロモアントラ[1,2-b:5,6-b’]ジチオフェン(化合物22)の黄色固体372mg得た(収率51%)。
H NMR(CDCl):δ=8.70(s,1H),8.56(s,1H),7.90-7.86(m,3H),7.71(d,J=8.7Hz,1H),7.57(d,J=5.0Hz,1H),7.50(d,J=5.4Hz,1H),7.48(s,1H)。
 実施例18 2-(2-(4-メチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物16)の合成(C4工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)207mg(1.51mmol)及びTHF(富士フィルム和光純薬、脱水グレード)4mLを加えて氷冷下で攪拌した。氷冷下、合成例26で合成した0.4M 2-(4-メチルフェニル)エチルマグネシウムブロミド/THF溶液2.50mL(1.00mmol)を加え0℃で30分攪拌し、室温で14時間攪拌し、亜鉛試薬溶液を調製した。
 一方、50mLのシュレンク管に合成例27で合成した2-ブロモアントラ[1,2-b:5,6-b’]ジチオフェン(化合物22)50.1mg(0.136mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)11.0mg(0.0150mmol)、THF(富士フィルム和光純薬、脱水グレード)7mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で24時間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/0~10/1)した。得られた固体をヘキサン/トルエン=5/1から再結晶精製し、2-(2-(4-メチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物16)の黄色固体を13.8mg得た(収率30%)。
H NMR(CDCl):δ=8.70(s,1H),8.62(s,1H),7.90(d,J=8.8Hz,1H),7.87(d,J=8.8Hz,1H),7.82(d,J=8.7Hz,1H),7.71(d,J=8.8Hz,1H),7.54(d,J=5.4Hz,1H),7.49(d,J=5.1Hz,1H),7.18-7.12(m,5H),3.32(t,J=7.7Hz,2H),3.12(t,J=7.4Hz,2H),2.35(s,3H)。
融点:190℃
(化合物16)
Figure JPOXMLDOC01-appb-C000062
 合成例28 1,5-ビス(トリメチルシリルエチニル)-2,6-ジフルオロビフェニレンの合成(D1工程)
 窒素雰囲気下、50mLシュレンク反応容器に、特開2018-174322記載の方法を用いて合成した2,6-ジフルオロ-1,5-ジヨードビフェニレン260mg(0.591mmol)、ビス(トリフェニルホスフィン)ジクロロパラジウム(富士フィルム和光純薬)10.3mg(0.0146mmol)、ヨウ化銅(I)(富士フィルム和光純薬)5.2mg(0.0273mmol)、トルエン6mL及びトリエチルアミン6mLを添加した。得られた混合物にトリメチルシリルアセチレン(東京化成工業)174mg(1.77mmol)を添加し、30℃で6時間攪拌した。得られた反応混合物に水を添加し反応をクエンチした。トルエン抽出し、有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/0~20/1)し、目的物の薄黄色固体188mgを得た(収率84%)。
 H NMR(CDCl):δ=6.57(dd,J=7.3Hz,4.0Hz,2H),6.42(dd,J=11.0Hz,7.4Hz,2H),0.26(s,18H)。 
 合成例29 ビフェニレノ[2,1-b:6,5-b’]ジチオフェンの合成(E1工程)
 窒素雰囲気下、100mLシュレンク反応容器に、合成例28で合成した1,5-ビス(トリメチルシリルエチニル)-2,6-ジフルオロビフェニレン133mg(0.349mmol)、硫化ナトリウム・9水和物(シグマ-アルドリッチ)301mg(1.25mmol)、及びDMSO(富士フィルム和光純薬)8mLを添加した。混合物を90℃に加熱し、4時間攪拌した。得られた反応混合物を0℃に冷却後、水及びトルエンを添加した。熱トルエン抽出し、分相後、有機相を水で洗浄した。有機相を減圧濃縮し、ビフェニレノ[2,1-b:6,5-b’]ジチオフェンの黄色固体78mgを得た(収率84%)。
 H NMR(CDCl):δ=7.31(d,J=5.7Hz,2H),7.18(d,J=7.6H),6.94(d,J=5.6Hz,2H),6.65(d,J=7.4,2H)。 
 合成例30 2,7-ジブロモビフェニレノ[2,1-b:6,5-b’]ジチオフェンの合成(F1工程)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例29で合成したビフェニレノ[2,1-b:6,5-b’]ジチオフェン105mg(0.397mmol)、THF(富士フィルム和光純薬、脱水グレード)9mlを添加した。混合物を-78℃に冷却し、1.6Mノルマルブチルリチウム(東京化成工業)0.94mL(1.50mmol)を加え―78℃で10分間攪拌した。20℃で25分間攪拌後、-78℃に冷却で1,2-ジブロモテトラクロロエタン555mg(1.70mmol)のTHF溶液(富士フィルム和光純薬、脱水グレード)3mLを加え室温まで昇温しながら攪拌した。氷冷後、水を加え反応を停止した。析出した固体にヘキサンを添加し、濾紙を用い濾過した。固体を水、メタノール、ヘキサンで洗浄し、得られた残渣を乾燥し、2,7-ジブロモビフェニレノ[2,1-b:6,5-b’]ジチオフェンの赤橙色固体86mg得た(収率51%)。
