WO2018180930A1 - セミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法 - Google Patents

セミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法 Download PDF

Info

Publication number
WO2018180930A1
WO2018180930A1 PCT/JP2018/011528 JP2018011528W WO2018180930A1 WO 2018180930 A1 WO2018180930 A1 WO 2018180930A1 JP 2018011528 W JP2018011528 W JP 2018011528W WO 2018180930 A1 WO2018180930 A1 WO 2018180930A1
Authority
WO
WIPO (PCT)
Prior art keywords
imide oligomer
semi
preg
prepreg
composite material
Prior art date
Application number
PCT/JP2018/011528
Other languages
English (en)
French (fr)
Inventor
誉士夫 古川
武史 古田
千葉 健
力男 横田
雄一 石田
Original Assignee
株式会社カネカ
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, 国立研究開発法人宇宙航空研究開発機構 filed Critical 株式会社カネカ
Priority to US16/498,227 priority Critical patent/US11492446B2/en
Priority to EP18774314.1A priority patent/EP3604408A4/en
Priority to CN201880022665.9A priority patent/CN110494477B/zh
Priority to JP2019509685A priority patent/JP7016082B2/ja
Publication of WO2018180930A1 publication Critical patent/WO2018180930A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/121Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives by heating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a semi-preg, a prepreg, a resin composite material, and a production method thereof.
  • Aromatic polyimide is used as a material in a wide range of fields such as aerospace and electrical electronics, because it is a high polymer and has the highest level of heat resistance and is excellent in mechanical and electrical properties.
  • aromatic polyimide is generally poor in processability, it is not particularly suitable for use in melt molding and as a matrix resin for fiber-reinforced composite materials. Therefore, when applying aromatic polyimide to matrix resin for fiber reinforced composite materials, heat addition reactive polyimide that impregnates fiber in the state of low molecular weight imide oligomer and crosslinks and cures resin in the final process Is generally used.
  • Patent Document 1 after reinforcing fibers are immersed in a suspension obtained by dispersing imide oligomer powder in a dispersion medium, the reinforcing fibers are heated to volatilize the dispersion medium, and then imide oligomer powder is obtained.
  • a technique for obtaining a prepreg by heating and melting to impregnate reinforcing fibers and further solidifying by cooling is disclosed.
  • Patent Document 2 a prepreg is produced after the melt viscosity at the time of heating is lowered by using a mixture obtained by mixing an imide oligomer having a reduced molecular weight with a thermoplastic polyimide.
  • One embodiment of the present invention has been made in view of the above-described problems, and realizes a semi-preg, a prepreg, a resin composite material, and a method for producing the same that exhibit good heat resistance and can reduce residual volatile components. With the goal.
  • the present inventors have intensively studied.
  • a volatile component such as a dispersion medium
  • the powder of the imide oligomer is mixed with the reinforcing fiber, so that the solvent, the dispersion medium
  • the present inventors have found that a semi-preg substantially free of volatile components such as (1) it is preferable to use an imide oligomer having a specific structure, and completed the present invention. That is, one aspect of the present invention includes the following inventions.
  • a semi-preg comprising an imide oligomer powder represented by the following general formula (1) and a reinforcing fiber.
  • R 1 is 2-phenyl-4,4′-diaminodiphenyl ether, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4- (4-aminophenoxy) phenyl)
  • R 2 represents 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4- (4-aminophenoxy) phenyl) fluorene, 1,3-diaminobenzene, 4-phenoxy-1,3-diamino Represents a divalent residue of at least one aromatic diamine selected from benzene
  • R 3 and R 4 are the same or different and represent residues of tetravalent aromatic tetracarboxylic acids
  • R 5 and R 6 are a hydrogen atom or a
  • a method for producing a resin composite material comprising the following steps: (A) a step of producing a semi-preg or prepreg by attaching imide oligomer powder to reinforcing fibers and then heating; (B) A step of laminating the semi-preg or prepreg obtained in the step (a) to obtain a laminate, and maintaining the laminate at 260 to 320 ° C. and 0.1 to 20 MPa for 5 to 300 minutes, (C) A step of holding the laminate after the step (b) for 15 to 120 minutes at 330 to 500 ° C. and 0.1 to 20 MPa.
  • a semi-preg and a prepreg with reduced residual volatile matter are provided.
  • a fiber-reinforced composite material is molded using a semi-preg or prepreg with reduced residual volatile content. Thereby, defects such as voids generated by evaporation or decomposition of residual volatile components are reduced or eliminated, and a fiber-reinforced composite material having good heat resistance and mechanical strength can be obtained. There is an effect.
  • FIG. 2 is a view of a cross section of a carbon fiber reinforced composite material (CFRP-1) in Example 1 observed with an optical microscope.
  • FIG. 3 is a view of a cross section of a carbon fiber reinforced composite material (CFRP-2) in Comparative Example 1 observed with an optical microscope.
  • 6 is a view of a cross section of a carbon fiber reinforced composite material (CFRP-3) in Comparative Example 2 observed with an optical microscope.
  • FIG. FIG. 3 is a view of a cross section of a carbon fiber reinforced composite material (CFRP-4) in Example 2 observed with an optical microscope.
  • a to B representing a numerical range means “A or more (including A and greater than A) and B or less (including B and less than B)”.
  • a semi-preg comprising a powder of an imide oligomer represented by the following general formula (1) and a reinforcing fiber is provided.
  • R 1 is 2-phenyl-4,4′-diaminodiphenyl ether, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4- (4-aminophenoxy) phenyl)
  • R 2 represents 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4- (4-aminophenoxy) phenyl) fluorene, 1,3-diaminobenzene, 4-phenoxy-1,3-diamino Represents a divalent residue of at least one aromatic diamine selected from benzene
  • R 3 and R 4 are the same or different and represent residues of tetravalent aromatic tetracarboxylic acids
  • R 5 and R 6 are a hydrogen atom or a
  • the semi-preg according to an embodiment of the present invention is produced by mixing imide oligomer powder and reinforcing fiber without using volatile components such as a solvent and a dispersion medium. Is possible.
  • resin composite materials for example, carbon fiber reinforced composite materials manufactured using such semi-pregs have reduced or eliminated defects such as voids due to volatilization and decomposition of solvents, etc. There is a very advantageous effect of having the above glass transition temperature.
  • the glass transition temperature may be simply referred to as “Tg”.
  • a semi-preg, a prepreg, and a resin composite material are manufactured without going through a suspension of the imide oligomer powder. It is possible.
  • the semi-preg according to the embodiment of the present invention it is possible to maintain the drapability.
  • the resin composite material according to one embodiment of the present invention is also excellent in heat resistance.
  • Patent Document 2 intends to produce a prepreg by, for example, superposing a fiber woven fabric and a polyimide resin composition formed into a sheet shape and impregnating the melted polyimide resin composition into the fiber woven fabric. ing. That is, Patent Document 2 does not intend to mix imide oligomer powder and reinforcing fibers.
  • “semi-preg” means a resin-reinforced fiber composite in which a resin (for example, an imide oligomer) is partially impregnated into a reinforcing fiber (semi-impregnated state) and integrated.
  • the “semi-preg” includes a fiber array that is in a semi-impregnated state and is not impregnated with a resin, thereby preventing the drapeability from being impaired and providing good shapeability to a complicated shape.
  • a form having a resin-rich layer on the outer surface of the reinforcing fiber is often shown.
  • the “drapability” means an index indicating the degree of flexibility of deformation of a resin-reinforced fiber composite such as a semi-preg or a prepreg described later.
  • “Drapability” means that when a resin-reinforced fiber composite such as a semi-preg or prepreg, which will be described later, is deformed along other objects such as a mold, it can be flexibly shaped without breakage or breakage of the reinforcing fiber. It represents the degree to follow. If the drapeability is high, it is easy to shape the curved surface, and if the drapeability is low, it is difficult to shape the curved surface. Further, if the drapeability is low, it is naturally difficult to form a complicated shape.
  • imide oligomer is used synonymously with “terminal-modified imide oligomer” unless otherwise specified.
  • the divalent residue of R 1 and R 2 aromatic diamine refers to an aromatic organic group present between two amino groups in the aromatic diamine.
  • the tetravalent residue of aromatic tetracarboxylic acids refers to an aromatic organic group surrounded by four carbonyl groups in the aromatic tetracarboxylic acids.
  • the aromatic organic group is an organic group having an aromatic ring.
  • the aromatic organic group is preferably an organic group having 4 to 30 carbon atoms, more preferably an organic group having 4 to 18 carbon atoms, and further preferably an organic group having 4 to 12 carbon atoms.
  • the aromatic organic group is preferably a group containing 6 to 30 carbon atoms and hydrogen, more preferably a group containing 6 to 18 carbon atoms and hydrogen, and 6 carbon atoms. More preferred is a group comprising ⁇ 12 carbons and hydrogen.
  • R 1 is a divalent residue of an aromatic diamine, such as 2-phenyl-4,4′-diaminodiphenyl ether, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4- (4 It is preferably a divalent residue of at least one aromatic diamine selected from -aminophenoxy) phenyl) fluorene, 1,3-diaminobenzene, 4-phenoxy-1,3-diaminobenzene.
  • aromatic diamine such as 2-phenyl-4,4′-diaminodiphenyl ether, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4- (4- (4 It is preferably a divalent residue of at least one aromatic diamine selected from -aminophenoxy) phenyl) fluorene, 1,3-diaminobenzene, 4-phenoxy-1,3-diaminobenzene.
  • R 2 is a divalent residue of an aromatic diamine, and 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4- (4-aminophenoxy) phenyl) fluorene, A divalent residue of an aromatic diamine selected from 3-diaminobenzene and 4-phenoxy-1,3-diaminobenzene is preferable.
  • R 3 and R 4 are tetravalent residues of aromatic tetracarboxylic acids and may be the same or different.
  • aromatic tetracarboxylic acids are meant to include aromatic tetracarboxylic acids and aromatic tetracarboxylic dianhydrides, and acid derivatives such as esters and salts of aromatic tetracarboxylic acids.
  • the tetravalent residue of the aromatic tetracarboxylic acid is preferably selected from residues derived from 1,2,4,5-benzenetetracarboxylic acid.
  • the 1,2,4,5-benzenetetracarboxylic acids are 1,2,4,5-benzenetetracarboxylic acid, 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA), or 1 , 2,4,5-benzenetetracarboxylic acid, and other acid derivatives such as esters or salts.
  • PMDA 1,2,4,5-benzenetetracarboxylic acid
  • 1,2,4,5-benzenetetracarboxylic dianhydride is particularly optimal.
  • R 5 and R 6 are a hydrogen atom or a phenyl group, and one of them represents a phenyl group.
  • m> 1 R 5 is a phenyl group and R 6 is a hydrogen atom, and R 5 is a hydrogen atom and R 6 is a phenyl group.
  • R 1 to R 6 may be different for each repeating unit, or may be the same.
  • the arrangement of repeating units may be either block or random” means that the repeating units may be block-polymerized or randomly polymerized.
  • the imide oligomer powder contained in the semi-preg is preferably an imide oligomer powder represented by the following general formula (2).
  • R 1 represents a divalent residue of an aromatic diamine selected from 2-phenyl-4,4′-diaminodiphenyl ether or 4-phenoxy-1,3-diaminobenzene
  • R 2 and R 3 are a hydrogen atom or a phenoxy group, one of which represents a phenoxy group
  • R 4 and R 5 are the same or different and each represents a residue of a tetravalent aromatic tetracarboxylic acid
  • R 6 and R 7 are a hydrogen atom or a phenyl group, one of which represents a phenyl group
  • m and n satisfy the relationship of 1 ⁇ m, 0 ⁇ n ⁇ 5, 1 ⁇ m + n ⁇ 10 and 0.5 ⁇ m / (m + n) ⁇ 1, and the arrangement of repeating units is either block-like or random There may be.
  • R 1 is a divalent residue of an aromatic diamine, and is a divalent residue of an aromatic diamine selected from 2-phenyl-4,4′-diaminodiphenyl ether or 4-phenoxy-1,3-diaminobenzene. Preferably there is.
  • R 2 and R 3 are hydrogen atoms or phenoxy groups, and it can be said that either one represents a phenoxy group.
  • n> 1 a repeating unit in which R 2 is a phenoxy group and R 3 is a hydrogen atom and a repeating unit in which R 2 is a hydrogen atom and R 3 is a phenoxy group may optionally be included.
  • R 4 , R 5 , R 6 and R 7 in the general formula (2) have the same definitions as R 3 , R 4 , R 5 and R 6 in the general formula (1), respectively.
  • R 1 to R 7 may be different for each repeating unit or may be the same.
  • the imide oligomer in the case where R 4 and R 5 in the general formula (2) are residues of 1,2,4,5-benzenetetracarboxylic acids is represented by the following general formula (3) expressed.
  • R 1 represents a divalent residue of an aromatic diamine selected from 2-phenyl-4,4′-diaminodiphenyl ether or 4-phenoxy-1,3-diaminobenzene
  • R 2 and R 3 One represents a hydrogen atom, the other represents a phenoxy group, R 6 and R 7 represent one hydrogen atom and the other represents a phenyl group, and m and n are 1 ⁇ m, 0 ⁇ n ⁇ 5, 1 ⁇
  • m + n ⁇ 10 and 0.5 ⁇ m / (m + n) ⁇ 1 is satisfied, and the arrangement of repeating units may be either block or random).
  • 1,2,4,5-benzenetetracarboxylic acid may be used alone as the aromatic tetracarboxylic acid, and the effects of one embodiment of the present invention are exhibited. As long as a part of 1,2,4,5-benzenetetracarboxylic acid is substituted with another aromatic tetracarboxylic acid compound.
  • aromatic tetracarboxylic acid compounds include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 3,3 ′, 4,4′-benzophenonetetracarboxylic acid.
  • BTDA 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride
  • a-BPDA 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride
  • i- BPDA 2,2-bis (3,4-dicarboxyphenyl) methane dianhydride, bis (3,4-carboxyphenyl) ether dianhydride and 1,2,3,4-benzenetetracarboxylic dianhydride
  • a-BPDA 2,3′, 4′-biphenyltetracarboxylic dianhydride
  • i- BPDA 3,3′-biphenyltetracarboxylic dianhydride
  • 2,2-bis (3,4-dicarboxyphenyl) methane dianhydride bis (3,4-carboxyphenyl) ether dianhydride
  • 1,2,3,4-benzenetetracarboxylic dianhydride 1,2,3,4-benz
  • a part of 4′-diaminodiphenyl ether or 4-phenoxy-1,3-diaminobenzene may be substituted with another aromatic diamine compound.
  • aromatic diamine compounds examples include 1,4-diaminobenzene, 1,3-diaminobenzene, 1,2-diaminobenzene, 2,6-diethyl-1,3-diaminobenzene, 4,6-diethyl.
  • m and n in the general formulas (1) and (2) are 1 ⁇ m, 0 ⁇ n ⁇ 5, 1 ⁇ m + n ⁇ 10, and 0.5 ⁇ m / (m + n).
  • ⁇ 1 is satisfied. It may be 1 ⁇ m ⁇ 5. Further, 0 ⁇ n ⁇ 5 may be satisfied. It may be 1 ⁇ m + n ⁇ 10. It may be 0.5 ⁇ m / (m + n) ⁇ 1.
  • m + n is preferably 4 or more, and m + n is more preferably 5 or more.
  • the minimum melt viscosity of the imide oligomer is preferably 20000 Pa ⁇ sec or less, more preferably 10,000 Pa ⁇ sec or less, further preferably 5000 Pa ⁇ sec or less, and particularly preferably 3000 Pa ⁇ sec or less.
  • the minimum melt viscosity of the imide oligomer in one embodiment of the present invention is 1 to 20000 Pa ⁇ sec, but is not particularly limited to this range. If minimum melt viscosity is the said range, since the imide oligomer in one Embodiment of this invention is excellent in a moldability, it is preferable.
  • the minimum melt viscosity intends what was measured by the method as described in the below-mentioned Example.
  • the imide oligomer in one embodiment of the present invention may be a mixture of terminal-modified imide oligomers having different molecular weights.
  • the terminal-modified imide oligomer according to one embodiment of the present invention may be mixed with other soluble polyimide or thermoplastic polyimide.
  • the thermoplastic polyimide is a polyimide that becomes soft by heating, and may be a commercially available product. There is no particular limitation on the type of the thermoplastic polyimide.
  • the semi-preg according to an embodiment of the present invention is substantially free of thermoplastic polyimide.
  • the melt viscosity at 280 ° C. of the imide oligomer in one embodiment of the present invention is preferably 200 to 1,000,000 Pa ⁇ sec, more preferably 200 to 800,000 Pa ⁇ sec, and further preferably 200 to 500,000 Pa ⁇ sec. preferable.
  • the melt viscosity at 280 ° C. exceeds 1,000,000 Pa ⁇ sec, the imide oligomer tends to hardly flow. Therefore, when producing a fiber reinforced composite material, it is difficult for the imide oligomer to be impregnated between the fibers, and defects such as voids or unimpregnated portions are reduced, or it is difficult to obtain a lost fiber reinforced composite material. is there.
  • melt viscosity at 280 ° C. is lower than 200 Pa ⁇ sec, the resin tends to flow too much and it is difficult to produce a semi-preg. As a result, it may be difficult to ensure drapeability as a semi-preg.
  • the melt viscosity at 280 ° C. is intended to be measured by the method described in Examples described later.
  • the 5% weight reduction temperature in air of the polyimide resin obtained by curing the imide oligomer in one embodiment of the present invention is preferably 520 ° C or higher, more preferably 530 ° C or higher, and 535 ° C. More preferably, it is the above. It is considered that the 5% weight loss temperature in the air has a correlation with the oxidation deterioration rate when the polyimide resin is used for a long time in a high temperature environment. The higher the 5% weight loss temperature in air, the longer the polyimide resin can be used in a high temperature environment. That is, the higher the 5% weight loss temperature in air, the higher the long-term heat stability. In the present specification, the 5% weight loss temperature in air is intended to be measured by the method described in Examples below.
