JP5522479B2 - 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板 - Google Patents

2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板 Download PDF

Info

Publication number
JP5522479B2
JP5522479B2 JP2010527816A JP2010527816A JP5522479B2 JP 5522479 B2 JP5522479 B2 JP 5522479B2 JP 2010527816 A JP2010527816 A JP 2010527816A JP 2010527816 A JP2010527816 A JP 2010527816A JP 5522479 B2 JP5522479 B2 JP 5522479B2
Authority
JP
Japan
Prior art keywords
terminal
phenyl
bis
imide oligomer
modified imide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010527816A
Other languages
English (en)
Other versions
JPWO2010027020A1 (ja
Inventor
雅彦 宮内
雄一 石田
俊夫 小笠原
力男 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Japan Aerospace Exploration Agency JAXA
Original Assignee
Kaneka Corp
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp, Japan Aerospace Exploration Agency JAXA filed Critical Kaneka Corp
Priority to JP2010527816A priority Critical patent/JP5522479B2/ja
Publication of JPWO2010027020A1 publication Critical patent/JPWO2010027020A1/ja
Application granted granted Critical
Publication of JP5522479B2 publication Critical patent/JP5522479B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/065Polyamides; Polyesteramides; Polyimides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/24995Two or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2631Coating or impregnation provides heat or fire protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/671Multiple nonwoven fabric layers composed of the same polymeric strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/69Autogenously bonded nonwoven fabric

