WO2018180469A1 - ポリオレフィン樹脂複合材及びその製造方法 - Google Patents

ポリオレフィン樹脂複合材及びその製造方法 Download PDF

Info

Publication number
WO2018180469A1
WO2018180469A1 PCT/JP2018/009757 JP2018009757W WO2018180469A1 WO 2018180469 A1 WO2018180469 A1 WO 2018180469A1 JP 2018009757 W JP2018009757 W JP 2018009757W WO 2018180469 A1 WO2018180469 A1 WO 2018180469A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin resin
cellulose
resin composite
propylene
copolymer
Prior art date
Application number
PCT/JP2018/009757
Other languages
English (en)
French (fr)
Inventor
宰慶 金
英史 小澤
中島 康雄
八木 健
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2019509210A priority Critical patent/JP7042802B2/ja
Priority to EP18776773.6A priority patent/EP3604424B1/en
Priority to CN201880009893.2A priority patent/CN110248993B/zh
Publication of WO2018180469A1 publication Critical patent/WO2018180469A1/ja
Priority to US16/571,957 priority patent/US11485837B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming

Definitions

  • the present invention relates to a polyolefin resin composite material and a method for producing the same.
  • Cellulose is a renewable natural resource abundant on the earth.
  • Cellulose has characteristics such as light weight and high strength and has been studied for use as a resin reinforcing material, and its possibility has been attracting attention.
  • Patent Document 1 discloses melt kneading a resin component made of aliphatic polyester and a fiber component made of pulp and / or cellulosic fibers subjected to specific pretreatment in the presence of a cellulose amorphous region swelling agent.
  • a production method for obtaining a high-strength and high-rigidity aliphatic polyester composition including a treatment step is described.
  • Cellulose fibers have a high hydrophilicity, and therefore, when mixed with a highly hydrophilic resin, it is easy to adapt and it is easy to prepare a composite material in which cellulose fibers are uniformly dispersed in the resin.
  • the affinity of cellulose fibers to a highly hydrophobic resin such as polyolefin resin is poor, and relatively large aggregates of cellulose fibers (also referred to as cellulose aggregates) even when the polyolefin resin and cellulose fibers are melt-kneaded. It will occur.
  • an object of the present invention is to provide a polyolefin resin composite in which the size of the cellulose aggregate is sufficiently small and the polyolefin resin and cellulose are integrated with a high degree of uniformity.
  • the inventors have mixed the polyolefin resin and the cellulose fiber at a predetermined ratio, and melt-kneaded in the presence of water, thereby reducing the size of the cellulose aggregate formed in the obtained molded body.
  • the present inventors have found the fact that it can be made sufficiently small and, as a result, the integrity of the polyolefin resin and the cellulose fiber can be enhanced.
  • the present invention has been further studied based on these findings and has been completed.
  • a polyolefin resin composite comprising a polyolefin resin and 10 to 150 parts by mass of cellulose fibers with respect to 100 parts by mass of the polyolefin resin, wherein the area of the aggregate of the cellulose fibers is less than 20,000 ⁇ m 2 .
  • polyolefin resin composite according to ⁇ 1> or ⁇ 2>, wherein the polyolefin resin is at least one of polyethylene, polypropylene, and acrylonitrile / butadiene / styrene copolymer.
  • a method for producing a polyolefin resin composite comprising a step of mixing a polyolefin resin, 10 to 150 parts by mass of cellulose fibers with respect to 100 parts by mass of the polyolefin resin, and water, and kneading and kneading.
  • ⁇ 5> The method for producing a polyolefin resin composite according to ⁇ 4>, wherein the amount of water mixed in the melt-kneading is 1 to 150 parts by mass with respect to 100 parts by mass of cellulose fibers.
  • ⁇ 6> The method for producing a polyolefin resin composite according to ⁇ 4> or ⁇ 5>, wherein an area of the aggregate of cellulose fibers generated in the obtained polyolefin resin composite is less than 20,000 ⁇ m 2 .
  • the polyolefin resin composite material of the present invention is a resin material in which the size of cellulose aggregates in the composite material is sufficiently small and highly uniformly dispersed. According to the method for producing a polyolefin resin composite of the present invention, a polyolefin resin composite in which the size of the cellulose aggregate formed in the composite can be sufficiently reduced and the polyolefin resin and the cellulose fiber are integrated with high uniformity is obtained. Obtainable.
  • FIGS. 1 (a) to 1 (d) are images taken in “Method for Measuring Area of Cellulose Aggregate” in [Example].
  • FIG. 1A is an image obtained by photographing the polyolefin resin composite pellets obtained in Comparative Example 1 according to the cellulose aggregate area calculation method described later, and FIG. 1B shows the determination of the area of the cellulose aggregate. Therefore, the image processing of FIG. 1A is performed.
  • FIG. 1C is an image obtained by photographing the polyolefin resin composite pellets obtained in Example 1 according to the cellulose aggregate area calculation method described later, and FIG. 1D shows the area of the cellulose aggregate.
  • FIG. 1C is image-processed for determination.
  • the polyolefin resin composite material of the present invention contains at least 10 to 150 parts by mass of cellulose fibers with respect to 100 parts by mass of the polyolefin resin, and the area of cellulose aggregates present in the composite material is 20,000 ⁇ m 2 (20,000 ⁇ m). 2 ) less than.
  • the area of the cellulose aggregate does not mean the surface area of the cellulose aggregate, but is measured by extending the polyolefin resin composite to a predetermined thickness and observing it in plan view, as will be described later. It means the area in plan view of the cellulose aggregate.
  • the components used for the polyolefin resin composite of the present invention will be described.
  • the polyolefin resin is a resin obtained by polymerizing at least one olefin, and may be a homopolymer or a copolymer.
  • olefin is used in a broad sense. That is, the case where the hydrocarbon compound having a carbon-carbon double bond further has a substituent in addition to the unsubstituted hydrocarbon compound having a carbon-carbon double bond is included.
  • olefins examples include ⁇ -olefins having 4 to 12 carbon atoms including ethylene, propylene, isobutylene, isobutene (1-butene), butadiene, isoprene, (meth) acrylic acid esters, and (meth) acrylic acid. , (Meth) acrylamide, vinyl alcohol, vinyl acetate, vinyl chloride, styrene, acrylonitrile and the like.
  • Examples of the ⁇ -olefin having 4 to 12 carbon atoms include 1-butene, 2-methyl-1-propene, 2-methyl-1-butene, 3-methyl-1-butene, 1-hexene, 2 -Ethyl-1-butene, 2,3-dimethyl-1-butene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3,3-dimethyl-1-butene 1-heptene, methyl-1-hexene, dimethyl-1-pentene, ethyl-1-pentene, trimethyl-1-butene, methylethyl-1-butene, 1-octene, methyl-1-pentene, ethyl-1- Hexene, dimethyl-1-hexene, propyl-1-heptene, methylethyl-1-heptene, trimethyl-1-pentene, propyl-1-pentene, diethyl-1-butene, 1-
  • An olefin homopolymer means a polymer of one kind of olefin.
  • the olefin copolymer refers to a copolymer of a certain olefin and a different olefin.
  • the olefin copolymer is preferably a copolymer having an unsubstituted hydrocarbon compound having a carbon-carbon double bond as a constituent component.
  • the component of the polyolefin resin is preferably composed of an unsubstituted hydrocarbon compound having a carbon-carbon double bond.
  • polystyrene resin examples include polyethylene resins, polypropylene resins, polyisobutylene resins, polyisobutene resins, polyisoprene resins, polybutadiene resins, (meth) acrylic resins (so-called acrylic resins), vinyl resins such as polyvinyl chloride resins, poly (meth) ) Acrylamide resin, polystyrene resin, acrylonitrile / butadiene / styrene copolymer resin (ABS resin), ethylene / (meth) acrylate copolymer, ethylene / vinyl acetate copolymer, and the like.
  • acrylic resins examples include polyethylene resins, polypropylene resins, polyisobutylene resins, polyisobutene resins, polyisoprene resins, polybutadiene resins, (meth) acrylic resins), vinyl resins such as polyvinyl chloride resins, poly (meth) ) Acrylamide
  • ABS resin acrylonitrile / butadiene / styrene copolymer resin
  • polyethylene resin examples include an ethylene homopolymer and an ethylene- ⁇ -olefin copolymer.
  • ⁇ -olefin 1-butene, 1-pentene, 1-hexene and 1-octene are preferable.
  • Examples of the ethylene- ⁇ -olefin copolymer include an ethylene-1-butene copolymer, an ethylene-1-pentene copolymer, an ethylene-1-hexene copolymer, and an ethylene-1-octene copolymer. Can be mentioned.
  • high density polyethylene low density polyethylene (LDPE), very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), ultra high molecular weight polyethylene (UHMW-PE) Any polyethylene resin may be used.
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • VLDPE very low density polyethylene
  • LLDPE linear low density polyethylene
  • UHMW-PE ultra high molecular weight polyethylene
  • polypropylene resins examples include propylene homopolymer, propylene-ethylene random copolymer, propylene- ⁇ -olefin random copolymer, propylene-ethylene- ⁇ -olefin copolymer, propylene block copolymer (propylene homopolymer component) Or a copolymer component mainly composed of propylene and a copolymer obtained by copolymerizing propylene with at least one monomer selected from ethylene and ⁇ -olefin). These polypropylene resins may be used alone or in combination of two or more.
  • the ⁇ -olefin used in the polypropylene resin is preferably 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-butene, 1-hexene, 1-hexene, Octene is more preferred.
  • propylene- ⁇ -olefin random copolymer examples include propylene-1-butene random copolymer, propylene-1-hexene random copolymer, propylene-1-octene random copolymer, and the like.
  • propylene-ethylene- ⁇ -olefin copolymer examples include propylene-ethylene-1-butene copolymer, propylene-ethylene-1-hexene copolymer, propylene-ethylene-1-octene copolymer, and the like. It is done.
  • propylene block copolymer examples include (propylene)-(propylene-ethylene) copolymer, (propylene)-(propylene-ethylene-1-butene) copolymer, (propylene)-(propylene-ethylene-1).
  • propylene homopolymer propylene-ethylene random copolymer, propylene-1-butene random copolymer, propylene-ethylene-1-butene copolymer, and propylene block copolymer are preferable.
  • the crystallinity of the polypropylene resin is determined by the melting temperature (melting point) and stereoregularity, depending on the quality required for the polyolefin resin composite material of the present invention and the quality required for the molded product obtained by molding it, adjust.
  • the stereoregularity is referred to as an isotactic index and a syndiotactic index.
  • the isotactic index is determined by the 13 C-NMR method described in Macromolecules, Vol. 8, page 687 (1975). Specifically, the isotactic index of the polypropylene resin is determined as the area fraction of the mmmm peak in the total absorption peak of the methyl group carbon region in the 13 C-NMR spectrum. Those having a high isotactic index have high crystallinity, preferably 0.96 or more, more preferably 0.97 or more, and even more preferably 0.98 or more.
  • syndiotactic index is J. Am. Chem. Soc. 110, 6255 (1988) and Angew. Chem. Int. Ed. Engl. , 1955, 34, 1143-1170, and those having a high syndiotactic index have high crystallinity.
  • the polyolefin resin may be a modified polyolefin resin, or may include a polyolefin resin modified by an unmodified polyolefin resin.
  • the modified polyolefin resin include those obtained by graft-modifying a polyolefin resin with an unsaturated carboxylic acid or a derivative thereof.
  • the unsaturated carboxylic acid include maleic acid, fumaric acid, itaconic acid, acrylic acid, and methacrylic acid.
  • Examples of the unsaturated carboxylic acid derivative include maleic anhydride, itaconic anhydride, methyl acrylate, Ethyl acrylate, butyl acrylate, glycidyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, glycidyl methacrylate, maleic acid monoethyl ester, maleic acid diethyl ester, fumaric acid monomethyl ester, fumaric acid dimethyl ester, etc. Can be mentioned. Of these unsaturated carboxylic acids and / or derivatives thereof, acrylic acid, glycidyl ester of methacrylic acid, and maleic anhydride are preferred.
  • acrylic resin examples include homopolymers or copolymers of acrylic monomers such as (meth) acrylic acid, (meth) acrylic acid esters, and acrylonitrile, and copolymerization of acrylic monomers with other monomers. Examples include coalescence. Among these, (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, etc.
  • homopolymers or copolymers of acrylic monomers include, for example, poly (meth) acrylic acid esters, acrylic acid ester-methacrylic acid ester copolymers, polyacrylonitrile, and the like.
  • copolymers of acrylic monomers and other monomers include, for example, (meth) acrylic acid ester-styrene copolymers, (meth) acrylic acid-styrene copolymers, acrylonitrile-butadiene- Examples thereof include styrene copolymers, acrylonitrile-styrene copolymers, acrylonitrile-styrene- (meth) acrylic acid ester copolymers, and the like.
  • vinyl resins examples include vinyl chloride resins [vinyl chloride monomer homopolymers (polyvinyl chloride resin, etc.), vinyl chloride monomers and other monomers (vinyl chloride-vinyl acetate copolymer). Polymers, vinyl chloride- (meth) acrylic acid ester copolymers, etc.)], vinyl alcohol resins (such as homopolymers such as polyvinyl alcohol, copolymers such as ethylene-vinyl alcohol copolymer), polyvinyl formal, etc. A polyvinyl acetal resin etc. are mentioned. These vinyl resins can be used singly or in combination of two or more.