  • the reinforcing fibers included in the semi-preg include inorganic fibers such as carbon fibers, glass fibers, metal fibers, and ceramic fibers, and polyamide fibers, polyester fibers, polyolefin fibers, and novoloid fibers.
  • inorganic fibers such as carbon fibers, glass fibers, metal fibers, and ceramic fibers
  • polyamide fibers such as carbon fibers, glass fibers, metal fibers, and ceramic fibers
  • polyamide fibers such as carbon fibers, glass fibers, metal fibers, and ceramic fibers
  • polyamide fibers such as polyamide fibers, polyester fibers, polyolefin fibers, and novoloid fibers.
  • Organic synthetic fiber etc. are mentioned. These fibers can be used singly or in combination of two or more.
  • the fiber in order to exhibit excellent mechanical properties and high heat resistance in a fiber reinforced composite material produced from a semi-preg, the fiber is desirably a carbon fiber.
  • the carbon fiber is not particularly limited as long as it is a material having a continuous fiber shape having a carbon content in the range of 85 to 100% by weight and at least partially having a graphite structure.
  • Examples of such carbon fibers include polyacrylonitrile (PAN) -based, rayon-based, lignin-based, and pitch-based carbon fibers.
  • PAN-based or pitch-based carbon fibers are preferred because they are versatile and inexpensive and have high strength.
  • the carbon fiber has been subjected to a sizing treatment.
  • a sizing agent that uses as little sizing agent as possible is used, or, if necessary, a sizing agent by an existing method such as organic solvent treatment or heat treatment. Is preferably removed.
  • the amount of the sizing agent is preferably 0.5 wt% or less, more preferably 0.1 wt% or less, and further preferably 0.01 wt% or less with respect to the carbon fiber.
  • the sizing agent used for carbon fiber is for epoxy resin, it may decompose at a temperature of 280 ° C. or higher for curing the imide oligomer in one embodiment of the present invention. The physical properties may be adversely affected.
  • the fiber bundle may be opened beforehand using air, a roller, or the like, and applied so that the resin is impregnated between the single fibers of carbon fiber.
  • the impregnation distance of the resin is shortened, and defects such as voids are further reduced or it becomes easy to obtain a fiber-reinforced composite material that has been lost.
  • the drapeability of the semi-preg or prepreg is also improved by opening the fibers, so that the handleability and shapeability are improved.
  • Examples of the form of the reinforcing fiber constituting the semi-preg in the embodiment of the present invention include structures such as a UD material (unidirectional material), a woven material (plain woven fabric, twill woven fabric, satin woven fabric, etc.), a knitted fabric, a braided fabric, and a nonwoven fabric.
  • a UD material unidirectional material
  • a woven material plain woven fabric, twill woven fabric, satin woven fabric, etc.
  • a knitted fabric a braided fabric
  • a nonwoven fabric There is no particular limitation. What is necessary is just to select the form of the said fiber material suitably according to the objective, and these can be used individually or in combination.
  • the residual amount of volatile components in the semi-preg is preferably less than 20 wt%, more preferably less than 10 wt%, and less than 5 wt% with respect to the imide oligomer contained in the semi-preg. More preferably, it is particularly preferably less than 1 wt%.
  • the volatile component is mainly a solvent at the time of producing an imide oligomer, but also includes moisture desorbed from an amic acid oligomer in which imidization has not progressed. The volatile content is intended to be measured by the method described in the examples described later.
  • the residual amount of volatile matter in the semi-preg is within the above range, when a resin composite material (for example, carbon fiber reinforced composite material) is produced using the semi-preg, defects such as voids due to volatilization and decomposition of the solvent and the like are present. This is preferable because a good composite material having a Tg equivalent to or higher than that of a single resin can be obtained.
  • a resin composite material for example, carbon fiber reinforced composite material
  • a method for producing a semi-preg comprising the step of mixing imide oligomer powder with reinforcing fibers in a dry step is provided.
  • the method for producing a semi-preg according to an embodiment of the present invention makes it possible to provide a semi-preg with reduced residual volatile matter.
  • the imide oligomer in one embodiment of the present invention is not particularly limited, and may be any modified imide oligomer used in the technical field. That is, the imide oligomer in one embodiment of the present invention may be a terminal-modified imide oligomer or not a terminal-modified imide oligomer. Examples of the imide oligomer in one embodiment of the present invention include a both-end modified imide oligomer, a one-end modified imide oligomer, and a side chain-modified imide oligomer. These may be used alone or in combination of two or more.
  • the imide oligomer is preferably an imide oligomer represented by the general formula (1), and more preferably an imide oligomer represented by the general formula (2). If the imide oligomer is an imide oligomer represented by the general formula (1) or (2), an advantage is obtained that a fiber-reinforced composite material having excellent moldability and excellent heat resistance and mechanical properties can be obtained.
  • the powder of the imide oligomer in one embodiment of the present invention can be obtained commercially or can be produced by a method generally used in this technical field.
  • examples of the method for producing an imide oligomer powder include a method including the following steps (1) and (2).
  • step (1) is a step of producing a varnish containing a terminal-modified imide oligomer.
  • the above aromatic tetracarboxylic acid, an aromatic diamine containing 2-phenyl-4,4′-diaminodiphenyl ether and 4-phenoxy-1,3-diaminobenzene, and 4- (2-phenylethynyl) phthalic anhydride The total amount of acid anhydride groups of all components (in the case of adjacent dicarboxylic acid groups, it is regarded as 1 mol of acid anhydride group per 2 mol of carboxyl groups) and the total amount of amino groups are approximately equal. Use to be.
  • Each component is polymerized in an organic solvent described later at a reaction temperature of about 100 ° C. or less, particularly 80 ° C. or less to produce an amic acid oligomer.
  • An amic acid oligomer is an oligomer having an amide-acid bond and is also referred to as an amic acid oligomer.
  • the amic acid oligomer is then dehydrated and cyclized by either adding an imidizing agent at a low temperature of about 0-140 ° C. or heating to a high temperature of 140-275 ° C.
  • an imide oligomer having a 4- (2-phenylethynyl) phthalic anhydride residue at the terminal (terminal-modified imide oligomer) can be obtained.
  • aromatic tetracarboxylic acids it is preferable to use 1,2,4,5-benzenetetracarboxylic acids (particularly, this acid dianhydride) as described above.
  • a particularly preferred method of step (1) in one embodiment of the present invention is, for example, as follows. First, aromatic diamines containing 2-phenyl-4,4′-diaminodiphenyl ether and 4-phenoxy-1,3-diaminobenzene are uniformly dissolved in an organic solvent described later, and then 1,2,4,5- Aromatic tetracarboxylic dianhydride containing benzenetetracarboxylic dianhydride is added to the solution and dissolved uniformly. Thereafter, the reaction solution is stirred at a reaction temperature of about 5 to 60 ° C. for about 1 to 180 minutes.
  • 4- (2-Phenylethynyl) phthalic anhydride is added to the reaction solution and uniformly dissolved, and the reaction solution is allowed to react with stirring at a reaction temperature of about 5 to 60 ° C. for about 1 to 180 minutes. A modified amic acid oligomer is produced. Thereafter, the reaction solution is stirred at 140 to 275 ° C. for 5 minutes to 24 hours to cause the amidic acid oligomer to undergo an imidization reaction, whereby a varnish containing a terminal-modified imide oligomer in one embodiment of the present invention can be obtained.
  • the imidation rate is preferably 95% or more, more preferably 97% or more, and further preferably 98% or more.
  • the imidation ratio is intended to be measured by the method described in the examples described later.
  • the terminal-modified imide oligomer according to one embodiment of the present invention may be obtained by cooling the reaction solution to near room temperature after the imidization reaction of the terminal-modified amic acid oligomer. In the above reaction, it is preferable to perform all or some of the reaction steps in an atmosphere of an inert gas such as nitrogen gas or argon gas or in a vacuum.
  • organic solvent examples include N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAc), N, N-diethylacetamide, N-methylcaprolactam, ⁇ -butyrolactone (GBL) and cyclohexanone. It is done. These solvents may be used alone or in combination of two or more. Regarding the selection of these solvents, known techniques for soluble polyimides can be applied.
  • step (2) is a step of producing a terminal-modified imide oligomer powder from a varnish containing a terminal-modified imide oligomer.
  • the varnish containing the terminal-modified imide oligomer obtained in the above step (1) is poured into a poor solvent such as water or methanol, or a non-solvent, and then simply as a powdered product. By separating, terminal-modified imide oligomer powder can be produced.
  • a poor solvent such as water or methanol, or a non-solvent
  • the imide oligomer powder is “latest polyimide: basics and applications / edited by Japan Polyimide Study Group; Imai Ikuo, Yokota Rikio, NTS Publishing, p20-26. (2002) “, and can also be produced by the so-called” high temperature melt synthesis method “or” high temperature solid phase synthesis method ".
  • high temperature melt synthesis method or high temperature solid phase synthesis method no solvent is used for polymerization of terminal-modified imide oligomer and volatile component is not used for isolation of terminal-modified imide oligomer. This is preferable because it can minimize the amount of volatile components brought in.
  • the terminal-modified imide oligomer powder obtained by the above method can be used in the following dry process.
  • the method for producing a semi-preg according to an embodiment of the present invention includes a step of mixing imide oligomer powder and reinforcing fibers in a dry step.
  • the “dry process” means a process of mixing imide oligomer powder and reinforcing fiber without using volatile components such as a solvent and a dispersion medium.
  • a prepreg was produced by impregnating a reinforcing fiber with a varnish containing a terminal-modified imide oligomer (that is, a solution composition of terminal-modified imide oligomer), the obtained prepreg has a volatile content such as a solvent. There was a problem of remaining.
  • the process of evaporating the volatile matter such as the solvent in the state of the prepreg has a large manufacturing load and equipment load. It was not preferable.
  • the semi-preg is produced in a dry process that does not use volatile components such as a solvent and a dispersion medium, it is possible to obtain a semi-preg with reduced residual volatile components. This is an advantageous effect of the present invention compared to the technology.
  • the embodiment of the present invention is not particularly limited as long as the imide oligomer powder and the reinforcing fiber are mixed in a dry process.
  • the imide oligomer powder is placed on the reinforcing fiber, sprayed, or the reinforcing fiber is passed through a tank containing the powder, and the imide oligomer powder is adhered to the reinforcing fiber.
  • a method of melting imide oligomer powder using a heating roll such as a nip roll, a press machine, a laminator machine, an IR heater, a laser, a gas torch, an ultrasonic torch, or a method of impregnating reinforcing fibers by pressurizing after melting is mentioned. It is done. Pressurization is not always necessary to produce a semi-preg.
  • the fiber bundle may be preliminarily opened using air, a roller, or the like, so that the resin is impregnated between the single fibers of the carbon fiber. .
  • the impregnation distance of the resin is shortened, and defects such as voids are further reduced or it becomes easy to obtain a fiber-reinforced composite material that has been lost.
  • the drapeability of the semi-preg or prepreg is also improved, thereby improving the handleability and shaping.
  • a hot press for example, a vacuum hot press, or the like is used as the press machine.
  • a vacuum hot press for example, at a temperature of 230 ° C. to 370 ° C. and a pressure of 0.1 MPa to 20 MPa, 0.1 A semi-preg can be obtained by heating and melting for 10 minutes.
  • all the values of the pressure in this specification are the values of the actual pressure concerning a sample.
  • the reinforcing fiber in one embodiment of the present invention is [1. This is the same as described in the semipreg] section.
  • the imide oligomer powder used in one embodiment of the present invention is not particularly limited, but the average particle size is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 500 ⁇ m, and preferably 10 ⁇ m to 300 ⁇ m. Further preferred. Further, the entire particle size distribution is preferably in the range of 1 ⁇ m to 1000 ⁇ m. When the average particle size is less than 1 ⁇ m, fine particles may increase and workability may deteriorate when adhering to the reinforcing fibers in the dry process.
  • the average particle size exceeds 1000 ⁇ m
  • the imide oligomer powder is heated and melted, and when the reinforcing fibers are impregnated or fused, the reinforcing fibers also flow together, and the alignment of the reinforcing fibers may be disturbed, or the uneven adhesion of the imide oligomers may increase.
  • the average particle size and the particle size distribution are intended to be those measured by the method described in the examples described later.
  • a known method can be used as a method for obtaining an imide oligomer powder.
  • a grinding method such as a hammer mill, a jet mill, a ball mill, or a bead mill can be used, and freeze grinding may be used.
  • classification may be performed with a vibrating sieve or a swirling airflow type sieve.
  • prepreg means a resin-reinforced fiber composite in which a reinforcing fiber is impregnated with a resin (for example, an imide oligomer).
  • a resin for example, an imide oligomer.
  • the “prepreg” has a higher degree of resin impregnation into the reinforcing fiber than the “semi-preg”. Therefore, “prepreg” often has lower drapeability than “semi-preg”.
  • the prepreg is impregnated with a resin in advance between the fibers, the molding time of the laminate is generally shorter than when a semi-preg is used, and there is an advantage that mild conditions can be selected. For example, when using a prepreg, the pressure at the time of shape
  • the prepreg in one embodiment of the present invention is produced from a semi-preg produced by mixing imide oligomer powder and reinforcing fiber without using volatile components such as a solvent and a dispersion medium. It is possible to provide a reduced prepreg.
  • resin composite materials for example, carbon fiber reinforced composite materials manufactured using such a prepreg have reduced or eliminated defects such as voids due to volatilization and decomposition of solvents, etc. There is a very advantageous effect of having the above Tg.
  • the specific method is not particularly limited as long as the method for producing the prepreg is a method for producing the prepreg using the semipreg in one embodiment of the present invention as a starting material. You may carry out continuously with manufacture. Depending on the process, the boundary between the production of the semi-preg and the production of the prepreg may not be clear.
  • the content of the imide oligomer contained in the semi-preg or prepreg is not particularly limited, but excluding the weight of volatile matter, that is, as a constituent of only reinforcing fiber and imide oligomer, usually 15 to 90 wt%, preferably Is 20 to 70 wt%.
  • the method for producing a prepreg is preferably a method including a step of impregnating reinforcing fibers with an imide oligomer by heating and melting the semi-preg.
  • the heating and melting is performed at, for example, 250 ° C. or higher, preferably 270 ° C. or higher. Further, the time for heating and melting is, for example, 0.1 minute to 20 minutes, and preferably 1 minute to 20 minutes.
  • the imide oligomer can be impregnated into the reinforcing fiber by heating and melting the semi-preg of one embodiment of the present invention under the above conditions.
  • the method for producing a prepreg may include a cooling and solidifying step after the above-described heating and melting.
  • the cooling and solidifying step is a step of converting the imide oligomer impregnated into the reinforcing fibers into a matrix resin, and is performed at, for example, 150 ° C. or lower, preferably 100 ° C. or lower.
  • the prepreg manufactured in one embodiment of the present invention can be used for manufacturing a resin composite material described later.
  • the resin composite material in one embodiment of the present invention may be obtained by laminating the above prepreg and heat-curing, or may be obtained by laminating the above-mentioned semi-preg and heat-curing.
  • the resin composite material obtained by laminating a semi-preg and heat-curing is a resin composite material obtained without taking out the prepreg as an intermediate.
  • the resin composite material in one Embodiment of this invention may be obtained by laminating
  • the resin composite material may be referred to as “fiber reinforced composite material”.
  • the resin composite material in one embodiment of the present invention can be obtained, for example, as follows.
  • a predetermined number of the above prepregs are stacked and heat cured at a temperature of 280 to 500 ° C. and a pressure of 0.1 to 100 MPa for about 10 minutes to 40 hours using an autoclave or a (vacuum) hot press to obtain a fiber-reinforced composite material.
  • a fiber-reinforced composite material can be obtained as a laminated board obtained by laminating the semi-preg and heat-curing in the same manner as described above.
  • a semi-preg or prepreg is manufactured by attaching imide oligomer powder to reinforcing fibers and then heating.
  • a process is provided.
  • This step is also referred to as step (a).