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、末端変性イミドオリゴマーおよびワニス並びにその硬化物に関し、特に、航空機や宇宙産業用機器をはじめとして易成形性かつ高耐熱性が求められる広い分野で使用可能な部材の材料に関するものである。
芳香族ポリイミドは高分子系で最高レベルの耐熱性を有し、機械特性、電気特性などにも優れていることから、広い分野で素材として用いられている。
一方、芳香族ポリイミドは一般に加工性に乏しく、特に溶融成形や繊維強化複合材料のマトリックス樹脂として用いることは不向きである。このため、末端を熱架橋基で変性したイミドオリゴマーが提案されている。なかでも、末端を4−(2−フェニルエチニル)無水フタル酸で変性したイミドオリゴマーが成形性、耐熱性、力学特性のバランスに優れているとされ、例えば、特許文献1、特許文献2、特許文献3および非特許文献1、非特許文献2において紹介されている。その特許文献1には、硬化物の耐熱性および機械的特性が良好で、実用性の高い末端変性イミドオリゴマーおよびその硬化物を提供することを目的とし、屈曲かつ非平面構造を有する2,3,3’,4’−ビフェニルテトラカルボン酸二無水物と、芳香族ジアミン化合物と4−(2−フェニルエチニル)無水フタル酸とを反応させて得られ、対数粘度が0.05〜1である末端変性イミドオリゴマーおよびその硬化物が開示されている。そして、その発明の効果として、実用性の高い新規な末端変性イミドオリゴマーを得ることができること、また、耐熱性や弾性率、引張強度および伸び等の機械的特性が良好な新規な末端変性ポリイミドの硬化物を得ることができると記載されている。
しかし、これらの末端変性イミドオリゴマーは、N−メチル−2−ピロリドン(以下NMPと略称する。)などの有機溶媒に室温(本明細書で室温とは23℃±2℃を意味する。)で20重量%以下しか溶解せず、またこのワニスを保存しておくとしばしば数日後にゲル化する現象が見られ、高濃度のワニスを長期間安定に保存しておくことは難しいという問題を持っている。
また、溶解性を上げるための手段の一つとして、例えば、特許文献3、特許文献4において紹介されているような、より屈曲かつ非平面構造を有する酸無水物モノマー、例えば2,2,3’,3’−ビフェニルテトラカルボン酸二無水物を共重合させる方法が挙げられるが、一般的に破断伸びが小さくなり、もろくなる傾向がみられる。
また、特許文献4、特許文献5において紹介されているような、立体的にかさ高い構造を有するジアミンモノマー、例えば9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレンを共重合させる方法が挙げられるが、これらも一般的にガラス転移温度が低下し、かつ、破断伸びが小さくなり、もろくなる傾向がみられる。
また、特許文献5において紹介されているような、圧入、トランスファー成形用のイミドオリゴマーは、高い流動性を得るために重合度を低くしたり、使用するジアミンの構造を軟質にするなどの方法が挙げられるが、これによってイミドオリゴマーの溶解度は向上するが、末端硬化物のガラス転移温度は大きく低下する傾向がある。
特開2000−219741号公報 特開2004−331801号公報 特開2006−312699号公報 特開2007−99969号公報 特表2003−526704号公報
P. M. Hergenrother and J. G. Smith Jr., Polymer, 35, 4857 (1994). R. Yokota, S. Yamamoto, S. Yano, T. Sawaguchi, M. Hasegawa, H. Yamaguchi, H. Ozawa and R. Sato, High Perform. Polym., 13, S61 (2001).
本発明は、有機溶媒に対する溶解性、溶液保存安定性および低溶融粘度等の成形性に優れた新規な末端変性イミドオリゴマー、およびそれらを有機溶剤に溶解してなるワニス、および末端変性イミドオリゴマーを用いて作成された耐熱性、弾性率、引張破断強度および引張破断伸び等の熱的、機械的特性の高い硬化物、およびプリプレグ、および繊維強化積層板を提供することを目的とする。
本発明者らは、上記課題を解決するため、3,3’,4,4’−ビフェニルテトラカルボン酸類、1,2,4,5−ベンゼンテトラカルボン酸類、およびビス(3,4−カルボキシフェニル)エーテル類を用いた芳香族ポリイミドオリゴマーに着目した。本発明者らは、特に、1,2,4,5−ベンゼンテトラカルボン酸類を用いた芳香族ポリイミドオリゴマーは、ピロメリットイミドの剛直かつ平面構造により、分子間相互作用が強く、高耐熱、高強度のフィルムおよび硬化物が得られると考えた。しかしその一方、ピロメリットイミドの強い相互作用によりイミドオリゴマーの溶融流動性がみられず不融かつ溶剤不溶性となりやすく、現在のところ、ガラス転移温度が270℃以上を有する硬化物に成形可能で、かつ、高い溶剤溶解性を有する末端変性イミドオリゴマーの報告例はなかった。ところが、2−フェニル−4,4’−ジアミノジフェニルエーテルを含む芳香族ジアミン類を用いることにより、1,2,4,5−ベンゼンテトラカルボン酸類を用いた場合にも充分な溶融流動性が得られ、かつ、その硬化物は充分な機械的強度が得られることを見出した。
本発明は、新規な末端変性イミドオリゴマーとして一般式(1)で表される2−フェニル−4,4’−ジアミノジフェニルエーテルを用いた可溶性末端変性イミドオリゴマーを提供する。
Figure 0005522479
(式中、R1およびR22−フェニル−4,4’−ジアミノジフェニルエーテル、9,9−ビス(4−アミノフェニル)フルオレン、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン、1,3−ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、R3およびR43,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,4,5−ベンゼンテトラカルボン酸二無水物、ビス(3,4−カルボキシフェニル)エーテル二無水物から選択される少なくとも1種の芳香族テトラカルボン酸類の4価残基を表す。R5およびR6は水素原子又はフェニル基であって、いずれか一方がフェニル基を表す。mおよびnは、1≦m≦10、0≦n≦2、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
なお、上記一般式(1)中の芳香族ジアミン残基とは、芳香族ジアミン中の2個のアミノ基の間に存在する芳香族系有機基をいう。また上記一般式(1)中の芳香族テトラカルボン酸類残基とは、芳香族テトラカルボン酸類中の4個のカルボニル基に囲まれた芳香族系有機基をいう。ここで芳香族系有機基とは芳香環を有する有機基である。芳香族系有機基は、炭素数4〜30の有機基であることが好ましく、炭素数4〜18の有機基であることがより好ましく、炭素数4〜12の有機基であることがさらに好ましい。また芳香族系有機基は、炭素数6〜30の炭素と水素からなる基であることが好ましく、炭素数6〜18の炭素と水素からなる基であることがより好ましく、炭素数6〜12の炭素と水素からなる基であることがさらに好ましい。
前記の芳香族テトラカルボン酸類は、1,2,4,5−ベンゼンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、もしくはビス(3,4−カルボキシフェニル)エーテル二無水物であり、またはこれらのうち少なくとも2種類を併用したものが好ましい。また芳香族テトラカルボン酸類が1,2,4,5−ベンゼンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物である場合の一般式はそれぞれ、下記一般式(1−2)、一般式(1−3)で表わされる。
Figure 0005522479
(式中、R1およびR22−フェニル−4,4’−ジアミノジフェニルエーテル、9,9−ビス(4−アミノフェニル)フルオレン、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン、1,3−ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表す。R5およびR6は水素原子又はフェニル基であって、いずれか一方がフェニル基を表す。mおよびnは、1≦m≦10、0≦n≦2、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
Figure 0005522479
(式中、R1およびR22−フェニル−4,4’−ジアミノジフェニルエーテル、9,9−ビス(4−アミノフェニル)フルオレン、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン、1,3−ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表す。R5およびR6は水素原子又はフェニル基であって、いずれか一方がフェニル基を表す。mおよびnは、1≦m≦10、0≦n≦2、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
前記末端変性イミドオリゴマーは、N−メチル−2−ピロリドンに対し室温で固形分濃度30重量%以上溶解可能な末端変性イミドオリゴマーであることが好ましい。
また、本発明は、前記末端変性イミドオリゴマーを有機溶媒に溶解してなるワニスを提供する。
また、本発明は、前記末端変性イミドオリゴマーまたはそのワニスを加熱硬化して得られる硬化物を提供する。前記硬化物は、ガラス転移温度(Tg)が300℃以上であることが好ましい。
また、本発明は、引張破断伸びが10%以上である、前記硬化物から得られるフィルムを提供する。
また、本発明は、前記末端変性イミドオリゴマーまたはそのワニスを繊維に含浸し、乾燥して得られるイミドプリプレグを提供する。
また、本発明は、前記末端変性イミドオリゴマーまたはそのワニス、またはそれらを使用して得られたイミドプリプレグから製造される繊維強化積層板を提供する。
本発明により、有機溶媒に対する溶解性、溶液保存安定性および低溶融粘度等の成形性に優れ、硬化物の耐熱性、並びに引張弾性率、引張破断強度および引張破断伸び等の機械的特性の高い新規な末端変性イミドオリゴマーおよびワニス並びにその硬化物を得ることができる。このイミドオリゴマーワニスはアミド酸オリゴマーワニスに比べ耐加水分解性に対して大きく優れることから、粘度低下等を起こさずに長期間安定に保存できる。また、このイミドオリゴマーおよびイミドオリゴマーワニスを繊維に堆積あるいは含浸し、乾燥させることにより、加熱硬化中にイミド化による水が発生せずに、積層内部に大きな空孔を生じる恐れが無く、成形条件が緩和できて成形性に優れ、かつ非常に高い強度が得られ信頼性に優れたイミドプリプレグ、および該イミドプリプレグを利用して非常に高い耐熱性に優れた積層板を得ることが出来る。
本発明の一般式(1)
Figure 0005522479
(式中、R1およびR2は2価の芳香族ジアミン残基を表し、R3およびR4は4価の芳香族テトラカルボン酸類残基を表す。R5およびR6は水素原子又はフェニル基であって、いずれか一方がフェニル基を表す。mおよびnは、m≧1、n≧0、1≦m+n≦20および0.05≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
で表される2−フェニル−4,4’−ジアミノジフェニルエーテルを用いた可溶性末端変性イミドオリゴマーは、以下のものであることが好ましい。
すなわち、1,2,4,5−ベンゼンテトラカルボン酸類(特に、この酸二無水物)、3,3’,4,4’−ビフェニルテトラカルボン酸類(特に、この酸二無水物)、およびビス(3,4−カルボキシフェニル)エーテル類(特に、この酸二無水物)からなる群より選ばれる1種または2種以上のテトラカルボン酸類、2−フェニル−4,4’−ジアミノジフェニルエーテルを含む芳香族ジアミン類、およびイミドオリゴマーに不飽和末端基を導入するための4−(2−フェニルエチニル)無水フタル酸(以下、PEPAと略記することもある)を、ジカルボン酸基の全量と1級アミノ基の全量とがほぼ等しい量となるように仕込み、有機溶媒の存在下または非存在下で反応させて得られるイミドオリゴマーであることが好ましい。(なお隣接するジカルボン酸基の場合は、カルボキシル基2モル当たり1モルの酸無水基があるとみなす。)
従って、式中R3およびR4は、それぞれ独立に上記各種のテトラカルボン酸類に由来する残基から選択され、互いに同一であっても、異なっていても良い。また、m>1およびn>1の場合、R3(R4)は、互いに同一であっても、異なっていても良い。また、R5およびR6は水素原子又はフェニル基であって、いずれか一方がフェニル基を表し、m>1の場合は、R5がフェニル基でR6が水素原子である単位と、R5が水素原子でR6がフェニル基である単位とが任意に含まれていて良い。
このものは、主鎖にイミド結合を有するイミドオリゴマーであって、末端(好適には両末端)に4−(2−フェニルエチニル)無水フタル酸に由来する付加重合可能な不飽和末端基を持ち、1≦m+n≦20の関係を満たし、常温(23℃)で固体(粉末状)のものであることが好ましい。
前記の1,2,4,5−ベンゼンテトラカルボン酸類とは、1,2,4,5−ベンゼンテトラカルボン酸、1,2,4,5−ベンゼンテトラカルボン酸二無水物(PMDA)、あるいは1,2,4,5−ベンゼンテトラカルボン酸のエステルまたは塩などの酸誘導体であり、特に、1,2,4,5−ベンゼンテトラカルボン酸二無水物が最適である。尚、R3およびR4が1,2,4,5−ベンゼンテトラカルボン酸類の場合のイミドオリゴマーは前記一般式(1−2)で表わされる。
前記の3,3’,4,4’−ビフェニルテトラカルボン酸類とは、3,3’,4,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)、あるいは3,3’,4,4’−ビフェニルテトラカルボン酸のエステルまたは塩などの酸誘導体であり、特に、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物が最適である。尚、R3およびR4が3,3’,4,4’−ビフェニルテトラカルボン酸類の場合のイミドオリゴマーは前記一般式(1−3)で表わされる。
前記のビス(3,4−カルボキシフェニル)エーテル類とは、ビス(3,4−カルボキシフェニル)エーテル、ビス(3,4−カルボキシフェニル)エーテル二無水物(s−ODPA)、あるいはビス(3,4−カルボキシフェニル)エーテルのエステルまたは塩などの酸誘導体であり、特に、ビス(3,4−カルボキシフェニル)エーテル二無水物が最適である。
本発明では、1,2,4,5−ベンゼンテトラカルボン酸類、あるいは、3,3’,4,4’−ビフェニルテトラカルボン酸類、あるいは、ビス(3,4−カルボキシフェニル)エーテル類を、それぞれ単独で、あるいはそれらを併用することが基本ではあるが、本発明の効果を奏する限り、1,2,4,5−ベンゼンテトラカルボン酸類、あるいは、3,3’,4,4’−ビフェニルテトラカルボン酸類、あるいはビス(3,4−カルボキシフェニル)エーテル類の一部を他の芳香族テトラカルボン酸類化合物に置換しても良い。例えば3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物(i−BPDA)、2,2−ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(3,4−カルボキシフェニル)エーテル二無水物、1,2,3,4−ベンゼンテトラカルボン酸二無水物などで置換することができ、それらを単独、あるいは2種以上を併用することができる。