  • the melt flow rate (MFR) of the polyolefin resin is usually 0.01 to 400 g / 10 minutes, and preferably 0.1 to 400 g / 10 minutes from the viewpoint of improving mechanical strength and production stability. More preferably, it is 0.5 to 200 g / 10 minutes.
  • MFR is the mass (g / 10 minutes) of the polymer which flows out per 10 minutes under 190 degreeC and a 2.16kg load based on JISK7210 unless there is particular notice.
  • the cellulose fiber used in the present invention is a fibrous cellulose, and industrial utilization methods have been established, and since it is easily available, cellulose of vegetable fiber is preferable.
  • cellulose of vegetable fiber is preferable.
  • Pulp is also a raw material for paper, and is mainly composed of a temporary canal extracted from plants. From a chemical point of view, the main component is a polysaccharide, and the main component is cellulose.
  • the cellulose of the plant fiber is not particularly limited.
  • wood, bamboo, hemp, jute, kenaf, crop residue for example, straw such as wheat and rice, corn, stem such as cotton, sugarcane
  • crop residue for example, straw such as wheat and rice, corn, stem such as cotton, sugarcane
  • wood flour is more preferred
  • kraft pulp is particularly preferred.
  • Kraft pulp is a general term for pulp obtained by removing lignin / hemicellulose from wood or plant raw materials by chemical treatment such as caustic soda, and taking out nearly pure cellulose.
  • such cellulose fibers are melt-kneaded with a polyolefin resin in the presence of water to suppress the formation of cellulose aggregates having an area of 20,000 ⁇ m 2 or more, and the cellulose fibers in the polyolefin resin composite material To achieve uniform dispersion.
  • the upper limit of the area of a cellulose aggregate is 14,000 micrometers 2 or less.
  • the minimum of the area of a cellulose aggregate is 500 micrometers 2 or more.
  • the small area of the cellulose aggregate indicates that the cellulose fibers are more uniformly dispersed by preventing the aggregation of the cellulose fibers, and means that the reinforcing efficiency of the polyolefin resin is high.
  • Cellulose cellulose is a bundle of 30 to 40 molecules, which forms ultra-fine and highly crystalline microfibrils with a diameter of about 3 nm and a length of several hundred nm to several tens of ⁇ m. These are soft non-crystalline parts. A bundled structure is formed through the gap.
  • the powdery cellulose (powdered pulp) used as the raw material of the present invention is this bundle-like aggregate.
  • the cellulose fiber content is 10 to 150 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the content of the cellulose fiber is less than 10 parts by mass, it is difficult to sufficiently obtain the resin modifying action by the cellulose fiber.
  • a cellulose aggregate having an area of 20,000 ⁇ m 2 or more may be formed. The area of the cellulose aggregate is determined by the method described in the Examples section.
  • the polyolefin resin composite material of the present invention includes antioxidants, light stabilizers, radical scavengers, ultraviolet absorbers, colorants (dyes, organic pigments, inorganic pigments), fillers, lubricants, plasticizers, Processing aids such as acrylic processing aids, foaming agents, lubricants such as paraffin wax, surface treatment agents, crystal nucleating agents, mold release agents, hydrolysis inhibitors, antiblocking agents, antistatic agents, antifogging agents, anti-foaming agents Other components such as glazes, ion trapping agents, flame retardants, flame retardant aids and the like can be appropriately contained within a range that does not impair the above purpose.
  • Antioxidants and degradation inhibitors include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, hydroxylamine antioxidants, and amine antioxidants.
  • a hindered phenol compound having a t-alkyl group is preferred.
  • phenolic antioxidants include tetrakis [methylene-3 (3 ′, 5′-di-t-butyl-4-hydroxyphenyl) propionate] methane, octadecyl-3- (3,5-di-t- Butyl-4-hydroxyphenyl) propionate, 3,9-bis [2- ⁇ 3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ -1,1-dimethylethyl] -2, 4,8,10-tetraoxaspiro [5.5] undecane, triethylene glycol-N-bis-3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate, 1,6-hexanediol Bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thiobis-diethylenebis [3- (3 -Di-t-butyl-4-hydroxyphenyl) propionate
  • phosphorus antioxidants include tris (nonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, bis (2,4-di-).
  • t-butylphenyl pentaerythritol diphosphite, bis (2,4-di-t-butyl-6-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-methylphenyl) ) Pentaerythritol diphosphite, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) -4,4′-diphenylenediphosphonite, 2, 2'-methylenebis (4,6-di-t-butylphenyl) 2-ethylhexyl phosphite, 2, '-Ethylidenebis (4,6-di-t-butylphenyl) fluorophosphite, bis (2,4-di-t-butyl-6-methylpheny
  • sulfur antioxidant examples include dilauryl 3,3′-thiodipropionate, tridecyl 3,3′-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3′- Thiodipropionate, laurylstearyl 3,3′-thiodipropionate, neopentanetetrayltetrakis (3-laurylthiopropionate), bis [2-methyl-4- (3-n-alkyl (carbon atoms) 12-14 alkyl) thiopropionyloxy) -5-tert-butylphenyl] sulfide and the like.
  • Examples of the light stabilizer include hindered amine light stabilizers having a molecular weight of 1000 or more (light stabilizers having a 2,2,6,6-tetramethylpiperidine skeleton in the molecule).
  • ultraviolet absorbers examples include benzotriazole compounds, triazine compounds, benzophenone compounds, salicylate compounds, cyanoacrylate compounds, and nickel compounds.
  • Examples of the colorant include carbon black, inorganic pigments, and organic pigments.
  • examples of carbon black include furnace black, channel black, acetylene black, and lamp black.
  • examples of the inorganic pigment include iron black, petal, titanium oxide, cadmium red, cadmium yellow, ultramarine, cobalt blue, titanium yellow, red lead, lead yellow, and bitumen.
  • examples of the organic pigment include quinacridone, polyazo yellow, anthraquinone yellow, polyazo red, azo lake yellow, perylene, phthalocyanine green, phthalocyanine blue, and isoindolinone yellow. These colorants may be used alone or in combination of two or more.
  • Preferred examples of the filler include metal compounds such as silica, hydroxyapatite, alumina, titania, boehmite, talc, or calcium carbonate.
  • the method for producing a polyolefin resin composite of the present invention includes melt-kneading 100 parts by mass of a polyolefin resin and 10 to 150 parts by mass of cellulose fibers in the presence of water. Thereby, the production
  • the blending amount of water is preferably 1 to 225 parts by mass with respect to 100 parts by mass of the polyolefin resin from the viewpoint of dispersibility, processability, etc. of the cellulose fiber, and is 1 to 225 parts by mass with respect to 100 parts by mass of the cellulose fiber. It is preferable to set it as 150 mass parts.
  • the ratio of the amount of cellulose fibers to the amount of water mixed (the amount of cellulose fibers mixed: the amount of water mixed). Is preferably 1: 0.01 to 1.5, more preferably 1: 0.36 to 1.5.
  • the order of mixing the polyolefin resin, cellulose fibers, and water is not particularly limited.
  • the polyolefin resin and cellulose fiber are first mixed and melt-kneaded, then water may be added and further kneaded.
  • the polyolefin resin, cellulose fiber, and water are all put into the processing machine and then melt-kneaded. May be.
  • a polyolefin resin may be added and further melt kneaded.
  • Polyolefin resins have high hydrophobicity, and when water is added in the melt-kneading, the resin may slip and hinder the desired uniform kneading. Therefore, water is not usually added in the melt-kneading of polyolefin.
  • water is added in the melt kneading of the polyolefin resin, thereby suppressing the formation of cellulose aggregates having an area of 20,000 ⁇ m 2 or more.
  • the upper limit of the melt kneading temperature is preferably a temperature at which the thermal decomposition of the cellulose fibers is difficult to occur. Therefore, the upper limit temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 230 ° C. or lower. It is practical that the lower limit is 10 ° C. or more higher than the melting point of the polyolefin resin.
  • Stirring in melt-kneading is done by arranging a kneading disk as appropriate in the screw axial direction, etc., to construct a screw configuration that can ensure sufficient kneading properties and to obtain the required production volume (usually normal) Is preferably kneaded in a range of about 100 to 300 rpm.
  • the kneading apparatus is preferably a co-axial twin screw type apparatus, for example, a twin screw extruder (KZW15TW-45MG-NH (trade name) manufactured by Technobel).
  • polyolefin resin composite material of the present invention includes, for example, materials for vehicles such as automobiles and motorcycles, robot arm structural members, amusement robot parts, prosthetic limb members, home appliance materials, OA equipment housings, building material members, and drainage equipment. , Toiletries, various tanks, containers, sheets, toys, sports equipment, etc.
  • vehicle materials include interior parts such as door rims, pillars, instrumental panels, consoles, rocker panels, armrests, door inner panels, spare tire covers, door knobs, bumpers, spoilers, fenders, side steps, doors and outers.
  • interior parts such as door rims, pillars, instrumental panels, consoles, rocker panels, armrests, door inner panels, spare tire covers, door knobs, bumpers, spoilers, fenders, side steps, doors and outers.
  • exterior parts such as panels, other parts such as air intake ducts, coolant reserve tanks, radiator reserve tanks, window / washer tanks, fender liners and fans, and integrally molded parts such as front and end panels.
  • Example 1 A polyolefin resin composite was prepared by the following steps. While feeding polyolefin resin to a twin-screw extruder [KZW15TW-45MG-NH (trade name) manufactured by Technobel Co., Ltd.] at an outlet temperature of 190 ° C. and a rate of 1000 g / hour, 110 g of cellulose A was fed by a second feeder. The mixture was fed at a rate of 100 g / hr, water was fed at 98 g / hr by a liquid pump, and a mixture satisfying the composition shown in Table 1 below was melt-kneaded at 200 ° C. Thereafter, the kneaded product was extruded to obtain a polyolefin resin composite. The screw rotation speed in the melt-kneading was 100 rpm. The water content of the obtained polyolefin resin composite was 0.9% by mass.
  • Example 2 to 14 Comparative Examples 1 to 4
  • Example 3 Comparative Example 3
  • Example 3 the amount of water was too large, and the discharge amount of the extruder became unstable, and a polyolefin resin composite material could not be obtained.
  • the area of the cellulose aggregate formed in the composite material was calculated as follows.
  • the obtained polyolefin resin composite was spread so that the area in plan view was 36 times, and then the area of the cellulose aggregate in the plan view was measured. This will be described in more detail below.
  • the obtained polyolefin resin composite was formed into a rectangular parallelepiped pellet having a length of 3.3 mm, a width of 4.3 mm, and a thickness of 3.6 mm. Using this pellet, a measurement sheet having a thickness of 0.1 mm was produced. Specifically, the pellets were preheated at 160 ° C. for 5 minutes using a press apparatus, and further pressurized at 160 ° C. under a pressure of 20 MPa for 5 minutes to prepare a measurement sheet.
  • the produced sheet was observed in a plan view at a magnification of 50 times with an industrial microscope “ECLIPSE LV100ND (trade name)” manufactured by Nikon Corporation, and this observation surface was photographed, image-processed, and a portion counted with a luminance of 0 to 80 As the cellulose aggregate, the area was calculated. Specifically, the field of view was 1.3 mm ⁇ 1.7 mm, and nine fields of view were taken at random.
  • the obtained image was subjected to image processing under the following conditions using “NIS-Elenenets D (trade name)” manufactured by Nikon Corporation, and the area of each part counted at a luminance of 0 to 80 was calculated.
  • the maximum / minimum area was defined as the maximum / minimum area of the cellulose aggregate.
  • those less than 500 ⁇ m 2 were excluded from the measurement targets. This is because when the non-aggregated cellulose fibers used as raw materials were measured by the same method as described above, the area was about 500 ⁇ m 2 , and below this, the cellulose fibers were aggregated and formed. It is because it is not recognized as a thing.
  • the polyolefin resin composite pellets obtained above were dried at 80 ° C. for 24 hours, and pulled by an injection molding machine (Robot Shot ⁇ -30C manufactured by FANUC CORPORATION) according to JIS K7127 test piece type No. 2. A test piece was prepared.
  • the tensile elastic modulus (GPa) of the tensile test piece produced as described above was determined in accordance with JIS K7161, using a tensile tester [Instron Tester Model 5567 manufactured by Instron Co., Ltd.] at a test speed of 1.0 mm / min. Measured with
  • the size of the cellulose aggregate can be suppressed to less than 20,000 ⁇ m 2. It can be seen that a resin composite integrated with a high degree of uniformity can be obtained.
  • the polyolefin resin composite of the present invention thus obtained can sufficiently bring out the resin-modifying action of cellulose fibers, can realize light weight, high rigidity, low linear thermal expansion coefficient, and the like, and is excellent in appearance.