 H NMR(CDCl、58℃):δ=7.02(d,J=7.7Hz,2H),6.96(s,2H),δ=6.58(d,J=7.7Hz,2H)。
 実施例19 2,7-ジ(2-フェニルエチル)ジチエノビフェニレン(化合物9)の合成(G1工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)150mg(1.10mmol)及びTHF(富士フィルム和光純薬、脱水グレード)7mLを加えて氷冷下で攪拌した。氷冷下、合成例2で合成した0.4M 2-フェニルエチルマグネシウムブロミド/THF溶液1.4mL(0.56mmol)を加え、室温で1時間攪拌し、亜鉛試薬溶液を調製した。ここへ合成例30で合成した2,7-ジブロモビフェニレノ[2,1-b:6,5-b’]ジチオフェン45.4mg(0.107mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)3.30mg(0.00451mmol)を加えた。この混合物を40℃で13時間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/0~3/1)した。得られた固体をヘプタン/トルエン=1/2から再結晶精製し、芳香族化合物(化合物9)の黄色固体を26mg得た(収率51%)。
 H NMR(CDCl):δ=7.34-7.20(m,10H),7.04(d,J=7.6Hz,2H),6.61(s,2H),6.63(d,J=7.4Hz,2H),δ=3.11(t,J=8.64Hz,4H),δ=3.03(t,J=8.4Hz,4H)。
(化合物9)
Figure JPOXMLDOC01-appb-C000063
 実施例20 (有機半導体層形成用溶液の作製)
 実施例5で合成した2,7-ジ(2-(4-プロピルフェニル)エチル)ジチエノビフェニレン(化合物4)の0.44mgを用いた以外は、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物4の濃度は0.10重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例21 (有機半導体層及び有機薄膜トランジスタの作製)
 実施例20で得られた有機半導体層形成用溶液を用い、実施例3に示した各構成部材の材質及び成膜方法を用いボトムゲート-ボトムコンタクト型のp型有機薄膜トランジスタを作製した。
 該トランジスタ素子の伝達特性の評価を行った結果、正孔のキャリア移動度は1.86cm/V・sec、電流オン・オフ比は1.1×10であった。
 さらにこの有機薄膜トランジスタを130℃で10分間アニール処理した後の電気物性を測定した。正孔のキャリア移動度は1.70cm/V・sec、電流オン・オフ比は1.0×10であり、熱処理による性能の低下はほとんど見られなかった。
 実施例22 (有機半導体層及び有機薄膜トランジスタの作製)
 空気下、10mlサンプル管に、実施例5で合成した2,7-ジ(2-(4-プロピルフェニル)エチル)ジチエノビフェニレン(化合物4)0.87mg及びアニソール(シグマ-アルドリッチ)440mgを添加し、60℃で加熱し化合物4の0.20重量%の溶液を調整した。得られた溶液を用い、実施例3に示した各構成部材の材質及び成膜方法を用いボトムゲート-ボトムコンタクト型のp型有機薄膜トランジスタを作製した。
 該トランジスタ素子の伝達特性の評価を行った結果、正孔のキャリア移動度は2.48cm/V・sec、電流オン・オフ比は1.6×10であった。
 さらにこの有機薄膜トランジスタを130℃で10分間アニール処理した後の電気物性を測定した。正孔のキャリア移動度は2.40cm/V・sec、電流オン・オフ比は1.4×10であり、熱処理による性能の低下はほとんど見られなかった。
 実施例23 (有機半導体層形成用溶液の作製)
 実施例6で合成した2,7-ジ(2-(4-ブチルフェニル)エチル)ジチエノビフェニレン(化合物5)の1.74mgを用いた以外は、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物5の濃度は0.40重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例24 (有機半導体層形成用溶液の作製)
 実施例7で合成した2,7-ジ(2-(4-ヘプチルフェニル)エチル)ジチエノビフェニレン(化合物6)の0.87mgを用いた以外は、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物6の濃度は0.20重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例25 (有機半導体層及び有機薄膜トランジスタの作製)
 実施例24で得られた有機半導体層形成用溶液を用い、実施例3に示した各構成部材の材質及び成膜方法を用いボトムゲート-ボトムコンタクト型のp型有機薄膜トランジスタを作製した。
 該トランジスタ素子の伝達特性の評価を行った結果、正孔のキャリア移動度は1.19cm/V・sec、電流オン・オフ比は1.1×10であった。
 さらにこの有機薄膜トランジスタを130℃で10分間アニール処理した後の電気物性を測定した。正孔のキャリア移動度は1.15cm/V・sec、電流オン・オフ比は1.0×10であり、熱処理による性能の低下はほとんど見られなかった。
 実施例26 (有機半導体層形成用溶液の作製)
 実施例10で合成した2,8-ジ(2-フェニルエチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物10)の0.87mgを用いた以外は、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物10の濃度は0.20重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例27 (有機半導体層形成用溶液の作製)