  • the semi-preg or prepreg obtained in the step (a) is laminated to obtain a laminate, and the laminate is held for 5 to 300 minutes at 260 to 320 ° C. and 0.1 to 20 MPa. It is desirable to provide a process.
  • This step (b) is also referred to as step (b).
  • the holding time is not particularly limited as long as it is within the above range, but is preferably 10 to 200 minutes, more preferably 15 to 150 minutes, and particularly preferably 20 to 120 minutes.
  • this holding time is shorter than 5 minutes, the impregnation of the imide oligomer into the reinforcing fiber may be insufficient.
  • this holding time becomes longer than 300 minutes, an imide oligomer and a reinforced fiber may deteriorate with an oxidation reaction or a heat
  • the molding time is long and inefficient.
  • the temperature is not particularly limited as long as it is within the above range, but it is preferably 270 to 310 ° C, more preferably 280 to 310 ° C.
  • the temperature is lower than 260 ° C.
  • the melt viscosity of the imide oligomer is high, and therefore the impregnation of the imide oligomer into the reinforcing fiber may be insufficient.
  • the temperature is higher than 320 ° C., the curing reaction of the imide oligomer proceeds, resulting in an increase in the melt viscosity of the imide oligomer, which may result in insufficient impregnation of the reinforcing fiber of the imide oligomer.
  • the pressure is not particularly limited as long as it is within the above range, but is preferably 0.1 to 15 MPa, more preferably 0.1 to 10 MPa, and particularly preferably 0.5 to 10 MPa.
  • the pressure is lower than 0.1 MPa, impregnation of the imide oligomer into the reinforcing fiber may be insufficient. Or when it exceeds 20 MPa, an imide oligomer will protrude from a reinforced fiber, and a desired fiber reinforced composite material may not be obtained.
  • the temperature and pressure may be changed within the above range in the middle, or there may be a time during which no pressure is applied at a predetermined temperature for heating.
  • step (b) defects such as voids can be reduced.
  • a process of removing air bubbles remaining inside by repeating pressurization and decompression several times may be sandwiched.
  • internal defects such as voids in the fiber-reinforced composite material may be further reduced. This process may be referred to as pumping or the like.
  • step (c) Thereafter, it is desirable to provide a step of holding the laminate after the step (b) for 15 to 120 minutes at 330 to 500 ° C. and 0.1 to 20 MPa.
  • This step is also referred to as step (c).
  • the holding time is not particularly limited as long as it is within the above range, but it is preferably 20 to 120 minutes, particularly preferably 30 to 90 minutes. If this holding time is shorter than 15 minutes, the curing reaction may not proceed sufficiently. If the holding time is longer than 120 minutes, the resin and the reinforcing fiber may be oxidized or thermally deteriorated.
  • the temperature is not particularly limited as long as it is within the above range, but it is preferably 350 to 450 ° C, more preferably 360 to 400 ° C.
  • the pressure is not particularly limited as long as it is within the above range, but is preferably 0.1 to 15 MPa, more preferably 0.1 to 10 MPa, and particularly preferably 0.5 to 10 MPa.
  • a step of opening a fiber bundle of the reinforcing fibers may be provided before the step (a).
  • the said imide oligomer is an imide oligomer represented by the above-mentioned general formula (1).
  • the heating time at the time of semi-preg manufacture is shorter than the heating time at the time of prepreg manufacture.
  • All these steps may be performed in a vacuum, in an inert gas, or in the atmosphere.
  • the resin composite material in one embodiment of the present invention preferably has a glass transition temperature (Tg) of 320 ° C. or higher, and more preferably 350 ° C. or higher. If the glass transition temperature is in the above range, the resin composite material in one embodiment of the present invention has more excellent heat resistance.
  • Tg glass transition temperature
  • a glass transition temperature intends what was measured by the method as described in the below-mentioned Example.
  • a film-shaped imide oligomer molded body, imide oligomer powder, semi-preg or prepreg is inserted between a fiber-reinforced composite material and a dissimilar material or the same kind of material, and heated and melted to integrate them, thereby reinforcing the fiber-reinforced composite material.
  • a structure may be obtained.
  • the dissimilar material is not particularly limited, and any material commonly used in this field can be used. Examples thereof include a metal material such as a honeycomb shape and a core material such as a sponge shape.
  • the semi-preg, prepreg, resin composite material, etc. are general industries such as aircraft, space industry equipment and vehicle engine (peripheral) members, transfer arms, robot arms, roll materials, friction materials, sliding members such as bearings, etc. It can be used in a wide range of fields that require easy moldability and high heat resistance. If it is an aircraft member, an engine fan case, an inner frame, a moving blade (fan blade etc.), a stationary blade (structure guide wing (SGV) etc.), a bypass duct, various piping, etc. are mentioned.
  • Preferred vehicle members include brake members, engine members (cylinders, motor cases, air boxes, etc.), energy regeneration system members, and the like.
  • the present invention may be configured as follows.
  • a semi-preg comprising an imide oligomer powder represented by the following general formula (1) and a reinforcing fiber.
  • R 1 is 2-phenyl-4,4′-diaminodiphenyl ether, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4- (4-aminophenoxy) phenyl)
  • R 2 represents 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4- (4-aminophenoxy) phenyl) fluorene, 1,3-diaminobenzene, 4-phenoxy-1,3-diamino Represents a divalent residue of at least one aromatic diamine selected from benzene
  • R 3 and R 4 are the same or different and represent residues of tetravalent aromatic tetracarboxylic acids
  • R 5 and R 6 are a hydrogen atom or a
  • R 1 represents a divalent residue of an aromatic diamine selected from 2-phenyl-4,4′-diaminodiphenyl ether or 4-phenoxy-1,3-diaminobenzene
  • R 2 and R 3 are a hydrogen atom or a phenoxy group, one of which represents a phenoxy group
  • R 4 and R 5 are the same or different and each represents a residue of a tetravalent aromatic tetracarboxylic acid
  • R 6 and R 7 are a hydrogen atom or a phenyl group, one of which represents a phenyl group
  • m and n satisfy the relationship of 1 ⁇ m, 0 ⁇ n ⁇ 5, 1 ⁇ m + n ⁇ 10 and 0.5 ⁇ m / (m + n) ⁇ 1, and the arrangement of repeating units is either block-like or random There may be.
  • [3] The semi-preg as set forth in [1] or [2], wherein the remaining amount of volatile matter
  • the polyimide resin obtained by curing the imide oligomer has a 5% weight loss temperature in air of 520 ° C. or higher, according to any one of [1] to [6] Semi-preg.
  • a method for producing a semi-preg comprising a step of mixing imide oligomer powder with reinforcing fibers in a dry step.
  • a method for producing a prepreg comprising a step of heating and melting a semipreg obtained by the method for producing a semipreg according to [10] or [11] and impregnating a reinforcing fiber with an imide oligomer.
  • a method for producing a resin composite material comprising a step of laminating and heat-curing a prepreg obtained by the prepreg production method according to [12].
  • a method for producing a resin composite material comprising the following steps: (A) a step of producing a semi-preg or prepreg by attaching imide oligomer powder to reinforcing fibers and then heating; (B) A step of laminating the semi-preg or prepreg obtained in the step (a) to obtain a laminate, and maintaining the laminate at 260 to 320 ° C. and 0.1 to 20 MPa for 5 to 300 minutes, (C) A step of holding the laminate after the step (b) for 15 to 120 minutes at 330 to 500 ° C. and 0.1 to 20 MPa.
  • R 1 is 2-phenyl-4,4′-diaminodiphenyl ether, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4- (4-aminophenoxy) phenyl)
  • R 2 represents 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4- (4-aminophenoxy) phenyl) fluorene, 1,3-diaminobenzene, 4-phenoxy-1,3-diamino Represents a divalent residue of at least one aromatic diamine selected from benzene
  • R 3 and R 4 are the same or different and represent residues of tetravalent aromatic tetracarboxylic acids
  • R 5 and R 6 are a hydrogen atom or a
  • a mixture of reinforcing fibers and imide oligomer powder is heated for a short time to produce a semi-preg, and after the semi-preg with good drape properties is laminated, the laminated body laminated with the semi-preg is fully heated.
  • the idea is to improve the formability by impregnating the reinforcing fibers with resin.
  • Tg Glass transition temperature
  • DMA dynamic viscoelasticity measurement
  • a test piece was prepared by cutting the central portion of the fiber reinforced composite material plate, and was cantilevered, using a DMA-Q-800 type dynamic viscoelasticity measurement (DMA) apparatus manufactured by TA Instruments. Strain was measured at a frequency of 1 Hz and a heating rate of 5 ° C./min. The intersection of two tangents before and after the storage elastic modulus curve was reduced was taken as the glass transition temperature.
  • DMA dynamic viscoelasticity measurement
  • the terminal-modified imide oligomer powder was dissolved in deuterated DMF (deuterated N, N-dimethylformamide) and proton nuclear magnetic resonance spectrometer (model: AV-400M, manufactured by Bruker Co., Ltd.) , 1 H-NMR), and the peak area was measured at 30 ° C.
  • the imidization ratio was calculated from the peak area derived from aromatic 1 H having a chemical shift of 7 to 9 ppm and the peak area derived from residual amide having a chemical shift of about 11 ppm.
  • NMP solution (varnish) (N1) of the terminal-modified imide oligomer obtained in Production Example 1 was diluted to 15% by weight, poured into 3300 mL of ion-exchanged water, and the precipitated solid was separated by filtration.
  • the solid content obtained by filtration was washed with 1000 mL of methanol for 30 minutes, and then dried under reduced pressure at 200 ° C. for 14 hours to obtain a granular terminal-modified imide oligomer.
  • the terminal modified imide oligomer powder (P1) with an average volume particle diameter of 61 micrometers was obtained by grind
  • the obtained terminal-modified imide oligomer is represented by the general formula (1) in which R 1 is a 2-phenyl-4,4′-diaminodiphenyl ether residue or a 9,9-bis (4-aminophenyl) fluorene residue.
  • R 2 is represented by a 9,9-bis (4-aminophenyl) fluorene residue,
  • the terminal-modified imide oligomer powder (P1) is soluble in NMP solvent at 35 wt% or more at room temperature, and the 35 wt% NMP solution (varnish) is allowed to gel at 1 month after standing at room temperature. Did not occur and remained stable.
  • the minimum melt viscosity of the terminal-modified imide oligomer powder (P1) before curing was 193 Pa ⁇ sec (348 ° C.), and the melt viscosity at 280 ° C.
  • the powdery terminal-modified imide oligomer was heated at 370 ° C. for 1 hour using a hot press to obtain a film-like cured product (thickness: 90 ⁇ m).
  • Tg was measured by DMA and found to be 368 ° C. Moreover, it was 537 degreeC when the 5% weight reduction
  • NMP solution (varnish) (N3) of the terminal-modified imide oligomer obtained in Production Example 5 was diluted to 15% by weight, poured into 3300 mL of ion-exchanged water, and the precipitated solid content was separated by filtration.
  • the solid content obtained by filtration was washed with 1000 mL of methanol for 30 minutes and then dried under reduced pressure at 220 ° C. for 24 hours to obtain a granular terminal-modified imide oligomer.
  • the terminal modified imide oligomer powder (P3) with an average volume particle diameter of 25 micrometers was obtained by grind
  • the obtained terminal-modified imide oligomer is represented by the general formula (1) in which R 1 is a 2-phenyl-4,4′-diaminodiphenyl ether residue or a 9,9-bis (4-aminophenyl) fluorene residue.
  • R 2 is represented by a 9,9-bis (4-aminophenyl) fluorene residue,
  • the minimum melt viscosity of the terminal-modified imide oligomer powder (P3) obtained was 3110 Pa ⁇ sec (357 ° C.), and the melt viscosity at 280 ° C. was about 150,000 Pa ⁇ sec.
  • the powdery terminal-modified imide oligomer was heated at 370 ° C. for 1 hour using a hot press to obtain a film-like cured product (thickness: 85 ⁇ m). It was 369 degreeC when Tg was measured by DMA using this film-form cured material. Moreover, it was 540 degreeC when the 5% weight reduction
  • Carbon fiber plain weave material (“Torayca cloth CO6343” manufactured by Toray Industries, Inc.) (fiber) obtained by cutting 1.70 g of the terminal-modified imide oligomer powder (P1) obtained in Production Example 2 into a size of 12 cm ⁇ 12 cm in advance. It was placed uniformly on the basis weight (198 g / m 2 ). This is sandwiched between mold release polyimide films, and further sandwiched between 20 cm ⁇ 20 cm stainless steel plates, heated at 310 ° C.
  • a semi-preg (D1) was obtained by pressurizing to 5 MPa and pressing at 310 ° C. for 1 minute. This planar semi-preg (D1) was clearly more flexible than prepregs obtained from similar reinforcing fibers and resins.
  • the obtained semi-pregs were each cut to a size of 10 cm ⁇ 10 cm, and 20 sheets were laminated.
  • the temperature is raised on a vacuum hot press (made by Kitagawa Seiki Co., Ltd.) on a 50 cm x 50 cm hot press under vacuum conditions. Heated to 300 ° C. at a rate of 3 ° C./min. After heating at 300 ° C. for 30 minutes, the pressure was increased to 5 MPa and heating was further performed for 30 minutes. Thereafter, the temperature was raised to 370 ° C. at 2 ° C./min while being pressurized, and held at 370 ° C.
  • a carbon fiber reinforced composite material (CFRP-1) having an average thickness of 4.06 mm.
  • the prepreg is not isolated.
  • the fiber volume content (Vf) calculated from the weight of the carbon fiber reinforced composite material (CFRP-1) after molding was 53.7%.
  • a cross-sectional observation of the obtained carbon fiber reinforced composite material (CFRP-1) was performed as shown in FIG. In FIG. 1, the whitish part (black arrow in the figure) is carbon fiber, and the gray part (white arrow in the figure) is polyimide resin. Voids and unimpregnated portions were observed as black portions, but no black portions were observed in FIG.
  • the fiber volume content (Vf) was estimated to be 57.2%.
  • prepreg is used in the sense that the carbon fiber is completely impregnated with the imide oligomer.
  • the obtained wet prepreg (W1) was cut and laminated with a configuration of [45/0 / ⁇ 45 / 90] 4 s (32 ply) at 300 cm ⁇ 300 cm.
  • vacuum bagging is performed using auxiliary materials (Teflon (registered trademark) sheet, peel ply, bleeder cloth, stainless steel plate, air breather, vacuum bag), put into an autoclave, and the temperature inside the bag is reduced by 3 ° C / Heated to 288 ° C. in min.
  • the temperature was raised to 370 ° C. at 2 ° C./min, and then held at 370 ° C. for 1 hour at 1.4 MPa.
  • Comparative Example 1 was the same as Comparative Example 1 except that the configuration of the laminate was changed from [45/0 / -45 / 90] 4s (32 ply) to [45/0 / -45 / 90] 2s (16 ply).
  • a carbon fiber reinforced composite material (CFRP-3) having an average thickness of 2.01 mm was obtained.
  • a cross-sectional observation of the obtained carbon fiber reinforced composite material (CFRP-3) was performed as shown in FIG. In FIG. 3, clear black portions indicating voids and unimpregnated portions were not observed.
  • the Tg of this carbon fiber reinforced composite material (CFRP-3) was measured by DMA and found to be 313 ° C.
  • Example 2 A carbon fiber spread plain woven material cut into a size of 12 cm ⁇ 12 cm, which has been subjected to desizing treatment by immersing 0.65 g of the terminal-modified imide oligomer powder (P3) obtained in Production Example 6 in acetone and then drying. (SA-3203 manufactured by Sakai Obex Co., Ltd.) (63 g / m 2 fiber basis weight) was placed uniformly. This is sandwiched by a release polyimide film, further sandwiched by a 20 cm ⁇ 20 cm stainless steel plate, and heated at 290 ° C. for 5 minutes with a press machine (MINI TEST PRES • 10 manufactured by Toyo Seiki Seisakusho Co., Ltd.).
  • An open plain weave prepreg (D2) was obtained by pressurizing to 6.9 MPa and pressing at 290 ° C. for 30 minutes.
  • the volatile matter content rate of the obtained open fiber plain prepreg was determined, it was 0.1 wt% with respect to the imide oligomer.
  • the obtained open-woven plain weave prepreg was cut into a size of 10 cm ⁇ 10 cm, and 32 sheets were laminated. Wrapped open woven prepreg laminated with a release polyimide film, sandwiched between 20cm x 20cm stainless steel plate, heated in air at 290 ° C for 30 minutes in a press machine, then pressure 30 times between 0.1MPa and 5MPa Was moved back and forth (pumping), then pressurized to 10 MPa, and further heated for 90 minutes. Thereafter, the temperature was raised to 370 ° C. while being pressurized, and held at 370 ° C. for 1 hour.
  • a carbon fiber reinforced composite material (CFRP-4) having an average thickness of 2.29 mm.
  • the prepreg was isolated in this example. Further, a cross-sectional observation of the obtained carbon fiber reinforced composite material (CFRP-4) was as shown in FIG. In FIG. 4, since almost no black portion was observed, it was determined that the carbon fiber reinforced composite material (CFRP-4) had almost no voids or unimpregnated portions.
  • the Tg of this carbon fiber reinforced composite material (CFRP-4) was measured by DMA and found to be 374 ° C.
  • the Tg of the composite material was lower than that of the resin alone. Has fallen significantly. This is presumably because NMP remained in the composite material, and Tg was lowered due to its plasticizing effect.
  • an imide oligomer having a molecular structure different from that of the Example and having a relatively low degree of polymerization (1 to 2 dimer) was used. Therefore, the 5% weight loss temperature was different from that of the imide oligomer used in Example 1. It was low compared.
  • the present invention can be used in a wide range of fields requiring easy moldability and high heat resistance, including aircraft, space industry equipment, general industrial use, and vehicle engine (peripheral) members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の目的は、揮発分の残存を低減し得るセミプレグ、プリプレグ、および、これらの製造方法を実現し、これによりボイド等の欠陥が低減され、あるいは無くなって、良好な耐熱性、機械的強度を有する繊維強化複合材料、および、その製造方法を実現することにある。本発明は、特定の一般式(1)で表されるイミドオリゴマーの粉末と、強化繊維と、を含むことを特徴とするセミプレグ等を提供することにより、上記課題を解決する。

