WO2018168411A1 - 負極材及びその負極材の製造方法、並びに混合負極材 - Google Patents

負極材及びその負極材の製造方法、並びに混合負極材 Download PDF

Info

Publication number
WO2018168411A1
WO2018168411A1 PCT/JP2018/006849 JP2018006849W WO2018168411A1 WO 2018168411 A1 WO2018168411 A1 WO 2018168411A1 JP 2018006849 W JP2018006849 W JP 2018006849W WO 2018168411 A1 WO2018168411 A1 WO 2018168411A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode material
particles
active material
metal compound
Prior art date
Application number
PCT/JP2018/006849
Other languages
English (en)
French (fr)
Inventor
拓史 松野
貴一 廣瀬
広太 高橋
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020237034869A priority Critical patent/KR102613652B1/ko
Priority to US16/477,686 priority patent/US11990603B2/en
Priority to CN201880017583.5A priority patent/CN110419130B/zh
Priority to EP18767113.6A priority patent/EP3598541A4/en
Priority to KR1020197026454A priority patent/KR102590747B1/ko
Publication of WO2018168411A1 publication Critical patent/WO2018168411A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material, a method for producing the negative electrode material, and a mixed negative electrode material.
  • This secondary battery is not limited to a small electronic device, but is also considered to be applied to a large-sized electronic device represented by an automobile or the like, or an electric power storage system represented by a house.
  • lithium ion secondary batteries are highly expected because they are small in size and easy to increase in capacity, and can obtain higher energy density than lead batteries and nickel cadmium batteries.
  • the above lithium ion secondary battery includes a positive electrode, a negative electrode, and a separator together with an electrolyte, and the negative electrode includes a negative electrode active material involved in a charge / discharge reaction.
  • the negative electrode active material when silicon is used as the negative electrode active material as the main raw material, the negative electrode active material expands and contracts during charge / discharge, and therefore, it tends to break mainly near the surface of the negative electrode active material. Further, an ionic material is generated inside the active material, and the negative electrode active material is easily broken. When the negative electrode active material surface layer is cracked, a new surface is generated thereby increasing the reaction area of the active material. At this time, a decomposition reaction of the electrolytic solution occurs on the new surface, and a coating that is a decomposition product of the electrolytic solution is formed on the new surface, so that the electrolytic solution is consumed. For this reason, the cycle characteristics are likely to deteriorate.
  • silicon and amorphous silicon dioxide are simultaneously deposited using a vapor phase method (see, for example, Patent Document 1). Further, in order to obtain a high battery capacity and safety, a carbon material (electron conductive material) is provided on the surface layer of the silicon oxide particles (see, for example, Patent Document 2). Furthermore, in order to improve cycle characteristics and obtain high input / output characteristics, an active material containing silicon and oxygen is produced, and an active material layer having a high oxygen ratio in the vicinity of the current collector is formed ( For example, see Patent Document 3). Further, in order to improve cycle characteristics, oxygen is contained in the silicon active material, the average oxygen content is 40 at% or less, and the oxygen content is increased at a location close to the current collector. (For example, refer to Patent Document 4).
  • Si phase (for example, see Patent Document 5) by using a nanocomposite containing SiO 2, M y O metal oxide in order to improve the initial charge and discharge efficiency.
  • the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum and minimum molar ratios in the vicinity of the active material and current collector interface The active material is controlled within a range of 0.4 or less (see, for example, Patent Document 7).
  • Patent Document 8 a metal oxide containing lithium is used (see, for example, Patent Document 8).
  • a hydrophobic layer such as a silane compound is formed on the surface layer of the siliceous material (see, for example, Patent Document 9).
  • conductivity is imparted by using silicon oxide and forming a graphite film on the surface layer (see, for example, Patent Document 10).
  • Patent Document 10 with respect to the shift value obtained from the RAMAN spectrum for graphite coating, with broad peaks appearing at 1330 cm -1 and 1580 cm -1, their intensity ratio I 1330 / I 1580 is 1.5 ⁇ I 1330 / I 1580 ⁇ 3.
  • particles having a silicon microcrystalline phase dispersed in silicon dioxide are used in order to improve high battery capacity and cycle characteristics (see, for example, Patent Document 11). Further, in order to improve overcharge and overdischarge characteristics, silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1: y (0 ⁇ y ⁇ 2) is used (see, for example, Patent Document 12).
  • the present invention has been made in view of the above-described problems, and can stabilize a slurry produced at the time of producing a negative electrode for a secondary battery, and can be used for initial charge and discharge when used as a negative electrode active material for a secondary battery. It aims at providing the negative electrode material which can improve a characteristic and cycling characteristics, and the mixed negative electrode material containing this negative electrode material. It is another object of the present invention to provide a method for producing a negative electrode material that can stabilize a slurry produced at the time of producing a negative electrode and improve initial charge / discharge characteristics and cycle characteristics.
  • the present invention provides a negative electrode material including negative electrode active material particles, wherein the negative electrode active material particles include silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6). Containing compound particles, wherein the silicon compound particles contain at least one of Li 2 SiO 3 and Li 4 SiO 4 , and the negative electrode material further contains a metal compound and the metal compound particles A negative electrode material comprising at least one of the aggregates is provided.
  • the negative electrode material of the present invention includes negative electrode active material particles containing silicon compound particles (also referred to as silicon-based active material particles), battery capacity can be improved. Moreover, the irreversible capacity
  • the metal compound particles preferably contain at least one of aluminum, zirconium, and yttrium.
  • metal compound particles containing such a metal compound are more suitable, and slurry stability can be further improved.
  • the average primary particle diameter of the metal compound particles is preferably 0.1 ⁇ m or more and 4 ⁇ m or less, and the average secondary particle diameter of the aggregate of the metal compound particles is preferably 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the average primary particle diameter of the metal compound particles is 0.1 ⁇ m or more and 4 ⁇ m or less, the specific surface area of the metal compound particles is large, so that the reaction area between Li ions eluted in the aqueous slurry and the metal compound particles becomes large, and the aqueous system The slurry can be further stabilized. Therefore, the cycle characteristics and initial charge / discharge efficiency of the battery can be improved.
  • Li precipitation is likely to occur at a portion where the presence ratio of the negative electrode active material particles is low in the negative electrode material, but if the average secondary particle diameter of the aggregate of the metal compound particles is 0.1 ⁇ m or more and 20 ⁇ m or less, Therefore, it is difficult to form a portion where the ratio of the negative electrode active material particles is low, so that it is possible to suppress the occurrence of Li precipitation particularly during charging. Thereby, the safety
  • the metal compound has a bond between a metal element and oxygen.
  • the metal compound having a bond between the metal element and oxygen has an appropriate reactivity with Li ions, the slurry stability can be further improved.
  • the metal compound is any one of an oxide, a phosphate, and a silicate.
  • metal compounds such as these have moderate reactivity with Li ions, slurry stability can be further improved.
  • the fluorescent X-ray spectrum obtained by fluorescent X-ray analysis of the negative electrode material has a peak showing aluminum K ⁇ ray in the vicinity of 1.49 keV, and silicon in the vicinity of 1.74 keV.
  • the ratio of the intensity of the peak showing the K ⁇ line of the aluminum to the intensity of the peak showing the K ⁇ line of the silicon Al (K ⁇ ) / Si (K ⁇ ) is 0.002 or more and 0.01. The following are preferable.
  • the negative electrode material contains an appropriate amount of metal compound particles containing an aluminum compound relative to silicon. Therefore, the effect of stabilizing the slurry by the metal compound particles can be obtained.
  • the amount of aluminum is not excessive, an increase in resistance can be suppressed, and it can be said that the amount of silicon is sufficiently secured, so that the negative electrode material can obtain a sufficient battery capacity.
  • the fluorescent X-ray spectrum obtained by fluorescent X-ray analysis of the negative electrode material has a peak indicating zirconium K ⁇ ray in the vicinity of 15.74 keV, and zirconium in the vicinity of 17.66 keV. It preferably has a peak showing the K ⁇ ray.
  • the negative electrode material contains an appropriate amount of metal compound particles containing a zirconium compound. Therefore, the effect of stabilizing the slurry by the metal compound particles containing the zirconium compound can be obtained more reliably.
  • the fluorescent X-ray spectrum obtained by fluorescent X-ray analysis of the negative electrode material has a peak indicating yttrium K ⁇ ray in the vicinity of 14.93 keV, and yttrium in the vicinity of 16.73 keV. It is preferable that it does not have the peak which shows a K (beta) ray.
  • the fluorescent X-ray spectrum measured from the negative electrode material has a peak showing yttrium K ⁇ ray and no peak showing yttrium K ⁇ ray, it can be said that an appropriate amount of yttrium is contained. Therefore, the effect of stabilizing the slurry can be obtained more reliably, and the occurrence of Li deposition during battery charging can be suppressed.
  • the silicon compound particles have a half-value width (2 ⁇ ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction using Cu—K ⁇ rays of 1.2 ° or more, and the crystal
  • the crystallite size corresponding to the surface is preferably 7.5 nm or less.
  • the negative electrode material in which the silicon compound particles have the above silicon crystallinity is used for a lithium ion secondary battery, better cycle characteristics and initial charge / discharge characteristics can be obtained.
  • the negative electrode material of the present invention has a maximum peak intensity value A in the Si and Li silicate regions given by a chemical shift value of ⁇ 60 to ⁇ 95 ppm obtained from a 29 Si-MAS-NMR spectrum in the silicon compound particles.
  • the peak intensity value B in the SiO 2 region given as a chemical shift value of ⁇ 96 to ⁇ 150 ppm preferably satisfies the relationship A> B.
  • the negative electrode material can sufficiently obtain the effect of improving the battery characteristics by the insertion of Li.
  • the negative electrode active material particles preferably have a median diameter of 1.0 ⁇ m to 15 ⁇ m.
  • the median diameter of the negative electrode active material particles is 1.0 ⁇ m or more, an increase in battery irreversible capacity due to an increase in specific surface area can be suppressed.
  • the median diameter is set to 15 ⁇ m or less, the particles are difficult to break and a new surface is difficult to appear.
  • the negative electrode active material particles preferably include a carbon material in the surface layer portion.
  • the conductivity can be improved.
  • the average thickness of the carbon material is preferably 10 nm or more and 5000 nm or less.
  • the average thickness of the carbon material is 10 nm or more, conductivity can be improved. Moreover, if the average thickness of the carbon material to be coated is 5000 nm or less, a sufficient amount of silicon compound particles can be secured by using a negative electrode material containing such negative electrode active material particles for a lithium ion secondary battery. A decrease in battery capacity can be suppressed.
  • the present invention provides a mixed negative electrode material comprising the above negative electrode material and a carbon-based active material.
  • the conductivity of the negative electrode active material layer can be improved by including the carbon-based active material together with the negative electrode material (silicon-based negative electrode material) of the present invention as the material for forming the negative electrode active material layer. It becomes possible to relieve the expansion stress accompanying charging. Further, the battery capacity can be increased by mixing the silicon-based negative electrode material with the carbon-based active material.
  • the present invention provides a method of producing a negative electrode material containing a negative electrode active material particles containing silicon compound particles, silicon compound (SiO x: 0.5 ⁇ x ⁇ 1. 6) including a step of producing silicon compound particles, a step of inserting Li into the silicon compound particles, and containing at least one of Li 2 SiO 3 and Li 4 SiO 4.
  • a negative electrode material is produced by mixing and producing at least one of a metal compound particle containing a metal compound and an aggregate of the metal compound particles in the negative electrode active material particles, and producing a negative electrode material I will provide a.
  • the negative electrode material is manufactured, thereby stabilizing the aqueous slurry produced during the negative electrode preparation.
  • a negative electrode material having high capacity and good cycle characteristics and initial charge / discharge characteristics can be produced.
  • the negative electrode material of the present invention can stabilize an aqueous slurry produced at the time of preparation of the negative electrode, and when used as a negative electrode material for a secondary battery, provides high capacity and good cycle characteristics and initial charge / discharge characteristics. It is done. Moreover, the same effect is acquired also in the mixed negative electrode material containing this negative electrode material.
  • an aqueous slurry produced at the time of producing a negative electrode can be stabilized, and good cycle characteristics can be obtained when used as a negative electrode active material of a lithium ion secondary battery. And the negative electrode material which has an initial stage charge / discharge characteristic can be manufactured.
  • FIG. 3 is a fluorescent X-ray spectrum obtained in a fluorescent X-ray analysis for confirming Al (K ⁇ ) / Si (K ⁇ ) of the negative electrode material of Example 1-1.
  • FIG. 6 is an enlarged view of the X-ray energy of the fluorescent X-ray spectrum of FIG.
  • FIG. 3 is a fluorescent X-ray spectrum obtained in fluorescent X-ray analysis for confirmation of zirconium (Zr) and yttrium (Y) peaks of the negative electrode material of Example 1-1.
  • FIG. It is a graph showing the relationship between the ratio of the silicon type active material particle with respect to the total amount of a negative electrode active material, and the increase rate of the battery capacity of a secondary battery.
  • Lithium ion secondary batteries using this siliceous material are expected to have slurry stability, initial charge / discharge characteristics, and cycle characteristics similar to those of lithium ion secondary batteries using carbon-based active materials.
  • a negative electrode material having slurry stability, initial charge / discharge characteristics, and cycle characteristics equivalent to those of a lithium ion secondary battery using an active material has not been proposed.
  • the present inventors conducted extensive studies to obtain a negative electrode material that has a high battery capacity and good slurry stability, cycle characteristics, and initial efficiency when used in a secondary battery. It came to.
  • the negative electrode material of the present invention includes negative electrode active material particles. Then, the anode active material particles, silicon compound: containing a silicon compound particles containing (SiO x 0.5 ⁇ x ⁇ 1.6 ).
  • the silicon compound particles contain at least one lithium silicate of Li 2 SiO 3 and Li 4 SiO 4 .
  • the negative electrode material of this invention contains the negative electrode active material particle containing a silicon compound particle, it can improve battery capacity.
  • the silicon compound particles contain lithium silicate as described above, the irreversible capacity generated during charging can be reduced. As a result, the battery capacity, cycle characteristics, and initial charge / discharge efficiency of the secondary battery can be improved.
  • the negative electrode material of the present invention contains at least one of metal compound particles containing a metal compound and aggregates of metal compound particles.
  • metal compound particles and aggregates thereof can stabilize an aqueous slurry prepared by mixing a negative electrode material during the production of the negative electrode.
  • a negative electrode material containing silicon compound particles into which Li is inserted is mixed with an aqueous slurry at the time of preparing a negative electrode, elution of Li ions occurs and the slurry becomes unstable, making it difficult to produce an electrode.
  • Excess Li compounds are generated on the surface of the electrode prepared from such a slurry, and the battery characteristics such as the cycle characteristics and the initial charge / discharge efficiency are deteriorated, particularly the cycle characteristics are greatly deteriorated.
  • the slurry stability can be improved by reacting with Li ions from which the metal compound particles are eluted.
  • the negative electrode material of the present invention can improve the battery characteristics such as the initial efficiency and the cycle characteristics of the secondary battery as compared with the conventional negative electrode material, and in particular, the cycle characteristics can be greatly improved.
  • the metal compound particles contained in the negative electrode material of the present invention contain at least one of aluminum, zirconium and yttrium. These metal compounds have moderate reactivity with Li ions and can further enhance the effect of stabilizing the slurry.
  • the metal compound particles may be, for example, a mixture of aluminum compound particles, zirconium compound particles, and yttrium compound particles. Or the particle
  • the metal compound contained in the metal compound particles preferably has a bond between a metal element and oxygen. Since such a metal compound has moderate reactivity with Li ions, the aqueous slurry can be further stabilized.
  • the metal compound having a bond between a metal element and oxygen is more preferably any one of oxides, phosphates, and silicates. Since metal compounds such as these have a more appropriate reactivity with Li ions, the aqueous slurry can be particularly stabilized.
  • the presence of a metal compound having a bond between a metal element and oxygen can be confirmed by XPS (X-ray photoelectron spectroscopy: X-ray photoelectron spectroscopy).
  • the negative electrode material of the present invention preferably contains at least one of aluminum, zirconium, and yttrium metal elements so as to satisfy the following definition of the fluorescent X-ray spectrum.
  • the intensity of the peak derived from each metal in the fluorescent X-ray spectrum obtained by the fluorescent X-ray analysis depends on the abundance (mass ratio, etc.) of the metal compound particles in the negative electrode material and the particle size of the metal compound particles. Change. Therefore, the definition based on the peak derived from each metal in the fluorescent X-ray spectrum is not only the preferable mass ratio of each metal compound particle in the negative electrode material but also the information including preferable particle diameter information.
  • the fluorescent X-ray spectrum obtained by fluorescent X-ray analysis of the negative electrode material has a peak indicating aluminum K ⁇ rays near 1.49 keV, and silicon K ⁇ rays near 1.74 keV. It is preferable that the ratio Al (K ⁇ ) / Si (K ⁇ ) of the intensity of the peak showing the K ⁇ line of aluminum to the intensity of the peak showing the K ⁇ line of silicon is 0.002 or more and 0.01 or less. . If aluminum is contained so as to satisfy this peak intensity ratio range, it can be said that an appropriate amount of metal compound particles containing an aluminum compound is contained in the negative electrode material.
  • the negative electrode material can obtain a sufficient battery capacity.
  • the fluorescent X-ray spectrum shows such a peak, although depending on the particle diameter of the metal compound particles, the negative electrode has an abundance ratio in the range of about 0.03% by mass to 1% by mass with respect to the silicon oxide particles. It can be said that aluminum is contained in the material. In particular, the case of 0.03% by mass or more and 0.6% by mass or less is preferable because good electrical conductivity can be obtained.
  • the fluorescent X-ray spectrum obtained by the fluorescent X-ray analysis of the negative electrode material of the present invention has a peak indicating the K ⁇ line of zirconium in the vicinity of 15.74 keV, and the zirconium is in the vicinity of 17.66 keV. It preferably has a peak showing K ⁇ rays. If such a peak related to zirconium can be obtained, it can be said that an appropriate amount of metal compound particles containing a zirconium compound is contained in the negative electrode material in an appropriate size. Therefore, the effect of stabilizing the slurry by the metal compound particles containing the zirconium compound can be obtained more reliably.
  • the negative electrode material preferably contains zirconium in an abundance ratio in the range of about 10 mass ppm to 1000 mass ppm with respect to the silicon oxide particles. In particular, it is more preferably contained in the range of 30 ppm by mass or more and 300 ppm by mass or less. This is because the effect of stabilizing the slurry can be obtained while ensuring better electrical conductivity.
  • the fluorescent X-ray spectrum obtained by the fluorescent X-ray analysis of the negative electrode material of the present invention has a peak showing yttrium K ⁇ rays in the vicinity of 14.93 keV, and yttrium has a peak of about 16.73 keV. It is preferable that it does not have a peak showing a K ⁇ ray.
  • the fluorescent X-ray spectrum measured from the negative electrode material has a peak showing yttrium K ⁇ ray and no peak showing yttrium K ⁇ ray, an appropriate amount of metal compound particles containing an yttrium compound is appropriate. It can be said that it is included.
  • the negative electrode material preferably contains yttrium in an abundance ratio in the range of approximately 1 ppm by mass to 30 ppm by mass with respect to the silicon oxide particles.
  • the above fluorescent X-ray analysis can be performed under the following conditions.
  • Apparatus Energy dispersive X-ray fluorescence analysis S2 Ranger (manufactured by Bruker) (1) Confirmation conditions of strength ratio Al (K ⁇ ) / Si (K ⁇ ) Acceleration voltage: 20 kV ⁇ Target: Pd ⁇ Atmosphere: He ⁇ Vessel: Liquid cup ⁇ Filter: None ⁇ Detector: Silicon drift detector (2) Peak confirmation conditions for zirconium (Zr) and yttrium (Y) ⁇ Acceleration voltage: 40 kV ⁇ Target: Pd ⁇ Atmosphere: He ⁇ Vessel: Liquid cup ⁇ Filter: Al 500 ⁇ m ⁇ Detector: Silicon drift detector
  • the average primary particle diameter of the metal compound particles is preferably 0.1 ⁇ m or more and 4 ⁇ m or less, and the average secondary particle diameter of the aggregate of the metal compound particles is preferably 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the average primary particle diameter of the metal compound particles is 4 ⁇ m or less, the specific surface area of the metal compound particles is large, so that the reaction area between the Li ions eluted in the water-based slurry and the metal compound particles increases, making the water-based slurry more stable.
  • an average primary particle diameter is 0.1 micrometer or more, since the elution of the impurity contained in trace amount in a metal compound particle can be suppressed, an aqueous slurry can be stabilized more.
  • Li precipitation is likely to occur at a portion where the presence ratio of the negative electrode active material particles is low in the negative electrode material, but if the average secondary particle diameter of the aggregate of the metal compound particles is 20 ⁇ m or less, the negative electrode active material in the negative electrode material Since it is difficult to form a portion where the presence ratio of particles is low, it is possible to suppress the occurrence of Li precipitation particularly during charging.
  • an aqueous slurry can be stabilized more.
