WO2018164266A1 - 試験システムの入出力特性推定方法 - Google Patents

試験システムの入出力特性推定方法 Download PDF

Info

Publication number
WO2018164266A1
WO2018164266A1 PCT/JP2018/009256 JP2018009256W WO2018164266A1 WO 2018164266 A1 WO2018164266 A1 WO 2018164266A1 JP 2018009256 W JP2018009256 W JP 2018009256W WO 2018164266 A1 WO2018164266 A1 WO 2018164266A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
torque
speed
excitation
motor
Prior art date
Application number
PCT/JP2018/009256
Other languages
English (en)
French (fr)
Inventor
岳夫 秋山
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to KR1020197024470A priority Critical patent/KR102069654B1/ko
Priority to US16/492,843 priority patent/US11029233B2/en
Publication of WO2018164266A1 publication Critical patent/WO2018164266A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/022Power-transmitting couplings or clutches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/025Test-benches with rotational drive means and loading means; Load or drive simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/02Details or accessories of testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles

Definitions

  • the present invention relates to a method for estimating input / output characteristics of a test system. More specifically, the present invention relates to an input / output characteristic estimation method for estimating input / output characteristics from a predetermined input to a predetermined output in a test system for a specimen having at least two axes.
  • Patent Document 1 discloses an engine test system (hereinafter referred to as an “engine bench system”) configured by connecting an engine as a specimen and a dynamometer with a coupling shaft.
  • engine bench system engine durability, fuel consumption, and exhaust purification performance are controlled by controlling the torque and speed of the dynamometer using the dynamometer controller while controlling the throttle opening of the engine using the engine controller.
  • the engine bench system measures engine characteristics, especially the moment of inertia of the engine, before performing a test to evaluate the performance of the engine, and uses this as a control parameter for torque control or speed control in the dynamometer control device. There is.
  • Patent Document 1 discloses a signal input / output characteristic (more specifically, from a torque current command signal) in an engine bench system by performing excitation control that oscillates torque of a dynamometer coupled to an engine and a coupling shaft.
  • a method for estimating the moment of inertia of the engine by measuring the transfer function G1 to the angular velocity detection signal and the transfer function G2) from the torque current command signal to the shaft torque detection signal is shown.
  • the engine bench system only one dynamometer is connected to the engine that is the specimen, so its input / output characteristics can be easily measured by measuring the response of a predetermined signal to the excitation input to the dynamometer. Can be measured.
  • a drive train bench system using a vehicle drive train as a specimen in addition to an engine bench system using an engine as shown in Patent Document 1.
  • a drive train is a generic name for multiple devices that transmit energy generated by the engine to the drive wheels, and is composed of a combination of the engine, clutch, transmission, drive shaft, propeller shaft, differential gear, and drive wheels.
  • the drive train has three axes including one input shaft coupled to the output shaft of the engine and first and second output shafts connected to the input shaft so as to be able to transmit power.
  • a power generation source such as an actual engine or a dynamometer is connected to the input shaft of the drive train, and the power generated by this power generation source is input to the input shaft to drive the specimen.
  • the rotational speeds of the first and second dynamometers connected to each of the first and second output shafts are controlled by a speed control device, and the performance of the specimen is evaluated by absorbing power with the first and second dynamometers.
  • the present invention provides an input / output characteristic estimation method for a test system capable of accurately estimating input / output characteristics from a predetermined input to a predetermined output in a test system in which a specimen having at least two axes is to be tested. With the goal.
  • a test system (for example, a test system S to be described later) includes a first axis (for example, a first axis S1 to be described later) and a second axis (for example, to be described later) connected to the first shaft so that power can be transmitted.
  • a specimen (for example, a specimen W to be described later) provided with a second axis S2) and a third axis (for example, a third axis S3 to be described later), and a second electric motor (for example to be described later) connected to the second axis.
  • 2nd dynamometer 22 a 3rd electric motor (for example, below-mentioned 3rd dynamometer 23) connected with the 3rd axis, and the state of the 2nd axis or the 2nd electric motor is detected, and the 2nd state detection Second state detection means (for example, a second rotational speed detector 52 and a second shaft torque detector 62 described later) for generating a signal (t2, w2) and the state of the third shaft or the third motor are detected.
  • Second state detection means for example, a second rotational speed detector 52 and a second shaft torque detector 62 described later
  • third state detection means (for example, a later-described first state detection means (t3, w3)) Based on the rotational speed detector 53 and the third shaft torque detector 63) and predetermined input signals (w2, w3, w_av, dw) to the second electric motor for controlling the rotational speed of the second electric motor Second torque control input (for example, second torque control input ib2 described later) and a third torque control input (for example, third torque described later) to the third motor for controlling the rotation speed of the third motor.
  • Second torque control input for example, second torque control input ib2 described later
  • third torque control input for example, third torque described later
  • the input / output characteristic estimation method inputs the excitation input (d2) superimposed on the second torque control input (ib2) to the second motor as a second input (i2) and A 3-torque control input (ib3) is input to the third motor as a third input (i3), and a response to the excitation input (d2) (for example, frequency response i2d2, t2d2, w2d2, i3d2, t3d2, w3d2 described later) )
  • the second torque control input (ib2) as a second input (i2) is input to the second motor as a second excitation control step (for example, steps S3 to S5 in FIG. 3 described later).
  • a signal obtained by superimposing the vibration input (d3) on the third torque control input (ib3) is input to the third motor as a third input, and a response to the vibration input (d3) (for example, a frequency described later) Measured in the second vibration measurement step (for example, steps S7 to S9 in FIG. 3 described later) and the first vibration measurement step to measure the number responses i2d3, t2d3, w2d3, i3d3, t3d3, and w3d3).
  • the second or third state detection signal (t2, t3, w2, w3) from the second or third input (i2 or i3).
  • the second state detection means detects a torque of the second shaft and generates a second torque detection signal (t2) (for example, a second shaft torque detector described later). 62) and a second rotation speed detector (for example, a second rotation speed detector 52 described later) that detects the rotation speed of the second electric motor and generates a second speed signal (w2).
  • the three-state detecting means detects a torque of the third shaft and generates a third torque detection signal (t3) (for example, a third shaft torque detector 63 described later), and the third electric motor.
  • a third rotational speed detector (for example, a third rotational speed detector 53 described later) that detects a rotational speed of the second rotational speed detector and generates a third speed signal (w3).
  • the first vibration measurement step at least one of the responses (i2d2, i3d2) of the second and third inputs to the vibration input superimposed on the second torque control input is measured, and the second vibration measurement is performed.
  • a response (i2d3, i3d3) of at least one of the second and third inputs with respect to the excitation input superimposed on the third torque control input is measured.
  • the mechanical property estimation step the first and By using the response measured in the second vibration measurement step, the second or third torque detection signal (t2 or t3) or the second or third input from the second or third input (i2 or i3).
  • the responses (i2d2, i3d2, w2d2) of the second input, the third input, the second speed signal, and the third speed signal with respect to the excitation input. , W3d2), and in the second excitation measuring step, the second input, the third input, the second speed signal, and the response of the third speed signal (i2d3, i3d3, to the excitation input) w2d3, w3d3) are measured, and in the mechanical property estimation step, the second or third input is used from the second or third input by using the response measured in the first and second excitation measurement steps. It is preferable to estimate the transfer function (Gw2_i2, Gw2_i3, Gw3_i2, Gw3_i3) up to the speed signal.
  • the input / output characteristic estimation method uses the response measured in the first vibration measurement step and the response measured in the second vibration measurement step, so that the speed control device uses the response. It is preferable to further include a control circuit characteristic estimation step (for example, step S31 in FIG. 5 described later) for estimating a transfer function from the input signal (w2 or w3) to the second or third input (i2 or i3). .
  • a control circuit characteristic estimation step for example, step S31 in FIG. 5 described later for estimating a transfer function from the input signal (w2 or w3) to the second or third input (i2 or i3).
  • the test system detects the state of the first electric motor (for example, a first dynamometer 21 described later) connected to the first shaft and the first shaft or the first electric motor.
  • a first state detection means for example, a first rotational speed detector 51 and a first shaft torque detector 61 described later for generating a one state detection signal (t1, w1); Inputs the excitation input (d1) to a predetermined reference input (ib1) as a first input (i1) and inputs the first and second torque control inputs to the first motor.
  • a third excitation measurement step (for example, a diagram described later) that inputs the second and third motors as the third input and measures responses (t1d1, w1d1, t2d1, w2d1, t3d1, and w3d1) to the excitation inputs.
  • 6B S64-S66 Step
  • the response measured in one or both of the first and second vibration measurement steps and the response measured in the third vibration measurement step are used.
  • the test system includes a first shaft and a specimen including a second shaft and a third shaft connected to the first shaft so as to be capable of transmitting power, a second electric motor coupled to the second shaft, A third motor coupled to a third shaft; second state detection means for detecting a state of the second shaft or the second motor and generating a second state detection signal; and the third shaft or the third motor.
  • Third state detecting means for detecting the state of the engine and generating a third state detection signal, and second torque control for the second motor for controlling the rotational speed of the second motor based on a predetermined input signal
  • a speed control device that generates an input and a third torque control input to the third motor for controlling the rotational speed of the third motor, and an excitation that generates an excitation input that changes at a predetermined frequency Input generating means.
  • the input / output characteristic estimation method inputs the excitation input superimposed on the second torque control input to the second motor as a second input and uses the third torque control input as a third input.
  • a first vibration measurement step (for example, steps S23 to S25 in FIG.
  • Second excitation measurement that inputs the second motor and superimposes the excitation input on the third torque control input as a third input to the third motor and measures a response to the excitation input
  • the speed control Control circuit characteristic estimation step for estimating a transfer function (C22, C23, C32, C33) from the input signal (w2 or w3) to the second or third input (i2 or i3) 5 step S31).
  • the second state detecting means detects the torque of the second shaft and generates a second torque detection signal, and detects the rotational speed of the second motor and detects the second speed.
  • a second rotational speed detector for generating a speed signal, wherein the third state detecting means detects a torque of the third shaft and generates a third torque detection signal; and
  • a third rotational speed detector for detecting a rotational speed of the three electric motors and generating a third speed signal, wherein the speed control device is configured to perform the second and third based on the second and third speed signals.
  • a torque control input is generated, and in the first excitation measurement step, responses of the second and third speed signals to the excitation input superimposed on the second torque control input are measured, and the second excitation measurement step Then, with respect to the excitation input superimposed on the third torque control input, The responses of the second and third speed signals are measured, and the control circuit characteristic estimation step uses the responses measured in the first and second vibration measurement steps, thereby allowing the second speed control device to perform the second response.
  • the test system includes a first axis (for example, a first axis S1 described later) and a second axis (for example, a second axis S2 or third axis S3 described later) connected to the first axis so that power can be transmitted. ) (For example, a specimen W to be described later), a first electric motor (for example, a first dynamometer 21 to be described later) connected to the first shaft, and a second connected to the second shaft.
  • a first electric motor for example, a first dynamometer 21 to be described later
  • An electric motor for example, a second dynamometer 22 or a third dynamometer 23 to be described later
  • first state detection means for example, a first state detection means for detecting a state of the first shaft or the first motor and generating a first state detection signal
  • a first rotation speed detector 51 and a first shaft torque detector 61 which will be described later
  • second state detection means for detecting a state of the second shaft or the second motor and generating a second state detection signal
  • a second rotational speed detector 52 and a second shaft torque detector 62 or a third rotational speed detector which will be described later.
  • the input / output characteristic estimation method inputs a first input (i1) into which the excitation input (d1) is superimposed on a predetermined reference input (ib1) and inputs the second torque.
  • a control input (ib2 or ib3) is input to the second electric motor as a second input (i2 or i3) and a response to the excitation input is measured (for example, S64 to S64 in FIG. 6B described later).
