WO2015174217A1 - 2-フェニル-4,4'-ジアミノジフェニルエーテル類を用いたワニス、および成形性に優れるイミド樹脂組成物および優れた破断伸びを有する硬化樹脂成形体ならびにそれらを用いたプリプレグ、イミドプリプレグおよび耐熱性および機械強度に優れる繊維強化素材 - Google Patents

2-フェニル-4,4'-ジアミノジフェニルエーテル類を用いたワニス、および成形性に優れるイミド樹脂組成物および優れた破断伸びを有する硬化樹脂成形体ならびにそれらを用いたプリプレグ、イミドプリプレグおよび耐熱性および機械強度に優れる繊維強化素材 Download PDF

Info

Publication number
WO2015174217A1
WO2015174217A1 PCT/JP2015/061968 JP2015061968W WO2015174217A1 WO 2015174217 A1 WO2015174217 A1 WO 2015174217A1 JP 2015061968 W JP2015061968 W JP 2015061968W WO 2015174217 A1 WO2015174217 A1 WO 2015174217A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
imide
varnish
prepreg
phenyl
Prior art date
Application number
PCT/JP2015/061968
Other languages
English (en)
French (fr)
Inventor
雅彦 宮内
雄一 石田
小笠原 俊夫
力男 横田
Original Assignee
株式会社カネカ
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, 国立研究開発法人宇宙航空研究開発機構 filed Critical 株式会社カネカ
Priority to EP15793478.7A priority Critical patent/EP3144338B1/en
Priority to CN201580036849.7A priority patent/CN106661225B/zh
Priority to US15/310,292 priority patent/US10047246B2/en
Publication of WO2015174217A1 publication Critical patent/WO2015174217A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to polyimide resin compositions and prepregs and fiber reinforced laminates using them, and in particular, members that can be used in a wide range of fields requiring easy moldability and high heat resistance, including aircraft and space industry equipment. It relates to materials.
  • Aromatic polyimide is a polymer-based material that has the highest level of heat resistance and is excellent in mechanical properties and electrical properties, and is therefore used as a material in a wide range of fields such as aerospace and electrical electronics.
  • aromatic polyimide is generally poor in processability, and is not particularly suitable for use as a matrix resin for melt molding or fiber reinforced composite materials. Therefore, when applying aromatic polyimide to a matrix resin for fiber reinforced composite materials, after adding the resin to the fiber in a low molecular weight state, the thermal addition reactivity that crosslinks and cures the resin in the final step It is common to use polyimide.
  • An example of a conventionally developed polyimide resin for fiber-reinforced composite materials is PMR-15.
  • PMR-15 has a main chain formed by condensation of benzophenone tetracarboxylic acid diester and diaminodiphenylmethane, and 5-norbornene-2,3-dicarboxylic acid anhydride monoester (commonly known as nadic acid anhydride) is used as the end-capping agent. Further, it is a heat addition reactive imide resin having a repeating unit of about 1-6 (Non-patent Document 1, Non-patent Document 2).
  • Nadic acid at both ends used in PMR-15 is said to undergo crosslinking through a ring-opening addition reaction during the thermosetting process, and it is said that no volatile component is generated along with the crosslinking reaction. Since it exhibits a transition temperature, it has been used as a matrix resin for fiber-reinforced composite materials.
  • Preparation of the prepreg to which this PMR-15 was applied was made by dissolving the above-mentioned benzophenone tetracarboxylic acid diester, diaminodiphenylmethane, and 5-norbornene-2,3-dicarboxylic anhydride monoester as raw materials in various alcohols. After preparing the solution, it is carried out by a method of impregnating the fiber. In addition, a fiber-reinforced composite material is produced by laminating the produced prepreg and performing heat-press molding under vacuum conditions.
  • an imide oligomer using 4- (2-phenylethynyl) phthalic anhydride as a terminal blocking agent is said to have an excellent balance between the moldability of the composite material and the heat resistance and mechanical properties of the prepared composite material.
  • Patent Document 1 Patent Document 2, Patent Document 3, Non-Patent Document 3, and Non-Patent Document 4.
  • Patent Document 1 discloses 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride having an excellent heat resistance and mechanical properties of a cured product and having a bent and non-planar structure, and an aromatic diamine compound.
  • a terminal-modified imide oligomer obtained by reacting 4- (2-phenylethynyl) phthalic anhydride with a logarithmic viscosity of 0.05 to 1 and a cured product thereof.
  • a novel terminal-modified imide oligomer having high practicality can be obtained, and a novel terminal modification having excellent toughness and mechanical properties such as heat resistance, elastic modulus, tensile strength and elongation. It is described that a cured product of polyimide can be obtained.
  • an amic acid oligomer which is a precursor of an imide oligomer is impregnated into a fiber in a state dissolved in an organic solvent such as N-methyl-2-pyrrolidone, and a semi-dried amic acid wet prepreg partially containing a solvent is intermediated
  • Patent Document 2 discloses a terminal-modified imide oligomer represented by the following general formula (4) and a cured product thereof.
  • R 12 , R 13 and R 14 represent an aromatic diamine residue, and R 12 represents a divalent aromatic diamine residue derived from 9,9-bis (4- (4-aminophenoxy) phenyl) fluorene).
  • a terminal-modified imide oligomer that can be dissolved in an organic solvent such as N-methyl-2-pyrrolidone at a high concentration can be obtained, and heat resistance, elastic modulus, tensile strength, elongation, etc. It is described that a cured product of a terminal-modified polyimide having good toughness and mechanical properties can be obtained.
  • Aromatic imide oligomers synthesized from raw material compounds and modified with 4- (2-phenylethynyl) phthalic anhydride at the end show excellent solvent solubility, high-temperature melt flowability and moldability, and heat curing The product has been found to exhibit excellent heat resistance and sufficient mechanical properties.
  • carbon fiber was impregnated with an imide oligomer solution in which the terminal-modified imide oligomer was dissolved at a high concentration, and a semi-dried imide wet prepreg partially containing a solvent was produced as an intermediate, and a plurality of the prepregs were laminated. Attempts have been made to produce composite materials that will later heat cure. The reason why the imide wet prepreg is prepared is to uniformly adhere the imide oligomer solution to the carbon fiber surface.
  • an aromatic tetracarboxylic acid containing a 2,3,3 ′, 4′-biphenyltetracarboxylic acid component, an aromatic diamine containing no oxygen atom in the molecule, and a terminal agent having a phenylethynyl group A cured product, a prepreg and a fiber reinforced composite material obtained by heating a solution prepared from the above are disclosed. As an effect of the invention, it is described that a polyimide cured product having excellent heat resistance and oxidation resistance can be obtained.
  • the PMR-15 resin is an imide resin having an extremely low number of repeating units and a molecular weight of about 1500 in order to ensure both the moldability of the composite material and the heat resistance after thermosetting.
  • the problem is that the toughness of the cured resin is low. Further, since diaminodiphenylmethane having high carcinogenicity is used, there is a problem in workability when an operator directly handles them.
  • wet prepregs of amic acid oligomers or imide oligomers end-modified with 4- (2-phenylethynyl) phthalic anhydride are N-methyl-2-pyrrolidone (boiling point: about 202 ° C.) or dimethylacetamide (boiling point: 165 ° C.). ) And other high-boiling and highly polar organic solvents.
  • these prepregs especially when producing 30 or more carbon fiber composite materials, in addition to the high boiling point, the interaction between molecules of imide groups and organic solvent molecules is generally strong. Further, it is difficult to completely remove the solvent in the prepreg, and there is a problem that the heat resistance and mechanical properties of the carbon fiber composite material are likely to be lowered.
  • the cured resin which does not have a flexible ether bond which can carry out molecular rotation in the molecular structure of an imide cured resin molded object It is generally known that molded articles tend to be brittle and have low toughness. In general, it is known that when a linking group such as an ether bond is introduced into the molecular structure in order to improve the toughness of the cured resin molded body, the heat resistance is likely to be greatly reduced.
  • the present invention is easily produced by heating a terminal-modified imide oligomer having excellent moldability such as solubility in an organic solvent having a boiling point at 1 atm of 150 ° C. or lower, solution storage stability, and low melt viscosity.
  • An object is to provide a cured product, a prepreg, an imide prepreg and a fiber-reinforced composite material having high mechanical properties.
  • the present invention provides a varnish containing the following components (A) to (D), wherein the components (A), (B) and (C) are contained in a dissolved state.
  • R 1 represents an aromatic tetracarboxylic acid diester residue
  • R 2 and R 3 represent the same or different aliphatic or aromatic organic groups and are in a cis or trans relationship with each other. Present at a certain position and may be single or a mixture of these two isomers.
  • R 4 and R 5 represent a hydrogen atom or an aliphatic or aromatic organic group, and any one of them represents an aliphatic or aromatic organic group.
  • the aliphatic organic group represented by R 2 and R 3 in the general formula (1) is an organic group having an aliphatic chain, and the aromatic organic group is an organic group having an aromatic ring. is there.
  • the aromatic tetracarboxylic acid diester residue represented by R 1 in the general formula (1) is a tetravalent aromatic organic group in which four carboxyl groups in the aromatic tetracarboxylic acid are removed. Say.
  • the residue of the aromatic tetracarboxylic acid diester represented by R 1 is a tetravalent residue of 1,2,4,5-benzenetetracarboxylic acid or 3,3 ′, 4
  • a tetravalent residue of 4,4′-biphenyltetracarboxylic acid is preferred.
  • R 1 is a tetravalent aromatic tetracarboxylic acid diester represented by a tetravalent residue of 1,2,4,5-benzenetetracarboxylic acid, 3,3 ′, 4, Aromatic tetracarboxylic acid diesters represented by tetravalent residues of 4′-biphenyltetracarboxylic acids and aromatic tetracarboxylic acid diesters represented by tetravalent residues of bis (3,4-carboxyphenyl) ethers Two or more types may be used in combination.
  • 2-phenyl-4,4'-diaminodiphenyl ether and two or more kinds of divalent aromatic diamines may be used in combination.
  • the present invention also provides a solid imide resin composition represented by the general formula (3) obtained by heating the varnish and removing the organic solvent.
  • R 6 and R 7 represents the residue of .
  • R 8 and R 9 are the same or different divalent aromatic diamine either one a hydrogen atom or a phenyl group represents a phenyl group
  • R 10 and R 11 are the same or different and represent tetravalent aromatic tetracarboxylic acid residues, where m and n are m ⁇ 1, n ⁇ 0, 1 ⁇ m + n ⁇ 10 and 0.05 ⁇ m / (m + n )
  • the relationship of ⁇ 1 is satisfied, and the arrangement of repeating units may be either block or random.
  • the present invention also provides a molded body of an imide resin composition having a high molecular weight by further heating in a state where the solid imide resin composition is melted.
  • the glass transition temperature (Tg) of the molded body of the imide resin composition is preferably 300 ° C. or higher, more preferably 330 ° C. or higher, and further preferably 350 ° C. or higher.
  • the present invention also provides a film obtained from a molded body of the imide resin composition.
  • the tensile elongation at break of the film is preferably 10% or more, more preferably 15% or more, and further preferably 20% or more.
  • the present invention also provides a prepreg obtained by impregnating fibers with the varnish.
  • the present invention provides both a wet prepreg containing a solvent and a dry prepreg from which the solvent has been almost completely removed.
  • the present invention also provides an imide prepreg obtained by further heating the prepreg.
  • the present invention provides both an imide wet prepreg in a semi-dry state partially containing a solvent and an imide dry prepreg in a state in which the solvent is almost completely removed.
  • the present invention provides a fiber-reinforced composite material obtained by laminating the prepreg and the imide prepreg individually or in combination and heat-curing.
  • the fiber reinforced composite material preferably has a Tg of 300 ° C. or higher, more preferably 330 ° C. or higher.
  • an aromatic tetracarboxylic acid anhydride 4- (2-phenylethynyl) phthalic anhydride
  • an organic solvent having a boiling point at 1 atm of 150 ° C. or less 1 atmosphere containing an aromatic tetracarboxylic acid diester represented by the general formula (1) and a 4- (2-phenylethynyl) phthalic acid monoester represented by the general formula (2)
  • the method for producing the varnish is prepared by preparing a solution of an organic solvent having a boiling point of 150 ° C. or less at 80 ° C. and further adding a diamine containing 2-phenyl-4,4′-diaminodiphenyl ether and uniformly dissolving the diamine.
  • the present invention can provide a varnish excellent in solubility and long-term storage stability due to the effect of 2-phenyl-4,4′-diaminodiphenyl ether. Moreover, this invention can provide the solid imide resin composition excellent in high temperature melt fluidity
  • this invention can provide the imide prepreg which was excellent in preservability and handling, and was excellent in the adhesiveness between each prepreg by impregnating the said varnish to a fiber.
  • the prepreg or imide prepreg of the present invention can easily remove the low boiling point organic solvent used in the varnish from the composite material in the step of thermoforming the composite material by laminating the prepreg or the imide prepreg.
  • FIG. 1 shows the results of the powder of the terminal-modified polyimide resin raw material composition was vacuum dried result of 1 H-NMR measurement was dissolved in MeOH-d 4 at room temperature under a varnish obtained in Example 1
  • FIG. 2 is a diagram showing the results of 1 H-NMR measurement conducted by dissolving the terminal modified polyimide resin raw material composition powder obtained in Example 1 in DMSO-d 6 .
  • the varnish of the present invention comprises the following components (A) to (D), wherein the components (A), (B) and (C) are contained in a dissolved state.
  • R 1 represents an aromatic tetracarboxylic acid diester residue
  • R 2 and R 3 represent the same or different aliphatic or aromatic organic groups and are in a cis or trans relationship with each other. Present at a certain position and may be single or a mixture of these two isomers.
  • R 4 and R 5 represent a hydrogen atom or an aliphatic or aromatic organic group, and any one of them represents an aliphatic or aromatic organic group.
  • the aromatic tetracarboxylic acid diester represented by the general formula (1) is used as a constituent of the varnish of the present invention.
  • the aromatic tetracarboxylic acid diesters represented by the general formula (1) react with the components (B) and (C) to form one skeleton of the terminal-modified imide oligomer represented by the general formula (3). It is a component which forms a part.
  • the aromatic tetracarboxylic acid constituting the aromatic tetracarboxylic acid diester residue represented by R 1 in the general formula (1) is a tetravalent residue of 1,2,4,5-benzenetetracarboxylic acid.
  • the aromatic tetracarboxylic acid diester constituting the varnish from the viewpoint that the molded article of the imide resin composition can exhibit high glass transition temperature (Tg), long-term thermal stability, and oxidation resistance stability at high temperatures.
  • the aromatic tetracarboxylic acid diester residue represented by R 1 in the general formula (1) is a tetravalent residue of 1,2,4,5-benzenetetracarboxylic acid, or 3,3 A tetravalent residue of ', 4,4'-biphenyltetracarboxylic acid or a tetravalent residue of bis (3,4-carboxyphenyl) ether is preferable.
  • 1,2,4,5-benzenetetracarboxylic acid Or a tetravalent residue of 3,3 ′, 4,4′-biphenyltetracarboxylic acid.
  • aromatic tetracarboxylic acid diesters constituting the varnish as a combination of other preferable tetravalent aromatic tetracarboxylic acids, for example, a part of 1,2,4,5-benzenetetracarboxylic acid may be used.
  • a tetravalent residue the remainder being a tetravalent residue of 3,3 ′, 4,4′-biphenyltetracarboxylic acid; a part is a tetravalent residue of 1,2,4,5-benzenetetracarboxylic acid And the remainder is a tetravalent residue of bis (3,4-carboxyphenyl) ethers; a part is a tetravalent residue of 3,3 ′, 4,4′-biphenyltetracarboxylic acids, and the remainder is bis ( And compounds that are tetravalent residues of 3,4-carboxyphenyl) ethers.
  • the aliphatic or aromatic organic group represented by R 2 and R 3 in the general formula (1) is an amic acid produced by heating with a diamine during preparation of an imide resin composition or molding of a composite material.
  • it is preferably an organic group having 1 to 12 carbon atoms, and 1 to 9 carbon atoms.
  • the organic group is more preferably an organic group having 1 to 6 carbon atoms.
  • 1,2,4,5-benzenetetracarboxylic acid diester or 3,3 ′, 4,4′-biphenyltetracarboxylic acid diester May be used alone or in combination, and a part of each may be substituted with a diester of bis (3,4-carboxyphenyl) ether, but as long as the effects of the present invention are exhibited, 1 , 2,4,5-Benzenetetracarboxylic acid diester, 3,3 ', 4,4'-biphenyltetracarboxylic acid diester, or part of diester of bis (3,4-carboxyphenyl) ether
  • the aromatic tetracarboxylic acids may be substituted.
  • aromatic tetracarboxylic acids examples include 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 2,3,3 ′, 4′-biphenyltetracarboxylic acid Anhydride (a-BPDA), 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride (i-BPDA), 2,2-bis (3,4-dicarboxyphenyl) methane dianhydride, Examples thereof include bis (3,4-carboxyphenyl) ether dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride and the like.
  • Other aromatic tetracarboxylic acids can be used alone or in combination of two or more.
  • aromatic tetracarboxylic acid diesters represented by the formula (1) include 1,2,4,5-benzenetetracarboxylic acid dimethyl ester, 1,2,4,5-benzenetetracarboxylic acid diethyl ester, 1 2,4,5-benzenetetracarboxylic acid dipropyl ester, 1,2,4,5-benzenetetracarboxylic acid diisopropyl ester, 1,2,4,5-benzenetetracarboxylic acid dibutyl ester, etc.
  • An isomer of a diester group is also included, but there is no particular limitation. Also, the two ester groups do not necessarily have to be the same.
  • 1,2,4,5-benzenetetracarboxylic acid dimethyl ester and 1,2,4,5-benzenetetracarboxylic acid diethyl ester are used from the viewpoint that the resin after thermosetting can exhibit a high glass transition temperature. preferable.
  • ((B) component) As a constituent of the varnish of the present invention, 2-phenyl-4,4′-diaminodiphenyl ether is used. Thereby, the terminal-modified imide oligomer represented by the general formula (3) has a skeleton derived from 2-phenyl-4,4′-diaminodiphenyl ether in the molecule. In the present invention, a part of 2-phenyl-4,4′-diaminodiphenyl ethers may be replaced with other aromatic diamines.
  • aromatic diamines examples include 1,4-diaminobenzene, 1,3-diaminobenzene, 1,2-diaminobenzene, 2,6-diethyl-1,3-diaminobenzene, and 4,6-diethyl.
  • 9,9-bis (4-aminophenyl) fluorene 9,9-bis (4- (4-aminophenoxy) phenyl) fluorene, or 1,3-diaminobenzene is preferable as the aromatic diamine compound.
  • it is desirable to copolymerize the aromatic diamine compound and it is 0-50 mol%, preferably 0-25 mol%, based on the total amount of diamine. More preferably, it is desirably used at 0-10 mol%.
  • 9,9-bis (4-aminophenyl) fluorene is particularly preferable as the diamine for copolymerization.
  • the imide oligomer obtained by heating expresses the outstanding shaping
  • cured material after thermosetting expresses high heat resistance and the outstanding mechanical characteristic, and there exists an outstanding effect.
  • the present invention can be used even if it is not necessarily copolymerization.
  • ((C) component) As a constituent component of the varnish of the present invention, 4- (2-phenylethynyl) phthalic acid monoester represented by the general formula (2) is used.