  • the particle diameters of the metal compound particles and the aggregates thereof can be calculated by image analysis using SEM-EDX (scanning electron microscope-energy dispersive X-ray spectroscopy). When there is no aggregate, the secondary particle size is the same as the primary particle size.
  • the silicon compound particles constituting the negative electrode active material particles have a half-value width (2 ⁇ ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction using Cu—K ⁇ rays of 1.2 ° or more.
  • the silicon crystallinity of the silicon compound in the silicon compound particles is preferably as low as possible. In particular, if the amount of Si crystal is small, battery characteristics can be improved, and a stable Li compound can be generated.
  • the 29 Si-MAS-NMR measurement can be performed under the following conditions.
  • 29 Si MAS NMR (magic angle rotating nuclear magnetic resonance) Apparatus 700 NMR spectrometer manufactured by Bruker, ⁇ Probe: 4mmHR-MAS rotor 50 ⁇ L, Sample rotation speed: 10 kHz, -Measurement environment temperature: 25 ° C.
  • the negative electrode active material particles preferably include a carbon material in the surface layer portion. Since the negative electrode active material particles include a carbon material in the surface layer portion, an improvement in conductivity is obtained. Therefore, when such a negative electrode material is used in a secondary battery, battery characteristics can be improved.
  • the average thickness of the carbon material in the surface layer portion of the negative electrode active material particles is preferably 10 nm or more and 5000 nm or less. If the average thickness of the carbon material is 10 nm or more, an improvement in conductivity is obtained. If the average thickness of the carbon material to be coated is 5000 nm or less, the negative electrode material containing such negative electrode active material particles is a lithium ion secondary. When used in a battery, a decrease in battery capacity can be suppressed.
  • the average thickness of the carbon material can be calculated by the following procedure, for example. First, negative electrode active material particles are observed at an arbitrary magnification using a TEM (transmission electron microscope). This magnification is preferably a magnification capable of visually confirming the thickness of the carbon material so that the thickness can be measured. Subsequently, the thickness of the carbon material is measured at any 15 points. In this case, it is preferable to set the measurement position widely and randomly without concentrating on a specific place as much as possible. Finally, the average value of the thicknesses of the 15 carbon materials is calculated.
  • TEM transmission electron microscope
  • the coverage of the carbon material is not particularly limited, but is preferably as high as possible. A coverage of 30% or more is preferable because electric conductivity is further improved.
  • the method for coating the carbon material is not particularly limited, but a sugar carbonization method and a pyrolysis method of hydrocarbon gas are preferable. This is because the coverage can be improved.
  • the median diameter (D 50 : particle diameter when the cumulative volume becomes 50%) of the negative electrode active material particles is 1.0 ⁇ m or more and 15 ⁇ m or less. This is because, if the median diameter of the negative electrode active material particles is in the above range, lithium ions are easily occluded and released during charge and discharge, and the negative electrode active material particles are difficult to break.
  • the median diameter is 1.0 ⁇ m or more, the surface area per mass of the negative electrode active material particles can be reduced, and an increase in battery irreversible capacity can be suppressed.
  • the median diameter is set to 15 ⁇ m or less, the particles are difficult to break and a new surface is difficult to appear.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a negative electrode for a nonaqueous electrolyte secondary battery.
  • the negative electrode 10 is configured to have a negative electrode active material layer 12 on a negative electrode current collector 11.
  • the negative electrode active material layer 12 may be provided on both surfaces or only one surface of the negative electrode current collector 11. Furthermore, the negative electrode current collector 11 may be omitted as long as the negative electrode active material of the present invention is used.
  • the negative electrode current collector 11 is an excellent conductive material and is made of a material that is excellent in mechanical strength.
  • Examples of the conductive material that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).
  • the negative electrode current collector 11 preferably contains carbon (C) or sulfur (S) in addition to the main element. This is because the physical strength of the negative electrode current collector is improved.
  • the current collector contains the above-described element, there is an effect of suppressing electrode deformation including the current collector.
  • content of said content element is not specifically limited, Especially, it is preferable that it is 100 mass ppm or less, respectively. This is because a higher deformation suppressing effect can be obtained. Such a deformation suppressing effect can further improve the cycle characteristics.
  • the surface of the negative electrode current collector 11 may be roughened or may not be roughened.
  • the roughened negative electrode current collector is, for example, a metal foil subjected to electrolytic treatment, embossing treatment, or chemical etching treatment.
  • the non-roughened negative electrode current collector is, for example, a rolled metal foil.
  • the negative electrode active material layer 12 includes the negative electrode material of the present invention.
  • the negative electrode material includes at least one of negative electrode active material particles capable of occluding and releasing lithium ions, metal compound particles containing a metal compound, and aggregates of the metal compound particles. From the viewpoint of battery design, Furthermore, other materials, such as a negative electrode binder (binder) and a conductive support agent, may be included.
  • the negative electrode active material layer 12 may include a mixed negative electrode material containing the negative electrode material of the present invention and a carbon-based active material.
  • a mixed negative electrode material containing the negative electrode material of the present invention and a carbon-based active material.
  • the carbon-based active material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, carbon blacks, and the like.
  • the ratio of the mass of the silicon-based negative electrode active material to the total mass of the negative electrode active material particles (silicon-based negative electrode active material) and the carbon-based active material is preferably 6% by mass or more.
  • the ratio of the mass of the silicon-based negative electrode active material to the total mass of the silicon-based negative electrode active material and the carbon-based active material is 6% by mass or more, the battery capacity can be reliably improved.
  • the negative electrode active material of the present invention contains silicon compound particles, and the silicon compound particles are a silicon oxide material containing a silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6).
  • the composition is preferably such that x is close to 1. This is because high cycle characteristics can be obtained.
  • the composition of the silicon compound in the present invention does not necessarily mean a purity of 100%, and may contain a trace amount of impurity elements.
  • the silicon compound particles contain at least one of Li 2 SiO 3 and Li 4 SiO 4 .
  • the SiO 2 component part which is destabilized at the time of charging / discharging of the battery and destabilized at the time of charging / discharging, is modified in advance to another lithium silicate. The generated irreversible capacity can be reduced.
  • the battery characteristics are improved when at least one of Li 4 SiO 4 and Li 2 SiO 3 is present in the bulk of the silicon compound particles, but the battery characteristics are further improved when the two types of Li compounds are present together.
  • These lithium silicates can be quantified by NMR (Nuclear Magnetic Resonance) or XPS (X-ray photoelectron spectroscopy: X-ray photoelectron spectroscopy). The XPS and NMR measurements can be performed, for example, under the following conditions.
  • XPS ⁇ Device X-ray photoelectron spectrometer, ⁇ X-ray source: Monochromatic Al K ⁇ ray, ⁇ X-ray spot diameter: 100 ⁇ m, Ar ion gun sputtering conditions: 0.5 kV / 2 mm ⁇ 2 mm.
  • 29 Si MAS NMR (magic angle rotating nuclear magnetic resonance) Apparatus 700 NMR spectrometer manufactured by Bruker, ⁇ Probe: 4mmHR-MAS rotor 50 ⁇ L, Sample rotation speed: 10 kHz, -Measurement environment temperature: 25 ° C.
  • the negative electrode binder contained in the negative electrode active material layer for example, one or more of polymer materials, synthetic rubbers and the like can be used.
  • the polymer material include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, and carboxymethylcellulose.
  • the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene.
  • the negative electrode conductive additive for example, one or more carbon materials such as carbon black, acetylene black, graphite, ketjen black, carbon nanotube, and carbon nanofiber can be used.
  • the negative electrode active material layer is formed by, for example, a coating method.
  • the coating method is a method of dispersing a negative electrode active material particle and the above-mentioned binder, and a negative electrode material mixed with a conductive auxiliary agent and carbon-based active material particles in an organic solvent or water, if necessary. This is a method of applying to an electric body or the like.
  • the negative electrode material and the negative electrode can be produced, for example, by the following procedure. First, the manufacturing method of the negative electrode material used for a negative electrode is demonstrated.
  • silicon compound particles containing a silicon compound (SiO x : 0.5 ⁇ x ⁇ 1.6) are prepared.
  • Li is inserted into the silicon compound particles to contain at least one of Li 2 SiO 3 and Li 4 SiO 4 .
  • negative electrode active material particles are produced.
  • the negative electrode material is manufactured by mixing at least one of the metal compound particles containing the metal compound and the aggregates of the metal compound particles with the prepared negative electrode active material particles.
  • the negative electrode active material can be produced as follows. First, a raw material for generating silicon oxide gas is heated in a temperature range of 900 ° C. to 1600 ° C. under reduced pressure in the presence of an inert gas to generate silicon oxide gas. Considering the surface oxygen of the metal silicon powder and the presence of a trace amount of oxygen in the reaction furnace, the mixing molar ratio is preferably in the range of 0.8 ⁇ metal silicon powder / silicon dioxide powder ⁇ 1.3.
  • the generated silicon oxide gas is solidified and deposited on the adsorption plate.
  • a silicon oxide deposit is taken out in a state where the temperature in the reaction furnace is lowered to 100 ° C. or less, and pulverized using a ball mill, a jet mill or the like, and pulverized.
  • the powder thus obtained may be classified.
  • the particle size distribution of the silicon compound particles can be adjusted during the pulverization step and the classification step.
  • silicon compound particles can be produced. Note that the Si crystallites in the silicon compound particles can be controlled by changing the vaporization temperature or by heat treatment after generation.
  • a carbon material layer may be formed on the surface layer of the silicon compound particles.
  • a thermal decomposition CVD method is desirable. A method for generating a carbon material layer by pyrolytic CVD will be described.
  • silicon compound particles are set in a furnace.
  • hydrocarbon gas is introduced into the furnace to raise the temperature in the furnace.
  • the decomposition temperature is not particularly limited, but is preferably 1200 ° C. or lower, and more preferably 950 ° C. or lower. By setting the decomposition temperature to 1200 ° C. or lower, unintended disproportionation of the active material particles can be suppressed.
  • a carbon layer is generated on the surface of the silicon compound particles.
  • the hydrocarbon gas used as the raw material for the carbon material is not particularly limited, but it is desirable that n ⁇ 3 in the C n H m composition. If n ⁇ 3, the production cost can be reduced, and the physical properties of the decomposition product can be improved.
  • Li is inserted into the silicon active material particles produced as described above, and at least one of Li 2 SiO 3 and Li 4 SiO 4 is contained. Li is preferably inserted by a thermal doping method.
  • the silicon active material particles can be mixed with LiH powder or Li powder, and can be modified by heating in a non-oxidizing atmosphere.
  • a non-oxidizing atmosphere for example, an Ar atmosphere can be used as the non-oxidizing atmosphere.
  • LiH powder or Li powder and silicon oxide powder are sufficiently mixed in an Ar atmosphere, sealed, and homogenized by stirring the sealed container. Thereafter, heating is performed in the range of 700 ° C. to 750 ° C. for reforming.
  • the heated powder is sufficiently cooled, and then washed with alcohol, alkaline water, weak acid or pure water. Also good.
  • Li may be inserted into the silicon active material particles by an oxidation-reduction method.
  • lithium can be inserted by first immersing silicon active material particles in a solution A in which lithium is dissolved in an ether solvent.
  • the solution A may further contain a polycyclic aromatic compound or a linear polyphenylene compound.
  • active lithium may be desorbed from the silicon active material particles by immersing the silicon active material particles in a solution B containing a polycyclic aromatic compound or a derivative thereof.
  • an ether solvent, a ketone solvent, an ester solvent, an alcohol solvent, an amine solvent, or a mixed solvent thereof can be used. Furthermore, after immersing in the solution B, more active lithium is obtained from the silicon active material particles by immersing the silicon active material in the solution C containing an alcohol solvent, a carboxylic acid solvent, water, or a mixed solvent thereof. It may be detached. Thus, if active lithium is desorbed after insertion of lithium, a negative electrode active material with higher water resistance is obtained.
  • ether solvent used for the solution A diethyl ether, tert butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, or a mixed solvent thereof is used. be able to. Of these, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, and diethylene glycol dimethyl ether are particularly preferably used. These solvents are preferably dehydrated and preferably deoxygenated.
  • polycyclic aromatic compound contained in the solution A one or more of naphthalene, anthracene, phenanthrene, pentacene, pyrene, triphenylene, coronene, chrysene, and derivatives thereof can be used.
  • polyphenylene compound one or more of biphenyl, terphenyl, and derivatives thereof can be used.
  • polycyclic aromatic compound contained in the solution B one or more of naphthalene, anthracene, phenanthrene, pentacene, pyrene, triphenylene, coronene, chrysene, and derivatives thereof can be used.
  • ether solvent of the solution B diethyl ether, tert butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, or a mixed solvent thereof is used. be able to.
  • ketone solvent acetone, acetophenine, or the like can be used.
  • ester solvent methyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate and the like can be used.
  • alcohol solvent methanol, ethanol, propanol, isopropyl alkanol and the like can be used.
  • amine solvent methylamine, ethylamine, ethylenediamine, or the like can be used.
  • the solvent may be mixed in a plurality of stages, for example, a ketone solvent and a silicon compound are mixed and stirred, and then an alcohol solvent is added.
  • alcohol solvent of the solution C methanol, ethanol, propanol, isopropyl alkanol and the like can be used.
  • carboxylic acid solvent formic acid, acetic acid, oxalic acid and the like can be used.
  • FIG. 2 shows an example of a 29 Si-MAS-NMR spectrum measured from silicon compound particles when modification is performed by the oxidation-reduction method.
  • the peak given in the vicinity of ⁇ 75 ppm is a peak derived from Li 2 SiO 3
  • the peak given from ⁇ 80 to ⁇ 100 ppm is a peak derived from Si.
  • peaks of Li silicate other than Li 2 SiO 3 and Li 4 SiO 4 may be present in the range of ⁇ 80 to ⁇ 100 ppm.
  • FIG. 3 shows an example of a 29 Si-MAS-NMR spectrum measured from silicon compound particles when the modification is performed by the thermal doping method.
  • the peak given in the vicinity of ⁇ 75 ppm is a peak derived from Li 2 SiO 3
  • the peak given from ⁇ 80 to ⁇ 100 ppm is a peak derived from Si.
  • peaks of Li silicate other than Li 2 SiO 3 and Li 4 SiO 4 may be present in the range of ⁇ 80 to ⁇ 100 ppm. Note that the peak of Li 4 SiO 4 can be confirmed from the XPS spectrum.
  • the mixing method may be dry mixing such as stirring mixing, rolling mixing, and shear mixing, or may be wet mixing in which metal compound particles dispersed in a solution are sprayed onto the negative electrode active material particles. Good.
  • the negative electrode material produced as described above is mixed with other materials such as a negative electrode binder and a conductive aid as necessary, and then an organic solvent or water is added to form a slurry. Next, the above slurry is applied to the surface of the negative electrode current collector and dried to form a negative electrode active material layer. At this time, you may perform a heat press etc. as needed.
  • a negative electrode can be produced as described above.
  • Lithium ion secondary battery including the negative electrode material of the present invention
  • a lithium ion secondary battery including the negative electrode material of the present invention will be described.
  • a laminated film type lithium ion secondary battery is taken as an example.
  • the laminated film type lithium ion secondary battery 20 shown in FIG. 4 is one in which a wound electrode body 21 is accommodated mainly in a sheet-like exterior member 25.
  • This wound body has a separator between a positive electrode and a negative electrode and is wound.
  • a separator is provided between the positive electrode and the negative electrode and a laminate is accommodated.
  • the positive electrode lead 22 is attached to the positive electrode
  • the negative electrode lead 23 is attached to the negative electrode.
  • the outermost peripheral part of the electrode body is protected by a protective tape.
  • the positive and negative electrode leads are led out in one direction from the inside of the exterior member 25 to the outside.
  • the positive electrode lead 22 is formed of a conductive material such as aluminum
  • the negative electrode lead 23 is formed of a conductive material such as nickel or copper.
  • the exterior member 25 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order.
  • This laminate film is composed of two films so that the fusion layer faces the electrode body 21.
  • the outer peripheral edges of the fusion layer are bonded together with an adhesive or an adhesive.
  • the fused part is, for example, a film such as polyethylene or polypropylene, and the metal part is aluminum foil or the like.
  • the protective layer is, for example, nylon.
  • An adhesion film 24 is inserted between the exterior member 25 and the positive and negative electrode leads to prevent intrusion of outside air.
  • This material is, for example, polyethylene, polypropylene, or polyolefin resin.
  • the positive electrode has, for example, a positive electrode active material layer on both sides or one side of the positive electrode current collector, similarly to the negative electrode 10 of FIG.
  • the positive electrode current collector is made of, for example, a conductive material such as aluminum.
  • the positive electrode active material layer includes one or more positive electrode materials capable of occluding and releasing lithium ions, and includes other materials such as a binder, a conductive additive, and a dispersant depending on the design. You can leave. In this case, details regarding the binder and the conductive additive are the same as, for example, the negative electrode binder and the negative electrode conductive additive already described.
  • a lithium-containing compound is desirable.
  • the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphate compound having lithium and a transition metal element.
  • compounds having at least one of nickel, iron, manganese, and cobalt are preferable.
  • These chemical formulas are represented by, for example, Li x M1O 2 or Li y M2PO 4 .
  • M1 and M2 represent at least one or more transition metal elements.
  • the values of x and y vary depending on the battery charge / discharge state, but are generally expressed as 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10.
  • Examples of the composite oxide having lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ) and lithium nickel composite oxide (Li x NiO 2 ).
  • Examples of the phosphate compound having lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1)). Is mentioned. This is because, when these positive electrode materials are used, a high battery capacity can be obtained and excellent cycle characteristics can be obtained.
  • the negative electrode has the same configuration as the above-described negative electrode 10 for a lithium ion secondary battery in FIG. 1.
  • the negative electrode has negative electrode active material layers 12 on both surfaces of the current collector 11.
  • the negative electrode preferably has a negative electrode charge capacity larger than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material agent. This is because the deposition of lithium metal on the negative electrode can be suppressed.
  • the positive electrode active material layer is provided on a part of both surfaces of the positive electrode current collector, and the negative electrode active material layer is also provided on a part of both surfaces of the negative electrode current collector.
  • the negative electrode active material layer provided on the negative electrode current collector is provided with a region where there is no opposing positive electrode active material layer. This is to perform a stable battery design.
  • the non-opposing region that is, the region where the negative electrode active material layer and the positive electrode active material layer are not opposed to each other, there is almost no influence of charge / discharge. Therefore, the state of the negative electrode active material layer is maintained as it is immediately after formation. This makes it possible to accurately examine the composition with good reproducibility without depending on the presence or absence of charge / discharge, such as the composition of the negative electrode active material.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing current short-circuiting due to bipolar contact.
  • This separator is formed of, for example, a porous film made of synthetic resin or ceramic, and may have a laminated structure in which two or more kinds of porous films are laminated.
  • the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
  • Electrode At least a part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolytic solution).
  • This electrolytic solution has an electrolyte salt dissolved in a solvent, and may contain other materials such as additives.
  • a non-aqueous solvent for example, a non-aqueous solvent can be used.
  • the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran.
  • a high viscosity solvent such as ethylene carbonate or propylene carbonate
  • a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate or diethyl carbonate. This is because the dissociation property and ion mobility of the electrolyte salt are improved.
  • the halogenated chain carbonate ester is a chain carbonate ester having halogen as a constituent element (at least one hydrogen is replaced by halogen).
  • the halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (that is, at least one hydrogen is replaced by a halogen).
  • halogen is not particularly limited, but fluorine is preferred. This is because a film having a better quality than other halogens is formed. Further, the larger the number of halogens, the better. This is because the resulting coating is more stable and the decomposition reaction of the electrolyte is reduced.
  • halogenated chain carbonate examples include fluoromethyl methyl carbonate and difluoromethyl methyl carbonate.
  • halogenated cyclic carbonate examples include 4-fluoro-1,3-dioxolane-2-one, 4,5-difluoro-1,3-dioxolane-2-one, and the like.
  • the solvent additive contains an unsaturated carbon bond cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolytic solution can be suppressed.
  • unsaturated carbon bond cyclic ester carbonate include vinylene carbonate and vinyl ethylene carbonate.
  • sultone cyclic sulfonic acid ester
  • solvent additive examples include propane sultone and propene sultone.
  • the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved.
  • the acid anhydride include propanedisulfonic acid anhydride.
  • the electrolyte salt can contain, for example, any one or more of light metal salts such as lithium salts.