本発明では、前記の2−フェニル−4,4’−ジアミノジフェニルエーテルの一部を、他の芳香族ジアミン化合物、例えば1,4−ジアミノベンゼン、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン、2,6−ジエチル−1,3−ジアミノベンゼン、4,6−ジエチル−2−メチル−1,3−ジアミノベンゼン、3,5−ジエチルトルエン−2,6−ジアミン、4,4’−ジアミノジフェニルエーテル(4,4’−ODA)、3,4’−ジアミノジフェニルエーテル(3,4’−ODA)、3,3’−ジアミノジフェニルエーテル、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、ビス(2,6−ジエチル−4−アミノフェニル)メタン、4,4’−メチレン−ビス(2,6−ジエチルアニリン)、ビス(2−エチル−6−メチル−4−アミノフェニル)メタン、4,4’−メチレン−ビス(2−エチル−6−メチルアニリン)、2,2−ビス(3−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、ベンジジン、3,3’−ジメチルベンジジン、2,2−ビス(4−アミノフェノキシ)プロパン、2,2−ビス(3−アミノフェノキシ)プロパン、2,2−ビス[4’−(4’’−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9−ビス(4−アミノフェニル)フルオレン、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレンなどで置換することができ、それらを単独、あるいは2種以上を併用することができる。特に、芳香族ジアミン化合物として、9,9−ビス(4−アミノフェニル)フルオレンあるいは9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレンあるいは1,3−ジアミノベンゼンが好適である。
なお、さらなる機械的強度が求められる用途においては、上記ジアミンを共重合するのが望ましく、ジアミンの合計量に対して、0−50モル%、好ましくは0−25モル%、さらに好ましくは0−10モル%で使用するのが望ましい。すなわち、前記一般式(1)の式中、0.50≦m/(m+n)<1が、さらなる機械的強度が求められる場合には好ましく、さらに、0.75≦m/(m+n)<1が好ましく、さらに、0.90≦m/(m+n)<1が好ましく、0.90≦m/(m+n)≦0.95が最も好ましい。また、共重合用ジアミンとしては、9,9−ビス(4−アミノフェニル)フルオレンあるいは9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレンあるいは1,3−ジアミノベンゼンが特に好ましい。これにより、高い溶解性を有すると同時に、機械的特性も高いという優れた効果を奏する。もちろん、用途に応じて、必ずしも共重合でなくても本発明は使用可能である。
本発明においては、末端変性(エンドキャップ)用の不飽和酸無水物として4−(2−フェニルエチニル)無水フタル酸を使用することが好ましい。前記の4−(2−フェニルエチニル)無水フタル酸は、酸類の合計量に対して5−200モル%、特に5−150モル%の範囲内の割合で使用することが好ましい。
以下、本発明の末端変性イミドオリゴマーの製造法の例について説明する。
本発明の末端変性イミドオリゴマーは、例えば、前記の3,3’,4,4’−ビフェニルテトラカルボン酸類(特に、この酸二無水物)、1,2,4,5−ベンゼンテトラカルボン酸類(特に、この酸二無水物)、およびビス(3,4−カルボキシフェニル)エーテル類(特に、この二無水物)からなる群より選ばれる1種あるいは2種以上の芳香族テトラカルボン酸類化合物と、2−フェニル−4,4’−ジアミノジフェニルエーテルを含む芳香族ジアミン類、および4−(2−フェニルエチニル)無水フタル酸とが、全成分の酸無水基(隣接するジカルボン酸基の場合は、カルボキシル基2モル当たり1モルの酸無水基とみなす)の全量とアミノ基の全量とがほぼ等量になるように使用して、各成分を、後述の有機溶媒中で、約100℃以下、特に80℃以下の反応温度で重合させて、「アミド−酸結合を有するオリゴマー」を生成し、次いで、そのアミド酸オリゴマー(アミック酸オリゴマーともいう)を、約0〜140℃の低温でイミド化剤を添加する方法によるか、あるいは140〜275℃の高温に加熱する方法によるかして、脱水・環化させて、末端に4−(2−フェニルエチニル)無水フタル酸残基を有するイミドオリゴマーを得ることができる。
本発明の末端変性イミドオリゴマーの特に好ましい製法は、例えば以下の通りである。まず、2−フェニル−4,4’−ジアミノジフェニルエーテルを含む芳香族ジアミン類を後述の有機溶媒中に均一に溶解後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物もしくは1,2,4,5−ベンゼンテトラカルボン酸二無水物、またはビス(3,4−カルボキシフェニル)エーテル類を含む芳香族テトラカルボン酸二無水物を溶液中に加えて均一に溶解後約5〜60℃の反応温度で1〜180分程度攪拌し、この反応溶液に、4−(2−フェニルエチニル)無水フタル酸を加えて均一に溶解後約5〜60℃の反応温度で1〜180分程度攪拌しながら反応させて前記の末端変性アミド酸オリゴマーを生成する。その後、その反応液を140〜275℃で5分〜24時間攪拌して前記のアミド酸オリゴマーをイミド化反応させて末端変性イミドオリゴマーを生成させ、必要ならば、反応液を室温付近まで冷却することにより本発明の末端変性イミドオリゴマーを得ることができる。前記の反応において、全反応工程あるいは一部の反応工程を窒素ガス、アルゴンガスなどの不活性のガスの雰囲気あるいは真空中で行うことが好適である。
前記の有機溶媒としては、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジエチルアセトアミド、N−メチルカプロラクタム、γ−ブチロラクトン(GBL)、シクロヘキサノンなどが挙げられる。これらの溶媒は単独で用いてもよく、2種以上を併用してもよい。これらの溶媒の選択に関しては可溶性ポリイミドについての公知技術を適用することができる。
前述のようにして生成した末端変性イミドオリゴマーは、必要があれば反応液を水中等に注ぎ込んで、粉末状の生成物として単離すればよい。当該イミドオリゴマーは、粉末状として、あるいは必要なときにその粉末生成物を前記溶媒に溶解して使用してもよい。また、反応液を、そのままか、あるいは適宜濃縮または希釈するかして、末端変性イミドオリゴマーの溶液組成物(ワニス)として使用してもよい。
前記イミドオリゴマーワニスは加水分解の恐れがほとんどないため、アミド酸オリゴマーワニスに比べ粘度低下等を起こさずに長期間安定に保存できる。長期間保存する際の溶媒は、ゲル化を防ぐために、より良溶媒であるN−メチル−2−ピロリドンなどのアミド系溶媒を用いることが望ましい。
なお、本発明の末端変性オリゴマーは、分子量の異なるものを混合したものでもよい。また、本発明の末端変性イミドオリゴマーは、他の可溶性ポリイミドと混合してもよい。
また、本発明の一般式(1)で表される2−フェニル−4,4’−ジアミノジフェニルエーテルを用いた可溶性末端変性イミドオリゴマーは、前記の有機溶媒、特にNMPに室温で固形分30重量%以上溶解可能であることが好ましい。
本発明の末端変性イミドオリゴマーの硬化物としては、例えば、前記の末端変性イミドオリゴマーのワニスを支持体に塗布し、280〜500℃で5〜200分間加熱硬化してフィルムとすることができる。このフィルムの引張破断伸びは10%以上であることが好ましい。尚、この測定は後述の方法による。
また本発明の末端変性イミドオリゴマーの硬化物としては、末端変性イミドオリゴマーの粉体を金型などの型内に充填し、10〜280℃で1〜1000kg/cm2で1秒〜100分程度の圧縮成形によって予備成形体を形成し、この予備成形体を280〜500℃で10分〜40時間程度加熱して、硬化物を得ることができる。また、前記硬化物のガラス転移温度(Tg)は、300℃以上であることが好ましい。尚、この測定は後述の方法による。
本発明のイミドプリプレグは、例えば以下のようにして得ることができる。
粉末状の末端変性イミドオリゴマーを有機溶媒に溶解して、また、反応液をそのままか、あるいは適宜濃縮または希釈するかして、末端変性のイミドオリゴマーの溶液組成物(ワニス)とする。適度に濃度調整した末端変性イミドオリゴマーワニスを、平面状に一方向に引き揃えた繊維あるいは繊維織物に含浸させ、20〜180℃の乾燥機中で1分〜20時間乾燥させてプリプレグを得ることができる。この際に繊維あるいは繊維織物に付着する樹脂量は30〜50重量%前後となる。本発明で用いることができる繊維あるいは繊維織物としては、特に制限はないが、航空機等での利用の場合は、炭素繊維あるいはその織物などが例示できる。
本発明の繊維強化積層板は、例えば以下のようにして得ることができる。
前記のプリプレグを所定枚数重ねて、オートクレーブまたはホットプレス等を用いて、280〜500℃の温度かつ1〜1000kg/cm2の圧力で10分から40時間程度加熱硬化して、積層板を得ることが出来る。また、本発明では、上記のプリプレグを用いるほか、本発明の末端変性イミドオリゴマーの粉末を繊維織物に付着させたものを積層し、前記と同様にして加熱硬化し、積層版を得ることもできる。
また、上記のようにして得られた本発明の繊維強化積層板は、ガラス転移温度(Tg)が300℃以上であることが好ましい。尚、この測定は後述の方法による。
以下に本発明を説明するためにいくつかの実施例を示すが、これによって本発明を限定するものではない。また、各特性の測定条件は、次のとおりとした。
<試験方法>
(1)5%重量減少温度測定:TAインスツルメンツ製SDT−2960型熱重量分析装置(TGA)を用い、窒素気流下、5℃/min.の昇温速度により測定した。
(2)硬化物のガラス転移温度測定:TAインスツルメンツ製DSC−2010型示差走査熱量計(DSC)を用い、窒素気流下、5℃/min.の昇温速度により測定した。
(3)繊維強化積層板のガラス転移温度測定:TAインスツルメンツ製DMA−Q−800型動的粘弾性測定(DMA)装置を用い、片持ち梁方式、0.1%のひずみ、1Hzの周波数、窒素気流下、3℃/min.の昇温速度により測定した。貯蔵弾性率が低下する変曲点をガラス転移温度とした。
(4)最低溶融粘度測定:TAインスツルメンツ製AR2000型レオメーターを用い、25mmパラレルプレートで4℃/min.の昇温速度により測定した。
(5)引張試験(弾性率測定試験、破断強度測定試験、破断伸び測定試験):オリエンテック社製TENSILON/UTM−II−20を用い、室温にて、引張速度3mm/min.で行った。試験片形状は、長さ20mm、幅3mm、厚さ80−175μmのフィルムとした。
(実施例1)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル2.761g(10mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物2.354g(8mmol)とN−メチル−2−ピロリドン2.4mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、下記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基で表され、R3が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物残基で表され、平均としてm=4、n=0である(尚、より具体的には一般式(1−3)で示される構造を有する。実施例2〜5についても同様である。)。
Figure 0005522479
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30重量%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)を、室温にて静置させると数日後にゲル化がみられたが、再び80℃にて加熱すると溶液状態となった。この溶液を、室温にて静置させると、再度数日後にゲル化がみられた。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は104Pa・sec(340℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ109μm)は、Tgが309℃(DSC)、TGAによる5%重量減少温度は549℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.23GPa、破断強度が139MPa、破断伸びが14%であった。
(比較例1)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、4,4’−ジアミノジフェニルエーテル2.002g(10mmol)とN−メチル−2−ピロリドン16mLを加え、溶解後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物2.354g(8mmol)を加えて窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で18時間反応させ末端変性し、続けて175℃で5時間攪拌しイミド結合させた。イミド化反応中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。60mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、下記一般式(2)において、R1が4,4’−ジアミノジフェニルエーテル残基で表され、平均としてm=4、n=0である。
Figure 0005522479
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に不溶であった。この粉末状の末端変性イミドオリゴマーは300℃以上においても溶融流動性を示さなかったため、良好な成形体(フィルム状硬化物)を得ることができなかった。
(実施例2)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル2.071g(7.5mmol)、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン1.332g(2.5mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物2.354g(8mmol)とN−メチル−2−ピロリドン3.7mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を200mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で、R29,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で表され、R3およびR4が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物残基で表され、平均としてm=3、n=1である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30重量%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)を、室温にて静置させると数日後にゲル化がみられたが、再び80℃にて加熱すると溶液状態となった。この溶液を、室温にて静置させると、再度数日後にゲル化がみられた。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は251Pa・sec(352℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ105μm)は、Tgが317℃(DSC)、TGAによる5%重量減少温度は549℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.35GPa、破断強度が125MPa、破断伸びが10%であった。
(実施例3)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル1.3807g(5mmol)、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン2.6631g(5mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物2.354g(8mmol)とN−メチル−2−ピロリドン4.6mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を200mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で、R2が9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で表され、R3およびR4が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物残基で表され、平均としてm=2、n=2である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30重量%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)を、室温にて静置させると数日後にゲル化がみられたが、再び80℃にて加熱すると溶液状態となった。この溶液を、室温にて静置させると、再度数日後にゲル化がみられた。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は398Pa・sec(354℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ98μm)は、Tgが317℃(DSC)、TGAによる5%重量減少温度は561℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.31GPa、破断強度が126MPa、破断伸びが18%であった。