  • the 4- (2-phenylethynyl) phthalic acid monoester represented by the general formula (2) reacts with the components (A) and (B) to give an imide resin represented by the following general formula (3). It is a component that forms part of the skeleton of the composition.
  • the aliphatic or aromatic organic group represented by R 4 or R 5 in the general formula (2) is an amic acid produced by heating with a diamine during the production of an imide resin composition or molding of a composite material. From the viewpoint of desirably having a low boiling point because the alcohol component generated by elimination as a result of the formation reaction is quickly volatilized and removed, it is preferably an organic group having 1 to 12 carbon atoms, and 1 to 9 carbon atoms. The organic group is more preferably an organic group having 1 to 6 carbon atoms.
  • Examples of 4- (2-phenylethynyl) phthalic acid monoester represented by the general formula (2) include 4- (2-phenylethynyl) phthalic acid monoethyl ester and 4- (2-phenylethynyl) phthalic acid monomethyl ester.
  • the organic solvent used for the preparation of the varnish has a boiling point of 150 ° C. or less at 1 atm and a boiling point of 100 ° C. or less in order to quickly volatilize and remove during the synthesis of the imide oligomer by heating. Is preferred.
  • organic solvent examples include methanol (boiling point: about 65 ° C.), ethanol (boiling point: about 78 ° C.), 2-propanol (boiling point: about 82 ° C.), 1-propanol (boiling point: about 97 ° C.), acetone ( Boiling point: about 56 ° C), tetrahydrofuran (boiling point: about 66 ° C), 1,4-dioxane (boiling point: about 101 ° C), methyl ethyl ketone (boiling point: about 79 ° C), and the like. These organic solvents may be used alone, or two or more kinds of the organic solvents may be mixed and used.
  • the varnish is represented by the general formula (1) constituting the varnish.
  • the content of the aromatic tetracarboxylic acid diester is 1 to 500 parts by weight, preferably 20 to 280 parts by weight, and more preferably 40 to 200 parts by weight with respect to 100 parts by weight of the organic solvent.
  • the content of 2-phenyl-4,4′-diaminodiphenyl ether is 1 to 450 parts by weight with respect to 100 parts by weight of the organic solvent, and 40 to 400 parts by weight.
  • the amount is preferably 40 to 280 parts by weight.
  • the content of 4- (2-phenylethynyl) phthalic acid monoester represented by the general formula (2) is 1 with respect to 100 parts by weight of the organic solvent.
  • the dissolved state refers to a state in which the respective components are dissolved almost uniformly to the extent that they cannot be visually confirmed in the organic solvent, and each component is present without reacting. In addition, about the state where each exists, it can confirm by the method as described in Example 1 mentioned later.
  • the varnish of the present invention includes an aromatic tetracarboxylic acid diester represented by the general formula (1), an aromatic diamine containing 2-phenyl-4,4′-diaminodiphenyl ether, and the general formula (2). While adjusting the 4- (2-phenylethynyl) phthalic acid monoester represented within the above-mentioned range of parts by weight, the total amount of the ester groups and the total amount of the primary amino groups are approximately equal to each other. It is obtained by mixing in a solvent.
  • Aromatic tetracarboxylic acid diesters represented by general formula (1), aromatic diamines containing 2-phenyl-4,4′-diaminodiphenyl ether, and 4- (2-
  • the total amount of phenylethynyl) phthalic acid monoester is preferably uniformly dissolved at a solid content concentration of 50% by weight or more at room temperature.
  • the varnish of the present invention includes, for example, one or more aromatic tetracarboxylic acid diester compounds described above and the total molar amount of ester groups of 4- (2-phenylethynyl) phthalic acid monoester, Each component is used in an organic solvent, preferably 60 ° C. or less, particularly preferably, by using the total molar amount of amino groups of the aromatic diamines including phenyl-4,4′-diaminodiphenyl ether. It is obtained by stirring at a temperature of 40 ° C. or lower and dissolving it uniformly.
  • the varnish of the present invention can also be obtained by a series of steps including a step of diesterification using an aromatic tetracarboxylic acid anhydride as a starting material and an alcohol as a reaction solution.
  • a step of diesterification using an aromatic tetracarboxylic acid anhydride as a starting material and an alcohol as a reaction solution For example, the above-mentioned one or more aromatic tetracarboxylic anhydrides and 4- (2-phenylethynyl) phthalic anhydride are heated to reflux in an alcohol solvent at a temperature of 100 ° C. or lower, particularly 80 ° C. or lower.
  • the solvent is removed if necessary, and the aromatic tetracarboxylic acid diester represented by the general formula (1)
  • aromatic diamines containing 2-phenyl-4,4′-diaminodiphenyl ether are used so that the total molar amount of all ester groups and the total molar amount of amino groups are approximately equal.
  • Each component is preferably stirred in an organic solvent at a temperature of 60 ° C. or less, particularly preferably 40 ° C. or less, and uniformly dissolved.
  • the varnish produced as described above may be concentrated by volatilizing a part of the used organic solvent if the solid content concentration needs to be adjusted, or may be diluted by newly adding the organic solvent. May be. Moreover, you may isolate as a raw material composition of the solid varnish in which the structural component was mixed uniformly by volatilizing the used organic solvent completely. The isolated raw material composition may be dissolved in an organic solvent when necessary to prepare a varnish again. These varnishes or solid raw material compositions do not cause the formation reaction of terminal-modified amic acid oligomers (also referred to as amic acid oligomers) having “amide-acid bonds” when stored at or below room temperature. Can be stored stably for a long time.
  • the solution viscosity of the varnish of the present invention is not particularly limited as long as the effects of the present invention are exhibited, but it is preferably 5000 poise or more at 25 ° C., more preferably 8000 poise or more, and still more preferably. More than 10,000 poise.
  • the measurement of a solution viscosity is based on the method as described in the below-mentioned Example.
  • a terminal-modified amic acid oligomer is produced by reacting the components (A), (B) and (C), and then dehydrating the amic acid oligomer.
  • -An imide resin composition containing a terminal-modified imide oligomer represented by the general formula (3) having a 4- (2-phenylethynyl) phthalic acid residue at the terminal after cyclization is obtained.
  • Examples of the method for dehydrating and cyclizing the amic acid oligomer include a method of adding an imidizing agent at a temperature of about 0 to 140 ° C. and a method of heating to a temperature of 140 to 275 ° C.
  • the obtained terminal-modified imide oligomer it is desirable that the thermoreactive substituents at both ends do not cause a high molecular weight reaction.
  • the obtained imide resin composition may be in the form of a varnish dissolved in an organic solvent, may be in a semi-dried paste state, or may be in a completely dried solid state. By making it into a shape, it can be made excellent in high-temperature melt fluidity and moldability.
  • R 6 and R 7 are a hydrogen atom or a phenyl group, and one of them represents a phenyl group.
  • R 8 and R 9 are the same or different and represent a residue of a divalent aromatic diamine
  • R 10 and R 11 are the same or different and represent tetravalent aromatic tetracarboxylic acid residues, where m and n are m ⁇ 1, n ⁇ 0, 1 ⁇ m + n ⁇ 10 and 0.05 ⁇ m / (m + n )
  • the relationship of ⁇ 1 is satisfied, and the arrangement of repeating units may be either block or random.
  • the aromatic diamine residue represented by R 8 and R 9 in the general formula (3) refers to a divalent aromatic organic group in which two amino groups in the aromatic diamine are removed.
  • the aromatic tetracarboxylic acid residue refers to a tetravalent aromatic organic group from which four carboxyl groups in the aromatic tetracarboxylic acid are removed.
  • the aromatic organic group is an organic group having an aromatic ring.
  • the aromatic organic group is preferably an organic group having 4 to 40 carbon atoms, more preferably an organic group having 4 to 30 carbon atoms, and further preferably an organic group having 4 to 20 carbon atoms. .
  • aromatic tetracarboxylic acid constituting the tetravalent aromatic tetracarboxylic acid residue represented by R 10 and R 11 in the general formula (3) 1,2,4,5-benzene tetracarboxylic acid 3,3 ′, 4,4′-biphenyltetracarboxylic acids or bis (3,4-carboxyphenyl) ethers are preferred, among which 1,2,4,5-benzenetetracarboxylic dianhydride, 3, More preferred is 3 ′, 4,4′-biphenyltetracarboxylic dianhydride.
  • the terminal-modified imide oligomer includes a part of 1, 2, 4, 5-benzene among m R 10 and n R 11 in the general formula (3).
  • m + n is less than 1, the toughness of the cured resin may be remarkably reduced, and if m + n exceeds 10, excellent melt fluidity may not be exhibited in a high temperature state.
  • m / (m + n) is preferably 0.1 or more and 1 or less.
  • the tetravalent aromatic tetracarboxylic acid residue represented by R 10 and R 11 is 1,2,4,5-benzenetetracarboxylic acid 4 It is preferable that the terminal-modified imide oligomer is a compound represented by the following general formula (5).
  • R 6 and R 7 are a hydrogen atom or a phenyl group, and one of them represents a phenyl group.
  • R 8 and R 9 are the same or different and are residues of divalent aromatic diamines.
  • M and n satisfy the relationship of m ⁇ 1, n ⁇ 0, 1 ⁇ m + n ⁇ 10 and 0.05 ⁇ m / (m + n) ⁇ 1, and the arrangement of repeating units is either block or random It may be.
  • the tetravalent aromatic tetracarboxylic acid residue represented by R 10 and R 11 in the general formula (3) is 3,3 ′, 4,4′-biphenyltetracarboxylic acid. It is a tetravalent residue of acids, and the terminal-modified imide oligomer is preferably a compound represented by the following general formula (6).
  • R 6 and R 7 are a hydrogen atom or a phenyl group, and one of them represents a phenyl group.
  • R 8 and R 9 are the same or different and are residues of divalent aromatic diamines.
  • M and n satisfy the relationship of m ⁇ 1, n ⁇ 0, 1 ⁇ m + n ⁇ 10 and 0.05 ⁇ m / (m + n) ⁇ 1, and the arrangement of repeating units is either block or random It may be.
  • the terminal-modified imide oligomer is produced by reacting the varnish with stirring at a reaction temperature of 30 to 150 ° C. for about 1 to 180 minutes to produce the terminal-modified amidic acid oligomer. Thereafter, the reaction solution is further stirred at 140 to 275 ° C. for 5 minutes to 24 hours to form the terminal-modified imide oligomer, and the organic solvent in the reaction solution is removed.
  • the terminal-modified imide oligomer is crystallized by cooling to a solid, and solid-liquid separation is performed by filtration or the like, whereby a solid imide resin composition can be obtained.
  • the minimum melt viscosity of the solid imide resin composition is such that the remaining imide oligomer melts when the organic solvent in the prepreg is removed from the system under high temperature conditions in the molding process of the fiber reinforced composite material. Is preferably 10,000 Pa ⁇ sec or less, more preferably 5000 Pa ⁇ sec or less, and still more preferably 3000 Pa ⁇ sec or less. The minimum melt viscosity is measured by the method described later.
  • the terminal-modified imide oligomer constituting the imide resin composition of the present invention has almost no risk of hydrolysis, it can be stored as a single resin stably for a long period of time without causing a decrease in viscosity or the like as compared with an amic acid oligomer.
  • the terminal-modified imide oligomer may have a different molecular weight or a mixture with thermoplastic polyimide.
  • the thermoplastic polyimide is a polyimide that becomes soft by heating, and may be a commercially available product. There is no particular limitation on the type of the thermoplastic polyimide.
  • a molded body of the imide resin composition having a high molecular weight can be obtained by further heating the solid imide resin composition in a molten state.
  • the molded body can be produced, for example, by a method in which the solid imide resin composition is melted at a temperature of 200 to 280 ° C. and heat-cured at 280 to 500 ° C. for about 10 minutes to 40 hours. Further, the molded body may be produced in one step by a method in which the varnish applied to the support is heated at 280 to 500 ° C. for about 10 minutes to 40 hours.
  • the Tg of the molded body is preferably 300 ° C. or higher, more preferably 330 ° C. or higher, and more preferably 350 ° C. or higher, for example, when applied as a high temperature member around an aircraft engine. preferable.
  • the high molecular weight of the imide resin composition may be confirmed by the method described in Examples below. Moreover, there is no limitation in particular as a grade of high molecular weight.
  • the molded body may be formed into a desired shape by a known method, and examples thereof include a film, a sheet, a three-dimensionally molded state such as a rectangular parallelepiped shape and a rod shape, but are not particularly limited.
  • a film a sheet
  • a three-dimensionally molded state such as a rectangular parallelepiped shape and a rod shape
  • the impact energy is absorbed and the damage is reduced when subjected to an external impact. Therefore, it is preferably 10% or more, more preferably 15% or more, and further preferably 20% or more.
  • Tg and the tensile elongation at break are measured by the methods described in the examples below.
  • the molded article of the imide resin composition is preferably colored and transparent from the viewpoint of the uniformity of the curing reaction and the completion of the reaction.
  • the prepreg of the present invention is obtained by impregnating fibers with the varnish.
  • the prepreg of the present invention can be obtained, for example, as follows. For example, a varnish in which the total content of the raw material compositions (A), (B), and (C) was uniformly dissolved at a high concentration of 50% by weight or more was prepared, and if necessary, concentrated or diluted as appropriate. Later, a wet prepreg can be obtained by impregnating fibers or fiber fabrics that are aligned in one direction in a plane. The wet prepreg may be dried by a known method to form a dry prepreg.
  • the prepreg of the present invention includes a wet prepreg and a dry prepreg.
  • the fiber reinforced composite material is expressed by the general formula (3) attached to the fiber so that the fiber reinforced composite material exhibits excellent mechanical strength due to the balance between the cured resin and the fiber in the fiber reinforced composite material produced using the prepreg.
  • the amount of the terminal-modified imide oligomer is preferably 10 to 60% by weight, more preferably 20 to 50% by weight, and further preferably 30 to 50% by weight based on the weight of the entire prepreg.
  • the amount of organic solvent adhering to the fiber makes it easy to handle when prepregs are laminated, and the fiber reinforced composite material that expresses excellent mechanical strength by preventing resin outflow during the molding process of the composite material at high temperature.
  • it is preferably 1 to 30% by weight, more preferably 5 to 25% by weight, and still more preferably 5 to 20% by weight based on the total weight of the prepreg.
  • the fibers used in the present invention include inorganic fibers such as carbon fibers, glass fibers, metal fibers, and ceramic fibers, and organic synthetic fibers such as polyamide fibers, polyester fibers, polyolefin fibers, and novoloid fibers. These fibers can be used alone or in combination of two or more.
  • carbon fiber is desirable in order to exhibit excellent mechanical properties.
  • the carbon fiber is not particularly limited as long as it is a material having a carbon content in the range of 85 to 100% by weight and having a continuous fiber shape having at least a part of a graphite structure.
  • PAN polyacrylonitrile
  • rayon system rayon system
  • lignin system pitch system and the like.
  • PAN-based and pitch-based carbon fibers are preferable because they are versatile and inexpensive and have high strength.
  • the carbon fiber has been subjected to a sizing treatment, but it may be used as it is, and can be removed with an organic solvent or the like as required. Further, it is preferable that the fiber bundle is opened beforehand using air or a roller, and the carbon fiber single yarn is impregnated with a resin or a resin solution.
  • the imide prepreg of the present invention is obtained by further heating the prepreg.
  • the imide prepreg of the present invention can be obtained, for example, as follows.
  • the solution of the wet prepreg or dry prepreg organic solvent is heated at 140 to 275 ° C. for 5 minutes to 24 hours to completely remove part or all of the organic solvent, so that the end-modified imide oligomer adheres to the fiber.
  • the obtained imide wet prepreg or imide dry prepreg can be obtained.
  • the amount of the terminal-modified imide oligomer adhering to the fibers in the imide wet prepreg is preferably 5 to 50% by weight, more preferably 20 to 50% by weight, and further preferably 30 to 50% by weight based on the total weight of the prepreg. Further, the amount of the organic solvent adhering to the fiber is preferably 1 to 30% by weight, more preferably 5 to 25% by weight, and further preferably 5 to 20% by weight with respect to the total weight of the prepreg.
  • the terminal-modified imide oligomer adhering to the fibers in the imide dry prepreg is preferably 20 to 80% by weight, more preferably 20 to 60% by weight, and further preferably 30 to 50% by weight based on the total weight of the prepreg.
  • the fiber used for the imide prepreg of the present invention may be the same as the fiber used for the prepreg.
  • the form of the fiber material constituting the imide prepreg is a continuous fiber-shaped structure formed by UD (one direction), weaving (plain weaving, satin weaving, etc.), knitting, etc., and is not particularly limited. What is necessary is just to select suitably according to the objective, and these can be used individually or in combination.
  • the fiber-reinforced composite material of the present invention can be obtained, for example, as follows. A predetermined number of the prepregs are stacked and heat-cured at a temperature of 80 to 500 ° C. and a pressure of 1 to 1000 kg / cm 2 for about 10 minutes to 40 hours using an autoclave or a hot press to obtain a fiber-reinforced composite material. Can do.
  • the imide wet prepreg or the imide dry prepreg may be laminated and heat-cured in the same manner as described above to obtain a fiber-reinforced composite material.
  • the fiber reinforced composite material of the present invention obtained as described above preferably has a glass transition temperature (Tg) of 300 ° C. or higher. This measurement is based on the method described later.
  • a fiber reinforced composite material structure may be obtained by inserting a molded body of imide resin composition or an imide prepreg between a fiber reinforced composite material and a dissimilar material, and heating and integrating them.
  • the dissimilar material is not particularly limited, and any material commonly used in this field can be used. Examples thereof include a metal material such as a honeycomb shape and a core material such as a sponge shape.
  • ⁇ Test method> (1) Proton Nuclear Magnetic Resonance Spectroscopy ( 1 H-NMR) Measurement Test Measurement was performed at 30 ° C. using a nuclear magnetic resonance spectrometer (model: AV-400M, manufactured by Bruker). Deuterated dimethyl sulfoxide (DMSO-d 6 ) or deuterated methanol (MeOH-d 4 ) was used as a deuterated solvent for the measurement. The standard of the chemical shift value was set to 0 ppm for the proton signal of the methyl group of the trimethylsilane compound contained in the deuterated solvent.
  • DMSO-d 6 Deuterated dimethyl sulfoxide
  • MeOH-d 4 deuterated methanol
  • Tg glass transition temperature