  • Step S66 the reference input as a first input to the first motor, and the excitation input superimposed on the second torque control input as a second input to the second motor,
  • a second vibration measurement step (eg, steps S53 to S55 or steps S57 to S59 in FIG.
  • a mechanical characteristic estimation step for example, steps S68 and S69 in FIG. 6B described later for estimating transfer functions (Gt1_i1, Gt2_i1, Gt3_i1, Gw1_i1, Gw2_i1, Gw3_i1) up to the signal.
  • the first state detection means detects the torque of the first shaft and generates a first torque detection signal, and detects the rotational speed of the first motor to detect the first torque.
  • a first rotation speed detector for generating a speed signal wherein the second state detection means detects a torque of the second shaft and generates a second torque detection signal; and
  • a second rotation speed detector that detects a rotation speed of the two motors and generates a second speed signal; and in the first excitation measurement step, the second speed signal for the excitation input superimposed on the reference input
  • Transfer function to signal (Gt1_ It is preferable to estimate 1).
  • the first vibration measurement step the response of the second speed signal and the first and second torque detection signals to the vibration input superimposed on the reference input is measured, and the mechanical characteristic estimation is performed.
  • the transfer function from the first input to the first torque detection signal and the second torque detection signal from the first input are used. It is preferable to estimate the transfer function up to (Gt2_i1 or Gt3_i1).
  • the first state detection means detects the torque of the first shaft and generates a first torque detection signal, and detects the rotational speed of the first motor to detect the first torque.
  • a first rotation speed detector for generating a speed signal wherein the second state detection means detects a torque of the second shaft and generates a second torque detection signal; and
  • a second rotation speed detector that detects a rotation speed of the two motors and generates a second speed signal; and in the first vibration measurement step, the first and second vibrations with respect to the vibration input superimposed on the reference input
  • a transfer function from the first input to the first speed signal is measured by measuring a response of the two speed signal, and using the response measured in the first and second vibration measurement steps in the mechanical property estimation step. (Gw1_i1) and the first input It is preferable to estimate the transfer function (Gw2_i1 or Gw3_i1) to the second speed signal.
  • the response to the vibration input when the second and third motors are connected to the second and third shafts of the specimen respectively and the second motor is subjected to vibration control in the first vibration measurement step.
  • the response to the vibration input when the third motor is subjected to vibration control is measured.
  • the mechanical characteristic estimation step uses the response to the vibration input obtained in the first and second vibration measurement steps, thereby transferring the transfer function from the second or third input to the second or third state detection signal. Is estimated.
  • from the second or third input to the second or third state detection signal by combining the response when the second motor is subjected to vibration control and the response when the third motor is subjected to vibration control.
  • the responses of the second and third inputs to the vibration input input to the second motor are measured, and in the second vibration measurement step, the response is input to the third motor.
  • the response of the second and third inputs with respect to the vibration input is measured, and the mechanical characteristic estimation step uses the four responses to determine the second or third torque detection signal or the second or third input from the second or third input. Estimate the transfer function up to 3 speed signals. Thereby, these transfer functions can be estimated with higher accuracy.
  • the responses of the second and third inputs and the second and third speed signals to the excitation input input to the second motor, and the excitation input to the third motor is estimated using eight responses consisting of the second and third inputs and the responses of the second and third speed signals to the input. Thereby, these transfer functions can be estimated with higher accuracy.
  • the control circuit characteristic estimation step of the present invention uses the responses measured in the first and second excitation measurement steps to obtain the transfer function from the input signal to the second or third input in the speed control device.
  • the transfer function representing the input / output characteristics of the speed control device is estimated.
  • the transfer function can be accurately estimated in a state where the speed control device is actually operated. Since an actual speed control device is configured by combining various control circuits, it is difficult to operate only a specific control circuit and estimate its input / output characteristics, or it takes time. Sometimes. In the present invention, since the input / output characteristics can be estimated in a state where the speed control apparatus is actually operated, the input / output characteristics can be estimated easily and in a short time.
  • the first motor is connected to the first shaft of the specimen, and in the third vibration measurement step, the response to the vibration input when the first motor is subjected to vibration control is measured. Further, in the mechanical property estimation step, the first input is used by using the response measured in one or both of the first and second vibration measurement steps and the response measured in the third vibration measurement step.
  • the transfer function from the first to third state detection signals or the transfer function from the second or third input to the first state detection signal is estimated.
  • the response to the vibration input when the second and third motors are connected to the second and third shafts of the specimen respectively and the second motor is subjected to vibration control in the first vibration measurement step.
  • the response to the vibration input when the third motor is subjected to vibration control is measured.
  • the transfer function from the input signal to the second or third input in the speed control device is estimated by using the responses measured in the first and second vibration measurement steps. As described above, in the present invention, by combining the response when the second motor is subjected to the vibration control and the response when the third motor is subjected to the vibration control, the transfer function representing the input / output characteristics of the speed control device is estimated.
  • the transfer function can be accurately estimated in a state where the speed control device is actually operated. Since an actual speed control device is configured by combining various control circuits, it is difficult to operate only a specific control circuit and estimate its input / output characteristics, or it takes time. Sometimes. In the present invention, since the input / output characteristics can be estimated in a state where the speed control apparatus is actually operated, the input / output characteristics can be estimated easily and in a short time.
  • the response of the second and third speed signals to the vibration input input to the second motor is measured, and in the second vibration measurement step, the response is input to the third motor.
  • the response of the second and third speed signals to the excitation input is measured, and in the control circuit characteristic estimation step, these four responses are used to determine the second or third input from the second or third speed signal in the speed control device. Estimate the transfer function up to. Thereby, these transfer functions can be estimated with higher accuracy.
  • the first and second motors are connected to the first and second shafts of the specimen, respectively, and the rotational speed of the second motor is controlled by the speed control device.
  • the first vibration measurement step the response to the vibration input when the first motor is subjected to vibration control is measured
  • the second vibration measurement step the response to the vibration input when the second motor is subjected to vibration control is measured.
  • a transfer function from the first input to the first or second state detection signal is estimated by using a response to the vibration input obtained by the first and second vibration measurement steps. .
  • the transfer function from the first input to the first or second state detection signal by combining the response when the first motor is subjected to vibration control and the response when the second motor is subjected to vibration control.
  • the response of the second speed signal and the first torque detection signal to the vibration input input to the first motor is measured, and in the mechanical characteristic estimation step, the first vibration is measured.
  • a transfer function from the first input to the first torque detection signal is estimated using these two responses measured in the measurement step and the response measured in the second vibration measurement step. Thereby, this transfer function can be estimated with higher accuracy.
  • the response of the second speed signal and the first and second torque detection signals to the vibration input input to the first motor is measured.
  • a transfer function from the first input to the first torque detection signal using these three responses measured in the first vibration measurement step and the response measured in the second vibration measurement step, and from the first input to the second The transfer function up to the torque detection signal is estimated. Thereby, these transfer functions can be estimated with higher accuracy.
  • the first vibration measurement step of the present invention the response of the first and second speed signals to the vibration input input to the first motor is measured, and in the mechanical characteristic estimation step, the first vibration measurement step A transfer function from the first input to the first speed signal, and a transfer function from the first input to the second speed signal using these two responses measured and the response measured by the second vibration measurement step, Is estimated.
  • these transfer functions can be estimated with higher accuracy.
  • FIG. 6 is a flowchart illustrating a specific calculation procedure of the input / output characteristic estimation method according to the first embodiment. It is a figure which shows the estimation result (Gt2_i2) of Example 1. FIG. It is a figure which shows the estimation result (Gt3_i2) of Example 1. FIG. It is a figure which shows the estimation result (Gw2_i2) of Example 1. FIG. It is a figure which shows the estimation result (Gw3_i2) of Example 1. FIG.
  • FIG. 10 is a flowchart illustrating a specific calculation procedure of the input / output characteristic estimation method according to the second embodiment.
  • 12 is a flowchart illustrating a specific calculation procedure of the input / output characteristic estimation method according to the third embodiment.
  • 12 is a flowchart illustrating a specific calculation procedure of the input / output characteristic estimation method according to the third embodiment.
  • FIG. 1 is a diagram showing a configuration of a test system S to which the input / output characteristic estimation method according to the present embodiment is applied.
  • the test system S includes a drive train including a first shaft S1 as at least one input shaft, and a second shaft S2 and a third shaft S3 as output shafts connected to the first shaft S1 so as to be able to transmit power.
  • the specimen W is used to evaluate the performance of the specimen W.
  • the test system S includes a specimen W, a first dynamometer 21, a second dynamometer 22, a third dynamometer 23 connected to the specimen W, and a first dynamometer that supplies power to each dynamometer 21-23.
  • Torque to the detector 53, the first shaft torque detector 61, the second shaft torque detector 62, the third shaft torque detector 63, and the inverters 31 to 33 that detect the shaft torque in the dynamometers 21 to 23.
  • a dynamometer control device 7 for inputting a current command signal and an estimation device 8 for estimating input / output characteristics from a predetermined input to a predetermined output in the test system S are provided.
  • the output shaft of the first dynamometer 21 is connected coaxially with the first shaft S1 of the specimen W.
  • the output shaft of the second dynamometer 22 is coaxially connected to the second shaft S2 of the specimen W.
  • the output shaft of the third dynamometer 23 is connected coaxially with the third shaft S3 of the specimen W.
  • the first rotation speed detector 51 detects a first rotation speed that is the number of rotations per unit time of the output shaft of the first dynamometer 21, and generates a first speed detection signal w1 corresponding to the first rotation speed.
  • the second rotation speed detector 52 detects a second rotation speed that is the number of rotations per unit time of the output shaft of the second dynamometer 22, and generates a second speed detection signal w2 corresponding to the second rotation speed.
  • the third rotational speed detector 53 detects a third rotational speed that is the rotational speed per unit time of the output shaft of the third dynamometer 23, and generates a third speed detection signal w3 corresponding to the third rotational speed. To do.
  • the first shaft torque detector 61 detects torsional torque (hereinafter referred to as “first shaft torque”) generated in the first shaft S1, and generates a first shaft torque detection signal t1 corresponding to the first shaft torque.
  • the second shaft torque detector 62 detects torsional torque (hereinafter referred to as “second shaft torque”) generated on the second shaft S2, and generates a second shaft torque detection signal t2 corresponding to the second shaft torque.
  • the third shaft torque detector 63 detects torsional torque (hereinafter referred to as “third shaft torque”) generated on the third shaft S3, and generates a third shaft torque detection signal t3 corresponding to the third shaft torque. To do.
  • the dynamometer control device 7 uses the speed detection signals w1 to w3, the shaft torque detection signals t1 to t3, and a predetermined command signal to thereby generate a first torque current that is a torque current command signal for the first dynamometer 21.
  • the signals i1 to i3 are input to the inverters 31 to 33, respectively.
  • the first inverter 31 supplies power corresponding to the first torque current command signal i ⁇ b> 1 to the first dynamometer 21.
  • the second inverter 32 supplies power corresponding to the second torque current command signal i ⁇ b> 2 to the second dynamometer 22.
  • the third inverter 33 supplies electric power corresponding to the third torque current command signal i3 to the third dynamometer 23.
  • the estimation device 8 includes speed detection signals w1 to w3, shaft torque detection signals t1 to t3, torque current command signals i1 to i3, Is used to estimate the input / output characteristics from the predetermined input signal to the predetermined output signal in the test system S.
  • FIG. 2 is a diagram showing a configuration of a control circuit of the dynamometer control device 7. More specifically, FIG. 2 illustrates only a portion of the control circuit configured in the dynamometer control device 7 that is used when the input / output characteristics of the test system S are estimated using the estimation device 8. .
  • the dynamometer controller 7 includes a base torque generator 71, an excitation torque generator 72, a speed controller 73, a first command signal generator 74, a second command signal generator 75, and a third command signal.
  • torque current command signals i1 to i3 are generated by using these.
  • the base torque generation unit 71 generates a base torque command signal ib1 having a constant magnitude that does not change over time.