Abstract

【課題】セルロース凝集体のサイズが十分に小さく、ポリオレフィン樹脂とセルロースとが高度な均一性で一体化されたポリオレフィン樹脂複合材を提供する。 【解決手段】ポリオレフィン樹脂と、該ポリオレフィン樹脂100質量部に対して10~150質量部のセルロースとを含有し、前記セルロースの凝集体の面積が20,000μm2未満である、ポリオレフィン樹脂複合材と、その製造方法。

Description

ポリオレフィン樹脂複合材及びその製造方法
 本発明は、ポリオレフィン樹脂複合材及びその製造方法に関する。
 セルロースは、地球上に多く存在する再生可能な天然資源である。セルロースは、軽量、高強度等の特性を有し、樹脂の強化材として利用する研究が行われており、その可能性が注目されている。
 例えば、特許文献1には、脂肪族ポリエステルからなる樹脂成分と、特定の前処理がなされたパルプ及び/又はセルロース系繊維からなる繊維成分とを、セルロース非晶領域膨潤剤の存在下で溶融混練処理する工程を含む、高強度で高剛性な脂肪族ポリエステル組成物を得るための製造方法が記載されている。
特許第4013870号
 セルロース繊維は親水性が高く、それゆえ親水性の高い樹脂と混合した場合には馴染みやすく、樹脂中にセルロース繊維が均一分散した複合材を調製しやすいとされる。
 他方、ポリオレフィン樹脂のような疎水性の高い樹脂に対するセルロース繊維の親和性は乏しく、ポリオレフィン樹脂とセルロース繊維とを溶融混練しても比較的大きなセルロース繊維の凝集体(セルロース凝集体ともいう。)が生じてしまう。すなわち、ポリオレフィン樹脂とセルロース繊維とを溶融混練しても、セルロース繊維の樹脂改質作用を十分に引き出した、セルロース繊維が均一分散した樹脂複合材を得ることは難しい。
 そこで本発明は、セルロース凝集体のサイズが十分に小さく、ポリオレフィン樹脂とセルロースとが高度な均一性で一体化されたポリオレフィン樹脂複合材を提供することを課題とする。
 本発明者らは、鋭意研究を重ねた結果、ポリオレフィン樹脂とセルロース繊維とを所定比で混合し、水の存在下で溶融混練することにより、得られる成形体中に生じるセルロース凝集体のサイズを十分に小さくできること、結果、ポリオレフィン樹脂とセルロース繊維との一体性を高めることができるという事実を見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
 本発明の上記課題は、下記手段により解決された。
<1>
 ポリオレフィン樹脂と、該ポリオレフィン樹脂100質量部に対して10~150質量部のセルロース繊維とを含有し、前記セルロース繊維の凝集体の面積が20,000μm未満である、ポリオレフィン樹脂複合材。
<2>
 前記セルロース繊維が、植物繊維のセルロースである、<1>に記載のポリオレフィン樹脂複合材。
<3>
 前記ポリオレフィン樹脂が、ポリエチレン、ポリプロピレンおよびアクリロニトリル/ブタジエン/スチレン共重合体のうちの少なくとも1種である、<1>または<2>に記載のポリオレフィン樹脂複合材。
<4>
 ポリオレフィン樹脂と、該ポリオレフィン樹脂100質量部に対して10~150質量部のセルロース繊維と、水とを混合し、溶融混練する工程を含む、ポリオレフィン樹脂複合材の製造方法。
<5>
 前記溶融混練における前記水の混合量が、セルロース繊維100質量部に対して1~150質量部である、<4>に記載のポリオレフィン樹脂複合材の製造方法。
<6>
 得られるポリオレフィン樹脂複合材中に生じるセルロース繊維の凝集体の面積が20,000μm未満である、<4>または<5>に記載のポリオレフィン樹脂複合材の製造方法。
 本発明のポリオレフィン樹脂複合材は、複合材中のセルロース凝集体のサイズが十分に小さく、高度に均一分散された樹脂材料である。本発明のポリオレフィン樹脂複合材の製造方法によれば、複合材中に生じるセルロース凝集体のサイズを十分に小さくでき、ポリオレフィン樹脂とセルロース繊維とが高い均一性で一体化されたポリオレフィン樹脂複合材を得ることができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1(a)~1(d)は、[実施例]における「セルロース凝集体の面積測定方法」において撮影した画像である。 図1(a)は比較例1で得たポリオレフィン樹脂複合材のペレットを後述のセルロース凝集体の面積算出方法にしたがって撮影した画像であり、図1(b)はセルロース凝集体の面積の決定のために図1(a)を画像処理したものである。また、図1(c)は実施例1で得たポリオレフィン樹脂複合材のペレットを後述のセルロース凝集体の面積算出方法にしたがって撮影した画像であり、図1(d)はセルロース凝集体の面積の決定のために図1(c)を画像処理したものである。
(ポリオレフィン樹脂複合材)
 本発明のポリオレフィン樹脂複合材は、少なくとも、ポリオレフィン樹脂100質量部に対し、セルロース繊維を10~150質量部含有し、複合材中に存在するセルロース凝集体の面積が20,000μm(2万μm)未満である。本発明においてセルロース凝集体の面積とは、セルロース凝集体の表面積を意味するのではなく、後述するように、ポリオレフィン樹脂複合材を所定の厚さに展延して平面視観察することにより測定される、セルロース凝集体の平面視面積を意味する。
 以下、本発明のポリオレフィン樹脂複合材に用いられる成分を説明する。
-ポリオレフィン樹脂-
 ポリオレフィン樹脂は、少なくとも1種のオレフィンを重合してなる樹脂であり、単独重合体であっても共重合体であってもよい。
 本発明において、オレフィンとは、広義の意味で用いる。すなわち、炭素-炭素二重結合を有する無置換の炭化水素化合物に加えて、炭素-炭素二重結合を有する炭化水素化合物がさらに置換基を有する場合を含む。
 このようなオレフィンとしては、例えば、エチレン、プロピレン、イソブチレン、イソブテン(1-ブテン)を含む炭素原子数4~12のα-オレフィン、ブタジエン、イソプレン、(メタ)アクリル酸エステル、(メタ)アクリル酸、(メタ)アクリルアミド、ビニルアルコール、酢酸ビニル、塩化ビニル、スチレン、アクリロニトリルなどが挙げられる。
 上記の炭素原子数4~12のα-オレフィンとしては、例えば、1-ブテン、2-メチル-1-プロペン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-ヘキセン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3,3-ジメチル-1-ブテン、1-ヘプテン、メチル-1-ヘキセン、ジメチル-1-ペンテン、エチル-1-ペンテン、トリメチル-1-ブテン、メチルエチル-1-ブテン、1-オクテン、メチル-1-ペンテン、エチル-1-ヘキセン、ジメチル-1-ヘキセン、プロピル-1-ヘプテン、メチルエチル-1-ヘプテン、トリメチル-1-ペンテン、プロピル-1-ペンテン、ジエチル-1-ブテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセンなどが挙げられる。
 オレフィン単独重合体とは、1種類のオレフィンの重合体をいう。
 また、オレフィン共重合体とは、あるオレフィンとそれとは異なるオレフィンとの共重合体をいう。オレフィン共重合体は、炭素-炭素二重結合を有する無置換の炭化水素化合物を構成成分として有する共重合体であることが好ましい。ポリオレフィン樹脂は、その構成成分が、炭素-炭素二重結合を有する無置換の炭化水素化合物からなることが好ましい。
 ポリオレフィン樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイソブチレン樹脂、ポリイソブテン樹脂、ポリイソプレン樹脂、ポリブタジエン樹脂、(メタ)アクリル樹脂(いわゆるアクリル樹脂)、ポリ塩化ビニル樹脂などのビニル樹脂、ポリ(メタ)アクリルアミド樹脂、ポリスチレン樹脂、アクリロニトリル/ブタジエン/スチレン共重合樹脂(ABS樹脂)、エチレン/(メタ)アクリル酸エステル共重合体、エチレン/酢酸ビニル共重合体などが挙げられる。
 これらの樹脂のうち、ポリエチレン樹脂、ポリプロピレン樹脂、アクリロニトリル/ブタジエン/スチレン共重合樹脂(ABS樹脂)が好ましく、ポリエチレン樹脂、ポリプロピレン樹脂がなかでも好ましい。
 ポリエチレン樹脂としては、エチレン単独重合体、エチレン-α-オレフィン共重合体などが挙げられる。α-オレフィンとしては、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテンが好ましい。
 エチレン-α-オレフィン共重合体としては、例えば、エチレン-1-ブテン共重合体、エチレン-1-ペンテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-オクテン共重合体などが挙げられる。
 なお、密度もしくは形状で分類した場合、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、超低密度ポリエチレン(VLDPE)、直鎖状低密度ポリエチレン(LLDPE)、超高分子量ポリエチレン(UHMW-PE)のいずれのポリエチレン樹脂を用いてもよい。
 ポリプロピレン樹脂としては、プロピレン単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-α-オレフィンランダム共重合体、プロピレン-エチレン-α-オレフィン共重合体、プロピレンブロック共重合体(プロピレン単独重合体成分または主にプロピレンからなる共重合体成分と、エチレンおよびα-オレフィンから選択されるモノマーの少なくとも1種とプロピレンとを共重合して得られる共重合体とからなる)などが挙げられる。これらのポリプロピレン樹脂は単独で使用しても、2種以上を併用してもよい。
 ポリプロピレン樹脂に用いられるα-オレフィンは、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセンが好ましく、1-ブテン、1-ヘキセン、1-オクテンがより好ましい。
 プロピレン-α-オレフィンランダム共重合体としては、例えば、プロピレン-1-ブテンランダム共重合体、プロピレン-1-ヘキセンランダム共重合体、プロピレン-1-オクテンランダム共重合体などが挙げられる。
 プロピレン-エチレン-α-オレフィン共重合体としては、例えば、プロピレン-エチレン-1-ブテン共重合体、プロピレン-エチレン-1-ヘキセン共重合体、プロピレン-エチレン-1-オクテン共重合体などが挙げられる。
 プロピレンブロック共重合体としては、例えば、(プロピレン)-(プロピレン-エチレン)共重合体、(プロピレン)-(プロピレン-エチレン-1-ブテン)共重合体、(プロピレン)-(プロピレン-エチレン-1-ヘキセン)共重合体、(プロピレン)-(プロピレン-1-ブテン)共重合体、(プロピレン)-(プロピレン-1-ヘキセン)共重合体、(プロピレン-エチレン)-(プロピレン-エチレン)共重合体、(プロピレン-エチレン)-(プロピレン-エチレン-1-ブテン)共重合体、(プロピレン-エチレン)-(プロピレン-エチレン-1-ヘキセン)共重合体、(プロピレン-エチレン)-(プロピレン-1-ブテン)共重合体、(プロピレン-エチレン)-(プロピレン-1-ヘキセン)共重合体、(プロピレン-1-ブテン)-(プロピレン-エチレン)共重合体、(プロピレン-1-ブテン)-(プロピレン-エチレン-1-ブテン)共重合体、(プロピレン-1-ブテン)-(プロピレン-エチレン-1-ヘキセン)共重合体、(プロピレン-1-ブテン)-(プロピレン-1-ブテン)共重合体、(プロピレン-1-ブテン)-(プロピレン-1-ヘキセン)共重合体などが挙げられる。