(比較例2)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、4,4’−ジアミノジフェニルエーテル1.001g(5mmol)、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン2.6631g(5mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物2.354g(8mmol)とN−メチル−2−ピロリドン4.6mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。イミド化反応中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。60mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(2)において、R1が4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で、R2が9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で表され、平均としてm=2、n=2である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、室温条件下においてNMP溶媒に不溶であった。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は1084Pa・sec(349℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ150μm)は、Tgが330℃(DSC)、TGAによる5%重量減少温度は550℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が2.84GPa、破断強度が117MPa、破断伸びが12%であった。
(実施例4)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル2.071g(7.5mmol)、9,9−ビス(4−アミノフェニル)フルオレン0.8711g(2.5mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物2.354g(8mmol)とN−メチル−2−ピロリドン1.6mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を200mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−アミノフェニル)フルオレン残基で、R2が9,9−ビス(4−アミノフェニル)フルオレン残基で、R3およびR4が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物残基で表され、平均としてm=3、n=1である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30重量%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)を、室温にて静置させると数日後にゲル化がみられたが、再び80℃にて加熱すると溶液状態となった。この溶液を、室温にて静置させると、再度数日後にゲル化がみられた。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は2244Pa・sec(345℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ113μm)は、Tgが346℃(DSC)、TGAによる5%重量減少温度は553℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.99GPa、破断強度が155MPa、破断伸びが12%であった。
(比較例3)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、4,4’−ジアミノジフェニルエーテル1.5018g(7.5mmol)、9,9−ビス(4−アミノフェニル)フルオレン0.8711g(2.5mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物2.354g(8mmol)とN−メチル−2−ピロリドン1.6mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。イミド化反応終了後、室温まで冷却中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。60mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(2)において、R1が4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−アミノフェニル)フルオレン残基で、R2が9,9−ビス(4−アミノフェニル)フルオレン残基で表され、平均としてm=3、n=1である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に不溶であった。この粉末状の末端変性イミドオリゴマーは300℃以上においても溶融流動性を示さなかったため、良好な成形体(フィルム状硬化物)を得ることができなかった。
(実施例5)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル1.3807g(5mmol)、9,9−ビス(4−アミノフェニル)フルオレン1.7422g(5mmol)、とN−メチル−2−ピロリドン10mLを加え、溶解後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物2.354g(8mmol)とN−メチル−2−ピロリドン3.1mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を200mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−アミノフェニル)フルオレン残基で、R2が9,9−ビス(4−アミノフェニル)フルオレン残基で、R3およびR4が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物残基で表され、平均としてm=2、n=2である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)は、1ヵ月後もゲル化がみられなかった。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は2765Pa・sec(344℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ156μm)は、Tgが366℃(DSC)、TGAによる5%重量減少温度は552℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.47GPa、破断強度が140MPa、破断伸びが10%であった。
(比較例4)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、4,4’−ジアミノジフェニルエーテル1.0012g(5mmol)、9,9−ビス(4−アミノフェニル)フルオレン1.7422g(5mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物2.354g(8mmol)とN−メチル−2−ピロリドン1.6mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。イミド化反応終了後、室温まで冷却中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。60mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(2)において、R1が4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−アミノフェニル)フルオレン残基で、R2が9,9−ビス(4−アミノフェニル)フルオレン残基で表され、平均としてm=2、n=2である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、室温条件下においてNMP溶媒に不溶であった。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は1695Pa・sec(341℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ155μm)は、Tgが345℃(DSC)、TGAによる5%重量減少温度は547℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が2.82GPa、破断強度が106MPa、破断伸びが14%であった。
(比較例5)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、9,9−ビス(4−アミノフェニル)フルオレン3.4844g(10mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物2.354g(8mmol)とN−メチル−2−ピロリドン4.6mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。イミド化反応中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。60mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1およびR2が9,9−ビス(4−アミノフェニル)フルオレン残基で表され、平均としてm=0、n=4である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、室温条件下においてNMP溶媒に不溶であった。この粉末状の末端変性イミドオリゴマーは300℃以上においても溶融流動性を示さなかったため、良好な成形体(フィルム状硬化物)を得ることができなかった。
(実施例6)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル2.7613g(10mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)とN−メチル−2−ピロリドン0.8mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.9929g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、下記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基で表され、R3が1,2,4,5−ベンゼンテトラカルボン酸二無水物残基で表され、平均としてm=4、n=0である(尚、より具体的には一般式(1−2)で示される構造を有する。実施例7〜16についても同様である。)。
Figure 0005522479
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30重量%以上可溶であった。この粉末状の末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)を、室温にて静置させると数日後にゲル化がみられたが、再び80℃にて加熱すると溶液状態となった。この溶液を、室温にて静置させると、再度数日後にゲル化がみられた。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は208Pa・s(343℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ99μm)は、Tg(ガラス転移温度)が354℃(DSC)、TGAによる5%重量減少温度は540℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.24GPa、破断強度が133MPa、破断伸びが17%であった。
(比較例6)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、4,4’−ジアミノジフェニルエーテル2.0024g(10mmol)とN−メチル−2−ピロリドン9.3mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)を入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.9929g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。イミド化反応中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、下記一般式(3)において、R1が4,4’−ジアミノジフェニルエーテル残基で表され、平均としてm=4、n=0である。
Figure 0005522479
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、室温条件下においてNMP溶媒に不溶であった。この粉末状の末端変性イミドオリゴマーは300℃以上においても溶融流動性を示さなかったため、良好な成形体(フィルム状硬化物)を得ることができなかった。
(実施例7)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル2.6232g(9.5mmol)、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン0.2661g(0.5mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)とN−メチル−2−ピロリドン1.1mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.9929g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で、R2が9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で、R3およびR4が1,2,4,5−ベンゼンテトラカルボン酸二無水物残基で表され、平均としてm=3.8、n=0.2である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)は、1ヵ月後もゲル化がみられなかった。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は159Pa・s(341℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ115μm)は、Tgが352℃(DSC)、TGAによる5%重量減少温度は536℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が2.87GPa、破断強度が122MPa、破断伸びが21%であった。