Description

セミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法
 本発明は、セミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法に関する。
 芳香族ポリイミドは高分子系で最高レベルの耐熱性を有し、機械的特性および電気的特性などにも優れていることから、航空宇宙および電気電子などの広い分野で素材として用いられている。
 一方、芳香族ポリイミドは一般に加工性に乏しいため、特に溶融成形に用いることおよび繊維強化複合材料のマトリクス樹脂として用いることには不向きである。そのため、芳香族ポリイミドを繊維強化複合材料用のマトリクス樹脂に適用する場合は、低分子量のイミドオリゴマーの状態で繊維に含浸させ、最終的な工程で樹脂を架橋および硬化させる熱付加反応性のポリイミドを用いることが一般的である。
 例えば、特許文献1には、分散媒中にイミドオリゴマー粉末を分散させてなる懸濁液に強化繊維を浸漬した後、その強化繊維を加熱して分散媒を揮発させ、次いで、イミドオリゴマー粉末を加熱溶融して強化繊維に含浸し、さらに冷却固化してプリプレグを得る技術が開示されている。
 一方、特許文献2では、分子量を下げたイミドオリゴマーを熱可塑性ポリイミドと混合した混合物を用いることにより加熱時の溶融粘度を下げたうえで、プリプレグを製造している。
特開2007-191659号公報 特開2016-216720号公報
 特許文献1の技術では、イミドオリゴマー粉末を分散媒中に分散させた懸濁液を使用する。そのため、プリプレグに分散媒等の揮発分が残存してしまい、繊維強化複合材料成型時に揮発し、ボイド等の欠陥が生成したり、耐熱性を低下させたりする問題がある。このため、揮発分の残存を低減し得る新しい技術の開発が求められていた。また、特許文献2の技術においても、ボイドの抑制および耐熱性等の観点から改善の余地があると考えられる。
 本発明の一態様は、上記課題に鑑みなされたものであり、良好な耐熱性を示し、かつ、揮発分の残存を低減し得るセミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法を実現することを目的とする。
 上記の課題を解決するために、本発明者らが鋭意検討したところ、(ア)分散媒等の揮発分を用いることなく、イミドオリゴマーの粉末を強化繊維と混合することで、溶媒、分散媒等の揮発分を実質的に使用しないセミプレグが得られること、(イ)特に特定の構造のイミドオリゴマーを用いることが好ましいこと、を見出し、本発明を完成させるに至った。すなわち、本発明の一態様は、以下の発明を含むものである。
 下記一般式(1)で表されるイミドオリゴマーの粉末と、強化繊維と、を含むことを特徴とするセミプレグ。
Figure JPOXMLDOC01-appb-C000004
 (式(1)中、Rは2-フェニル-4,4’-ジアミノジフェニルエーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、
 Rは9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、
 RおよびRは同一または異なって4価の芳香族テトラカルボン酸類の残基を表し、
 RおよびRは水素原子またはフェニル基であって、いずれか一方がフェニル基を表し、
 mおよびnは、1≦m、0≦n≦5、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
 イミドオリゴマーの粉末をドライ工程にて強化繊維と混合させる工程を含むことを特徴とするセミプレグの製造方法。
 以下の工程を含むことを特徴とする樹脂複合材料の製造方法:
 (a)イミドオリゴマーの粉末を強化繊維に付着させ、次いで加熱することにより、セミプレグまたはプリプレグを製造する工程、
 (b)前記工程(a)で得られたセミプレグまたはプリプレグを積層して積層体を得て、当該積層体を5~300分間、260~320℃、0.1~20MPaで保持する工程、
 (c)前記工程(b)を経た積層体を、さらに15~120分間、330~500℃、0.1~20MPaで保持する工程。
 本発明の一態様によれば、揮発分の残存を低減したセミプレグ、プリプレグを提供する。また、本発明の一態様によれば、残留揮発分が低減されたセミプレグ、または、プリプレグを用い、繊維強化複合材料を成形する。これにより、残留揮発分が蒸発、または、分解することで生成されるボイド等の欠陥が低減され、あるいは無くなって、良好な耐熱性、機械的強度を有する繊維強化複合材料を得ることができるという効果を奏する。
実施例1における炭素繊維強化複合材料(CFRP-1)の断面を光学顕微鏡で観察した図である。 比較例1における炭素繊維強化複合材料(CFRP-2)の断面を光学顕微鏡で観察した図である。 比較例2における炭素繊維強化複合材料(CFRP-3)の断面を光学顕微鏡で観察した図である。 実施例2における炭素繊維強化複合材料(CFRP-4)の断面を光学顕微鏡で観察した図である。
 本発明の実施の形態について、以下に詳細に説明する。本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意味する。
 〔1.セミプレグ〕
 本発明の一実施形態において、下記一般式(1)で表されるイミドオリゴマーの粉末と、強化繊維と、を含むことを特徴とするセミプレグを提供する。
Figure JPOXMLDOC01-appb-C000005
 (式(1)中、Rは2-フェニル-4,4’-ジアミノジフェニルエーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、
 Rは9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、
 RおよびRは同一または異なって4価の芳香族テトラカルボン酸類の残基を表し、
 RおよびRは水素原子またはフェニル基であって、いずれか一方がフェニル基を表し、
 mおよびnは、1≦m、0≦n≦5、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
 本発明の一実施形態におけるセミプレグは、溶媒、分散媒等の揮発分を用いずにイミドオリゴマーの粉末と強化繊維とを混合させて製造されることから、揮発分の残存を低減したセミプレグの提供を可能とする。また、そのようなセミプレグを用いて製造された樹脂複合材料(例えば、炭素繊維強化複合材料)は、溶媒等の揮発および分解に起因するボイド等の欠陥が低減され、あるいは無くなって、樹脂単体同等以上のガラス転移温度を有するという極めて有利な効果を奏する。以下、ガラス転移温度を単に「Tg」と称することもある。
 特許文献1の技術では、靱性の低い低分子量のイミドオリゴマーを強化繊維間内部に含浸させるため、作製したプリプレグのドレープ性が低く、取扱性および賦形性が乏しいという課題もある。また、特許文献2の技術では、揮発分の残存については特に問題ないが、重合度が低い低分子量の末端変性イミドオリゴマーを用いているため、硬化物の耐熱性(例えば5%重量減少温度)が低くなる傾向がある。この主な原因は、末端変性イミドオリゴマーの中でも比較的分子量が低いものを用いているため、比較的耐熱性の低い末端封止剤の濃度が高くなることであろうと推測される。また、特許文献2の技術では、熱可塑性ポリイミドを併用しているため、一般に硬化物のガラス転移温度が下がる傾向にある。
 これに対し、本発明の一実施形態においては、比較的分子量の大きいイミドオリゴマーを用いた場合でも、イミドオリゴマーの粉末の懸濁液を経由することなく、セミプレグ、プリプレグおよび樹脂複合材料を製造することが可能である。また、本発明の一実施形態に係るセミプレグでは、ドレープ性を維持することも可能である。さらに、本発明の一実施形態に係る樹脂複合材料は、耐熱性にも優れている。
 なお、特許文献2の技術は、例えば、繊維織物とシート状に成形したポリイミド樹脂組成物を重ね、繊維織物に溶融させたポリイミド樹脂組成物を含浸させることにより、プリプレグを製造することを意図している。すなわち、特許文献2では、イミドオリゴマーの粉末と強化繊維とを混合することを意図していない。
 本明細書において「セミプレグ」は、樹脂(例えば、イミドオリゴマー)が強化繊維に部分的に含浸して(半含浸状態)、一体化した樹脂-強化繊維複合体を意味する。「セミプレグ」は、半含浸状態であるが故に樹脂が含浸していない繊維配列を含み、それによりドレープ性が損なわれず、複雑な形状への賦形性が良好である。「セミプレグ」の一態様として、樹脂に富んだ層を強化繊維の外表面上に有する形態を示すことが多い。
 なお、上記「ドレープ性」とは、セミプレグや後述するプリプレグ等の樹脂-強化繊維複合体の変形のしなやかさの度合いを示す指標を意味する。「ドレープ性」は、セミプレグや後述するプリプレグ等の樹脂-強化繊維複合体を型などの他の物体に沿って変形させた場合に、破壊や強化繊維の折損を伴うことなく、形状に柔軟に追随する度合いを表すものである。ドレープ性が高いと曲面に賦形するのが容易であり、ドレープ性が低いと曲面に賦形するのが困難となる。また、ドレープ性が低いと複雑形状を成形する事も当然難しくなる。
 本明細書において、「イミドオリゴマー」は、特に断りがない限り、「末端変性イミドオリゴマー」と同義として使用する。
 本発明の一実施形態において、RおよびRの芳香族ジアミンの2価の残基とは、芳香族ジアミン中の2個のアミノ基の間に存在する芳香族系有機基をいう。また、芳香族テトラカルボン酸類の4価の残基とは、芳香族テトラカルボン酸類中の4個のカルボニル基に囲まれた芳香族系有機基をいう。ここで芳香族系有機基とは芳香環を有する有機基である。芳香族系有機基は、炭素数4~30の有機基であることが好ましく、炭素数4~18の有機基であることがより好ましく、炭素数4~12の有機基であることがさらに好ましい。また芳香族系有機基は、炭素数6~30の炭素と水素とを含む基であることが好ましく、炭素数6~18の炭素と水素とを含む基であることがより好ましく、炭素数6~12の炭素と水素とを含む基であることがさらに好ましい。
 Rは、芳香族ジアミンの2価残基であり、2-フェニル-4,4’-ジアミノジフェニルエーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基であることが好ましい。
 また、Rは、芳香族ジアミンの2価残基であり、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される芳香族ジアミンの2価残基であることが好ましい。
 RおよびRは、芳香族テトラカルボン酸類の4価の残基であり、同一であってもよく、異なっていてもよい。本明細書において、芳香族テトラカルボン酸類とは、芳香族テトラカルボン酸および芳香族テトラカルボン酸二無水物、並びに芳香族テトラカルボン酸のエステルおよび塩などの酸誘導体を包含する意味である。
 上記芳香族テトラカルボン酸類の4価の残基は、好ましくは1,2,4,5-ベンゼンテトラカルボン酸類に由来する残基から選択される。上記1,2,4,5-ベンゼンテトラカルボン酸類とは、1,2,4,5-ベンゼンテトラカルボン酸、1,2,4,5-ベンゼンテトラカルボン酸二無水物(PMDA)、あるいは1,2,4,5-ベンゼンテトラカルボン酸のエステルまたは塩などの酸誘導体を包含する意味である。1,2,4,5-ベンゼンテトラカルボン酸類としては、特に、1,2,4,5-ベンゼンテトラカルボン酸二無水物が最適である。
 また、RおよびRは、水素原子またはフェニル基であって、いずれか一方がフェニル基を表すとも言える。m>1の場合は、Rがフェニル基でRが水素原子である繰り返し単位と、Rが水素原子でRがフェニル基である繰り返し単位とが任意に含まれていてよい。
 なお、R~Rは繰り返し単位毎に異なっていてもよく、同一であってもよい。
 本明細書において、「繰り返し単位の配列はブロック的およびランダム的のいずれであってもよい」とは、繰り返し単位がブロック重合していてもよく、ランダム重合していてもよいことを意味する。
 本発明の一実施形態において、セミプレグに含まれるイミドオリゴマーの粉末は、下記一般式(2)で表されるイミドオリゴマーの粉末であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 (式(2)中、Rは2-フェニル-4,4’-ジアミノジフェニルエーテルもしくは4-フェノキシ-1,3-ジアミノベンゼンから選択される芳香族ジアミンの2価残基を表し、
 RおよびRは水素原子またはフェノキシ基であって、いずれか一方がフェノキシ基を表し、
 RおよびRは同一または異なって4価の芳香族テトラカルボン酸類の残基を表し、
 RおよびRは水素原子またはフェニル基であって、いずれか一方がフェニル基を表し、
 mおよびnは、1≦m、0≦n≦5、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
 Rは、芳香族ジアミンの2価残基であり、2-フェニル-4,4’-ジアミノジフェニルエーテルもしくは4-フェノキシ-1,3-ジアミノベンゼンから選択される芳香族ジアミンの2価残基であることが好ましい。
 RおよびRは、水素原子またはフェノキシ基であって、いずれか一方がフェノキシ基を表すとも言える。n>1の場合は、Rがフェノキシ基でRが水素原子である繰り返し単位と、Rが水素原子でRがフェノキシ基である繰り返し単位とが任意に含まれていてよい。
 一般式(2)のR、R、RおよびRは、それぞれ、上記一般式(1)のR、R、RおよびRと同様の定義である。
 なお、R~Rは繰り返し単位毎に異なっていてもよく、同一であってもよい。
 本発明の一実施形態において、一般式(2)のRおよびRが1,2,4,5-ベンゼンテトラカルボン酸類の残基である場合のイミドオリゴマーは、下記一般式(3)で表される。
Figure JPOXMLDOC01-appb-C000007
 (式中、Rは2-フェニル-4,4’-ジアミノジフェニルエーテルまたは4-フェノキシ-1,3-ジアミノベンゼンから選択される芳香族ジアミンの2価の残基を表し、RおよびRは一方が水素原子、もう一方がフェノキシ基を表し、RおよびRは一方が水素原子、もう一方がフェニル基を表し、mおよびnは、1≦m、0≦n≦5、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的およびランダム的のいずれであってもよい)。
 本発明の一実施形態におけるイミドオリゴマーにおいては、芳香族テトラカルボン酸類として1,2,4,5-ベンゼンテトラカルボン酸類を単独で使用してもよいし、本発明の一実施形態の効果を奏する限り、1,2,4,5-ベンゼンテトラカルボン酸類の一部を他の芳香族テトラカルボン酸類化合物に置換してもよい。他の芳香族テトラカルボン酸類化合物としては、例えば、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物(i-BPDA)、2,2-ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(3,4-カルボキシフェニル)エーテル二無水物および1,2,3,4-ベンゼンテトラカルボン酸二無水物などが挙げられる。
 また、本発明の一実施形態におけるイミドオリゴマーにおいては、一般式(1)におけるRの2-フェニル-4,4’-ジアミノジフェニルエーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼンもしくは4-フェノキシ-1,3-ジアミノベンゼン、または一般式(2)におけるRの2-フェニル-4,4’-ジアミノジフェニルエーテルもしくは4-フェノキシ-1,3-ジアミノベンゼンの一部を、他の芳香族ジアミン化合物に置換してもよい。他の芳香族ジアミン化合物としては、例えば、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、1,2-ジアミノベンゼン、2,6-ジエチル-1,3-ジアミノベンゼン、4,6-ジエチル-2-メチル-1,3-ジアミノベンゼン、3,5-ジエチルトルエン-2,6-ジアミン、4,4’-ジアミノジフェニルエーテル(4,4’-ODA)、3,4’-ジアミノジフェニルエーテル(3,4’-ODA)、3,3’-ジアミノジフェニルエーテル、2-フェニル-3’,4-ジアミノジフェニルエーテル、2-フェニル-2’,4-ジアミノジフェニルエーテル、3-フェニル-4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス(2,6-ジエチル-4-アミノフェニル)メタン、4,4’-メチレン-ビス(2,6-ジエチルアニリン)、ビス(2-エチル-6-メチル-4-アミノフェニル)メタン、4,4’-メチレン-ビス(2-エチル-6-メチルアニリン)、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、ベンジジン、3,3’-ジメチルベンジジン、2,2-ビス(4-アミノフェノキシ)プロパン、2,2-ビス(3-アミノフェノキシ)プロパン、2,2-ビス[4’-(4’’-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)フルオレンおよび9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレンなどが挙げられ、それらを単独、あるいは2種以上を併用することができる。