  • the excitation torque generating unit 72 includes a first excitation torque input d1 and a second excitation torque that randomly vary within a predetermined range centered on 0 under a predetermined excitation frequency.
  • An input d2 and a third excitation torque input d3 are generated.
  • the first command signal generation unit 74 outputs the first base torque command signal ib1 as the first torque current command signal i1 when the first excitation torque input d1 is not generated, and the first excitation torque input d1. Is generated, the input torque d1 superimposed on the base torque command signal ib1 is output as the first torque current command signal i1.
  • the speed control device 73 uses the predetermined command signal, the second speed detection signal w2, and the third speed detection signal w3, thereby controlling the second rotation speed and the third rotation speed to a predetermined target.
  • a second torque control input ib2 that is an input to the dynamometer 22 and a third torque control input ib3 that is an input to the third dynamometer 23 are generated. More specifically, the speed control device 73 is an instruction signal for the average speed of the second rotation speed and the third rotation speed and does not change with time, the average speed command signal w_av, the second rotation speed, and the third rotation speed.
  • a differential speed command signal dw (hereinafter referred to as 0), which is a command signal for the difference from the speed and does not change with time, is input, the second speed detection signal w2 and the third speed detection signal w3 It is known that the average ((w2 + w3) / 2) becomes the average speed command signal w_av, and the difference (w2-w3) between the second speed detection signal w2 and the third speed detection signal w3 becomes the differential speed command signal dw.
  • a second torque control input ib2 and a third torque control input ib3 are generated by a feedback algorithm.
  • the second command signal generation unit 75 When the second excitation torque input d2 is not generated, the second command signal generation unit 75 outputs the second torque control input ib2 as the second torque current command signal i2, and the second excitation torque input d2 If generated, the input d2 superimposed on the second torque control input ib2 is output as the second torque current command signal i2.
  • the third command signal generator 76 outputs the third torque control input ib3 as the third torque current command signal i3 when the third excitation torque input d3 is not generated, and the third excitation torque input d3 is If it is generated, the input d3 superimposed on the third torque control input ib3 is output as the third torque current command signal i3.
  • the dynamometer control device 7 when estimating the input / output characteristics of the test system S, the dynamometer control device 7 appropriately performs the first dynamometer 21 while performing torque current control using the base torque command signal ib1. Excitation control is performed by superimposing the excitation torque input d1. Further, when estimating the input / output characteristics of the test system S, the dynamometer control device 7 appropriately controls the second and third dynamometers 22 and 23 while performing speed control using the speed detection signals w2 and w3. Excitation control is performed by superimposing excitation torque inputs d2 and d3.
  • the estimation device 8 controls the dynamometers 21 to 23 by the dynamometer control device 7 as described above, whereby each torque current command signal i1 to i3 to each shaft torque detection signal t1 to t3.
  • Transfer function matrix Gti representing the mechanical characteristics (hereinafter also referred to as “torque command-shaft torque characteristics”), and mechanical characteristics (hereinafter referred to as the speed detection signals w1 to w3) from the torque current command signals i1 to i3.
  • torque command-rotational speed characteristics which are also referred to as “torque command-rotational speed characteristics”
  • control circuit characteristics input / output characteristics of the speed control device 73 from the speed detection signals w2 to w3 to the torque control inputs ib2 to ib3
  • the transfer function matrix Gti representing the torque command-axis torque characteristics is represented by a 3 ⁇ 3 matrix composed of a total of nine independent components as shown in the following equation (1).
  • a transfer function Gt1_i1 that is a component in the first column and the first row of the matrix Gti represents the mechanical characteristics of the first shaft torque detection signal t1 with respect to the first torque current command signal i1.
  • a transfer function Gt1_i2 that is a component in the second column and first row of the matrix Gti represents the mechanical characteristics of the first shaft torque detection signal t1 with respect to the second torque current command signal i2.
  • the other components are the same and will not be described.
  • the transfer function matrix Gwi representing the torque command-rotation speed characteristics is represented by a 3 ⁇ 3 matrix composed of a total of nine independent components as shown in the following equation (2).
  • a transfer function Gw1_i1 which is a component in the first column and the first row of the matrix Gwi is a mechanical function transfer function of the first speed detection signal w1 with respect to the first torque current command signal i1.
  • a transfer function Gw1_i2 that is a component in the second column and first row of the matrix Gwi represents a transfer function of the mechanical characteristics of the first speed detection signal w1 with respect to the second torque current command signal i2.
  • the other components are the same and will not be described.
  • the transfer function matrix C is substantially as shown in the following equation (3). Is represented by a 2 ⁇ 2 matrix.
  • a transfer function C22 that is a component of the second column and second row of the matrix C is a transfer function of the second torque control input ib2 with respect to the second speed detection signal w2 in the speed controller 73. Represents.
  • a transfer function C23 which is a component of the third column and second row of the matrix C, represents a transfer function of the second torque control input ib2 with respect to the third speed detection signal w3 in the speed controller 73.
  • the other components are the same and will not be described.
  • the transfer function from the second torque current command signal i2 or the third torque current command signal i3 to the second shaft torque detection signal t2 or the third shaft torque detection signal t3 that is, the equation ( In the transfer function matrix Gti of 1), the second column, the second row component Gt2_i2, the third column, the second row component Gt2_i3, the second column, the third row component Gt3_i2, and the third column (Four transfer functions of the third row component Gt3_i3) and a transfer function from the second torque current command signal i2 or the third torque current command signal i3 to the second speed detection signal w2 or the third speed detection signal w3 ( That is, in the transfer function matrix Gwi of Expression (2), the second column, the second row component Gw2_i2, the third column, the second row component Gw2_i3, the second column, the third row component G
  • FIG. 3 is a flowchart illustrating a specific calculation procedure for estimating input / output characteristics by the input / output characteristic estimation method according to the first embodiment.
  • control of the first to third dynamometers using the dynamometer control device shown in FIG. 2 is started. That is, the first dynamometer performs torque current control using the base torque command signal ib1, and the second and third dynamometers perform speed control using the speed detection signals w2, w3, and the like.
  • the excitation torque inputs d1 to d3 are all 0.
  • the dynamometer control device sets the operating point of the first to third dynamometers to a predetermined operating point for measuring input / output characteristics. More specifically, the base torque command signal ib1 is kept constant at a predetermined value while the excitation torque inputs d1 to d3 are all 0, and the average speed command signal w_av is set to a predetermined value. The differential speed command signal dw is set to 0.
  • the dynamometer control device In S3, the dynamometer control device generates a second excitation torque input d2 that fluctuates at a predetermined excitation frequency while maintaining the base torque command signal, the average speed command signal, and the differential speed command signal at the operating point of S2. This is superimposed on the second torque control input ib2, and the second torque current command signal i2 is vibrated. At this time, the other excitation torque inputs d1 and d3 are both zero.
  • the estimation device performs the second excitation torque input d2, the second torque current command signal i2, the second shaft torque detection signal t2, the second speed detection signal w2, and the third torque current command signal i3.
  • the third shaft torque detection signal t3 and the third speed detection signal w3 are measured.
  • the estimation device calculates the ratio between the second excitation torque input d2 measured in S4 and the other output signals i2, t2, w2, i3, t3, w3, thereby obtaining the following equation (4-1) )
  • i2d2 represents the frequency response of the second torque current command signal i2 with respect to the second excitation torque input d2 input to the second dynamometer 22
  • t2d2 represents the frequency of the second shaft torque detection signal t2 with respect to the input d2.
  • W2d2 represents the frequency response of the second speed detection signal w2 with respect to the input d2
  • i3d2 represents the frequency response of the third torque current command signal i3 with respect to the input d2
  • t3d2 represents the third axis with respect to the input d2.
  • the frequency response of the torque detection signal t3 is represented
  • w3d2 represents the frequency response of the third speed detection signal w3 with respect to the input d2.
  • the estimation device determines whether or not measurement of six frequency responses i2d2 and the like is completed within a predetermined frequency region. If the determination in S6 is NO, the process returns to S3, changes the excitation frequency of the second excitation torque input d2, and executes the processes in S4 to S5 again. If the determination in S6 is YES, the process moves to S7.
  • the dynamometer control device In S7, the dynamometer control device generates a third excitation torque input d3 that fluctuates at a predetermined excitation frequency while maintaining the base torque command signal, the average speed command signal, and the differential speed command signal at the operating point of S2. This is superimposed on the third torque control input ib3 to vibrate the third torque current command signal i3. At this time, the other excitation torque inputs d1 and d2 are both set to zero.
  • the estimation device performs the third excitation torque input d3, the second torque current command signal i2, the second shaft torque detection signal t2, the second speed detection signal w2, and the third torque current command signal i3.
  • the third shaft torque detection signal t3 and the third speed detection signal w3 are measured.
  • the estimation device calculates the ratio between the third excitation torque input d3 measured in S8 and the other output signals i2, t2, w2, i3, t3, w3, thereby obtaining the following equation (5-1 )
  • 5-6 six frequency responses i2d3, t2d3, w2d3, i3d3, t3d3, and w3d3 are measured.
  • i2d3 represents the frequency response of the second torque current command signal i2 to the third excitation torque input d3 input to the third dynamometer 23
  • t2d3 represents the frequency response of the second shaft torque detection signal t2 to the input d3.
  • W2d3 represents the frequency response of the second speed detection signal w2 with respect to the input d
  • i3d3 represents the frequency response of the third torque current command signal i3 with respect to the input d3
  • t3d3 represents the third axis torque detection signal t3 with respect to the input d3.
  • W3d3 represents the frequency response of the third speed detection signal w3 to the input d3.
  • the estimation device determines whether or not measurement of six frequency responses i2d3 and the like is completed within a predetermined frequency region. If the determination in S10 is NO, the process returns to S7, the excitation frequency of the third excitation torque input d3 is changed, and the processes of S8 to S9 are executed again. If the determination in S10 is YES, the process moves to S11.
  • the estimation device uses four sets of frequency responses i2d2, t2d2, i2d3, t2d3, i3d2, t3d2, i3d3, and t3d3 measured by the above processing, so that four sets of transfer functions Gt2_i2, Gt2_i3, Gt3_i2, Gt3_i3 Is calculated, and this process ends. More specifically, the transfer function Gt2_i2 and the like are obtained by inputting the frequency response i2d2 and the like into the following equations (6-1) to (6-4) derived based on the equations (1) to (3). Is calculated.
  • Gt2_i2 in the following equation (6-1) represents a transfer function from the second torque current command signal i2 to the second shaft torque detection signal t2
  • Gt2_i3 in the following equation (6-2) represents the third torque current command signal.
  • the transfer function from i3 to the second shaft torque detection signal t2 is represented.
  • Gt3_i2 in the following equation (6-3) represents the transfer function from the second torque current command signal i2 to the third shaft torque detection signal t3.
  • Gt3_i3 in Expression (6-4) represents a transfer function from the third torque current command signal i3 to the third shaft torque detection signal t3.
  • the estimation apparatus uses four frequency responses i2d2, w2d2, i2d3, w2d3, i3d2, w3d2, i3d3, and w3d3 measured by the above processing to obtain four transfer functions Gw2_i2, Gw2_i3, Gw3_i2, and Gw3_i3. calculate. More specifically, the transfer function Gw2_i2 and the like are obtained by inputting the frequency response i2d2 and the like into the following equations (7-1) to (7-4) derived based on the equations (1) to (3). Is calculated.
  • Gw2_i2 in the following formula (7-1) represents a transfer function from the second torque current command signal i2 to the second speed detection signal w2
  • Gw2_i3 in the following formula (7-2) is a third torque current command signal i3.
  • Gw3_i2 in the following formula (7-3) represents a transfer function from the second speed detection signal w2 to the second speed detection signal w2.
  • Gw3_i3 represents a transfer function from the third torque current command signal i3 to the third speed detection signal w3.