(比較例7)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、4,4’−ジアミノジフェニルエーテル1.9023g(9.5mmol)、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン0.2661g(0.5mmol)とN−メチル−2−ピロリドン9.7mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)を入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。イミド化中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。60mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(3)において、R1が4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で、R2が9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で表され、平均としてm=3.8、n=0.2である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、室温条件下においてNMP溶媒に不溶であった。この粉末状の末端変性イミドオリゴマーは300℃以上においても溶融流動性を示さなかったため、良好な成形体(フィルム状硬化物)を得ることができなかった。
(実施例8)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル2.4850g(9.0mmol)、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン0.5326g(1.0mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)とN−メチル−2−ピロリドン1.3mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.9929g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を200mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で、R2が9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で、R3およびR4が1,2,4,5−ベンゼンテトラカルボン酸二無水物残基で表され、平均としてm=3.6、n=0.4である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)は、1ヵ月後もゲル化がみられなかった。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は76Pa・s(335℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ115μm)は、Tgが350℃(DSC)、TGAによる5%重量減少温度は538℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が2.79GPa、破断強度が115MPa、破断伸びが19%であった。
(比較例8)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、4,4’−ジアミノジフェニルエーテル1.8022g(9.0mmol)、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン0.5326g(1.0mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)を入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。イミド化中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。60mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(3)において、R1が4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で、R2が9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で表され、平均としてm=3.6、n=0.4である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、室温条件下においてNMP溶媒に不溶であった。この粉末状の末端変性イミドオリゴマーは300℃以上においても溶融流動性を示さなかったため、良好な成形体(フィルム状硬化物)を得ることができなかった。
(実施例9)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル2.0709g(7.5mmol)、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン1.3315g(2.5mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)とN−メチル−2−ピロリドン2.1mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.9929g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を200mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で、R2が9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で、R3およびR4が1,2,4,5−ベンゼンテトラカルボン酸二無水物残基で表され、平均としてm=3、n=1である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)は、1ヵ月後もゲル化がみられなかった。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は553Pa・s(345℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ151μm)は、Tgが358℃(DSC)、TGAによる5%重量減少温度は538℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が2.96GPa、破断強度が119MPa、破断伸びが17%であった。
(比較例9)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、4,4’−ジアミノジフェニルエーテル1.5018g(7.5mmol)、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン1.3315g(2.5mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)とN−メチル−2−ピロリドン4.4mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。イミド化中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。60mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(3)において、R1が4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で、R2が9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で表され、平均としてm=3、n=1である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、室温条件下においてNMP溶媒に不溶であった。この粉末状の末端変性イミドオリゴマーは300℃以上においても溶融流動性を示さなかったため、良好な成形体(フィルム状硬化物)を得ることができなかった。
(比較例10)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン5.3261g(10mmol)とN−メチル−2−ピロリドン15mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)とN−メチル−2−ピロリドン0.9mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.9929g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。イミド化中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(3)において、R1およびR2が9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン残基で表され、平均としてm=0、n=4である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、室温条件下においてNMP溶媒に不溶であった。この粉末状の末端変性イミドオリゴマーは300℃以上においても溶融流動性を示さなかったため、良好な成形体(フィルム状硬化物)を得ることができなかった。
(実施例10)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル2.6232g(9.5mmol)、9,9−ビス(4−アミノフェニル)フルオレン0.1742g(0.5mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)とN−メチル−2−ピロリドン0.9mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−アミノフェニル)フルオレン残基で、R2が9,9−ビス(4−アミノフェニル)フルオレン残基で、R3およびR4が1,2,4,5−ベンゼンテトラカルボン酸二無水物残基で表され、平均としてm=3.8、n=0.2である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)は、1ヵ月後もゲル化がみられなかった。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は226Pa・s(341℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ110μm)は、Tgが353℃(DSC)、TGAによる5%重量減少温度は538℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が2.99GPa、破断強度が122MPa、破断伸びが15%であった。
(比較例11)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、4,4’−ジアミノジフェニルエーテル1.9023g(9.5mmol)、9,9−ビス(4−アミノフェニル)フルオレン0.1742g(0.5mmol)とN−メチル−2−ピロリドン9.6mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)を入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。イミド化中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。60mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(3)において、R1が4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−アミノフェニル)フルオレン残基で、R2が9,9−ビス(4−アミノフェニル)フルオレン残基で表され、平均としてm=3.8、n=0.2である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、室温条件下においてNMP溶媒に不溶であった。この粉末状の末端変性イミドオリゴマーは300℃以上においても溶融流動性を示さなかったため、良好な成形体(フィルム状硬化物)を得ることができなかった。
(実施例11)
温度計、攪拌子、窒素導入管を備えた3つ口の2000mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル220.79g(0.80mol)、9,9−ビス(4−アミノフェニル)フルオレン30.95g(0.089mol)とN−メチル−2−ピロリドン860mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物155.04g(0.711mol)とN−メチル−2−ピロリドン33mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸88.22g(0.355mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液の一部を500mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−アミノフェニル)フルオレン残基で、R2が9,9−ビス(4−アミノフェニル)フルオレン残基で、R3およびR4が1,2,4,5−ベンゼンテトラカルボン酸二無水物残基で表され、平均としてm=3.6、n=0.4である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)は、1ヵ月後もゲル化がみられなかった。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は154Pa・s(325℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ111μm)は、Tgが371℃(DSC)、TGAによる5%重量減少温度は538℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が2.97GPa、破断強度が119MPa、破断伸びが13%であった。
冷却後の残りの反応液(固形分濃度35重量%)を、あらかじめアセトンにて脱サイジング処理した30cm×30cmの東邦テナックス社製「べスファイトIM−600 6K」の平織材(繊維目付195g/m、炭素繊維製)に含浸させた。これを乾燥機中、100℃で10分乾燥させてイミドプリプレグを得た。得られたプリプレグ中の樹脂含有量は38%、残存揮発分含有量は17%であった。
(比較例12)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、4,4’−ジアミノジフェニルエーテル1.8022g(9.0mmol)、9,9−ビス(4−アミノフェニル)フルオレン0.3484g(1.0mmol)とN−メチル−2−ピロリドン9.6mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)を入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。イミド化中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。60mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(3)において、R1が4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−アミノフェニル)フルオレン残基で、R2が9,9−ビス(4−アミノフェニル)フルオレン残基で表され、平均としてm=3.6、n=0.4である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、室温条件下においてNMP溶媒に不溶であった。この粉末状の末端変性イミドオリゴマーは300℃以上においても溶融流動性を示さなかったため、良好な成形体(フィルム状硬化物)を得ることができなかった。