  • the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
  • the content of the electrolyte salt is preferably 0.5 mol / kg or more and 2.5 mol / kg or less with respect to the solvent. This is because high ionic conductivity is obtained.
  • a negative electrode can be produced using the negative electrode material produced by the method for producing a negative electrode material of the present invention, and a lithium ion secondary battery can be produced using the produced negative electrode.
  • a positive electrode is produced using the positive electrode material described above.
  • a positive electrode active material and, if necessary, a binder, a conductive additive and the like are mixed to form a positive electrode mixture, and then dispersed in an organic solvent to form a positive electrode mixture slurry.
  • the mixture slurry is applied to the positive electrode current collector with a coating apparatus such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer.
  • the positive electrode active material layer is compression molded with a roll press or the like. At this time, heating may be performed, or heating or compression may be repeated a plurality of times.
  • a negative electrode is produced by forming a negative electrode active material layer on the negative electrode current collector using the same operating procedure as the production of the negative electrode 10 for lithium ion secondary batteries described above.
  • the positive electrode lead 22 is attached to the positive electrode current collector and the negative electrode lead 23 is attached to the negative electrode current collector by ultrasonic welding or the like.
  • the positive electrode and the negative electrode are laminated or wound via a separator to produce a wound electrode body 21, and a protective tape is adhered to the outermost periphery thereof.
  • the wound body is molded so as to have a flat shape.
  • the insulating portions of the exterior member are bonded to each other by a heat fusion method, and the wound electrode body is released in only one direction. Enclose.
  • An adhesion film is inserted between the positive electrode lead and the negative electrode lead and the exterior member.
  • a predetermined amount of the adjusted electrolytic solution is introduced from the release portion, and vacuum impregnation is performed. After impregnation, the release part is bonded by a vacuum heat fusion method. As described above, the laminated film type lithium ion secondary battery 20 can be manufactured.
  • Example 1-1 The laminate film type lithium ion secondary battery 20 shown in FIG. 4 was produced by the following procedure.
  • the positive electrode active material is 95% by mass of LiNi 0.7 Co 0.25 Al 0.05 O, which is a lithium nickel cobalt composite oxide, 2.5% by mass of a positive electrode conductive additive, and a positive electrode binder (polyvinylidene fluoride). : PVDF) 2.5% by mass was mixed to obtain a positive electrode mixture.
  • the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone: NMP) to obtain a paste slurry.
  • the slurry was applied to both surfaces of the positive electrode current collector with a coating apparatus having a die head, and dried with a hot air drying apparatus. At this time, a positive electrode current collector having a thickness of 15 ⁇ m was used. Finally, compression molding was performed with a roll press.
  • a negative electrode active material was produced as follows. A raw material in which metallic silicon and silicon dioxide were mixed was introduced into a reaction furnace, and an atmosphere having a vacuum degree of 10 Pa was deposited on the adsorption plate. After sufficiently cooling, the deposit was taken out and pulverized with a ball mill. The value x of SiO x of the silicon compound particles thus obtained was 0.5. Subsequently, the particle size of the silicon compound particles was adjusted by classification. Then, the carbon material was coat
  • lithium was inserted into the silicon compound particles and modified by a thermal doping method.
  • LiH powder and silicon compound particles were sufficiently mixed and sealed in an Ar atmosphere, and the sealed container was stirred and homogenized. Thereafter, the modification was performed by heating in the range of 700 ° C. to 750 ° C. Further, in order to desorb some active Li from the silicon compound, the heated silicon compound particles were sufficiently cooled and then washed with alcohol. Negative electrode active material particles were prepared by the above treatment.
  • alumina particles, zirconia particles, and yttria particles were mixed with the negative electrode active material particles to prepare a negative electrode material.
  • the mass ratio of aluminum in this negative electrode material was 0.2 mass%
  • zirconium was 200 mass ppm
  • yttrium was 10 ppm.
  • the average primary particle diameter of the metal compound particles containing these particles was 0.7 ⁇ m
  • the average secondary particle diameter of the aggregate was 2 ⁇ m.
  • the fluorescent material was analyzed for the negative electrode material.
  • the conditions were as follows. Apparatus: Energy dispersive X-ray fluorescence analysis S2 Ranger (manufactured by Bruker) (1) Confirmation conditions of strength ratio Al (K ⁇ ) / Si (K ⁇ ) Acceleration voltage: 20 kV ⁇ Target: Pd ⁇ Atmosphere: He ⁇ Vessel: Liquid cup ⁇ Filter: None ⁇ Detector: Silicon drift detector (2) Peak confirmation conditions for zirconium (Zr) and yttrium (Y) ⁇ Acceleration voltage: 40 kV ⁇ Target: Pd ⁇ Atmosphere: He ⁇ Vessel: Liquid cup ⁇ Filter: Al 500 ⁇ m ⁇ Detector: Silicon drift detector
  • FIGS. 5 and 6 are enlarged views of the X-ray energy in FIG. 5 in the range of 1.3 to 1.6 keV.
  • the fluorescent X-ray spectrum has a peak showing aluminum K ⁇ ray near 1.49 keV and a peak showing silicon K ⁇ ray near 1.74 keV.
  • the ratio Al (K ⁇ ) / Si (K ⁇ ) of the peak intensity showing the K ⁇ line of aluminum to the intensity of the peak showing the K ⁇ line of silicon was 0.007.
  • the confirmation result of the peak of zirconium (Zr) and yttrium (Y) is shown in FIG.
  • the intensity of the spectrum shown in FIG. 7 is a relative value when the Si-K ⁇ line (around 1.74 keV) is 1.
  • the vertical axis in FIG. 7 is also a logarithmic scale.
  • the X-ray energy had a peak showing zirconium K ⁇ ray in the vicinity of 15.74 keV, and a peak showing zirconium K ⁇ ray in the vicinity of 17.66 keV.
  • the X-ray energy had a peak showing yttrium K ⁇ ray in the vicinity of 14.93 keV, and did not have a peak showing yttrium K ⁇ ray in the vicinity of 16.73 keV.
  • the negative electrode material and the carbon-based active material were blended so that the mass ratio of the silicon-based active material particles and the carbon-based active material particles was 1: 9, thereby preparing a mixed negative electrode material.
  • the carbon-based active material a mixture of natural graphite and artificial graphite coated with a pitch layer at a mass ratio of 5: 5 was used.
  • the median diameter of the carbon-based active material was 20 ⁇ m.
  • the mixed negative electrode material conductive auxiliary agent 1 (carbon nanotube, CNT), conductive auxiliary agent 2 (carbon fine particles having a median diameter of about 50 nm), styrene butadiene rubber (styrene butadiene copolymer, hereinafter referred to as SBR), carboxy Methyl cellulose (hereinafter referred to as CMC) was mixed at a dry mass ratio of 92.5: 1: 1: 2.5: 3, and then diluted with pure water to obtain a negative electrode mixture slurry.
  • SBR and CMC are negative electrode binders (negative electrode binder).
  • an electrolytic copper foil having a thickness of 15 ⁇ m was used as the negative electrode current collector.
  • This electrolytic copper foil contained carbon and sulfur at a concentration of 70 mass ppm.
  • the negative electrode mixture slurry was applied to the negative electrode current collector and dried in a vacuum atmosphere at 100 ° C. for 1 hour.
  • the amount of deposition (also referred to as area density) of the negative electrode active material layer per unit area on one side of the negative electrode after drying was 5 mg / cm 2 .
  • an electrolyte salt lithium hexafluorophosphate: LiPF 6
  • FEC fluoro-1,3-dioxolan-2-one
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • an electrolyte salt lithium hexafluorophosphate: LiPF 6
  • the content of the electrolyte salt was 1.2 mol / kg with respect to the solvent.
  • a secondary battery was assembled as follows. First, an aluminum lead was ultrasonically welded to one end of the positive electrode current collector, and a nickel lead was welded to one end of the negative electrode current collector. Subsequently, a positive electrode, a separator, a negative electrode, and a separator were laminated in this order, and wound in the longitudinal direction to obtain a wound electrode body. The end portion was fixed with a PET protective tape. As the separator, a laminated film (thickness: 12 ⁇ m) sandwiched between a film mainly composed of porous polyethylene and a film mainly composed of porous polypropylene was used.
  • the outer peripheral edges excluding one side were heat-sealed, and the electrode body was housed inside.
  • the exterior member a nylon film, an aluminum foil, and an aluminum laminate film in which a polypropylene film was laminated were used.
  • an electrolytic solution prepared from the opening was injected, impregnated in a vacuum atmosphere, heat-sealed, and sealed.
  • the cycle characteristics were examined as follows. First, in order to stabilize the battery, charge and discharge was performed for 2 cycles at 0.2 C in an atmosphere at 25 ° C., and the discharge capacity at the second cycle was measured. Subsequently, charge and discharge were performed until the total number of cycles reached 499 cycles, and the discharge capacity was measured each time. Finally, the discharge capacity at the 500th cycle obtained by 0.2 C charge / discharge was divided by the discharge capacity at the second cycle to calculate a capacity retention rate (hereinafter also simply referred to as a retention rate). In the normal cycle, that is, from the 3rd cycle to the 499th cycle, charging and discharging were performed with a charge of 0.7 C and a discharge of 0.5 C.
  • initial efficiency (initial discharge capacity / initial charge capacity) ⁇ 100.
  • the ambient temperature was the same as when the cycle characteristics were examined.
  • Example 1-2 to Example 1-3, Comparative Example 1-1, 1-2 A secondary battery was manufactured in the same manner as Example 1-1 except that the amount of oxygen in the bulk of the silicon compound was adjusted. In this case, the amount of oxygen was adjusted by changing the ratio of metal silicon and silicon dioxide in the raw material of the silicon compound and the heating temperature.
  • Table 1 shows the value of x of the silicon compound represented by SiO x in Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2.
  • the silicon-based active material particles of Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2 had the following properties. Li 2 SiO 3 and Li 4 SiO 4 were contained inside the silicon compound particles in the negative electrode active material particles. Moreover, the silicon compound has a half-value width (2 ⁇ ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of 1.755 °, and the crystallite size due to the Si (111) crystal plane is It was 4.86 nm. The average thickness of the carbon material coated on the surface was 100 nm. The median diameter of the negative electrode active material particles was 6 ⁇ m.
  • Table 1 shows the evaluation results of Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2.
  • Example 2-1 and Example 2-2 A secondary battery was fabricated under the same conditions as in Example 1-2 except that the type of lithium silicate contained in the silicon compound particles was changed as shown in Table 2, and the cycle characteristics and initial efficiency were evaluated.
  • Example 2-1 A secondary battery was fabricated under the same conditions as in Example 1-2 except that lithium was not inserted into the silicon compound particles, and the cycle characteristics and initial efficiency were evaluated.
  • Table 2 shows the results of Example 2-1, Example 2-2, and Comparative Example 2-1.
  • the silicon compound contains stable lithium silicate such as Li 2 SiO 3 and Li 4 SiO 4 .
  • the capacity retention ratio and the initial efficiency were improved.
  • the capacity retention ratio and the initial efficiency were further improved.
  • Comparative Example 2-1 in which no modification was performed and lithium was not included in the silicon compound, the capacity retention ratio and the initial efficiency were lowered.
  • Example 3-1 to Example 3-9 A secondary battery was fabricated under the same conditions as Example 1-2 except that the metal compound particles in the negative electrode material were replaced with metal compound particles as shown in Table 3, and the cycle characteristics and initial efficiency were evaluated.
  • the mass ratio, average primary particle diameter, and average secondary particle diameter of the metal compound particles in the negative electrode material were the same as in Example 1-2, and only the type of metal compound in the metal compound particles and the mixing ratio of each particle were changed.
  • the stability of the slurry was evaluated by the time until gas was generated from the slurry. It can be said that the longer this time, the more stable the slurry. Specifically, 30 g of a part of the prepared negative electrode mixture slurry was taken out separately from the one for preparing the secondary battery, stored at 20 ° C., and the time from the preparation of the negative electrode mixture slurry to the generation of gas was measured. .
  • the safety of the secondary battery was evaluated by a nail penetration test. Specifically, 10 secondary batteries charged to 4.2 V were prepared in each example, and when passing a nail having a diameter of 2.7 mm at a rate of 5 mm / s, the safety pass standard in the nail penetration test was determined. The number of filled secondary batteries was measured.
  • Example 3-1 A secondary battery was fabricated under the same conditions as in Example 1-2 except that the metal compound particles were not added to the negative electrode material, and the cycle characteristics, initial efficiency, slurry stability, and secondary battery safety were evaluated. did.
  • Table 3 shows the results of Examples 3-1 to 3-9 and Comparative Example 3-1.
  • Examples 3-1 to 3-6 if at least one of alumina particles, zirconia particles, and yttria particles is included, the effect of improving the stability, initial efficiency, and capacity retention rate of the slurry can be obtained. It turns out that it can be obtained sufficiently.
  • the metal compound is not limited to an oxide, and even if a phosphate or silicate is used, the stability and initial efficiency of the slurry are increased. It was also found that the effect of improving the capacity retention rate was sufficiently obtained.
  • Comparative Example 3-1 in which the metal compound particles were not added to the negative electrode material, the stability of the slurry was lowered, and the initial efficiency and the capacity retention rate were both deteriorated. In particular, the capacity maintenance rate deteriorated significantly. In addition, as the stability of the slurry decreased, the number of secondary batteries that passed the nail penetration test was also small.
  • Example 4-1 to Example 4-10 A secondary battery was fabricated under the same conditions as in Example 1-2, except that the average primary particle size of the metal compound particles and the average secondary particle size of the aggregates thereof were changed as shown in Table 4. The efficiency, the stability of the slurry, and the safety of the secondary battery were evaluated. In Example 4-10, the aggregation of the metal particles hardly occurred, and the average primary particle diameter and the average secondary particle diameter were the same value.
  • the average primary particle diameter of the metal compound particles is 0.1 ⁇ m or more and 4 ⁇ m or less.
  • the time until gas generation is longer Became longer and the slurry stability was further improved. This is because when the average primary particle diameter is 0.1 ⁇ m or more and 4 ⁇ m or less, the BET specific surface area of the metal compound particles becomes a more appropriate value, and the reaction with lithium eluted in the slurry occurs more sufficiently. Conceivable.
  • Examples 4-4, 4-5, 4-6, 4-8, and 1-2 in which the average secondary particle diameter of the aggregate of the metal compound particles is 0.1 ⁇ m or more and 20 ⁇ m or less, the nail penetration test The number of secondary batteries that passed the test increased compared to Examples 4-1 to 4-3 and 4-9 that did not satisfy the secondary particle diameter range.
  • the average secondary particle diameter of the aggregate of metal compound particles is 0.1 ⁇ m or more and 20 ⁇ m or less, it is difficult to form a portion where the presence ratio of the negative electrode active material particles is low in the negative electrode material. This is because it can be suppressed.
  • Example 5-1 to Example 5-4 A secondary battery was fabricated under the same conditions as in Example 1-2 except that the peak intensity ratio Al (K ⁇ ) / Si (K ⁇ ) was changed as shown in Table 5, and cycle characteristics, initial efficiency, and stability of the slurry were obtained. Sex was evaluated. Al (K ⁇ ) / Si (K ⁇ ) was adjusted by changing the mixing amount of alumina particles.
  • Example 6-1 A secondary battery was fabricated under the same conditions as in Example 1-2, except that a negative electrode material in which neither a peak indicating zirconium K ⁇ line nor a peak indicating K ⁇ line appeared was used, and cycle characteristics, initial efficiency, Stability was evaluated. Such a negative electrode material was obtained by reducing the proportion of zirconia particles in the metal compound particles.
  • Example 7-1 A secondary battery was fabricated under the same conditions as in Example 1-2 except that a negative electrode material in which neither a peak indicating yttrium K ⁇ line nor a peak indicating K ⁇ line appeared was used, and cycle characteristics, initial efficiency, Stability and battery safety were evaluated. Such a negative electrode material was obtained by reducing the proportion of yttria particles in the metal compound particles.
  • Example 7-2 A secondary battery was fabricated under the same conditions as in Example 1-2 except that a negative electrode material in which both a peak indicating K ⁇ line and a peak indicating K ⁇ line of yttrium were used was obtained, and cycle characteristics, initial efficiency, and stability of slurry were obtained. And battery safety were evaluated.
  • a negative electrode material was obtained by increasing the proportion of yttria particles in the metal compound particles.
  • Example 7-1, 7-2 shows that the amount of yttrium is an appropriate amount. Better characteristics compared to.
  • Example 8-1 to 8-6 A secondary battery was produced under the same conditions as in Example 1-2 except that the crystallinity of the silicon compound particles was changed as shown in Table 8, and cycle characteristics, initial efficiency, stability of aqueous negative electrode slurry, secondary battery was evaluated for safety. Note that the crystallinity in the silicon compound particles can be controlled by changing the vaporization temperature of the raw material or by heat treatment after the formation of the silicon compound particles.
  • a particularly high capacity retention ratio was obtained with a low crystalline material having a half width of 1.2 ° or more and a crystallite size attributable to the Si (111) plane of 7.5 nm or less.
  • Example 9-1 A silicon compound was prepared under the same conditions as in Example 1-2 except that the relationship between the maximum peak intensity value A in the Si and Li silicate regions and the peak intensity value B derived from the SiO 2 region was A ⁇ B. Secondary batteries were prepared and evaluated for cycle characteristics, initial efficiency, stability of aqueous negative electrode slurry, and safety of secondary batteries. In this case, by reducing the amount of insertion of lithium during reforming to reduce the amount of Li 2 SiO 3, it has a small intensity A of a peak derived from the Li 2 SiO 3.
  • Example 10-1 to 10-6 A secondary battery was produced under the same conditions as in Example 1-2 except that the median diameter of the silicon compound particles was changed as shown in Table 10, and cycle characteristics, initial efficiency, stability of aqueous negative electrode slurry, secondary battery was evaluated for safety.
  • the median diameter of the negative electrode active material particles was 1.0 ⁇ m or more, the maintenance ratio and the initial efficiency were further improved. This is probably because the surface area per mass of the negative electrode active material particles was not too large, and the area where the side reaction occurred could be reduced. Furthermore, if the median diameter of the negative electrode active material particles is 15 ⁇ m or less, the particles are difficult to break during charging, and SEI (solid electrolyte interface) due to the new surface is difficult to generate during charging and discharging, and thus loss of reversible Li can be suppressed. . In addition, when the median diameter is 15 ⁇ m or less, the amount of expansion of the silicon compound particles during charging does not increase, and therefore physical and electrical destruction of the negative electrode active material layer due to expansion can be prevented.
  • Example 11-1 to 11-4 A secondary battery was fabricated under the same conditions as in Example 1-2 except that the average thickness of the carbon material coated on the surface of the silicon-based active material particles was changed as shown in Table 11, and cycle characteristics, initial efficiency, The stability of the aqueous negative electrode slurry and the safety of the secondary battery were evaluated.
  • the average thickness of the carbon material can be adjusted by changing the CVD conditions.
  • Example 11-5 A secondary battery was produced under the same conditions as in Example 1-2 except that the surface of the silicon-based active material particles was not coated with a carbon material, and cycle characteristics, initial efficiency, aqueous negative electrode slurry, and safety of the secondary battery The stability of was evaluated.
  • the capacity retention rate and the initial efficiency increased by covering the carbon material.
  • the conductivity is further improved when the thickness of the carbon material layer is 10 nm or more, the capacity retention ratio and the initial efficiency can be further improved.
  • the film thickness of the carbon layer is 5000 nm or less, the amount of silicon compound particles can be sufficiently secured in battery design, and the battery capacity does not decrease.
  • Example 12-1 A secondary battery was fabricated under the same conditions as in Example 1-2 except that the silicon compound particle modification method was changed to the oxidation-reduction method, and cycle characteristics, initial efficiency, stability of the aqueous negative electrode slurry, Safety was evaluated.
  • Modification by the oxidation-reduction method was performed as follows. First, silicon compound particles (negative electrode active material particles) coated with a carbon material are immersed in a solution (solution A) in which lithium pieces and an aromatic compound naphthalene are dissolved in tetrahydrofuran (hereinafter referred to as THF). did.
  • This solution A was prepared by dissolving naphthalene in a THF solvent at a concentration of 0.2 mol / L and then adding a lithium piece having a mass of 10% by mass to the mixture of THF and naphthalene. Further, the temperature of the solution when the negative electrode active material particles were immersed was 20 ° C., and the immersion time was 20 hours. Thereafter, the negative electrode active material particles were collected by filtration. Through the above treatment, lithium was inserted into the negative electrode active material particles.
  • the obtained silicon compound particles were heat-treated at 600 ° C. for 24 hours in an argon atmosphere to stabilize the Li compound.
  • the negative electrode active material particles were washed, and the negative electrode active material particles after the washing treatment were dried under reduced pressure. In this way, the silicon compound particles were modified.
  • Example 13-1 A secondary battery was produced under the same conditions as in Example 1-2 except that the mass ratio of the silicon-based active material particles in the negative electrode active material was changed, and the rate of increase in battery capacity was evaluated.
  • FIG. 8 is a graph showing the relationship between the ratio of the silicon-based active material particles to the total amount of the negative electrode active material and the increase rate of the battery capacity of the secondary battery.
  • the graph indicated by A in FIG. 8 shows the rate of increase in battery capacity when the proportion of silicon compound particles is increased in the negative electrode active material of the negative electrode of the present invention.
  • the graph indicated by B in FIG. 8 shows the rate of increase in battery capacity when the proportion of silicon compound particles not doped with Li is increased.
  • the ratio of the silicon compound is 6% by mass or more, the increase rate of the battery capacity is increased as compared with the conventional case, and the volume energy density is particularly remarkably increased.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