 本発明の一実施形態におけるイミドオリゴマーにおいて、一般式(1)および(2)のmおよびnは、1≦m、0≦n≦5、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たす。なお、1≦m≦5であってもよい。また、0<n≦5であってもよい。1<m+n≦10であってもよい。0.5≦m/(m+n)<1であってもよい。mおよびnは、m+nが4以上であることが好ましく、m+nが5以上であることがより好ましい。mおよびnが上記関係を満たす場合、本発明の一実施形態に係る末端変性イミドオリゴマーは、溶液保存安定性にさらに優れ、硬化後は優れた耐熱性、機械的強度を有するため好ましい。
 本発明の一実施形態におけるイミドオリゴマーの最低溶融粘度は、20000Pa・sec以下が好ましく、10000Pa・sec以下がより好ましく、5000Pa・sec以下がさらに好ましく、3000Pa・sec以下がとりわけ好ましい。本発明の一実施形態におけるイミドオリゴマーの最低溶融粘度は、1~20000Pa・secであるが、この範囲に特段限定されない。最低溶融粘度が上記範囲であれば、本発明の一実施形態におけるイミドオリゴマーは成形性に優れるため、好ましい。なお、本明細書において、最低溶融粘度とは、後述の実施例に記載の方法によって測定されたものを意図する。
 本発明の一実施形態におけるイミドオリゴマーは、分子量の異なる末端変性イミドオリゴマーを混合したものでもよい。また、本発明の一実施形態に係る末端変性イミドオリゴマーは、他の可溶性ポリイミドあるいは熱可塑性ポリイミドと混合してもよい。上記熱可塑性ポリイミドは、加熱により軟性になるポリイミドであり、具体的には市販品であればよく、種類などについては特に限定はない。好ましくは、本発明の一実施形態に係るセミプレグでは、熱可塑性ポリイミドを実質的に含まない。
 本発明の一実施形態におけるイミドオリゴマーの280℃における溶融粘度は、200~1000000Pa・secであることが好ましく、200~800000Pa・secであることがより好ましく、200~500000Pa・secであることがさらに好ましい。280℃における溶融粘度が1000000Pa・secを超えるとイミドオリゴマーが流動し難くなる傾向がある。そのため、繊維強化複合材料を作製する際、繊維間にイミドオリゴマーが含浸し難く、ボイドもしくは未含浸部分等の欠陥が低減された、または、無くなった繊維強化複合材料を得ることが難しくなる傾向がある。また、280℃における溶融粘度が200Pa・secを下回ると樹脂が流動し易くなりすぎてセミプレグが作製し難くなる傾向がある。結果としてセミプレグとしてのドレープ性の確保が難しくなる場合がある。本明細書において、280℃における溶融粘度とは、後述の実施例に記載の方法によって測定されたものを意図する。
 本発明の一実施形態におけるイミドオリゴマーを硬化して得られるポリイミド樹脂の空気中での5%重量減少温度は、520℃以上であることが好ましく、530℃以上であることがより好ましく、535℃以上であることがさらに好ましい。空気中での5%重量減少温度は高温環境で長時間ポリイミド樹脂を使用したときの酸化劣化速度と相関があると考えられる。空気中での5%重量減少温度が高い程、ポリイミド樹脂を長時間高温環境で使用することができる。即ち、空気中での5%重量減少温度が高い程、長期耐熱安定性が高い材料と言える。本明細書において、空気中での5%重量減少温度とは、後述の実施例に記載の方法によって測定されたものを意図する。
 本発明の一実施形態において、セミプレグに含まれる強化繊維は、例えば、炭素繊維、ガラス繊維、金属繊維およびセラミック繊維などの無機繊維、ならびにポリアミド繊維、ポリエステル系繊維、ポリオレフィン系繊維およびノボロイド繊維などの有機合成繊維などが挙げられる。これらの繊維は、1種を単独で、または2種以上を組み合わせて使用できる。
 特に、セミプレグから作製される繊維強化複合材料に優れた機械的特性および高い耐熱性を発現させるためには、上記繊維は炭素繊維であることが望ましい。炭素繊維としては、炭素の含有率が85~100重量%の範囲にあり、少なくとも部分的にグラファイト構造を有する連続した繊維形状を有する材料であれば特に限定されない。このような炭素繊維としては、例えば、ポリアクリロニトリル(PAN)系、レイヨン系、リグニン系およびピッチ系などの炭素繊維が挙げられる。これらの中でも、汎用的かつ安価であり、高い強度を備えていることから、PAN系またはピッチ系などの炭素繊維が好ましい。
 一般的に、前記炭素繊維には、サイジング処理が施されているが、できるだけサイジング剤使用量の少ないものを用いるか、必要に応じて有機溶剤処理や加熱処理等の既存の方法にてサイジング剤を除去することが好ましい。サイジング剤量は、炭素繊維に対して0.5wt%以下とすることが好ましく、0.1wt%以下とすることがより好ましく、0.01wt%以下とすることがさらに好ましい。通常、炭素繊維に使用されているサイジング剤はエポキシ樹脂用のものであるため、本発明の一実施形態におけるイミドオリゴマーを硬化させる280℃以上の温度では分解することがあり、繊維強化複合材料の物性に悪影響を及ぼす場合がある。また、予め繊維束をエアーやローラーなどを用いて開繊し、炭素繊維の単糸間に樹脂を含浸させるように施してもよい。開繊することで樹脂の含浸距離が短くなり、よりボイド等の欠陥が低減され、あるいは無くなった繊維強化複合材を得易くなる。加えて、開繊により、セミプレグまたはプリプレグのドレープ性も向上するため、取扱性および賦形性が向上する。
 本発明の一実施形態におけるセミプレグを構成する強化繊維の形態としては、UD材(一方向材)、織物(平織、綾織、朱子織など)、編物、組物、不織布等の構造体が挙げられ、特に限定されるものでない。上記繊維材料の形態は、その目的に応じ適宜選択すれば良く、これらを単独あるいは組み合わせて用いることができる。
 本発明の一実施形態におけるセミプレグの揮発分残存量は、セミプレグに含まれるイミドオリゴマーに対して20wt%未満であることが好ましく、10wt%未満であることがより好ましく、5wt%未満であることがさらに好ましく、1wt%未満であることが特に好ましい。なお、本明細書において、揮発分とは、イミドオリゴマー製造時の溶媒が主な成分であるが、イミド化が未進行であるアミド酸オリゴマーから脱離する水分も含む。揮発分は後述する実施例に記載の方法により測定されたものを意図する。セミプレグの揮発分残存量が上記範囲であれば、当該セミプレグを用いて樹脂複合材料(例えば、炭素繊維強化複合材料)を作製したときに、溶媒等の揮発および分解に起因するボイド等の欠陥が低減され、あるいは無くなって、樹脂単体同等以上のTgを有する良好な複合材料が得られるため、好ましい。
 〔2.セミプレグの製造方法〕
 本発明の一実施形態において、イミドオリゴマーの粉末をドライ工程にて強化繊維と混合させる工程を含むことを特徴とするセミプレグの製造方法を提供する。
 本発明の一実施形態におけるセミプレグの製造方法は、揮発分の残存を低減したセミプレグの提供を可能とする。
 本発明の一実施形態におけるイミドオリゴマーは、特段限定されるものではなく、当該技術分野で使用される任意の変性イミドオリゴマーであり得る。すなわち、本発明の一実施形態におけるイミドオリゴマーは、末端変性イミドオリゴマーであってもよいし、末端変性イミドオリゴマーでなくてもよい。本発明の一実施形態におけるイミドオリゴマーとしては、例えば、両末端変性イミドオリゴマー、片末端変性イミドオリゴマー、側鎖変性イミドオリゴマー等が挙げられる。これらは単独で使用してもよく、2種類以上を組み合わせて使用してもよい。本発明の一実施形態において、イミドオリゴマーは、上記一般式(1)で表されるイミドオリゴマーであることが好ましく、上記一般式(2)で表されるイミドオリゴマーであることがより好ましい。イミドオリゴマーが上記一般式(1)または(2)で表されるイミドオリゴマーであれば、優れた成型性を有し、優れた耐熱性、機械的物性を示す繊維強化複合材料が得られるという利点を有する。
 本発明の一実施形態におけるイミドオリゴマーの粉末は、市販で入手することも可能であるし、当該技術分野において一般的に用いられる方法により製造することも可能である。
 本発明の一実施形態において、イミドオリゴマーの粉末の製造方法としては、例えば、以下の(1)および(2)の工程を含む方法が挙げられる。
 <工程(1)>
 本発明の一実施形態において、工程(1)は、末端変性イミドオリゴマーを含むワニスを製造する工程である。
 まず、上記芳香族テトラカルボン酸類と、2-フェニル-4,4’-ジアミノジフェニルエーテルおよび4-フェノキシ-1,3-ジアミノベンゼンを含む芳香族ジアミン類と、4-(2-フェニルエチニル)無水フタル酸とを、全成分の酸無水物基(隣接するジカルボン酸基の場合は、カルボキシル基2モル当たり1モルの酸無水物基とみなす。)の全量とアミノ基の全量とがほぼ等量になるように使用する。各成分を、後述の有機溶媒中で、約100℃以下、特に80℃以下の反応温度で重合させて、アミド酸オリゴマーを生成する。アミド酸オリゴマーはアミド-酸結合を有するオリゴマーであり、アミック酸オリゴマーともいう。次いで、そのアミド酸オリゴマーを、約0~140℃の低温でイミド化剤を添加する方法または140~275℃の高温に加熱する方法によって、脱水および環化させる。これにより、末端に4-(2-フェニルエチニル)無水フタル酸残基を有するイミドオリゴマー(末端変性イミドオリゴマー)を得ることができる。芳香族テトラカルボン酸類としては、上述の通り、1,2,4,5-ベンゼンテトラカルボン酸類(特に、この酸二無水物)を用いることが好ましい。
 本発明の一実施形態における工程(1)の特に好ましい方法は、例えば以下の通りである。まず、2-フェニル-4,4’-ジアミノジフェニルエーテルおよび4-フェノキシ-1,3-ジアミノベンゼンを含む芳香族ジアミン類を後述の有機溶媒中に均一に溶解後、1,2,4,5-ベンゼンテトラカルボン酸二無水物を含む芳香族テトラカルボン酸二無水物を溶液中に加えて均一に溶解させる。その後、約5~60℃の反応温度で1~180分程度反応溶液を攪拌する。この反応溶液に、4-(2-フェニルエチニル)無水フタル酸を加えて均一に溶解後、約5~60℃の反応温度で1~180分程度反応溶液を攪拌しながら反応させて、上記末端変性アミド酸オリゴマーを生成する。その後、その反応溶液を140~275℃で5分~24時間攪拌して上記アミド酸オリゴマーをイミド化反応させ、本発明の一実施形態における末端変性イミドオリゴマーを含むワニスを得ることができる。イミド化率が低いと、繊維強化複合材料成形の際、分子内から脱離する水が揮発分となりボイド等の欠陥の原因となったり、オリゴマーの分解の原因となったりする。そのため、イミド化率を95%以上とすることが好ましく、97%以上とすることがより好ましく、98%以上とすることがさらに好ましい。イミド化率は後述する実施例に記載の方法によって測定されたものを意図する。必要ならば、末端変性アミド酸オリゴマーのイミド化反応の後に反応溶液を室温付近まで冷却することにより、本発明の一実施形態に係る末端変性イミドオリゴマーを得てもよい。上記反応において、全反応工程または一部の反応工程を窒素ガスもしくはアルゴンガスなどの不活性のガスの雰囲気または真空中で行うことが好適である。
 上記有機溶媒としては、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジエチルアセトアミド、N-メチルカプロラクタム、γ-ブチロラクトン(GBL)およびシクロヘキサノンなどが挙げられる。これらの溶媒は単独で用いてもよく、2種以上を併用してもよい。これらの溶媒の選択に関しては、可溶性ポリイミドについての公知技術を適用することができる。
 <工程(2)>
 本発明の一実施形態において、工程(2)は、末端変性イミドオリゴマーを含むワニスから末端変性イミドオリゴマー粉末を製造する工程である。
 本工程(2)においては、上記工程(1)で得られた末端変性イミドオリゴマーを含むワニスを水、メタノール等の貧溶媒、または、非溶媒中に注ぎ込んだ後、粉末状の生成物として単離することにより、末端変性イミドオリゴマー粉末を製造することができる。
 また、本発明の別の実施形態において、イミドオリゴマーの粉末は、「最新ポリイミド~基礎と応用~/日本ポリイミド研究会編;今井淑夫、横田力男編著、エヌ・ティー・エス出版、p20-26(2002)」に記載されたいわゆる「高温溶融合成法」、「高温固相合成法」によって製造することもできる。高温溶融合成法、または、高温固相合成法を用いた場合、末端変性イミドオリゴマーの重合に溶媒を用いず、且つ、末端変性イミドオリゴマーの単離にも揮発分を用いないため、イミドオリゴマーへの揮発分の持ち込みが極力少なくでき、好適である。
 上記の方法で得られた末端変性イミドオリゴマー粉末は、以下のドライ工程で使用され得る。
 本発明の一実施形態におけるセミプレグの製造方法は、イミドオリゴマーの粉末と強化繊維とをドライ工程で混合する工程を含む。
 本明細書において、「ドライ工程」とは、溶媒、分散媒等の揮発分を用いずにイミドオリゴマーの粉末と強化繊維とを混合する工程を意味する。従来の方法では、末端変性イミドオリゴマーを含むワニス(すなわち、末端変性イミドオリゴマーの溶液組成物)を強化繊維へ含浸させることによりプリプレグが製造されていたため、得られたプリプレグには溶媒等の揮発分が残存するという問題があった。また、溶媒等の揮発分が残存するプリプレグを乾燥することで残留揮発分の低減を試みる例もあるが、プリプレグの状態で溶媒等の揮発分を蒸発させる工程は、製造負荷、設備負荷が大きく好ましくなかった。本発明の一実施形態では、溶媒、分散媒等の揮発分を用いないドライ工程でセミプレグの製造を行うことから、揮発分の残存を低減したセミプレグを得ることが可能であり、これは、従来技術に比して本発明の有利な効果である。
 本発明の実施形態はイミドオリゴマー粉末と強化繊維をドライ工程で混合するのであれば特に限定されない。例えば、イミドオリゴマー粉末を強化繊維に載せる、吹き付ける、または、粉末を入れた槽の中に強化繊維を通し、強化繊維にイミドオリゴマー粉末を付着させる。その後、ニップロール等の加熱ロール、プレス機、ラミネーター機、IRヒーター、レーザ、ガストーチ、超音波トーチ等を用いイミドオリゴマー粉末を溶融する方法、または溶融後に加圧することにより強化繊維に含浸する方法が挙げられる。セミプレグを作製するためには、加圧は必ずしも必要としない。
 なお、本明細書の「ドライ工程」を実施する場合、予め繊維束をエアーやローラーなどを用いて開繊することにより、炭素繊維の単糸間に樹脂を含浸させるように処理してもよい。開繊することで樹脂の含浸距離が短くなり、よりボイド等の欠陥が低減され、あるいは無くなった繊維強化複合材を得易くなる。これに加えて、セミプレグまたはプリプレグのドレープ性も向上することにより、取扱性および賦形性が向上する。
 本発明の一実施形態において、プレス機としては、例えば、ホットプレス、真空ホットプレス等が用いられ、例えば、230℃~370℃の温度、かつ、0.1MPa~20MPaの圧力で、0.1分~10分加熱溶融することにより、セミプレグを得ることができる。なお、本明細書における圧力の値は全てサンプルにかかる実圧の値である。
 なお、本発明の一実施形態における強化繊維は、〔1.セミプレグ〕の項で記載したものと同様である。
 また、本発明の一実施形態に用いられるイミドオリゴマー粉末は特に限定されないが、平均粒子径が1μm~1000μmであることが好ましく、10μm~500μmであることがより好ましく、10μm~300μmであることがさらに好ましい。また、粒子径分布全体が1μm~1000μmに入っていることが好ましい。平均粒子径が1μm未満であると、ドライ工程で強化繊維に付着させる際、微粉が多くなり作業性が悪くなる場合がある。平均粒子径が1000μmを超えるとイミドオリゴマー粉末が加熱融解し、強化繊維に含浸または融着する際、強化繊維も一緒に流れ強化繊維のアラインメントが乱れたり、イミドオリゴマーの付着ムラが大きくなったりする場合がある。なお、本明細書において、平均粒子径、粒子径分布とは後述の実施例に記載の方法によって測定されたものを意図する。
 イミドオリゴマーの粉末を得る方法として、既知の方法を使用できる。例えば、ハンマーミル、ジェットミル、ボールミル、ビーズミル等の粉砕方法を用いることができ、凍結粉砕しても良い。必要に応じて、振動篩や旋回気流式篩などで分級してもよい。
 〔3.プリプレグ〕
 本発明の一実施形態において、上記のセミプレグから得られることを特徴とするプリプレグを提供する。