(実施例12)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル2.0709g(7.5mmol)、9,9−ビス(4−アミノフェニル)フルオレン0.8711g(2.5mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)とN−メチル−2−ピロリドン1.2mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.9929g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−アミノフェニル)フルオレン残基で、R2が9,9−ビス(4−アミノフェニル)フルオレン残基で、R3およびR4が1,2,4,5−ベンゼンテトラカルボン酸二無水物残基で表され、平均としてm=3、n=1である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)は、1ヵ月後もゲル化がみられなかった。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は1323Pa・s(351℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370〜420℃で1時間加熱して得られたフィルム状の硬化物(厚さ175μm)は、Tgが396℃(DSC)、TGAによる5%重量減少温度は544℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が2.82GPa、破断強度が101MPa、破断伸びが11%であった。
(比較例13)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、4,4’−ジアミノジフェニルエーテル1.5018g(7.5mmol)、9,9−ビス(4−アミノフェニル)フルオレン0.8711g(2.5mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)を入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。イミド化中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。60mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(3)において、R1が4,4’−ジアミノジフェニルエーテル残基または9,9−ビス(4−アミノフェニル)フルオレン残基で、R2が9,9−ビス(4−アミノフェニル)フルオレン残基で表され、平均としてm=3、n=1である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、室温条件下においてNMP溶媒に不溶であった。この粉末状の末端変性イミドオリゴマーは300℃以上においても溶融流動性を示さなかったため、良好な成形体(フィルム状硬化物)を得ることができなかった。
(比較例14)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、9,9−ビス(4−アミノフェニル)フルオレン3.4844g(10mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)とN−メチル−2−ピロリドン2.3mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。イミド化中にイミドオリゴマーの析出が見られた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(3)において、R1およびR2が9,9−ビス(4−アミノフェニル)フルオレン残基で表され、平均としてm=0、n=4である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、室温条件下においてNMP溶媒に不溶であった。この粉末状の末端変性イミドオリゴマーは300℃以上においても溶融流動性を示さなかったため、良好な成形体(フィルム状硬化物)を得ることができなかった。
(実施例13)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル4.9703g(18.0mmol)、1,3−ジアミノベンゼン0.2163g(2.0mmol)とN−メチル−2−ピロリドン20mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物3.4899g(16mmol)とN−メチル−2−ピロリドン1mLを入れ、窒素気流下、室温で2.5時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸1.9858g(8mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基または1,3−ジアミノベンゼン残基で、R2が1,3−ジアミノベンゼン残基で、R3およびR4が1,2,4,5−ベンゼンテトラカルボン酸二無水物残基で表され、平均としてm=3.6、n=0.4である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)は、1ヵ月後もゲル化がみられなかった。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は199Pa・s(343℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ111μm)は、Tgが365℃(DSC)、TGAによる5%重量減少温度は541℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が2.84GPa、破断強度が116MPa、破断伸びが15%であった。
(実施例14)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル4.4181g(16mmol)とN−メチル−2−ピロリドン20mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)とN−メチル−2−ピロリドン3mLを入れ、窒素気流下、室温で2.5時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸3.9717g(16mmol)を入れ、窒素気流下、室温で18時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。濾別して得られた粉末を100℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基で表され、R3が1,2,4,5−ベンゼンテトラカルボン酸二無水物残基で表され、平均としてm=1、n=0である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)は、1ヵ月後もゲル化がみられなかった。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は0.8Pa・s(325℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ80μm)は、Tg(ガラス転移温度)が367℃(DSC)、TGAによる5%重量減少温度は528℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.08GPa、破断強度が121MPa、破断伸びが12%であった。
(実施例15)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル3.3136g(12mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)とN−メチル−2−ピロリドン3mLを入れ、窒素気流下、室温で2.5時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸1.9858g(8mmol)を入れ、窒素気流下、室温で18時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。濾別して得られた粉末を100℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基で表され、R3が1,2,4,5−ベンゼンテトラカルボン酸二無水物残基で表され、平均としてm=2、n=0である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)は、1ヵ月後もゲル化がみられなかった。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は30Pa・s(338℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ90μm)は、Tg(ガラス転移温度)が355℃(DSC)、TGAによる5%重量減少温度は529℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が2.93GPa、破断強度が120MPa、破断伸びが12%であった。
(実施例16)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル3.0374g(11mmol)とN−メチル−2−ピロリドン10mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物2.1812g(10mmol)とN−メチル−2−ピロリドン3mLを入れ、窒素気流下、室温で2.5時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸0.4964g(2mmol)を入れ、窒素気流下、室温で18時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。濾別して得られた粉末を100℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1が2−フェニル−4,4’−ジアミノジフェニルエーテル残基で表され、R3が1,2,4,5−ベンゼンテトラカルボン酸二無水物残基で表され、平均としてm=10、n=0である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30重量%以上可溶であった。この粉末状の末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)を、室温にて静置させると数日後にゲル化がみられたが、再び80℃にて加熱すると溶液状態となった。この溶液を、室温にて静置させると、再度数日後にゲル化がみられた。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は11100Pa・s(330℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ175μm)は、Tg(ガラス転移温度)が341℃(DSC)、TGAによる5%重量減少温度は542℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が2.82GPa、破断強度が110MPa、破断伸びが15%であった。
(実施例17)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル3.3136g(12mmol)とN−メチル−2−ピロリドン12mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.8846g(8.64mmol)と3,3’,4,4’−ビフェニルテトラカルボン酸二無水物0.2824g(0.96mmol)とN−メチル−2−ピロリドン3mLを入れ、窒素気流下、室温で2.5時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸1.1915g(4.8mmol)を入れ、窒素気流下、室温で18時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。濾別して得られた粉末を150℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1およびR2が2−フェニル−4,4’−ジアミノジフェニルエーテル残基で表され、R3が1,2,4,5−ベンゼンテトラカルボン酸二無水物残基で、R4が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物残基で表され、平均としてm=3.6、n=0.4である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30重量%以上可溶であった。この粉末状の末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)を、室温にて静置させると数日後にゲル化がみられたが、再び80℃にて加熱すると溶液状態となった。この溶液を、室温にて静置させると、再度数日後にゲル化がみられた。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は449Pa・s(℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ85μm)は、Tg(ガラス転移温度)が350℃(DSC)、TGAによる5%重量減少温度は539℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.15GPa、破断強度が127MPa、破断伸びが19%であった。
(実施例18)
温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2−フェニル−4,4’−ジアミノジフェニルエーテル3.3136g(12mmol)とN−メチル−2−ピロリドン12mLを加え、溶解後、1,2,4,5−ベンゼンテトラカルボン酸二無水物1.8846g(8.64mmol)とビス(3,4−カルボキシフェニル)エーテル二無水物0.2978g(0.96mmol)とN−メチル−2−ピロリドン3mLを入れ、窒素気流下、室温で2.5時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4−(2−フェニルエチニル)無水フタル酸1.1915g(4.8mmol)を入れ、窒素気流下、室温で18時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。濾別して得られた粉末を150℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(1)において、R1およびR2が2−フェニル−4,4’−ジアミノジフェニルエーテル残基で表され、R3が1,2,4,5−ベンゼンテトラカルボン酸二無水物残基で、R4がビス(3,4−カルボキシフェニル)エーテル二無水物残基で表され、平均としてm=3.6、n=0.4である。
上記で得られた粉末状の末端変性イミドオリゴマーの未硬化物は、NMP溶媒に室温で30重量%以上可溶であった。この末端変性イミドオリゴマーが30重量%溶解したNMP溶液(ワニス)を、室温にて静置させると数日後にゲル化がみられたが、再び80℃にて加熱すると溶液状態となった。この溶液を、室温にて静置させると、再度数日後にゲル化がみられた。硬化前の粉末状の末端変性イミドオリゴマーの最低溶融粘度は159Pa・s(℃)であった。この粉末状の末端変性イミドオリゴマーをホットプレスを用いて370℃で1時間加熱して得られたフィルム状の硬化物(厚さ85μm)は、Tg(ガラス転移温度)が344℃(DSC)、TGAによる5%重量減少温度は540℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が2.98GPa、破断強度が135MPa、破断伸びが17%であった。
(実施例19)
30cm×30cmのステンレス板上に、剥離フィルムとしてポリイミドフィルムを置き、その上に実施例11で作製したプリプレグを12枚積層した。さらにポリイミドフィルムとステンレス板を重ね、ホットプレス上、真空条件下、昇温速度5℃/minで260℃まで加熱した。260℃で2時間加熱後、1.3MPaで昇温速度3℃/minで370℃まで昇温し、そのまま370℃で1時間加熱加圧させた。外観や超音波探傷試験、断面観察試験から判断して大きなボイドのない良好な積層板が得られた。得られた積層板のガラス転移温度は、358℃であり、繊維体積含有率(Vf)は0.60であり、樹脂含有量は33重量%であった。
本発明は、有機溶媒に対する溶解性、溶液保存安定性および低溶融粘度等の成形性に優れ、フィルム化も容易であり、硬化物の耐熱性および弾性率、引張強度および伸び等の機械的特性の高い新規な末端変性イミドオリゴマーおよびワニス並びにその硬化物であり、航空機や宇宙産業用機器をはじめとして易成形性かつ高耐熱性が求められる広い分野で利用可能な材料である。