 実施例16で合成した2-(2-フェニルエチル)ジチエノビフェニレン(化合物13)の4.35mgを用いた以外は、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物13の濃度は1.00重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例28 (有機半導体層形成用溶液の作製)
 実施例17で合成した2-(2-(4-メチルフェニル)エチル)ジチエノビフェニレン(化合物14)の4.35mgを用いた以外は、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物14の濃度は1.00重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例29 (有機半導体層形成用溶液の作製)
 実施例11で合成した2-(2-フェニルエチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物15)の1.74mgを用いた以外は、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物15の濃度は0.40重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例30 (有機半導体層形成用溶液の作製)
 実施例18で合成した2-(2-(4-メチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物16)の2.18mgを用いた以外は、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物16の濃度は0.50重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例31 (有機半導体層形成用溶液の作製)
 実施例13で合成した2-(2-(4-ノルマルブチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物17)の4.35mgを用いた以外は、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物17の濃度は1.00重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例32 (有機半導体層及び有機薄膜トランジスタの作製)
 実施例13で合成した2-(2-(4-ノルマルブチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物17)の0.87mgを用いた以外は、実施例2と同様の方法により、有機半導体層形成用溶液を調製した(化合物17の濃度は0.20重量%)。得られた有機半導体層形成用溶液を用い、実施例3に示した各構成部材の材質及び成膜方法を用いボトムゲート-ボトムコンタクト型のp型有機薄膜トランジスタを作製した。
 該トランジスタ素子の伝達特性の評価を行った結果、正孔のキャリア移動度は1.13cm/V・sec、電流オン・オフ比は8.1×10であった。
 さらにこの有機薄膜トランジスタを130℃で10分間アニール処理した後の電気物性を測定した。正孔のキャリア移動度は1.10cm/V・sec、電流オン・オフ比は8.0×10であり、熱処理による性能の低下はほとんど見られなかった。
 実施例33 (有機半導体層形成用溶液の作製)
 実施例15で合成した2-(2-(4-ノルマルヘプチルフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物18)の0.87mgを用いた以外は、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物18の濃度は0.20重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 合成例31 4-プロポキシベンゼンエタノールの合成
 窒素雰囲気下、300mlシュレンク反応容器に1-ブロモ-4-プロポキシベンゼン(東京化成工業)4.51g(21.0mmol)及びTHF(富士フィルム和光純薬、脱水グレード)80mlを添加した。混合物を-78℃に冷却し、1.6Mノルマルブチルリチウム(東京化成工業)22.0mL(35.0mmol)を加え、-78℃で2時間攪拌した。-78℃で1.2MエチレンオキシドのTHF溶液(東京化成工業)25.0ml(30.0mmol)を加え室温まで昇温しながら攪拌した。1M塩酸を添加後、ジエチルエーテルを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ジクロロメタン、酢酸エチル)し、4-プロポキシベンゼンエタノールの無色液体2.83g得た(収率64%)。
 H NMR(CDCl):δ=7.13(dd,J=1.9Hz,6.4Hz,2H),6.85(dd,J=2.1Hz,6.4Hz,2H),3.91(t,J=6.7Hz,2H),3.82(t,J=6.7Hz,2H),2.81(t,J=6.6Hz,2H),1.81(tq,J=6.6Hz,7.4Hz,2H),1.04(t,J=7.4Hz,3H)。
 合成例32 1-(2-ブロモエチル)-4-プロポキシベンゼンの合成
 窒素雰囲気下、100mlナスフラスコに合成例31で合成した4-プロポキシベンゼンエタノール2.83g(15.7mmol)及びトルエン(富士フィルム和光純薬、脱水グレード)20mlを添加した。室温で三臭化りん0.80ml(8.4mmol)を加えて20分攪拌後、100℃で4時間攪拌した。反応溶液を氷に注ぎ、飽和炭酸水素ナトリウム水溶液で中和後、ジクロロメタンを添加し分相した。有機相を飽和炭酸水素ナトリウム水溶液、水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ジクロロメタン)し、1-(2-ブロモエチル)-4-プロポキシベンゼンの無色液体3.40g得た(収率84%)。