  • the fiber reinforced composite material uses a dynamic viscoelasticity measuring device (DMA, model: DMA-Q-800, manufactured by TA Instruments), cantilever system, 0.1% strain, 1 Hz frequency, The measurement was performed at a rate of temperature increase of 3 ° C./min under a nitrogen stream. The intersection of two tangents before and after the storage elastic modulus curve was reduced was taken as the glass transition temperature.
  • DMA dynamic viscoelasticity measuring device
  • thermogravimetric analyzer model: SDT-2960, manufactured by TA Instruments
  • R 4 and R 5 each represents a hydrogen atom or an ethyl group, and any one of them represents an ethyl group.
  • Example 1 In a 100 mL sample bottle, (B) 2.446 g (16.1 mmol) of 2-phenyl-4,4′-diaminodiphenyl ether and 6.8 g (212.2 mmol) of methanol were added and completely dissolved. (A) 1.000 g (12.9 mmol) of (A) 1,2,4,5-benzenetetracarboxylic acid diethyl ester prepared in Example 2 and (C) 4- (2-phenylethynyl) phthalic acid prepared in Production Example 4 1.913 g (6.5 mmol) of monoethyl ester was added, the inside of the container was placed in a nitrogen atmosphere, sealed, and stirring was started in a suspended state at room temperature.
  • This varnish is transferred to a glass petri dish, heated in a circulating air oven at an internal temperature of 60 ° C for 3 hours, and further heated at 200 ° C for 1 hour to produce an amic acid bond while removing methanol.
  • Reaction and imide bond formation reaction were performed to obtain a terminal-modified imide oligomer.
  • the Tg of the powdery terminal-modified imide oligomer before curing was 210 ° C. from the DSC measurement result, and the minimum melt viscosity was 62 Pa ⁇ sec (340 ° C.).
  • a part of this powdery terminal-modified imide oligomer is inserted between two sheets of polyimide film (trade name: UPILEX-75S, thickness: 75 ⁇ m, size: 15 cm square, manufactured by Ube Industries, Ltd.) having excellent surface smoothness. Then, the film was pressurized at 370 ° C. for 1 hour, and peeled after cooling to obtain a reddish brown transparent film-like cured product (thickness 96 ⁇ m).
  • the varnish obtained above was vacuum-dried under room temperature conditions to obtain a powder of a terminal-modified polyimide resin raw material composition.
  • This powder was quickly dissolved in MeOH-d 4 and subjected to 1 H-NMR measurement.
  • the obtained signal was 1,2,4,5-benzene used in this example as shown in FIG.
  • the proton signals corresponding to tetracarboxylic acid dimethyl ester, 2-phenyl-4,4′-diaminodiphenyl ether and 4- (2-phenylethynyl) phthalic acid monomethyl ester were observed at different positions.
  • this powder was dissolved in DMSO-d 6 and subjected to 1 H-NMR measurement. As a result, as shown in FIG.
  • the polymerization reaction was carried out for 2.5 hours, 1.5 hours at 60 ° C., and 1 hour at room temperature to produce an amic acid oligomer.
  • 0.9929 g (4 mmol) of 4- (2-phenylethynyl) phthalic anhydride was added, reacted at room temperature for 12 hours under a nitrogen stream, and terminal-modified, followed by stirring at 195 ° C. for 5 hours for imide bonding. It was.
  • the Tg of the powdery terminal-modified imide oligomer before curing was 213 ° C. from the DSC measurement result, and the minimum melt viscosity was 150 Pa ⁇ sec (343 ° C.).
  • a part of this powdery terminal-modified imide oligomer is inserted between two sheets of polyimide film (trade name: UPILEX-75S, thickness: 75 ⁇ m, size: 15 cm square, manufactured by Ube Industries, Ltd.) having excellent surface smoothness. Then, it was pressurized at 370 ° C. for 1 hour, and peeled after cooling to obtain a reddish brown transparent film-like cured product (thickness: 100 ⁇ m).
  • the Tg of the powdery terminal-modified imide oligomer before curing was 217 ° C. from the DSC measurement result, and the minimum melt viscosity was 216 Pa ⁇ sec (340 ° C.).
  • a part of this powdery terminal-modified imide oligomer is inserted between two sheets of polyimide film (trade name: UPILEX-75S, thickness: 75 ⁇ m, size: 15 cm square, manufactured by Ube Industries, Ltd.) having excellent surface smoothness. Then, the film was pressurized at 370 ° C. for 1 hour, and peeled after cooling to obtain a reddish brown transparent film-like cured product (thickness: 86 ⁇ m).
  • Example 2 In a 100 mL sample bottle, (B) 4.008 g (14.5 mmol) of 2-phenyl-4,4′-diaminodiphenyl ether and 0.562 g of 9,9-bis (4- (4-aminophenoxy) phenyl) fluorene (1.62 mmol) and 7.0 g (218.4 mmol) of methanol were added and completely dissolved, and then (A) 1,2,4,5-benzenetetracarboxylic acid diethyl ester prepared in Production Example 2 was used.
  • This varnish is transferred to a glass petri dish, heated in a circulating air oven at an internal temperature of 60 ° C for 3 hours, and further heated at 200 ° C for 1 hour to produce an amic acid bond while removing methanol. Reaction and imide bond formation reaction were performed to obtain a terminal-modified imide oligomer.
  • the Tg of the powdery terminal-modified imide oligomer before curing was 221 ° C. and the minimum melt viscosity was 94 Pa ⁇ sec (345 ° C.) from the DSC measurement result.
  • a part of this powdery terminal-modified imide oligomer is inserted between two sheets of polyimide film (trade name: UPILEX-75S, thickness: 75 ⁇ m, size: 15 cm square, manufactured by Ube Industries, Ltd.) having excellent surface smoothness. Then, it was pressurized at 370 ° C. for 1 hour, and peeled after cooling to obtain a reddish brown transparent film-like cured product (thickness 80 ⁇ m).
  • the mechanical properties of the cured product in the form of a film were as follows: the elastic modulus was 3.2 GPa, the breaking strength was 137 MPa, and the breaking elongation was 20%.
  • the varnish obtained above was vacuum-dried under room temperature conditions to obtain a powder of a terminal-modified polyimide resin raw material composition. This powder was quickly dissolved in MeOH-d 4 and, as in Example 1, was subjected to 1 H-NMR measurement. As a result, the terminal-modified polyimide resin raw material composition in the varnish of the methanol solution prepared in this example was used. It was found that all the components constituting the compound were dissolved by forming an ionic complex (salt).
  • Example 3 In a 100 mL sample bottle, (B) 3.664 g (13.2 mmol) of 2-phenyl-4,4′-diaminodiphenyl ether and 0.514 g of 9,9-bis (4- (4-aminophenoxy) phenyl) fluorene (1.48 mmol) and 6.0 g (185.2 mmol) of methanol were added and completely dissolved, and then (A) 1,2,4,5-benzenetetracarboxylic acid diethyl ester prepared in Production Example 2 was used.
  • This varnish is transferred to a glass petri dish, heated in a circulating air oven at an internal temperature of 60 ° C for 3 hours, and further heated at 200 ° C for 1 hour to produce an amic acid bond while removing methanol. Reaction and imide bond formation reaction were performed to obtain a terminal-modified imide oligomer.
  • the Tg of the powdery terminal-modified imide oligomer before curing was 247 ° C. from the DSC measurement result, and the minimum melt viscosity was 2036 Pa ⁇ sec (366 ° C.).
  • a part of this powdery terminal-modified imide oligomer is inserted between two sheets of polyimide film (trade name: UPILEX-75S, thickness: 75 ⁇ m, size: 15 cm square, manufactured by Ube Industries, Ltd.) having excellent surface smoothness. Then, it was pressurized at 370 ° C. for 1 hour, and peeled after cooling to obtain a reddish brown transparent film-like cured product (thickness 90 ⁇ m).
  • the mechanical properties of this film-shaped cured product by a tensile test were an elastic modulus of 3.1 GPa, a breaking strength of 142 MPa, and a breaking elongation of 24%.
  • the varnish obtained above was vacuum-dried under room temperature conditions to obtain a powder of a terminal-modified polyimide resin raw material composition. This powder was quickly dissolved in MeOH-d 4 and, as in Example 1, was subjected to 1 H-NMR measurement.
  • the terminal-modified polyimide resin raw material composition in the varnish of the methanol solution prepared in this example was used. It was found that all the components constituting the compound were dissolved by forming an ionic complex (salt).
  • Example 4 In a 100 mL sample bottle, 4.541 g (14.00 mmol) of 1,2,4,5-benzenetetracarboxylic acid diisopropyl ester prepared in Preparation Example 3 and 4- (2-phenylethynyl) prepared in Preparation Example 4 Add 1.177 g (4.00 mmol) of phthalic acid monoethyl ester and 3.4 g (73.8 mmol) of ethanol, put the container in a nitrogen atmosphere, seal it, and stir it in a suspended state at about 70 ° C. Continued.
  • This varnish is transferred to a glass petri dish, heated in a circulating air oven at an internal temperature of 60 ° C for 3 hours, and further heated at 250 ° C for 1 hour to produce an amic acid bond while removing ethanol.
  • Reaction and imide bond formation reaction were performed to obtain a terminal-modified imide oligomer.
  • the Tg of the powdery terminal-modified imide oligomer before curing was 245 ° C. from the DSC measurement result, and the minimum melt viscosity was 400 Pa ⁇ s (340 ° C.).
  • a part of this powdery terminal-modified imide oligomer is inserted between two sheets of polyimide film (trade name: UPILEX-75S, thickness: 75 ⁇ m, size: 15 cm square, manufactured by Ube Industries, Ltd.) having excellent surface smoothness. Then, the film was pressurized at 370 ° C. for 1 hour, and peeled after cooling to obtain a reddish brown transparent film-like cured product (thickness 96 ⁇ m).
  • Example 5 In the same manner as described above, 366.44 g of 1,2,4,5-tetracarboxylic dianhydride was added to a 4-neck 2000 mL flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a reflux tube ( 1.68 mol) was added, 89 g (1.93 mol) of ethanol and 89 g (1.48 mol) of 2-propanol were added, and stirring was started while heating and refluxing at 105 ° C. in a suspended state under a nitrogen stream. After the start of stirring, it was confirmed that 1,2,4,5-tetracarboxylic dianhydride was gradually dissolved in the solvent, and all were uniformly dissolved in about 180 minutes from the start of stirring.
  • This varnish is transferred to a glass petri dish, heated in a circulating air oven at an internal temperature of 60 ° C for 3 hours, and further heated at 250 ° C for 1 hour to produce an amic acid bond while removing ethanol.
  • Reaction and imide bond formation reaction were performed to obtain a terminal-modified imide oligomer.
  • Tg of the powdery terminal-modified imide oligomer before curing was 245 ° C. from the DSC measurement result, and the minimum melt viscosity was 410 Pa ⁇ s (340 ° C.).
  • a part of this powdery terminal-modified imide oligomer is inserted between two sheets of polyimide film (trade name: UPILEX-75S, thickness: 75 ⁇ m, size: 15 cm square, manufactured by Ube Industries, Ltd.) having excellent surface smoothness. Then, the film was pressurized at 370 ° C. for 1 hour, and peeled after cooling to obtain a reddish brown transparent film-like cured product (thickness: 86 ⁇ m).
  • Example 6 In a 100 mL sample bottle, (B) 2.446 g (16.1 mmol) of 2-phenyl-4,4′-diaminodiphenyl ether and 6.8 g (117.1 mmol) of acetone were added and completely dissolved. (A) 1.000 g (12.9 mmol) of (A) 1,2,4,5-benzenetetracarboxylic acid diethyl ester prepared in Example 2 and (C) 4- (2-phenylethynyl) phthalic acid prepared in Production Example 4 1.913 g (6.5 mmol) of monoethyl ester was added, the inside of the container was placed in a nitrogen atmosphere, sealed, and stirring was started in a suspended state at room temperature.
  • This varnish is transferred to a glass petri dish, heated in a circulating air oven at an internal temperature of 60 ° C. for 3 hours, and further heated at 200 ° C. for 1 hour to produce an amic acid bond while removing acetone. Reaction and imide bond formation reaction were performed to obtain a terminal-modified imide oligomer.
  • the Tg of the powdery terminal-modified imide oligomer before curing was 210 ° C. from the DSC measurement result, and the minimum melt viscosity was 80 Pa ⁇ sec (340 ° C.).
  • a part of this powdery terminal-modified imide oligomer is inserted between two sheets of polyimide film (trade name: UPILEX-75S, thickness: 75 ⁇ m, size: 15 cm square, manufactured by Ube Industries, Ltd.) having excellent surface smoothness. Then, it was pressurized at 370 ° C. for 1 hour, and peeled after cooling to obtain a reddish brown transparent film-like cured product (thickness 90 ⁇ m).
  • Example 7 In a 100 mL sample bottle, 4.541 g (14.00 mmol) of 1,2,4,5-benzenetetracarboxylic acid diisopropyl ester prepared in Preparation Example 3 and 4- (2-phenylethynyl) prepared in Preparation Example 4 1.177 g (4.00 mmol) of phthalic acid monoethyl ester and 3.4 g (38.6 mmol) of 1,4-dioxane were added, and the inside of the container was sealed with nitrogen and suspended at about 70 ° C. Stirring was continued in the state.
  • This varnish was transferred to a glass petri dish, heated in a circulating air oven at an internal temperature of 100 ° C. for 3 hours, and further heated at 250 ° C. for 1 hour, while removing 1,4-dioxane.
  • An amic acid bond formation reaction and an imide bond formation reaction were performed to obtain a terminal-modified imide oligomer.
  • the Tg of the powdery terminal-modified imide oligomer before curing was 244 ° C. from the DSC measurement result, and the minimum melt viscosity was 380 Pa ⁇ s (340 ° C.).
  • a part of this powdery terminal-modified imide oligomer is inserted between two sheets of polyimide film (trade name: UPILEX-75S, thickness: 75 ⁇ m, size: 15 cm square, manufactured by Ube Industries, Ltd.) having excellent surface smoothness. Then, the film was pressurized at 370 ° C. for 1 hour, and peeled after cooling to obtain a reddish brown transparent film-like cured product (thickness 96 ⁇ m).
  • the Tg of the powdery terminal-modified imide oligomer before curing was 213 ° C. from the DSC measurement result, and the minimum melt viscosity was 9036 Pa ⁇ sec (346 ° C.).
  • a part of this powdery terminal-modified imide oligomer is inserted between two sheets of polyimide film (trade name: UPILEX-75S, thickness: 75 ⁇ m, size: 15 cm square, manufactured by Ube Industries, Ltd.) having excellent surface smoothness. Then, it was pressurized at 370 ° C. for 1 hour, and peeled after cooling to obtain a reddish brown transparent film-like cured product (thickness: 100 ⁇ m).
  • the varnishes obtained in Examples 1 to 7 were all excellent in solubility in organic solvents such as methanol when vacuum-dried.
  • the varnishes obtained in Examples 1 to 7 were stored in a freezer at ⁇ 5 ° C., removed after several months, thawed to room temperature, and the solution state was confirmed. As a result, precipitation or gelation was observed. I could't.
  • the varnish produced by this invention has the outstanding long-term storage stability.
  • the solid imide resin compositions obtained by heating the varnishes obtained in Examples 1 to 7 all had a minimum melt viscosity exceeding 300 ° C. and had excellent high temperature melt flowability.
  • thermal decomposition hardly occurs even at a high temperature exceeding 500 ° C., it can be seen that it has extremely high heat resistance and, in addition, has high breaking strength and breaking elongation.
  • the varnishes obtained in Examples 1 to 7 use organic solvents having a low boiling point compared to the varnishes obtained in Comparative Examples 1 to 3, the organic solvents can be easily used in a short time. It can be removed outside, and it can be seen that a polyimide powder having excellent thermal properties can be easily obtained without requiring a special purification operation (reprecipitation).
  • this suspension solution contains 1,2,4,5-tetracarboxylic acid diethyl ester as component (A) and 4- (2-phenylethynyl) phthalic acid monoethyl ester as component (C).
  • This suspension solution contains 1,2,4,5-tetracarboxylic acid diethyl ester as component (A) and 4- (2-phenylethynyl) phthalic acid monoethyl ester as component (C).
  • 104.77 g (379.1 mmol) of 2-phenyl-4,4′-diaminodiphenyl ether and 14.68 g (42.42 g) of 9,9-bis (4- (4-aminophenoxy) phenyl) fluorene were added to this suspension solution.
  • Example 8 A plain woven material of “Besfite IM-600 6K” manufactured by Toho Tenax Co., Ltd. having a size of 12.5 cm ⁇ 12.5 cm, which was previously sized by acetone with a part of the varnish produced in Production Example 5 (fiber weight 195 g / m, made of carbon fiber) to prepare 20 wet prepregs to which the terminal-modified polyimide resin raw material composition was adhered.
  • the average content of the terminal-modified polyimide resin raw material composition in the obtained wet prepreg was about 46% by weight, the average solvent content was about 12% by weight, and the average content of carbon fibers was about 42% by weight.
  • Example 9 The alcohol component in the prepreg was removed by heating three wet prepregs to which the terminal-modified polyimide resin raw material composition prepared in Example 8 was attached in a circulating air oven at an internal temperature of 200 ° C. for 1 hour. Then, an amic acid bond formation reaction and an imide bond formation reaction were performed to obtain a dry-imide prepreg of a terminal-modified imide oligomer.
  • the average content of the terminal-modified imide oligomer in the obtained dry imide prepreg was about 47% by weight, and the average content of carbon fibers was about 53% by weight.
  • the appearance of the obtained dry imide prepreg was visually inspected, the resin was uniformly adhered to the surface and inside of the carbon fiber, so that it was an imide prepreg excellent in adhesion between the resin and the prepreg. all right.
  • Example 10 A polyimide film was placed as a release film on a 30 cm ⁇ 30 cm stainless steel plate, and 12 wet prepregs of the end-modified polyimide resin raw material composition produced in Example 8 were laminated thereon. Further, the polyimide film and the stainless steel plate were stacked, heated on a hot press from room temperature to 80 ° C. at a temperature rising rate of about 5 ° C./min, and heated at 80 ° C. for 1 hour. Then, it heated from 80 degreeC to 200 degreeC with the temperature increase rate of about 5 degree-C / min, and heated at 200 degreeC for 1 hour.
  • the obtained fiber reinforced composite material laminate is excellent in heat resistance because the glass transition temperature exceeds 300 ° C., and the interphase shear strength by a short beam shear test by a three-point bending method is about 70 MPa. From the above, it can be seen that the mechanical properties are also excellent. In addition, when the inside of the laminated plate was observed by cross-section observation using an ultrasonic deep flaw inspection or an optical microscope, it was found that the laminate was an extremely high-quality fiber-reinforced composite material because there was no void.
  • This varnish is transferred to a glass petri dish, heated in a circulating air oven at an internal temperature of 60 ° C for 3 hours, and further heated at 200 ° C for 1 hour to produce an amic acid bond while removing methanol.
  • Reaction and imide bond formation reaction were performed to obtain a terminal-modified imide oligomer.
  • the powdery terminal-modified imide oligomer before curing did not melt even when heated to 300 ° C. or higher, and a cured resin film could not be obtained.
  • This varnish is transferred to a glass petri dish, heated in a circulating air oven at an internal temperature of 60 ° C for 3 hours, and further heated at 200 ° C for 1 hour to produce an amic acid bond while removing methanol.
  • Reaction and imide bond formation reaction were performed to obtain a terminal-modified imide oligomer.
  • the powdery terminal-modified imide oligomer before curing did not melt even when heated to 300 ° C. or higher, and a cured resin film could not be obtained.
  • the present invention can provide a varnish excellent in solubility in a low-boiling organic solvent such as alcohol and solution storage stability, and a terminal-modified imide oligomer produced using the varnish exhibits excellent moldability and is heat-cured. Later, a cured product having high heat resistance, toughness and mechanical properties can be obtained.
  • the organic solvent can be completely removed during heat curing, and thus excellent mechanical strength is excellent, and A fiber-reinforced composite material having high heat resistance can be easily obtained. Therefore, it is a material that can be used in a wide range of fields as a material for members that are required to be easily moldable and have high heat resistance, such as aircraft and space industry equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Reinforced Plastic Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