Claims (15)

  1. 一般式(1)で表される末端変性イミドオリゴマー。
    Figure 0005522479

    (式中、R1およびR22−フェニル−4,4’−ジアミノジフェニルエーテル、9,9−ビス(4−アミノフェニル)フルオレン、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン、1,3−ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表し、R3およびR43,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,4,5−ベンゼンテトラカルボン酸二無水物、ビス(3,4−カルボキシフェニル)エーテル二無水物から選択される少なくとも1種の芳香族テトラカルボン酸類の4価残基を表す。R5およびR6は水素原子又はフェニル基であって、いずれか一方がフェニル基を表す。mおよびnは、1≦m≦10、0≦n≦2、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
  2. 前記4価の芳香族テトラカルボン酸類が、1,2,4,5−ベンゼンテトラカルボン酸二無水物からなる下記一般式(1−2)で表わされる請求項1に記載の末端変性イミドオリゴマー。
    Figure 0005522479

    (式中、R1およびR22−フェニル−4,4’−ジアミノジフェニルエーテル、9,9−ビス(4−アミノフェニル)フルオレン、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン、1,3−ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表す。R5およびR6は水素原子又はフェニル基であって、いずれか一方がフェニル基を表す。mおよびnは、1≦m≦10、0≦n≦2、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
  3. 前記4価の芳香族テトラカルボン酸類が、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物からなる下記一般式(1−3)で表わされる請求項1に記載の末端変性イミドオリゴマー。
    Figure 0005522479

    (式中、R1およびR22−フェニル−4,4’−ジアミノジフェニルエーテル、9,9−ビス(4−アミノフェニル)フルオレン、9,9−ビス(4−(4−アミノフェノキシ)フェニル)フルオレン、1,3−ジアミノベンゼンから選択される少なくとも1種の芳香族ジアミンの2価残基を表す。R5およびR6は水素原子又はフェニル基であって、いずれか一方がフェニル基を表す。mおよびnは、1≦m≦10、0≦n≦2、1≦m+n≦10および0.5≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
  4. 前記4価の芳香族テトラカルボン酸類が、1,2,4,5−ベンゼンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ビス(3,4−カルボキシフェニル)エーテル二無水物のうち少なくとも2種類を併用してなる請求項1に記載の末端変性イミドオリゴマー。
  5. N−メチル−2−ピロリドンに対し室温で固形分濃度30重量%以上溶解可能な請求項1に記載の末端変性イミドオリゴマー。
  6. 請求項1から5のいずれかに記載の末端変性イミドオリゴマーを有機溶媒に溶解してなるワニス。
  7. 請求項1から5のいずれかに記載の末端変性イミドオリゴマーを加熱硬化して得られる硬化物。
  8. 請求項6に記載のワニスを加熱硬化して得られる硬化物。
  9. ガラス転移温度(Tg)が300℃以上である請求項7または8に記載の硬化物。
  10. 引張破断伸びが10%以上である、請求項7または8に記載の硬化物から得られるフィルム。
  11. 請求項6に記載のワニスを繊維に含浸させて、乾燥させてなることを特徴とするイミドプリプレグ。
  12. 樹脂含量が30〜50重量%である請求項11に記載のイミドプリプレグ。
  13. 請求項11または12に記載のイミドプリプレグを積層し、加熱硬化して得られることを特徴とする繊維強化積層板。
  14. 請求項1に記載の末端変性イミドオリゴマーの粉末を繊維織物に付着させたものを積層し、加熱硬化して得られることを特徴とする繊維強化積層板。
  15. ガラス転移温度(Tg)が300℃以上である請求項13または14に記載の繊維強化積層板。
JP2010527816A 2008-09-03 2009-09-03 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板 Active JP5522479B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010527816A JP5522479B2 (ja) 2008-09-03 2009-09-03 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008225838 2008-09-03
JP2008225838 2008-09-03
JP2008271903 2008-10-22
JP2008271903 2008-10-22
PCT/JP2009/065423 WO2010027020A1 (ja) 2008-09-03 2009-09-03 2-フェニル-4,4’-ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板
JP2010527816A JP5522479B2 (ja) 2008-09-03 2009-09-03 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板

Publications (2)

Publication Number Publication Date
JPWO2010027020A1 JPWO2010027020A1 (ja) 2012-02-02
JP5522479B2 true JP5522479B2 (ja) 2014-06-18

Family

ID=41797186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010527816A Active JP5522479B2 (ja) 2008-09-03 2009-09-03 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板

Country Status (6)