 H NMR(CDCl):δ=7.11(d,J=8.4Hz,2H),6.86(d,J=8.6Hz,2H),3.91(t,J=6.6Hz,2H),3.53(t,J=7.4Hz,2H),3.10(t,J=7.6Hz,2H),1.82(tq,J=6.8Hz,7.4Hz,2H),1.04(t,J=7.4Hz,3H)。
 合成例33 2-(4-プロポキシフェニル)エチルマグネシウムブロミドの合成(B1工程)
 窒素雰囲気下、20mL2つ口フラスコにマグネシウム(富士フィルム和光純薬、削り状)172mg(7.06mmol)を加え真空下で1時間攪拌した。窒素雰囲気下、合成例32で合成した1-(2-ブロモエチル)-4-プロポキシベンゼン1.46g(6.00mmol)のTHF(富士フィルム和光純薬、脱水グレード)溶液15mLを加え、室温で1時間攪拌した。固体をろ過により除去することで0.4M 2-(4-プロポキシフェニル)エチルマグネシウムブロミド/THF溶液を得た。
 実施例34 2-(2-(4-プロポキシフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物23)の合成(C4工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)149mg(1.10mmol)及びTHF(富士フィルム和光純薬、脱水グレード)2mLを加えて氷冷下で攪拌した。氷冷下、合成例33で合成した0.4M 2-(4-プロポキシフェニル)エチルマグネシウムブロミド/THF溶液1.80mL(0.72mmol)を加え0℃で15分攪拌し、室温で15時間攪拌し、亜鉛試薬溶液を調製した。
 一方、50mLのシュレンク管に合成例27で合成した2-ブロモアントラ[1,2-b:5,6-b’]ジチオフェン(化合物22)50.6mg(0.144mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)6.6mg(0.0090mmol)、THF(富士フィルム和光純薬、脱水グレード)5mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で24時間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/0~2/5)した。得られた固体をヘキサン/トルエン=10/3から再結晶精製し、2-(2-(4-プロポキシフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物23)の黄色固体を8.5mg得た(収率13%)。
H NMR(CDCl):δ=8.69(s,1H),8.62(s,1H),7.90(d,J=9.1Hz,1H),7.87(d,J=9.2Hz,1H),7.82(d,J=8.9Hz,1H),7.71(d,J=8.8Hz,1H),7.54(d,J=5.0Hz,1H),7.49(d,J=5.1Hz,1H),7.17(d,J=8.6Hz,1H),7.14(s,1H),6.86(d,J=8.7Hz,1H),3.92(t,J=6.4Hz,2H),3.30(t,J=7.6Hz,2H),3.10(t,J=7.5Hz,2H),1.81(tq,J=7.5Hz,7.6Hz,2H),1.04(t,J=7.5Hz,3H)。
融点:181℃
(化合物23)
Figure JPOXMLDOC01-appb-C000064
 合成例34 2-(4-メトキシシフェニル)エチルマグネシウムブロミドの合成(B1工程)
 窒素雰囲気下、20mL2つ口フラスコにマグネシウム(富士フィルム和光純薬、削り状)161mg(6.61mmol)を加え真空下で1時間攪拌した。窒素雰囲気下、4-メトキシフェネチルブロミド(シグマ-アルドリッチ)1.29g(6.00mmol)のTHF(富士フィルム和光純薬、脱水グレード)溶液15mLを加え、室温で1時間攪拌した。固体をろ過により除去することで0.4M 2-(4-メトキシシフェニル)エチルマグネシウムブロミド/THF溶液を得た。
 実施例35 2-(2-(4-メトキシフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物24)の合成(C4工程)
 窒素雰囲気下、50mLシュレンク管に塩化亜鉛(富士フィルム和光純薬)125mg(0.914mmol)及びTHF(富士フィルム和光純薬、脱水グレード)2mLを加えて氷冷下で攪拌した。氷冷下、合成例34で合成した0.4M 2-(4-メトキシフェニル)エチルマグネシウムブロミド/THF溶液1.60mL(0.640mmol)を加え0℃で15分攪拌し、室温で15時間攪拌し、亜鉛試薬溶液を調製した。
 一方、50mLのシュレンク管に合成例27で合成した2-ブロモアントラ[1,2-b:5,6-b’]ジチオフェン(化合物22)50.4mg(0.136mmol)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II) (シグマ-アルドリッチ)7.8mg(0.011mmol)、THF(富士フィルム和光純薬、脱水グレード)5mLを加えた。ここに先に調製した亜鉛試薬溶液を、テフロン(登録商標)キャヌラーを用いて滴下し、室温で24時間攪拌した。反応混合物を氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製(溶媒;ヘキサン:トルエン=1/0~2/5)した。得られた固体をヘキサン/トルエン=3/2から再結晶精製し、2-(2-(4-メトキシフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物24)の黄色固体を17.8mg得た(収率31%)。