(A)一般式(1)で表される芳香族テトラカルボン酸ジエステル類1~500重量部、(B)2-フェニル-4,4'-ジアミノジフェニルエーテル1~450重量部、(C)一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステル1~100重量部および(D)1気圧での沸点が150℃以下である有機溶剤、または2種類以上の前記有機溶剤の混合物100重量部を含み、(A)、(B)および(C)成分が、溶解した状態で含まれているワニス。 (式(1)中、Rは芳香族テトラカルボン酸ジエステル類残基を表す。また、RおよびRは同一もしくは異なる脂肪族系もしくは芳香族系の有機基を表し、互いにシスもしくはトランスの関係にある位置に存在し、単一もしくはこれら2つの異性体混合物であってもよい。)(式(2)中、RおよびRは、水素原子または脂肪族系もしくは芳香族系の有機基を表し、いずれか1つが脂肪族系または芳香族系の有機基を表す。)

Description

2-フェニル-4,4’-ジアミノジフェニルエーテル類を用いたワニス、および成形性に優れるイミド樹脂組成物および優れた破断伸びを有する硬化樹脂成形体ならびにそれらを用いたプリプレグ、イミドプリプレグおよび耐熱性および機械強度に優れる繊維強化素材
 本発明は、ポリイミド樹脂組成物ならびにそれらを用いたプリプレグおよび繊維強化積層板に関し、特に、航空機や宇宙産業用機器をはじめとして易成形性かつ高耐熱性が求められる広い分野で使用可能な部材の材料に関するものである。
 芳香族ポリイミドは高分子系で最高レベルの耐熱性を有し、機械特性、電気特性などにも優れていることから、航空宇宙、電気電子などの広い分野で素材として用いられている。
 一方、芳香族ポリイミドは一般に加工性に乏しく、特に溶融成形や繊維強化複合材料のマトリックス樹脂として用いることは不向きである。
 そのため、芳香族ポリイミドを繊維強化複合材料用のマトリックス樹脂に適用する際には、低分子量の状態で樹脂を繊維に含浸させた後に、最終的な工程で樹脂を架橋、硬化させる熱付加反応性のポリイミドを用いることが一般的である。従来開発された繊維強化複合材料用のポリイミド樹脂の例としてPMR-15が挙げられる。PMR-15は主鎖がベンゾフェノンテトラカルボン酸ジエステルとジアミノジフェニルメタンの縮合によって構成され、末端封止剤として5-ノルボルネン-2,3-ジカルボン酸無水物モノエステル(通称ナジック酸無水物)が使用された、繰り返し単位が約1-6程度の熱付加反応性イミド樹脂である(非特許文献1、非特許文献2)。
 PMR-15に用いられている両末端のナジック酸は、熱硬化過程において開環付加反応によって架橋が進行し、その架橋反応に伴って揮発成分が生成しないといわれ、さらに熱硬化後には高いガラス転移温度を発現することから、繊維強化複合材料用マトリクス樹脂として使用されてきた。
 このPMR-15を適用したプリプレグの作製は、原料である上記のベンゾフェノンテトラカルボン酸ジエステル、ジアミノジフェニルメタン、および5-ノルボルネン-2,3-ジカルボン酸無水物モノエステルを種々のアルコール中に溶解させた溶液を調製した後に、繊維に含浸させる方法により行われる。また、この作製したプリプレグを積層し、真空条件下で加熱加圧成形することにより、繊維強化複合材料の作製が行われている。
 また、末端封止剤として4-(2-フェニルエチニル)無水フタル酸を使用したイミドオリゴマーは、複合材料の成形性と作製した複合材料の耐熱性、力学特性のバランスが優れているとされ、例えば、特許文献1、特許文献2、特許文献3および非特許文献3、非特許文献4において紹介されている。
 その特許文献1には、硬化物の耐熱性および機械的特性が良好で、屈曲かつ非平面構造を有する2,3,3’,4’-ビフェニルテトラカルボン酸二無水物と、芳香族ジアミン化合物と4-(2-フェニルエチニル)無水フタル酸とを反応させて得られ、対数粘度が0.05~1である末端変性イミドオリゴマーおよびその硬化物が開示されている。そして、その発明の効果として、実用性の高い新規な末端変性イミドオリゴマーを得ることができること、また、耐熱性や弾性率、引張強度および伸び等の靭性および機械的特性が良好な新規な末端変性ポリイミドの硬化物を得ることができると記載されている。
 また、イミドオリゴマーの前駆体であるアミド酸オリゴマーをN-メチル-2-ピロリドン等の有機溶剤に溶解した状態で繊維に含浸させ、一部溶剤を含んだ半乾燥状態のアミド酸ウエットプリプレグを中間体として作製し、該プリプレグを複数積層した後に、真空状態で加熱加圧することにより複合材料の作製が試みられている。
 また、特許文献2には、下記一般式(4)で表される末端変性イミドオリゴマーおよびその硬化物が開示されている。
Figure JPOXMLDOC01-appb-C000004
(式中、R12、R13およびR14は芳香族ジアミン残基を示し、R12は9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレンに由来する2価の芳香族ジアミン残基である。mおよびnは、R14=R12の場合はn≧0、R14=R13の場合はn≧1であり、m≧0、1≦m+n≦20および0≦n/(m+n)≦1の関係を満たす。繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
 その発明の効果として、N-メチル-2-ピロリドン等の有機溶剤に高濃度で溶解することが可能な末端変性イミドオリゴマーを得ることができること、また、耐熱性や弾性率、引張強度および伸び等の靭性および機械的特性が良好な新規な末端変性ポリイミドの硬化物を得ることができると記載されている。
 また、本発明者らは、特許文献3において、これまでに、2-フェニル-4,4’-ジアミノジフェニルエーテルを含む芳香族ジアミン類と1,2,4,5-ベンゼンテトラカルボン酸類とを含む原料化合物から合成され、末端を4-(2-フェニルエチニル)無水フタル酸で変性した芳香族イミドオリゴマーが優れた溶剤溶解性、高温での溶融流動性および成形性を示し、かつ、その加熱硬化物は優れた耐熱性と充分な機械的特性を発現することを見出している。
 さらに、前記末端変性イミドオリゴマーを高濃度で溶解させたイミドオリゴマー溶液を炭素繊維に含浸させ、一部溶剤を含んだ半乾燥状態のイミドウエットプリプレグを中間体として作製し、該プリプレグを複数積層した後に加熱硬化する複合材料の作製が試みられている。該イミドウエットプリプレグを作製するのは、イミドオリゴマー溶液を炭素繊維表面に均一に付着させるためである。
 また、特許文献4において、2,3,3’,4’-ビフェニルテトラカルボン酸成分を含む芳香族テトラカルボン酸と、分子内に酸素原子を含まない芳香族ジアミンとフェニルエチニル基を有する末端剤から作成された溶液を加熱することにより得られる、硬化物、プリプレグおよび繊維強化複合材料が開示されている。そして、その発明の効果として、耐熱性と耐酸化性に優れるポリイミド硬化物を得ることができると記載されている。
特開2000-219741号公報 特開2006-312699号公報 国際公開第2010/027020号公報 国際公開第2013/141132号公報
Serafini, T. T.; Delvigs, P.; Lightsey, G. R., Journal of Applied Polymer Science 1972, 16 (4), 905-915. Serafini, T. T. NASA Technical Memorandum -83047, 1982. Hergenrother, P. M.; Smith Jr, J. G., Polymer 1994, 35 (22), 4857-4864. Yokota, R.; Yamamoto, S.; Yano, S.; Sawaguchi, T.; Hasegawa, M.; Yamaguchi, H.; Ozawa, H.; Sato, R., High Performance Polymers 2001, 13 (2), S61-S72.
 前記PMR-15樹脂は、複合材料の成形性と熱硬化後の耐熱性の両者を確保するために、繰り返し単位数が極めて低い、分子量が約1500のイミド樹脂であるため、熱架橋した後の硬化樹脂の靭性が低いことが課題である。また、発癌性の高いジアミノジフェニルメタンが使用されているため、作業者がこれらを直接取り扱う際の作業性に課題があった。
 また、上記のPMR-15の硬化樹脂の耐熱性をさらに高めるために300℃以上の温度で後熱処理が施される場合に、末端架橋部位の熱分解によりシクロペンタジエンが気体となって発生し、繊維強化複合材料の層間で剥離を発生させやすい。そのため、この後熱処理によって、内部に空隙等が存在しない高品質な複合材料を得るための成形加工性や、複合材料の機械物性を低下させやすい課題を有している。
 一方、4-(2-フェニルエチニル)無水フタル酸で末端変性したアミド酸オリゴマーまたはイミドオリゴマーのウエットプリプレグは、N-メチル-2-ピロリドン(沸点:約202℃)やジメチルアセトアミド(沸点:165℃)などの高沸点かつ高極性有機溶剤を用いて作製されている。これらのプリプレグを用いて、特に30枚以上積層した炭素繊維複合材料を作製する際においては、沸点が高いことに加え、一般的にイミド基と有機溶剤分子との分子間の相互作用が強いため、プリプレグ中の溶剤を完全に除去することが難しく、炭素繊維複合材料の耐熱性、機械的特性の低下を引き起こしやすい問題を有している。
 また、上記特許文献4に記載されているような高温での耐酸化性を確保するために、イミド硬化樹脂成形体の分子構造内に、分子回転ができる柔軟なエーテル結合を有さない硬化樹脂成形体は、一般的に、脆く、靱性が低い傾向にあることが知られている。また、一般的に、硬化樹脂成形体の靱性を向上させようとして分子構造内にエーテル結合等の回転可能な結合基を導入した場合、耐熱性が大幅に減少しやすいことが知られている。
 したがって、本発明は、1気圧での沸点が150℃以下である有機溶剤に対する溶解性、溶液保存安定性および低溶融粘度等の成形性に優れた末端変性イミドオリゴマーを加熱することで容易に作製することができるワニス、該末端変性イミドオリゴマーを含む固体状のイミド樹脂組成物、該固体状のイミド樹脂組成物を用いて作製された耐熱性、弾性率、引張強度および伸び等の熱的、機械的特性の高い硬化物、プリプレグ、イミドプリプレグおよび繊維強化複合材料を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、本発明を完成するに至った。
 本発明は、以下の(A)~(D)成分を含み、(A)、(B)および(C)成分が、溶解した状態で含まれているワニスを提供する。
(A)一般式(1)で表される芳香族テトラカルボン酸ジエステル類、1~500重量部、
(B)2-フェニル-4,4’-ジアミノジフェニルエーテル、1~450重量部、
(C)一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステル、1~400重量部、
(D)1気圧での沸点が150℃以下である有機溶剤、または2種類以上の前記有機溶剤の混合物、100重量部
Figure JPOXMLDOC01-appb-C000005
(式中、Rは芳香族テトラカルボン酸ジエステル類残基を表す。また、RおよびRは同一もしくは異なる脂肪族系もしくは芳香族系の有機基を表し、互いにシスもしくはトランスの関係にある位置に存在し、単一もしくはこれら2つの異性体混合物であってもよい。)
Figure JPOXMLDOC01-appb-C000006
(式中、RおよびRは、水素原子または脂肪族系もしくは芳香族系の有機基を表し、いずれか1つが脂肪族または芳香族系の有機基を表す。)
 前記一般式(1)中のRおよびRで表される脂肪族系有機基とは、脂肪族鎖を有する有機基であり、芳香族系有機基とは、芳香環を有する有機基である。
 前記一般式(1)中のRで表される芳香族テトラカルボン酸ジエステル類残基とは、芳香族テトラカルボン酸類中の4個のカルボキシル基がとれた4価の芳香族系の有機基をいう。
 前記一般式(1)において、Rで表される芳香族テトラカルボン酸ジエステル類の残基は、1,2,4,5-ベンゼンテトラカルボン酸類の4価残基または3,3’,4,4’-ビフェニルテトラカルボン酸類の4価残基が好ましい。
 前記一般式(1)において、Rは1,2,4,5-ベンゼンテトラカルボン酸類の4価残基で表される4価の芳香族テトラカルボン酸ジエステル類、3,3’,4,4’-ビフェニルテトラカルボン酸類の4価残基で表される芳香族テトラカルボン酸ジエステル類およびビス(3,4-カルボキシフェニル)エーテル類の4価残基で表される芳香族テトラカルボン酸ジエステル類のうち、2つ以上を併用していてもよい。
 前記一般式(2)中のRもしくはRで表される脂肪族系有機基とは、脂肪族鎖を有する有機基であり、芳香族系有機基とは、芳香環を有する有機基である。
 前記ワニスでは、2-フェニル-4,4’-ジアミノジフェニルエーテルと2種類以上の2価の芳香族ジアミンを併用してもよい。
 また、本発明は、前記ワニスを加熱し、有機溶剤を除去してなる一般式(3)で表される固体状のイミド樹脂組成物を提供する。
Figure JPOXMLDOC01-appb-C000007
(式中、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表す。RおよびRは同一または異なって2価の芳香族ジアミン類の残基を表し、R10およびR11は同一または異なって4価の芳香族テトラカルボン酸類残基を表す。mおよびnは、m≧1、n≧0、1≦m+n≦10および0.05≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
 また、本発明は、前記固体状のイミド樹脂組成物を溶融させた状態でさらに加熱することにより高分子量化したイミド樹脂組成物の成形体を提供する。
 前記イミド樹脂組成物の成形体のガラス転移温度(Tg)は、300℃以上であることが好ましく、330℃以上であることがより好ましく、350℃以上であることがさらに好ましい。
 また、本発明は、前記イミド樹脂組成物の成形体から得られるフィルムを提供する。前記フィルムの引張破断伸びは10%以上であることが好ましいく、15%以上であることがより好ましく、20%以上であることがさらに好ましい。
 また、本発明は、前記ワニスを繊維に含浸して得られるプリプレグを提供する。本発明では、溶剤を含んだ状態のウエットプリプレグおよび溶剤をほぼ完全に除去した状態のドライプリプレグの両者を提供する。
 また、本発明は、前記プリプレグをさらに加熱して得られるイミドプリプレグを提供する。本発明では、一部溶剤を含んだ半乾燥状態のイミドウエットプリプレグおよび溶剤をほぼ完全に除去した状態のイミドドライプリプレグの両者を提供する。
 また、本発明は、前記プリプレグおよび前記イミドプリプレグをそれぞれ単独でもしくは組み合わせて積層し、加熱硬化して得られる繊維強化複合材料を提供する。この繊維強化複合材料のTgは、300℃以上であることが好ましく、330℃以上であることがさらに好ましい 。
 また、本発明は、芳香族テトラカルボン酸無水物、4-(2-フェニルエチニル)無水フタル酸を1気圧での沸点が150℃以下である有機溶剤に溶解させた状態で加熱することにより、前記一般式(1)で表される芳香族テトラカルボン酸ジエステル類を作製し、これと前記一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステル類を含む1気圧での沸点が150℃以下である有機溶剤の溶液を調製し、さらに2-フェニル-4,4’-ジアミノジフェニルエーテルを含むジアミン類を添加して、均一に溶解してなる前記ワニスの製造方法を提供する。
 本発明は、2-フェニル-4,4’-ジアミノジフェニルエーテルの効果により、溶解性および長期貯蔵安定性に優れたワニスを提供することができる。
 また、本発明は、前記ワニスを加熱することにより特定の末端変性イミドオリゴマー成分を作製することで、高温溶融流動性および成型加工性に優れた固体状のイミド樹脂組成物を提供することができる。
 また、本発明は、前記固体状のイミド樹脂組成物をさらに加熱し、前記末端変性イミドオリゴマー成分を高分子量化させることにより、高い耐熱性と非常に優れた破断伸びを兼ね備えるイミド樹脂成形体を提供することができる。
 また、本発明は、前記ワニスを繊維に含浸させることにより、保存性や取り扱いに優れ、また、各プリプレグ間の密着性に優れたイミドプリプレグを提供することができる。
 また、本発明のプリプレグまたはイミドプリプレグは、前記プリプレグまたは前記イミドプリプレグを積層して複合材料を加熱成形する工程において、前記ワニスに使用した低沸点の有機溶剤が前記複合材料から容易に除去できるため、耐熱性および機械特性の両者に優れ、かつ内部に大きな空隙が無い高品質な繊維強化複合材料を容易に作製することができる。
図1は、実施例1で得られたワニスを室温条件下で真空乾燥させた末端変性ポリイミド樹脂原料組成物の粉末をMeOH-dに溶解させてH-NMR測定を行った結果を示す図である。 図2は、実施例1で得られた末端変性ポリイミド樹脂原料組成物の粉末をDMSO-d中に溶解させてH-NMR測定を行った結果を示す図である。
1.ワニス
 本発明のワニスは、以下の(A)~(D)成分を含み、(A)、(B)および(C)成分が、溶解した状態で含まれていることを特徴とする。
(A)一般式(1)で表される芳香族テトラカルボン酸ジエステル類、1~500重量部、
(B)2-フェニル-4,4’-ジアミノジフェニルエーテル、1~450重量部、
(C)一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステル、1~400重量部、
(D)1気圧での沸点が150℃以下である有機溶剤、または2種類以上の前記有機溶剤の混合物、100重量部
Figure JPOXMLDOC01-appb-C000008
(式中、Rは芳香族テトラカルボン酸ジエステル類残基を表す。また、RおよびRは同一もしくは異なる脂肪族系もしくは芳香族系の有機基を表し、互いにシスもしくはトランスの関係にある位置に存在し、単一もしくはこれら2つの異性体混合物であってもよい。)
Figure JPOXMLDOC01-appb-C000009
(式中、RおよびRは、水素原子または脂肪族系もしくは芳香族系の有機基を表し、いずれか1つが脂肪族系または芳香族系の有機基を表す。)
((A)成分)
 本発明のワニスの構成成分として、前記一般式(1)で表される芳香族テトラカルボン酸ジエステル類を使用する。一般式(1)で表される芳香族テトラカルボン酸ジエステル類は、前記(B)、(C)成分と反応することで前記一般式(3)で表される末端変性イミドオリゴマーの骨格の一部を形成する成分である。
 前記一般式(1)中のRで表される芳香族テトラカルボン酸ジエステル類残基を構成する芳香族テトラカルボン酸類としては、1,2,4,5-ベンゼンテトラカルボン酸類の4価残基、3,3’,4,4’-ビフェニルテトラカルボン酸類の4価残基、ビス(3,4-カルボキシフェニル)エーテル類の4価残基等が挙げられる。
 中でも、イミド樹脂組成物の成形体が高いガラス転移温度(Tg)、長期熱安定性、高温での耐酸化安定性を発現可能である等の観点から、ワニスを構成する芳香族テトラカルボン酸ジエステル類において、一般式(1)中のRで表される芳香族テトラカルボン酸ジエステル類残基が、1,2,4,5-ベンゼンテトラカルボン酸類の4価残基、または、3,3’,4,4’-ビフェニルテトラカルボン酸類の4価残基、または、ビス(3,4-カルボキシフェニル)エーテル類の4価残基が好ましく、1,2,4,5-ベンゼンテトラカルボン酸類の4価残基または3,3’,4,4’-ビフェニルテトラカルボン酸類の4価残基であることがさらに好ましい。
 また、前記ワニスを構成する芳香族テトラカルボン酸ジエステル類において、上記以外に好ましい4価の芳香族テトラカルボン酸類の組み合わせとして、例えば、一部が1,2,4,5-ベンゼンテトラカルボン酸類の4価残基であり、残部が3,3’,4,4’-ビフェニルテトラカルボン酸類の4価残基;一部が1,2,4,5-ベンゼンテトラカルボン酸類の4価残基であり、残部がビス(3,4-カルボキシフェニル)エーテル類の4価残基;一部が3,3’,4,4’-ビフェニルテトラカルボン酸類の4価残基であり、残部がビス(3,4-カルボキシフェニル)エーテル類の4価残基である化合物等が挙げられる。
 前記一般式(1)中のRおよびRで表される脂肪族系もしくは芳香族系の有機基は、イミド樹脂組成物の作製もしくは複合材料の成形中において、ジアミンとの加熱によるアミド酸形成反応の結果、脱離して生成したアルコール成分が速やかに揮発除去されるために低沸点であることが望ましい観点から、炭素数1~12の有機基であることが好ましく、炭素数1~9の有機基であることがより好ましく、炭素数1~6の有機基であることがさらに好ましい。
 前記一般式(1)で表される芳香族テトラカルボン酸ジエステル類では、1,2,4,5-ベンゼンテトラカルボン酸ジエステル、あるいは、3,3’,4,4’-ビフェニルテトラカルボン酸ジエステルを、それぞれ単独で、あるいは、併用して、また、それぞれの一部をビス(3,4-カルボキシフェニル)エーテルのジエステルに置換することが基本ではあるが、本発明の効果を奏する限り、1,2,4,5-ベンゼンテトラカルボン酸ジエステル、あるいは、3,3’,4,4’-ビフェニルテトラカルボン酸ジエステル、あるいは、ビス(3,4-カルボキシフェニル)エーテルのジエステルの一部を他の芳香族テトラカルボン酸類に置換してもよい。
 また、他の芳香族テトラカルボン酸類としては、例えば、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物(i-BPDA)、2,2-ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(3,4-カルボキシフェニル)エーテル二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物などが挙げられる。他の芳香族テトラカルボン酸類は、1種を単独でまたは2種以上を組み合わせて使用できる。
 前記式(1)で表される芳香族テトラカルボン酸ジエステル類としては、1,2,4,5-ベンゼンテトラカルボン酸ジメチルエステル、1,2,4,5-ベンゼンテトラカルボン酸ジエチルエステル、1,2,4,5-ベンゼンテトラカルボン酸ジプロピルエステル、1,2,4,5-ベンゼンテトラカルボン酸ジイソプロピルエステル、1,2,4,5-ベンゼンテトラカルボン酸ジブチルエステル等、これらの化合物のジエステル基の異性体も含まれるが、特に限定はない。また、2つのエステル基は必ずしも同一でなくてもよい。
 中でも、熱硬化後の樹脂が高いガラス転移温度を発現可能である観点から、1,2,4,5-ベンゼンテトラカルボン酸ジメチルエステル、1,2,4,5-ベンゼンテトラカルボン酸ジエチルエステルが好ましい。
((B)成分)
 本発明のワニスの構成成分として、2-フェニル-4,4’-ジアミノジフェニルエーテルを使用する。これにより、前記一般式(3)で表される末端変性イミドオリゴマーは、その分子中に2-フェニル-4,4’-ジアミノジフェニルエーテル類に由来する骨格を有する。本発明では、2-フェニル-4,4’-ジアミノジフェニルエーテル類の一部を他の芳香族ジアミン類で置き換えてもよい。