Country Link
US (1) US8846552B2 (ja)
EP (1) EP2333004B1 (ja)
JP (1) JP5522479B2 (ja)
CN (1) CN102143989B (ja)
ES (1) ES2457445T3 (ja)
WO (1) WO2010027020A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052238A (ja) * 2017-09-14 2019-04-04 国立研究開発法人宇宙航空研究開発機構 アブレータ、プリプレグ、アブレータの製造方法、及びアブレータ用のプリプレグの製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132168A (ja) * 2009-12-24 2011-07-07 Mitsubishi Electric Corp 熱硬化型付加反応ポリイミド化合物、熱硬化型付加反応ポリイミド組成物、およびこれらを用いた半導体装置
JP5765801B2 (ja) * 2011-03-18 2015-08-19 株式会社カネカ 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた成形性に優れたレジントランスファー成形用末端変性イミドオリゴマー、その混
JP6202554B2 (ja) 2013-05-10 2017-09-27 株式会社カネカ 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた末端変性イミドオリゴマーとオキシジフタル酸類を用いた芳香族熱可塑性ポリイミドにより作製されたポリイミド樹脂組成物、およびワニス、および耐熱性や機械的特性に優れたポリイミド樹脂組成物成形体、およびプリプレグ、およびその繊維強化複合材料
CN106255714A (zh) * 2014-04-18 2016-12-21 长濑化成株式会社 抗蚀剂树脂及其制造方法
EP3144338B1 (en) * 2014-05-12 2023-10-25 Kaneka Corporation Varnish including 2-phenyl-4,4'-diaminodiphenyl ether, imide resin composition having excellent moldability, cured resin molded article having excellent breaking elongation, prepreg thereof, imide prepreg thereof, and fiber-reinforced material thereof having high heat resistance and excellent mechanical strength
JP6431431B2 (ja) * 2015-04-14 2018-11-28 セイカ株式会社 芳香族ジアミン及びその中間体、並びにこれらの製造方法
WO2017195393A1 (ja) * 2016-05-09 2017-11-16 株式会社カネカ 末端変性イミドオリゴマー、ワニス、それらの硬化物、フィルム、並びにそれらを用いたイミドプリプレグおよび繊維強化複合材料
JP6812002B2 (ja) * 2017-11-24 2021-01-13 ウィンゴーテクノロジー株式会社 ポリイミド化合物、ポリアミド酸および該ポリイミド化合物を含む成形物
JP6240798B1 (ja) * 2017-01-27 2017-11-29 ウィンゴーテクノロジー株式会社 ジアミン化合物、並びにそれを用いたポリイミド化合物および成形物
CN110198926B (zh) * 2017-01-27 2021-04-16 胜高科技股份有限公司 二胺化合物、以及使用其的聚酰亚胺化合物及成型物
JP6240799B1 (ja) * 2017-01-27 2017-11-29 ウィンゴーテクノロジー株式会社 ジアミン化合物の合成方法、並びにこの方法により合成されたジアミン化合物を用いたポリイミド化合物の合成方法
JP6844850B2 (ja) * 2017-11-24 2021-03-17 ウィンゴーテクノロジー株式会社 ポリイミド化合物、ポリアミド酸および該ポリイミド化合物を含む成形物
US11492446B2 (en) 2017-03-30 2022-11-08 Kaneka Corporation Semipreg, prepreg, resin composite material, and production methods thereof
JP6332528B2 (ja) * 2017-06-07 2018-05-30 株式会社カネカ 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた末端変性イミドオリゴマーとオキシジフタル酸類を用いた芳香族熱可塑性ポリイミドにより作製されたポリイミド樹脂組成物、およびワニス、および耐熱性や機械的特性に優れたポリイミド樹脂組成物成形体、およびプリプレグ、およびその繊維強化複合材料
WO2019039254A1 (ja) * 2017-08-23 2019-02-28 宇部興産株式会社 電極用バインダー樹脂、電極合剤ペースト、電極、及び電極の製造方法
JP7064192B2 (ja) * 2018-03-06 2022-05-10 国立研究開発法人宇宙航空研究開発機構 アブレータ
EP3841152A1 (en) * 2018-10-02 2021-06-30 Kaneka Americas Holding, Inc. A novel amide acid oligomer process for molding polyimide composites
WO2020071483A1 (ja) * 2018-10-03 2020-04-09 株式会社カネカ 未硬化積層板、強化繊維複合材料、およびそれらの製造方法
WO2020149116A1 (ja) * 2019-01-18 2020-07-23 株式会社カネカ イミドオリゴマー、ワニス、それらの硬化物、並びにそれらを用いたプリプレグ及び繊維強化複合材料
JP7475816B2 (ja) * 2019-03-29 2024-04-30 株式会社カネカ イミドプリプレグ、複合材料および耐熱性絶縁部品
EP4130099A4 (en) * 2020-03-30 2024-04-24 Kaneka Corporation POLYAMIC ACID HAVING A SPECIFIC COMPOSITION, VARNISH, HARDENED PRODUCT AND COMPOSITE MATERIAL
JP7496547B2 (ja) 2020-07-22 2024-06-07 株式会社カネカ イミドオリゴマー、ワニス、それらの硬化物、並びにそれらを用いたプリプレグ及び繊維強化複合材料
WO2022210096A1 (ja) * 2021-04-02 2022-10-06 Jsr株式会社 絶縁膜形成用感放射線性組成物、パターンを有する樹脂膜および半導体回路基板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507510A (ja) * 1993-12-22 1997-07-29 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 高いTgを有する溶融加工用ポリイミド
JP2000219741A (ja) * 1998-11-25 2000-08-08 Ube Ind Ltd 末端変性イミドオリゴマ―およびその硬化物
JP2001512162A (ja) * 1997-07-30 2001-08-21 コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション ポリイミドの水性製法
JP2003526704A (ja) * 1999-05-18 2003-09-09 アメリカ合衆国 圧入、トランスファー成形用高能力樹脂組成物とその製造法
JP2004331801A (ja) * 2003-05-07 2004-11-25 Jsr Corp ポリアミック酸オリゴマー、ポリイミドオリゴマー、溶液組成物、および繊維強化複合材料
JP2006117788A (ja) * 2004-10-21 2006-05-11 Japan Aerospace Exploration Agency 繊維強化ポリイミド複合材料の製造方法
JP2006312700A (ja) * 2005-05-09 2006-11-16 Japan Aerospace Exploration Agency イミドプリプレグおよび積層板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69601519T2 (de) * 1995-06-28 1999-08-19 Mitsui Chemicals Lineare Polyamidsäure, lineares Polyimid und wärmehärtbares Polyimid
US6359107B1 (en) 2000-05-18 2002-03-19 The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration Composition of and method for making high performance resins for infusion and transfer molding processes
JP4263182B2 (ja) 2005-05-09 2009-05-13 独立行政法人 宇宙航空研究開発機構 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物
JP4214531B2 (ja) 2005-10-06 2009-01-28 独立行政法人 宇宙航空研究開発機構 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507510A (ja) * 1993-12-22 1997-07-29 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 高いTgを有する溶融加工用ポリイミド
JP2001512162A (ja) * 1997-07-30 2001-08-21 コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション ポリイミドの水性製法
JP2000219741A (ja) * 1998-11-25 2000-08-08 Ube Ind Ltd 末端変性イミドオリゴマ―およびその硬化物
JP2003526704A (ja) * 1999-05-18 2003-09-09 アメリカ合衆国 圧入、トランスファー成形用高能力樹脂組成物とその製造法
JP2004331801A (ja) * 2003-05-07 2004-11-25 Jsr Corp ポリアミック酸オリゴマー、ポリイミドオリゴマー、溶液組成物、および繊維強化複合材料
JP2006117788A (ja) * 2004-10-21 2006-05-11 Japan Aerospace Exploration Agency 繊維強化ポリイミド複合材料の製造方法
JP2006312700A (ja) * 2005-05-09 2006-11-16 Japan Aerospace Exploration Agency イミドプリプレグおよび積層板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052238A (ja) * 2017-09-14 2019-04-04 国立研究開発法人宇宙航空研究開発機構 アブレータ、プリプレグ、アブレータの製造方法、及びアブレータ用のプリプレグの製造方法
JP7142873B2 (ja) 2017-09-14 2022-09-28 国立研究開発法人宇宙航空研究開発機構 アブレータ、プリプレグ、アブレータの製造方法、及びアブレータ用のプリプレグの製造方法

Also Published As

Publication number Publication date
EP2333004A1 (en) 2011-06-15
US20110165809A1 (en) 2011-07-07
EP2333004A4 (en) 2012-01-25
CN102143989A (zh) 2011-08-03
WO2010027020A1 (ja) 2010-03-11
ES2457445T3 (es) 2014-04-25
EP2333004B1 (en) 2014-03-05
CN102143989B (zh) 2013-03-13
JPWO2010027020A1 (ja) 2012-02-02
US8846552B2 (en) 2014-09-30

Similar Documents

Publication Publication Date Title
JP5522479B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板
US10047246B2 (en) Varnish including 2-phenyl-4,4′-diaminodiphenyl ether, imide resin composition having excellent moldability, cured resin molded article having excellent breaking elongation, prepreg thereof, imide prepreg thereof, and fiber-reinforced material thereof having high heat resistance and excellent mechanical strength
JP4787552B2 (ja) 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物
JP6202554B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた末端変性イミドオリゴマーとオキシジフタル酸類を用いた芳香族熱可塑性ポリイミドにより作製されたポリイミド樹脂組成物、およびワニス、および耐熱性や機械的特性に優れたポリイミド樹脂組成物成形体、およびプリプレグ、およびその繊維強化複合材料
JP6332528B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた末端変性イミドオリゴマーとオキシジフタル酸類を用いた芳香族熱可塑性ポリイミドにより作製されたポリイミド樹脂組成物、およびワニス、および耐熱性や機械的特性に優れたポリイミド樹脂組成物成形体、およびプリプレグ、およびその繊維強化複合材料
US10526450B2 (en) Terminally modified imide oligomer, varnish, cured products thereof, film, and imide prepreg and fiber-reinforced composite material using these
JP5765801B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた成形性に優れたレジントランスファー成形用末端変性イミドオリゴマー、その混
JP4263182B2 (ja) 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物
JP4214531B2 (ja) 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物
JP4968540B2 (ja) 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物
JP5050269B2 (ja) 末端変性イミドオリゴマーおよびワニス並びにその高弾性率硬化物
JP4042861B2 (ja) イミドプリプレグおよび積層板
JP2011184492A (ja) 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物
JP7475816B2 (ja) イミドプリプレグ、複合材料および耐熱性絶縁部品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5522479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250