 本明細書において「プリプレグ」は、樹脂(例えば、イミドオリゴマー)が強化繊維に含浸して一体化した樹脂-強化繊維複合体を意味する。「プリプレグ」は、強化繊維への樹脂の含浸の程度が「セミプレグ」よりも進んだものである。そのため、「プリプレグ」は、「セミプレグ」に比してドレープ性が低いことが多い。しかしながら、プリプレグは予め樹脂を繊維間に含浸させるため、一般にセミプレグを使用する場合と比較して積層体の成形時間は短く、緩和な条件を選択できるというメリットがある。例えば、プリプレグを使用する場合、積層体を成形する際の圧力を低くできる。
 本発明の一実施形態におけるプリプレグは、溶媒、分散媒等の揮発分を用いずにイミドオリゴマーの粉末と強化繊維とを混合させて製造されたセミプレグから製造されることから、揮発分の残存を低減したプリプレグの提供を可能とする。また、そのようなプリプレグを用いて製造された樹脂複合材料(例えば、炭素繊維強化複合材料)は、溶媒等の揮発および分解に起因するボイド等の欠陥が低減され、あるいは無くなって、樹脂単体同等以上のTgを有するという極めて有利な効果を奏する。
 本発明の一実施形態において、プリプレグを製造する方法は、本発明の一実施形態におけるセミプレグを出発物質としてプリプレグを製造する方法であれば、その具体的な方法は、特段限定されず、セミプレグの製造と連続して行っても良い。プロセスによってはセミプレグの製造とプリプレグの製造との境目が明確でない場合も有り得る。
 また、セミプレグ、または、プリプレグ中に含まれるイミドオリゴマー含有量としては特に制限されないが、揮発分重量を除外して、即ち、強化繊維とイミドオリゴマーのみの構成物として、通常15~90wt%、好ましくは20~70wt%である。
 本発明の一実施形態において、プリプレグの製造方法は、上記のセミプレグを加熱溶融して、イミドオリゴマーを強化繊維に含浸させる工程を含む方法であることが好ましい。
 本発明の一実施形態において、加熱溶融は、例えば、250℃以上で行われ、好ましくは、270℃以上で行われる。また、加熱溶融の時間は、例えば、0.1分~20分であり、好ましくは、1分~20分である。本発明の一実施形態のセミプレグを上記の条件下で加熱溶融することにより、イミドオリゴマーを強化繊維に含浸させることができる。
 また、本発明の一実施形態において、プリプレグの製造方法は、上記の加熱溶融後に冷却固化工程を含み得る。冷却固化工程は、強化繊維に含浸したイミドオリゴマーをマトリックス樹脂に変換する工程であり、例えば、150℃以下で行われ、好ましくは、100℃以下で行われる。
 本発明の一実施形態において製造されたプリプレグは、後述の樹脂複合材料の製造に使用され得る。
 〔4.樹脂複合材料〕
 本発明の一実施形態における樹脂複合材料は、上記プリプレグを積層し、加熱硬化して得られるものであってもよく、上記セミプレグを積層し、加熱硬化して得られるものであってもよい。セミプレグを積層し、加熱硬化して得られる樹脂複合材料とは、すなわち、中間体であるプリプレグを取り出すことなく得られる樹脂複合材料である。または、本発明の一実施形態における樹脂複合材料は、プリプレグとセミプレグとを組み合わせて積層し、加熱硬化して得られるものであってもよい。製造プロセスの簡略化という観点からは、まず型内のセミプレグを加熱してプリプレグを得た後、引き続き同じ型内で加熱して樹脂複合材料を製造することが好ましい。以下では、樹脂複合材料を「繊維強化複合材料」と称することもある。本発明の一実施形態における樹脂複合材料は、例えば、以下のようにして得ることができる。
 上記プリプレグを所定枚数重ねて、オートクレーブまたは(真空)ホットプレス等を用いて、280~500℃の温度かつ0.1~100MPaの圧力で10分から40時間程度加熱硬化して、繊維強化複合材料を得ることができる。また、上記プリプレグを用いるほか、上記セミプレグを積層し、上記と同様にして加熱硬化した積層板として繊維強化複合材料を得ることもできる。
 より詳細な成形条件としては、本発明の一実施形態において樹脂複合材料を製造する際には、まず、イミドオリゴマーの粉末を強化繊維に付着させ、次いで加熱することにより、セミプレグまたはプリプレグを製造する工程を設ける。この工程を工程(a)とも称する。次に、前記工程(a)で得られたセミプレグまたはプリプレグを積層して積層体を得て、当該積層体を5~300分間、260~320℃、0.1~20MPaの条件下で保持する工程を設けることが望ましい。この工程を工程(b)とも称する。これにより、イミドオリゴマーの強化繊維への含浸、並びにセミプレグおよび/またはプリプレグの層間接着を促進することができる。保持時間は前記範囲であれば特に制限されないが、好ましくは10~200分、より好ましくは15~150分、特に好ましくは20~120分である。この保持時間が5分より短くなると強化繊維へのイミドオリゴマーの含浸が不十分となる可能性がある。また、この保持時間が300分より長くなるとイミドオリゴマーや強化繊維が酸化反応や熱により劣化する可能性がある。加えて、成形時間が長くなり非効率である。また、温度は前記範囲であれば特に制限されないが、好ましくは270~310℃であり、より好ましくは280~310℃である。温度が260℃より低くなると、イミドオリゴマーの溶融粘度が高いため、強化繊維へのイミドオリゴマーの含浸が不十分となる可能性がある。320℃より高くなるとイミドオリゴマーの硬化反応が進行する結果、イミドオリゴマーの溶融粘度が上昇し、これにより、イミドオリゴマーの強化繊維への含浸が不十分となる可能性がある。また、圧力は前記範囲であれば特に制限されないが、好ましくは0.1~15MPa、より好ましくは0.1~10MPa、特に好ましくは0.5~10MPaである。圧力が0.1MPaより低くなるとイミドオリゴマーの強化繊維への含浸が不十分となる可能性がある。または20MPaを超えるとイミドオリゴマーが強化繊維からはみ出し、所望の繊維強化複合材料が得られない可能性がある。また、大型成形物を作製する際、設備が大掛かりとなり不経済である。また、途中で温度、圧力を前記範囲内で変化させてもよいし、加熱のため所定温度で無加圧である時間があってもよい。
 前記工程(b)を設けることにより、ボイドなどの欠陥を減らすことが可能となる。なお、加圧する際、何度か加圧、減圧を繰り返し、内部に残留する気泡等を取り除く工程を挟んでも良い。この工程を入れることにより繊維強化複合材料中のボイドなどの内部欠陥を更に減少させられる場合がある。この工程はポンピングなどと呼称されることがある。
 その後、前記工程(b)を経た積層体を、さらに15~120分間、330~500℃、0.1~20MPaで保持する工程を設けることが望ましい。この工程を工程(c)とも称する。これにより、優れた樹脂複合材料を得ることができる。保持時間は前記範囲であれば特に制限されないが、好ましくは20~120分、特に好ましくは30~90分である。この保持時間が15分より短いと硬化反応が十分進行しない場合がある。この保持時間が120分より長くなると樹脂や強化繊維が酸化劣化または熱劣化する可能性がある。また、温度は前記範囲であれば特に制限されないが、好ましくは350~450℃であり、より好ましくは360~400℃である。温度が330℃より低くなると硬化反応が十分進行しない場合がある。温度が500℃より高くなると樹脂が酸化反応や熱により劣化する可能性がある。また、圧力は前記範囲であれば特に制限されないが、好ましくは0.1~15MPa、より好ましくは0.1~10MPa、特に好ましくは0.5~10MPaである。
 前記工程(a)の前に、前記強化繊維の繊維束を開繊する工程を設けてもよい。また、前記イミドオリゴマーは、上述の一般式(1)で表されるイミドオリゴマーであることが好ましい。なお、セミプレグを製造した後にプリプレグを製造する場合、セミプレグ製造時の加熱時間がプリプレグ製造時の加熱時間よりも短いことが好ましい。
 これらの全工程は真空中または不活性ガス中で行ってもよいし、大気中で行ってもよい。
 また、本発明の一実施形態における樹脂複合材料は、ガラス転移温度(Tg)が320℃以上であることが好ましく、350℃以上であることがより好ましい。ガラス転移温度が上記範囲であれば、本発明の一実施形態における樹脂複合材料は、より優れた耐熱性を有する。なお、本明細書において、ガラス転移温度とは、後述の実施例に記載の方法によって測定されたものを意図する。
 また、フィルム形状のイミドオリゴマーの成形体、イミドオリゴマー粉末、セミプレグまたはプリプレグを繊維強化複合材料と異種材料または同種材料との間に挿入し、加熱溶融して一体化することにより、繊維強化複合材料構造体を得てもよい。ここで、異種材料としては特に限定されず、この分野で常用されるものをいずれも使用できるが、例えば、ハニカム形状などの金属材料およびスポンジ形状などのコア材料などが挙げられる。
 〔5.用途〕
 上記セミプレグ、プリプレグ、樹脂複合材料等は、航空機、宇宙産業用機器および車輌用エンジン(周辺)部材、搬送用アーム、ロボットアーム、ロール材、摩擦材、軸受け等の摺動性部材などの一般産業用途をはじめとした易成形性かつ高耐熱性が求められる広い分野で利用可能である。航空機部材であれば、エンジンのファンケース、インナーフレーム、動翼(ファンブレードなど)、静翼(構造案内翼(SGV)など)、バイパスダクト、各種配管などが挙げられる。車輌部材であれば、ブレーキ部材、エンジン部材(シリンダー、モーターケース、エアボックスなど)、エネルギー回生システム部材などが好ましく挙げられる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は以下のように構成されてもよい。
 〔1〕下記一般式(1)で表されるイミドオリゴマーの粉末と、強化繊維と、を含むことを特徴とするセミプレグ。
Figure JPOXMLDOC01-appb-C000008
 (式(1)中、Rは2-フェニル-4,4’-ジアミノジフェニルエーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、
 Rは9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、
 RおよびRは同一または異なって4価の芳香族テトラカルボン酸類の残基を表し、
 RおよびRは水素原子またはフェニル基であって、いずれか一方がフェニル基を表し、
 mおよびnは、1≦m、0≦n≦5、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
 〔2〕前記イミドオリゴマーが、下記一般式(2)で表されるものであることを特徴とする〔1〕に記載のセミプレグ。
Figure JPOXMLDOC01-appb-C000009
 (式(2)中、Rは2-フェニル-4,4’-ジアミノジフェニルエーテルもしくは4-フェノキシ-1,3-ジアミノベンゼンから選択される芳香族ジアミンの2価残基を表し、
 RおよびRは水素原子またはフェノキシ基であって、いずれか一方がフェノキシ基を表し、
 RおよびRは同一または異なって4価の芳香族テトラカルボン酸類の残基を表し、
 RおよびRは水素原子またはフェニル基であって、いずれか一方がフェニル基を表し、
 mおよびnは、1≦m、0≦n≦5、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
 〔3〕揮発分の残存量が、前記イミドオリゴマーに対して20wt%未満であることを特徴とする〔1〕または〔2〕に記載のセミプレグ。
 〔4〕前記イミドオリゴマーのm+nが4以上であることを特徴とする〔1〕~〔3〕のいずれか1つに記載のセミプレグ。
 〔5〕前記イミドオリゴマーの最低溶融粘度が1~20000Pa・secであることを特徴とする〔1〕~〔4〕のいずれか1つに記載のセミプレグ。
 〔6〕前記イミドオリゴマーの280℃における溶融粘度が200~1000000Pa・secであることを特徴とする〔1〕~〔5〕のいずれか1つに記載のセミプレグ。
 〔7〕前記イミドオリゴマーを硬化して得られるポリイミド樹脂の空気中での5%重量減少温度が520℃以上であることを特徴とする〔1〕~〔6〕のいずれか1つに記載のセミプレグ。
 〔8〕〔1〕~〔7〕のいずれか1つに記載のセミプレグから得られることを特徴とするプリプレグ。
 〔9〕〔8〕に記載のプリプレグを熱硬化してなることを特徴とする樹脂複合材料。
 〔10〕イミドオリゴマーの粉末をドライ工程にて強化繊維と混合させる工程を含むことを特徴とするセミプレグの製造方法。
 〔11〕イミドオリゴマーが、4-フェニルエチニルフタル酸無水物で末端を封止したものである〔10〕に記載のセミプレグの製造方法。
 〔12〕〔10〕または〔11〕に記載のセミプレグの製造方法により得られたセミプレグを加熱溶融して、イミドオリゴマーを強化繊維に含浸させる工程を含むことを特徴とするプリプレグの製造方法。
 〔13〕〔12〕に記載のプリプレグの製造方法により得られたプリプレグを積層し、加熱硬化する工程を含むことを特徴とする樹脂複合材料の製造方法。
 〔14〕以下の工程を含むことを特徴とする樹脂複合材料の製造方法:
 (a)イミドオリゴマーの粉末を強化繊維に付着させ、次いで加熱することにより、セミプレグまたはプリプレグを製造する工程、
 (b)前記工程(a)で得られたセミプレグまたはプリプレグを積層して積層体を得て、当該積層体を5~300分間、260~320℃、0.1~20MPaで保持する工程、
 (c)前記工程(b)を経た積層体を、さらに15~120分間、330~500℃、0.1~20MPaで保持する工程。
 〔15〕前記工程(a)の前に、前記強化繊維の繊維束を開繊する工程を含むことを特徴とする〔14〕に記載の樹脂複合材料の製造方法。
 〔16〕前記イミドオリゴマーは、下記一般式(1)で表されることを特徴とする〔14〕または〔15〕に記載の樹脂複合材料の製造方法。
Figure JPOXMLDOC01-appb-C000010
 (式(1)中、Rは2-フェニル-4,4’-ジアミノジフェニルエーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、
 Rは9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、
 RおよびRは同一または異なって4価の芳香族テトラカルボン酸類の残基を表し、
 RおよびRは水素原子またはフェニル基であって、いずれか一方がフェニル基を表し、
 mおよびnは、1≦m、0≦n≦5、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
 本発明者らは、特殊な粉末(低重合度のイミドオリゴマーまたは低重合度のイミドオリゴマーと熱可塑性ポリイミドとの混合物)を用いる必要があり、また硬化物の耐熱性(5%重量減少温度および/またはガラス転移温度)が低いという特許文献1、2の課題を解決するために、鋭意検討をおこなった。その結果、比較的重合度の大きいイミドオリゴマーを用いても、例えば以下のような工夫を行うことにより、良好な耐熱性を示し、かつ、揮発分の残存を低減し得るセミプレグ、プリプレグおよび樹脂複合材料を得ることができることを見出した。
・特定の構造のイミドオリゴマーを用いるという工夫。
・まず強化繊維とイミドオリゴマー粉末との混合物を短時間加熱してセミプレグを製造し、このようなドレープ性が良好な状態のセミプレグを積層した後、そのセミプレグを積層した積層体を本格的に加熱し、強化繊維に樹脂を含浸させることにより賦形性を改善するという工夫。
・セミプレグおよび/またはプリプレグを積層した積層体を加熱プレスすることにより樹脂複合材料を得る工程において、加熱温度、圧力、時間を適切な範囲に設定することによりイミドオリゴマーの強化繊維への含浸、並びにセミプレグおよび/またはプリプレグの層間接着を促進し、これによりボイドなどの欠陥の少ない樹脂複合材料を得るという工夫。
・セミプレグまたはプリプレグ製造の際に開繊された強化繊維を用いることによりセミプレグ中の粉末間の距離を短くし、且つ、ドレープ性も向上させるという工夫。
 以下に、本発明の実施例および比較例を示すが、本発明は以下によって限定されるものではない。また、本実施例中の圧力の値は全てサンプルにかかる実圧の値であり、プレス機等の表示圧の値ではない。
 〔試験方法〕
 (1)ガラス転移温度(Tg)測定
 (フィルム状の樹脂)
 Rheometric社製RSA-II型動的粘弾性測定(DMA)装置を用いて測定を行った。条件は、昇温速度5℃/min、周波数1Hzとし、貯蔵弾性率曲線が低下する前後における2つの接線の交点をガラス転移温度とした。
 (繊維強化複合材料)
 繊維強化複合材料板の中央部分を切削することで試験片を作製し、TAインスツルメンツ製DMA-Q-800型動的粘弾性測定(DMA)装置を用い、片持ち梁方式、0.1%のひずみ、1Hzの周波数、5℃/minの昇温速度により測定した。貯蔵弾性率曲線が低下する前後における2つの接線の交点をガラス転移温度とした。
 (2)最低溶融粘度および280℃における溶融粘度の測定
 TAインスツルメンツ製DISCOVERY HR-2型レオメーターを用い、25mmパラレルプレートで5℃/minの昇温速度で測定した。なお、「最低溶融粘度」は、当該条件にて測定された溶融粘度の最低値を意味する。
 (3)断面観察