  • FIG. 4A to 4H are diagrams showing estimation results obtained by the estimation apparatus according to the first embodiment. More specifically, FIG. 4A shows a Bode diagram of the transfer function Gt2_i2 estimated by the equation (6-1), and FIG. 4B shows a Bode diagram of the transfer function Gt3_i2 estimated by the equation (6-3).
  • 4C shows a Bode diagram of the transfer function Gw2_i2 estimated by the equation (7-1)
  • FIG. 4D shows a Bode diagram of the transfer function Gw3_i2 estimated by the equation (7-3)
  • FIG. 4F shows a Bode diagram of the transfer function Gt3_i3 estimated by the equation (6-4)
  • FIG. 4H shows a Bode diagram of the transfer function Gw3_i3 estimated by the equation (7-4).
  • a thin continuous line shows a true mechanical characteristic
  • a broken line shows the estimation result by the input / output characteristic estimation method of Example 1.
  • the thick solid line in each figure shows the estimation result by the conventional input / output characteristics estimation method.
  • the conventional input / output characteristic estimation method means a method of simply measuring a response to an excitation torque input.
  • the thick solid line in FIG. 4A is the response of the second shaft torque detection signal t2 when the excitation torque input d2 is input to the second dynamometer (that is, t2d2 in equation (4-2)).
  • 4B is a response of the third shaft torque detection signal t3 when the excitation torque input d2 is input to the second dynamometer (that is, t3d2 in the equation (4-5)), and the thick line in FIG. 4C.
  • the solid line is the response of the second speed detection signal w2 when the excitation torque input d2 is input to the second dynamometer (that is, w2d2 in equation (4-3)), and the thick solid line in FIG. 4D is the second dynamometer.
  • the response of the third speed detection signal w3 when the excitation torque input d2 is input to ie, w3d2 in the equation (4-6)
  • the thick solid line in FIG. 4E indicates the excitation torque input d3 to the third dynamometer.
  • the second shaft torque detection signal t2 that is, the equation (5-2)
  • 4F represents the response of the third shaft torque detection signal t3 when the excitation torque input d3 is input to the third dynamometer (that is, t3d3 in equation (5-5)).
  • 4G is the response of the second speed detection signal w2 when the excitation torque input d3 is input to the third dynamometer (that is, w2d3 in equation (5-3)), and the thick solid line in FIG. 4H.
  • true mechanical characteristics can be obtained only by measuring the response to the excitation torque input for the mechanical characteristics to be obtained as in the conventional input / output characteristics estimation method.
  • I can't. This is because the specimen includes a plurality of shafts, and each shaft is controlled by the speed control device, and receives characteristics of the speed control device.
  • the input / output characteristic device of Example 1 a single transfer function is estimated by combining a plurality of responses obtained when vibration control is performed on a plurality of dynamometers connected to the specimen.
  • the input / output characteristics of the test system can be accurately estimated while excluding the characteristics of the speed control device.
  • the second torque current command signal i2 or the third torque is obtained from two input signals (second speed detection signal w2 or third speed detection signal w3) in the speed control device 73 of FIG.
  • the transfer function up to the current command signal i3 that is, in the transfer function matrix C of Equation (3), the second column second row component C22, the third column second row component C23, the second column third 4 transfer functions of the row component C32 and the third column third row component C33
  • FIG. 5 is a flowchart illustrating a specific calculation procedure for estimating input / output characteristics by the input / output characteristic estimation method according to the second embodiment.
  • S21 similarly to S1 in FIG. 3, control of the first to third dynamometers using the dynamometer control device in FIG. 2 is started.
  • the dynamometer control device sets the operating points of the first to third dynamometers to predetermined operating points for measuring the input / output characteristics, as in S2 of FIG.
  • the dynamometer control device generates the second excitation torque input d2 and superimposes it on the second torque control input ib2 to vibrate the second torque current command signal i2, as in S3 of FIG.
  • the estimation device includes a second excitation torque input d2, a second torque current command signal i2, a second speed detection signal w2, a third torque current command signal i3, a third speed detection signal w3, Measure.
  • the estimation device calculates the ratio between the second excitation torque input d2 measured in S24 and the other output signals i2, w2, i3, w3, and the following equations (8-1) to (8) As shown in -4), four frequency responses i2d2, w2d2, i3d2, and w3d2 are measured.
  • the estimation device determines whether or not the measurement of the four frequency responses i2d2 and the like is completed within a predetermined frequency region. If the determination in S26 is NO, the process returns to S23, the excitation frequency of the second excitation torque input d2 is changed, and the processes of S24 to S25 are executed again. If the determination in S26 is YES, the process moves to S27. In S27, the dynamometer control device generates the third excitation torque input d3, superimposes it on the third torque control input ib3, and vibrates the third torque current command signal i3, as in S7 of FIG.
  • the estimation device includes a third excitation torque input d3, a second torque current command signal i2, a second speed detection signal w2, a third torque current command signal i3, a third speed detection signal w3, Measure.
  • the estimation device calculates the ratio between the third excitation torque input d3 measured in S28 and the other output signals i2, w2, i3, w3, and the following equations (9-1) to (9- As shown in 4), four frequency responses i2d2, w2d3, i3d3, and w3d3 are measured.
  • the estimation device determines whether or not the measurement of four frequency responses i2d3 and the like is completed within a predetermined frequency region. If the determination in S30 is NO, the process returns to S37, changes the excitation frequency of the third excitation torque input d3, and executes the processes of S28 to S29 again. If the determination in S30 is YES, the process moves to S31.
  • the estimation apparatus uses four frequency responses i2d2, w2d2, i3d2, w3d2, i2d3, w2d3, i3d3, and w3d3 measured by the above processing to obtain four transfer functions C22, C23, C32, and C33. calculate. More specifically, by inputting the frequency response i2d2 etc. into the following formulas (10-1) to (10-4) derived based on the formulas (1) to (3), the transfer function C22 etc. Is calculated.
  • C22 in the following equation (10-1) represents a transfer function from the second speed detection signal w2 to the second torque current command signal i2 (or the second torque control input ib2), and C23 in the following equation (10-2).
  • the frequency response (i2d3, w2d3, etc.) is measured with respect to the input d3 when the third dynamometer is controlled to vibrate with the vibration torque input d3.
  • the transfer function up to i2 or i3).
  • the transfer function can be accurately estimated in a state where the speed control device is actually operated. Since an actual speed control device is configured by combining various control circuits, it is difficult to operate only a specific control circuit and estimate its input / output characteristics, or it takes time. Sometimes.
  • the input / output characteristic estimation method according to the second embodiment since the input / output characteristics can be estimated in a state where the speed control device is actually operated, the input / output characteristics can be estimated easily and in a short time.
  • FIG. 6A and 6B are flowcharts illustrating a specific calculation procedure for estimating input / output characteristics by the input / output characteristic estimation method according to the third embodiment. Note that the processing in S51 to S62 is the same as the processing in S1 to S12 in FIG. 3, and the processing in S63 is the same as the processing in S31 in FIG.
  • the dynamometer control device In S64, the dynamometer control device generates the first excitation torque input d1 that fluctuates at a predetermined excitation frequency while maintaining the base torque command signal, the average speed command signal, and the differential speed command signal at the operating point of S52. This is superimposed on the base torque command signal ib1 to vibrate the first torque current command signal i1. At this time, the other excitation torque inputs d2 and d3 are both 0.
  • the estimation device includes a first excitation torque input d1, a first shaft torque detection signal t1, a first speed detection signal w1, a second shaft torque detection signal t2, and a second speed detection signal w2.
  • the third shaft torque detection signal t3 and the third speed detection signal w3 are measured.
  • the estimation device calculates a ratio between the first excitation torque input d1 measured in S65 and the other output signals t1, w1, t2, w2, t3, w3, thereby obtaining the following equation (11-1 )
  • t1d1 represents the frequency response of the first shaft torque detection signal t1 to the first excitation torque input d1 input to the first dynamometer 21
  • w1d1 represents the frequency response of the first speed detection signal w1 to the input d1.
  • T2d1 represents the frequency response of the second axis torque detection signal t2 to the input d1
  • w2d1 represents the frequency response of the second speed detection signal w2 to the input d1
  • t3d1 represents the third axis torque detection signal t3 to the input d1.
  • the frequency response represents w3d1, and the frequency response of the third speed detection signal w3 to the input d1.
  • the estimation apparatus determines whether or not the measurement of the six frequency responses t1d1 and the like has been completed within a predetermined frequency region. If the determination in S67 is NO, the process returns to S64, the excitation frequency of the first excitation torque input d1 is changed, and the processes of S65 to S66 are executed again. If the determination in S67 is YES, the process moves to S68.
  • the estimation device performs the six frequency responses t1d1, w1d1, t2d1, w2d1, t3d1, and w3d1 measured in S66, the vibration control for the second dynamometer (see S53 to S55), and the third dynamometer.
  • 12 sets of transfer functions see S61 to S63
  • the frequency corresponding to the first excitation torque input d1 measured in S66 is calculated.
  • a response t1d1 and the like, a frequency response t1d2 and the like for the excitation torque inputs d2 and d3 measured in S55 and S59, and a transfer function Gw2_i2, C22 and the like calculated in S61 to S63 based on these frequency responses t1d2 and the like By inputting, the transfer function Gt1_i1 and the like are calculated.
  • the estimation apparatus performs the six sets of frequency responses t1d1, w1d1, t2d1, w2d1, t3d1, and w3d1 measured in S66, the vibration control for the second dynamometer (see S53 to S55), and the third dynamometer.
  • 12 sets of transfer functions see S61 to S63
  • 5 sets of transfer functions Gw1_i1, Gw1_i2, Gw1_i3 Gw2_i1 and Gw3_i1 are calculated, and this process ends.
  • the frequency corresponding to the first excitation torque input d1 measured in S66 is calculated.
  • a response t1d1 and the like, a frequency response t1d2 and the like for the excitation torque inputs d2 and d3 measured in S55 and S59, and a transfer function Gw2_i2, C22 and the like calculated in S61 to S63 based on these frequency responses t1d2 and the like By inputting, the transfer function Gw1_i1 and the like are calculated.
  • FIG. 7A to 7J are diagrams showing estimation results obtained by the input / output characteristic estimation method of the third embodiment. More specifically, FIG. 7A shows a Bode diagram of the transfer function Gt1_i1 estimated by the equation (12-1), and FIG. 7B shows a Bode diagram of the transfer function Gt2_i1 estimated by the equation (12-4). 7C shows a Bode diagram of the transfer function Gt3_i1 estimated by the equation (12-5), FIG. 7D shows a Bode diagram of the transfer function Gw1_i1 estimated by the equation (13-1), and FIG. Shows a Bode diagram of the transfer function Gw2_i1 estimated by the equation (13-4), FIG.
  • FIG. 7F shows a Bode diagram of the transfer function Gw3_i1 estimated by the equation (13-5), and FIG. -2) shows a Bode diagram of the transfer function Gt1_i2 estimated by the equation (2)
  • FIG. 7H shows a Bode diagram of the transfer function Gt1_i3 estimated by the equation (12-3), and FIG. 13-2) by shows a Bode diagram of the transfer function Gw1_i2 estimated
  • FIG. 7J shows a Bode diagram of the transfer function Gw1_i3 estimated by equation (13-3).
  • a thin continuous line shows a true mechanical characteristic
  • a broken line shows the estimation result by the input / output characteristic estimation method of Example 1.
  • the thick solid line in each figure shows the estimation result by the conventional input / output characteristics estimation method. More specifically, the thick solid line in FIG. 7A is the response of the first shaft torque detection signal t1 when the excitation torque input d1 is input to the first dynamometer (that is, t1d1 in Expression (11-1)). 7B is a response of the second shaft torque detection signal t2 when the excitation torque input d1 is input to the first dynamometer (that is, t2d1 in the equation (11-3)), and the thick line in FIG. 7C.
  • the solid line is the response of the first shaft torque detection signal t1 when the excitation torque input d3 is input to the third dynamometer (that is, t3d1 in the equation (11-5)), and the thick solid line in FIG.
