WO2018180169A1 - 水蒸気処理製品の品質評価方法 - Google Patents

水蒸気処理製品の品質評価方法 Download PDF

Info

Publication number
WO2018180169A1
WO2018180169A1 PCT/JP2018/007758 JP2018007758W WO2018180169A1 WO 2018180169 A1 WO2018180169 A1 WO 2018180169A1 JP 2018007758 W JP2018007758 W JP 2018007758W WO 2018180169 A1 WO2018180169 A1 WO 2018180169A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
test piece
film thickness
oxygen
oxygen content
Prior art date
Application number
PCT/JP2018/007758
Other languages
English (en)
French (fr)
Inventor
晋 上野
中野 忠
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to CN201880021629.0A priority Critical patent/CN110462376A/zh
Priority to EP18776350.3A priority patent/EP3584563A4/en
Priority to US16/499,331 priority patent/US10788472B2/en
Priority to KR1020197028394A priority patent/KR20190134628A/ko
Priority to MX2019011532A priority patent/MX2019011532A/es
Publication of WO2018180169A1 publication Critical patent/WO2018180169A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Definitions

  • the present invention relates to a method for evaluating the quality of a steam-treated product produced by subjecting a plated steel sheet or the like to steam treatment.
  • the following problems may occur when the degree of oxidation of the plating layer is not appropriate. That is, when the plating layer is not sufficiently oxidized, the brightness of the plating layer surface is too high, and there is a possibility that a sufficient black appearance cannot be obtained. In addition, when the plating layer is excessively oxidized, the thickness of the oxide film becomes excessively large and the plating layer may become brittle. If the plated layer becomes brittle, the corrosion resistance of the plated layer may be reduced, or the oxide film may be peeled off in the powder state during bending of the plated steel sheet, and powder may be generated.
  • the powder When the black-plated steel sheet is bent, if the powder adheres to the processing mold, the powder may scratch the surface of the oxide film or formability may be impaired. For this reason, in order to ensure the quality of the oxide film on the black-plated steel sheet, the brightness of the plating layer surface and the thickness of the oxide film on the black-plated steel sheet are evaluated, and the evaluation is based on the manufacturing process of the black-plated steel sheet (water vapor in the plating layer). It is necessary to feed back to the processing process and use it for quality control. Therefore, conventionally, evaluation criteria have been set for the brightness of the plating layer surface and the thickness of the oxide film in the plating layer, respectively.
  • the lightness (L * value) of the plating layer surface has been measured using a spectroscopic color difference meter. And the surface brightness was evaluated by comparing the measurement result with the evaluation standard (brightness standard value).
  • the oxide film thickness was evaluated by the following method. More specifically, first, a test piece is cut out from the black-plated steel sheet, and the test piece is embedded in a liquid epoxy resin. After the epoxy resin is cured, the epoxy resin and the test piece are polished flush so that the end face of the test piece is exposed. And the end surface of a test piece is observed with a microscope, and the thickness of an oxide film is measured. Then, the oxide film thickness was evaluated by comparing the average value of the oxide film thickness with an evaluation standard (standard value of thickness).
  • the above evaluation method of the oxide film thickness and the above evaluation method of the surface brightness have the following problems. That is, the above-mentioned evaluation method for the thickness of the oxide film requires complicated operations such as embedding and curing of a test piece in a liquid epoxy resin, polishing of the epoxy resin and the test piece, and observation under a microscope. There is a problem that it takes a long time to cure and it takes a long time (two days or more) to finish the evaluation. In addition, since only the end face of the test piece is observed, the observation range is local, and it is difficult to evaluate the average thickness of the oxide film with high accuracy over a wide range. Further, in the evaluation method for surface brightness, a spectral color difference meter that is not used in the evaluation method for oxide film thickness is required. For this reason, when both oxide film thickness and surface brightness are evaluated, there exists a problem that the work efficiency of evaluation becomes low.
  • an object of the present invention is to provide a quality evaluation method for a steam-treated product that can easily and quickly evaluate the quality of an oxide film in a steam-treated product such as a black-plated steel sheet.
  • FIG. 3 shows the measured value (value on the vertical axis) of the amount of oxygen contained in the test piece of the steam-treated product (hereinafter sometimes referred to as “content of oxygen”) and the thickness of the oxide film on the test piece. It is a graph which shows the relationship with the average value (value of a horizontal axis).
  • oxide film thickness shows that the oxygen content tends to increase as the average thickness of the oxide film (hereinafter referred to as “oxide film thickness”) increases.
  • the thickness of the oxide film and the amount of oxygen contained correspond one-on-one. From this, the present inventors have found that there is a clear correlation between the oxide film thickness and the oxygen content.
  • FIG. 4 is a graph showing the relationship between oxide film thickness (value on the horizontal axis) and surface brightness (value on the vertical axis).
  • FIG. 4 shows that the surface brightness tends to decrease as the oxide film thickness increases.
  • the oxide film thickness and the surface brightness correspond one-on-one. Therefore, it can be seen from FIGS. 3 and 4 that as the oxygen content increases, the surface brightness tends to decrease, and the oxygen content and the surface brightness correspond one-to-one. From this, the present inventors have found that there is a clear correlation between the oxygen content and the surface brightness.
  • the present inventors have focused on the fact that there is a clear correlation between the oxygen content and the thickness of the oxide film, and between the oxygen content and the surface brightness, and arrived at the invention of (1) above. It came to do.
  • the amount of oxygen contained in the test piece (the amount of oxygen contained) is measured, and at least one of surface brightness and oxide film thickness is evaluated based on the measured value.
  • the measurement of oxygen content is compared to the conventional case of embedding a test piece in an epoxy resin, curing the epoxy resin, polishing the epoxy resin and the test piece, and observing under a microscope. Can be carried out easily and in a short time.
  • the oxide film thickness based on the oxygen content it is possible to evaluate a wider area as compared with the conventional case where the oxide film thickness is evaluated by observing only the end face of the test piece. Therefore, the accuracy of evaluation of the oxide film thickness can be increased.