H NMR(CDCl):δ=8.70(s,1H),8.62(s,1H),7.90(d,J=9.2Hz,1H),7.87(d,J=9.2Hz,1H),7.82(d,J=8.7Hz,1H),7.71(d,J=8.7Hz,1H),7.54(d,J=5.3Hz,1H),7.49(d,J=5.1Hz,1H),7.18(d,J=8.6Hz,1H),7.14(s,1H),6.86(d,J=8.6Hz,1H),3.81(s,3H),3.30(t,J=7.5Hz,2H),3.09(t,J=7.5Hz,2H)。
 融点:231℃
(化合物24)
Figure JPOXMLDOC01-appb-C000065
 実施例36 (有機半導体層形成用溶液の作製)
 実施例34で合成した2-(2-(4-プロポキシフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物23)の4.35mgを用いた以外は、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物23の濃度は1.00重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 実施例37 (有機半導体層形成用溶液の作製)
 実施例35で合成した2-(2-(4-メトキシフェニル)エチル)アントラ[1,2-b:5,6-b’]ジチオフェン(化合物24)の0.44mgを用いた以外は、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(化合物24の濃度は0.10重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
比較例1
 (有機半導体層形成用溶液の作製)
 空気下、10mlサンプル管に、2,7-ジフェニル[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン(シグマ-アルドリッチ)0.44mg及びトルエン(富士フィルム和光純薬工業、ピュアーグレード)434mgを添加し、50℃に加熱、室温下(25℃)に放冷したところ固体が析出していることが確認され、溶解性が低いためドロップキャスト及びインクジェットによる製膜には不適当な化合物であることを確認した。
 比較例2
 (有機半導体層形成用溶液の作製)
 空気下、10mlサンプル管に、2,7-ジオクチル[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン(シグマ-アルドリッチ)を用い、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(0.20重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 (有機半導体層及び有機薄膜トランジスタの作製)
 該有機半導体層形成用溶液を用い、実施例4と同様の方法により、2,7-ジオクチル[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェンの薄膜を作製し、ボトムゲート-ボトムコンタクト型のp型有機薄膜トランジスタを作製した。
 該トランジスタ素子の伝達特性の評価を行った結果、正孔のキャリア移動度は1.02cm/V・sec、電流オン・オフ比は3.0×10であった。
 さらにこの有機薄膜トランジスタを130℃で10分間アニール処理した後の電気物性を測定した。その結果、トランジスタ動作は得られず、熱処理による著しい性能の低下が見られた。顕微鏡観察から有機半導体層が加熱により破壊されていることが確認された。
 比較例3
 (有機半導体層形成用溶液の作製)
 空気下、10mlサンプル管に、特開2018-174322記載の2,7-ジ(ノルマルオクチル)ジチエノビフェニレン(該公報中の化合物3)を用い、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(0.20重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 (有機半導体層及び有機薄膜トランジスタの作製)
 該有機半導体層形成用溶液を用い、実施例3に示した各構成部材の材質及び成膜方法を用いトップゲート-ボトムコンタクト型のp型有機薄膜トランジスタを作製した。
 該トランジスタ素子の伝達特性の評価を行った結果、正孔のキャリア移動度は0.60cm/V・sec、電流オン・オフ比は3.0×10となった。
 比較例4
 (有機半導体層形成用溶液の作製)
 空気下、10mlサンプル管に、合成例6で合成した2,8-ジオクチルアントラ[1,2-b:5,6-b’]ジチオフェンを用い、実施例2と同様の方法により、有機半導体層形成用溶液を調製した。25℃で10時間後も溶液状態を維持しており(0.20重量%)、ドロップキャスト及びインクジェットによる製膜に適した化合物であることを確認した。
 (有機半導体層及び有機薄膜トランジスタの作製)
 該有機半導体層形成用溶液を用い、実施例3に示した各構成部材の材質及び成膜方法を用いた。しかし、薄膜は形成されずトップゲート-ボトムコンタクト型のp型有機薄膜トランジスタを作製することはできなかった。
 本発明の芳香族化合物は、高いキャリア移動度を与えると共に、耐熱性及び溶解性に優れることから有機薄膜トランジスタに代表される半導体デバイス材料としての適用が期待できる。
 (A):ボトムゲート-トップコンタクト型有機薄膜トランジスタ
 (B):ボトムゲート-ボトムコンタクト型有機薄膜トランジスタ
 (C):トップゲート-トップコンタクト型有機薄膜トランジスタ
 (D):トップゲート-ボトムコンタクト型有機薄膜トランジスタ
 1:有機半導体層
 2:基板
 3:ゲート電極
 4:ゲート絶縁層
 5:ソース電極
 6:ドレイン電極