 繊維強化複合材料板の中央部分を切削した。この切削した中央部分をエポキシ樹脂(三啓社製、エポホールドR、2332-32R/エポホールドH、2332-8H)に包埋、次いでエポキシ樹脂を硬化した。このエポキシ樹脂表面をPRESI社製Mecatech 334にて研磨することにより、観察用試料を作製した。光学顕微鏡(カールツァイスマイクロスコピー社製Axioplan2 Imaging型顕微鏡、または、キーエンス社製VHX-5000)を用いて、繊維強化複合材料(観察用試料)の断面観察を行った。
 (4)残存NMPの測定
 末端変性イミドオリゴマー粉末の約20mg/mLのDMF溶液を調製し、GC/MS分析(GC:Agilent technologies製6890N、MS:Agilent technologies製5973N、カラム:SUPELCOWAX 0.25mmID×30m)により定量を行った。
 (5)イミド化率の測定
 末端変性イミドオリゴマー粉末を重DMF(重水素化N,N-ジメチルホルムアミド)に溶解し、プロトン核磁気共鳴分光装置(型式:AV-400M、(株)Bruker社製、H-NMR)を用い、30℃にてピーク面積の測定を行った。化学シフトが7~9ppmの芳香族H由来のピーク面積と化学シフトが11ppm付近の残存アミド由来のピーク面積とからイミド化率を算出した。
 (6)揮発分含有率、炭素繊維含有率、末端変性イミドオリゴマーの含有率の測定
 作製したプリプレグを所定量計量し、280℃のオーブンに1時間静置することで、揮発分を除去した後、再度重量を測定することで揮発分含有率を求めた。また、作製したプリプレグをNMPで洗浄することで樹脂成分を洗い落とし、次いで乾燥した後、重量を測定することで炭素繊維含有率を求めた。末端変性イミドオリゴマーの含有率は全重量から揮発分重量、炭素繊維重量を差し引くことで求めた。
 (7)末端変性イミドオリゴマーの粒子径分布の測定
 イソプロピルアルコールに末端イミドオリゴマー粉末を再分散させ、レーザ回折式粒度分布測定装置(Malvern社製Mastersizer)により体積平均粒子径分布を測定した。平均粒子径は50%累積体積平均粒子径とした。
 (8)空気中での5%重量減少温度の測定
 セイコーインスツルメンツ製EXSTAR TG/DTA6300型熱重量分析装置(TGA)を用い、空気環境下、5℃/minの昇温速度で5%重量減少温度を測定した。
 〔製造例1〕
 温度計および攪拌子を備えた3つ口の300mLフラスコに、2-フェニル-4,4’-ジアミノジフェニルエーテル23.43g(84.8mmol)とN-メチル-2-ピロリドン(NMP)82.5gとを加えた。2-フェニル-4,4’-ジアミノジフェニルエーテルの溶解後、上記フラスコに9,9-ビス(4-アミノフェニル)フルオレン3.28g(9.41mmol)を加えて、溶解するまで攪拌した。続いて、上記フラスコに1,2,4,5-ベンゼンテトラカルボン酸二無水物を16.44g(75.4mmol)加えた後、窒素封入し、室温で1.5時間重合反応させ、アミド酸オリゴマーを生成した。このアミド酸オリゴマーを含む反応溶液に4-(2-フェニルエチニル)無水フタル酸(PEPA)9.35g(37.7mmol)とNMP15gとを加え、窒素封入し、室温で1.5時間反応させて末端変性した。さらに、上記フラスコに窒素導入管を取り付け、窒素気流下、200℃で5時間攪拌してイミド結合させ、冷却することで末端変性イミドオリゴマーのNMP溶液(ワニス)(N1)を得た。
 〔製造例2〕
 製造例1で得られた末端変性イミドオリゴマーのNMP溶液(ワニス)(N1)を15重量%まで希釈し、3300mLのイオン交換水に投入し、析出した固形分を濾別した。濾別して得られた固形分を、1000mLのメタノールで30分洗浄した後、200℃で14時間減圧乾燥し、顆粒状の末端変性イミドオリゴマーを得た。さらに、得られた顆粒状の末端変性イミドオリゴマーをハンマーミルで粉砕することで平均体積粒子径61μmの末端変性イミドオリゴマー粉末(P1)を得た。
 得られた末端変性イミドオリゴマーは、上記一般式(1)において、Rが2-フェニル-4,4’-ジアミノジフェニルエーテル残基または9,9-ビス(4-アミノフェニル)フルオレン残基で表され、Rが9,9-ビス(4-アミノフェニル)フルオレン残基で表され、RおよびRが1,2,4,5-ベンゼンテトラカルボン酸二無水物残基で表され、平均としてm=3.6、n=0.4である。
 得られた末端変性イミドオリゴマー粉末(P1)の残存NMPをGC/MSにて分析したところ、NMPが790ppm残留していた。また、イミド化率をH-NMRにて測定したところ98.5%であった。また、この末端変性イミドオリゴマー粉末(P1)は、NMP溶媒に室温で35wt%以上可溶であり、35wt%NMP溶液(ワニス)は、室温で静置したところ、1ヵ月後においてもゲル化等は生じず、安定なままであった。硬化前の末端変性イミドオリゴマー粉末(P1)の最低溶融粘度は193Pa・sec(348℃)、280℃での溶融粘度は約30000Pa・secであった。また、この粉末状の末端変性イミドオリゴマーを、ホットプレスを用いて370℃で1時間加熱してフィルム状硬化物(厚さ90μm)を得た。このフィルム状硬化物を用い、DMAにてTgを測定したところ368℃であった。また、このフィルム状硬化物の、空気中での5%重量減少温度を測定したところ537℃であった。
 〔製造例3〕
 温度計および攪拌子を備えた3つ口の300mLフラスコに、窒素雰囲気下でNMP100gと2,3,3’,4’-ビフェニルテトラカルボン酸二無水物13.3g(45.2mmol)、PEPA19.75g(79.5mmol)を加え溶解させた。次いで、1,3-ビス(4-アミノフェノキシ)ベンゼン12.4g(42.4mmol)、m-フェニレンジアミン4.55g(42.1mmol)を追加しアミド酸オリゴマーを得た。さらに、上記フラスコに窒素導入管を取り付け、窒素気流下、200℃で5時間攪拌してイミド結合させ、冷却することで末端変性イミドオリゴマーのNMP溶液(ワニス)(N2)を得た。
 〔製造例4〕
 製造例3で得られた末端変性イミドオリゴマーのNMP溶液(ワニス)(N2)を1.5kgの常温のイオン交換水に投入し、析出した固形分を濾別した。得られた固形分をイオン交換水1.5kgで3回洗浄した後、120℃で14時間減圧乾燥し、顆粒状の末端変性イミドオリゴマーを得た。これを乳鉢ですり潰して末端変性イミドオリゴマー粉末(P2)を得た。
 〔製造例5〕
 以下に示すこと以外は製造例1と同様にして、末端変性イミドオリゴマーのNMP溶液(ワニス)(N3)を得た。
・2-フェニル-4,4’-ジアミノジフェニルエーテル23.43g(84.8mmol)を、24.12g(87.3mmol)としたこと。
・9,9-ビス(4-アミノフェニル)フルオレン3.28g(9.41mmol)を、3.38g(9.70mmol)としたこと。
・1,2,4,5-ベンゼンテトラカルボン酸二無水物を16.44g(75.4mmol)を、18.13g(83.1mmol)としたこと。
・PEPA9.35g(37.7mmol)を、6.88g(27.7mmol)としたこと。
 〔製造例6〕
 製造例5で得られた末端変性イミドオリゴマーのNMP溶液(ワニス)(N3)を15重量%まで希釈し、3300mLのイオン交換水に投入し、析出した固形分を濾別した。濾別して得られた固形分を、1000mLのメタノールで30分洗浄した後、220℃で24時間減圧乾燥し、顆粒状の末端変性イミドオリゴマーを得た。さらに、得られた顆粒状の末端変性イミドオリゴマーを凍結ハンマーミルで粉砕することで平均体積粒子径25μmの末端変性イミドオリゴマー粉末(P3)を得た。
 得られた末端変性イミドオリゴマーは、上記一般式(1)において、Rが2-フェニル-4,4’-ジアミノジフェニルエーテル残基または9,9-ビス(4-アミノフェニル)フルオレン残基で表され、Rが9,9-ビス(4-アミノフェニル)フルオレン残基で表され、RおよびRが1,2,4,5-ベンゼンテトラカルボン酸二無水物残基で表され、平均としてm=5.4、n=0.6である。
 得られた末端変性イミドオリゴマー粉末(P3)の最低溶融粘度は3110Pa・sec(357℃)、280℃での溶融粘度は約150000Pa・secであった。また、この粉末状の末端変性イミドオリゴマーを、ホットプレスを用いて370℃で1時間加熱してフィルム状硬化物(厚さ85μm)を得た。このフィルム状硬化物を用い、DMAにてTgを測定したところ369℃であった。また、このフィルム状硬化物の、空気中での5%重量減少温度を測定したところ540℃であった。
 〔実施例1〕
 製造例2で得られた末端変性イミドオリゴマー粉末(P1)1.70gを、12cm×12cmの大きさに切削した予め脱サイジング処理した炭素繊維平織材(東レ社製「トレカクロスCO6343」)(繊維目付198g/m)上に均一になるように載せた。これを離型用ポリイミドフィルムで挟んで、更に20cm×20cmのステンレス板で挟み、プレス機(東洋精機製作所社製MINI TEST PRESS・10)にて微加圧で310℃、1分間加温後、5MPaに加圧し310℃で1分間プレスすることで、セミプレグ(D1)を得た。この平面状のセミプレグ(D1)は、同様の強化繊維と樹脂から得られたプリプレグに比べて明らかに柔軟であった。
 上記と同様の方法で、16枚のセミプレグを作製した。作製前の炭素繊維平織材重量と作製後のセミプレグ重量から繊維重量含有率を試算したところ平均61wt%であった。炭素繊維密度を1.8g/cm、末端変性イミドオリゴマーの密度を1.3g/cmとして繊維体積含有率(Vf)を試算すると53%であった。
 得られたセミプレグをそれぞれ10cm×10cmの大きさに切削し、20枚を積層した。離型用ポリイミドフィルムで積層したセミプレグを包み、45cm×45cmのステンレス板上に設置した後、真空ホットプレス機(北川精機社製)にて50cm×50cmのホットプレス上、真空条件下、昇温速度3℃/minで300℃まで加熱した。300℃で30分間加熱後、5MPaに加圧し、更に30分間加熱した。その後、加圧したまま370℃まで2℃/minで昇温後、370℃で1時間保持した。これを冷却して、平均厚み4.06mmの炭素繊維強化複合材料(CFRP-1)を得た。なお、本実施例ではプリプレグを単離していない。成型後の炭素繊維強化複合材料(CFRP-1)重量から試算した繊維体積含有率(Vf)は53.7%であった。また、得られた炭素繊維強化複合材料(CFRP-1)の断面観察を行ったところ図1に示す通りであった。図1において白っぽい部分(図中の黒色矢印)が炭素繊維であり、灰色の部分(図中の白色矢印)がポリイミド樹脂である。ボイドや未含浸部分は黒色の部分として観察されるが、図1では黒色の部分は観察されなかった。このことから、実施例1の炭素繊維強化複合材料(CFRP-1)の断面には、ボイドや未含浸部分は無いと判断した。また、この炭素繊維強化複合材料(CFRP-1)のTgをDMAで測定したところ385℃であった。
 〔比較例1〕
 プリプレグの製造装置を用いて、製造例1で得られた末端変性イミドオリゴマーのNMP溶液(ワニス)(N1)を炭素繊維(三菱レイヨン社製PYROFIL MR50R12M)に含浸、乾燥させ、一方向ウエットプリプレグ(W1)(繊維目付140g/m)を作製した。得られたウエットプリプレグ中に占める末端変性イミドオリゴマーの含有率は30.5wt%、揮発分含有率は13wt%、炭素繊維含有率は56.5wt%であった。即ち、末端変性イミドオリゴマーに対して揮発分は30wt%残留しており、繊維体積含有率(Vf)は57.2%と試算された。ここでは、イミドオリゴマーが炭素繊維に完全に含浸しているという意味で「プリプレグ」という言葉を使っている。
 得られたウエットプリプレグ(W1)を切削し、300cm×300cmで[45/0/-45/90]4s(32ply)の構成で積層した。その後、副資材(テフロン(登録商標)シート、ピールプライ、ブリーダクロス、ステンレス板、エアブリーザー、真空バッグ)を用いて真空バギングし、オートクレーブに入れて、バッグ中を減圧しながら昇温速度3℃/minで288℃まで加熱した。288℃で数十分間保持した後、370℃まで2℃/minで昇温後、370℃で1時間1.4MPaで保持した。これを冷却して、平均厚み4.10mmの炭素繊維強化複合材料(CFRP-2)を得た。得られた炭素繊維強化複合材料(CFRP-2)の断面観察を行ったところ図2に示す通りであった。図2で白っぽい部分が炭素繊維であり、灰色の部分がポリイミド樹脂である。ボイドや未含浸部分等の空隙は黒色の部分として観察されており、例えば、図中の矢印、または、白丸で囲い示した部分に多数見られる。これより、多数のボイドがCFRP-2の中に存在するものと判断した。また、この炭素繊維強化複合材料(CFRP-2)のTgの測定を試みたが、炭素繊維強化複合材料の状態が前記ボイド等により非常に悪く、その結果上手く切削出来なかったため、断念した。
 〔比較例2〕
 比較例1の積層の構成を[45/0/-45/90]4s(32ply)から、[45/0/-45/90]2s(16ply)に変更したこと以外は比較例1と同様にして、平均厚み2.01mmの炭素繊維強化複合材料(CFRP-3)を得た。得られた炭素繊維強化複合材料(CFRP-3)の断面観察を行ったところ図3に示す通りであった。図3において、ボイドや未含浸部分等を示す明確な黒色の部分は観察されなかった。また、この炭素繊維強化複合材料(CFRP-3)のTgをDMAで測定したところ313℃であった。
 〔比較例3〕
 製造例4で得られた粉末状の末端変性イミドオリゴマー(P2)を、ホットプレスを用いて370℃で1時間加熱してフィルム状硬化物(厚さ90μm)を得た。このフィルム状硬化物を用い、空気中での5%重量減少温度を測定したところ516℃であった。
 〔実施例2〕
 製造例6で得られた末端変性イミドオリゴマー粉末(P3)0.65gを、予めアセトンに浸漬後、乾燥することで脱サイジング処理した12cm×12cmの大きさに切削した炭素繊維の開繊平織材(サカイオーベックス社製「SA-3203」)(繊維目付63g/m)上に均一になるように載せた。これを離型用ポリイミドフィルムで挟んで、更に20cm×20cmのステンレス板で挟み、プレス機(東洋精機製作所社製MINI TEST PRESS・10)にて微加圧で290℃、5分間加温後、6.9MPaに加圧し290℃で30分間プレスすることで、開繊平織プリプレグ(D2)を得た。得られた開繊平織プリプレグの揮発分含有率を求めたところ、イミドオリゴマーに対して0.1wt%であった。
 上記と同様の方法で、32枚の開繊平織プリプレグを作製した。作製前の炭素繊維開繊平織材重量と作製後の開繊平織プリプレグ重量から繊維重量含有率を試算したところ平均60wt%であった。炭素繊維密度を1.8g/cm、末端変性イミドオリゴマーの密度を1.3g/cmとしてVfを試算すると52%であった。
 得られた開繊平織プリプレグをそれぞれ10cm×10cmの大きさに切削し、32枚を積層した。離型用ポリイミドフィルムで積層した開繊平織プリプレグを包み、20cm×20cmのステンレス板で挟み、プレス機にて空気中、290℃で30分間加熱後、0.1MPaから5MPaの間で30回圧力を前後(ポンピング)させた後、10MPaに加圧し、更に90分間加熱した。その後、加圧したまま370℃まで昇温後、370℃で1時間保持した。その後、加圧の状態のまま室温まで放却して、平均厚み2.29mmの炭素繊維強化複合材料(CFRP-4)を得た。なお、上記のように本実施例ではプリプレグを単離した。また、得られた炭素繊維強化複合材料(CFRP-4)の断面観察を行ったところ図4に示す通りであった。図4では黒色の部分はほぼ観察されなかったことから、炭素繊維強化複合材料(CFRP-4)には、ボイドや未含浸部分は殆ど無いと判断した。また、この炭素繊維強化複合材料(CFRP-4)のTgをDMAで測定したところ374℃であった。
 〔結果の考察〕
 実施例1、2では、セミプレグまたはプリプレグの段階で溶媒等の揮発分が十分除去されているので、ボイドや未含浸部分等の欠陥が無く、樹脂単体同等以上のTgを有する良好な炭素繊維強化複合材料が得られている。一方、比較例1では、ウエットプリプレグに含まれていた溶媒(NMP)が複合材料成形時に除去することができなかったために、複合材料内部でNMPが膨張することでボイドを多数生成することとなり、非常に状態の悪い炭素繊維強化複合材料になったと考えられる。また、比較例2では、比較例1より複合材料の厚みを薄くすることで、NMPが抜け易くなり、ボイド等の明確な欠陥は見られなくなったものの、複合材料のTgが樹脂単体と比較して大幅に低下している。これは、NMPが複合材料内部に残留しており、その可塑化効果でTgが低下したものと考えられる。比較例3では実施例とは異なる分子構造であって、比較的低重合度(1~2量体)であるイミドオリゴマーを使用したため、5%重量減少温度が実施例1で使用したイミドオリゴマーと比較して低かった。
 本発明は、航空機、宇宙産業用機器、一般産業用途および車輌用エンジン(周辺)部材をはじめとした易成形性かつ高耐熱性が求められる広い分野で利用可能である。