本発明は、負極活物質粒子を含む負極材であって、前記負極活物質粒子が、ケイ素化合物(SiOx:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、前記ケイ素化合物粒子は、Li2SiO3及びLi4SiO4のうち少なくとも1種以上を含有し、前記負極材が、さらに、金属化合物を含む金属化合物粒子及び前記金属化合物粒子の凝集体のうち少なくとも一方を含むものであることを特徴とする負極材である。 これにより、二次電池の負極作製時に作製するスラリーを安定化することができ、二次電池の負極活物質として用いた際に、初期充放電特性及びサイクル特性を向上させることが可能な負極材が提供される。

Description

負極材及びその負極材の製造方法、並びに混合負極材
 本発明は、負極材及びその負極材の製造方法、並びに混合負極材に関する。
 近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
 その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。
 上記のリチウムイオン二次電池は、正極および負極、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。
 この負極活物質としては、炭素系活物質が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素系活物質では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
 しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
 これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成についてさまざまな検討がなされている。
 具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
 また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1~1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するRAMANスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。
特開2001-185127号公報 特開2002-042806号公報 特開2006-164954号公報 特開2006-114454号公報 特開2009-070825号公報 特開2008-282819号公報 特開2008-251369号公報 特開2008-177346号公報 特開2007-234255号公報 特開2009-212074号公報 特開2009-205950号公報 特許第2997741号明細書
 上述したように、近年、モバイル端末などに代表される小型の電子機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。また、ケイ素材を用いる場合、Liをドープしたケイ素材を用いることで高い初期効率及び容量維持率を得ることができるが、その一方で、Liをドープしたケイ素材は水系溶媒に対する安定性が低く、負極作製時に作製するケイ素材を混合した水系負極スラリーの安定性が低下してしまうため、工業的に不向きであった。
 本発明は前述のような問題に鑑みてなされたもので、二次電池の負極作製時に作製するスラリーを安定化することができ、二次電池の負極活物質として用いた際に、初期充放電特性及びサイクル特性を向上させることが可能な負極材、及び、この負極材を含む混合負極材を提供することを目的とする。また、負極作製時に作製するスラリーを安定化することができ、初期充放電特性及びサイクル特性を向上させることができる負極材の製造方法を提供することも目的とする。
 上記目的を達成するために、本発明は、負極活物質粒子を含む負極材であって、前記負極活物質粒子が、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、前記ケイ素化合物粒子は、LiSiO及びLiSiOのうち少なくとも1種以上を含有し、前記負極材が、さらに、金属化合物を含む金属化合物粒子及び前記金属化合物粒子の凝集体のうち少なくとも一方を含むものであることを特徴とする負極材を提供する。
 本発明の負極材は、ケイ素化合物粒子を含む負極活物質粒子(ケイ素系活物質粒子とも呼称する)を含むため、電池容量を向上できる。また、ケイ素化合物粒子がLi化合物を含むことにより、充電時に発生する不可逆容量を低減することができる。これにより、電池の初回効率及びサイクル特性を向上できる。さらに、ケイ素化合物粒子と共に、金属化合物粒子やその凝集体を含むため、負極の製造過程で負極材を水系スラリーに混合した際に、水系スラリー中にケイ素化合物粒子などから溶出したLiイオンと金属化合物粒子が部分的に反応することで、Liイオンと水との反応を抑制し、スラリー安定性を高めることができる。
 このとき、前記金属化合物粒子は、アルミニウム、ジルコニウム、及びイットリウムのうち少なくとも1種以上を含むものであることが好ましい。
 アルミニウム、ジルコニウム、及びイットリウムはLiイオンとの適度な反応性を有するため、これらのような金属の化合物を含む金属化合物粒子がより好適であり、スラリー安定性をより高めることができる。
 またこのとき、前記金属化合物粒子の平均一次粒子径が0.1μm以上4μm以下であり、前記金属化合物粒子の凝集体の平均二次粒子径が0.1μm以上20μm以下であることが好ましい。
 金属化合物粒子の平均一次粒子径が0.1μm以上4μm以下であれば、金属化合物粒子の比表面積が大きいため、水系スラリー中において溶出したLiイオンと金属化合物粒子との反応面積が大きくなり、水系スラリーをより安定化することができる。よって、電池のサイクル特性、初回充放電効率を向上できる。また、負極材中で負極活物質粒子の存在割合が低い部分ではLi析出が起きやすいが、金属化合物粒子の凝集体の平均二次粒子径が0.1μm以上20μm以下であれば、負極材中で負極活物質粒子の存在割合が低い部分ができにくいため、特に充電時のLi析出の発生を抑制することができる。これにより、電池の安全性も向上できる。
 また、前記金属化合物が、金属元素と酸素の結合を有することが好ましい。
 金属元素と酸素の結合を有する金属化合物はLiイオンとの適度な反応性を有するので、スラリー安定性をより高めることができる。
 また、前記金属化合物が、酸化物、リン酸塩、及びケイ酸塩のうちのいずれか1種であることが好ましい。
 これらのような金属化合物が、Liイオンとの適度な反応性を有するので、スラリー安定性をより高めることができる。
 また、本発明の負極材が、前記負極材の蛍光X線分析によって得られる蛍光X線スペクトルが、1.49keV付近にアルミニウムのKα線を示すピークを有し、かつ、1.74keV付近にシリコンのKα線を示すピークを有し、前記シリコンのKα線を示すピークの強度に対する前記アルミニウムのKα線を示すピークの強度の比Al(Kα)/Si(Kα)が0.002以上0.01以下のものであることが好ましい。
 上記のピークの強度の比の範囲内であれば、負極材中に、シリコンに対してアルミニウム化合物を含む金属化合物粒子などが適量含まれていると言える。そのため、金属化合物粒子によるスラリー安定化効果を得ることができる。また、アルミニウムが過多にならないため抵抗増大を抑制でき、ケイ素の量も十分に確保していると言えるので、十分な電池容量を得られる負極材となる。
 また、本発明の負極材は、前記負極材の蛍光X線分析によって得られる蛍光X線スペクトルが、15.74keV付近にジルコニウムのKα線を示すピークを有し、かつ、17.66keV付近にジルコニウムのKβ線を示すピークを有するものであることが好ましい。
 これらのようなジルコニウムに関するピークが得られるものであれば、ジルコニウム化合物を含む金属化合物粒子などが負極材に適量含まれていると言える。そのため、ジルコニウム化合物を含む金属化合物粒子によるスラリーの安定化効果をより確実に得ることができる。
 また、本発明の負極材は、前記負極材の蛍光X線分析によって得られる蛍光X線スペクトルが、14.93keV付近にイットリウムのKα線を示すピークを有し、かつ、16.73keV付近にイットリウムのKβ線を示すピークを有しないものであることが好ましい。
 負極材から測定された蛍光X線スペクトルが、イットリウムのKα線を示すピークを有し、かつ、イットリウムのKβ線を示すピークを有しない場合、イットリウムの存在割合が適量含まれていると言える。そのため、スラリーの安定化効果をより確実に得ることができるうえに、電池の充電時のLi析出の発生を抑制することができる。
 また、前記ケイ素化合物粒子は、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることが好ましい。
 ケイ素化合物粒子が上記のケイ素結晶性を有する負極材をリチウムイオン二次電池に用いれば、より良好なサイクル特性及び初期充放電特性が得られる。
 また、本発明の負極材は、前記ケイ素化合物粒子において、29Si-MAS-NMR スペクトルから得られる、ケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として-96~-150ppmで与えられるSiO領域のピーク強度値Bが、A>Bという関係を満たすものであることが好ましい。
 ケイ素化合物粒子において、SiO成分を基準としてSi及びLiSiOの量がより多いものであれば、Liの挿入による電池特性の向上効果を十分に得られる負極材となる。
 また、前記負極活物質粒子はメジアン径が1.0μm以上15μm以下であることが好ましい。
 負極活物質粒子のメジアン径が1.0μm以上であれば、比表面積の増加による電池不可逆容量の増加を抑制することができる。一方で、メジアン径を15μm以下とすることで、粒子が割れ難くなるため新表面が出難くなる。
 また、前記負極活物質粒子は、表層部に炭素材を含むことが好ましい。
 このように、負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られる。
 また、前記炭素材の平均厚さは10nm以上5000nm以下であることが好ましい。
 炭素材の平均厚さが10nm以上であれば導電性向上が得られる。また、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極材をリチウムイオン二次電池に用いることにより、ケイ素化合物粒子を十分な量確保できるので、電池容量の低下を抑制することができる。
 また、上記目的を達成するために、本発明は、上記の負極材と炭素系活物質とを含むことを特徴とする混合負極材を提供する。
 このように、負極活物質層を形成する材料として、本発明の負極材(ケイ素系負極材)とともに炭素系活物質を含むことで、負極活物質層の導電性を向上させることができるうえに、充電に伴う膨張応力を緩和することが可能となる。また、ケイ素系負極材を炭素系活物質に混合することで電池容量を増加させることができる。
 また、上記目的を達成するために、本発明は、ケイ素化合物粒子を含有する負極活物質粒子を含む負極材を製造する方法であって、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する工程と、前記ケイ素化合物粒子にLiを挿入し、LiSiO及びLiSiOのうち少なくとも1種以上を含有させる工程と、により負極活物質粒子を作製し、前記負極活物質粒子に、金属化合物を含む金属化合物粒子及び前記金属化合物粒子の凝集体のうち少なくとも一方を混合することで、負極材を製造することを特徴とする負極材の製造方法を提供する。
 このように、Liを挿入したケイ素化合物粒子を含む負極活物質粒子に金属化合物粒子やその凝集体を混合して負極材を製造することで、負極作製時に作製する水系スラリーを安定化することができ、かつ、二次電池の負極材として使用した際に高容量であるとともに良好なサイクル特性及び初期充放電特性を有する負極材を製造することができる。
 本発明の負極材は、負極作製時に作製する水系スラリーを安定化することができ、かつ、二次電池の負極材として用いた際に、高容量で良好なサイクル特性及び初期充放電特性が得られる。また、この負極材を含む混合負極材においても同様の効果が得られる。また、本発明の負極材の製造方法であれば、負極作製時に作製する水系スラリーを安定化することができ、かつ、リチウムイオン二次電池の負極活物質として用いた際に、良好なサイクル特性及び初期充放電特性を有する負極材を製造することができる。
本発明の負極活物質を含む非水電解質二次電池用負極の構成の一例を示す断面図である。 酸化還元法により改質を行った場合にケイ素化合物粒子から測定される29Si-MAS-NMRスペクトルの一例である。 熱ドープ法により改質を行った場合にケイ素化合物粒子から測定される29Si-MAS-NMRスペクトルの一例である。 本発明の負極活物質を含むリチウム二次電池の構成例(ラミネートフィルム型)を表す図である。 実施例1-1の負極材のAl(Kα)/Si(Kα)の確認のための蛍光X線分析において得られた蛍光X線スペクトルである。 図5の蛍光X線スペクトルのX線エネルギーが1.3~1.6keVの範囲の拡大図である 実施例1-1の負極材のジルコニウム(Zr)、イットリウム(Y)のピークの確認のための蛍光X線分析において得られた蛍光X線スペクトルである。 負極活物質の総量に対するケイ素系活物質粒子の割合と二次電池の電池容量の増加率との関係を表すグラフである。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素材を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。このケイ素材を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近いスラリー安定性、初期充放電特性、及びサイクル特性が望まれているが、炭素系活物質を用いたリチウムイオン二次電池と同等のスラリー安定性、初期充放電特性、及びサイクル特性を有する負極材を提案するには至っていなかった。
 そこで、本発明者らは、二次電池に用いた場合、高電池容量となるとともに、スラリー安定性、サイクル特性、及び初回効率が良好となる負極材を得るために鋭意検討を重ね、本発明に至った。
[本発明の負極材]
 本発明の負極材は、負極活物質粒子を含む。そして、この負極活物質粒子は、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有する。このケイ素化合物粒子は、LiSiO及びLiSiOのうち少なくとも1種以上のリチウムシリケートを含有している。このように、本発明の負極材は、ケイ素化合物粒子を含む負極活物質粒子を含むため、電池容量を向上できる。さらに、ケイ素化合物粒子が上記のようなリチウムシリケートを含んでいるため、充電時に発生する不可逆容量を低減することができる。その結果、二次電池の電池容量、サイクル特性、及び初回充放電効率を向上させることができる。
 さらに、本発明の負極材は、金属化合物を含む金属化合物粒子及び金属化合物粒子の凝集体のうち少なくとも一方を含む。このような金属化合物粒子及びその凝集体は、負極製造時に負極材を混合して作製する水系スラリーを安定化させることができる。従来、Liを挿入されたケイ素化合物粒子を含む負極材を負極作製時に水系スラリーに混合すると、Liイオンの溶出が発生してスラリーが不安定化してしまい、電極の作製が困難となったり、このようなスラリーから作製した電極表面に余分なLi化合物が生成するなどしてしまい、サイクル特性や初回充放電効率などの電池特性の悪化、特にはサイクル特性が大きく悪化してしまっていた。一方で、本発明のように金属化合物粒子及び金属化合物粒子の凝集体のうち少なくとも一方を含む負極材では、金属化合物粒子が溶出したLiイオンと反応することでスラリー安定性を高めることができる。その結果、本発明の負極材は、従来の負極材に比べて二次電池の初回効率及びサイクル特性といった電池特性を向上でき、特にはサイクル特性を大きく向上させることができる。
 また、本発明の負極材に含まれる金属化合物粒子は、アルミニウム、ジルコニウム、及びイットリウムのうち少なくとも1種以上を含むものであることが好ましい。これらのような金属の化合物は、Liイオンとの反応性が適度であり、スラリーの安定化効果をより高めることができる。また、本発明においては、金属化合物粒子は、例えば、アルミニウム化合物の粒子、ジルコニウム化合物の粒子、及びイットリウム化合物の粒子を混合したものとしてもよい。あるいは、アルミニウム化合物、ジルコニウム化合物、及びイットリウム化合物のうち2種以上の金属化合物を含む粒子であってもよい。
 金属化合物粒子に含まれる金属化合物は、金属元素と酸素の結合を有することが好ましい。このような金属化合物はLiイオンと適度な反応性を持つため、水系スラリーをより安定化させることができる。金属元素と酸素の結合を有する金属化合物は、酸化物、リン酸塩、及びケイ酸塩のうちのいずれか1種であることがより好ましい。これらのような金属化合物はLiイオンとより適度な反応性を持つため、水系スラリーを特に安定化させることができる。また、金属元素と酸素の結合を有する金属化合物はXPS(X-ray photoelectron spectroscopy:X線光電子分光)でその存在を確認できる。
 また、本発明の負極材は、以下のような蛍光X線スペクトルの規定を満たすように、アルミニウム、ジルコニウム、及びイットリウムの各金属元素のいずれか1種以上を含んでいることが好ましい。蛍光X線分析で得られる蛍光X線スペクトルにおける各金属に由来するピークの強度は、負極材中の金属化合物粒子の存在量(質量比など)に加えて、金属化合物粒子の粒径などによっても変化する。よって、蛍光X線スペクトルの各金属に由来するピークによる規定は、負極材中の各金属化合物粒子の好ましい質量比のみならず、好ましい粒径の情報も含めた規定となる。
 まず、アルミニウムについては、負極材の蛍光X線分析によって得られる蛍光X線スペクトルが、1.49keV付近にアルミニウムのKα線を示すピークを有し、かつ、1.74keV付近にシリコンのKα線を示すピークを有し、シリコンのKα線を示すピークの強度に対するアルミニウムのKα線を示すピークの強度の比Al(Kα)/Si(Kα)が0.002以上0.01以下であることが好ましい。アルミニウムがこのピークの強度の比の範囲を満たすように含まれていれば、負極材中に、アルミニウム化合物を含む金属化合物粒子が適切なサイズで適量含まれていると言える。そのため、金属化合物粒子によるスラリー安定化効果を得ながら、電気抵抗の増大も抑制でき、良好な電池特性が得られる。また、アルミニウム化合物が過多にならず、ケイ素の量も十分に確保していると言えるので、十分な電池容量を得られる負極材となる。また、蛍光X線スペクトルがこのようなピークを示す場合、金属化合物粒子の粒径にもよるが、酸化珪素粒子に対しておよそ0.03質量%以上1質量%以下の範囲の存在比で負極材中にアルミニウムが含まれていると言える。特に、0.03質量%以上0.6質量%以下の場合には良好な電気伝導性が得られるため好ましい。
 また、ジルコニウムについては、本発明の負極材の蛍光X線分析によって得られる蛍光X線スペクトルが、15.74keV付近にジルコニウムのKα線を示すピークを有し、かつ、17.66keV付近にジルコニウムのKβ線を示すピークを有するものであることが好ましい。これらのようなジルコニウムに関するピークが得られるものであれば、ジルコニウム化合物を含む金属化合物粒子が負極材に適切なサイズで適量含まれていると言える。そのため、ジルコニウム化合物を含む金属化合物粒子によるスラリーの安定化効果をより確実に得ることができる。負極材には、ジルコニウムは酸化珪素粒子に対しておよそ10質量ppm以上1000質量ppm以下の範囲の存在比で含まれることが好ましい。特に、30質量ppm以上300質量ppm以下の範囲で含まれることがより好ましい。より良好な電気伝導性を確保しつつスラリーの安定化効果を得られるからである。
 また、イットリウムについては、本発明の負極材の蛍光X線分析によって得られる蛍光X線スペクトルが、14.93keV付近にイットリウムのKα線を示すピークを有し、かつ、16.73keV付近にイットリウムのKβ線を示すピークを有しないものであることが好ましい。負極材から測定された蛍光X線スペクトルが、イットリウムのKα線を示すピークを有し、かつ、イットリウムのKβ線を示すピークを有しない場合、イットリウム化合物を含む金属化合物粒子が適切なサイズで適量含まれていると言える。そのため、スラリーの安定化効果をより確実に得ることができるうえに、電池の充電時のLi析出の発生を抑制することができる。負極材には、イットリウムは酸化珪素粒子に対しておよそ1質量ppm以上30質量ppm以下の範囲の存在比で含まれることが好ましい。
 上記のような蛍光X線分析は以下のような条件とすることができる。
 装置:エネルギー分散型蛍光X線分析S2 Ranger(Bruker社製)
(1) 強度の比Al(Kα)/Si(Kα)の確認条件
・加速電圧:20kV
・ターゲット:Pd
・雰囲気:He
・容器:液体カップ
・フィルター:なし
・検出器:シリコンドリフト検出器
(2) ジルコニウム(Zr)、イットリウム(Y)のピークの確認条件
・加速電圧:40kV
・ターゲット:Pd
・雰囲気:He
・容器:液体カップ
・フィルター:Al 500μm
・検出器:シリコンドリフト検出器
 またこのとき、金属化合物粒子の平均一次粒子径が0.1μm以上4μm以下であり、金属化合物粒子の凝集体の平均二次粒子径が0.1μm以上20μm以下であることが好ましい。金属化合物粒子の平均一次粒子径が4μm以下であれば、金属化合物粒子の比表面積が大きいため、水系スラリー中において溶出したLiイオンと金属化合物粒子との反応面積が大きくなり、水系スラリーをより安定化することができる。また、平均一次粒子径が0.1μm以上であれば、金属化合物粒子中に微量に含む不純物の溶出を抑制することができるため、水系スラリーをより安定化することができる。また、負極材中で負極活物質粒子の存在割合が低い部分ではLi析出が起きやすいが、金属化合物粒子の凝集体の平均二次粒子径が20μm以下であれば、負極材中で負極活物質粒子の存在割合が低い部分ができにくいため、特に充電時のLi析出の発生を抑制することができる。また、平均二次粒子径が0.1μm以上であれば、金属化合物粒子中に微量に含む不純物の溶出を抑制することができるため、水系スラリーをより安定化することができる。金属化合物粒子及びその凝集体の粒子径は、SEM-EDX(走査型電子顕微鏡-エネルギー分散型X線分光法)を用いた画像解析により算出できる。なお、凝集体がない場合は、二次粒子径は一次粒子径と同じ値とする。
 また、負極活物質粒子を構成するケイ素化合物粒子は、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることが好ましい。このピークは、結晶性が高い時(半値幅が狭い時)2θ=28.4±0.5°付近に現れる。ケイ素化合物粒子におけるケイ素化合物のケイ素結晶性は低いほどよく、特に、Si結晶の存在量が少なければ、電池特性を向上でき、さらに、安定的なLi化合物が生成できる。
 また、本発明では、ケイ素化合物粒子において、29Si-MAS-NMRスペクトルから得られる、ケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として-96~-150ppmで与えられるSiO領域のピーク強度値Bが、A>Bという関係を満たすことが好ましい。ケイ素化合物粒子において、SiO成分を基準とした場合にケイ素成分又はLiSiOの量が比較的多いものであれば、Liの挿入による電池特性の向上効果を十分に得られる。なお、29Si-MAS-NMRの測定は以下の条件で行うことができる。