  • both surface brightness and oxide film thickness can be evaluated. Therefore, the work efficiency of the evaluation can be improved as compared with the conventional case where a spectroscopic color difference meter is used to evaluate the surface brightness and a microscope is used to evaluate the oxide film thickness.
  • the steam-treated product includes a steel plate and a plating layer integrally provided on the surface of the steel plate, and the test piece includes a steel plate cut-out portion cut out from the steel plate, and a surface of the steel plate cut-out portion.
  • a test piece in which the steel plate cutout portion and the plating layer cutout portion are integrated is supplied to the oxygen amount measuring device.
  • the amount of oxygen is measured by supplying a test piece in which the steel plate cutout portion and the plating layer cutout portion are integrated to the oxygen amount measuring device. That is, the amount of oxygen is measured without separating the plated layer cutout portion from the steel plate cutout portion. Therefore, the amount of oxygen can be measured more easily and in a short time.
  • the quality of an oxide film in a steam-treated product such as a black-plated steel sheet can be evaluated with high accuracy easily and in a short time.
  • (A) to (e) are diagrams schematically showing the cross section of each of the five test pieces together with the measured value of the oxygen content, the thickness of the oxide film, and the surface brightness.
  • the molten Al and Mg-containing Zn-plated steel sheet may be simply referred to as “plated steel sheet”.
  • the molten Al / Mg-containing Zn plating layer of the molten Al / Mg-containing Zn-plated steel sheet may be simply referred to as a “plating layer”.
  • simply bringing the water vapor into contact with the molten Al / Mg-containing Zn-plated steel sheet inside the sealed container is simply “ It may be referred to as “processing”.
  • “front surface” means “hyomen”
  • “front and back surfaces” means “hyomen”, that is, “motemen” and “uramen”.
  • the black-plated steel sheet as an example of the steam-treated product in the present invention is obtained by bringing a molten Al-containing Mg and Al-containing Zn-plated steel sheet into contact with steam inside the sealed container (steam treatment). It is manufactured. By the steam treatment, an oxide film (blackened plating layer) is formed on the plating layer of the black-plated steel sheet.
  • a steel sheet including a base steel sheet and a plating layer integrally provided on the front and back surfaces of the base steel sheet can be used as a target for quality evaluation.
  • the plating layer was provided only in any one surface among the front and back of a base-material steel plate as the object of quality evaluation.
  • the 5th process (S250) which evaluates the quality of an oxide film comprehensively based on the 4th process (S240) which evaluates the brightness of the surface of a black plating steel plate, the evaluation in the 3rd process, and the evaluation in the 4th process Are performed in this order.
  • the cutting operation of the test piece 100 is performed, for example, by punching a black-plated steel sheet into a predetermined shape using a mold (punch and die).
  • the shape and size of the test piece 100 are not particularly limited, and are, for example, a disk shape having a diameter of 8 mm.
  • the shape of the test piece 100 can also be made into shapes other than disk shape.
  • the test piece 100 includes a steel plate cutout portion 101 cut out from a black plated steel plate, and a plating layer cutout portion 102 cut out from a plating layer of the black plated steel plate and provided integrally on the surface of the steel plate cutout portion 101. (See FIG. 2). In the example shown in FIG.
  • the test piece 100 includes a steel plate cutout portion 101 and a plating layer cutout portion 102 that is integrally provided on the front and back surfaces of the steel plate cutout portion 101.
  • An oxide film 103 is formed on the surface layer of the plating layer cutout portion 102.
  • the measurement of the oxygen content can be performed using an oxygen content measuring device that can accurately measure the amount of oxygen.
  • an oxygen content measuring apparatus a conventionally known apparatus can be adopted.
  • a conventionally known oxygen amount measuring apparatus for example, an analysis furnace having a graphite crucible into which a test piece can be inserted, a gas cylinder for supplying an inert gas such as He (helium) to the analysis furnace, and an analysis By analyzing the gas that has passed through the furnace, an infrared gas analyzer that measures the amount of oxygen contained in the test piece can be employed.
  • the infrared gas analyzer include NDIR (non-dispersive infrared gas analyzer) and FTIR (Fourier transform infrared gas analyzer). Note that any device other than those described above can be used as long as the device can accurately measure the amount of oxygen.
  • the oxygen content measuring apparatus After the test piece 100 and the metal solvent are introduced into the graphite crucible, an inert gas is supplied from the gas cylinder into the analysis furnace, and the test piece 100 is heated and melted by the analysis furnace in this state. Then, carbon monoxide and carbon dioxide generated by melting the test piece 100 are analyzed by an infrared gas analyzer, and the amount of oxygen contained in the test piece 100 is measured.
  • the metal solvent for example, Sn (tin) pellets and Ni (nickel) pellets can be used.
  • FIG. 3 is a graph showing the relationship between the amount of oxygen contained (value on the vertical axis) and the thickness of the oxide film (value on the horizontal axis). This graph was created by the inventors examining the correspondence between the oxygen content and the thickness of the oxide film by testing and plotting the correspondence.
  • the oxide film thickness shown by FIG. 3 represents the oxide film thickness in the single side
  • shaft) in FIG. 3 is converted into the oxygen content per side of a black-plated steel plate by dividing the oxygen content obtained in the second step by 2.
  • FIG. 3 shows that as the oxide film thickness increases, the oxygen content tends to increase.
  • FIG. 6 shows that the thickness of the oxide film and the amount of oxygen contained correspond one to one. This shows that there is a clear correlation between the thickness of the oxide film and the amount of oxygen contained.
  • the measured value ⁇ 1 (g / m 2 ) of the oxygen content corresponds to the oxide film thickness (oxide film thickness on one side of the black-plated steel sheet) ⁇ 1 ( ⁇ m) via the point A on the graph of FIG. To do.
  • the measured value ⁇ 2 (g / m 2 ) of the oxygen content corresponds to the oxide film thickness ⁇ 2 ( ⁇ m) via the point B
  • the measured value ⁇ 3 (g / m 2 ) of the oxygen content is
  • the measured value ⁇ 4 (g / m 2 ) of the oxygen content corresponds to the oxide film thickness ⁇ 4 ( ⁇ m) through the point D.