 これらのポリプロピレン樹脂のうち、プロピレン単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-1-ブテンランダム共重合体、プロピレン-エチレン-1-ブテン共重合体、プロピレンブロック共重合体が好ましい。
 ポリプロピレン樹脂の結晶性は、融解温度(融点)や立体規則性で求められ、本発明のポリオレフィン樹脂複合材に求められる品質や、それを成形して得られる成形品に求められる品質に応じて、調整する。
 なお、立体規則性はアイソタクチックインデックス、シンジオタクチックインデックスと称される。
 アイソタクチックインデックスは、Macromolecules,第8巻,687頁(1975年)に記載の13C-NMR法で求められる。具体的には13C-NMRスペクトルのメチル基の炭素領域の全吸収ピーク中のmmmmピークの面積分率として、ポリプロピレン樹脂のアイソタクチックインデックスを求める。
 アイソタクチックインデックスが高いものは、結晶性が高く、0.96以上が好ましく、0.97以上がより好ましく、0.98以上がさらに好ましい。
 一方、シンジオタクチックインデックスは、J.Am.Chem.Soc.,110,6255(1988)やAngew.Chem.Int.Ed.Engl.,1955,34,1143-1170に記載の方法で求められ、シンジオタクチックインデックスが高いものが、結晶性が高い。
 本発明において、ポリオレフィン樹脂は、変性されたポリオレフィン樹脂でもよく、また、変性されていないポリオレフィン樹脂に変性されたポリオレフィン樹脂を含んでもよい。
 変性されたポリオレフィン樹脂としては、ポリオレフィン樹脂を、不飽和カルボン酸もしくはその誘導体によりグラフト変性したものが挙げられる。不飽和カルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸、アクリル酸、メタクリル酸等が挙げられ、不飽和カルボン酸誘導体としては、例えば、無水マレイン酸、無水イタコン酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸グリシジル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸グリシジル、マレイン酸モノエチルエステル、マレイン酸ジエチルエステル、フマル酸モノメチルエステル、フマル酸ジメチルエステル等が挙げられる。これらの不飽和カルボン酸および/またはその誘導体のうち、好ましくはアクリル酸、メタクリル酸のグリシジルエステル、無水マレイン酸である。
 アクリル樹脂としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル、アクリロニトリルなどのアクリル単量体の単独重合体または共重合体、アクリル単量体と他の単量体との共重合体などが挙げられる。
 このうち、(メタ)アクリル酸エステルは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルへキシルなどの炭素数1~10のアルキル基を有する(メタ)アクリル酸アルキルエステルや、(メタ)アクリル酸ヒドロキシエチルなどの(メタ)アクリル酸ヒドロキシアルキル、(メタ)アクリル酸グリシジルエステルなどが挙げられる。
 アクリル単量体の単独重合体または共重合体の具体例としては、例えば、ポリ(メタ)アクリル酸エステル、アクリル酸エステル-メタクリル酸エステル共重合体、ポリアクリロニトリルなどが挙げられる。アクリル単量体と他の単量体との共重合体の具体例としては、例えば、(メタ)アクリル酸エステル-スチレン共重合体、(メタ)アクリル酸-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、アクリロニトリル-スチレン-(メタ)アクリル酸エステル共重合体などが挙げられる。
 ビニル樹脂としては、例えば、塩化ビニル樹脂[塩化ビニルモノマーの単独重合体(ポリ塩化ビニル樹脂など)、塩化ビニル単量体と他の単量体との共重合体(塩化ビニル-酢酸ビニル共重合体、塩化ビニル-(メタ)アクリル酸エステル共重合体など)など]、ビニルアルコール樹脂(ポリビニルアルコールなどの単独重合体、エチレン-ビニルアルコール共重合体などの共重合体など)、ポリビニルホルマールなどのポリビニルアセタール樹脂などが挙げられる。これらのビニル系樹脂は、単独でもまたは2種以上組み合わせても使用することができる。
 ポリオレフィン樹脂のメルトフローレート(MFR)は、通常、0.01~400g/10分であり、機械的強度や生産安定性を高めるという観点から、好ましくは0.1~400g/10分であり、より好ましくは0.5~200g/10分である。
 なお、MFRは、特段の断りがない限り、JIS K7210に準拠し、190℃、2.16kg荷重下で10分間あたりに流出するポリマーの質量(g/10分)である。
-セルロース繊維-
 本発明で使用するセルロース繊維は、繊維状のセルロースであり、工業的な利用方法が確立されており、入手しやすいため、植物繊維のセルロースが好ましく、特に、微細な植物繊維状のセルロース(粉状パルプ)が好ましい。
 パルプは、紙の原料ともなるもので、植物から抽出される仮道管を主成分とする。化学的に見ると、主成分は多糖類であり、その主成分はセルロースである。
 植物繊維のセルロースは、特に限定されるものではないが、例えば、木材、竹、麻、ジュート、ケナフ、農作物残廃物(例えば、麦や稲などの藁、とうもろこし、綿花などの茎、サトウキビ)、布、再生パルプ、古紙、木粉などの植物に由来のものが挙げられるが、本発明では、木材もしくは木材由来のものが好ましく、木粉がより好ましく、クラフトパルプが特に好ましい。
 なお、クラフトパルプは、木材もしくは植物原料から、苛性ソーダなどの化学処理によって、リグニン・ヘミセルロースを除去し、純粋に近いセルロースを取り出したパルプの総称である。
 本発明では、このようなセルロース繊維を、水の共存下、ポリオレフィン樹脂と溶融混練することで、面積が20,000μm以上のセルロース凝集体の形成を抑制し、ポリオレフィン樹脂複合材中におけるセルロース繊維の均一な分散を実現するものである。なお、セルロース凝集体の面積の上限は14,000μm以下であることが好ましい。また、セルロース凝集体の面積の下限は500μm以上であることが好ましい。
 セルロース凝集体の面積が小さいことは、セルロース繊維の凝集を防いでセルロース繊維がより均一に分散していることを示し、ポリオレフィン樹脂の強化効率が高いことを意味する。
 植物繊維のセルロースは、30~40分子が束となり、直径約3nm、長さは数百nmから数十μmの超極細幅で高結晶性のミクロフィブリルを形成し、これらが軟質な非結晶部を介しながら束となった構造を形成している。本発明の原料として使用する粉末状セルロース(粉状パルプ)は、この束状の集合体である。
 本発明のポリオレフィン樹脂複合材中、セルロース繊維の含有量は、ポリオレフィン樹脂100質量部に対し、10~150質量部である。
 セルロース繊維の含有量が10質量部未満であると、セルロース繊維による樹脂の改質作用を十分に得ることが難しい。逆に、150質量部を超えると、面積が20,000μm以上のセルロース凝集体が形成されるおそれがある。
 セルロース凝集体の面積は、実施例の項に記載の方法により決定される。
-その他の成分-
 本発明のポリオレフィン樹脂複合材には、上記以外に、酸化防止剤、光安定剤、ラジカル捕捉剤、紫外線吸収剤、着色剤(染料、有機顔料、無機顔料)、充填剤、滑剤、可塑剤、アクリル加工助剤等の加工助剤、発泡剤、パラフィンワックス等の潤滑剤、表面処理剤、結晶核剤、離型剤、加水分解防止剤、アンチブロッキング剤、帯電防止剤、防曇剤、防徽剤、イオントラップ剤、難燃剤、難燃助剤等の他の成分を、上記目的を損なわない範囲で適宜含有することができる。
 酸化防止剤、劣化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、ヒドロキシルアミン系酸化防止剤、アミン系酸化防止剤が挙げられ、フェノール系ではオルト位にt-アルキル基を有するヒンダードフェノール系化合物が好ましい。
 フェノール系酸化防止剤としては、例えば、テトラキス[メチレン-3(3’,5’-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3,9-ビス[2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、トリエチレングリコール-N-ビス-3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート、1,6-ヘキサンジオールビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオビス-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]であり、さらに好ましくは、3,9-ビス[2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、ラウリル-3,5-t-ブチル-4-ヒドロキシベンゾエート、パルミチル-3,5-t-ブチル-4-ヒドロキシベンゾエート、ステアリル-3,5-t-ブチル-4-ヒドロキシベンゾエート、ベヘニル-3,5-t-ブチル-4-ヒドロキシベンゾエート、2,4-ジ-t-ブチル-フェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、トコフェロール類等が挙げられる。
 リン系酸化防止剤としては、例えば、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチル-6-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ジフェニレンジホスホナイト、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)2-エチルヘキシルホスファイト、2,2’-エチリデンビス(4,6-ジ-t-ブチルフェニル)フルオロホスファイト、ビス(2,4-ジ-t-ブチル-6-メチルフェニル)エチルホスファイト、2-(2,4,6-トリ-t-ブチルフェニル)-5-エチル-5-ブチル-1,3,2-オキサホスホリナン、2,2’,2’-ニトリロ[トリエチル-トリス(3,3’,5,5’-テトラ-t-ブチル-1,1’-ビフェニル-2,2’-ジイル)ホスファイト、2,4,8,10-テトラ-t-ブチル-6-[3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン等が挙げられる。
 イオウ系酸化防止剤としては、例えば、ジラウリル3,3’-チオジプロピオネート、トリデシル3,3’-チオジプロピオネート、ジミリスチル3,3’-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート、ラウリルステアリル3,3’-チオジプロピオネート、ネオペンタンテトライルテトラキス(3-ラウリルチオプロピオネート)、ビス[2-メチル-4-(3-n-アルキル(炭素原子数12~14のアルキル)チオプロピオニルオキシ)-5-t-ブチルフェニル]スルフィド等が挙げられる。
 光安定剤としては、分子量が1000以上のヒンダードアミン光安定剤(2,2,6,6-テトラメチルピペリジン骨格を分子内に有する光安定剤)が挙げられる。
 紫外線吸収剤としては、ベンゾトリアゾール系化合物、トリアジン系化合物、ベンゾフェノン系化合物、サリチレート系化合物、シアノアクリレート系化合物、ニッケル系化合物が挙げられる。