 他の芳香族ジアミン類としては、例えば、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、1,2-ジアミノベンゼン、2,6-ジエチル-1,3-ジアミノベンゼン、4,6-ジエチル-2-メチル-1,3-ジアミノベンゼン、3,5-ジエチルトルエン-2,6-ジアミン、4,4’-ジアミノジフェニルエーテル(4,4’-ODA)、3,4’-ジアミノジフェニルエーテル(3,4’-ODA)、3,3’-ジアミノジフェニルエーテル、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス(2,6-ジエチル-4-アミノフェニル)メタン、4,4’-メチレン-ビス(2,6-ジエチルアニリン)、ビス(2-エチル-6-メチル-4-アミノフェニル)メタン、4,4’-メチレン-ビス(2-エチル-6-メチルアニリン)、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、ベンジジン、3,3’-ジメチルベンジジン、2,2-ビス(4-アミノフェノキシ)プロパン、2,2-ビス(3-アミノフェノキシ)プロパン、2,2-ビス[4’-(4’’-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレンなどが挙げられ、それらを単独、あるいは2種以上を併用することができる。特に、芳香族ジアミン化合物として、9,9-ビス(4-アミノフェニル)フルオレンあるいは9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレンあるいは1,3-ジアミノベンゼンが好適である。なお、さらなる耐熱性および機械的強度が求められる用途においては、前記芳香族ジアミン化合物を共重合するのが望ましく、ジアミンの合計量に対して、0-50モル%、好ましくは0-25モル%、さらに好ましくは0-10モル%で使用するのが望ましい。また、共重合用ジアミンとしては、9,9-ビス(4-アミノフェニル)フルオレンが特に好ましい。これにより、加熱によって得られるイミドオリゴマーが優れた成形を発現すると共に、熱硬化後の硬化物が高い耐熱性と優れた機械的特性を発現し、優れた効果を奏する。もちろん、用途に応じて、必ずしも共重合でなくても本発明は使用可能である。
((C)成分)
 本発明のワニスの構成成分として、前記一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステルを使用する。一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステルは、前記(A)、(B)成分と反応することで後述の一般式(3)で表されるイミド樹脂組成物の骨格の一部を形成する成分である。
 前記一般式(2)中のRもしくはRで表される脂肪族系もしくは芳香族系の有機基は、イミド樹脂組成物の作製もしくは複合材料の成形中において、ジアミンとの加熱によるアミド酸形成反応の結果、脱離して生成したアルコール成分が速やかに揮発除去されるために低沸点であることが望ましい観点から、炭素数1~12の有機基であることが好ましく、炭素数1~9の有機基であることがより好ましく、炭素数1~6の有機基であることがさらに好ましい。
 前記一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステルとしては、4-(2-フェニルエチニル)フタル酸モノエチルエステル、4-(2-フェニルエチニル)フタル酸モノメチルエステル、4-(2-フェニルエチニル)フタル酸モノプロピルエステル、4-(2-フェニルエチニル)フタル酸モノイソプロピルエステル、4-(2-フェニルエチニル)フタル酸モノブチルエステル等が挙げられるが、特に限定はない。
((D)成分)
 前記のワニスの調製に用いる有機溶剤としては、加熱によるイミドオリゴマーの合成時に速やかに揮発除去させるために、一気圧での沸点が150℃以下のものであり、前記沸点が100℃以下であるものが好ましい。
 前記有機溶剤の例としては、メタノール(沸点:約65℃)、エタノール(沸点:約78℃)、2-プロパノール(沸点:約82℃)、1-プロパノール(沸点:約97℃)、アセトン(沸点:約56℃)、テトラヒドロフラン(沸点:約66℃)、1,4-ジオキサン(沸点:約101℃)、メチルエチルケトン(沸点:約79℃)などが挙げられる。これらの有機溶媒は単独で用いてもよく、2種類以上の前記有機溶媒を混合して用いてもよい。
(含有量)
 前記ワニスが繊維のモノフィラメント間に充分に浸透性されたプリプレグを作製でき、さらに優れた耐熱性を発現する繊維強化複合材料を作製するために、前記ワニスを構成する一般式(1)で表される芳香族テトラカルボン酸ジエステル類の含有量としては、前記有機溶剤100重量部に対して、1~500重量部であり、20~280重量部が好ましく、40~200重量部がより好ましい。
 また、前記と同様の観点から、2-フェニル-4,4’-ジアミノジフェニルエーテルの含有量としては、前記有機溶剤100重量部に対して、1~450重量部であり、40~400重量部が好ましく、40~280重量部がより好ましい。
 また、また、前記と同様の観点から、前記一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステルの含有量としては、前記有機溶剤100重量部に対して、1~400重量部であり、5~100重量部が好ましく、10~80重量部がより好ましい。
(製造方法)
 前記ワニスでは、前記有機溶剤に対して、前記一般式(1)で表される芳香族テトラカルボン酸ジエステル類、前記2-フェニル-4,4’-ジアミノジフェニルエーテル、前記一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステルがいずれも溶解した状態となっている。ここで、溶解した状態とは、前記各成分が有機溶剤に目視で確認できない程度に、ほぼ均一に溶解された状態であって、それぞれが反応せずに存在している状態をいう。なお、それぞれが存在している状態については、後述の実施例1に記載の方法で確認することができる。
 本発明のワニスは、前記一般式(1)で表される芳香族テトラカルボン酸ジエステル類、2-フェニル-4,4’-ジアミノジフェニルエーテルを含む芳香族ジアミン類、および前記一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステルを、前記の重量部の範囲で調整しながら、エステル基の全量と1級アミノ基の全量とがほぼ等しい量となるように前記有機溶剤中で混合することで得られる。
 中でも、優れた機械強度を発現する繊維強化複合材料を得るために、成形過程において充分な量のイミド樹脂組成物が生成され、繊維に密着したプリプレグを作製するため、ワニス中の有機溶剤に対し、一般式(1)で表される芳香族テトラカルボン酸ジエステル類、2-フェニル-4,4’-ジアミノジフェニルエーテルを含む芳香族ジアミン、および一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステルの全量が、室温で固形分濃度50重量%以上均一に溶解していることが好ましい。
 以下、製造方法の例について具体的に説明する。
 本発明のワニスは、例えば、前記の1種あるいは2種以上の芳香族テトラカルボン酸ジエステル化合物、および、4-(2-フェニルエチニル)フタル酸モノエステルのエステル基の全モル量と、2-フェニル-4,4’-ジアミノジフェニルエーテルを含む芳香族ジアミン類のアミノ基の全モル量とがほぼ等しくなるように使用して、各成分を有機溶剤中で、好ましくは60℃以下、特に好ましくは40℃以下の温度で攪拌させ、均一に溶解させて得られる。
 また、本発明のワニスは、芳香族テトラカルボン酸の無水物を出発原料とし、アルコールを反応溶液に用いてジエステル化を行う工程を含む一連の工程によっても得ることができる。例えば、前記の1種あるいは2種以上の芳香族テトラカルボン酸無水物および4-(2-フェニルエチニル)無水フタル酸を、アルコール溶媒中で、100℃以下、特に80℃以下の温度において加熱還流攪拌させて、前記一般式(1)で表される芳香族テトラカルボン酸ジエステル類を合成した後に、必要あれば溶媒を除去して前記一般式(1)で表される芳香族テトラカルボン酸ジエステル類を単離し、さらに2-フェニル-4,4’-ジアミノジフェニルエーテルを含む芳香族ジアミン類が、全成分のエステル基の全モル量とアミノ基の全モル量とがほぼ等しくなるように使用して、各成分を有機溶剤中で好ましくは60℃以下、特に好ましくは40℃以下の温度で攪拌させて、均一溶解させて得られる。
 前記のようにして作製したワニスは、固形分濃度の調整の必要があれば使用した有機溶剤の一部を揮発することによって濃縮させてもよいし、また新たに前記有機溶剤を加えて希釈させてもよい。また、使用した有機溶剤を完全に揮発することによって構成成分が均一に混合された固体状のワニスの原料組成物として単離してもよい。単離した原料組成物は、必要なときに有機溶剤に溶解して再度ワニスを調製してもよい。これらのワニスもしくは固体状の原料組成物は、室温もしくは室温以下の温度において保存する際に、「アミド-酸結合を有する」末端変性アミド酸オリゴマー(アミック酸オリゴマーともいう)の生成反応を起こさずに長期間安定に保存できる。
 本発明のワニスの好ましい製造方法としては、例えば、(A)一般式(1)で表される芳香族テトラカルボン酸ジエステル類および(C)一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステルの合成工程と、(B)2-フェニル-4,4’-ジアミノジフェニルエーテルを含む芳香族ジアミン類の添加によるワニス作製工程を含む方法が挙げられる。
 まず、(A)一般式(1)で表される芳香族テトラカルボン酸ジエステル類および(C)一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステルの合成工程では、前記の芳香族テトラカルボン酸無水物、および4-(2-フェニルエチニル)無水フタル酸を1気圧での沸点が150℃以下である有機溶剤の溶液中に加えて、均一に溶解させた条件下もしくは懸濁条件下において約30~100℃の反応温度で加熱しながら1~360分程度攪拌させた後に冷却して、(A)一般式(1)で表される芳香族テトラカルボン酸ジエステル類および(C)一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステルの全量が均一に溶解した状態、もしくは一部が溶解した懸濁状態の有機溶剤の溶液を作製する。この際に、必要あれば一部もしくは全量の有機溶剤を揮発することで濃縮させることができる。
 ワニス作製工程では、前記有機溶剤の溶液中に(B)2-フェニル-4,4’-ジアミノジフェニルエーテルを含む芳香族ジアミン類を添加して、有機溶剤の溶液中で約5~50℃の反応温度で1分~360分程度攪拌して、全成分が均一に溶解した有機溶剤の溶液(ワニス)を得る。
 また、本発明のワニスの溶液粘度は、本発明の効果を奏する限り特に限定されるものではないが、好ましくは25℃で5000ポイズ以上であり、より好ましくは8000ポイズ以上であり、さらに好ましくは10000ポイズ以上である。尚、溶液粘度の測定は後述の実施例に記載の方法による。
2.イミド樹脂組成物
 前記ワニスを加熱することにより、前記(A)成分、(B)成分および(C)成分同士を反応させることで末端変性アミド酸オリゴマーが生成され、次いで前記アミド酸オリゴマーを、脱水・環化させ、末端に4-(2-フェニルエチニル)フタル酸残基を有する、一般式(3)で表される末端変性イミドオリゴマーを含むイミド樹脂組成物が得られる。
 前記アミド酸オリゴマーの脱水・環化方法としては、例えば、約0~140℃の温度でイミド化剤を添加する方法、140~275℃の温度に加熱する方法などが挙げられる。
 得られた末端変性イミドオリゴマーは、両末端の熱反応性置換基が高分子量化反応を起こしていないことが望ましい。得られたイミド樹脂組成物は有機溶剤に溶解したワニスの状態でもよいし、半乾燥したペースト状の状態でもよいし、完全に乾燥させた固体状でもよいが、中でも、完全に乾燥させた固体状にすることで、高温溶融流動性および成型加工性に優れたものとすることができる。
Figure JPOXMLDOC01-appb-C000010
(式中、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表す。RおよびRは同一または異なって2価の芳香族ジアミン類の残基を表し、R10およびR11は同一または異なって4価の芳香族テトラカルボン酸類残基を表す。mおよびnは、m≧1、n≧0、1≦m+n≦10および0.05≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
 前記一般式(3)中のRおよびRで表される芳香族ジアミン類残基とは、芳香族ジアミン類中の2個のアミノ基がとれた2価の芳香族系有機基をいう。また、芳香族テトラカルボン酸類残基とは、芳香族テトラカルボン酸類中の4個のカルボキシル基がとれた4価の芳香族系有機基をいう。ここで芳香族系有機基とは芳香環を有する有機基である。芳香族系有機基は、炭素数4~40の有機基であることが好ましく、炭素数4~30の有機基であることがより好ましく、炭素数4~20の有機基であることがさらに好ましい。
 上記一般式(3)中のR10およびR11で表される4価の芳香族テトラカルボン酸類残基を構成する芳香族テトラカルボン酸類としては、1,2,4,5-ベンゼンテトラカルボン酸類、3,3’,4,4’-ビフェニルテトラカルボン酸類、またはビス(3,4-カルボキシフェニル)エーテル類が好ましく、中でも1,2,4,5-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物がより好ましい。
 また、本発明のイミド樹脂組成物では、前記末端変性イミドオリゴマーが、一般式(3)におけるm個のR10とn個のR11のうち、一部が1,2,4,5-ベンゼンテトラカルボン酸類の4価残基を表し、残部が3,3’,4,4’-ビフェニルテトラカルボン酸類の4価残基を表す化合物であることが好ましい。
 なお、前記一般式(3)において、m+nが1未満では、硬化樹脂の靭性が著しく低下するおそれがあり、m+nが10を超えると、高温状態において優れた溶融流動性が発現されないおそれがある。また、前記一般式(3)および後述の一般式(5)、(6)において、m/(m+n)は0.1以上、1以下が好ましい。
 本発明のイミド樹脂組成物では、一般式(3)において、R10およびR11で表される4価の芳香族テトラカルボン酸類残基が1,2,4,5-ベンゼンテトラカルボン酸類の4価残基であり、末端変性イミドオリゴマーが下記一般式(5)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 (式(5)中、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表す。RおよびRは同一または異なって2価の芳香族ジアミン類の残基を表す。mおよびnは、m≧1、n≧0、1≦m+n≦10および0.05≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
 また本発明のイミド樹脂組成物では、一般式(3)において、R10およびR11で表される4価の芳香族テトラカルボン酸類残基が3,3’,4,4’-ビフェニルテトラカルボン酸類の4価残基であり、末端変性イミドオリゴマーが下記一般式(6)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 (式(6)中、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表す。RおよびRは同一または異なって2価の芳香族ジアミン類の残基を表す。mおよびnは、m≧1、n≧0、1≦m+n≦10および0.05≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
 前記末端変性イミドオリゴマーの製造方法としては、前記ワニスを、30~150℃の反応温度で1~180分程度攪拌しながら反応させて前記の末端変性アミド酸オリゴマーを生成する。その後、その反応液をさらに140~275℃で5分~24時間攪拌して、前記末端変性イミドオリゴマーを生成させるとともに反応液中の有機溶剤を除去したり、必要ならば、反応液を室温付近まで冷却することにより、前記末端変性イミドオリゴマーを晶析させ、濾過等で固液分離することで、固体状のイミド樹脂組成物を得ることができる。
 前記の固体状のイミド樹脂組成物の最低溶融粘度は、繊維強化複合材料の成形過程において、高温条件下でプリプレグ中の有機溶剤が系外に除去された際に、残存したイミドオリゴマーが溶融して繊維間に含浸されるよう、10000Pa・sec以下が好ましく、5000Pa・sec以下がさらに好ましく、3000Pa・sec以下がさらに好ましい。尚、最低溶融粘度の測定は後述の方法による。
 本発明のイミド樹脂組成物を構成する前記末端変性イミドオリゴマーは、加水分解の恐れがほとんどないため、アミド酸オリゴマーに比べ粘度低下等を起こさずに長期間安定に樹脂単体で保存できる。
 なお、前記末端変性イミドオリゴマーは、分子量の異なるもの、または熱可塑性ポリイミドと混合したものでもよい。
 前記熱可塑性ポリイミドとしては、加熱により軟性になるポリイミドであり、具体的には市販品であればよく、種類などについては特に限定はない。
(成形体)
 前記固体状のイミド樹脂組成物を溶融させた状態でさらに加熱することにより高分子量化したイミド樹脂組成物の成形体を得ることができる。
 前記成形体は、例えば、前記固体状のイミド樹脂組成物を200~280℃の温度で溶融させた状態で、280~500℃で10分~40時間程度加熱硬化される方法により作製できる。また、支持体に塗布したワニスを280~500℃で10分~40時間程度で加熱する方法によって一段階で成形体を作製してもよい。
 前記成形体のTgは、例えば、航空機のエンジン周辺の高温部材として適用する場合などにおいて、300℃以上であることが好ましく、330℃以上であることがより好ましく、350℃以上であることがさらに好ましい。
 イミド樹脂組成物の高分子量化については、後述の実施例に記載の方法により確認すればよい。また、高分子量の程度としては特に限定はない。
 前記成形体は、公知の方法で所望の形状に成形すればよく、例えば、フィルム、シート、直方体状や棒状などの3次元的に成形加工された状態などが挙げられるが、特に限定はない。例えば、フィルムに成形した成形体の引張破断伸びとしては、硬化樹脂成形体もしくは繊維強化複合材料として使用する際に、外部からの衝撃を受けた際にその衝撃エネルギーを吸収して損傷を少なくするために、10%以上であることが好ましく、15%以上であることがより好ましく、20%以上であることがさらに好ましい。
 尚、前記Tgおよび引張破断伸びの測定は後述の実施例に記載の方法による。
 また、前記のイミド樹脂組成物の成形体は、硬化反応の均一性や反応完結の観点から、有色透明であることが好ましい。
(プリプレグ)
 本発明のプリプレグは、前記ワニスを繊維に含浸させてなるものである。
 本発明のプリプレグは、例えば以下のようにして得ることができる。 
 例えば、前記(A)、(B)、(C)の原料組成物の合計含有量が50重量%以上の高濃度で均一に溶解したワニスを作製し、必要あれば適宜濃縮または希釈するなどした後に、平面状に一方向に引き揃えた繊維あるいは繊維織物に含浸させることで、ウエットプリプレグを得ることができる。また、前記ウエットプリプレグを公知の方法で乾燥させることでドライプリプレグにしてもよい。本発明のプリプレグは、ウエットプリプレグおよびドライプリプレグを含む。
 前記プリプレグを用いて作製される繊維強化複合材料中の硬化樹脂と繊維のバランスにより、繊維強化複合材料が優れた機械強度を発現するために、繊維に付着する一般式(3)で表される前記末端変性イミドオリゴマーの量は、プリプレグ全体の重量に対して10~60重量%が好ましく、20~50重量%がより好ましく、30~50重量%がさらに好ましい。
 また、繊維に付着する有機溶剤量は、プリプレグの積層時の取り扱い簡便とし、また、高温での複合材料の成形過程において樹脂の流出を阻止して優れた機械強度を発現する繊維強化複合材料を作製するために、プリプレグ全体の重量に対して1~30重量%が好ましく、5~25重量%がより好ましく、5~20重量%がさらに好ましい。
 本発明に使用する繊維としては、例えば、炭素繊維、ガラス繊維、金属繊維、セラミック繊維などの無機繊維、ポリアミド繊維、ポリエステル系繊維、ポリオレフィン系繊維、ノボロイド繊維などの有機合成繊維などが挙げられる。これらの繊維は1種を単独でまたは2種以上を組み合わせて使用できる。特に、優れた機械的特性を発現するためには、炭素繊維が望ましい。炭素繊維としては、炭素の含有率が85~100重量%の範囲にあり、少なくとも部分的にグラファイト構造を有する連続した繊維形状を有する材料であれば特に限定されないが、例えば、ポリアクリロニトリル(PAN)系、レーヨン系、リグニン系、ピッチ系などが挙げられる。これらの中でも、汎用的かつ安価であり、高い強度を備えていることから、PAN系、ピッチ系などの炭素繊維が好ましい。一般的に、前記炭素繊維には、サイジング処理が施されているが、そのまま用いても良く、必要に応じて有機溶剤等にて除去することが出来る。また、あらかじめ繊維束をエアーやローラーなどを用いて開繊し、該炭素繊維の単糸間に樹脂または樹脂溶液を含浸させるように施すことが好ましい。
(イミドプリプレグ)
 本発明のイミドプリプレグは、前記プリプレグをさらに加熱させたものである。
 本発明のイミドプリプレグは、例えば、以下のようにして得ることができる。 
 前記ウエットプリプレグまたはドライプリプレグの有機溶剤の溶解液を140~275℃で5分~24時間加熱し、有機溶剤の一部または全てを完全に除去することにより、前記末端変性イミドオリゴマーが繊維に付着したイミドウエットプリプレグまたはイミドドライプリプレグを得ることができる。
 イミドウエットプリプレグ中の繊維に付着する前記末端変性イミドオリゴマーの量はプリプレグ全体の重量に対して5~50重量%が好ましく、20~50重量%がより好ましく、30~50重量%がさらに好ましい。また、繊維に付着する有機溶剤の量はプリプレグ全体の重量に対して1~30重量%が好ましく、5~25重量%がより好ましく、5~20重量%がさらに好ましい。
 イミドドライプリプレグ中の繊維に付着する前記末端変性イミドオリゴマーはプリプレグ全体の重量に対して20~80重量%が好ましく、20~60重量%がより好ましく、30~50重量%がさらに好ましい。
 本発明のイミドプリプレグに使用する繊維は、前記プリプレグに使用する繊維と同じであればよい。また、イミドプリプレグを構成する繊維材料の形態は、UD(一方向)、織り(平織り、朱子織など)、編み等による連続した繊維形状の構造体であり、特に限定されるものでなく、その目的に応じ適宜選択すれば良く、これらを単独あるいは組み合わせて用いることができる。
(繊維強化複合材料)
 本発明の繊維強化複合材料は、例えば、以下のようにして得ることができる。
 前記プリプレグを所定枚数重ねて、オートクレーブまたはホットプレス等を用いて、80~500℃の温度かつ1~1000kg/cmの圧力で10分から40時間程度加熱硬化して、繊維強化複合材料を得ることができる。また、本発明では、前記プリプレグを用いるほか、前記イミドウエットプリプレグまたはイミドドライプリプレグを使用して積層し、前記と同様にして加熱硬化し、繊維強化複合材料を得ることもできる。 