  • the measured value ⁇ 5 (g / m 2 ) of the oxygen content corresponds to the oxide film thickness ⁇ 5 ( ⁇ m) via the point E.
  • the range of the oxide film thickness (the thickness of each oxide film on one side of the black-plated steel sheet) that can prevent the powder-like peeling of the oxide film (the generation of powder) during bending of the black-plated steel sheet is the bending test of the black-plated steel sheet It is possible to investigate by. It is assumed that the range is equal to or less than ⁇ TH ( ⁇ m) and ⁇ TH ( ⁇ m) corresponds to the oxygen content ⁇ TH (g / m 2 ). In this case, if the measured value of the oxygen content is within the range of ⁇ TH (g / m 2 ) or less, it can be evaluated that the oxide film thickness is appropriate.
  • the fourth step (S240) the correlation between the oxide film thickness and the oxygen content (see FIG. 3), the correlation between the surface brightness in the black-plated steel sheet and the oxide film thickness (see FIG. 4), and the second step
  • the surface brightness corresponding to the measured value of the contained oxygen amount is evaluated based on the measured value of the contained oxygen amount measured in (1).
  • FIG. 4 is a graph showing the relationship between surface brightness (value on the vertical axis) and oxide film thickness (value on the horizontal axis). This graph was created by the inventors examining the correspondence between surface brightness and oxide film thickness by testing and plotting the correspondence.
  • FIG. 4 shows that the surface brightness tends to decrease as the thickness of the oxide film increases. Further, FIG. 4 shows that the oxide film thickness and the surface brightness correspond one-on-one. This shows that there is a clear correlation between the oxide film thickness and the surface brightness.
  • there is a clear correlation between the oxide film thickness and the oxygen content see FIG. 3) as described above. Therefore, it can be seen that there is a clear correlation between the surface brightness and the oxygen content.
  • the measured value alpha 1 for oxygen content (g / m 2) of, via the point A on the graph of FIG. 3 corresponds to the oxide film thickness ⁇ 1 ( ⁇ m)
  • the oxide film thickness ⁇ 1 ( ⁇ m) is 4 corresponds to the surface brightness (L * value) ⁇ 1 through the point A on the graph of FIG.
  • the measurement value alpha 2 of the oxygen content (g / m 2) of, via the point B corresponding to the oxide film thickness ⁇ 2 ( ⁇ m), the oxide film thickness ⁇ 2 ( ⁇ m) is on the graph of FIG. 4 Corresponds to surface brightness ⁇ 2 via point B.
  • Measurements alpha 5 for oxygen content (g / m 2) for, through a point E in FIG. 3 corresponds to the oxide film thickness ⁇ 5 ( ⁇ m), the oxide film thickness ⁇ 5 ( ⁇ m), the points 4 Corresponds to surface brightness ⁇ 5 via E.
  • the range of surface brightness (L * ) at which a black appearance with high aesthetics can be obtained can be examined by observing the surface of the black-plated steel sheet.
  • the surface brightness range is ⁇ IN or less and ⁇ IN corresponds to the oxygen content ⁇ IN (g / m 2 ).
  • the measured value of the oxygen content is in the range of ⁇ IN (g / m 2 ) or more, it can be evaluated that the surface brightness is appropriate.
  • the quality of the oxide film is comprehensively evaluated based on the evaluation in the third step and the evaluation in the fourth step.
  • the third step described above if the measured value of the oxygen content is within the range of ⁇ TH (g / m 2 ) or less, it is evaluated that the oxide film thickness is appropriate (success criteria are satisfied). Further, in the fourth step, if the measured value of the oxygen content is within the range of ⁇ IN (g / m 2 ) or more, the surface brightness is evaluated to be appropriate (satisfaction criteria are satisfied). Based on these evaluation criteria, in the fifth step, if the measured value of the oxygen content is not less than ⁇ IN (g / m 2 ) and not more than ⁇ TH (g / m 2 ), the quality of the oxide film satisfies the acceptance criteria. Evaluate (pass).
  • the measured value of the oxygen content is within this range, it is evaluated that both the oxide film thickness and the surface brightness are appropriate, so that the quality of the oxide film is evaluated as being comprehensive.
  • the measured value of the oxygen content is smaller than ⁇ IN (g / m 2 )
  • the oxide film thickness is appropriate, but the surface brightness is evaluated as inappropriate.
  • the measured value of oxygen content is larger than ⁇ TH (g / m 2 )
  • the surface brightness is appropriate, but the oxide film thickness is inappropriate, so the quality of the oxide film is totally rejected. It is evaluated that.
  • an oxide film was formed on both the front and back surfaces of the plated steel sheet 1, thereby producing a black plated steel sheet.
  • five black-plated steel sheets with different steam treatment times were produced.
  • these black-plated steel plates were punched into a circular plate shape having a diameter of 8 mm using a punch and a die, and a test piece 100 (see FIG. 2) was produced.
  • the oxygen content (unit: g / m 2 ) of the test piece 100 was measured using an oxygen content measuring device (EMGA-930 manufactured by Horiba Seisakusho). At that time, 0.5 g of Sn pellets (purity 99%) and 0.5 g of Ni pellets (purity 99%) were introduced into the oxygen amount measuring apparatus together with the test piece 100 as a metal solvent.
  • EMGA-930 manufactured by Horiba Seisakusho
  • FIGS. 5A to 5E are diagrams schematically showing the cross section of each of the five test pieces 100 together with the measured value of the oxygen content, the calculated value of the oxide film thickness, and the calculated value of the surface brightness. It is.
  • the amount of oxygen is measured in a short time of about 5 minutes after the test piece 100 is put into the oxygen amount measuring device, and based on the measurement result, The oxide film thickness and surface brightness could be calculated in a short time.
  • the measured oxygen content includes the oxygen content of the base steel sheet, but the oxygen content of the base steel sheet is negligibly small compared to the oxygen content of the oxide film. It hardly affects the measurement accuracy of the oxygen content in the oxide film.
  • the quality of an oxide film in a steam-treated product such as a black-plated steel sheet can be evaluated easily and in a short time with high accuracy.
  • the quality of an oxide film in a steam-treated product such as a black-plated steel sheet can be evaluated easily and in a short time with high accuracy. For this reason, the evaluation can be fed back to the manufacturing process (steam treatment process) of the black-plated steel sheet to perform quality control of the black-plated steel sheet. As a result, it is expected to produce a black-plated steel sheet excellent in design and formability and contribute to the further spread of the black-plated steel sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Coating With Molten Metal (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