Claims (16)

  1.  下記式(1-I)または(1-II)のいずれかで示される芳香族化合物。
    Figure JPOXMLDOC01-appb-C000001
    [(ここで、Arは単環または2~6個の縮合環を示す。X、Xはそれぞれ独立して酸素原子、硫黄原子、セレン原子、NR 、またはCR=CRからなる群の1種を示す。Y、Yはそれぞれ独立してCR又は窒素原子のいずれかを示す。R1~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または下記式(2)で表される基からなる群の1種を示し、R1~Rの少なくとも1つは下記式(2)で表される基である。)
    Figure JPOXMLDOC01-appb-C000002
    (ここで、Aは炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基からなる群の1種を示す。l,nは、それぞれ独立して0または1を示し、mは1~20の整数を示す。Z、Zはそれぞれの出現において同一または異なって、水素原子、ハロゲン原子、炭素数1~20のアルキル基からなる群の1種を示す。)]
  2. 1~Rのうち、R1とRのいずれか一方のみ、または両方のみが前記式(2)で示される基である請求項1に記載の芳香族化合物。
  3. 式(1-I)または(1-II)で示される芳香族化合物が、下記式(3-1)~(3-6)からなる群の1種で示される化合物である請求項1または2に記載の芳香族化合物。
    Figure JPOXMLDOC01-appb-C000003
    [(ここで、X、X、Xはそれぞれ独立して酸素原子、硫黄原子、セレン原子、単結合、NR17、またはCR18=CR19からなる群の1種を示す。R~R10の隣接する二つからなる組合せの内、1組のみが下記式(4)を構成し、及びR11~R14の隣接する二つからなる組合せの内、1組のみが下記式(4-2)を構成し、それぞれ5又は6員環を形成する。下記式(4)及び下記式(4-2)を構成しなかったR~R14、及びR15~R19はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または前記式(2)で表される基からなる群の1種を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (ここで、Xは酸素原子、硫黄原子、セレン原子、CR21=CR22、又はNR23からなる群の1種を示す。YはCR24又は窒素原子のいずれかを示す。R21~R24は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または前記式(2)で表される基からなる群の1種を示し、R20は前記式(2)で表される基である。)
    Figure JPOXMLDOC01-appb-C000005
    (ここで、X、Y、R21~R24は前記式(4)のX、Y、R21~R24と同意義を示し、R20bは、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または前記式(2)で表される基からなる群の1種を示す。)]
  4. 式(1-I)または(1-II)で示される芳香族化合物が、前記式(3-1)または前記式(3-2)で示される化合物である請求項3に記載の芳香族化合物。
  5.  式(3-1)~(3-6)からなる群の1種で示される化合物において、式(4-2)が下記式(4-3)である請求項3または4に記載の芳香族化合物。
    Figure JPOXMLDOC01-appb-C000006
    (ここで、X、Y、R21~R24は前記式(4)のX、Y、R21~R24と同意義を示し、R20cは、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基で表される基からなる群の1種を示す。)
  6.  式(3-1)~(3-6)からなる群の1種で示される化合物において、式(4-2)が下記式(4-4)である請求項3または4に記載の芳香族化合物。
    Figure JPOXMLDOC01-appb-C000007
    (ここで、X、Y、R21~R24は前記式(4)のX、Y、R21~R24と同意義を示し、R20dは前記式(2)で表される基である。)
  7. 式(1-I)または(1-II)で示される芳香族化合物が、下記式(5)または下記式(5-2)で示される化合物である請求項1~4のいずれか一項に記載の芳香族化合物。
    Figure JPOXMLDOC01-appb-C000008
    [(ここで、R25~R28の隣接する二つからなる組合せの内、1組のみが下記式(6)を構成し、及びR29~R32の隣接する二つからなる組合せの内、1組のみが下記式(6-2)を構成し、それぞれ5又は6員環を形成する。下記式(6)及び下記式(6-2)を構成しなかったR25~R32及びR69、R70は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または前記式(2)で表される基からなる群の1種を示す。)
    Figure JPOXMLDOC01-appb-C000009