 上記のようにして得られた本発明の繊維強化複合材料は、ガラス転移温度(Tg)が300℃以上であることが好ましい。なお、この測定は、後述の方法による。
 また、フィルム状イミド樹脂組成物の成形体またはイミドプリプレグを繊維強化複合材料と異種材料との間に挿入し、加熱溶融して一体化することにより、繊維強化複合材料構造体を得てもよい。ここで、異種材料としては特に限定されず、この分野で常用されるものをいずれも使用できるが、例えば、ハニカム形状などの金属材料、スポンジ形状などのコア材料などが挙げられる。
 以下に本発明を説明するためにいくつかの実施例を示すが、これによって本発明を限定するものではない。また、各特性の測定条件は、次のとおりとした。
<試験方法>
(1)プロトン核磁気共鳴分光(H-NMR)測定試験
 核磁気共鳴分光装置(型式:AV-400M、(株)Bruker社製)を用い、30℃にて測定を行った。測定の際の重水素化溶媒には、重ジメチルスルホキシド(DMSO-d)または重メタノール(MeOH-d)を用いた。ケミカルシフト値の基準は、前記の重水素化溶媒に含まれるトリメチルシラン化合物のメチル基のプロトンシグナルを0ppmとした。
(2)ガラス転移温度(Tg)測定
 示差走査熱量計(DSC、型式:DSC-2010型、TAインスツルメント社製)を用い、窒素気流下、5℃/分の昇温速度により測定した。また、フィルム形状のものは、動的粘弾性測定装置(DMA、型式:RSA-II、Rheometric社製)を用い、昇温速度10℃/分、周波数1Hzにて測定を行い、貯蔵弾性率曲線が低下する前後における2つの接線の交点をガラス転移温度とした。繊維強化複合材料は、動的粘弾性測定装置(DMA、型式:DMA-Q-800型、TAインスツルメント社製)を用い、片持ち梁方式、0.1%のひずみ、1Hzの周波数、窒素気流下、3℃/分の昇温速度により測定した。貯蔵弾性率曲線が低下する前後における2つの接線の交点をガラス転移温度とした。
(3)最低溶融粘度測定
 レオメーター(型式:AR2000型、TAインスツルメント社製)を用い、25mmパラレルプレートで4℃/分の昇温速度により測定した。
(4)5%重量減少温度測定
 熱重量分析装置(TGA、型式:SDT-2960型、TAインスツルメント社製)を用い、窒素気流下、5℃/分の昇温速度により測定した。
(5)弾性率測定試験、破断強度測定試験、破断伸び測定試験
 テンシロン万能材料試験機(商品名:TENSILON/UTM-II-20、(株)オリエンテック製)を用い、室温にて、引張速度3mm/分で行った。試験片形状は、長さ20mm、幅3mm、厚さ80~120μmのフィルムとした。
(6)赤外吸収スペクトル測定
 日本分光(株)製、FT/IR-230S型分光計を用いて、室温にて、400cm-1~4000cm-1の測定範囲にて積算回数32回の条件にて赤外吸収スペクトル測定を行なった。
(7)溶液粘度測定
 東機産業株式会社製R550型E型粘度計を用いて23℃の条件にて測定を行った。
(8)超音波深傷試験
 クラウトクレーマー社製SDS7800R型超音波深傷試験装置を使用し、5~15MHzの深傷プローブを用いて、水中にて測定を行った。
(9)光学顕微鏡観察
 オリンパス社製測定顕微鏡STM-MJSを用いて、50~1000倍の拡大率にて測定を行った。
(10)層間せん断強度測定
 ASTM-D2344に準拠して行った。
<(A)芳香族テトラカルボン酸ジエステル化合物の製造>
(製造例1)
 温度計、攪拌子、窒素導入管、還流管を備えた4つ口の2000mLフラスコに、1,2,4,5-ベンゼンテトラカルボン酸二無水物を500g(2.29mol)入れ、メタノール1200.13g(37.5mol)を添加し、窒素気流下にて懸濁した状態で80℃にて加熱還流しながら攪拌を行った。攪拌開始後、1,2,4,5-ベンゼンテトラカルボン酸二無水物が溶媒に徐々に溶解されるのが確認され、攪拌開始から約60分ですべて完全に溶解された。さらに攪拌を続けると、一部溶媒に不溶の沈殿物の析出が確認され、攪拌開始後から120分後に加熱を停止し、室温まで冷却して懸濁溶液を得た。その後、メタノールを室温にて真空条件下で揮発させて、白色粉末の生成物を得た。得られた生成物のH-NMR測定(DMSO-d溶媒中)より、ジエステル基が互いにシスの位置に存在する1,2,4,5-ベンゼンテトラカルボン酸ジメチルエステルが約40%存在し、ジエステル基が互いにトランスの位置に存在する1,2,4,5-ベンゼンテトラカルボン酸ジメチルエステルが約60%存在する異性体の混合物であった。なお、得られた芳香族テトラカルボン酸ジエステル化合物は、前記一般式(1)において、Rはメチル基、Rはメチル基であった。
(製造例2)
 前記と同様の方法にて、温度計、攪拌子、窒素導入管、還流管を備えた4つ口の2000mLフラスコに、1,2,4,5-ベンゼンテトラカルボン酸二無水物を500g(2.29mol)入れ、エタノール1200.10g(26.05mol)を添加し、窒素気流下にて懸濁した状態で105℃にて加熱還流しながら攪拌を開始した。攪拌開始後に1,2,4,5-ベンゼンテトラカルボン酸二無水物が溶媒に徐々に溶解されるのが確認され、攪拌開始から約60分ですべて完全に溶解された。さらに攪拌を続けると、一部溶媒に不溶の沈殿物が析出が確認され、攪拌開始後から120分後に加熱を停止し、室温まで冷却して懸濁溶液を得た。その後、エタノールを室温にて真空条件下で揮発させて、白色粉末の生成物を得た。得られた生成物のH-NMR測定(DMSO-d溶媒中)より、ジエステル基が互いにシスの位置に存在する1,2,4,5-ベンゼンテトラカルボン酸ジエチルエステルが約34%存在し、ジエステル基が互いにトランスの位置に存在する1,2,4,5-ベンゼンテトラカルボン酸ジエチルエステルが約66%存在する異性体の混合物であった。なお、得られた芳香族テトラカルボン酸ジエステル化合物は、前記一般式(1)において、Rはエチル基、Rはエチル基であった。
(製造例3)
 前記と同様の方法にて、温度計、攪拌子、窒素導入管、還流管を備えた4つ口の2000mLフラスコに、1,2,4,5-テトラカルボン酸二無水物を500g(2.29mol)入れ、2-プロパノール1202.00g(20.00mol)を添加し、窒素気流下にて懸濁した状態で105℃にて加熱還流しながら攪拌を開始した。攪拌開始後に1,2,4,5-テトラカルボン酸二無水物が溶媒に徐々に溶解されるのが確認され、攪拌開始から約180分ですべて完全に溶解された。さらに攪拌を続けると、一部溶媒に不溶の沈殿物の析出が確認され、攪拌開始後から120分後に加熱を停止し、室温まで冷却して懸濁溶液を得た。その後、2-プロパノールを室温にて真空条件下で揮発させて、白色粉末の生成物を得た。得られた生成物のH-NMR測定(DMSO-d溶媒中)より、ジエステル基が互いにシスの位置に存在する1,2,4,5-テトラカルボン酸ジイソプロピルエステルが約50%存在し、ジエステル基が互いにトランスの位置に存在する1,2,4,5-テトラカルボン酸ジイソプロピルエステルが約50%存在する異性体の混合物であった。
<(C)4-(2-フェニルエチニル)フタル酸モノエステル化合物の製造>
(製造例4)
 前記と同様の方法にて、温度計、攪拌子、窒素導入管、還流管を備えた4つ口の2000mLフラスコに、4-(2-フェニルエチニル)無水フタル酸を600g(2.41mol)入れ、エタノール1200.25g(26.05mol)を添加し、窒素気流下にて懸濁した状態で105℃にて加熱還流しながら攪拌を開始した。攪拌開始後に4-(2-フェニルエチニル)無水フタル酸が溶媒に徐々に溶解されるのが確認され、攪拌開始から約10分ですべて完全に溶解された。さらに攪拌を続け、攪拌開始後から120分後に加熱を停止し、室温まで冷却した。その後、エタノールを室温にて真空条件下で揮発させて、白色粉末の4-(2-フェニルエチニル)フタル酸モノエチルエステルを得た。得られた生成物のDSC測定結果から、融点は130℃に観測された。
 なお、得られた4-(2-フェニルエチニル)フタル酸モノエチルエステルは、前記一般式(2)において、RおよびRは水素原子またはエチル基を表し、いずれか1つがエチル基を表す。
(実施例1)
 100mLのサンプル瓶中に、(B)2-フェニル-4,4’-ジアミノジフェニルエーテル4.446g(16.1mmol)とメタノール6.8g(212.2mmol)を加えて完全に溶解させた後に、製造例2で作製した(A)1,2,4,5-ベンゼンテトラカルボン酸ジエチルエステル4.000g(12.9mmol)および製造例4で作製した(C)4-(2-フェニルエチニル)フタル酸モノエチルエステル1.913g(6.5mmol)を入れ、容器内を窒素雰囲気下とした後に密閉し、室温にて懸濁した状態で攪拌を開始した。攪拌開始後にエステル化合物が溶媒に徐々に溶解され始めたのを確認し、攪拌開始後60分で完全に均一に溶解した。その後、攪拌を続け、攪拌開始後から24時間後に攪拌を停止させ、末端変性ポリイミド樹脂原料組成物がメタノールに均一に溶解したワニスを得た。
 このワニスをガラス製のシャーレに移し、循環式のエアーオーブン内にて内部温度60℃で3時間加温し、さらに200℃で1時間加温することで、メタノールを除去しながらアミド酸結合生成反応ならびにイミド結合生成反応を行い、末端変性イミドオリゴマーを得た。得られた末端変性イミドオリゴマーは、前記一般式(5)において、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表し、RおよびRが2-フェニル-4,4’-ジアミノジフェニルエーテル残基で表され、平均としてm=4、n=0である。
 硬化前の粉末状の末端変性イミドオリゴマーのTgは、DSC測定結果より210℃であり、最低溶融粘度は62Pa・sec(340℃)であった。この粉末状の末端変性イミドオリゴマーの一部を表面平滑性に優れたポリイミドフィルム(商品名:UPILEX-75S、厚さ:75μm、サイズ:15cm角、宇部興産株式会社製)2枚の間に挿入し、370℃で1時間加圧し、冷却後に剥離することにより、赤褐色の透明であるフィルム状の硬化物(厚さ96μm)を得た。このフィルム状イミド樹脂組成物の一部を使用したIRスペクトル測定より、末端変性イミドオリゴマーの末端基であるフェニルエチニル部位に含まれる三重結合の伸縮振動に由来する2210cm-1付近の吸収が消失していたことから、本加圧加熱成形によってフィルム状イミド樹脂組成物中で末端変性イミドオリゴマー成分が熱付加反応により高分子量化していることが示された。このフィルム状の硬化物のTgは、DSC測定より337℃、DMA測定より336℃、TGAによる5%重量減少温度は538℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.1GPa、破断強度が143MPa、破断伸びが31%であった。
 また、前記で得られたワニスを室温条件下で真空乾燥させて末端変性ポリイミド樹脂原料組成物の粉末を得た。この粉末はMeOH-dに速やかに溶解し、H-NMR測定を行った結果、得られたシグナルは、図1に示すとおり、本実施例で使用した1,2,4,5-ベンゼンテトラカルボン酸ジメチルエステル、2-フェニル-4,4’-ジアミノジフェニルエーテルならびに4-(2-フェニルエチニル)フタル酸モノメチルエステルのそれぞれに対応するプロトンシグナルとは異なる位置に観測された。また、この粉末をDMSO-d中に溶解させてH-NMR測定を行った結果、得られたシグナルは、図2に示すとおり、本実施例で使用した1,2,4,5-ベンゼンテトラカルボン酸ジメチルエステル、2-フェニル-4,4’-ジアミノジフェニルエーテル、4-(2-フェニルエチニル)フタル酸モノメチルエステルのそれぞれに対応するプロトンシグナルと完全に同じ位置に観測され、また、アミド基のNHプロトンのシグナルは1~14δ/ppmのシグナル範囲において観測されなかった。これらの結果より、本実施例で作製したメタノール溶液のワニス中で末端変性ポリイミド樹脂原料組成物を構成するすべての成分がイオン錯体(塩)を形成して溶解されていることがわかる。
(比較例1)
 温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2-フェニル-4,4’-ジアミノジフェニルエーテル2.7613g(10mmol)とN-メチル-2-ピロリドン10mLを加え、溶解後、1,2,4,5-ベンゼンテトラカルボン酸二無水物1.7450g(8mmol)とN-メチル-2-ピロリドン(沸点:約204℃)0.8mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4-(2-フェニルエチニル)無水フタル酸0.9929g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
 冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(5)において、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表し、RおよびRが2-フェニル-4,4’-ジアミノジフェニルエーテル残基で表され、平均としてm=4、n=0である。
 硬化前の粉末状の末端変性イミドオリゴマーのTgは、DSC測定結果より213℃であり、最低溶融粘度は150Pa・sec(343℃)であった。この粉末状の末端変性イミドオリゴマーの一部を表面平滑性に優れたポリイミドフィルム(商品名:UPILEX-75S、厚さ:75μm、サイズ:15cm角、宇部興産株式会社製)2枚の間に挿入し、370℃で1時間加圧し、冷却後に剥離することにより、赤褐色の透明であるフィルム状の硬化物(厚さ100μm)を得た。このフィルム状イミド樹脂組成物の一部を使用したIRスペクトル測定より、末端変性イミドオリゴマーの末端基であるフェニルエチニル部位に含まれる三重結合の伸縮振動に由来する2210cm-1付近の吸収が消失していたことから、本加圧加熱成形によってフィルム状イミド樹脂組成物中で末端変性イミドオリゴマー成分が熱付加反応により高分子量化していることが示された。この得られたフィルム状の硬化物のTgはDSC測定より346℃、DMA測定より、343℃、TGAによる5%重量減少温度は538℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.2GPa、破断強度が132MPa、破断伸びが16%であった。
(比較例2)
 温度計、攪拌子、窒素導入管、還流管を備えた4つ口の100mLフラスコに、2-フェニル-4,4’-ジアミノジフェニルエーテル4.905g(17.8mmol)とN-メチル-2-ピロリドン10mLを加え、溶解後、製造例1にて作製した1,2,4,5-ベンゼンテトラカルボン酸ジメチルエステル4.007g(14.2mmol)および製造例4で作製した4-(2-フェニルエチニル)フタル酸モノエチルエステル1.990g(7.1mmol)およびN-メチル-2-ピロリドン0.8mLを入れ、窒素気流下、60℃で3時間攪拌を行い、アミド酸結合生成反応を行った。その後、窒素気流下、200℃で5時間反応させてイミド結合生成反応を行った。
 冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を240℃で5時間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(5)において、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表し、RおよびRが2-フェニル-4,4’-ジアミノジフェニルエーテル残基で表され、平均としてm=4、n=0である。
 硬化前の粉末状の末端変性イミドオリゴマーのTgは、DSC測定結果より217℃であり、最低溶融粘度は216Pa・sec(340℃)であった。この粉末状の末端変性イミドオリゴマーの一部を表面平滑性に優れたポリイミドフィルム(商品名:UPILEX-75S、厚さ:75μm、サイズ:15cm角、宇部興産株式会社製)2枚の間に挿入し、370℃で1時間加圧し、冷却後に剥離することにより、赤褐色の透明であるフィルム状の硬化物(厚さ86μm)を得た。このフィルム状イミド樹脂組成物の一部を使用したIRスペクトル測定より、末端変性イミドオリゴマーの末端基であるフェニルエチニル部位に含まれる三重結合の伸縮振動に由来する2210cm-1付近の吸収が消失していたことから、本加圧加熱成形によってフィルム状イミド樹脂組成物中で末端変性イミドオリゴマー成分が熱付加反応により高分子量化していることが示された。このフィルム状の硬化物のTgは、DSC測定より336℃、DMA測定より346℃、TGAによる5%重量減少温度は538℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が2.8GPa、破断強度が128MPa、破断伸びが18%であった。
(実施例2)
 100mLのサンプル瓶中に、(B)2-フェニル-4,4’-ジアミノジフェニルエーテル4.008g(14.5mmol)と9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン0.562g(1.62mmol)とメタノール7.0g(218.4mmol)を加えて完全に溶解させた後に、製造例2で作製した(A)1,2,4,5-ベンゼンテトラカルボン酸ジエチルエステル4.000g(12.9mmol)および製造例4で作製した(C)4-(2-フェニルエチニル)フタル酸モノエチルエステル1.913g(6.5mmol)を入れ、容器内を窒素雰囲気下とした後に密閉し、室温にて懸濁した状態で攪拌を開始した。攪拌開始後にエステル化合物が溶媒に徐々に溶解され始めたのを確認し、攪拌開始後60分で完全に均一に溶解した。その後、攪拌を続け、攪拌開始後から24時間後に攪拌を停止させ、末端変性ポリイミド樹脂原料組成物がメタノールに均一に溶解したワニスを得た。
 このワニスをガラス製のシャーレに移し、循環式のエアーオーブン内にて内部温度60℃で3時間加温し、さらに200℃で1時間加温することで、メタノールを除去しながらアミド酸結合生成反応ならびにイミド結合生成反応を行い、末端変性イミドオリゴマーを得た。得られた末端変性イミドオリゴマーは、前記一般式(5)において、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表し、Rが2-フェニル-4,4’-ジアミノジフェニルエーテル残基または9,9-ビス(4-アミノフェニル)フルオレン残基で、Rが9,9-ビス(4-アミノフェニル)フルオレン残基で表され、平均としてm=3.6、n=0.4である。
 硬化前の粉末状の末端変性イミドオリゴマーのTgは、DSC測定結果より221℃、最低溶融粘度は94Pa・sec(345℃)であった。この粉末状の末端変性イミドオリゴマーの一部を表面平滑性に優れたポリイミドフィルム(商品名:UPILEX-75S、厚さ:75μm、サイズ:15cm角、宇部興産株式会社製)2枚の間に挿入し、370℃で1時間加圧し、冷却後に剥離することにより、赤褐色の透明であるフィルム状の硬化物(厚さ80μm)を得た。このフィルム状イミド樹脂組成物の一部を使用したIRスペクトル測定より、末端変性イミドオリゴマーの末端基であるフェニルエチニル部位に含まれる三重結合の伸縮振動に由来する2210cm-1付近の吸収が消失していたことから、本加圧加熱成形によってフィルム状イミド樹脂組成物中で末端変性イミドオリゴマー成分が熱付加反応により高分子量化していることが示された。このフィルム状の硬化物のTgは、DSC測定結果より355℃、DMA測定結果より357℃、TGAによる5%重量減少温度は537℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.2GPa、破断強度が137MPa、破断伸びが20%であった。
 また、前記で得られたワニスを室温条件下で真空乾燥させて末端変性ポリイミド樹脂原料組成物の粉末を得た。この粉末はMeOH-dに速やかに溶解し、実施例1と同様に、H-NMR測定を行った結果から、本実施例で作製したメタノール溶液のワニス中で末端変性ポリイミド樹脂原料組成物を構成するすべての成分がイオン錯体(塩)を形成して溶解されていることがわかった。
(実施例3)
 100mLのサンプル瓶中に、(B)2-フェニル-4,4’-ジアミノジフェニルエーテル3.664g(13.2mmol)と9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン0.514g(1.48mmol)とメタノール6.0g(185.2mmol)を加えて完全に溶解させた後に、製造例2で作製した(A)1,2,4,5-ベンゼンテトラカルボン酸ジエチルエステル4.000g(12.9mmol)および製造例4で作製した(C)4-(2-フェニルエチニル)フタル酸モノエチルエステル1.060g(3.6mmol)を入れ、容器内を窒素雰囲気下とした後に密閉し、室温にて懸濁した状態で攪拌を開始した。攪拌開始後にエステル化合物が溶媒に徐々に溶解され始めたのを確認し、攪拌開始後60分で完全に均一に溶解した。その後、攪拌を続け、攪拌開始後から24時間後に攪拌を停止させ、末端変性ポリイミド樹脂原料組成物がメタノールに均一に溶解したワニスを得た。
 このワニスをガラス製のシャーレに移し、循環式のエアーオーブン内にて内部温度60℃で3時間加温し、さらに200℃で1時間加温することで、メタノールを除去しながらアミド酸結合生成反応ならびにイミド結合生成反応を行い、末端変性イミドオリゴマーを得た。得られた末端変性イミドオリゴマーは、前記一般式(5)において、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表し、Rが2-フェニル-4,4’-ジアミノジフェニルエーテル残基または9,9-ビス(4-アミノフェニル)フルオレン残基で、Rが9,9-ビス(4-アミノフェニル)フルオレン残基で表され、平均としてm=6.3、n=0.7である。
 硬化前の粉末状の末端変性イミドオリゴマーのTgは、DSC測定結果より247℃、の最低溶融粘度は2036Pa・sec(366℃)であった。この粉末状の末端変性イミドオリゴマーの一部を表面平滑性に優れたポリイミドフィルム(商品名:UPILEX-75S、厚さ:75μm、サイズ:15cm角、宇部興産株式会社製)2枚の間に挿入し、370℃で1時間加圧し、冷却後に剥離することにより、赤褐色の透明であるフィルム状の硬化物(厚さ90μm)を得た。このフィルム状イミド樹脂組成物の一部を使用したIRスペクトル測定より、末端変性イミドオリゴマーの末端基であるフェニルエチニル部位に含まれる三重結合の伸縮振動に由来する2210cm-1付近の吸収が消失していたことから、本加圧加熱成形によってフィルム状イミド樹脂組成物中で末端変性イミドオリゴマー成分が熱付加反応により高分子量化していることが示された。このフィルム状の硬化物のTgは、DSC測定結果より357℃、DMA測定結果より355℃、TGAによる5%重量減少温度は543℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.1GPa、破断強度が142MPa、破断伸びが24%であった。
 また、前記で得られたワニスを室温条件下で真空乾燥させて末端変性ポリイミド樹脂原料組成物の粉末を得た。この粉末はMeOH-dに速やかに溶解し、実施例1と同様に、H-NMR測定を行った結果から、本実施例で作製したメタノール溶液のワニス中で末端変性ポリイミド樹脂原料組成物を構成するすべての成分がイオン錯体(塩)を形成して溶解されていることがわかった。