  • FIG. 7E shows the response of the first speed detection signal w1 when the excitation torque input d1 is input to the meter (ie, w1d1 in the equation (11-2)).
  • the bold solid line in FIG. 7E indicates the excitation torque input to the first dynamometer.
  • Response of the second speed detection signal w2 when d1 is input is the w2d1), and the thick solid line in FIG.
  • 7F shows the response of the third speed detection signal w3 when the excitation torque input d1 is input to the first dynamometer (that is, w3d1 in Expression (11-6)).
  • 7G represents the response of the first shaft torque detection signal t1 when the excitation torque input d2 is input to the second dynamometer
  • the thick solid line in FIG. 7H represents the vibration to the third dynamometer.
  • the response of the first shaft torque detection signal t1 when the torque input d3 is input, and the thick solid line in FIG. 7I is the response of the first speed detection signal w1 when the excitation torque input d2 is input to the second dynamometer.
  • the thick solid line in FIG. 7J represents the response of the first speed detection signal w1 when the excitation torque input d3 is input to the third dynamometer.
  • the conventional input / output characteristic device receives the characteristics of the speed control device and cannot obtain the true mechanical characteristics.
  • the input / output characteristic estimation method of Example 3 by estimating a single transfer function by combining a plurality of responses obtained when vibration control is performed on a plurality of dynamometers connected to the specimen, As shown in FIGS. 7A to 7J, the input / output characteristics of the test system can be accurately estimated while excluding the characteristics of the speed control device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

目的は、所定の入力から所定の出力までの入出力特性を精度良く推定できる試験システムの入出力特性推定方法を提供すること。 試験システムの入出力特性推定方法は、第2トルク制御入力ib2に加振入力d2を重畳したものを第2トルク電流指令信号i2として第2動力計に入力し、加振入力d2に対する周波数応答i2d2等を測定する第1加振測定工程(S3~S5)と、第3トルク制御入力ib3に加振入力d3を重畳したものを第3トルク電流指令信号i3として第3動力計に入力し、加振入力d3に対する周波数応答i2d3等を測定する第2加振測定工程(S7~S9)と、第1及び第2加振測定工程において測定された応答を用いることによって、第2又は第3トルク電流指令信号(i2、i3)から第1又は第2軸トルク検出信号(t2又はt3)までの伝達関数Gt2_i2等を推定する機械特性推定工程(S11及びS12)と、を備える。

Description

試験システムの入出力特性推定方法
 本発明は、試験システムの入出力特性推定方法に関する。より詳しくは、少なくとも2つの軸を備える供試体の試験システムにおける所定の入力から所定の出力までの入出力特性を推定する入出力特性推定方法に関する。
 特許文献1には、供試体であるエンジンと動力計とを結合軸で連結して構成されるエンジンの試験システム(以下、「エンジンベンチシステム」という)が示されている。エンジンベンチシステムでは、エンジン制御装置を用いてエンジンのスロットル開度を制御しながら、動力計制御装置によって動力計のトルクや速度等を制御することにより、エンジンの耐久性、燃費、及び排気浄化性能等を評価する。エンジンベンチシステムではエンジンの性能を評価する試験を行う前に、エンジンの特性、とりわけエンジンの慣性モーメントを測定しておき、これを動力計制御装置におけるトルク制御や速度制御の制御パラメータとして利用する場合がある。
 特許文献1には、エンジンと結合軸で連結された動力計のトルクを振動させる加振制御を行うことにより、エンジンベンチシステムにおける信号の入出力特性(より具体的には、トルク電流指令信号から角速度検出信号への伝達関数G1、及びトルク電流指令信号から軸トルク検出信号への伝達関数G2)を測定し、この測定結果を利用することによってエンジンの慣性モーメントを推定する方法が示されている。エンジンベンチシステムでは、供試体であるエンジンには1台の動力計のみが連結されることから、その入出力特性は、動力計への加振入力に対する所定の信号の応答を測定することによって容易に測定することができる。
特開2008-76061号公報
 ところで、動力計を用いた試験システムには、特許文献1に示すようなエンジンを供試体としたエンジンベンチシステムの他、車両のドライブトレインを供試体としたドライブトレインベンチシステムも存在する。ドライブトレインとは、エンジンで発生したエネルギを駆動輪に伝達するための複数の装置の総称をいい、エンジン、クラッチ、トランスミッション、ドライブシャフト、プロペラシャフト、デファレンシャルギヤ、及び駆動輪等を組み合わせて構成される。ドライブトレインは、エンジンの出力軸に連結される1つの入力軸と、この入力軸と動力伝達可能に接続された第1及び第2出力軸とを備える3軸である。
 ドライブトレインベンチシステムは、ドライブトレインの入力軸に実エンジンやダイナモメータ等の動力発生源を接続し、この動力発生源で発生した動力を入力軸に入力し供試体を駆動しながら、その第1及び第2出力軸の各々に連結された第1及び第2ダイナモメータの回転速度を速度制御装置によって制御し、これら第1及び第2ダイナモメータで動力を吸収することによって供試体の性能を評価する。
 このようなドライブトレインベンチシステムにおいても、上述のエンジンベンチシステムと同様に信号の入出力特性を推定したい場合がある。しかしながらドライブトレインベンチシステムでは、エンジンベンチシステムと異なり、供試体には2台又は3台の動力計が連結されているため、特許文献1の発明の方法をそのまま適用しただけでは、その入出力特性を精度良く推定することできない。より具体的には、ドライブトレインベンチシステムでは、供試体には加振させる動力計の他にも、速度制御装置によって制御されている動力計が接続されていることから、この速度制御装置の影響によって、特許文献1の発明のように単純に加振入力信号に対する対象とする出力信号の応答を測定するだけでは、その入出力特性を正確に推定することができない。
 本発明は、少なくとも2つの軸を備える供試体を試験対象とした試験システムにおいて、所定の入力から所定の出力までの入出力特性を精度良く推定できる試験システムの入出力特性推定方法を提供することを目的とする。
 (1)試験システム(例えば、後述の試験システムS)は、第1軸(例えば、後述の第1軸S1)及び当該第1軸と動力伝達可能に接続された第2軸(例えば、後述の第2軸S2)及び第3軸(例えば、後述の第3軸S3)を備える供試体(例えば、後述の供試体W)と、前記第2軸に連結された第2電動機(例えば、後述の第2動力計22)と、前記第3軸に連結された第3電動機(例えば、後述の第3動力計23)と、前記第2軸又は前記第2電動機の状態を検出し第2状態検出信号(t2,w2)を発生する第2状態検出手段(例えば、後述の第2回転速度検出器52及び第2軸トルク検出器62)と、前記第3軸又は前記第3電動機の状態を検出し第3状態検出信号(t3,w3)を発生する第3状態検出手段(例えば、後述の第3回転速度検出器53及び第3軸トルク検出器63)と、所定の入力信号(w2,w3,w_av,dw)に基づいて、前記第2電動機の回転速度を制御するための前記第2電動機への第2トルク制御入力(例えば、後述の第2トルク制御入力ib2)と、前記第3電動機の回転速度を制御するための前記第3電動機への第3トルク制御入力(例えば、後述の第3トルク制御入力ib3)と、を生成する速度制御装置(例えば、後述の速度制御装置73)と、所定の周波数で変化する加振入力(d1,d2,d3)を発生する加振入力発生手段(例えば、後述の加振トルク生成部72)と、を備える。この試験システムの入出力特性推定方法は、前記第2トルク制御入力(ib2)に前記加振入力(d2)を重畳したものを第2入力(i2)として前記第2電動機に入力しかつ前記第3トルク制御入力(ib3)を第3入力(i3)として前記第3電動機に入力し、当該加振入力(d2)に対する応答(例えば、後述の周波数応答i2d2,t2d2,w2d2,i3d2,t3d2,w3d2)を測定する第1加振測定工程(例えば、後述の図3のS3~S5の工程)と、前記第2トルク制御入力(ib2)を第2入力(i2)として前記第2電動機に入力しかつ前記第3トルク制御入力(ib3)に前記加振入力(d3)を重畳したものを第3入力として前記第3電動機に入力し、当該加振入力(d3)に対する応答(例えば、後述の周波数応答i2d3,t2d3,w2d3,i3d3,t3d3,w3d3)を測定する第2加振測定工程(例えば、後述の図3のS7~S9の工程)と、前記第1加振測定工程において測定された応答と前記第2加振測定工程において測定された応答とを用いることによって、前記第2又は第3入力(i2又はi3)から前記第2又は第3状態検出信号(t2,t3,w2,w3)までの伝達関数(例えば、後述のGt2_i2,Gt2_i3,Gt3_i2,Gt3_i3,Gw2_i2,Gw2_i3,Gw3_i2,Gw3_i3)を推定する機械特性推定工程(例えば、後述の図3のS11及びS12の工程)と、を備えることを特徴とする。
 (2)この場合、前記第2状態検出手段は、前記第2軸のトルクを検出し第2トルク検出信号(t2)を発生する第2トルク検出器(例えば、後述の第2軸トルク検出器62)と、前記第2電動機の回転速度を検出し第2速度信号(w2)を発生する第2回転速度検出器(例えば、後述の第2回転速度検出器52)と、を備え、前記第3状態検出手段は、前記第3軸のトルクを検出し第3トルク検出信号(t3)を発生する第3トルク検出器(例えば、後述の第3軸トルク検出器63)と、前記第3電動機の回転速度を検出し第3速度信号(w3)を発生する第3回転速度検出器(例えば、後述の第3回転速度検出器53)と、を備え、前記速度制御装置は、前記第2及び第3速度信号に基づいて、前記第2及び第3トルク制御入力を生成し、前記第1加振測定工程では、前記第2トルク制御入力に重畳した加振入力に対する前記第2及び第3入力の少なくとも何れかの応答(i2d2,i3d2)を測定し、前記第2加振測定工程では、前記第3トルク制御入力に重畳した加振入力に対する前記第2及び第3入力の少なくとも何れかの応答(i2d3,i3d3)を測定し、前記機械特性推定工程では、前記第1及び第2加振測定工程において測定された応答を用いることによって、前記第2若しくは第3入力(i2又はi3)から前記第2若しくは第3トルク検出信号(t2又はt3)又は前記第2若しくは第3速度信号(w2又はw3)までの伝達関数(Gt2_i2,Gt2_i3,Gt3_i2,Gt3_i3,Gw2_i2,Gw2_i3,Gw3_i2,Gw3_i3)を推定することが好ましい。