29Si MAS NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR-MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
 また、本発明の負極材において、負極活物質粒子は、表層部に炭素材を含むことが好ましい。負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られるため、このような負極材を二次電池に用いた際に、電池特性を向上させることができる。
 また、負極活物質粒子の表層部の炭素材の平均厚さは、10nm以上5000nm以下であることが好ましい。炭素材の平均厚さが10nm以上であれば導電性向上が得られ、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極材をリチウムイオン二次電池に用いた際に、電池容量の低下を抑制することができる。
 この炭素材の平均厚さは、例えば、以下の手順により算出できる。先ず、TEM(透過型電子顕微鏡)により任意の倍率で負極活物質粒子を観察する。この倍率は、厚さを測定できるように、目視で炭素材の厚さを確認できる倍率が好ましい。続いて、任意の15点において、炭素材の厚さを測定する。この場合、できるだけ特定の場所に集中せず、広くランダムに測定位置を設定することが好ましい。最後に、上記の15点の炭素材の厚さの平均値を算出する。
 炭素材の被覆率は特に限定されないが、できるだけ高い方が望ましい。被覆率が30%以上であれば、電気伝導性がより向上するため好ましい。炭素材の被覆手法は特に限定されないが、糖炭化法、炭化水素ガスの熱分解法が好ましい。なぜならば、被覆率を向上させることができるからである。
 また、負極活物質粒子のメジアン径(D50:累積体積が50%となる時の粒子径)が1.0μm以上15μm以下であることが好ましい。負極活物質粒子のメジアン径が上記の範囲であれば、充放電時においてリチウムイオンの吸蔵放出がされやすくなるとともに、負極活物質粒子が割れにくくなるからである。メジアン径が1.0μm以上であれば、負極活物質粒子の質量当たりの表面積を小さくでき、電池不可逆容量の増加を抑制することができる。一方で、メジアン径を15μm以下とすることで、粒子が割れ難くなるため新表面が出難くなる。
<非水電解質二次電池用負極>
 次に、本発明の負極材を含む非水電解質二次電池用負極(以下、「負極」とも呼称する)について説明する。図1は非水電解質二次電池用負極の構成の一例を示す断面図である。
[負極の構成]
 図1に示したように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていても良い。さらに、本発明の負極活物質が用いられたものであれば、負極集電体11はなくてもよい。
[負極集電体]
 負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)があげられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
 負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、それぞれ100質量ppm以下であることが好ましい。より高い変形抑制効果が得られるからである。このような変形抑制効果によりサイクル特性をより向上できる。
 また、負極集電体11の表面は粗化されていてもよいし、粗化されていなくてもよい。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は、化学エッチング処理された金属箔などである。粗化されていない負極集電体は、例えば、圧延金属箔などである。
[負極活物質層]
 負極活物質層12は、本発明の負極材を含んでいる。該負極材は、リチウムイオンを吸蔵、放出可能な負極活物質粒子、及び金属化合物を含む金属化合物粒子及び前記金属化合物粒子の凝集体のうち少なくとも一方を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。
 また、負極活物質層12は、本発明の負極材と炭素系活物質とを含む混合負極材を含んでいても良い。炭素系活物質を含むことにより、負極活物質層の電気抵抗が低下するとともに、充電に伴う膨張応力を緩和することが可能となる。炭素系活物質としては、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、カーボンブラック類などを使用できる。
 また、混合材は、負極活物質粒子(ケイ素系負極活物質)と炭素系活物質の質量の合計に対する、ケイ素系負極活物質の質量の割合が6質量%以上であることが好ましい。ケイ素系負極活物質と炭素系活物質の質量の合計に対する、ケイ素系負極活物質の質量の割合が6質量%以上であれば、電池容量を確実に向上させることが可能となる。
 また、上記のように本発明の負極活物質は、ケイ素化合物粒子を含み、ケイ素化合物粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含有する酸化ケイ素材であるが、その組成はxが1に近い方が好ましい。なぜならば、高いサイクル特性が得られるからである。なお、本発明におけるケイ素化合物の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。
 また、本発明の負極活物質において、ケイ素化合物粒子は、LiSiO及びLiSiOのうち少なくとも1種以上を含有している。このようなものは、ケイ素化合物中の、電池の充放電時のリチウムの挿入、脱離時に不安定化するSiO成分部を予め別のリチウムシリケートに改質させたものであるので、充電時に発生する不可逆容量を低減することができる。
 また、ケイ素化合物粒子のバルク内部にLiSiO、LiSiOは少なくとも1種以上存在することで電池特性が向上するが、上記2種類のLi化合物を共存させる場合に電池特性がより向上する。なお、これらのリチウムシリケートは、NMR(Nuclear Magnetic Resonance:核磁気共鳴)又はXPS(X-ray photoelectron spectroscopy:X線光電子分光)で定量可能である。XPSとNMRの測定は、例えば、以下の条件により行うことができる。
XPS
・装置: X線光電子分光装置、
・X線源: 単色化Al Kα線、
・X線スポット径: 100μm、
・Arイオン銃スパッタ条件: 0.5kV/2mm×2mm。
29Si MAS NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR-MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
 また、負極活物質層に含まれる負極結着剤としては、例えば、高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、カルボキシメチルセルロースなどである。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンなどである。
 負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のいずれか1種以上を用いることができる。
 負極活物質層は、例えば、塗布法で形成される。塗布法とは、負極活物質粒子と上記の結着剤など、また、必要に応じて導電助剤、炭素系活物質粒子を混合した負極材を、有機溶剤や水などに分散させ、負極集電体などに塗布する方法である。
[負極材及び負極の製造方法]
 負極材及び負極は、例えば、以下の手順により製造できる。まず、負極に使用する負極材の製造方法を説明する。
 最初に、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する。次に、ケイ素化合物粒子にLiを挿入し、LiSiO、LiSiOのうち少なくとも1種以上を含有させる。このようにして、負極活物質粒子を作製する。次に、作製した負極活物質粒子に、金属化合物を含む金属化合物粒子及び金属化合物粒子の凝集体のうち少なくとも一方を混合することで、負極材を製造する。
 より具体的には以下のように負極活物質を製造できる。先ず、酸化珪素ガスを発生する原料を不活性ガスの存在下、減圧下で900℃~1600℃の温度範囲で加熱し、酸化珪素ガスを発生させる。金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属珪素粉末/二酸化珪素粉末<1.3の範囲であることが望ましい。
 発生した酸化珪素ガスは吸着板上で固体化され堆積される。次に、反応炉内温度を100℃以下に下げた状態で酸化珪素の堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕し、粉末化を行う。このようにして得られた粉末を分級しても良い。本発明では、粉砕工程及び分級工程時にケイ素化合物粒子の粒度分布を調整することができる。以上のようにして、ケイ素化合物粒子を作製することができる。なお、ケイ素化合物粒子中のSi結晶子は、気化温度の変更、又は、生成後の熱処理で制御できる。
 ここで、ケイ素化合物粒子の表層に炭素材の層を生成しても良い。炭素材の層を生成する方法としては、熱分解CVD法が望ましい。熱分解CVD法で炭素材の層を生成する方法について説明する。
 先ず、ケイ素化合物粒子を炉内にセットする。次に、炉内に炭化水素ガスを導入し、炉内温度を昇温させる。分解温度は特に限定しないが、1200℃以下が望ましく、より望ましいのは950℃以下である。分解温度を1200℃以下にすることで、活物質粒子の意図しない不均化を抑制することができる。所定の温度まで炉内温度を昇温させた後に、ケイ素化合物粒子の表面に炭素層を生成する。また、炭素材の原料となる炭化水素ガスは、特に限定しないが、C組成においてn≦3であることが望ましい。n≦3であれは、製造コストを低くでき、また、分解生成物の物性を良好にすることができる。
 次に、上記のように作製したケイ素活物質粒子に、Liを挿入し、LiSiO、LiSiOのうち少なくとも1種以上を含有させる。Liの挿入は、熱ドープ法により行うことが好ましい。
 熱ドープ法による改質では、例えば、ケイ素活物質粒子をLiH粉やLi粉と混合し、非酸化雰囲気下で加熱をすることで改質可能である。非酸化雰囲気としては、例えば、Ar雰囲気などが使用できる。より具体的には、まず、Ar雰囲気下でLiH粉又はLi粉と酸化珪素粉末を十分に混ぜ、封止を行い、封止した容器ごと撹拌することで均一化する。その後、700℃~750℃の範囲で加熱し改質を行う。またこの場合、活性なLiの一部をケイ素化合物から脱離して、スラリーをより安定させるために、加熱後の粉末を十分に冷却し、その後アルコールやアルカリ水、弱酸や純水で洗浄してもよい。
 また、酸化還元法によって、ケイ素活物質粒子にLiを挿入しても良い。酸化還元法による改質では、例えば、まず、エーテル系溶媒にリチウムを溶解した溶液Aにケイ素活物質粒子を浸漬することで、リチウムを挿入できる。この溶液Aにさらに多環芳香族化合物または直鎖ポリフェニレン化合物を含ませても良い。得られた酸化珪素を400~800℃で熱処理することによりLi化合物を安定化させることができる。また、リチウムの挿入後、多環芳香族化合物やその誘導体を含む溶液Bにケイ素活物質粒子を浸漬することで、ケイ素活物質粒子から活性なリチウムを脱離させても良い。この溶液Bの溶媒は例えば、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、アルコール系溶媒、アミン系溶媒、またはこれらの混合溶媒を使用できる。さらに、溶液Bに浸漬したのち、アルコール系溶媒、カルボン酸系溶媒、水、またはこれらの混合溶媒を含む溶液Cにケイ素活物質を浸漬することで、ケイ素活物質粒子から活性なリチウムをより多く脱離しても良い。このようにして、リチウムの挿入後、活性なリチウムを脱離すれば、より耐水性の高い負極活物質となる。
 溶液Aに用いるエーテル系溶媒としては、ジエチルエーテル、tertブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、またはこれらの混合溶媒等を用いることができる。この中で特にテトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテルを用いることが好ましい。これらの溶媒は、脱水されていることが好ましく、脱酸素されていることが好ましい。
 また、溶液Aに含まれている多環芳香族化合物としては、ナフタレン、アントラセン、フェナントレン、ペンタセン、ピレン、トリフェニレン、コロネン、クリセン、およびこれらの誘導体のうち1種類以上を用いることができ、直鎖ポリフェニレン化合物としては、ビフェニル、ターフェニル、およびこれらの誘導体のうち1種類以上を用いることができる。
 溶液Bに含まれる多環芳香族化合物としては、ナフタレン、アントラセン、フェナントレン、ペンタセン、ピレン、トリフェニレン、コロネン、クリセン、およびこれらの誘導体のうち1種類以上を用いることができる。
 また溶液Bのエーテル系溶媒としては、ジエチルエーテル、tertブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、またはこれらの混合溶媒等を用いることができる。
 ケトン系溶媒としては、アセトン、アセトフェニン等を用いることができる。
 エステル系溶媒としては、ギ酸メチル、酢酸メチル、酢酸エチル、酢酸プロピル、および酢酸イソプロピル等を用いることができる。
 アルコール系溶媒としては、メタノール、エタノール、プロパノール、およびイソプロピルアルコノール等を用いることができる。
 アミン系溶媒としては、メチルアミン、エチルアミン、およびエチレンジアミン等を用いることができる。
 溶液Cを用いる場合、例えば、ケトン系溶媒とケイ素化合物を混合して撹拌後、アルコール系溶媒を加えるなど、複数段階にわたって溶媒を混合しても良い。
 溶液Cのアルコール系溶媒としては、メタノール、エタノール、プロパノール、およびイソプロピルアルコノール等を用いることができる。
 カルボン酸系溶媒としては、ギ酸、酢酸、シュウ酸等を用いることができる。
 なお、熱ドープ法によって改質を行った場合、ケイ素化合物粒子から得られる29Si-MAS-NMRスペクトルは酸化還元法を用いた場合とは異なる。図2に酸化還元法により改質を行った場合にケイ素化合物粒子から測定される29Si-MAS-NMRスペクトルの一例を示す。図2において、-75ppm近辺に与えられるピークがLiSiOに由来するピークであり、-80~-100ppmに与えられるピークがSiに由来するピークである。なお、-80~-100ppmにかけて、LiSiO、LiSiO以外のLiシリケートのピークを有する場合もある。
 また、図3に熱ドープ法により改質を行った場合にケイ素化合物粒子から測定される29Si-MAS-NMRスペクトルの一例を示す。図3において、-75ppm近辺に与えられるピークがLiSiOに由来するピークであり、-80~-100ppmに与えられるピークがSiに由来するピークである。なお、-80~-100ppmにかけて、LiSiO、LiSiO以外のLiシリケートのピークを有する場合もある。なお、XPSスペクトルから、LiSiOのピークを確認できる。
 続いて、負極活物質粒子に、金属化合物粒子及びその凝集体のうち少なくとも一方を混合する。混合方法は、攪拌混合、転動混合、せん断混合などの乾式混合を用いてもよいし、あるいは、溶液中に分散させた金属化合物粒子を負極活物質粒子にスプレー噴霧する湿式混合を用いてもよい。
 以上のようにして作製した負極材に、必要に応じて、負極結着剤、導電助剤などの他の材料も混合した後に、有機溶剤又は水などを加えてスラリーとする。次に負極集電体の表面に、上記のスラリーを塗布し、乾燥させて、負極活物質層を形成する。この時、必要に応じて加熱プレスなどを行ってもよい。以上のようにして、負極を作製できる。
<リチウムイオン二次電池>
 次に、本発明の負極材を含むリチウムイオン二次電池について説明する。ここでは具体例として、ラミネートフィルム型のリチウムイオン二次電池を例に挙げる。
[ラミネートフィルム型のリチウムイオン二次電池の構成]
 図4に示すラミネートフィルム型のリチウムイオン二次電池20は、主にシート状の外装部材25の内部に巻回電極体21が収納されたものである。この巻回体は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード22が取り付けられ、負極に負極リード23が取り付けられている。電極体の最外周部は保護テープにより保護されている。
 正負極リードは、例えば、外装部材25の内部から外部に向かって一方向で導出されている。正極リード22は、例えば、アルミニウムなどの導電性材料により形成され、負極リード23は、例えば、ニッケル、銅などの導電性材料により形成される。
 外装部材25は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体21と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。
 外装部材25と正負極リードとの間には、外気侵入防止のため密着フィルム24が挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。
 [正極]
 正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
 正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。
 正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいても良い。この場合、結着剤、導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。
 正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物があげられる。これら記述される正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LiM1OあるいはLiM2POで表される。式中、M1、M2は少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。
 リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)などが挙げられる。リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnPO(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量が得られるとともに、優れたサイクル特性も得られるからである。
[負極]
 負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体11の両面に負極活物質層12を有している。この負極は、正極活物質剤から得られる電気容量(電池として充電容量)に対して、負極充電容量が大きくなることが好ましい。負極上でのリチウム金属の析出を抑制することができるためである。
 正極活物質層は、正極集電体の両面の一部に設けられており、負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。これは、安定した電池設計を行うためである。
 非対向領域、すなわち、上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため負極活物質層の状態が形成直後のまま維持される。これによって負極活物質の組成など、充放電の有無に依存せずに再現性良く組成などを正確に調べることができる。
[セパレータ]
 セパレータは正極、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[電解液]
 活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
 溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2-ジメトキシエタン又はテトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。
 合金系負極を用いる場合、特に溶媒として、ハロゲン化鎖状炭酸エステル、又は、ハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。これにより、充放電時、特に充電時において、負極活物質表面に安定な被膜が形成される。ここで、ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。また、ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として有する(すなわち、少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。
 ハロゲンの種類は特に限定されないが、フッ素が好ましい。これは、他のハロゲンよりも良質な被膜を形成するからである。また、ハロゲン数は多いほど望ましい。これは、得られる被膜がより安定的であり、電解液の分解反応が低減されるからである。
 ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどが挙げられる。
 溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。
 また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。
 さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。
 電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。
 電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。
[ラミネートフィルム型二次電池の製造方法]
 本発明では、上記の本発明の負極材の製造方法によって製造した負極材を用いて負極を作製でき、該作製した負極を用いてリチウムイオン二次電池を製造することができる。
 最初に上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて結着剤、導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また加熱又は圧縮を複数回繰り返しても良い。
 次に、上記したリチウムイオン二次電池用負極10の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。
 正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていても良い(図1を参照)。