(実施例4)
 100mLのサンプル瓶中に、製造例3で作製した1,2,4,5-ベンゼンテトラカルボン酸ジイソプロピルエステル4.541g(14.00mmol)および製造例4で作製した4-(2-フェニルエチニル)フタル酸モノエチルエステル1.177g(4.00mmol)、エタノール3.4g(73.8mmol)を入れ、容器内を窒素雰囲気下とした後に密閉し、約70℃にて懸濁した状態で攪拌を続けた。攪拌開始後60分後に2-フェニル-4,4’-ジアミノジフェニルエーテル4.421g(16.0mmol)を加えて攪拌を続け、その後、約30分後に攪拌を停止させ、末端変性ポリイミド樹脂原料組成物がエタノールに均一に溶解したワニスを得た。
 このワニスをガラス製のシャーレに移し、循環式のエアーオーブン内にて内部温度60℃で3時間加温し、さらに250℃で1時間加温することで、エタノールを除去しながらアミド酸結合生成反応ならびにイミド結合生成反応を行い、末端変性イミドオリゴマーを得た。得られた末端変性イミドオリゴマーは、前記一般式(5)において、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表し、RおよびRが2-フェニル-4,4’-ジアミノジフェニルエーテル残基で表され、平均としてm=7、n=0である。
 硬化前の粉末状の末端変性イミドオリゴマーのTgは、DSC測定結果より245℃であり、最低溶融粘度は400Pa・s(340℃)であった。この粉末状の末端変性イミドオリゴマーの一部を表面平滑性に優れたポリイミドフィルム(商品名:UPILEX-75S、厚さ:75μm、サイズ:15cm角、宇部興産株式会社製)2枚の間に挿入し、370℃で1時間加圧し、冷却後に剥離することにより、赤褐色の透明であるフィルム状の硬化物(厚さ96μm)を得た。このフィルム状イミド樹脂組成物の一部を使用したIRスペクトル測定より、末端変性イミドオリゴマーの末端基PEPAに含まれる三重結合の伸縮振動に由来する2210cm-1付近の吸収が消失していたことから、本加圧加熱成形によってフィルム状イミド樹脂組成物中で末端変性イミドオリゴマー成分が熱付加反応により高分子量化していることが示された。このフィルム状の硬化物のTgは、DSC測定より334℃、DMA測定より335℃、TGAによる5%重量減少温度は538℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.1GPa、破断強度が141MPa、破断伸びが35%であった。
(実施例5)
 前記と同様の方法にて、温度計、攪拌子、窒素導入管、還流管を備えた4つ口の2000mLフラスコに、1,2,4,5-テトラカルボン酸二無水物を366.44g(1.68mol)入れ、エタノール89g(1.93mol)と2-プロパノール89g(1.48mol)を添加し、窒素気流下にて懸濁した状態で105℃にて加熱還流しながら攪拌を開始した。攪拌開始後に1,2,4,5-テトラカルボン酸二無水物が溶媒に徐々に溶解されるのが確認され、攪拌開始から約180分ですべて均一に溶解された。
 その後、前記の溶液5mlを取り出し、エタノールと2-プロパノールを室温にて真空条件下で揮発させて、白色粉末の生成物を得た。得られた生成物のH-NMR測定(DMSO-d溶媒中)より、1,2,4,5-テトラカルボン酸ジエチルエステルが約76.5%、1,2,4,5-テトラカルボン酸ジイソプロピルエステルが約1.6%、モノエチルエステルとモノイソプロピルエステルのそれぞれが結合した1,2,4,5-テトラカルボン酸が約21.9%存在する混合物であった。
 前記で得られた溶液に、製造例4で作製した4-(2-フェニルエチニル)フタル酸モノエチルエステル119.16g(0.48mol)を入れ、窒素雰囲気下とした後に密閉し、約70℃にて攪拌を続けた。攪拌開始後30分後に均一に溶解した溶液を得た。2-フェニル-4,4’-ジアミノジフェニルエーテル530.57g(1.92mol)を加えて攪拌を続け、その後、約30分後に攪拌を停止させ、末端変性ポリイミド樹脂原料組成物がエタノールに均一に溶解したワニスを得た。
 このワニスをガラス製のシャーレに移し、循環式のエアーオーブン内にて内部温度60℃で3時間加温し、さらに250℃で1時間加温することで、エタノールを除去しながらアミド酸結合生成反応ならびにイミド結合生成反応を行い、末端変性イミドオリゴマーを得た。得られた末端変性イミドオリゴマーは、前記一般式(5)において、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表し、RおよびRが2-フェニル-4,4’-ジアミノジフェニルエーテル残基で表され、平均としてm=7、n=0である。
 硬化前の粉末状の末端変性イミドオリゴマーのTgは、DSC測定結果より245℃であり、最低溶融粘度は410Pa・s(340℃)であった。この粉末状の末端変性イミドオリゴマーの一部を表面平滑性に優れたポリイミドフィルム(商品名:UPILEX-75S、厚さ:75μm、サイズ:15cm角、宇部興産株式会社製)2枚の間に挿入し、370℃で1時間加圧し、冷却後に剥離することにより、赤褐色の透明であるフィルム状の硬化物(厚さ86μm)を得た。このフィルム状イミド樹脂組成物の一部を使用したIRスペクトル測定より、末端変性イミドオリゴマーの末端基PEPAに含まれる三重結合の伸縮振動に由来する2210cm-1付近の吸収が消失していたことから、本加圧加熱成形によってフィルム状イミド樹脂組成物中で末端変性イミドオリゴマー成分が熱付加反応により高分子量化していることが示された。このフィルム状の硬化物のTgは、DSC測定より332℃、DMA測定より333℃、TGAによる5%重量減少温度は538℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.2GPa、破断強度が144MPa、破断伸びが33%であった。
(実施例6)
 100mLのサンプル瓶中に、(B)2-フェニル-4,4’-ジアミノジフェニルエーテル4.446g(16.1mmol)とアセトン6.8g(117.1mmol)を加えて完全に溶解させた後に、製造例2で作製した(A)1,2,4,5-ベンゼンテトラカルボン酸ジエチルエステル4.000g(12.9mmol)および製造例4で作製した(C)4-(2-フェニルエチニル)フタル酸モノエチルエステル1.913g(6.5mmol)を入れ、容器内を窒素雰囲気下とした後に密閉し、室温にて懸濁した状態にて撹拌を開始した。撹拌開始後にエステル化合物が溶媒に徐々に溶解され始めたのを確認し、撹拌開始後60分で完全に均一に溶解した。その後、攪拌を続け、攪拌開始後から24時間後に攪拌を停止させ、末端変性ポリイミド樹脂原料組成物がアセトンに均一に溶解したワニスを得た。
 このワニスをガラス製のシャーレに移し、循環式のエアーオーブン内にて内部温度60℃で3時間加温し、さらに200℃で1時間加温することで、アセトンを除去しながらアミド酸結合生成反応ならびにイミド結合生成反応を行い、末端変性イミドオリゴマーを得た。得られた末端変性イミドオリゴマーは、前記一般式(5)において、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表し、RおよびRが2-フェニル-4,4’-ジアミノジフェニルエーテル残基で表され、平均としてm=4、n=0である。
 硬化前の粉末状の末端変性イミドオリゴマーのTgは、DSC測定結果より210℃であり、最低溶融粘度は80Pa・sec(340℃)であった。この粉末状の末端変性イミドオリゴマーの一部を表面平滑性に優れたポリイミドフィルム(商品名:UPILEX-75S、厚さ:75μm、サイズ:15cm角、宇部興産株式会社製)2枚の間に挿入し、370℃で1時間加圧し、冷却後に剥離することにより、赤褐色の透明であるフィルム状の硬化物(厚さ90μm)を得た。このフィルム状イミド樹脂組成物の一部を使用したIRスペクトル測定により、末端変性イミドオリゴマーの末端基であるフェニルエチニル部位から、本加圧加熱成形によってフィルム状イミド樹脂組成物中で末端変性イミドオリゴマー成分が熱付加反応によって高分子量化していることが示された。このフィルム状の硬化物のTgは、DSC測定より342℃、DMA測定より338℃、TGAによる5%重量減少温度は538℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.1GPa、破断強度が140MPa、破断伸びが28%であった。
(実施例7)
100mLのサンプル瓶中に、製造例3で作製した1,2,4,5-ベンゼンテトラカルボン酸ジイソプロピルエステル4.541g(14.00mmol)および製造例4で作製した4-(2-フェニルエチニル)フタル酸モノエチルエステル1.177g(4.00mmol)、1,4-ジオキサン3.4g(38.6mmol)を入れ、容器内を窒素雰囲気下とした後に密閉し、約70℃にて懸濁した状態で攪拌を続けた。攪拌開始後60分後に2-フェニル-4,4’-ジアミノジフェニルエーテル4.421g(16.0mmol)を加えて攪拌を続け、その後、約30分後に攪拌を停止させ、末端変性ポリイミド樹脂原料組成物がエタノールに均一に溶解したワニスを得た。
 このワニスをガラス製のシャーレに移し、循環式のエアーオーブン内にて内部温度100℃で3時間加温し、さらに250℃で1時間加温することで、1,4-ジオキサンを除去しながらアミド酸結合生成反応ならびにイミド結合生成反応を行い、末端変性イミドオリゴマーを得た。得られた末端変性イミドオリゴマーは、前記一般式(5)において、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表し、RおよびRが2-フェニル-4,4’-ジアミノジフェニルエーテル残基で表され、平均としてm=7、n=0である。
 硬化前の粉末状の末端変性イミドオリゴマーのTgは、DSC測定結果より244℃であり、最低溶融粘度は380Pa・s(340℃)であった。この粉末状の末端変性イミドオリゴマーの一部を表面平滑性に優れたポリイミドフィルム(商品名:UPILEX-75S、厚さ:75μm、サイズ:15cm角、宇部興産株式会社製)2枚の間に挿入し、370℃で1時間加圧し、冷却後に剥離することにより、赤褐色の透明であるフィルム状の硬化物(厚さ96μm)を得た。このフィルム状イミド樹脂組成物の一部を使用したIRスペクトル測定より、末端変性イミドオリゴマーの末端基PEPAに含まれる三重結合の伸縮振動に由来する2210cm-1付近の吸収が消失していたことから、本加圧加熱成形によってフィルム状イミド樹脂組成物中で末端変性イミドオリゴマー成分が熱付加反応により高分子量化していることが示された。このフィルム状の硬化物のTgは、DSC測定より340℃、DMA測定より338℃、TGAによる5%重量減少温度は538℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.1GPa、破断強度が139MPa、破断伸びが32%であった。
(比較例3)
 温度計、攪拌子、窒素導入管を備えた3つ口の100mLフラスコに、2-フェニル-4,4’-ジアミノジフェニルエーテル3.484g(12.6mmol)と9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン0.488g(1.4mmol)とN-メチル-2-ピロリドン10mLを加え、溶解後、1,2,4,5-ベンゼンテトラカルボン酸二無水物2.619g(12.0mmol)とN-メチル-2-ピロリドン0.8mLを入れ、窒素気流下、室温で2.5時間、60℃で1.5時間、さらに室温で1時間重合反応させアミド酸オリゴマーを生成した。この反応溶液に4-(2-フェニルエチニル)無水フタル酸0.993g(4mmol)を入れ、窒素気流下、室温で12時間反応させ末端変性し、続けて195℃で5時間攪拌しイミド結合させた。
 冷却後、反応液を900mLのイオン交換水に投入し、析出した粉末を濾別した。80mLのメタノールで30分洗浄し、濾別して得られた粉末を130℃で1日間減圧乾燥し、生成物を得た。得られた末端変性イミドオリゴマーは、前記一般式(5)において、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表し、RおよびRが2-フェニル-4,4’-ジアミノジフェニルエーテル残基または9,9-ビス(4-アミノフェニル)フルオレン残基で表され、平均としてm=6、n=1である。
 硬化前の粉末状の末端変性イミドオリゴマーのTgは、DSC測定結果より213℃であり、最低溶融粘度は9036Pa・sec(346℃)であった。この粉末状の末端変性イミドオリゴマーの一部を表面平滑性に優れたポリイミドフィルム(商品名:UPILEX-75S、厚さ:75μm、サイズ:15cm角、宇部興産株式会社製)2枚の間に挿入し、370℃で1時間加圧し、冷却後に剥離することにより、赤褐色の透明であるフィルム状の硬化物(厚さ100μm)を得た。このフィルム状イミド樹脂組成物の一部を使用したIRスペクトル測定より、末端変性イミドオリゴマーの末端基であるフェニルエチニル部位に含まれる三重結合の伸縮振動に由来する2210cm-1付近の吸収が消失していたことから、本加圧加熱成形によってフィルム状イミド樹脂組成物中で末端変性イミドオリゴマー成分が熱付加反応により高分子量化していることが示された。この得られたフィルム状の硬化物のTgはDSC測定より356℃、DMA測定より、356℃、TGAによる5%重量減少温度は538℃であった。また、このフィルム形状の硬化物の引張試験による力学的性質は、弾性率が3.2GPa、破断強度が132MPa、破断伸びが15%であった。
 実施例1~7で得られたワニスは、いずれも、真空乾燥させたものはメタノールなどの有機溶剤への溶解性に優れたものであった。
 また、実施例1~7で得られたワニスを-5℃の冷凍庫中に静置保管し、数ヵ月後に取り出し、室温まで解凍し、溶液状態を確認したところ、沈殿の析出やゲル化は見られなかった。また、GPC測定においては、冷凍保管前後で同一のGPC曲線が得られたことから、本発明で作製したワニスは優れた長期貯蔵安定性を有することがわかった。
 また、実施例1~7で得られたワニスを加熱して得られた固体状のイミド樹脂組成物は、いずれも最低溶融粘度が300℃を超えており優れた高温溶融流動性を備えたものであり、また、成形加工性に優れたものであった。
 また、実施例1~7で得られた固体状のイミド樹脂組成物を溶融させた状態で加熱して高分子量化して得られたフィルム状の成形体は、いずれもTgが300℃を超えており、また、500℃を超える高温でもほとんど熱分解を起こさないことから、極めて高い耐熱性を有したものであり、加えて、高い破断強度および破断伸びを有するものであることがわかる。
 また、実施例1~7で得られたワニスは、比較例1~3で得られたワニスに比べて、低沸点の有機溶剤を使用していることから、短時間で容易に有機溶剤を系外に除去することができ、優れた熱的物性を有するポリイミド粉末を特別な精製操作(再沈殿)を必要とすることなく簡便に得られることが分かる。
(製造例5)
 温度計、攪拌子、窒素導入管、還流管を備えた4つ口の1000mLフラスコに、1,2,4,5-テトラカルボン酸二無水物を80.40g(368.6mmol)および4-(2-フェニルエチニル)無水フタル酸26.14g(105.3mmol)を入れ、エタノール109.00g(2.36mol)を添加し、窒素気流下にて懸濁した状態で105℃にて加熱還流しながら攪拌を開始した。攪拌開始後に酸無水物が溶媒に徐々に溶解されるのが確認され、攪拌開始から約60分ですべて完全に溶解された。さらに攪拌を続けると、溶媒に不溶の沈殿物の析出が一部確認され、攪拌開始後から120分後に加熱を停止して室温まで冷却し、懸濁溶液を得た。理論上、この懸濁溶液中には、(A)成分として、1,2,4,5-テトラカルボン酸ジエチルエステルおよび(C)成分として4-(2-フェニルエチニル)フタル酸モノエチルエステルが生成されていた。
 その後、この懸濁溶液に2-フェニル-4,4’-ジアミノジフェニルエーテル104.77g(379.1mmol)および9,9-ビス(4-(4-アミノフェノキシ)フェニル)フルオレン14.68g(42.1mmol)およびメタノール17.54g(547.4mmol)を加え、フラスコ内を窒素雰囲気下とした後に密閉し、室温にて懸濁した状態で攪拌を開始した。攪拌開始後に沈殿物が溶媒に徐々に溶解され始めたのを確認し、攪拌開始後60分で完全に均一に溶解した。その後、攪拌を続け、攪拌開始後から24時間後に攪拌を停止させ、末端変性ポリイミド樹脂原料組成物がエタノールとメタノールの混合溶媒に均一に溶解したワニス(固形分濃度:約70重量%)を得た。
(実施例8)
 製造例5で作製したワニスの一部をあらかじめアセトンにて脱サイジング処理した12.5cm×12.5cmの大きさの東邦テナックス社製「べスファイトIM-600 6K」の平織材(繊維目付195g/m、炭素繊維製)に含浸させて、末端変性ポリイミド樹脂原料組成物が付着したウエットプリプレグを20枚作製した。得られたウエットプリプレグ中に占める末端変性ポリイミド樹脂原料組成物の平均含有量は約46重量%、平均溶媒含有量は約12重量%、炭素繊維の平均含有量は約42重量%であった。
(実施例9)
 実施例8で作製した末端変性ポリイミド樹脂原料組成物が付着したウエットプリプレグ3枚を循環式のエアーオーブン内にて内部温度200℃で1時間加温することで、プリプレグ中のアルコール成分を除去しながらアミド酸結合生成反応ならびにイミド結合生成反応を行い、末端変性イミドオリゴマーのドライイミドプリプレグを得た。得られたドライイミドプリプレグ中に占める末端変性イミドオリゴマーの平均含有量は約47重量%、炭素繊維の平均含有量は約53重量%であった。
 得られたドライイミドプリプレグを目視で外観の検査をしたところ、均一に樹脂が炭素繊維の表面と内部に付着していたことから、樹脂とプリプレグ間の密着性に優れたイミドプリプレグであることがわかった。
(実施例10)
 30cm×30cmのステンレス板上に、剥離フィルムとしてポリイミドフィルムを置き、その上に実施例8で作製した末端変性ポリイミド樹脂原料組成物のウエットプリプレグ12枚を積層した。さらにポリイミドフィルムとステンレス板を重ね、ホットプレス上、昇温速度約5℃/分で室温から80℃まで加熱し、80℃で1時間加熱した。その後、昇温速度約5℃/分で80℃から200℃まで加熱し、200℃で1時間加熱した。その後、昇温速度約5℃/分で200℃から260℃まで加熱し、260℃で1時間加熱した。その後、1.3MPaの圧力条件下、昇温速度約5℃/分で370℃まで昇温し、そのまま370℃で1時間加熱加圧させた。外観検査から判断して表面が非常に平滑で繊維間に樹脂が均一に含浸された良好な繊維強化複合材料積層板が得られた。得られた積層板のガラス転移温度(DSC)は、356℃に観測され、繊維体積含有率(Vf)は0.48であり、樹脂含有量は37wt%であった。
 なお、DMA測定やTGA測定を用いることで、得られた繊維強化複合材料積層板において、ワニス含まれていたエタノールとメタノールなどの低沸点の有機溶剤は前記加熱処理により完全に除去されていることを確認した。
 得られた繊維強化複合材料積層板は、ガラス転移温度が300℃を超えることから耐熱性に優れたものであり、また、3点曲げ法によるショートビームシェア試験による相間せん断強度が約70MPaの値を示したことから機械特性にも優れることがわかる。
 また、前記積層板の内部を超音波深傷検査や光学顕微鏡を使用した断面観察で観察したところ、空隙がなかったことから、極めて高品質の繊維強化複合材料であることがわかる。
(比較例4)
 100mLのサンプル瓶中に、p-フェニレンジアミン1.741g(16.1mmol)とメタノール6.8g(212.2mmol)を加えて完全に溶解させた後に、製造例2で作製した1,2,4,5-ベンゼンテトラカルボン酸ジエチルエステル4.000g(12.9mmol)および製造例4で作製した4-(2-フェニルエチニル)フタル酸モノエチルエステル1.913g(6.5mmol)を入れ、容器内を窒素雰囲気下とした後に密閉し、室温にて懸濁した状態で攪拌を開始した。攪拌開始後にエステル化合物が溶媒に徐々に溶解され始めたのを確認し、攪拌開始後60分で完全に均一に溶解した。その後、攪拌を続け、攪拌開始後から24時間後に攪拌を停止させ、末端変性ポリイミド樹脂原料組成物がメタノールに均一に溶解したワニスを得た。
 このワニスをガラス製のシャーレに移し、循環式のエアーオーブン内にて内部温度60℃で3時間加温し、さらに200℃で1時間加温することで、メタノールを除去しながらアミド酸結合生成反応ならびにイミド結合生成反応を行い、末端変性イミドオリゴマーを得た。得られた末端変性イミドオリゴマーは、前記一般式(5)において、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表し、RおよびRがp-フェニレンジアミン残基で表され、平均としてm=0、n=4である。
 硬化前の粉末状の末端変性イミドオリゴマーは、300℃以上に加熱しても溶融せず、硬化樹脂フィルムを得ることはできなかった。
(比較例5)
 100mLのサンプル瓶中に、1,3-ビス(4-アミノフェノキシ)ベンゼン4.707g(16.1mmol)とメタノール6.8g(212.2mmol)を加えて完全に溶解させた後に、製造例2で作製した1,2,4,5-ベンゼンテトラカルボン酸ジエチルエステル4.000g(12.9mmol)および製造例4で作製した4-(2-フェニルエチニル)フタル酸モノエチルエステル1.913g(6.5mmol)を入れ、容器内を窒素雰囲気下とした後に密閉し、室温にて懸濁した状態で攪拌を開始した。攪拌開始後にエステル化合物が溶媒に徐々に溶解され始めたのを確認し、攪拌開始後60分で完全に均一に溶解した。その後、攪拌を続け、攪拌開始後から24時間後に攪拌を停止させ、末端変性ポリイミド樹脂原料組成物がメタノールに均一に溶解したワニスを得た。
 このワニスをガラス製のシャーレに移し、循環式のエアーオーブン内にて内部温度60℃で3時間加温し、さらに200℃で1時間加温することで、メタノールを除去しながらアミド酸結合生成反応ならびにイミド結合生成反応を行い、末端変性イミドオリゴマーを得た。得られた末端変性イミドオリゴマーは、前記一般式(5)において、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表し、RおよびRが1,3-ビス(4-アミノフェノキシ)ベンゼン残基で表され、平均としてm=0、n=4である。
 硬化前の粉末状の末端変性イミドオリゴマーは、300℃以上に加熱しても溶融せず、硬化樹脂フィルムを得ることはできなかった。
 本発明は、アルコール等の低沸点の有機溶剤に対する溶解性、溶液保存安定性に優れたワニスを提供でき、それら用いて作製された末端変性イミドオリゴマーが優れた成形性を発現するとともに、加熱硬化後には耐熱性、ならびに靭性、機械的特性の高い硬化物を得ることができる。
 また、前記ワニスを繊維に含浸したプリプレグやイミドプリプレグを利用して複合材成形を行うことにより、加熱硬化中に有機溶剤を完全に除去することができるため非常に優れた機械強度に優れ、かつ高い耐熱性を有する繊維強化複合材料を簡便に得ることができる。そのため、航空機や宇宙産業用機器をはじめとして易成形性かつ高耐熱性が求められる部材の材料として、広い分野で利用可能な材料である。