黒色めっき鋼板等の水蒸気処理製品における酸化被膜の品質を、高い精度で容易かつ短時間で評価することができる水蒸気処理製品の品質評価方法を提供する。水蒸気処理により表面に酸化被膜が形成された水蒸気処理製品の品質評価方法であって、水蒸気処理製品から試験片100を切り出し、試験片100に含有される酸素の量を測定し、酸素の量の測定値に基づいて、試験片の表面の明度および試験片における酸化被膜の厚みの少なくとも一方を評価することを特徴とする。

Description

水蒸気処理製品の品質評価方法
 本発明は、めっき鋼板等に水蒸気処理を行うことにより製造された水蒸気処理製品の品質を評価する方法に関する。
 建築物の屋根材や外装材、家電製品、自動車などの分野では、意匠性などの観点から黒色の外観を有する鋼板のニーズが高まっている。鋼板の表面を黒色化する方法としては、鋼板の表面に黒色塗料を塗布して黒色塗膜を形成する方法があるが、黒色塗膜を形成せずに、めっき鋼板の金属光沢および銀白色の色調を遮蔽して、めっき層そのものを酸化させて黒色化する方法が提案されている。例えば、特許文献1、2には、溶融Al、Mg含有Znめっき鋼板を、密閉容器の内部で水蒸気と接触させて、黒色化した酸化皮膜を溶融Al、Mg含有Znめっき層に形成させる方法が記載されている。
 なお、以下の説明では、めっき鋼板等の被処理物のめっき層を黒色化するために、密閉容器の内部で被処理物に水蒸気を接触させることを、単に「水蒸気処理」ともいう。
 ところで、めっき層の酸化の程度が適切でない場合には、以下の問題が生じる虞がある。すなわち、めっき層が十分に酸化されていない場合には、めっき層表面の明度が高過ぎて、十分な黒色外観が得られない虞がある。また、めっき層が過度に酸化された場合には、酸化被膜の厚みが過度に大きくなり、めっき層が脆化する虞がある。めっき層が脆化すると、めっき層の耐食性が低下したり、めっき鋼板の曲げ加工時に酸化被膜が粉末状に剥がれてパウダーが発生する虞がある。黒色めっき鋼板を曲げ加工する際に、上記パウダーが加工用金型に付着すると、パウダーが酸化被膜の表面を疵付けたり、成形性が阻害される虞がある。このため、黒色めっき鋼板の酸化被膜の品質を確保するためには、黒色めっき鋼板のめっき層表面の明度および酸化被膜の厚みを評価し、その評価を黒色めっき鋼板の製造工程(めっき層の水蒸気処理工程)にフィードバックして、品質管理に活用する必要がある。そこで、従来、めっき層表面の明度と、めっき層における酸化被膜の厚みとについて、それぞれ、評価基準が設定されていた。
 従来、めっき層表面の明度(L値)は、分光型色差計を用いて測定されていた。そして、その測定結果を評価基準(明度の基準値)と比較することにより、表面明度が評価されていた。
 一方、酸化被膜厚みは、以下の方法で評価されていた。詳しく説明すると、まず、黒色めっき鋼板から試験片を切り出し、その試験片を液状エポキシ樹脂に埋め込む。エポキシ樹脂の硬化後、試験片の端面が露出するようにエポキシ樹脂および試験片を面一に研磨する。そして、試験片の端面を顕微鏡で観察し、酸化被膜の厚みを測定する。その後、酸化被膜厚みの平均値を評価基準(厚みの基準値)と比較することにより、酸化被膜厚みが評価されていた。
特許第5335159号公報 特許第6072952号公報
 しかしながら、酸化被膜厚みの上記評価方法および表面明度の上記評価方法には、以下の問題がある。すなわち、酸化被膜厚みの上記評価方法は、試験片の液状エポキシ樹脂への埋め込みと硬化、エポキシ樹脂および試験片の研磨、顕微鏡による観察など、煩雑な作業を必要とする上に、液状エポキシ樹脂が硬化するまでに長時間を要し、評価を終えるまでに長時間(2日以上)かかるという問題がある。また、試験片の端面のみを観察するので、観察の範囲が局部的であり、広い範囲に渡って平均的な酸化被膜の厚みを高い精度で評価することが難しいという問題もある。また、表面明度の上記評価方法では、酸化被膜厚みの上記評価方法では用いない分光型色差計が必要とされる。このため、酸化被膜厚みと表面明度の双方を評価する場合には、評価の作業効率が低くなるという問題がある。
 そこで、本願発明では、黒色めっき鋼板等の水蒸気処理製品における酸化被膜の品質を、高い精度で容易かつ短時間で評価することができる水蒸気処理製品の品質評価方法を提供することを目的とする。
 (1)水蒸気処理により表面に酸化被膜が形成された水蒸気処理製品の品質評価方法であって、前記水蒸気処理製品から試験片を切り出し、前記試験片に含有される酸素の量を測定し、前記酸素の量の測定値に基づいて、前記試験片の表面の明度および前記試験片における前記酸化被膜の厚みの少なくとも一方を評価することを特徴とする、水蒸気処理製品の品質評価方法。
 本発明者らが上記(1)の発明に想到するに至った経緯について説明する。本発明者らは、上記課題を解決するために、水蒸気処理により表面に酸化被膜が形成された水蒸気処理製品(以下、単に「水蒸気処理製品」と称する)に含有される酸素の量と、水蒸気処理製品における酸化被膜の厚みとの関係を調べた。図3は、水蒸気処理製品の試験片に含有される酸素の量(以下、「含有酸素量」と称する場合がある)の測定値(縦軸の値)と、上記試験片における酸化被膜の厚みの平均値(横軸の値)との関係を示すグラフである。図3には、酸化被膜の厚みの平均値(以下、「酸化被膜厚み」と称する)が増加すると、含有酸素量も増加する傾向があることが示されている。そして、図3においては、酸化被膜厚みと含有酸素量とは、一対一で対応している。このことから、本発明者らは、酸化被膜厚みと含有酸素量との間には明確な相関関係があることを見出した。
 また、本発明者らは、上記課題を解決するために、酸化被膜厚みと、水蒸気処理製品の表面の明度(以下、単に「表面明度」と称する)との関係を調べた。図4は、酸化被膜厚み(横軸の値)と、表面明度(縦軸の値)との関係を示すグラフである。図4には、酸化被膜厚みが増加すると、表面明度が減少する傾向があることが示されている。そして、図4においては、酸化被膜厚みと、表面明度とは、一対一で対応している。したがって、図3および図4から、含有酸素量が増加すると表面明度が減少する傾向にあり、含有酸素量と表面明度とは一対一に対応することがわかる。このことから、本発明者らは、含有酸素量と表面明度との間には明確な相関関係があることを見出した。
 本発明者らは、含有酸素量と酸化被膜厚みとの間、および、含有酸素量と表面明度との間に、それぞれ明確な相関関係があることに着目し、上記(1)の発明に想到するに至った。
 上記(1)の構成では、試験片に含有される酸素の量(含有酸素量)を測定し、その測定値に基づいて、表面明度および酸化被膜厚みの少なくとも一方を評価する。含有酸素量の測定は、従来のような試験片のエポキシ樹脂への埋め込み、エポキシ樹脂の硬化、エポキシ樹脂および試験片の研磨、顕微鏡での観察、という煩雑な一連の作業を行う場合と比べて、容易かつ短時間で行うことができる。また、含有酸素量に基づいて酸化被膜厚みを評価することで、従来のように試験片の端面のみを観察して酸化被膜厚みを評価する場合と比べて、広い領域を評価対象とすることができるので、酸化被膜厚みの評価の精度を高めることができる。また、含有酸素量を測定することにより、表面明度および酸化被膜厚みの双方を評価することができる。したがって、従来のように表面明度を評価するために分光型色差計を用い、酸化被膜厚みを評価するために顕微鏡を用いる場合と比べて、評価の作業効率を高めることができる。