 続いて、電解液を調整する。続いて、超音波溶接などにより、正極集電体に正極リード22を取り付けると共に、負極集電体に負極リード23を取り付ける。続いて、正極と負極とをセパレータを介して積層、又は巻回させて巻回電極体21を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。続いて、折りたたんだフィルム状の外装部材25の間に巻回電極体を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ解放状態にて、巻回電極体を封入する。正極リード、及び負極リードと外装部材の間に密着フィルムを挿入する。解放部から上記調整した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。以上のようにして、ラミネートフィルム型のリチウムイオン二次電池20を製造することができる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1-1)
 以下の手順により、図4に示したラミネートフィルム型のリチウムイオン二次電池20を作製した。
 最初に正極を作製した。正極活物質はリチウムニッケルコバルト複合酸化物であるLiNi0.7Co0.25Al0.05Oを95質量%と、正極導電助剤2.5質量%と、正極結着剤(ポリフッ化ビニリデン:PVDF)2.5質量%とを混合し、正極合剤とした。続いて正極合剤を有機溶剤(N-メチル-2-ピロリドン:NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時正極集電体は厚み15μmのものを用いた。最後にロールプレスで圧縮成型を行った。
 次に、負極を作製した。まず、負極活物質を以下のようにして作製した。金属ケイ素と二酸化ケイ素を混合した原料を反応炉に導入し、10Paの真空度の雰囲気させたものを吸着板上に堆積させ、十分に冷却した後、堆積物を取出しボールミルで粉砕した。このようにして得たケイ素化合物粒子のSiOのxの値は0.5であった。続いて、ケイ素化合物粒子の粒径を分級により調整した。その後、熱分解CVDを行うことで、ケイ素化合物粒子の表面に炭素材を被覆した。
 続いて、熱ドープ法によりケイ素化合物粒子にリチウムを挿入し改質した。まず、Ar雰囲気下でLiH粉とケイ素化合物粒子を十分に混ぜ、封止を行い、封止した容器ごと撹拌して均一化した。その後、700℃~750℃の範囲で加熱し改質を行った。また、一部の活性なLiをケイ素化合物から脱離するために、加熱後のケイ素化合物粒子を十分に冷却した後、アルコールで洗浄した。以上の処理により、負極活物質粒子を作製した。
 次に、アルミナ粒子、ジルコニア粒子、及びイットリア粒子を負極活物質粒子に混合し、負極材を作製した。この負極材におけるアルミニウムの質量割合は0.2質量%、ジルコニウムは200質量ppm、イットリウムは10ppmとした。また、これらの粒子を含んだ金属化合物粒子の平均一次粒子径は0.7μm、凝集体の平均二次粒子径は2μmであった。
 ここで、負極材を蛍光X線分析した。条件は下記の通りとした。
 装置:エネルギー分散型蛍光X線分析S2 Ranger(Bruker社製)
(1) 強度の比Al(Kα)/Si(Kα)の確認条件
・加速電圧:20kV
・ターゲット:Pd
・雰囲気:He
・容器:液体カップ
・フィルター:なし
・検出器:シリコンドリフト検出器
(2) ジルコニウム(Zr)、イットリウム(Y)のピークの確認条件
・加速電圧:40kV
・ターゲット:Pd
・雰囲気:He
・容器:液体カップ
・フィルター:Al 500μm
・検出器:シリコンドリフト検出器
 その結果、強度の比Al(Kα)/Si(Kα)の確認においては、図5、6に示すようなスペクトルが得られた。なお、図5、6に示すスペクトルの強度はSi-Kα線(1.74keV付近)を1としたときの相対値で示した。図5、6の縦軸は対数スケールである。また、図6は図5のX線エネルギーが1.3~1.6keVの範囲の拡大図である。図5から分かるように蛍光X線スペクトルが、1.49keV付近にアルミニウムのKα線を示すピークを有し、かつ、1.74keV付近にシリコンのKα線を示すピークを有している。さらに、図5及び図6から分かるように、シリコンのKα線を示すピークの強度に対するアルミニウムのKα線を示すピークの強度の比Al(Kα)/Si(Kα)が0.007であった。
 また、ジルコニウム(Zr)、イットリウム(Y)のピークの確認結果を図7に示す。なお、図7に示すスペクトルの強度はSi-Kα線(1.74keV付近)を1としたときの相対値である。図7の縦軸も対数スケールである。図7に示すように、X線エネルギーが15.74keV付近にジルコニウムのKα線を示すピークを有し、かつ、17.66keV付近にジルコニウムのKβ線を示すピークを有していた。また、X線エネルギーが14.93keV付近にイットリウムのKα線を示すピークを有し、かつ、16.73keV付近にイットリウムのKβ線を示すピークを有していなかった。
 次に、この負極材と炭素系活物質を、ケイ素系活物質粒子と炭素系活物質粒子の質量比が1:9となるように配合し、混合負極材を作製した。ここで、炭素系活物質としては、ピッチ層で被覆した天然黒鉛及び人造黒鉛を5:5の質量比で混合したものを使用した。また、炭素系活物質のメジアン径は20μmであった。
 次に、上記混合負極材、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メジアン径が約50nmの炭素微粒子)、スチレンブタジエンゴム(スチレンブタジエンコポリマー、以下、SBRと称する)、カルボキシメチルセルロース(以下、CMCと称する)92.5:1:1:2.5:3の乾燥質量比で混合した後、純水で希釈し負極合剤スラリーとした。尚、上記のSBR、CMCは負極バインダー(負極結着剤)である。
 また、負極集電体としては、厚さ15μmの電解銅箔を用いた。この電解銅箔には、炭素及び硫黄がそれぞれ70質量ppmの濃度で含まれていた。最後に、負極合剤スラリーを負極集電体に塗布し真空雰囲気中で100℃×1時間の乾燥を行った。乾燥後の、負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は5mg/cmであった。
 次に、溶媒(4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、エチレンカーボネート(EC)およびジメチルカーボネート(DMC))を混合した後、電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液を調製した。この場合には、溶媒の組成を堆積比でFEC:EC:DMC=10:20:70とし、電解質塩の含有量を溶媒に対して1.2mol/kgとした。
 次に、以下のようにして二次電池を組み立てた。最初に、正極集電体の一端にアルミリードを超音波溶接し、負極集電体の一端にはニッケルリードを溶接した。続いて、正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に倦回させ倦回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムに挟まれた積層フィルム(厚さ12μm)を用いた。続いて、外装部材間に電極体を挟んだ後、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔及び、ポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調整した電解液を注入し、真空雰囲気下で含浸した後、熱融着し、封止した。
 以上のようにして作製した二次電池のサイクル特性及び初回充放電特性を評価した。
 サイクル特性については、以下のようにして調べた。最初に、電池安定化のため25℃の雰囲気下、0.2Cで2サイクル充放電を行い、2サイクル目の放電容量を測定した。続いて、総サイクル数が499サイクルとなるまで充放電を行い、その都度放電容量を測定した。最後に、0.2C充放電で得られた500サイクル目の放電容量を2サイクル目の放電容量で割り、容量維持率(以下、単に維持率ともいう)を算出した。通常サイクル、すなわち3サイクル目から499サイクル目までは、充電0.7C、放電0.5Cで充放電を行った。
 初回充放電特性を調べる場合には、初回効率(以下では初期効率と呼ぶ場合もある)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。雰囲気温度は、サイクル特性を調べた場合と同様にした。
(実施例1-2~実施例1-3、比較例1-1、1-2)
 ケイ素化合物のバルク内酸素量を調整したことを除き、実施例1-1と同様に、二次電池の製造を行った。この場合、ケイ素化合物の原料中の金属ケイ素と二酸化ケイ素との比率や加熱温度を変化させることで、酸素量を調整した。実施例1-1~1-3、比較例1-1、1-2における、SiOで表されるケイ素化合物のxの値を表1中に示した。
 このとき、実施例1-1~1-3及び比較例1-1、1-2のケイ素系活物質粒子は以下のような性質を有していた。負極活物質粒子中のケイ素化合物粒子の内部には、LiSiO及びLiSiOが含まれていた。また、ケイ素化合物は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.755°であり、Si(111)結晶面に起因する結晶子サイズは4.86nmであった。また、表面に被覆された炭素材の平均厚さは100nmであった。また、負極活物質粒子のメジアン径は6μmであった。
 また、上記の全ての実施例及び比較例において、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域のピークが発現した。また、上記全ての実施例、比較例で、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、-96~-150ppmで与えられるSiO領域のピーク強度値Bとの関係がA>Bであった。
 実施例1-1~1-3、比較例1-1、1-2の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、SiOxで表わされるケイ素化合物において、xの値が、0.5≦x≦1.6の範囲外の場合、電池特性が悪化した。例えば、比較例1-1に示すように、酸素が十分にない場合(x=0.3)、初回効率が向上するが、容量維持率が著しく悪化する。一方、比較例1-2に示すように、酸素量が多い場合(x=1.8)は導電性の低下が生じ実質的にケイ素酸化物の容量が発現しないため、評価を停止した。
(実施例2-1、実施例2-2)
 ケイ素化合物粒子の内部に含ませるリチウムシリケートの種類を表2のように変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(比較例2-1)
 ケイ素化合物粒子にリチウムの挿入を行わなかったこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
 実施例2-1、実施例2-2、比較例2-1の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 ケイ素化合物がLiSiO、LiSiOのような安定したリチウムシリケートを含むことで、容量維持率、初期効率が向上した。特に、LiSiOとLiSiOの両方のリチウムシリケートを含む場合に、容量維持率、初期効率がより向上した。一方で、改質を行わず、ケイ素化合物にリチウムを含ませなかった比較例2-1では容量維持率、初期効率が低下した。
(実施例3-1~実施例3-9)
 負極材中の金属化合物粒子を表3のような金属化合物粒子に置き換えたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。負極材中の金属化合物粒子の質量割合、平均一次粒子径、平均二次粒子径は実施例1-2と同じとし、金属化合物粒子中の金属化合物の種類、各粒子の混合割合のみ変更した。
 また、実施例3-1~3-9及び後述の比較例3-1では、スラリーの安定性及び二次電池の安全性も評価した。
 スラリーの安定性はスラリーからガスが発生するまでの時間で評価した。この時間が長いほどスラリーがより安定していると言える。具体的には、作製した負極合剤スラリーの一部を二次電池の作製用のものとは別に30g取り出し、20℃で保存し、負極合剤スラリー作製後からガス発生迄の時間を測定した。
 二次電池の安全性は釘刺し試験により評価した。具体的には、4.2Vまで充電した二次電池を各実施例において10個用意し、直径2.7mmの釘を5mm/sで貫通させた時に、釘刺し試験における安全性の合格基準を満たした二次電池の個数を測った。
 また、これらの測定は実施例1-2でも行った。
(比較例3-1)
 負極材に金属化合物粒子を添加しなかったこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性、初回効率、スラリーの安定性、及び二次電池の安全性を評価した。
 実施例3-1~実施例3-9、比較例3-1の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から分かるように、金属化合物粒子を負極材に添加した全ての実施例では、比較例3-1に比べて、スラリーの安定性が向上し、初期効率、容量維持率がとも向上した。特に容量維持率が大幅に向上した。また、釘刺し試験に合格した二次電池の個数も増加し、二次電池の安全性も向上した。
 また、実施例3-1~実施例3-6から分かるように、アルミナ粒子、ジルコニア粒子、イットリア粒子の少なくとも1種を含めば、スラリーの安定性、初期効率、及び容量維持率の向上効果が十分に得られることが分かった。また、実施例3-7、3-8、3-9に示すように、金属化合物としては酸化物のみに限らず、リン酸塩やケイ酸塩を用いても、スラリーの安定性、初期効率、及び容量維持率の向上効果が十分に得られることが分かった。
 一方、金属化合物粒子を負極材に添加していない比較例3-1では、スラリーの安定性が低下し、初期効率、容量維持率がともに悪化した。特に容量維持率が大幅に悪化した。また、スラリーの安定性が低下に伴い、釘刺し試験に合格した二次電池の個数も少なかった。
(実施例4-1~実施例4-10)
 金属化合物粒子の平均一次粒子径及びその凝集体の平均二次粒子径を表4のように変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性、初回効率、スラリーの安定性、及び二次電池の安全性を評価した。なお、実施例4-10では、金属粒子の凝集がほぼ起こらず、平均一次粒子径と平均二次粒子径が同じ値となった。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、金属化合物粒子の平均一次粒子径が0.1μm以上4μm以下である実施例4-3、4-5、4-6、4-7、4-10、1-2では、平均一次粒子径が4μmを超える実施例4-1、4-2、4-4及び平均一次粒子径が0.1μmを下回る実施例4-8、4-9よりも、ガス発生までの時間がより長くなり、スラリー安定性がより向上した。これは、平均一次粒子径が0.1μm以上4μm以下であることで、金属化合物粒子のBET比表面積がより適切な値となり、スラリーに溶出したリチウムとの反応がより十分に起きたためであると考えられる。また、金属化合物粒子の凝集体の平均二次粒子径が0.1μm以上20μm以下である、実施例4-4、4-5、4-6、4-8、1-2では、釘刺し試験に合格した二次電池の個数が、上記二次粒子径の範囲を満たさない実施例4-1~4-3、4-9に比べて増加した。金属化合物粒子の凝集体の平均二次粒子径が0.1μm以上20μm以下であると、負極材中で負極活物質粒子の存在割合が低い部分ができにくく、特に充電時のLi析出の発生を抑制することができるためである。
(実施例5-1~実施例5-4)
 ピークの強度の比Al(Kα)/Si(Kα)を表5のように変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性、初回効率、スラリーの安定性を評価した。Al(Kα)/Si(Kα)はアルミナ粒子の混合量を変更することで調整した。
Figure JPOXMLDOC01-appb-T000005
 表5から分かるように、ピークの強度の比Al(Kα)/Si(Kα)が0.002以上0.01以下である実施例5-1~5-3、1-2で、この比が0.002未満の実施例5-1に比べて、スラリー安定性がより向上し、この比が0.01より大きい実施例5-4に比べて抵抗増大を抑制できたため、容量維持率が向上した。
(実施例6-1)
 ジルコニウムのKα線を示すピーク及びKβ線を示すピークが両方とも現れない負極材を用いたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性、初回効率、スラリーの安定性を評価した。このような負極材は金属化合物粒子におけるジルコニア粒子の割合を減らすことで得た。
Figure JPOXMLDOC01-appb-T000006
 表6のように、ジルコニウムのKα線を示すピーク及びKβ線を示すピークが現れる場合の方が、スラリーの安定性、初期効率、及び容量維持率の向上効果がより十分に得られることが分かった。
(実施例7-1)
 イットリウムのKα線を示すピーク及びKβ線を示すピークが両方とも現れない負極材を用いたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性、初回効率、スラリーの安定性、電池の安全性を評価した。このような負極材は金属化合物粒子におけるイットリア粒子の割合を減らすことで得た。
(実施例7-2)
 イットリウムのKα線を示すピーク及びKβ線を示すピークが両方とも現れる負極材を用いたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性、初回効率、スラリーの安定性、電池の安全性を評価した。このような負極材は金属化合物粒子におけるイットリア粒子の割合を増やすことで得た。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、イットリウムのKα線を示すピークは現れるが、Kβ線を示すピークは現れない実施例1-2が、イットリウムの量が適量であるため実施例7-1、7-2に比べてより良い特性を示した。
(実施例8-1~8-6)
 ケイ素化合物粒子の結晶性を表8のように変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性、初回効率、水系負極スラリーの安定性、二次電池の安全性を評価した。なお、ケイ素化合物粒子中の結晶性は、原料の気化温度の変更、又は、ケイ素化合物粒子の生成後の熱処理で制御できる。
Figure JPOXMLDOC01-appb-T000008
 特に半値幅が1.2°以上で、尚且つSi(111)面に起因する結晶子サイズが7.5nm以下の低結晶性材料で特に高い容量維持率が得られた。
(実施例9-1)
 ケイ素化合物をSi及びLiシリケート領域の最大ピーク強度値Aと上記SiO領域に由来するピーク強度値Bとの関係がA<Bのものとしたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性、初回効率、水系負極スラリーの安定性、二次電池の安全性を評価した。この場合、改質時にリチウムの挿入量を減らすことで、LiSiOの量を減らし、LiSiOに由来するピークの強度Aを小さくした。
Figure JPOXMLDOC01-appb-T000009
 表9から分かるように、ピーク強度の関係がA>Bである場合の方が、電池特性が向上した。
(実施例10-1~10-6)
 ケイ素化合物粒子のメジアン径を表10のように変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性、初回効率、水系負極スラリーの安定性、二次電池の安全性を評価した。
Figure JPOXMLDOC01-appb-T000010
 負極活物質粒子のメジアン径が1.0μm以上であれば、維持率及び初期効率がより向上した。これは、負極活物質粒子の質量当たりの表面積が大すぎず、副反応が起きる面積を小さくできたためと考えられる。さらに、負極活物質粒子のメジアン径が15μm以下であれば、充電時に粒子が割れ難く、充放電時に新生面によるSEI(固体電解質界面)が生成し難いため、可逆Liの損失を抑制することができる。また、メジアン径が15μm以下であれば、充電時のケイ素化合物粒子の膨張量が大きくならないため、膨張による負極活物質層の物理的、電気的破壊を防止できる。
(実施例11-1~11-4)
 ケイ素系活物質粒子の表面に被覆された炭素材の平均厚さを表11のように変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性、初回効率、水系負極スラリーの安定性、二次電池の安全性を評価した。炭素材の平均厚さは、CVD条件を変更することで調整できる。
(実施例11-5)
 ケイ素系活物質粒子の表面に炭素材を被覆しなかったこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性、初回効率、水系負極スラリー、二次電池の安全性の安定性を評価した。
Figure JPOXMLDOC01-appb-T000011
 表11からわかるように、炭素材を被覆することで容量維持率、初期効率が上昇した。また、特に、炭素材層の膜厚が10nm以上で導電性がより向上するため、容量維持率及び初期効率をより向上させることができる。また、炭素層の膜厚が5000nm以下であれば、電池設計上、ケイ素化合物粒子の量を十分に確保できるため、電池容量が低下することが無い。
(実施例12-1)
 ケイ素化合物粒子の改質方法を酸化還元法に変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性、初回効率、水系負極スラリーの安定性、二次電池の安全性を評価した。
 酸化還元法による改質は以下のように行った。まず、炭素材被覆後のケイ素化合物粒子(負極活物質粒子)を、リチウム片と、芳香族化合物であるナフタレンとをテトラヒドロフラン(以下、THFと呼称する)に溶解させた溶液(溶液A)に浸漬した。この溶液Aは、THF溶媒にナフタレンを0.2mol/Lの濃度で溶解させたのちに、このTHFとナフタレンの混合液に対して10質量%の質量分のリチウム片を加えることで作製した。また、負極活物質粒子を浸漬する際の溶液の温度は20℃で、浸漬時間は20時間とした。その後、負極活物質粒子を濾取した。以上の処理により負極活物質粒子にリチウムを挿入した。
 続いて、得られたケイ素化合物粒子をアルゴン雰囲気下600℃で24時間熱処理を行いLi化合物の安定化を行った。
 次に、負極活物質粒子を洗浄処理し、洗浄処理後の負極活物質粒子を減圧下で乾燥処理した。このようにして、ケイ素化合物粒子の改質を行った。
Figure JPOXMLDOC01-appb-T000012
 表12の通り、ケイ素化合物粒子の改質方法を変更しても、良好なサイクル特性、初回効率、水系負極スラリーの安定性、二次電池の安全性が得られた。
(実施例13-1)
 負極活物質中のケイ素系活物質粒子の質量の割合を変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、電池容量の増加率を評価した。
 図8に、負極活物質の総量に対するケイ素系活物質粒子の割合と二次電池の電池容量の増加率との関係を表すグラフを示す。図8中のAで示すグラフは、本発明の負極の負極活物質において、ケイ素化合物粒子の割合を増加させた場合の電池容量の増加率を示している。一方、図8中のBで示すグラフは、Liをドープしていないケイ素化合物粒子の割合を増加させた場合の電池容量の増加率を示している。図8から分かるように、ケイ素化合物の割合が6質量%以上となると、電池容量の増加率は従来に比べて大きくなり、体積エネルギー密度が、特に顕著に増加する。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (15)