    (ここで、Xは酸素原子、硫黄原子、セレン原子、CR34=CR35、又はNR36を示す。YはCR37又は窒素原子のいずれかを示す。R34~R37は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または前記式(2)で表される基からなる群の1種を示し、R33は前記式(2)で表される基である。)
    Figure JPOXMLDOC01-appb-C000010
    (ここで、X、Y、R34~R37は前記式(6)のX、Y、R34~R37と同意義を示し、R33bは、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または前記式(2)で表される基からなる群の1種を示す。)]
  8.   式(5)または式(5-2)で示される芳香族化合物において、式(6-2)が下記式(6-3)である請求項7に記載の芳香族化合物。
    Figure JPOXMLDOC01-appb-C000011
    (ここで、X、Y、R34~R37は前記式(6)のX、Y、R34~R37と同意義を示し、R33cは、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、または炭素数4~26のアリール基からなる群の1種を示す。)
  9.   式(5)または式(5-2)で示される芳香族化合物において、式(6-2)が下記式(6-4)である請求項7に記載の芳香族化合物。
    Figure JPOXMLDOC01-appb-C000012
    (ここで、X、Y、R34~R37は前記式(6)のX、Y、R34~R37と同意義を示し、R33dは前記式(2)で表される基である。)
  10. 式(5)または式(5-2)で示される化合物が、下記式(7-1)~(7-5)からなる群の1種で示される化合物である請求項7に記載の芳香族化合物。
    Figure JPOXMLDOC01-appb-C000013
    (ここで、X、Xは、それぞれ独立して、酸素原子、硫黄原子、セレン原子、又はNR44を示す。Y、Yは、それぞれ独立して、CR45又は窒素原子を示す。R38~R45、R71、R72は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数4~22のアルカジエニル基、炭素数4~22のアルカジイニル基、炭素数4~26のアリール基、または前記式(2)で表される基からなる群の1種を示し、R38~R45の少なくとも1つは前記式(2)で表される基であり、R38及びR41の少なくとも1つが前記式(2)で表される基である。)
  11. 式(5)または式(5-2)で示される化合物が、前記式(7-1)、前記式(7-2)または前記式(7-5)で示される化合物である請求項10に記載の芳香族化合物。
  12. 38及びR41がそれぞれ独立して前記式(2)で表される基、水素原子、フッ素原子からなる群の1種であり、R39、R40、R42~R45、R71、R72が水素原子である請求項10または11に記載の芳香族化合物。
  13. 38及びR41が前記式(2)で表される基であり、R39、R40、R42~R45、R71、R72が水素原子である請求項10~12のいずれか一項に記載の芳香族化合物。
  14. 請求項1~13のいずれか一項に記載の芳香族化合物を含有する有機半導体層形成用溶液。
  15. 請求項1~13のいずれか一項に記載の芳香族化合物を含有する有機半導体層。
  16. 請求項15に記載の有機半導体層を備えた有機薄膜トランジスタ。
PCT/JP2021/008511 2020-03-04 2021-03-04 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ WO2021177417A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180017812.5A CN115210239A (zh) 2020-03-04 2021-03-04 芳香族化合物、有机半导体层和有机薄膜晶体管
JP2022504462A JPWO2021177417A1 (ja) 2020-03-04 2021-03-04
KR1020227032469A KR20220150316A (ko) 2020-03-04 2021-03-04 방향족 화합물, 유기 반도체층, 및 유기 박막 트랜지스터
US17/905,455 US20230142592A1 (en) 2020-03-04 2021-03-04 Aromatic compound, organic semiconductor layer and organic thin film transistor
EP21764551.4A EP4116304A4 (en) 2020-03-04 2021-03-04 AROMATIC COMPOUND, ORGANIC SEMICONDUCTOR LAYER AND ORGANIC THIN FILM TRANSISTOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020036737 2020-03-04
JP2020-036737 2020-03-04