 (2)前記水蒸気処理製品は、鋼板と、当該鋼板の表面に一体に設けられためっき層とを含み、前記試験片は、前記鋼板から切り出された鋼板切り出し部と、前記鋼板切り出し部の表面に一体に設けられためっき層切り出し部とを含み、前記酸素の量の測定は、前記鋼板切り出し部と前記めっき層切り出し部とが一体とされたままの試験片を酸素量測定装置に供給することにより行われることを特徴とする、(1)に記載の水蒸気処理製品の品質評価方法。
 上記(2)の構成では、酸素の量の測定は、鋼板切り出し部とめっき層切り出し部とが一体とされたままの試験片を酸素量測定装置に供給することにより行われる。つまり、鋼板切り出し部からめっき層切り出し部を分離させることなく、酸素の量の測定が行われる。したがって、酸素の量の測定をさらに容易かつ短時間で行うことができる。
 本願発明によれば、黒色めっき鋼板等の水蒸気処理製品における酸化被膜の品質を、高い精度で容易かつ短時間で評価することができる。
本願発明に係る黒色めっき鋼板の品質評価方法のフローチャートである。 試験片の一例を示す斜視図である。 水蒸気処理製品(黒色めっき鋼板)の試験片に含有される酸素の量の測定値(縦軸の値)と、試験片における酸化被膜厚み(横軸の値)との関係を示すグラフである。 水蒸気処理製品(黒色めっき鋼板)の試験片の表面明度(縦軸の値)と、酸化被膜厚みの平均値(横軸の値)との関係を示すグラフである。 (a)~(e)は、5つの試験片の各々について、その断面を、含有酸素量の測定値、酸化被膜厚み、表面明度とともに模式的に示す図である。
 以下、本実施形態における水蒸気処理製品の一例として、溶融Al、Mg含有Znめっき鋼板に水蒸気処理を施すことにより、黒色めっき鋼板を製造する場合を例に挙げて説明する。
 なお、この明細書では、溶融Al、Mg含有Znめっき鋼板を、単に「めっき鋼板」と称することがある。また、溶融Al、Mg含有Znめっき鋼板の溶融Al、Mg含有Znめっき層を、単に「めっき層」と称することがある。さらに、溶融Al、Mg含有Znめっき鋼板の溶融Al、Mg含有Znめっき層を黒色化するために、密閉容器の内部で溶融Al、Mg含有Znめっき鋼板に水蒸気を接触させることを、単に「水蒸気処理」と称することがある。また、この明細書において、「表面」は「ひょうめん」を意味し、「表裏面」は「ひょうりめん」、つまり「おもてめん」および「うらめん」を意味する。
[黒色めっき鋼板の品質を評価する方法]
 本願発明における水蒸気処理製品の一例である黒色めっき鋼板は、上述のように、AlおよびMgを含有する溶融Al、Mg含有Znめっき鋼板を密閉容器の内部で水蒸気に接触させること(水蒸気処理)により製造されたものである。水蒸気処理により、黒色めっき鋼板のめっき層には、酸化被膜(黒色化されためっき層)が形成されている。
 黒色めっき鋼板としては、例えば、基材鋼板と、当該基材鋼板の表裏面にそれぞれ一体に設けられためっき層と、を備えたものを品質評価の対象とすることができる。なお、基材鋼板の表裏面のうち、そのいずれか一方の面にのみめっき層が設けられたものを品質評価の対象としてもよい。
 本願発明に係る黒色めっき鋼板の品質評価方法では、図1のフローチャートに示されているように、黒色めっき鋼板から試験片を切り出す第1工程(S210)と、試験片に含有されている酸素の量を測定する第2工程(S220)と、酸素の量の測定値に基づいて、黒色めっき鋼板の酸化被膜の厚みを評価する第3工程(S230)と、酸素の量の測定値に基づいて、黒色めっき鋼板の表面の明度を評価する第4工程(S240)と、第3工程における評価および第4工程における評価に基づいて、酸化被膜の品質を総合的に評価する第5工程(S250)とを、この順番で行う。
 以下、各工程についてより詳しく説明する。
 (第1工程)
 第1工程(S210)では、黒色めっき鋼板から試験片(サンプル)100(図5参照)を切り出す。
 試験片100の切り出し作業は、例えば、金型(パンチおよびダイ)を用いて黒色めっき鋼板を所定の形状に打ち抜くことにより行われる。試験片100の形状および大きさは特に限定されるものではないが、例えば、直径8mmの円板状とされる。なお、試験片100の形状は、円板状以外の形状とすることも可能である。試験片100は、黒色めっき鋼板から切り出された鋼板切り出し部101と、黒色めっき鋼板のめっき層から切り出され、かつ、鋼板切り出し部101の表面に一体に設けられためっき層切り出し部102とを含む(図2参照)。なお、図2に示される例では、試験片100は、鋼板切り出し部101と、鋼板切り出し部101の表裏面にそれぞれ一体に設けられためっき層切り出し部102とを含んでいる。めっき層切り出し部102の表層には、酸化被膜103が形成されている。
 (第2工程)
 第2工程(S220)では、試験片100に含有されている酸素の量を測定する。
 含有酸素量の測定は、酸素の量を精度よく測定できる酸素量測定装置を用いて行うことができる。そのような酸素量測定装置としては、従来公知のものを採用することができる。従来公知の酸素量測定装置の一例としては、例えば、内部に試験片を挿入可能な黒鉛るつぼを有する分析炉と、当該分析炉にHe(ヘリウム)などの不活性ガスを供給するガスボンベと、分析炉を通ったガスを分析することにより、試験片に含有されている酸素の量を測定する赤外線ガス分析計と、を備えたものを採用することができる。上記赤外線ガス分析計としては、例えば、NDIR(非分散型赤外線ガス分析計)、FTIR(フーリエ変換赤外線ガス分析計)などを挙げることができる。なお、酸素の量を精度よく測定できる装置であれば、上記以外の装置を用いることも可能である。
 上記酸素量測定装置においては、黒鉛るつぼ内に試験片100および金属溶剤が導入された後、ガスボンベから分析炉内に不活性ガスが供給され、その状態で分析炉により試験片100が加熱溶融される。そして、試験片100の溶融によって発生する一酸化炭素および二酸化炭素が赤外線ガス分析計により分析されて、試験片100に含有される酸素の量が測定される。上記金属溶剤としては、例えば、Sn(スズ)ペレット、Ni(ニッケル)ペレットを用いることができる。
 (第3工程)
 第3工程(S230)では、黒色めっき鋼板のめっき層における酸化被膜厚みと含有酸素量との相関関係(図3参照)と、第2工程で測定された含有酸素量の測定値とに基づいて、含有酸素量の測定値に対応する酸化被膜厚みを評価する。
 図3は、含有酸素量(縦軸の値)と、酸化被膜厚み(横軸の値)との関係を示すグラフである。このグラフは、本発明者らが含有酸素量と酸化被膜厚みとの対応関係を試験によって調べて、その対応関係をプロットすることにより作成したものである。なお、図3に示されている酸化被膜厚みは、黒色めっき鋼板の片面における酸化被膜厚みを表している。また、図3における含有酸素量(縦軸の値)は、第2工程で求めた含有酸素量を2で除することにより、黒色めっき鋼板の片面あたりの含有酸素量に換算したものである。
 図3には、酸化被膜厚みが増加すると、含有酸素量も増加する傾向があることが示されている。さらに、図6においては、酸化被膜厚みと含有酸素量とが一対一で対応することが示されている。このことから、酸化被膜厚みと含有酸素量との間には明確な相関関係があることがわかる。
 例えば、含有酸素量の測定値α(g/m)は、図3のグラフ上の点Aを介して酸化被膜厚み(黒色めっき鋼板の片面における酸化被膜厚み)β(μm)に対応する。また、含有酸素量の測定値α(g/m)は、点Bを介して酸化被膜厚みβ(μm)に対応し、含有酸素量の測定値α(g/m)は、点Cを介して酸化被膜厚みβ(μm)に対応し、含有酸素量の測定値α(g/m)は、点Dを介して酸化被膜厚みβ(μm)に対応し、含有酸素量の測定値α(g/m)は、点Eを介して酸化被膜厚みβ(μm)に対応する。