 着色剤としては、例えば、カーボンブラック、無機顔料、有機顔料が挙げられる。例えば、カーボンブラックとしては、ファーネスブラック、チャンネルブラック、アセチレンブラック、ランプブラック等が挙げられる。無機顔料としては、例えば、鉄黒、弁柄、酸化チタン、カドミウムレッド、カドミウムイエロー、群青、コバルトブルー、チタンイエロー、鉛丹、鉛黄、紺青等が挙げられる。有機顔料としては、例えば、キナクリドン、ポリアゾイエロー、アンスラキノンイエロー、ポリアゾレッド、アゾレーキイエロー、ペリレン、フタロシアニングリーン、フタロシアニンブルー、イソインドリノンイエロー等が挙げられる。これらの着色剤は単独でも、2種類以上を併用してもよい。
 充填剤としては、シリカ、ヒドロキシアパタイト、アルミナ、チタニア、ベーマイト、タルク、または炭酸カルシウムなどの金属化合物などが好ましく挙げられる。
(ポリオレフィン樹脂複合材の製造方法)
 本発明のポリオレフィン樹脂複合材の製造方法は、ポリオレフィン樹脂100質量部と、セルロース繊維10~150質量部とを、水の存在下で溶融混練することを含む。これにより、面積が20,000μm以上のセルロース凝集体の生成を抑制し、セルロース繊維がより均一に分散したポリオレフィン樹脂複合材を得ることができる。水の配合量は、セルロース繊維の分散性、加工性等の観点から、ポリオレフィン樹脂100質量部に対して1~225質量部とすることが好ましく、また、セルロース繊維100質量部に対して1~150質量部とすることが好ましい。
 また、本発明のポリオレフィン樹脂複合材の製造方法において、セルロース繊維の分散性をより向上させるため、セルロース繊維の混合量と水の混合量との比(セルロース繊維の混合量:水の混合量)が1:0.01~1.5が好ましく、1:0.36~1.5がより好ましい。
 本発明のポリオレフィン樹脂複合材の製造方法における溶融混練において、ポリオレフィン樹脂と、セルロース繊維と、水とを混合する順序は特に制限されない。ポリオレフィン樹脂と、セルロース繊維とを先に混合して溶融混練した後、水を加え、さらに混練してもよく、ポリオレフィン樹脂と、セルロース繊維と、水とを全て加工機内に投入した後に溶融混練してもよい。また、セルロース繊維と水を混練した後、ポリオレフィン樹脂を加え、さらに溶融混練してもよい。
 この混練加工工程は、押出し、射出などにより加工、成形する段階で、加工機内で混練することが好ましい。
 ポリオレフィン樹脂は疎水性が高く、その溶融混練において水を加えると、樹脂が滑るなどして目的の均一混練に支障をきたす場合がある。したがって、ポリオレフィンの溶融混練においては通常、水を添加することはない。
 これに対し本発明のポリオレフィン樹脂複合材の製造方法では、ポリオレフィン樹脂の溶融混練において水を加え、これにより、面積が20,000μm以上のセルロース凝集体の生成を抑制する。この理由は定かではないが、溶融混練において加えた水がセルロースを膨潤させてセルロース繊維の微細化を促進し、この微細化されたセルロース繊維が水と一体となってポリオレフィンに作用し、ポリオレフィン樹脂とセルロースの均一な溶融混練が可能になるものと推定される。
 溶融混練の温度は、セルロース繊維の熱分解を生じにくい温度を上限とすることが望ましい。従って、上限温度は300℃以下が好ましく、250℃以下がより好ましく、230℃以下がさらに好ましい。下限はポリオレフィン樹脂の融点より10℃以上高いことが実際的である。
 溶融混練における撹拌は、スクリュー軸方向に適宜ニーディングディスクを配置するなどして、十分な混練性を確保可能なスクリュー構成を組み、かつ必要な生産量を得ることが可能なスクリュー回転数(通常は100~300rpm程度の範囲)で混練することが好ましい。
 混練加工する装置としては、同方向二軸スクリュー方式の装置が好ましく、例えば、二軸押出機〔テクノベル社製 KZW15TW-45MG-NH(商品名)〕が挙げられる。
 ただし、同方向二軸押出機に限られることはなく、単軸押出機や、異方向二軸押出機、3軸以上の多軸押出機、バッチ式混練機(ニーダー、バンバリー等)など、充分な混練性が得られ、本発明と同様の効果が得られるのであれば、どのような方式でも構わない。
 本発明のポリオレフィン樹脂複合材の用途としては、例えば、自動車、二輪車などの車両用材料、ロボットアームの構造部材、アミューズメント用ロボット部品、義肢部材、家電材料、OA機器筐体、建材部材、排水設備、トイレタリー材料、各種タンク、コンテナー、シート、玩具、スポーツ用品等が挙げられる。
 車両用材料としては、例えば、ドアートリム、ピラー、インストルメンタルパネル、コンソール、ロッカーパネル、アームレスト、ドアーインナーパネル、スペアタイヤカバー、ドアノブ等の内装部品や、バンパー、スポイラー、フェンダー、サイドステップ、ドア・アウターパネル等の外装部品、その他エアインテークダクト、クーラントリザーブタンク、ラジエターリザーブタンク、ウインドウ・ウオッシャータンク、フェンダーライナー、ファン等の部品、また、フロント・エンドパネル等の一体成形部品等が挙げられる。
 以下、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれらに限定されるものではない。
-使用素材-
 以下に、使用した素材を示す。
(1)ポリオレフィン樹脂
・高密度ポリエチレン〔MFR=5g/10分(190℃/2.16kg)、密度=0.953g/cm
・ポリプロピレン〔MFR=9g/10分(230℃/2.16kg)、密度=0.900g/cm
(2)セルロース繊維
・セルロースA:KCフロックW-200〔商品名 日本製紙社製、平均粒径約32μmの粉末状セルロース〕
・セルロースB:LIGNOCEL C-120〔商品名 J・レッテンマイヤー・アンド・サンズ社製、平均粒径70~150μm〕
(実施例1)
 以下の工程で、ポリオレフィン樹脂複合材を調製した。
 二軸押出機〔テクノベル社製 KZW15TW-45MG-NH(商品名)〕に、ポリオレフィン樹脂を、出口温度190℃、1000g/時間の速度でフィードしつつ、2台目のフィーダーにより、セルロースAを110g/時間の速度でフィードし、液添ポンプにより水を98g/時間でフィードし、下記表1の組成を満たす混合物を200℃で溶融混練した。その後、混練物を押出して、ポリオレフィン樹脂複合材を得た。溶融混練におけるスクリュー回転数は100rpmとした。得られたポリオレフィン樹脂複合材の含水率は0.9質量%であった。
(実施例2~14、比較例1~4)
 下記表1の組成を採用したこと以外は、実施例1と同様にして実施例2~14及び比較例1~4のポリオレフィン樹脂複合材を得た。
 なお、比較例3は、水の配合量が多すぎて、押出機の吐出量が不安定になり、ポリオレフィン樹脂複合材が得られなかった。
 上記の各実施例及び比較例で得た各ポリオレフィン樹脂複合材について、複合材中に生じたセルロース凝集体の面積を下記の通り算出した。
(セルロース凝集体の面積算出方法)
 得られたポリオレフィン樹脂複合材を、平面視面積が36倍となるように展延した後、当該平面視におけるセルロース凝集体の面積を測定した。以下、より詳細に説明する。
 得られたポリオレフィン樹脂複合材を、縦3.3mm×横4.3mm×厚さ3.6mmの直方体のペレットとした。このペレットを用いて、厚み0.1mmの測定用シートを作製した。具体的には、プレス装置を用いてペレットを160℃で5分間予熱後、さらに160℃で20MPaの圧力下で5分間加圧して測定用シートを作製した。
 作製したシートを、ニコン社製工業用顕微鏡「ECLIPSE LV100ND(商品名)」により倍率50倍で平面視観察し、この観察面を撮影して画像処理し、0~80の輝度でカウントされた部分をセルロース凝集体として、面積を算出した。
 具体的には、視野を1.3mm×1.7mmとし、ランダムに9視野を撮影した。得られた画像をニコン社製「NIS-Elemenets D(商品名)」により下記条件で画像処理し、0~80の輝度でカウントされた部分の各々の面積を算出した。その中で、面積が最大・最小のものを、セルロース凝集体の面積の最大値・最小値とした。ただし500μm未満のものは、測定対象から除外した。なぜならば、原材料として使用している凝集していないセルロース繊維を上記と同様の方法で測定した際、その面積が約500μmであり、これ以下のものは、セルロース繊維が凝集して形成されたものとは認められないためである。
 -画像処理条件-
・スムーズ off
 オブジェクトの端の形状に作用して、形状を滑らかにする機能。
・クリーン on
 小さなオブジェクトが見えなくなる機能。小オブジェクトが消えるだけで、その他の画像は影響を受けない。本測定では、面積が500μm未満を排除するため、500μm未満のオブジェクトをクリーン機能で除去した。
・閉領域を埋める off
 オブジェクト内の閉領域を埋める機能。
・分割 off
 結合された単一のオブジェクトを検出し、分離する機能。
 得られた結果を、まとめて下記表1に示す。
 比較例1及び実施例1で得られたポリオレフィン樹脂複合材のペレットについて、上記の方法にしたがって撮影した画像と画像処理を行って面積を測定した画像をそれぞれ図1(a)、1(b)、1(c)、及び1(d)に載せた。
(引張弾性率)
 前記で得られたポリオレフィン樹脂複合材ペレットを80℃、24時間乾燥し、射出成形機〔ファナック(株)製ロボットショットα-30C〕により、JIS K7127の試験片タイプ2号に準拠して、引張試験片を作製した。
 上記で作製した引張試験片の引張弾性率(GPa)をJIS K7161に準拠して、引張試験機〔インストロン社製のインストロン試験機5567型〕により、試験速度:1.0mm/minの条件で測定した。
Figure JPOXMLDOC01-appb-T000001
<表の注>
 ポリオレフィン樹脂、セルロースAとB及び水の行の数値の単位は、質量部であり、「-」は水が未使用、すなわち0質量部であることを示す。
 比較例3の「凝集体の面積」における「-」は、セルロース繊維とポリオレフィン樹脂が一体化した複合材が得られなかったことを意味する。
 上記表1から、実施例1~14のポリオレフィン樹脂複合材は、いずれもセルロース凝集体の面積が20,000μm未満であり、機械特性(引張弾性率)にも優れていた。
 これに対して、比較例1のポリオレフィン樹脂複合材は、混練時に水を用いておらず、セルロース凝集体の面積が20,000μmを超えた。比較例2のポリオレフィン樹脂複合材は、ポリオレフィン樹脂100質量部に対して、セルロース200質量部用いており、凝集体の面積が20,000μmを超えた。また、比較例3では、セルロース繊維とポリオレフィン樹脂が一体化した複合材が得られなかった。一方、比較例4では、セルロースの配合量が少ないため、高剛性な複合材が得られなかった。
 このように、ポリオレフィン樹脂とセルロースとを特定量、溶融混練するに当たり、水を特定量加えることにより、セルロース凝集体のサイズを20,000μm未満に抑えることができ、ポリオレフィン樹脂とセルロース繊維とが高度な均一性で一体化した樹脂複合材が得られることがわかる。
 こうして得られた本発明のポリオレフィン樹脂複合材は、セルロース繊維の樹脂改質作用を十分に引き出すことができ、軽量、高剛性、低線熱膨張係数等を実現でき、また外観にも優れる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2017年3月29日に日本国で特許出願された特願2017-065481及び2017年10月31日に日本国で特許出願された特願2017-210135に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (6)