Claims (14)

  1.  以下の(A)~(D)成分を含み、(A)、(B)および(C)成分が、溶解した状態で含まれているワニス。
    (A)一般式(1)で表される芳香族テトラカルボン酸ジエステル類、1~500重量部、
    (B)2-フェニル-4,4’-ジアミノジフェニルエーテル、1~450重量部、
    (C)一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステル、1~400重量部、
    (D)1気圧での沸点が150℃以下である有機溶剤、または2種類以上の前記有機溶剤の混合物、100重量部
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは芳香族テトラカルボン酸ジエステル類残基を表す。また、RおよびRは同一もしくは異なる脂肪族系もしくは芳香族系の有機基を表し、互いにシスもしくはトランスの関係にある位置に存在し、単一もしくはこれら2つの異性体混合物であってもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、RおよびRは、水素原子または脂肪族系もしくは芳香族系の有機基を表し、いずれか1つが脂肪族系または芳香族系の有機基を表す。)
  2.  前記一般式(1)において、Rで表される芳香族テトラカルボン酸ジエステル類の残基が、1,2,4,5-ベンゼンテトラカルボン酸類の4価残基である請求項1に記載のワニス。
  3.  前記一般式(1)において、Rで表される芳香族テトラカルボン酸ジエステル類の残基が、3,3’,4,4’-ビフェニルテトラカルボン酸類の4価残基である請求項1に記載のワニス。
  4.  前記一般式(1)において、Rが1,2,4,5-ベンゼンテトラカルボン酸類の4価残基で表される4価の芳香族テトラカルボン酸ジエステル類と、前記一般式(1)において、Rが3,3’,4,4’-ビフェニルテトラカルボン酸類の4価残基で表される芳香族テトラカルボン酸ジエステル類と、前記一般式(1)において、Rがビス(3,4-カルボキシフェニル)エーテル類の4価残基で表される芳香族テトラカルボン酸ジエステル類のうち、2つ以上を併用してなる請求項1に記載のワニス。 
  5.  2-フェニル-4,4’-ジアミノジフェニルエーテルと2種類以上の2価の芳香族ジアミンを併用してなる請求項1から4のいずれか1項に記載のワニス。
  6.  請求項1から5のいずれか1項に記載のワニスを加熱し、有機溶剤を除去してなる一般式(3)で表される固体状のイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、RおよびRは水素原子またはフェニル基であっていずれか一方がフェニル基を表す。RおよびRは同一または異なって2価の芳香族ジアミン類の残基を表し、R10およびR11は同一または異なって4価の芳香族テトラカルボン酸類残基を表す。mおよびnは、m≧1、n≧0、1≦m+n≦10および0.05≦m/(m+n)≦1の関係を満たし、繰り返し単位の配列はブロック的、ランダム的のいずれであってもよい。)
  7.  請求項6に記載の固体状イミド樹脂組成物を溶融させた状態でさらに加熱することにより高分子量化してなるイミド樹脂組成物の成形体。
  8.  ガラス転移温度(Tg)が300℃以上である、請求項7に記載のイミド樹脂組成物の成形体。
  9.  引張破断伸びが10%以上である、請求項7または8のいずれか1項に記載のイミド樹脂組成物の成形体から得られるフィルム。
  10.  請求項1から5のいずれか1項に記載のワニスを繊維に含浸させてなるプリプレグ。
  11.  請求項10に記載のプリプレグをさらに加熱してなるイミドプリプレグ。
  12.  請求項10に記載のプリプレグまたは請求項11に記載のイミドプリプレグを積層し、加熱硬化してなる繊維強化複合材料。
  13.  ガラス転移温度(Tg)が300℃以上である、請求項12に記載の繊維強化複合材料。
  14.  芳香族テトラカルボン酸無水物、4-(2-フェニルエチニル)無水フタル酸を1気圧での沸点が150℃以下である有機溶剤に溶解させた状態で加熱することにより、前記一般式(1)で表される芳香族テトラカルボン酸ジエステル類を作製し、これと前記一般式(2)で表される4-(2-フェニルエチニル)フタル酸モノエステル類を含む1気圧での沸点が150℃以下である有機溶剤の溶液を調製し、さらに2-フェニル-4,4’-ジアミノジフェニルエーテルを含むジアミン類を添加して、均一に溶解してなる請求項1に記載のワニスの製造方法。
PCT/JP2015/061968 2014-05-12 2015-04-20 2-フェニル-4,4'-ジアミノジフェニルエーテル類を用いたワニス、および成形性に優れるイミド樹脂組成物および優れた破断伸びを有する硬化樹脂成形体ならびにそれらを用いたプリプレグ、イミドプリプレグおよび耐熱性および機械強度に優れる繊維強化素材 WO2015174217A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15793478.7A EP3144338B1 (en) 2014-05-12 2015-04-20 Varnish including 2-phenyl-4,4'-diaminodiphenyl ether, imide resin composition having excellent moldability, cured resin molded article having excellent breaking elongation, prepreg thereof, imide prepreg thereof, and fiber-reinforced material thereof having high heat resistance and excellent mechanical strength
CN201580036849.7A CN106661225B (zh) 2014-05-12 2015-04-20 清漆、酰亚胺树脂组合物、及固化树脂成形体、预浸料、纤维强化材料
US15/310,292 US10047246B2 (en) 2014-05-12 2015-04-20 Varnish including 2-phenyl-4,4′-diaminodiphenyl ether, imide resin composition having excellent moldability, cured resin molded article having excellent breaking elongation, prepreg thereof, imide prepreg thereof, and fiber-reinforced material thereof having high heat resistance and excellent mechanical strength

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-098682 2014-05-12
JP2014098682 2014-05-12

Publications (1)

Publication Number Publication Date
WO2015174217A1 true WO2015174217A1 (ja) 2015-11-19

Family

ID=54479761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061968 WO2015174217A1 (ja) 2014-05-12 2015-04-20 2-フェニル-4,4'-ジアミノジフェニルエーテル類を用いたワニス、および成形性に優れるイミド樹脂組成物および優れた破断伸びを有する硬化樹脂成形体ならびにそれらを用いたプリプレグ、イミドプリプレグおよび耐熱性および機械強度に優れる繊維強化素材

Country Status (5)

Country Link
US (1) US10047246B2 (ja)
EP (1) EP3144338B1 (ja)
JP (1) JP6604588B2 (ja)
CN (1) CN106661225B (ja)
WO (1) WO2015174217A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195393A1 (ja) * 2016-05-09 2017-11-16 株式会社カネカ 末端変性イミドオリゴマー、ワニス、それらの硬化物、フィルム、並びにそれらを用いたイミドプリプレグおよび繊維強化複合材料
WO2018180930A1 (ja) * 2017-03-30 2018-10-04 株式会社カネカ セミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法
JP2020164730A (ja) * 2019-03-29 2020-10-08 株式会社カネカ イミドプリプレグ、複合材料および耐熱性絶縁部品

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019226641A1 (en) * 2018-05-21 2019-11-28 Kaneka Americas Holding, Inc. Varnish of polyimide having high heat resistance and excellent mechanical strength
CN112888726B (zh) * 2018-10-02 2023-10-03 钟化美洲控股公司 用于模制聚酰亚胺复合材料的新型酰胺酸低聚物工艺
WO2020071483A1 (ja) * 2018-10-03 2020-04-09 株式会社カネカ 未硬化積層板、強化繊維複合材料、およびそれらの製造方法
WO2020149116A1 (ja) * 2019-01-18 2020-07-23 株式会社カネカ イミドオリゴマー、ワニス、それらの硬化物、並びにそれらを用いたプリプレグ及び繊維強化複合材料
JP7250593B2 (ja) * 2019-03-29 2023-04-03 株式会社カネカ 粒子状イミドオリゴマーおよびその製造方法
US20210017337A1 (en) * 2019-07-19 2021-01-21 Shin-Etsu Chemical Co., Ltd. Aromatic bismaleimide compound, production method thereof, and heat-curable cyclic imide resin composition containing the compound
WO2021199898A1 (ja) * 2020-03-30 2021-10-07 株式会社カネカ 特定の組成を有するポリアミド酸、ワニス、硬化物、複合材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308519A (ja) * 2005-05-31 2007-11-29 Ube Ind Ltd 加熱硬化性溶液組成物および未硬化樹脂複合体
WO2008127809A1 (en) * 2007-03-13 2008-10-23 United States of America as represented by the Administration of the National Aeronautics and Space Administration Composite insulated conductor
WO2010027020A1 (ja) * 2008-09-03 2010-03-11 株式会社カネカ 2-フェニル-4,4’-ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3551846B2 (ja) * 1998-11-25 2004-08-11 宇部興産株式会社 末端変性イミドオリゴマ−およびその硬化物
JP4133561B2 (ja) * 2003-05-07 2008-08-13 Jsr株式会社 ポリアミック酸オリゴマー、ポリイミドオリゴマー、溶液組成物、および繊維強化複合材料
JP4263182B2 (ja) 2005-05-09 2009-05-13 独立行政法人 宇宙航空研究開発機構 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物
US20090305046A1 (en) * 2006-07-20 2009-12-10 Tsuyoshi Bito Thermocurable Polyimide Resin Composition
JP5765801B2 (ja) * 2011-03-18 2015-08-19 株式会社カネカ 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた成形性に優れたレジントランスファー成形用末端変性イミドオリゴマー、その混
EP2829563B1 (en) 2012-03-19 2016-05-18 Ube Industries, Ltd. Heat-curable solution composition, and cured product, prepreg and fiber-reinforced composite material using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308519A (ja) * 2005-05-31 2007-11-29 Ube Ind Ltd 加熱硬化性溶液組成物および未硬化樹脂複合体
WO2008127809A1 (en) * 2007-03-13 2008-10-23 United States of America as represented by the Administration of the National Aeronautics and Space Administration Composite insulated conductor
WO2010027020A1 (ja) * 2008-09-03 2010-03-11 株式会社カネカ 2-フェニル-4,4’-ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195393A1 (ja) * 2016-05-09 2017-11-16 株式会社カネカ 末端変性イミドオリゴマー、ワニス、それらの硬化物、フィルム、並びにそれらを用いたイミドプリプレグおよび繊維強化複合材料
JPWO2017195393A1 (ja) * 2016-05-09 2019-02-28 株式会社カネカ 末端変性イミドオリゴマー、ワニス、それらの硬化物、フィルム、並びにそれらを用いたイミドプリプレグおよび繊維強化複合材料
US10526450B2 (en) 2016-05-09 2020-01-07 Kaneka Corporation Terminally modified imide oligomer, varnish, cured products thereof, film, and imide prepreg and fiber-reinforced composite material using these
WO2018180930A1 (ja) * 2017-03-30 2018-10-04 株式会社カネカ セミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法
CN110494477A (zh) * 2017-03-30 2019-11-22 株式会社钟化 半浸料、预浸料、树脂复合材料及它们的制造方法
JPWO2018180930A1 (ja) * 2017-03-30 2020-02-06 株式会社カネカ セミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法
JP7016082B2 (ja) 2017-03-30 2022-02-04 株式会社カネカ セミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法
CN110494477B (zh) * 2017-03-30 2022-03-29 株式会社钟化 半浸料、预浸料、树脂复合材料及它们的制造方法
US11492446B2 (en) 2017-03-30 2022-11-08 Kaneka Corporation Semipreg, prepreg, resin composite material, and production methods thereof
JP2020164730A (ja) * 2019-03-29 2020-10-08 株式会社カネカ イミドプリプレグ、複合材料および耐熱性絶縁部品
JP7475816B2 (ja) 2019-03-29 2024-04-30 株式会社カネカ イミドプリプレグ、複合材料および耐熱性絶縁部品

Also Published As

Publication number Publication date
EP3144338A4 (en) 2018-01-03
CN106661225B (zh) 2019-09-10
JP2015232117A (ja) 2015-12-24
JP6604588B2 (ja) 2019-11-13
EP3144338B1 (en) 2023-10-25
CN106661225A (zh) 2017-05-10
US10047246B2 (en) 2018-08-14
US20170152399A1 (en) 2017-06-01
EP3144338A1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6604588B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いたワニス、および成形性に優れるイミド樹脂組成物および優れた破断伸びを有する硬化樹脂成形体ならびにそれらを用いたプリプレグ、イミドプリプレグおよび耐熱性および機械強度に優れる繊維強化素材
JP5522479B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板
JP6202554B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた末端変性イミドオリゴマーとオキシジフタル酸類を用いた芳香族熱可塑性ポリイミドにより作製されたポリイミド樹脂組成物、およびワニス、および耐熱性や機械的特性に優れたポリイミド樹脂組成物成形体、およびプリプレグ、およびその繊維強化複合材料
JP4787552B2 (ja) 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物
US10526450B2 (en) Terminally modified imide oligomer, varnish, cured products thereof, film, and imide prepreg and fiber-reinforced composite material using these
JP6332528B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた末端変性イミドオリゴマーとオキシジフタル酸類を用いた芳香族熱可塑性ポリイミドにより作製されたポリイミド樹脂組成物、およびワニス、および耐熱性や機械的特性に優れたポリイミド樹脂組成物成形体、およびプリプレグ、およびその繊維強化複合材料
JP4263182B2 (ja) 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物
JP5765801B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた成形性に優れたレジントランスファー成形用末端変性イミドオリゴマー、その混
JP4968540B2 (ja) 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物
JP2009263570A (ja) 末端変性イミドオリゴマーおよびワニス並びにその高弾性率硬化物
JP4042861B2 (ja) イミドプリプレグおよび積層板
WO2019226641A9 (en) Varnish of polyimide having high heat resistance and excellent mechanical strength
JP2022502535A (ja) ポリイミド複合材を成形するための新規アミド酸オリゴマーの製造方法
JP7418737B2 (ja) イミドオリゴマー、ワニス、それらの硬化物、並びにそれらを用いたプリプレグ及び繊維強化複合材料
JP2011184492A (ja) 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物
JP2022021887A (ja) イミドオリゴマー、ワニス、それらの硬化物、並びにそれらを用いたプリプレグ及び繊維強化複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793478

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15310292

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015793478

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015793478

Country of ref document: EP