Claims (16)

  1.  下記一般式(1)で表されるイミドオリゴマーの粉末と、強化繊維と、を含むことを特徴とするセミプレグ。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)中、Rは2-フェニル-4,4’-ジアミノジフェニルエーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、
     Rは9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、
     RおよびRは同一または異なって4価の芳香族テトラカルボン酸類の残基を表し、
     RおよびRは水素原子またはフェニル基であって、いずれか一方がフェニル基を表し、
     mおよびnは、1≦m、0≦n≦5、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
  2.  前記イミドオリゴマーが、下記一般式(2)で表されるものであることを特徴とする請求項1に記載のセミプレグ。
    Figure JPOXMLDOC01-appb-C000002
     (式(2)中、Rは2-フェニル-4,4’-ジアミノジフェニルエーテルもしくは4-フェノキシ-1,3-ジアミノベンゼンから選択される芳香族ジアミンの2価残基を表し、
     RおよびRは水素原子またはフェノキシ基であって、いずれか一方がフェノキシ基を表し、
     RおよびRは同一または異なって4価の芳香族テトラカルボン酸類の残基を表し、
     RおよびRは水素原子またはフェニル基であって、いずれか一方がフェニル基を表し、
     mおよびnは、1≦m、0≦n≦5、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
  3.  揮発分の残存量が、前記イミドオリゴマーに対して20wt%未満であることを特徴とする請求項1または2に記載のセミプレグ。
  4.  前記イミドオリゴマーのm+nが4以上であることを特徴とする請求項1~3のいずれか1項に記載のセミプレグ。
  5.  前記イミドオリゴマーの最低溶融粘度が1~20000Pa・secであることを特徴とする請求項1~4のいずれか1項に記載のセミプレグ。
  6.  前記イミドオリゴマーの280℃における溶融粘度が200~1000000Pa・secであることを特徴とする請求項1~5のいずれか1項に記載のセミプレグ。
  7.  前記イミドオリゴマーを硬化して得られるポリイミド樹脂の空気中での5%重量減少温度が520℃以上であることを特徴とする請求項1~6のいずれか1項に記載のセミプレグ。
  8.  請求項1~7のいずれか1項に記載のセミプレグから得られることを特徴とするプリプレグ。
  9.  請求項8に記載のプリプレグを熱硬化してなることを特徴とする樹脂複合材料。
  10.  イミドオリゴマーの粉末をドライ工程にて強化繊維と混合させる工程を含むことを特徴とするセミプレグの製造方法。
  11.  イミドオリゴマーが、4-フェニルエチニルフタル酸無水物で末端を封止したものである請求項10に記載のセミプレグの製造方法。
  12.  請求項10または11に記載のセミプレグの製造方法により得られたセミプレグを加熱溶融して、イミドオリゴマーを強化繊維に含浸させる工程を含むことを特徴とするプリプレグの製造方法。
  13.  請求項12に記載のプリプレグの製造方法により得られたプリプレグを積層し、加熱硬化する工程を含むことを特徴とする樹脂複合材料の製造方法。
  14.  以下の工程を含むことを特徴とする樹脂複合材料の製造方法:
     (a)イミドオリゴマーの粉末を強化繊維に付着させ、次いで加熱することにより、セミプレグまたはプリプレグを製造する工程、
     (b)前記工程(a)で得られたセミプレグまたはプリプレグを積層して積層体を得て、当該積層体を5~300分間、260~320℃、0.1~20MPaで保持する工程、
     (c)前記工程(b)を経た積層体を、さらに15~120分間、330~500℃、0.1~20MPaで保持する工程。
  15.  前記工程(a)の前に、前記強化繊維の繊維束を開繊する工程を含むことを特徴とする請求項14に記載の樹脂複合材料の製造方法。
  16.  前記イミドオリゴマーは、下記一般式(1)で表されることを特徴とする請求項14または15に記載の樹脂複合材料の製造方法。
    Figure JPOXMLDOC01-appb-C000003
     (式(1)中、Rは2-フェニル-4,4’-ジアミノジフェニルエーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、
     Rは9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン、1,3-ジアミノベンゼン、4-フェノキシ-1,3-ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、
     RおよびRは同一または異なって4価の芳香族テトラカルボン酸類の残基を表し、
     RおよびRは水素原子またはフェニル基であって、いずれか一方がフェニル基を表し、
     mおよびnは、1≦m、0≦n≦5、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
PCT/JP2018/011528 2017-03-30 2018-03-22 セミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法 WO2018180930A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/498,227 US11492446B2 (en) 2017-03-30 2018-03-22 Semipreg, prepreg, resin composite material, and production methods thereof
EP18774314.1A EP3604408A4 (en) 2017-03-30 2018-03-22 SEMI-IMPREGNATED, PRE-IMPREGNATED, RESIN COMPOSITE MATERIAL AND THEIR PRODUCTION PROCESSES
CN201880022665.9A CN110494477B (zh) 2017-03-30 2018-03-22 半浸料、预浸料、树脂复合材料及它们的制造方法
JP2019509685A JP7016082B2 (ja) 2017-03-30 2018-03-22 セミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-067689 2017-03-30
JP2017067689 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180930A1 true WO2018180930A1 (ja) 2018-10-04

Family

ID=63677867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011528 WO2018180930A1 (ja) 2017-03-30 2018-03-22 セミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法

Country Status (5)

Country Link
US (1) US11492446B2 (ja)
EP (1) EP3604408A4 (ja)
JP (1) JP7016082B2 (ja)
CN (1) CN110494477B (ja)
WO (1) WO2018180930A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071483A1 (ja) * 2018-10-03 2020-04-09 株式会社カネカ 未硬化積層板、強化繊維複合材料、およびそれらの製造方法
JP2020164734A (ja) * 2019-03-29 2020-10-08 株式会社カネカ 粒子状イミドオリゴマーおよびその製造方法
CN113166444A (zh) * 2018-12-07 2021-07-23 东洋制罐集团控股株式会社 纤维增强聚酰亚胺树脂成形前体及其生产方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521672B1 (de) * 2018-09-10 2022-10-15 Facc Ag Verfahren zur Herstellung eines Faser-Kunststoff-Verbund-Vergleichskörpers und Prüfungsverfahren
CN114728439B (zh) * 2019-11-13 2024-05-14 仓敷纺绩株式会社 真空成形用树脂一体化纤维片、采用其的成形体和成形体的制造方法
US11806935B2 (en) * 2020-05-21 2023-11-07 Impossible Objects, Inc. Method of ink removal in an ink-dependent 3-D printing process
CN111808286B (zh) * 2020-07-30 2022-05-03 浙江道明光电科技有限公司 一种分别盛装二胺和二酐的聚酰亚胺胶囊体的制备方法
CN114479452B (zh) * 2020-11-11 2024-04-09 中国科学院宁波材料技术与工程研究所 大厚度低介电耐高温聚酰亚胺复合材料及其制法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198744A (ja) * 1984-10-19 1986-05-17 Mitsui Toatsu Chem Inc プリプレグシ−トの製造方法
JPH01121363A (ja) * 1987-11-05 1989-05-15 Mitsui Toatsu Chem Inc ポリイミド系複合材料
JPH03501032A (ja) * 1987-11-18 1991-03-07 ペトロヘミー・ダヌビア・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ビスマレインイミド並びにそれから製造したポリイミド
JPH04252234A (ja) * 1991-01-29 1992-09-08 Mitsui Toatsu Chem Inc ポリイミドプリプレグを用いた配線基板
JP2007191659A (ja) 2006-01-23 2007-08-02 Kawasaki Heavy Ind Ltd プリプレグ及びその製造並びに樹脂複合材料
JP2009521560A (ja) * 2005-12-23 2009-06-04 アイ.エス.ティー.(エムエー)コーポレーション 二段階硬化ポリイミドオリゴマー
WO2014181670A1 (ja) * 2013-05-10 2014-11-13 株式会社カネカ 2-フェニル-4,4'-ジアミノジフェニルエーテル類を用いた末端変性イミドオリゴマーとオキシジフタル酸類を用いた芳香族熱可塑性ポリイミドにより作製されたポリイミド樹脂組成物、およびワニス、および耐熱性や機械的特性に優れたポリイミド樹脂組成物成形体、およびプリプレグ、およびその繊維強化複合材料
WO2015174217A1 (ja) * 2014-05-12 2015-11-19 株式会社カネカ 2-フェニル-4,4'-ジアミノジフェニルエーテル類を用いたワニス、および成形性に優れるイミド樹脂組成物および優れた破断伸びを有する硬化樹脂成形体ならびにそれらを用いたプリプレグ、イミドプリプレグおよび耐熱性および機械強度に優れる繊維強化素材
JP2016216720A (ja) 2015-05-21 2016-12-22 宇部興産株式会社 ポリイミド樹脂組成物及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687836A (en) 1984-10-15 1987-08-18 Mitsui Toatsu Chemicals, Inc. Polyimide adhesives, coats and prepreg
KR910008340B1 (ko) 1987-11-05 1991-10-12 미쯔이도오아쯔가가꾸 가부시기가이샤 폴리이미드의 제조법 및 그것으로 이루어진 복합재료
US7129318B2 (en) 2003-09-02 2006-10-31 I.S.T. (Ma) Corporation RTM and RI processable polyimide resins
WO2010027020A1 (ja) 2008-09-03 2010-03-11 株式会社カネカ 2-フェニル-4,4’-ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板
JP5765801B2 (ja) * 2011-03-18 2015-08-19 株式会社カネカ 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた成形性に優れたレジントランスファー成形用末端変性イミドオリゴマー、その混
WO2017195393A1 (ja) * 2016-05-09 2017-11-16 株式会社カネカ 末端変性イミドオリゴマー、ワニス、それらの硬化物、フィルム、並びにそれらを用いたイミドプリプレグおよび繊維強化複合材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198744A (ja) * 1984-10-19 1986-05-17 Mitsui Toatsu Chem Inc プリプレグシ−トの製造方法
JPH01121363A (ja) * 1987-11-05 1989-05-15 Mitsui Toatsu Chem Inc ポリイミド系複合材料
JPH03501032A (ja) * 1987-11-18 1991-03-07 ペトロヘミー・ダヌビア・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ビスマレインイミド並びにそれから製造したポリイミド
JPH04252234A (ja) * 1991-01-29 1992-09-08 Mitsui Toatsu Chem Inc ポリイミドプリプレグを用いた配線基板
JP2009521560A (ja) * 2005-12-23 2009-06-04 アイ.エス.ティー.(エムエー)コーポレーション 二段階硬化ポリイミドオリゴマー
JP2007191659A (ja) 2006-01-23 2007-08-02 Kawasaki Heavy Ind Ltd プリプレグ及びその製造並びに樹脂複合材料
WO2014181670A1 (ja) * 2013-05-10 2014-11-13 株式会社カネカ 2-フェニル-4,4'-ジアミノジフェニルエーテル類を用いた末端変性イミドオリゴマーとオキシジフタル酸類を用いた芳香族熱可塑性ポリイミドにより作製されたポリイミド樹脂組成物、およびワニス、および耐熱性や機械的特性に優れたポリイミド樹脂組成物成形体、およびプリプレグ、およびその繊維強化複合材料
WO2015174217A1 (ja) * 2014-05-12 2015-11-19 株式会社カネカ 2-フェニル-4,4'-ジアミノジフェニルエーテル類を用いたワニス、および成形性に優れるイミド樹脂組成物および優れた破断伸びを有する硬化樹脂成形体ならびにそれらを用いたプリプレグ、イミドプリプレグおよび耐熱性および機械強度に優れる繊維強化素材
JP2016216720A (ja) 2015-05-21 2016-12-22 宇部興産株式会社 ポリイミド樹脂組成物及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Japan Polyimide Research Group", 2002, NTS INC., article "Saishin poriimido -Kiso to Oyo- [Basic and applied latest polyimide", pages: 20 - 26
See also references of EP3604408A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071483A1 (ja) * 2018-10-03 2020-04-09 株式会社カネカ 未硬化積層板、強化繊維複合材料、およびそれらの製造方法
CN113166444A (zh) * 2018-12-07 2021-07-23 东洋制罐集团控股株式会社 纤维增强聚酰亚胺树脂成形前体及其生产方法
JP2020164734A (ja) * 2019-03-29 2020-10-08 株式会社カネカ 粒子状イミドオリゴマーおよびその製造方法
JP7250593B2 (ja) 2019-03-29 2023-04-03 株式会社カネカ 粒子状イミドオリゴマーおよびその製造方法

Also Published As

Publication number Publication date
EP3604408A1 (en) 2020-02-05
JPWO2018180930A1 (ja) 2020-02-06
US11492446B2 (en) 2022-11-08
US20200148846A1 (en) 2020-05-14
JP7016082B2 (ja) 2022-02-04
CN110494477B (zh) 2022-03-29
EP3604408A4 (en) 2021-01-20
CN110494477A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2018180930A1 (ja) セミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法
JP5522479B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板
JP5560250B2 (ja) 二段階硬化ポリイミドオリゴマー
JP6604588B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いたワニス、および成形性に優れるイミド樹脂組成物および優れた破断伸びを有する硬化樹脂成形体ならびにそれらを用いたプリプレグ、イミドプリプレグおよび耐熱性および機械強度に優れる繊維強化素材
US10017666B2 (en) Polyimide resin composition and varnish produced from terminal-modified imide oligomer prepared using 2-phenyl-4,4′-diaminodiphenyl ether and thermoplastic aromatic polyimide prepared using oxydiphthalic acid, polyimide resin composition molded article and prepreg having excellent heat resistance and mechanical characteristic, and fiber-reinforced composite material thereof
US10526450B2 (en) Terminally modified imide oligomer, varnish, cured products thereof, film, and imide prepreg and fiber-reinforced composite material using these
JP6332528B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた末端変性イミドオリゴマーとオキシジフタル酸類を用いた芳香族熱可塑性ポリイミドにより作製されたポリイミド樹脂組成物、およびワニス、および耐熱性や機械的特性に優れたポリイミド樹脂組成物成形体、およびプリプレグ、およびその繊維強化複合材料
Ishida et al. Development of highly soluble addition-type imide oligomers for matrix of carbon fiber composite (I): imide oligomers based on asymmetric biphenyltetracarboxylic dianhydride and 9, 9-bis (4-aminophenyl) fluorene
WO1999062989A1 (en) Films, preimpregnated tapes and composites made from polyimide 'salt-like' solutions
JP5987898B2 (ja) 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料
US20210221113A1 (en) Uncured laminate, reinforcing fiber composite material, method for producing uncured laminate, and method for producing reinforcing fiber composite material
JP2006312700A (ja) イミドプリプレグおよび積層板
JP5610335B2 (ja) 機械的強度が向上した繊維強化ポリイミド材料の製造方法
JP4353947B2 (ja) プリプレグ及びその製造並びに樹脂複合材料
JP7418737B2 (ja) イミドオリゴマー、ワニス、それらの硬化物、並びにそれらを用いたプリプレグ及び繊維強化複合材料
JPH0264157A (ja) 末端変性イミドオリゴマー組成物
JP2597186B2 (ja) イミド樹脂マトリックス複合材
JP2022021887A (ja) イミドオリゴマー、ワニス、それらの硬化物、並びにそれらを用いたプリプレグ及び繊維強化複合材料
JPH01247430A (ja) 繊維強化ポリイミド複合材料の製造法
WO2021199898A1 (ja) 特定の組成を有するポリアミド酸、ワニス、硬化物、複合材料
JP2015059147A (ja) 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509685

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018774314

Country of ref document: EP

Effective date: 20191030