  1.  負極活物質粒子を含む負極材であって、
     前記負極活物質粒子が、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、
     前記ケイ素化合物粒子は、LiSiO及びLiSiOのうち少なくとも1種以上を含有し、
     前記負極材が、さらに、金属化合物を含む金属化合物粒子及び前記金属化合物粒子の凝集体のうち少なくとも一方を含むものであることを特徴とする負極材。
  2.  前記金属化合物粒子は、アルミニウム、ジルコニウム、及びイットリウムのうち少なくとも1種以上を含むものであることを特徴とする請求項1に記載の負極材。
  3.  前記金属化合物粒子の平均一次粒子径が0.1μm以上4μm以下であり、前記金属化合物粒子の凝集体の平均二次粒子径が0.1μm以上20μm以下であることを特徴とする請求項1又は請求項2に記載の負極材。
  4.  前記金属化合物が、金属元素と酸素の結合を有することを特徴とする請求項1から請求項3のいずれか1項に記載の負極材。
  5.  前記金属化合物が、酸化物、リン酸塩、及びケイ酸塩のうちのいずれか1種であることを特徴とする請求項1から請求項4のいずれか1項に記載の負極材。
  6.  前記負極材の蛍光X線分析によって得られる蛍光X線スペクトルが、1.49keV付近にアルミニウムのKα線を示すピークを有し、かつ、1.74keV付近にシリコンのKα線を示すピークを有し、前記シリコンのKα線を示すピークの強度に対する前記アルミニウムのKα線を示すピークの強度の比Al(Kα)/Si(Kα)が0.002以上0.01以下であることを特徴とする請求項1から請求項5のいずれか1項に記載の負極材。
  7.  前記負極材の蛍光X線分析によって得られる蛍光X線スペクトルが、15.74keV付近にジルコニウムのKα線を示すピークを有し、かつ、17.66keV付近にジルコニウムのKβ線を示すピークを有するものであることを特徴とする請求項1から請求項6のいずれか1項に記載の負極材。
  8.  前記負極材の蛍光X線分析によって得られる蛍光X線スペクトルが、14.93keV付近にイットリウムのKα線を示すピークを有し、かつ、16.73keV付近にイットリウムのKβ線を示すピークを有しないものであることを特徴とする請求項1から請求項7のいずれか1項に記載の負極材。
  9.  前記ケイ素化合物粒子は、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることを特徴とする請求項1から請求項8のいずれか1項に記載の負極材。
  10.  前記ケイ素化合物粒子において、29Si-MAS-NMR スペクトルから得られる、ケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として-96~-150ppmで与えられるSiO領域のピーク強度値Bが、A>Bという関係を満たすものであることを特徴とする請求項1から請求項9のいずれか1項に記載の負極材。
  11.  前記負極活物質粒子はメジアン径が1.0μm以上15μm以下であることを特徴とする請求項1から請求項9のいずれか1項に記載の負極材。
  12.  前記負極活物質粒子は、表層部に炭素材を含むことを特徴とする請求項1から請求項11のいずれか1項に記載の負極材。
  13.  前記炭素材の平均厚さは10nm以上5000nm以下であることを特徴とする請求項12に記載の負極材。
  14.  請求項1から請求項13のいずれか1項に記載の負極材と炭素系活物質とを含むことを特徴とする混合負極材。
  15.  ケイ素化合物粒子を含有する負極活物質粒子を含む負極材を製造する方法であって、
     ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する工程と、
     前記ケイ素化合物粒子にLiを挿入し、LiSiO及びLiSiOのうち少なくとも1種以上を含有させる工程と、
     により負極活物質粒子を作製し、
     前記負極活物質粒子に、金属化合物を含む金属化合物粒子及び前記金属化合物粒子の凝集体のうち少なくとも一方を混合することで、負極材を製造することを特徴とする負極材の製造方法。
PCT/JP2018/006849 2017-03-13 2018-02-26 負極材及びその負極材の製造方法、並びに混合負極材 WO2018168411A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237034869A KR102613652B1 (ko) 2017-03-13 2018-02-26 부극재 및 그 부극재의 제조 방법, 그리고 혼합 부극재
US16/477,686 US11990603B2 (en) 2017-03-13 2018-02-26 Negative electrode material, method of producing the negative electrode material, and mixed negative electrode material
CN201880017583.5A CN110419130B (zh) 2017-03-13 2018-02-26 负极材料及该负极材料的制造方法以及混合负极材料
EP18767113.6A EP3598541A4 (en) 2017-03-13 2018-02-26 NEGATIVE ELECTRODE MATERIAL, METHOD FOR MANUFACTURING THE SAID NEGATIVE ELECTRODE MATERIAL AND MIXED NEGATIVE ELECTRODE MATERIAL
KR1020197026454A KR102590747B1 (ko) 2017-03-13 2018-02-26 부극재 및 그 부극재의 제조 방법, 그리고 혼합 부극재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017047841A JP6765997B2 (ja) 2017-03-13 2017-03-13 負極材及びその負極材の製造方法、並びに混合負極材
JP2017-047841 2017-03-13