 黒色めっき鋼板の曲げ加工時における酸化被膜の粉末状の剥離(パウダーの発生)を防止できる酸化被膜厚み(黒色めっき鋼板の片面におけるそれぞれの酸化被膜厚み)の範囲は、黒色めっき鋼板の曲げ加工試験によって調べることが可能である。その範囲がβTH(μm)以下で、かつ、βTH(μm)が含有酸素量αTH(g/m)に対応する場合を想定する。この場合には、含有酸素量の測定値がαTH(g/m)以下の範囲内であれば、酸化被膜厚みは適正であると評価することができる。
 (第4工程)
 第4工程(S240)では、酸化被膜厚みと含有酸素量との相関関係(図3参照)と、黒色めっき鋼板における表面明度と酸化被膜厚みとの相関関係(図4参照)と、第2工程で測定された含有酸素量の測定値と、に基づいて、含有酸素量の測定値に対応する表面明度を評価する。
 図4は、表面明度(縦軸の値)と、酸化被膜厚み(横軸の値)との関係を示すグラフである。このグラフは、本発明者らが表面明度と酸化被膜厚みとの対応関係を試験によって調べて、その対応関係をプロットすることにより作成したものである。図4には、酸化被膜厚みが増加すると、表面明度が低下する傾向があることが示されている。さらに、図4においては、酸化被膜厚みと表面明度とが一対一で対応することが示されている。このことから、酸化被膜厚みと表面明度との間には明確な相関関係があることがわかる。また、酸化被膜厚みと含有酸素量との間には上述のように明確な相関関係がある(図3参照)。したがって、表面明度と含有酸素量との間には、明確な相関関係があることがわかる。
 例えば、含有酸素量の測定値α(g/m)は、図3のグラフ上の点Aを介して酸化被膜厚みβ(μm)に対応し、酸化被膜厚みβ(μm)は、図4のグラフ上の点Aを介して表面明度(L値)γに対応する。また、含有酸素量の測定値α(g/m)は、点Bを介して酸化被膜厚みβ(μm)に対応し、酸化被膜厚みβ(μm)は、図4のグラフ上の点Bを介して表面明度γに対応する。含有酸素量の測定値α(g/m)は、図3の点Cを介して酸化被膜厚みβ(μm)に対応し、酸化被膜厚みβ(μm)は、図4のグラフ上の点Cを介して表面明度γに対応する。含有酸素量の測定値α(g/m)は、図3の点Dを介して酸化被膜厚みβ(μm)に対応し、酸化被膜厚みβ(μm)は、図4のグラフ上の点Dを介して表面明度γに対応する。含有酸素量の測定値α(g/m)は、図3の点Eを介して酸化被膜厚みβ(μm)に対応し、酸化被膜厚みβ(μm)は、図4の点Eを介して表面明度γに対応する。
 美観性の高い黒色外観を得ることができる表面明度(L)の範囲は、黒色めっき鋼板の表面観察によって調べることが可能である。その表面明度の範囲がγIN以下で、かつ、γINが含有酸素量αIN(g/m)に対応する場合を想定する。この場合には、含有酸素量の測定値がαIN(g/m)以上の範囲内であれば、表面明度は適正であると評価することができる。
 (第5工程)
 第5工程(S250)では、第3工程における評価および第4工程における評価に基づいて、酸化被膜の品質を総合的に評価する。
 上述の第3工程では、含有酸素量の測定値がαTH(g/m)以下の範囲内であれば、酸化被膜厚みは適正である(合格基準を満たす)と評価される。また、第4工程では、含有酸素量の測定値がαIN(g/m)以上の範囲内であれば、表面明度は適正である(合格基準を満たす)と評価される。これらの評価基準を踏まえ、第5工程では、含有酸素量の測定値がαIN(g/m)以上αTH(g/m)以下であれば、酸化被膜の品質が合格基準を満たす(合格である)と評価する。つまり、含有酸素量の測定値がこの範囲内にあれば、酸化被膜厚みおよび表面明度が共に適正であると評価されるため、酸化被膜の品質は総合的に合格であると評価される。これに対し、含有酸素量の測定値がαIN(g/m)より小さければ、酸化被膜厚みは適正であるが、表面明度は不適正であると評価されるため、酸化被膜の品質は総合的には不合格であると評価される。また、含有酸素量の測定値がαTH(g/m)より大きければ、表面明度は適正であるが、酸化被膜厚みは不適正であるため、酸化被膜の品質は総合的には不合格であると評価される。
 <実施例>
 以下、本願発明の実施例を説明することにより、本願発明の作用効果をより明確にする。
 本実施例では、めっき鋼板1の表裏両面に酸化被膜を形成し、これにより、黒色めっき鋼板を作製した。その際、水蒸気処理時間が異なる5つの黒色めっき鋼板を作製した。そして、これらの黒色めっき鋼板を、パンチおよびダイを用いて直径8mmの円形板状に打ち抜き、試験片100(図2参照)を作製した。
 次に、酸素量測定装置(堀場製作所製のEMGA-930)を用い、試験片100の含有酸素量(単位はg/m)を測定した。その際、金属溶剤として、0.5gのSnペレット(純度99%)および0.5gのNiペレット(純度99%)を、試験片100と共に酸素量測定装置に投入した。
 5つの試験片100についての含有酸素量の測定値を、図3、4に示される相関関係に当てはめることにより、各試験片100についての酸化被膜厚みおよび表面明度を求めた。その当てはめによる酸化被膜厚みおよび表面明度の算出は、図3、4に示される相関関係に基づいて酸化被膜厚みおよび表面明度を算出するプログラムを組み込んだパソコンを用いて行った。その算出結果を図5に示す。図5の(a)~(e)は、5つの試験片100の各々について、その断面を、含有酸素量の測定値、酸化被膜厚みの算出値、表面明度の算出値とともに模式的に示す図である。
 そして、5つの試験片100についての評価を、上記した合格の判定基準に基づいて行った。この評価は、上記した合格の判定基準に基づいて合否を判定するプログラムを組み込んだパソコンを用いて行った。その結果、図5の(b)、(c)、(d)に示される酸化被膜については、総合的に合格(酸化被膜厚みおよび表面明度の双方が適正)であると判定された。これに対し、図5の(a)に示される酸化被膜については、総合的に不合格(酸化被膜厚みは適正であるが、表面明度は不適正)であると判定された。また、図5の(e)に示される酸化被膜については、総合的に不合格(表面明度は適正であるが、酸化被膜厚みは不適正)であると判定された。
 (考察)
 図5の(a)~(e)について、それぞれ、酸素量測定装置への試験片100の投入後、約5分という短時間で酸素の量を測定し、その測定結果に基づいて、容易かつ短時間で酸化被膜厚みおよび表面明度を算出することができた。また、試験片100の含有酸素量に基づいて酸化被膜厚みを評価することで、従来のように試験片の端面のみを観察して酸化被膜厚みを評価する場合と比べて、広い領域を評価対象とすることができる。したがって、酸化被膜厚みの評価の精度を高めることができる。なお、含有酸素量の測定値には、基材鋼板の含有酸素量も含まれているが、基材鋼板の含有酸素量は、酸化被膜の含有酸素量に比べて無視できる程小さい値なので、酸化被膜の含有酸素量の測定精度には殆ど影響しない。
 (効果)
 上記本願発明の方法によれば、黒色めっき鋼板等の水蒸気処理製品における酸化被膜の品質を、高い精度で容易かつ短時間で評価することができる。
 なお、上記実施形態では、酸化被膜厚みおよび表面明度の双方を評価する場合について説明したが、酸化被膜厚みおよび表面明度のうち、いずれか一方のみを評価してもよい。
 本願発明の方法では、黒色めっき鋼板等の水蒸気処理製品における酸化被膜の品質を、高い精度で容易かつ短時間で評価することができる。このため、その評価を黒色めっき鋼板の製造工程(水蒸気処理工程)にフィードバックして、黒色めっき鋼板の品質管理を行うことができる。これにより、意匠性および成形性に優れた黒色めっき鋼板を製造して、黒色めっき鋼板のより一層の普及に貢献することが期待される。
 1  めっき鋼板
 100 試験片
 101 鋼板切り出し部
 102 めっき層切り出し部
 103 酸化被膜