 (3)この場合、前記第1加振測定工程では、前記加振入力に対する前記第2入力、前記第3入力、前記第2トルク検出信号、及び前記第3トルク検出信号の応答(i2d2,i3d2,t2d2,t3d2)を測定し、前記第2加振測定工程では、前記加振入力に対する前記第2入力、前記第3入力、前記第2トルク検出信号、及び前記第3トルク検出信号の応答(i2d3,i3d3,t2d3,t3d3)を測定し、前記機械特性推定工程では、前記第1及び前記第2加振測定工程において測定された応答を用いることによって、前記第2又は第3入力から前記第2又は第3トルク検出信号までの伝達関数(Gt2_i2,Gt2_i3,Gt3_i2,Gt3_i3)を推定することが好ましい。
 (4)この場合、前記第1加振測定工程では、前記加振入力に対する前記第2入力、前記第3入力、前記第2速度信号、及び前記第3速度信号の応答(i2d2,i3d2,w2d2,w3d2)を測定し、前記第2加振測定工程では、前記加振入力に対する前記第2入力、前記第3入力、前記第2速度信号、及び前記第3速度信号の応答(i2d3,i3d3,w2d3,w3d3)を測定し、前記機械特性推定工程では、前記第1及び前記第2加振測定工程において測定された応答を用いることによって、前記第2又は第3入力から前記第2又は第3速度信号までの伝達関数(Gw2_i2,Gw2_i3,Gw3_i2,Gw3_i3)を推定することが好ましい。
 (5)この場合、入出力特性推定方法は、前記第1加振測定工程において測定された応答と前記第2加振測定工程において測定された応答とを用いることによって、前記速度制御装置における前記入力信号(w2又はw3)から前記第2又は第3入力(i2又はi3)までの伝達関数を推定する制御回路特性推定工程(例えば、後述の図5のS31の工程)をさらに備えることが好ましい。
 (6)この場合、前記試験システムは、前記第1軸に連結された第1電動機(例えば、後述の第1動力計21)と、前記第1軸又は前記第1電動機の状態を検出し第1状態検出信号(t1,w1)を発生する第1状態検出手段(例えば、後述の第1回転速度検出器51、第1軸トルク検出器61)と、をさらに備え、前記入出力特性推定方法は、所定の基準入力(ib1)に前記加振入力(d1)を重畳したものを第1入力(i1)として前記第1電動機に入力しかつ前記第2及び第3トルク制御入力をそれぞれ第2及び第3入力として前記第2及び第3電動機に入力し、当該加振入力に対する応答(t1d1,w1d1,t2d1,w2d1,t3d1,w3d1)を測定する第3加振測定工程(例えば、後述の図6BのS64~S66の工程)をさらに備え、前記機械特性推定工程では、前記第1及び第2加振測定工程の何れか又は両方において測定された応答と前記第3加振測定工程において測定された応答とを用いることによって、前記第1入力から前記第1、第2若しくは第3状態検出信号までの伝達関数(Gt1_i1,Gt2_i1,Gt3_i1,Gw1_i1,Gw2_i1,Gw3_i1)又は前記第2若しくは第3入力から前記第1状態検出信号までの伝達関数(Gt1_i2,Gt1_i3,Gw1_i2,Gw1_i3)を推定することが好ましい。
 (7)試験システムは、第1軸及び当該第1軸と動力伝達可能に接続された第2軸及び第3軸を備える供試体と、前記第2軸に連結された第2電動機と、前記第3軸に連結された第3電動機と、前記第2軸又は前記第2電動機の状態を検出し第2状態検出信号を発生する第2状態検出手段と、前記第3軸又は前記第3電動機の状態を検出し第3状態検出信号を発生する第3状態検出手段と、所定の入力信号に基づいて、前記第2電動機の回転速度を制御するための前記第2電動機への第2トルク制御入力と、前記第3電動機の回転速度を制御するための前記第3電動機への第3トルク制御入力と、を生成する速度制御装置と、所定の周波数で変化する加振入力を発生する加振入力発生手段と、を備える。この試験システムの入出力特性推定方法は、前記第2トルク制御入力に前記加振入力を重畳したものを第2入力として前記第2電動機に入力しかつ前記第3トルク制御入力を第3入力として前記第3電動機に入力し、当該加振入力に対する応答を測定する第1加振測定工程(例えば、後述の図5のS23~S25の工程)と、前記第2トルク制御入力を第2入力として前記第2電動機に入力しかつ前記第3トルク制御入力に前記加振入力を重畳したものを第3入力として前記第3電動機に入力し、当該加振入力に対する応答を測定する第2加振測定工程(例えば、後述の図5のS27~S29の工程)と、前記第1加振測定工程において測定された応答と前記第2加振測定工程において測定された応答とを用いることによって、前記速度制御装置における前記入力信号(w2又はw3)から前記第2又は第3入力(i2又はi3)までの伝達関数(C22,C23,C32,C33)を推定する制御回路特性推定工程(例えば、後述の図5のS31の工程)と、を備えることを特徴とする。
 (8)この場合、前記第2状態検出手段は、前記第2軸のトルクを検出し第2トルク検出信号を発生する第2トルク検出器と、前記第2電動機の回転速度を検出し第2速度信号を発生する第2回転速度検出器と、を備え、前記第3状態検出手段は、前記第3軸のトルクを検出し第3トルク検出信号を発生する第3トルク検出器と、前記第3電動機の回転速度を検出し第3速度信号を発生する第3回転速度検出器と、を備え、前記速度制御装置は、前記第2及び第3速度信号に基づいて、前記第2及び第3トルク制御入力を生成し、前記第1加振測定工程では、前記第2トルク制御入力に重畳した加振入力に対する前記第2及び第3速度信号の応答を測定し、前記第2加振測定工程では、前記第3トルク制御入力に重畳した加振入力に対する前記第2及び第3速度信号の応答を測定し、前記制御回路特性推定工程では、前記第1及び第2加振測定工程において測定された応答を用いることによって、前記速度制御装置における前記第2又は第3速度信号から前記第2又は第3入力までの伝達関数(C22,C23,C32,C33)を推定することが好ましい。
 (9)試験システムは、第1軸(例えば、後述の第1軸S1)及び当該第1軸と動力伝達可能に接続された第2軸(例えば、後述の第2軸S2又は第3軸S3)を備える供試体(例えば、後述の供試体W)と、前記第1軸に連結された第1電動機(例えば、後述の第1動力計21)と、前記第2軸に連結された第2電動機(例えば、後述の第2動力計22又は第3動力計23)と、前記第1軸又は前記第1電動機の状態を検出し第1状態検出信号を発生する第1状態検出手段(例えば、後述の第1回転速度検出器51、第1軸トルク検出器61)と、前記第2軸又は前記第2電動機の状態を検出し第2状態検出信号を発生する第2状態検出手段(例えば、後述の第2回転速度検出器52及び第2軸トルク検出器62又は第3回転速度検出器53及び第3軸トルク検出器63)と、所定の入力信号(w2又はw3)に基づいて、前記第2電動機の回転速度を制御するための前記第2電動機への第2トルク制御入力(ib2又はib3)を生成する速度制御装置(例えば、後述の速度制御装置73)と、所定の周波数で変化する加振入力(d1,d2,d3)を発生する加振入力発生手段(例えば、後述の加振トルク生成部72)と、を備える。この試験システムの入出力特性推定方法は、所定の基準入力(ib1)に前記加振入力(d1)を重畳したものを第1入力(i1)として前記第1電動機に入力しかつ前記第2トルク制御入力(ib2又はib3)を第2入力(i2又はi3)として前記第2電動機に入力し、当該加振入力に対する応答を測定する第1加振測定工程(例えば、後述の図6BのS64~S66の工程)と、前記基準入力を第1入力として前記第1電動機に入力しかつ前記第2トルク制御入力に前記加振入力を重畳したものを第2入力として前記第2電動機に入力し、当該加振入力に対する応答を測定する第2加振測定工程(例えば、後述の図6AのS53~S55の工程若しくはS57~S59の工程)と、前記第1加振測定工程において測定された応答(t1d1,w1d1,t2d1,w2d1,t3d1,w3d1)と前記第2加振測定工程において測定された応答(i2d2,i2d3等)とを用いることによって、前記第1入力から前記第1又は第2状態検出信号までの伝達関数(Gt1_i1,Gt2_i1,Gt3_i1,Gw1_i1,Gw2_i1,Gw3_i1)を推定する機械特性推定工程(例えば、後述の図6BのS68及びS69の工程)と、を備えることを特徴とする。
 (10)この場合、前記第1状態検出手段は、前記第1軸のトルクを検出し第1トルク検出信号を発生する第1トルク検出器と、前記第1電動機の回転速度を検出し第1速度信号を発生する第1回転速度検出器と、を備え、前記第2状態検出手段は、前記第2軸のトルクを検出し第2トルク検出信号を発生する第2トルク検出器と、前記第2電動機の回転速度を検出し第2速度信号を発生する第2回転速度検出器と、を備え、前記第1加振測定工程では、前記基準入力に重畳した加振入力に対する前記第2速度信号及び前記第1トルク検出信号の応答を測定し、前記機械特性推定工程では、前記第1及び第2加振測定工程において測定された応答を用いることによって、前記第1入力から前記第1トルク検出信号までの伝達関数(Gt1_i1)を推定することが好ましい。
 (11)この場合、前記第1加振測定工程では、前記基準入力に重畳した加振入力に対する前記第2速度信号並びに前記第1及び第2トルク検出信号の応答を測定し、前記機械特性推定工程では、前記第1及び第2加振測定工程において測定された応答を用いることによって、前記第1入力から前記第1トルク検出信号までの伝達関数及び前記第1入力から前記第2トルク検出信号までの伝達関数(Gt2_i1又はGt3_i1)を推定することが好ましい。
 (12)この場合、前記第1状態検出手段は、前記第1軸のトルクを検出し第1トルク検出信号を発生する第1トルク検出器と、前記第1電動機の回転速度を検出し第1速度信号を発生する第1回転速度検出器と、を備え、前記第2状態検出手段は、前記第2軸のトルクを検出し第2トルク検出信号を発生する第2トルク検出器と、前記第2電動機の回転速度を検出し第2速度信号を発生する第2回転速度検出器と、を備え、前記第1加振測定工程では、前記基準入力に重畳した加振入力に対する前記第1及び第2速度信号の応答を測定し、前記機械特性推定工程では、前記第1及び第2加振測定工程において測定された応答を用いることによって、前記第1入力から前記第1速度信号までの伝達関数(Gw1_i1)及び前記第1入力から前記第2速度信号までの伝達関数(Gw2_i1又はGw3_i1)を推定することが好ましい。
 (1)本発明では、供試体の第2及び第3軸に第2及び第3電動機をそれぞれ連結し、第1加振測定工程では第2電動機を加振制御したときにおける加振入力に対する応答を測定し、第2加振測定工程では第3電動機を加振制御したときにおける加振入力に対する応答を測定する。また機械特性推定工程は、これら第1及び第2加振測定工程において得られた加振入力に対する応答を用いることによって、第2又は第3入力から第2又は第3状態検出信号までの伝達関数を推定する。このように本発明では、第2電動機を加振制御したときの応答と第3電動機を加振制御したときの応答とを組み合わせて第2又は第3入力から第2又は第3状態検出信号までの伝達関数を推定することにより、速度制御装置の入出力特性の影響を除いて精度良く伝達関数を推定することができる。
 (2)本発明の第1加振測定工程では第2電動機に入力される加振入力に対する第2及び第3入力の応答を測定し、第2加振測定工程では第3電動機に入力される加振入力に対する第2及び第3入力の応答を測定し、機械特性推定工程は、これら4つの応答を用いて第2又は第3入力から、第2若しくは第3トルク検出信号又は第2若しくは第3速度信号までの伝達関数を推定する。これにより、これら伝達関数をさらに精度良く推定することができる。
 (3)本発明の機械特性推定工程では、第2電動機に入力される加振入力に対する第2及び第3入力並びに第2及び第3トルク検出信号の応答と、第3電動機に入力される加振入力に対する第2及び第3入力並びに第2及び第3トルク検出信号の応答と、からなる8つの応答を用いて第2又は第3入力から第2又は第3トルク検出信号までの伝達関数を推定する。これにより、これら伝達関数をさらに精度良く推定することができる。