Publications (1)

Publication Number Publication Date
WO2018168411A1 true WO2018168411A1 (ja) 2018-09-20

Family

ID=63522074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006849 WO2018168411A1 (ja) 2017-03-13 2018-02-26 負極材及びその負極材の製造方法、並びに混合負極材

Country Status (7)

Country Link
US (1) US11990603B2 (ja)
EP (1) EP3598541A4 (ja)
JP (1) JP6765997B2 (ja)
KR (2) KR102590747B1 (ja)
CN (1) CN110419130B (ja)
TW (1) TW201840044A (ja)
WO (1) WO2018168411A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6964386B2 (ja) * 2017-08-03 2021-11-10 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
CN115494680A (zh) 2018-08-13 2022-12-20 米尼斯怀斯股份公司 透镜的抖动修正装置、摄像机模块及摄像机搭载装置
CN111293284B (zh) * 2018-12-07 2023-02-28 贝特瑞新材料集团股份有限公司 一种负极材料、及其制备方法和用途
US10892481B2 (en) * 2019-02-13 2021-01-12 GM Global Technology Operations LLC Methods of pre-lithiating electroactive material and electrodes including pre-lithiated electroactive material
JP7155085B2 (ja) 2019-09-13 2022-10-18 株式会社東芝 電極、二次電池、電池パック及び車両
CN112563476A (zh) * 2019-09-26 2021-03-26 贝特瑞新材料集团股份有限公司 一种硅复合物负极材料及其制备方法和锂离子电池
KR20210061008A (ko) * 2019-11-19 2021-05-27 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
JP7175254B2 (ja) * 2019-12-06 2022-11-18 信越化学工業株式会社 非水電解質二次電池負極用添加剤、及び、非水電解質二次電池用水系負極スラリー組成物
CN111082028A (zh) * 2019-12-31 2020-04-28 中南大学 一种容量高的负极材料、制备方法及锂离子电池
KR20220132534A (ko) * 2020-01-27 2022-09-30 도레이 카부시키가이샤 이차 전지 전극용 활물질 및 그것을 사용한 이차 전지
WO2021212455A1 (zh) * 2020-04-24 2021-10-28 宁德新能源科技有限公司 负极材料、包含该材料的极片、电化学装置及电子装置
CN115148960A (zh) * 2021-03-31 2022-10-04 宁德新能源科技有限公司 负极极片及包含该负极极片的电化学装置、电子装置
CN117981113A (zh) * 2021-09-17 2024-05-03 松下知识产权经营株式会社 二次电池用负极活性物质和二次电池
CN114464796A (zh) * 2021-12-29 2022-05-10 贝特瑞新材料集团股份有限公司 硅氧复合负极材料及其制备方法、锂离子电池
KR20240000081A (ko) 2022-06-23 2024-01-02 에스케이온 주식회사 리튬 이차전지용 음극 및 이의 제조방법

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2006114454A (ja) 2004-10-18 2006-04-27 Sony Corp 電池
JP2006164954A (ja) 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2007500421A (ja) * 2003-07-29 2007-01-11 エルジー・ケム・リミテッド リチウム二次電池用の負活性材料およびその製造方法
JP2007234255A (ja) 2006-02-27 2007-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP2008251369A (ja) 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
JP2008282819A (ja) 2008-07-10 2008-11-20 Toshiba Corp 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2009070825A (ja) 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
JP2009205950A (ja) 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP2009212074A (ja) 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2013197012A (ja) * 2012-03-22 2013-09-30 Toyota Industries Corp リチウムイオン二次電池用負極、リチウムイオン二次電池及び車両
WO2015045316A1 (ja) * 2013-09-24 2015-04-02 三洋電機株式会社 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池
JP2017010645A (ja) * 2015-06-17 2017-01-12 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP2017091978A (ja) * 2015-11-17 2017-05-25 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
JP2017152358A (ja) * 2016-02-24 2017-08-31 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312518B2 (en) * 2007-10-26 2019-06-04 Murata Manufacturing Co., Ltd. Anode and method of manufacturing the same, and secondary battery
WO2009131700A2 (en) * 2008-04-25 2009-10-29 Envia Systems, Inc. High energy lithium ion batteries with particular negative electrode compositions
JP5262323B2 (ja) * 2008-06-11 2013-08-14 ソニー株式会社 多孔性保護膜付き負極、及び多孔性保護膜付き負極の製造方法
JP5411780B2 (ja) 2010-04-05 2014-02-12 信越化学工業株式会社 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
US20150221950A1 (en) * 2012-09-27 2015-08-06 Sanyo Electric Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery using negative electrode active material
KR101610995B1 (ko) * 2012-11-30 2016-04-08 주식회사 엘지화학 규소계 복합체 및 이의 제조방법
US9935309B2 (en) 2013-08-21 2018-04-03 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, raw material for a negative electrode active material, negative electrode, lithium ion secondary battery, method for producing a negative electrode active material, and method for producing a lithium ion secondary battery
JP6034265B2 (ja) * 2013-09-12 2016-11-30 トヨタ自動車株式会社 活物質複合粉体及びリチウム電池並びにその製造方法
JP6082355B2 (ja) * 2014-02-07 2017-02-15 信越化学工業株式会社 非水電解質二次電池の負極材用の負極活物質、及び非水電解質二次電池用負極電極、並びに非水電解質二次電池
US9636658B2 (en) * 2014-05-07 2017-05-02 Kyungpook National University Industry-Academic Cooperation Foundation Method of manufacturing lithium silicate-based high-temperature dry sorbent for removing carbon dioxide and high-temperature dry carbon dioxide sorbent
JP2016051557A (ja) * 2014-08-29 2016-04-11 国立大学法人山形大学 リチウムイオン二次電池用負極材及びその製造方法並びにリチウムイオン二次電池
JP5888400B1 (ja) * 2014-12-26 2016-03-22 住友大阪セメント株式会社 電極材料及びその製造方法
US10446837B2 (en) 2015-02-26 2019-10-15 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for a non-aqueous electrolyte secondary battery
JP6448525B2 (ja) * 2015-02-26 2019-01-09 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP2016181487A (ja) * 2015-03-25 2016-10-13 株式会社東芝 非水電解質電池用電極、非水電解質次電池および電池パック
JP6448462B2 (ja) * 2015-05-18 2019-01-09 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池並びに非水電解質二次電池用負極活物質の製造方法
JP6332258B2 (ja) * 2015-12-18 2018-05-30 株式会社村田製作所 リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2007500421A (ja) * 2003-07-29 2007-01-11 エルジー・ケム・リミテッド リチウム二次電池用の負活性材料およびその製造方法
JP2006114454A (ja) 2004-10-18 2006-04-27 Sony Corp 電池
JP2006164954A (ja) 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2007234255A (ja) 2006-02-27 2007-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP2008251369A (ja) 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
JP2009070825A (ja) 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
JP2009212074A (ja) 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2009205950A (ja) 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP2008282819A (ja) 2008-07-10 2008-11-20 Toshiba Corp 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2013197012A (ja) * 2012-03-22 2013-09-30 Toyota Industries Corp リチウムイオン二次電池用負極、リチウムイオン二次電池及び車両
WO2015045316A1 (ja) * 2013-09-24 2015-04-02 三洋電機株式会社 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池
JP2017010645A (ja) * 2015-06-17 2017-01-12 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP2017091978A (ja) * 2015-11-17 2017-05-25 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
JP2017152358A (ja) * 2016-02-24 2017-08-31 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法

Also Published As

Publication number Publication date
KR20230149854A (ko) 2023-10-27
TW201840044A (zh) 2018-11-01
CN110419130B (zh) 2022-05-24
US11990603B2 (en) 2024-05-21
JP6765997B2 (ja) 2020-10-07
KR102613652B1 (ko) 2023-12-15
EP3598541A4 (en) 2020-12-23
EP3598541A1 (en) 2020-01-22
JP2018152250A (ja) 2018-09-27
CN110419130A (zh) 2019-11-05
KR102590747B1 (ko) 2023-10-19
KR20190125981A (ko) 2019-11-07
US20190341602A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2018168411A1 (ja) 負極材及びその負極材の製造方法、並びに混合負極材
US10991937B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP6719554B2 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用混合負極活物質材料、及びリチウムイオン二次電池用負極活物質の製造方法
JP6592603B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
WO2017145853A1 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
JP6861565B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
WO2017085902A1 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法
TWI822869B (zh) 負極活性物質、混合負極活性物質、水系負極漿料組成物、及負極活性物質的製造方法
WO2018061536A1 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP2019029297A (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP6719262B2 (ja) 負極活物質、混合負極活物質材料、負極活物質の製造方法
WO2018221268A1 (ja) 負極活物質、混合負極活物質材料、及び、負極活物質粒子の製造方法
WO2017119031A1 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
JP2018060771A (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP2017199657A (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
US11139469B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
KR102335474B1 (ko) 부극 활물질, 혼합 부극 활물질 재료, 및 부극 활물질의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197026454

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018767113

Country of ref document: EP

Effective date: 20191014