  1.  ポリオレフィン樹脂と、該ポリオレフィン樹脂100質量部に対して10~150質量部のセルロース繊維とを含有し、前記セルロース繊維の凝集体の面積が20,000μm未満である、ポリオレフィン樹脂複合材。
  2.  前記セルロース繊維が、植物繊維のセルロースである、請求項1に記載のポリオレフィン樹脂複合材。
  3.  前記ポリオレフィン樹脂が、ポリエチレン、ポリプロピレンおよびアクリロニトリル/ブタジエン/スチレン共重合体のうちの少なくとも1種である、請求項1または2に記載のポリオレフィン樹脂複合材。
  4.  ポリオレフィン樹脂と、該ポリオレフィン樹脂100質量部に対して10~150質量部のセルロース繊維と、水とを混合し、溶融混練する工程を含む、ポリオレフィン樹脂複合材の製造方法。
  5.  前記溶融混練における前記水の混合量が、セルロース繊維100質量部に対して1~150質量部である、請求項4に記載のポリオレフィン樹脂複合材の製造方法。
  6.  得られるポリオレフィン樹脂複合材中に生じるセルロース繊維の凝集体の面積が20,000μm未満である、請求項4または5に記載のポリオレフィン樹脂複合材の製造方法。
PCT/JP2018/009757 2017-03-29 2018-03-13 ポリオレフィン樹脂複合材及びその製造方法 WO2018180469A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019509210A JP7042802B2 (ja) 2017-03-29 2018-03-13 ポリオレフィン樹脂複合材及びその製造方法
EP18776773.6A EP3604424B1 (en) 2017-03-29 2018-03-13 Polyolefin resin composite material and method of producing the same
CN201880009893.2A CN110248993B (zh) 2017-03-29 2018-03-13 聚烯烃树脂复合材料及其制造方法
US16/571,957 US11485837B2 (en) 2017-03-29 2019-09-16 Polyolefin resin composite material and method of producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-065481 2017-03-29
JP2017065481 2017-03-29
JP2017210135 2017-10-31
JP2017-210135 2017-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/571,957 Continuation US11485837B2 (en) 2017-03-29 2019-09-16 Polyolefin resin composite material and method of producing the same