Claims (2)

  1.  水蒸気処理により表面に酸化被膜が形成された水蒸気処理製品の品質評価方法であって、
     前記水蒸気処理製品から試験片を切り出し、
     前記試験片に含有される酸素の量を測定し、
     前記酸素の量の測定値に基づいて、前記試験片の表面の明度および前記試験片における前記酸化被膜の厚みの少なくとも一方を評価する
     ことを特徴とする、水蒸気処理製品の品質評価方法。
  2.  前記水蒸気処理製品は、鋼板と、当該鋼板の表面に一体に設けられためっき層とを含み、
     前記試験片は、前記鋼板から切り出された鋼板切り出し部と、前記鋼板切り出し部の表面に一体に設けられためっき層切り出し部とを含み、
     前記酸素の量の測定は、前記鋼板切り出し部と前記めっき層切り出し部とが一体とされたままの試験片を酸素量測定装置に供給することにより行われる
     ことを特徴とする、請求項1に記載の水蒸気処理製品の品質評価方法。
PCT/JP2018/007758 2017-03-31 2018-03-01 水蒸気処理製品の品質評価方法 WO2018180169A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880021629.0A CN110462376A (zh) 2017-03-31 2018-03-01 水蒸气处理产品的质量评价方法
EP18776350.3A EP3584563A4 (en) 2017-03-31 2018-03-01 METHOD FOR EVALUATING THE QUALITY OF A WATER VAPOR TREATED PRODUCT
US16/499,331 US10788472B2 (en) 2017-03-31 2018-03-01 Method for evaluating the quality of steam-treated products
KR1020197028394A KR20190134628A (ko) 2017-03-31 2018-03-01 수증기 처리 제품의 품질 평가 방법
MX2019011532A MX2019011532A (es) 2017-03-31 2018-03-01 Metodo para evaluar la calidad de un producto tratado con vapor de agua.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072420 2017-03-31
JP2017072420A JP6232157B1 (ja) 2017-03-31 2017-03-31 水蒸気処理製品の品質評価方法

Publications (1)

Publication Number Publication Date
WO2018180169A1 true WO2018180169A1 (ja) 2018-10-04

Family

ID=60321061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007758 WO2018180169A1 (ja) 2017-03-31 2018-03-01 水蒸気処理製品の品質評価方法

Country Status (8)

Country Link
US (1) US10788472B2 (ja)
EP (1) EP3584563A4 (ja)
JP (1) JP6232157B1 (ja)
KR (1) KR20190134628A (ja)
CN (1) CN110462376A (ja)
MX (1) MX2019011532A (ja)
TW (1) TWI649452B (ja)
WO (1) WO2018180169A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200079479A (ko) 2017-07-31 2020-07-03 모멘티브 퍼포먼스 머티리얼즈 인크. 경화성 표면-보호 코팅 조성물, 그의 제조 방법 및 금속 기재에 대한 적용 및 코팅된 금속 기재