 (4)本発明の機械特性推定工程では、第2電動機に入力される加振入力に対する第2及び第3入力並びに第2及び第3速度信号の応答と、第3電動機に入力される加振入力に対する第2及び第3入力並びに第2及び第3速度信号の応答と、からなる8つの応答を用いて第2又は第3入力から第2又は第3速度信号までの伝達関数を推定する。これにより、これら伝達関数をさらに精度良く推定することができる。
 (5)本発明の制御回路特性推定工程は、第1及び第2加振測定工程において測定された応答を用いることによって、速度制御装置における入力信号から第2又は第3入力までの伝達関数を推定する。このように本発明では、第2電動機を加振制御したときの応答と第3電動機を加振制御したときの応答とを組み合わせて速度制御装置の入出力特性を表す伝達関数を推定することにより、速度制御装置を実際に稼働させた状態でその伝達関数を精度良く推定することができる。なお、実際の速度制御装置は、様々な制御回路を組み合わせて構成されていることから、特定の制御回路のみを稼働させてその入出力特性を推定することが困難である場合や、時間がかかったりする場合がある。本発明では、速度制御装置を実際に稼働させた状態でその入出力特性を推定できるので、容易かつ短い時間でその入出力特性を推定できる。
 (6)本発明では、供試体の第1軸に第1電動機を連結し、第3加振測定工程では、第1電動機を加振制御したときにおける加振入力に対する応答を測定する。また機械特性推定工程では、第1及び第2加振測定工程の何れか又は両方において測定された応答と、第3加振測定工程において測定された応答とを用いることによって、第1入力から第1~第3状態検出信号までの伝達関数又は第2若しくは第3入力から第1状態検出信号までの伝達関数を推定する。これにより本発明によれば、速度制御装置の入出力特性の影響を除いて精度良く伝達関数を推定することができる。
 (7)本発明では、供試体の第2及び第3軸に第2及び第3電動機をそれぞれ連結し、第1加振測定工程では第2電動機を加振制御したときにおける加振入力に対する応答を測定し、第2加振測定工程では第3電動機を加振制御したときにおける加振入力に対する応答を測定する。また制御回路特性推定工程では、これら第1及び第2加振測定工程において測定された応答を用いることによって、速度制御装置における入力信号から第2又は第3入力までの伝達関数を推定する。このように本発明では、第2電動機を加振制御したときの応答と第3電動機を加振制御したときの応答とを組み合わせて速度制御装置の入出力特性を表す伝達関数を推定することにより、速度制御装置を実際に稼働させた状態でその伝達関数を精度良く推定することができる。なお、実際の速度制御装置は、様々な制御回路を組み合わせて構成されていることから、特定の制御回路のみを稼働させてその入出力特性を推定することが困難である場合や、時間がかかったりする場合がある。本発明では、速度制御装置を実際に稼働させた状態でその入出力特性を推定できるので、容易かつ短い時間でその入出力特性を推定できる。
 (8)本発明の第1加振測定工程では第2電動機に入力される加振入力に対する第2及び第3速度信号の応答を測定し、第2加振測定工程では第3電動機に入力される加振入力に対する第2及び第3速度信号の応答を測定し、制御回路特性推定工程では、これら4つの応答を用いて速度制御装置における第2又は第3速度信号から第2又は第3入力までの伝達関数を推定する。これにより、これら伝達関数をさらに精度良く推定することができる。
 (9)本発明では、供試体の第1及び第2軸に第1及び第2電動機をそれぞれ連結し、第2電動機の回転速度を速度制御装置によって制御する。第1加振測定工程では第1電動機を加振制御したときにおける加振入力に対する応答を測定し、第2加振測定工程では第2電動機を加振制御したときにおける加振入力に対する応答を測定する。また機械特性推定工程では、これら第1及び第2加振測定工程によって得られた加振入力に対する応答を用いることによって、第1入力から第1又は第2状態検出信号までの伝達関数を推定する。このように本発明では、第1電動機を加振制御したときの応答と第2電動機を加振制御したときの応答とを組み合わせて第1入力から第1又は第2状態検出信号までの伝達関数を推定することにより、速度制御装置の入出力特性の影響を除いて精度良く伝達関数を推定することができる。
 (10)本発明の第1加振測定工程では第1電動機に入力される加振入力に対する第2速度信号及び第1トルク検出信号の応答を測定し、機械特性推定工程では、第1加振測定工程において測定されたこれら2つの応答と第2加振測定工程において測定された応答とを用いて第1入力から第1トルク検出信号までの伝達関数を推定する。これにより、この伝達関数をさらに精度良く推定することができる。
 (11)本発明の第1加振測定工程では第1電動機に入力される加振入力に対する第2速度信号並びに第1及び第2トルク検出信号の応答を測定し、機械特性推定工程では、第1加振測定工程において測定されたこれら3つの応答と第2加振測定工程において測定された応答とを用いて第1入力から第1トルク検出信号までの伝達関数と、第1入力から第2トルク検出信号までの伝達関数とを推定する。これにより、これら伝達関数をさらに精度良く推定することができる。
 (12)本発明の第1加振測定工程では第1電動機に入力される加振入力に対する第1及び第2速度信号の応答を測定し、機械特性推定工程では、第1加振測定工程によって測定されたこれら2つの応答と第2加振測定工程によって測定された応答とを用いて第1入力から第1速度信号までの伝達関数と、第1入力から第2速度信号までの伝達関数とを推定する。これにより、これら伝達関数をさらに精度良く推定することができる。
本発明の一実施形態に係る試験システム及びその入出力特性推定方法の構成を示す図である。 入出力特性を推定する際における動力計制御装置の制御回路の構成を示す図である。 実施例1の入出力特性推定方法の具体的な演算手順を示すフローチャートである。 実施例1の推定結果(Gt2_i2)を示す図である。 実施例1の推定結果(Gt3_i2)を示す図である。 実施例1の推定結果(Gw2_i2)を示す図である。 実施例1の推定結果(Gw3_i2)を示す図である。 実施例1の推定結果(Gt2_i3)を示す図である。 実施例1の推定結果(Gt3_i3)を示す図である。 実施例1の推定結果(Gw2_i3)を示す図である。 実施例1の推定結果(Gw3_i3)を示す図である。 実施例2の入出力特性推定方法の具体的な演算手順を示すフローチャートである。 実施例3の入出力特性推定方法の具体的な演算手順を示すフローチャートである。 実施例3の入出力特性推定方法の具体的な演算手順を示すフローチャートである。 実施例3の推定結果(Gt1_i1)を示す図である。 実施例3の推定結果(Gt2_i1)を示す図である。 実施例3の推定結果(Gt3_i1)を示す図である。 実施例3の推定結果(Gw1_i1)を示す図である。 実施例3の推定結果(Gw2_i1)を示す図である。 実施例3の推定結果(Gw3_i1)を示す図である。 実施例3の推定結果(Gt1_i2)を示す図である。 実施例3の推定結果(Gt1_i3)を示す図である。 実施例3の推定結果(Gw1_i2)を示す図である。 実施例3の推定結果(Gw1_i3)を示す図である。
 以下、本発明の一実施形態について、図面を参照しながら詳細に説明する。
 図1は、本実施形態に係る入出力特性推定方法が適用された試験システムSの構成を示す図である。試験システムSは、少なくとも1つの入力軸としての第1軸S1並びにこの第1軸S1とそれぞれ動力伝達可能に接続された出力軸としての第2軸S2及び第3軸S3とを備えるドライブトレインを供試体Wとし、この供試体Wの性能を評価するためのものである。
 試験システムSは、供試体Wと、供試体Wに連結された第1動力計21、第2動力計22、及び第3動力計23と、各動力計21~23に電力を供給する第1インバータ31、第2インバータ32、及び第3インバータ33と、各動力計21~23における軸の回転速度を検出する第1回転速度検出器51、第2回転速度検出器52、及び第3回転速度検出器53と、各動力計21~23における軸トルクを検出する第1軸トルク検出器61、第2軸トルク検出器62、及び第3軸トルク検出器63と、各インバータ31~33へトルク電流指令信号を入力する動力計制御装置7と、試験システムSにおける所定の入力から所定の出力までの入出力特性を推定する推定装置8と、を備える。
 第1動力計21の出力軸は、供試体Wの第1軸S1と同軸に連結されている。第2動力計22の出力軸は、供試体Wの第2軸S2と同軸に連結されている。第3動力計23の出力軸は、供試体Wの第3軸S3と同軸に連結されている。
 第1回転速度検出器51は、第1動力計21の出力軸の単位時間当たりの回転数である第1回転速度を検出し、この第1回転速度に応じた第1速度検出信号w1を発生する。第2回転速度検出器52は、第2動力計22の出力軸の単位時間当たりの回転数である第2回転速度を検出し、この第2回転速度に応じた第2速度検出信号w2を発生する。第3回転速度検出器53は、第3動力計23の出力軸の単位時間当たりの回転数である第3回転速度を検出し、この第3回転速度に応じた第3速度検出信号w3を発生する。
 第1軸トルク検出器61は、第1軸S1に発生する捩れトルク(以下、「第1軸トルク」という)を検出し、この第1軸トルクに応じた第1軸トルク検出信号t1を発生する。第2軸トルク検出器62は、第2軸S2に発生する捩れトルク(以下、「第2軸トルク」という)を検出し、この第2軸トルクに応じた第2軸トルク検出信号t2を発生する。第3軸トルク検出器63は、第3軸S3に発生する捩れトルク(以下、「第3軸トルク」という)を検出し、この第3軸トルクに応じた第3軸トルク検出信号t3を発生する。
 動力計制御装置7は、速度検出信号w1~w3と、軸トルク検出信号t1~t3と、所定の指令信号とを用いることによって、第1動力計21に対するトルク電流指令信号である第1トルク電流指令信号i1と、第2動力計22に対するトルク電流指令信号である第2トルク電流指令信号i2と、第3動力計23に対するトルク電流指令信号である第3トルク電流指令信号i3と、を所定のアルゴリズムに基づいて生成し、各信号i1~i3を各インバータ31~33へ入力する。第1インバータ31は、第1トルク電流指令信号i1に応じた電力を第1動力計21に供給する。第2インバータ32は、第2トルク電流指令信号i2に応じた電力を第2動力計22に供給する。第3インバータ33は、第3トルク電流指令信号i3に応じた電力を第3動力計23に供給する。
 推定装置8は、上述の動力計制御装置7による各動力計21~23の制御下において、速度検出信号w1~w3と、軸トルク検出信号t1~t3と、トルク電流指令信号i1~i3と、を用いることによって、試験システムSにおける所定の入力信号から所定の出力信号までの入出力特性を推定する。
 図2は、動力計制御装置7の制御回路の構成を示す図である。より具体的には、図2には、動力計制御装置7に構成される制御回路のうち、推定装置8を用いて試験システムSの入出力特性を推定する際に用いられる部分のみを図示する。
 動力計制御装置7は、ベーストルク生成部71と、加振トルク生成部72と、速度制御装置73と、第1指令信号生成部74と、第2指令信号生成部75と、第3指令信号生成部76と、を備え、入出力特性を推定する際には、これらを用いることによってトルク電流指令信号i1~i3を生成する。
 ベーストルク生成部71は、時間変化しない一定の大きさのベーストルク指令信号ib1を生成する。加振トルク生成部72は、所定の要求に応じて、0を中心とした所定の幅内で所定の加振周波数の下でランダムに変動する第1加振トルク入力d1、第2加振トルク入力d2、及び第3加振トルク入力d3を生成する。
 第1指令信号生成部74は、第1加振トルク入力d1が生成されていない場合には第1ベーストルク指令信号ib1を第1トルク電流指令信号i1として出力し、第1加振トルク入力d1が生成されている場合にはこの入力d1をベーストルク指令信号ib1に重畳したものを第1トルク電流指令信号i1として出力する。