Publications (1)

Publication Number Publication Date
WO2021177417A1 true WO2021177417A1 (ja) 2021-09-10

Family

ID=77613433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008511 WO2021177417A1 (ja) 2020-03-04 2021-03-04 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ

Country Status (6)

Country Link
US (1) US20230142592A1 (ja)
EP (1) EP4116304A4 (ja)
JP (1) JPWO2021177417A1 (ja)
KR (1) KR20220150316A (ja)
CN (1) CN115210239A (ja)
WO (1) WO2021177417A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140829A1 (en) * 2010-05-14 2011-11-17 The University Of Hong Kong Solid supported gold nanoparticles, methods of use thereof, and methods for making same
WO2013182847A1 (en) * 2012-06-06 2013-12-12 The University Of Warwick Organic electron acceptor compounds
WO2015147130A1 (ja) * 2014-03-26 2015-10-01 富士フイルム株式会社 非発光性有機半導体デバイス用塗布液、有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、有機トランジスタの製造方法および有機半導体膜の製造方法
WO2018181462A1 (ja) * 2017-03-31 2018-10-04 東ソー株式会社 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
JP2018174322A (ja) 2017-03-31 2018-11-08 東ソー株式会社 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047896A1 (fr) 2006-10-20 2008-04-24 Nippon Kayaku Kabushiki Kaisha Transistor à effet de champ
WO2011004869A1 (ja) * 2009-07-10 2011-01-13 住友化学株式会社 置換ベンゾカルコゲノアセン化合物、該化合物を含有する薄膜及び該薄膜を含有する有機半導体デバイス
KR20120127502A (ko) * 2010-09-07 2012-11-21 닛뽄 가야쿠 가부시키가이샤 유기 반도체 재료, 유기 반도체 조성물, 유기 박막 및 전계 효과 트랜지스터 그리고 그의 제조 방법
JP2012184196A (ja) * 2011-03-07 2012-09-27 Sumitomo Chemical Co Ltd 含ピロールヘテロアセン化合物、該化合物の製造方法、該化合物を含む薄膜及び該薄膜を含む有機半導体デバイス
JP6363732B2 (ja) * 2014-11-25 2018-07-25 富士フイルム株式会社 有機半導体素子及びその製造方法、有機半導体膜形成用組成物、化合物、並びに、有機半導体膜
JP2018008885A (ja) * 2016-07-11 2018-01-18 東ソー株式会社 ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP2018016551A (ja) * 2016-07-25 2018-02-01 東ソー株式会社 ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140829A1 (en) * 2010-05-14 2011-11-17 The University Of Hong Kong Solid supported gold nanoparticles, methods of use thereof, and methods for making same
WO2013182847A1 (en) * 2012-06-06 2013-12-12 The University Of Warwick Organic electron acceptor compounds
WO2015147130A1 (ja) * 2014-03-26 2015-10-01 富士フイルム株式会社 非発光性有機半導体デバイス用塗布液、有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、有機トランジスタの製造方法および有機半導体膜の製造方法
WO2018181462A1 (ja) * 2017-03-31 2018-10-04 東ソー株式会社 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
JP2018174322A (ja) 2017-03-31 2018-11-08 東ソー株式会社 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BULA RAFAEL P., OPPEL IRIS M., BETTINGER HOLGER F.: "Thermal Generation of Pentacenes from Soluble 6, 13-Dihydro-6, 13- ethenopentacene Precursors by a Diels-Alder-retro- Diels-Alder Seciuence with 3,6-Disubstituted Tetrazines", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 77, no. 7, 23 March 2012 (2012-03-23), pages 3538 - 3542, XP055852488 *
DATABASE REGISTRY [online] 14 May 2021 (2021-05-14), retrieved from STN Database accession no. RN 56961-68-3 *
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, 2006, pages 12604 - 12605
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129, 2007, pages 15732 - 15733
MURGULY ELISA, MCDONALD ROBERT, BRANDA NEIL R.: "Chiral Discrimination in Hydrogen-Bonded [7]Helicenes", ORGANIC LETTERS, vol. 2, no. 20, 9 September 2000 (2000-09-09), pages 3169 - 3172, XP055852486, DOI: 10.1021/ol006366y *
ORGANIC LETTERS, vol. 11, 2009, pages 2473 - 2475
See also references of EP4116304A4

Also Published As

Publication number Publication date
CN115210239A (zh) 2022-10-18
US20230142592A1 (en) 2023-05-11
KR20220150316A (ko) 2022-11-10
EP4116304A1 (en) 2023-01-11
EP4116304A4 (en) 2024-03-13
JPWO2021177417A1 (ja) 2021-09-10

Similar Documents

Publication Publication Date Title
KR101652533B1 (ko) 융합 티오펜 화합물, 이들을 제조하는 방법 및 이들의 용도
JP5524043B2 (ja) 置換されたペンタセン類の調製方法
JP5867583B2 (ja) 新規なカルコゲン含有有機化合物およびその用途
JP7159586B2 (ja) 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
JP2014531435A (ja) 半導体特性を有する化合物、ならびに関連する組成物およびデバイス
WO2008026602A1 (fr) Dérivé hétéroacène, dérivé tétrahalotérphényle, et leurs procédés de production
TW201002722A (en) Benzobisthiazole compound, benzobisthiazole polymer, organic film including the compound or polymer and transistor including the organic film
KR102090300B1 (ko) 방향족 복소환 화합물, 그 제조방법, 유기 반도체 재료 및 유기 반도체 디바이스
CN103547582B (zh) 用于电子应用的含稠合噻吩环的化合物及其聚合物
JP2011032268A (ja) 置換ベンゾカルコゲノアセン化合物、該化合物を含有する薄膜及び該薄膜を含有する有機半導体デバイス
WO2018181462A1 (ja) 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
WO2021177417A1 (ja) 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
KR102564943B1 (ko) 유기 화합물, 유기 박막 및 전자 소자
JP7494456B2 (ja) ビフェニレン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP6962090B2 (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP5617296B2 (ja) ビ(アントラカルコゲノフェニル)誘導体、その前駆化合物及びそれらの製造方法
JP5105938B2 (ja) 重合体とその製造方法
JP7443747B2 (ja) 有機半導体を含む組成物、有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ
JP7342565B2 (ja) 共役ポリマー、有機半導体層形成用溶液、有機半導体層、及び有機薄膜トランジスタ
JP2020057787A (ja) ビフェニレン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP7318320B2 (ja) 共役ポリマー、有機半導体層形成用溶液、有機半導体層、及び有機薄膜トランジスタ
JP2018008885A (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP2022020964A (ja) 共役ポリマー、有機半導体層形成用溶液、有機半導体層、有機薄膜トランジスタ及びシクロペンタビフェニレン化合物
TW201841923A (zh) 有機半導體及其製造方法
JP2021158315A (ja) 共役ポリマー、有機半導体層形成用溶液、有機半導体層、及び有機薄膜トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504462

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227032469

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021764551

Country of ref document: EP

Effective date: 20221004