Publications (1)

Publication Number Publication Date
WO2018180469A1 true WO2018180469A1 (ja) 2018-10-04

Family

ID=63675453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009757 WO2018180469A1 (ja) 2017-03-29 2018-03-13 ポリオレフィン樹脂複合材及びその製造方法

Country Status (5)

Country Link
US (1) US11485837B2 (ja)
EP (1) EP3604424B1 (ja)
JP (1) JP7042802B2 (ja)
CN (1) CN110248993B (ja)
WO (1) WO2018180469A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116517A1 (ja) 2018-12-05 2020-06-11 古河電気工業株式会社 セルロース繊維分散樹脂複合材、成形体、及び複合部材
WO2020116518A1 (ja) 2018-12-05 2020-06-11 古河電気工業株式会社 セルロース繊維分散樹脂複合材、成形体、及び複合部材
JP2020193263A (ja) * 2019-05-27 2020-12-03 古河電気工業株式会社 樹脂成形体及び複合部材
EP3674360A4 (en) * 2017-08-23 2021-05-12 Furukawa Electric Co., Ltd. POLYOLEFINAL COMPOSITE FABRIC WITH DISPERSED CELLULOSE FIBERS
WO2021251361A1 (ja) * 2020-06-10 2021-12-16 古河電気工業株式会社 繊維分散樹脂複合材、成形体、及び複合部材
US11390723B2 (en) 2016-12-05 2022-07-19 Furukawa Electric Co., Ltd. Cellulose-aluminum-dispersing polyethylene resin composite material, pellet and formed body using same, and production method therefor
US11390724B2 (en) 2017-08-23 2022-07-19 Furukawa Electric Co., Ltd. Cellulose-fiber dispersion polyethylene resin composite material, formed body and pellet using same, production method therefor, and recycling method for cellulose-fiber adhesion polyethylene thin film piece
US11597826B2 (en) 2017-08-23 2023-03-07 Furukawa Electric Co., Ltd. Cellulose-fiber-dispersing polyolefin resin composite material, pellet and formed body using same, and production method for cellulose-fiber-dispersing polyolefin resin composite material
US11667763B2 (en) 2017-08-23 2023-06-06 Furukawa Electric Co., Ltd. Cellulose-fiber dispersion polyethylene resin composite material, formed body and pellet using same, production method therefor, and recycling method for cellulose-fiber adhesion polyethylene thin film piece
JP7371302B1 (ja) 2022-03-29 2023-10-30 古河電気工業株式会社 セルロース繊維強化樹脂複合体、セルロース繊維強化樹脂複合体の製造方法、及びセルロース繊維強化樹脂成形体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042802B2 (ja) 2017-03-29 2022-03-28 古河電気工業株式会社 ポリオレフィン樹脂複合材及びその製造方法
EP3689973A4 (en) 2017-09-29 2021-06-09 Furukawa Electric Co., Ltd. MOLDED BODY
JP7203742B2 (ja) 2017-09-29 2023-01-13 古河電気工業株式会社 成形品
WO2019066069A1 (ja) 2017-09-29 2019-04-04 古河電気工業株式会社 成形品
JPWO2019088140A1 (ja) 2017-10-31 2020-09-24 古河電気工業株式会社 成形品
CN113795545A (zh) * 2020-02-17 2021-12-14 古河电气工业株式会社 树脂复合材料和树脂成型体

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013870B2 (ja) 2003-07-08 2007-11-28 関西ティー・エル・オー株式会社 脂肪族ポリエステル組成物の製造方法
JP2008297364A (ja) * 2007-05-29 2008-12-11 Kyoto Univ ミクロフィブリル化セルロース複合樹脂及びその製造方法
JP2011093990A (ja) * 2009-10-28 2011-05-12 Mitsubishi Paper Mills Ltd セルロース含有熱可塑性樹脂の製造方法、セルロース含有熱可塑性樹脂およびその成形体
JP2011116838A (ja) * 2009-12-02 2011-06-16 Mitsubishi Paper Mills Ltd セルロース含有熱可塑性樹脂の製造方法、セルロース含有熱可塑性樹脂およびその成形体
JP2011219571A (ja) * 2010-04-07 2011-11-04 Mitsubishi Paper Mills Ltd セルロース含有熱可塑性樹脂の製造方法、セルロース含有熱可塑性樹脂及びその成形体
JP2012102324A (ja) * 2010-10-14 2012-05-31 Riken Technos Corp 樹脂組成物
JP2013056958A (ja) * 2011-09-07 2013-03-28 Japan Steel Works Ltd:The セルロースナノファイバー入りポリオレフィン微多孔延伸フィルムの製造方法及びセルロースナノファイバー入りポリオレフィン微多孔延伸フィルム及び非水二次電池用セパレータ
JP2013189574A (ja) * 2012-03-14 2013-09-26 Fuji Xerox Co Ltd 樹脂組成物および樹脂成形体
JP2015183153A (ja) * 2014-03-26 2015-10-22 荒川化学工業株式会社 セルロース繊維/樹脂複合組成物の製造方法、該複合組成物、成形用樹脂組成物及び樹脂成形物
JP2015209439A (ja) * 2014-04-23 2015-11-24 王子ホールディングス株式会社 繊維含有樹脂組成物の製造方法
JP2016094516A (ja) * 2014-11-13 2016-05-26 中越パルプ工業株式会社 ポリオレフィン樹脂組成物
JP2017065481A (ja) 2015-09-30 2017-04-06 富士重工業株式会社 整流装置
JP2017210135A (ja) 2016-05-26 2017-11-30 トヨタ紡織株式会社 乗物用スライドレール装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267597A (ja) 1995-03-28 1996-10-15 Nippon Zeon Co Ltd 木板様ポリオレフィン系樹脂板およびその製造方法
JP3419340B2 (ja) 1999-03-18 2003-06-23 株式会社豊田中央研究所 樹脂組成物の製造方法
JP5433949B2 (ja) * 2008-01-11 2014-03-05 三菱化学株式会社 セルロース繊維含有ポリオレフィン系樹脂組成物
JP5211704B2 (ja) 2008-01-11 2013-06-12 三菱化学株式会社 セルロース繊維樹脂組成物およびその製造方法
JP5395496B2 (ja) * 2008-09-12 2014-01-22 ダイセルポリマー株式会社 セルロース繊維含有熱可塑性樹脂組成物の製造方法
JP4594445B1 (ja) 2010-04-02 2010-12-08 株式会社環境経営総合研究所 発泡体及びその製造方法
JP2012087199A (ja) 2010-10-19 2012-05-10 Hayashi Telempu Co Ltd 複合フィラー及びその製造方法、並びに複合フィラーを配合した樹脂組成物
JP2012236906A (ja) 2011-05-11 2012-12-06 Nissan Motor Co Ltd 樹脂組成物
JP6234037B2 (ja) * 2013-02-26 2017-11-22 国立大学法人京都大学 セルロース及び分散剤を含む組成物
JP6787137B2 (ja) 2016-01-14 2020-11-18 王子ホールディングス株式会社 微細セルロース繊維含有樹脂組成物及びその製造方法
JP6210582B2 (ja) 2017-01-13 2017-10-11 古河電気工業株式会社 セルロース繊維分散ポリエチレン樹脂複合材、それを用いた成形体及びペレット、並びに、セルロース繊維付着ポリエチレン薄膜片のリサイクル方法
JP6210583B2 (ja) 2017-01-13 2017-10-11 古河電気工業株式会社 セルロース繊維分散ポリエチレン樹脂複合材、それを用いた成形体及びペレット、並びに、セルロース繊維分散ポリエチレン樹脂複合材の製造方法
JP7042802B2 (ja) 2017-03-29 2022-03-28 古河電気工業株式会社 ポリオレフィン樹脂複合材及びその製造方法
JP6284672B2 (ja) 2017-06-14 2018-02-28 古河電気工業株式会社 セルロース繊維分散ポリエチレン樹脂複合材の製造方法、及びセルロース繊維付着ポリエチレン薄膜片のリサイクル方法
WO2019066069A1 (ja) 2017-09-29 2019-04-04 古河電気工業株式会社 成形品