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335159B2 (ja) 1973-02-28 1978-09-26
JP2005351687A (ja) * 2004-06-09 2005-12-22 Jfe Steel Kk 亜鉛系めっき鋼板のプレス成形性評価方法
JP2011117063A (ja) * 2009-11-02 2011-06-16 Kobe Steel Ltd 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法
JP2012082511A (ja) * 2010-09-15 2012-04-26 Nisshin Steel Co Ltd 黒色めっき鋼板
JP2012082512A (ja) * 2010-09-15 2012-04-26 Nisshin Steel Co Ltd 黒色めっき鋼板の製造方法および黒色めっき鋼板の成形体の製造方法
JP2013181225A (ja) * 2012-03-02 2013-09-12 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板及びその製造方法
WO2013161268A1 (ja) * 2012-04-25 2013-10-31 日新製鋼株式会社 黒色めっき鋼板の製造方法および黒色めっき鋼板の成形体の製造方法
WO2014106013A1 (en) * 2012-12-27 2014-07-03 Chang-Dong Feng Gas detection system with moisture removal
WO2014109052A1 (ja) * 2013-01-11 2014-07-17 千住金属工業株式会社 Cuボール
WO2016071971A1 (ja) * 2014-11-05 2016-05-12 千住金属工業株式会社 はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法
JP6072952B1 (ja) 2016-03-01 2017-02-01 日新製鋼株式会社 黒色めっき鋼板を製造する方法、黒色めっき鋼板を製造する装置および黒色めっき鋼板を製造するシステム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335159A (en) 1976-09-10 1978-04-01 Nippon Technical Station selecting device
US4348886A (en) * 1980-11-19 1982-09-14 Rca Corporation Monitor for oxygen concentration in aluminum-based films
JPS6072952A (ja) 1983-09-30 1985-04-25 Taiho Kogyo Co Ltd 摺動部材
JP3626523B2 (ja) * 1995-02-06 2005-03-09 新日本製鐵株式会社 Siウェハへの酸素注入量の赤外吸収による測定方法
CA2521710C (en) * 2003-04-10 2009-09-29 Nippon Steel Corporation High strength molten zinc plated steel sheet and process of production of same
CN101133300B (zh) * 2005-09-26 2010-09-08 杰富意钢铁株式会社 镀锌类钢板的表层氧化膜的膜厚测定方法
KR101116973B1 (ko) 2007-02-28 2012-03-14 제이에프이 스틸 가부시키가이샤 도장강판, 이 도장강판제의 텔레비전용 패널 및 도장강판의 제조방법
EP2447287B1 (en) * 2009-06-26 2017-07-26 Japan Polyethylene Corporation Polyethylene resin, catalyst used for production of the same, method for producing the same, hollow plastic molded article containing polyethylene resin, and use of the hollow plastic molded article
CN101769835A (zh) 2010-01-20 2010-07-07 胡先根 钢材氧含量测定的制样方法
JP2011176266A (ja) 2010-01-29 2011-09-08 Fujifilm Corp Se化合物半導体用基板、Se化合物半導体用基板の製造方法および薄膜太陽電池
JP5341270B1 (ja) 2012-04-25 2013-11-13 日新製鋼株式会社 黒色めっき鋼板の製造方法および黒色めっき鋼板の成形体の製造方法
DE102012211942A1 (de) 2012-07-09 2014-01-09 Robert Bosch Gmbh Schnitttiefenbegrenzungsvorrichtung
JP2014095654A (ja) * 2012-11-12 2014-05-22 Jfe Steel Corp 冷延鋼板の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335159B2 (ja) 1973-02-28 1978-09-26
JP2005351687A (ja) * 2004-06-09 2005-12-22 Jfe Steel Kk 亜鉛系めっき鋼板のプレス成形性評価方法
JP2011117063A (ja) * 2009-11-02 2011-06-16 Kobe Steel Ltd 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法
JP2012082511A (ja) * 2010-09-15 2012-04-26 Nisshin Steel Co Ltd 黒色めっき鋼板
JP2012082512A (ja) * 2010-09-15 2012-04-26 Nisshin Steel Co Ltd 黒色めっき鋼板の製造方法および黒色めっき鋼板の成形体の製造方法
JP2013181225A (ja) * 2012-03-02 2013-09-12 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板及びその製造方法
WO2013161268A1 (ja) * 2012-04-25 2013-10-31 日新製鋼株式会社 黒色めっき鋼板の製造方法および黒色めっき鋼板の成形体の製造方法
WO2014106013A1 (en) * 2012-12-27 2014-07-03 Chang-Dong Feng Gas detection system with moisture removal
WO2014109052A1 (ja) * 2013-01-11 2014-07-17 千住金属工業株式会社 Cuボール
WO2016071971A1 (ja) * 2014-11-05 2016-05-12 千住金属工業株式会社 はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法
JP6072952B1 (ja) 2016-03-01 2017-02-01 日新製鋼株式会社 黒色めっき鋼板を製造する方法、黒色めっき鋼板を製造する装置および黒色めっき鋼板を製造するシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584563A4 *

Also Published As

Publication number Publication date
US10788472B2 (en) 2020-09-29
US20200057038A1 (en) 2020-02-20
EP3584563A1 (en) 2019-12-25
TW201839171A (zh) 2018-11-01
TWI649452B (zh) 2019-02-01
EP3584563A4 (en) 2020-03-11
CN110462376A (zh) 2019-11-15
MX2019011532A (es) 2019-12-09
JP6232157B1 (ja) 2017-11-15
JP2018173378A (ja) 2018-11-08
KR20190134628A (ko) 2019-12-04

Similar Documents

Publication Publication Date Title
WO2007034572A1 (ja) 亜鉛系めっき鋼板の表層酸化膜の膜厚測定方法
Giurlani et al. Thickness determination of metal multilayers by ED-XRF multivariate analysis using Monte Carlo simulated standards
Andrade et al. Proposition of electronic waste as a reference material–part 2: homogeneity, stability, characterization, and uncertainties
JP6232157B1 (ja) 水蒸気処理製品の品質評価方法
TW201619407A (zh) 鍍敷鋼板及其製造方法
Hatic et al. Rockwell Adhesion Test-Approach to Standard Modernization.
Castle et al. Report on the 34th IUVSTA workshop ‘XPS: from spectra to results—towards an expert system’
CN106501120B (zh) 一种热镀锌合金化钢板粉化的快速检测方法
JP6003783B2 (ja) 製品の品質検査方法
KR102305208B1 (ko) 인장시험을 이용한 도금강판의 접합강도 측정방법
JP4513425B2 (ja) 亜鉛系めっき鋼板のプレス成形性評価方法
EP1927848A1 (en) Method of evaluating press formability of zinc-based plated steel sheet
KR102177872B1 (ko) 도금강판의 박리성 평가방법
Terborg et al. Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA
Simko et al. Characterization of zirconium oxide-based pretreatment coatings Part 1–variability in coating deposition on different metal substrates
JP6331257B2 (ja) めっき鋼板の耐パウダリング性評価方法
TWI480538B (zh) 光學鑑定鐵鋅合金界金屬層之金相的方法
Vallien Material characterization of multi-layered Zn-alloy coatings on fasteners: Effects on corrosion resistance, electrical conductivity and friction
KR20000025344A (ko) 형광 엑스선을 이용한 도금량 및 합금화도 측정방법
JP2005098922A (ja) 表面に酸化膜を有する鋼板の品質管理方法及び製造方法
JP2014238282A (ja) めっき鋼板の耐パウダリング性評価方法
JPH05264481A (ja) 鍍金鋼板上のクロメート処理皮膜のCr付着量オンライン測定方法
KR100244644B1 (ko) 표면처리 강판의 도금밀착성 평가방법 및 그 장치
JPH06331576A (ja) 鉄上の鉄亜鉛合金メッキ層の分析方法
Sulaiman et al. Study on Using EDXRF for the Determination of Gold Coating Thickness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028394

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018776350

Country of ref document: EP

Effective date: 20190918

NENP Non-entry into the national phase

Ref country code: DE