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013870B2 (ja) 2003-07-08 2007-11-28 関西ティー・エル・オー株式会社 脂肪族ポリエステル組成物の製造方法
JP2008297364A (ja) * 2007-05-29 2008-12-11 Kyoto Univ ミクロフィブリル化セルロース複合樹脂及びその製造方法
JP2011093990A (ja) * 2009-10-28 2011-05-12 Mitsubishi Paper Mills Ltd セルロース含有熱可塑性樹脂の製造方法、セルロース含有熱可塑性樹脂およびその成形体
JP2011116838A (ja) * 2009-12-02 2011-06-16 Mitsubishi Paper Mills Ltd セルロース含有熱可塑性樹脂の製造方法、セルロース含有熱可塑性樹脂およびその成形体
JP2011219571A (ja) * 2010-04-07 2011-11-04 Mitsubishi Paper Mills Ltd セルロース含有熱可塑性樹脂の製造方法、セルロース含有熱可塑性樹脂及びその成形体
JP2012102324A (ja) * 2010-10-14 2012-05-31 Riken Technos Corp 樹脂組成物
JP2013056958A (ja) * 2011-09-07 2013-03-28 Japan Steel Works Ltd:The セルロースナノファイバー入りポリオレフィン微多孔延伸フィルムの製造方法及びセルロースナノファイバー入りポリオレフィン微多孔延伸フィルム及び非水二次電池用セパレータ
JP2013189574A (ja) * 2012-03-14 2013-09-26 Fuji Xerox Co Ltd 樹脂組成物および樹脂成形体
JP2015183153A (ja) * 2014-03-26 2015-10-22 荒川化学工業株式会社 セルロース繊維/樹脂複合組成物の製造方法、該複合組成物、成形用樹脂組成物及び樹脂成形物
JP2015209439A (ja) * 2014-04-23 2015-11-24 王子ホールディングス株式会社 繊維含有樹脂組成物の製造方法
JP2016094516A (ja) * 2014-11-13 2016-05-26 中越パルプ工業株式会社 ポリオレフィン樹脂組成物
JP2017065481A (ja) 2015-09-30 2017-04-06 富士重工業株式会社 整流装置
JP2017210135A (ja) 2016-05-26 2017-11-30 トヨタ紡織株式会社 乗物用スライドレール装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED. ENGL., vol. 34, 1955, pages 1143 - 1170
J. AM. CHEM. SOC., vol. 110, 1988, pages 6255
MACROMOLECULES, vol. 8, 1975, pages 687

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390723B2 (en) 2016-12-05 2022-07-19 Furukawa Electric Co., Ltd. Cellulose-aluminum-dispersing polyethylene resin composite material, pellet and formed body using same, and production method therefor
US11667763B2 (en) 2017-08-23 2023-06-06 Furukawa Electric Co., Ltd. Cellulose-fiber dispersion polyethylene resin composite material, formed body and pellet using same, production method therefor, and recycling method for cellulose-fiber adhesion polyethylene thin film piece
US11597826B2 (en) 2017-08-23 2023-03-07 Furukawa Electric Co., Ltd. Cellulose-fiber-dispersing polyolefin resin composite material, pellet and formed body using same, and production method for cellulose-fiber-dispersing polyolefin resin composite material
US11466145B2 (en) 2017-08-23 2022-10-11 Furukawa Electric Co., Ltd. Cellulose-fiber-dispersing polyolefin resin composite material
EP3674360A4 (en) * 2017-08-23 2021-05-12 Furukawa Electric Co., Ltd. POLYOLEFINAL COMPOSITE FABRIC WITH DISPERSED CELLULOSE FIBERS
US11390724B2 (en) 2017-08-23 2022-07-19 Furukawa Electric Co., Ltd. Cellulose-fiber dispersion polyethylene resin composite material, formed body and pellet using same, production method therefor, and recycling method for cellulose-fiber adhesion polyethylene thin film piece
EP3892434A4 (en) * 2018-12-05 2022-08-03 Furukawa Electric Co., Ltd. CELLULOSIC FIBER DISPERSIVE RESIN COMPOSITE, MOLDING AND COMPOSITE
JPWO2020116518A1 (ja) * 2018-12-05 2021-10-28 古河電気工業株式会社 セルロース繊維分散樹脂複合材、成形体、及び複合部材
WO2020116517A1 (ja) 2018-12-05 2020-06-11 古河電気工業株式会社 セルロース繊維分散樹脂複合材、成形体、及び複合部材
CN112739513A (zh) * 2018-12-05 2021-04-30 古河电气工业株式会社 分散有纤维素纤维的树脂复合材料、成型体以及复合构件
CN112739513B (zh) * 2018-12-05 2023-02-17 古河电气工业株式会社 分散有纤维素纤维的树脂复合材料、成型体以及复合构件
WO2020116518A1 (ja) 2018-12-05 2020-06-11 古河電気工業株式会社 セルロース繊維分散樹脂複合材、成形体、及び複合部材
JP2020193263A (ja) * 2019-05-27 2020-12-03 古河電気工業株式会社 樹脂成形体及び複合部材
WO2021251361A1 (ja) * 2020-06-10 2021-12-16 古河電気工業株式会社 繊維分散樹脂複合材、成形体、及び複合部材
JP7371302B1 (ja) 2022-03-29 2023-10-30 古河電気工業株式会社 セルロース繊維強化樹脂複合体、セルロース繊維強化樹脂複合体の製造方法、及びセルロース繊維強化樹脂成形体

Also Published As

Publication number Publication date
EP3604424B1 (en) 2023-10-18
JP7042802B2 (ja) 2022-03-28
US20200010654A1 (en) 2020-01-09
EP3604424A4 (en) 2020-12-23
US11485837B2 (en) 2022-11-01
CN110248993B (zh) 2022-12-30
EP3604424A1 (en) 2020-02-05
JPWO2018180469A1 (ja) 2020-02-06
CN110248993A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2018180469A1 (ja) ポリオレフィン樹脂複合材及びその製造方法
JP6815867B2 (ja) ポリオレフィン樹脂組成物、成形品および車両用外板
JP5651918B2 (ja) ポリプロピレン系樹脂組成物及び成形体
US11891498B2 (en) Molded article provided with a resin part
JP5092216B2 (ja) プロピレン系樹脂組成物の製造方法、プロピレン系樹脂組成物およびそれからなる射出成形体
JP5272530B2 (ja) 発泡用樹脂組成物及び発泡成形体
JP2014141663A (ja) ポリプロピレン系樹脂組成物およびその成形体
JP5151134B2 (ja) ポリオレフィン樹脂組成物およびその成形品
JP2006225468A (ja) ポリプロピレン系樹脂組成物およびその成形体
US20220010113A1 (en) Cellulose fiber-reinforced polypropylene resin formed body and method for producing the same
WO2007069760A1 (ja) ポリオレフィン樹脂組成物、それからなる成形品、およびポリオレフィン樹脂組成物の製造方法
JP2006225467A (ja) ポリプロピレン系樹脂組成物およびその成形体
KR20020075301A (ko) 연신 필름용 폴리프로필렌계 수지 조성물, 이의 제조 방법및 연신 필름
JP2009270015A (ja) ポリオレフィン樹脂組成物の製造方法
JP2019081859A (ja) ドアトリム
JP2019081858A (ja) 車両用外装部品
JP2019081860A (ja) バンパー
JP7269259B2 (ja) 樹脂成形体及び樹脂組成物
WO2024062840A1 (ja) 樹脂組成物、成形体および樹脂組成物の製造方法
TW202402919A (zh) 纖維素纖維強化樹脂複合體、纖維素纖維強化樹脂複合體之製造方法、及纖維素纖維強化樹脂成形體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018776773

Country of ref document: EP

Effective date: 20191029