 速度制御装置73は、所定の指令信号と第2速度検出信号w2と第3速度検出信号w3とを用いることによって、第2回転速度及び第3回転速度を所定の目標へ制御するための第2動力計22への入力である第2トルク制御入力ib2及び第3動力計23への入力である第3トルク制御入力ib3を生成する。より具体的には、速度制御装置73は、第2回転速度と第3回転速度の平均速度に対する指令信号であって時間変化しないものである平均速度指令信号w_avと第2回転速度と第3回転速度との差に対する指令信号であって時間変化しないものである差速度指令信号dw(以下では、0とする)とが入力されると、第2速度検出信号w2と第3速度検出信号w3の平均((w2+w3)/2)が平均速度指令信号w_avになり、かつ第2速度検出信号w2と第3速度検出信号w3の差(w2-w3)が差速度指令信号dwになるように既知のフィードバックアルゴリズムによって第2トルク制御入力ib2及び第3トルク制御入力ib3を生成する。
 第2指令信号生成部75は、第2加振トルク入力d2が生成されていない場合には第2トルク制御入力ib2を第2トルク電流指令信号i2として出力し、第2加振トルク入力d2が生成されている場合にはこの入力d2を第2トルク制御入力ib2に重畳したものを第2トルク電流指令信号i2として出力する。
 第3指令信号生成部76は、第3加振トルク入力d3が生成されていない場合には第3トルク制御入力ib3を第3トルク電流指令信号i3として出力し、第3加振トルク入力d3が生成されている場合にはこの入力d3を第3トルク制御入力ib3に重畳したものを第3トルク電流指令信号i3として出力する。
 以上のように動力計制御装置7は、試験システムSの入出力特性を推定する際には、第1動力計21についてはベーストルク指令信号ib1を用いたトルク電流制御を行いながら、適宜第1加振トルク入力d1を重畳して加振制御を行う。また動力計制御装置7は、試験システムSの入出力特性を推定する際には、第2及び第3動力計22,23については速度検出信号w2,w3を用いた速度制御を行いながら、適宜加振トルク入力d2,d3を重畳して加振制御を行う。
 図1に戻り、推定装置8は、上述のような動力計制御装置7による各動力計21~23を制御することにより、各トルク電流指令信号i1~i3から各軸トルク検出信号t1~t3までの機械特性(以下、これらを「トルク指令-軸トルク特性」ともいう)を表した伝達関数行列Gtiと、各トルク電流指令信号i1~i3から各速度検出信号w1~w3までの機械特性(以下、これらを「トルク指令-回転速度特性」ともいう)を表した伝達関数行列Gwiと、各速度検出信号w2~w3から各トルク制御入力ib2~ib3までの速度制御装置73の入出力特性(以下、「制御回路特性」ともいう)を表した伝達関数行列Cと、を推定する。
 先ず、トルク指令-軸トルク特性を表した伝達関数行列Gtiは、下記式(1)に示すように合計9個の独立した成分によって構成される3×3の行列によって表される。下記式(1)において、例えば、行列Gtiの第1列目第1行目の成分である伝達関数Gt1_i1は、第1トルク電流指令信号i1に対する第1軸トルク検出信号t1の機械特性を表す。また行列Gtiの第2列目第1行目の成分である伝達関数Gt1_i2は、第2トルク電流指令信号i2に対する第1軸トルク検出信号t1の機械特性を表す。他の成分も同様であり、説明を省略する。
Figure JPOXMLDOC01-appb-M000001
 またトルク指令-回転速度特性を表した伝達関数行列Gwiは、下記式(2)に示すように合計9個の独立した成分によって構成される3×3の行列によって表される。下記式(2)において、例えば、行列Gwiの第1列目第1行目の成分である伝達関数Gw1_i1は、第1トルク電流指令信号i1に対する第1速度検出信号w1の機械特性の伝達関数を表す。また行列Gwiの第2列目第1行目の成分である伝達関数Gw1_i2は、第2トルク電流指令信号i2に対する第1速度検出信号w1の機械特性の伝達関数を表す。他の成分も同様であり、説明を省略する。
Figure JPOXMLDOC01-appb-M000002
 また、図2に示すような動力計制御装置7において、その入力である速度検出信号w1~w3及び加振トルク入力d1~d3から、その出力であるトルク電流指令信号i1~i3までの入出力特性は、3×3の単位行列Iと、速度制御装置73の制御回路特性を表した伝達関数行列Cと、を用いて下記式(3)によって表される。なお推定装置8における演算では、加振トルク入力d1~d3を用いて加振した時における周波数特性を計測することから、時間変化しないベーストルク指令信号ib1、平均速度指令信号w_av、及び差速度指令信号dwは、下記式(3)に示すように無視することができる。また速度制御装置73では、2つの速度検出信号w2,w3を入力として2つのトルク制御入力ib2,ib3を生成することから、その伝達関数行列Cは、下記式(3)に示すように実質的に2×2の行列によって表される。下記式(3)において、例えば、行列Cの第2列目第2行目の成分である伝達関数C22は、速度制御装置73における第2速度検出信号w2に対する第2トルク制御入力ib2の伝達関数を表す。また行列Cの第3列目第2行目の成分である伝達関数C23は、速度制御装置73における第3速度検出信号w3に対する第2トルク制御入力ib2の伝達関数を表す。他の成分も同様であり、説明を省略する。
Figure JPOXMLDOC01-appb-M000003
 次に、以上のような試験システムを用いた実施例1の入出力特性推定方法について説明する。実施例1の入出力推定方法では、第2トルク電流指令信号i2又は第3トルク電流指令信号i3から第2軸トルク検出信号t2又は第3軸トルク検出信号t3までの伝達関数(すなわち、式(1)の伝達関数行列Gtiのうち、第2列目第2行目成分Gt2_i2と、第3列目第2行目成分Gt2_i3と、第2列目第3行目成分Gt3_i2と、第3列目第3行目成分Gt3_i3と、の4つの伝達関数)と、第2トルク電流指令信号i2又は第3トルク電流指令信号i3から第2速度検出信号w2又は第3速度検出信号w3までの伝達関数(すなわち、式(2)の伝達関数行列Gwiのうち、第2列目第2行目成分Gw2_i2と、第3列目第2行目成分Gw2_i3と、第2列目第3行目成分Gw3_i2と、第3列目第3行目成分Gw3_i3と、の4つの伝達関数)と、を推定する。
 図3は、実施例1の入出力特性推定方法によって入出力特性を推定する具体的な演算手順を示すフローチャートである。
 S1では、図2に示す動力計制御装置を用いた第1~第3動力計の制御を開始する。すなわち、第1動力計はベーストルク指令信号ib1を用いたトルク電流制御を行い、第2及び第3動力計は速度検出信号w2,w3等を用いた速度制御を行う。なお、加振トルク入力d1~d3は、何れも0とする。
 S2では、動力計制御装置は、第1~第3動力計の動作点を、入出力特性の測定時用に予め定められた動作点に設定する。より具体的には、加振トルク入力d1~d3を何れも0としたまま、ベーストルク指令信号ib1を予め定められた所定値で一定とし、さらに平均速度指令信号w_avを予め定められた所定値で一定とし、差速度指令信号dwを0とする。
 S3では、動力計制御装置は、ベーストルク指令信号、平均速度指令信号及び差速度指令信号をS2の動作点で維持したまま、所定の加振周波数で変動する第2加振トルク入力d2を生成しこれを第2トルク制御入力ib2に重畳し、第2トルク電流指令信号i2を振動させる。なおこの際、他の加振トルク入力d1,d3は何れも0とする。
 S4では、推定装置は、第2加振トルク入力d2と、第2トルク電流指令信号i2と、第2軸トルク検出信号t2と、第2速度検出信号w2と、第3トルク電流指令信号i3と、第3軸トルク検出信号t3と、第3速度検出信号w3と、を測定する。
 S5では、推定装置は、S4で測定した第2加振トルク入力d2と、他の出力信号i2,t2,w2,i3,t3,w3との比を算出することにより、下記式(4-1)~(4-6)に示すように、6つの周波数応答i2d2,t2d2,w2d2,i3d2,t3d2,w3d2を測定する。ここでi2d2は、第2動力計22に入力される第2加振トルク入力d2に対する第2トルク電流指令信号i2の周波数応答を表し、t2d2は、入力d2に対する第2軸トルク検出信号t2の周波数応答を表し、w2d2は、入力d2に対する第2速度検出信号w2の周波数応答を表し、i3d2は、入力d2に対する第3トルク電流指令信号i3の周波数応答を表し、t3d2は、入力d2に対する第3軸トルク検出信号t3の周波数応答を表し、w3d2は、入力d2に対する第3速度検出信号w3の周波数応答を表す。
Figure JPOXMLDOC01-appb-M000004
 S6では、推定装置は、予め定められた周波数領域内で6つの周波数応答i2d2等の測定が完了したか否かを判定する。S6の判定がNOである場合には、S3に戻り第2加振トルク入力d2の加振周波数を変更してS4~S5の処理を再度実行する。S6の判定がYESである場合には、S7に移る。
 S7では、動力計制御装置は、ベーストルク指令信号、平均速度指令信号及び差速度指令信号をS2の動作点で維持したまま、所定の加振周波数で変動する第3加振トルク入力d3を生成し、これを第3トルク制御入力ib3に重畳し、第3トルク電流指令信号i3を振動させる。なおこの際、他の加振トルク入力d1,d2は何れも0とする。
 S8では、推定装置は、第3加振トルク入力d3と、第2トルク電流指令信号i2と、第2軸トルク検出信号t2と、第2速度検出信号w2と、第3トルク電流指令信号i3と、第3軸トルク検出信号t3と、第3速度検出信号w3と、を測定する。
 S9では、推定装置は、S8で測定した第3加振トルク入力d3と、他の出力信号i2,t2,w2,i3,t3,w3との比を算出することにより、下記式(5-1)~(5-6)に示すように、6つの周波数応答i2d3,t2d3,w2d3,i3d3,t3d3,w3d3を測定する。ここでi2d3は、第3動力計23に入力される第3加振トルク入力d3に対する第2トルク電流指令信号i2の周波数応答を表し、t2d3は入力d3に対する第2軸トルク検出信号t2の周波数応答を表し、w2d3は入力d3に対する第2速度検出信号w2の周波数応答を表し、i3d3は入力d3に対する第3トルク電流指令信号i3の周波数応答を表し、t3d3は入力d3に対する第3軸トルク検出信号t3の周波数応答を表し、w3d3は入力d3に対する第3速度検出信号w3の周波数応答を表す。
Figure JPOXMLDOC01-appb-M000005
 S10では、推定装置は、予め定められた周波数領域内で6つの周波数応答i2d3等の測定が完了したか否かを判定する。S10の判定がNOである場合には、S7に戻り第3加振トルク入力d3の加振周波数を変更してS8~S9の処理を再度実行する。S10の判定がYESである場合には、S11に移る。
 S11では、推定装置は、以上の処理によって測定した8組の周波数応答i2d2,t2d2,i2d3,t2d3,i3d2,t3d2,i3d3,t3d3を用いることにより、4組の伝達関数Gt2_i2,Gt2_i3,Gt3_i2,Gt3_i3を算出し、この処理を終了する。より具体的には、上記式(1)~(3)に基づいて導出される下記式(6-1)~(6-4)に上記周波数応答i2d2等を入力することにより、伝達関数Gt2_i2等を算出する。下記式(6-1)のGt2_i2は、第2トルク電流指令信号i2から第2軸トルク検出信号t2までの伝達関数を表し、下記式(6-2)のGt2_i3は、第3トルク電流指令信号i3から第2軸トルク検出信号t2までの伝達関数を表し、下記式(6-3)のGt3_i2は、第2トルク電流指令信号i2から第3軸トルク検出信号t3までの伝達関数を表し、下記式(6-4)のGt3_i3は、第3トルク電流指令信号i3から第3軸トルク検出信号t3までの伝達関数を表す。
Figure JPOXMLDOC01-appb-M000006
 S12では、推定装置は、以上の処理によって測定した8組の周波数応答i2d2,w2d2,i2d3,w2d3,i3d2,w3d2,i3d3,w3d3を用いることにより、4つの伝達関数Gw2_i2,Gw2_i3,Gw3_i2,Gw3_i3を算出する。より具体的には、上記式(1)~(3)に基づいて導出される下記式(7-1)~(7-4)に上記周波数応答i2d2等を入力することにより、伝達関数Gw2_i2等を算出する。下記式(7-1)のGw2_i2は、第2トルク電流指令信号i2から第2速度検出信号w2までの伝達関数を表し、下記式(7-2)のGw2_i3は、第3トルク電流指令信号i3から第2速度検出信号w2までの伝達関数を表し、下記式(7-3)のGw3_i2は、第2トルク電流指令信号i2から第3速度検出信号w3までの伝達関数を表し、下記式(7-4)のGw3_i3は、第3トルク電流指令信号i3から第3速度検出信号w3までの伝達関数を表す。
Figure JPOXMLDOC01-appb-M000007
 図4A~図4Hは、それぞれ実施例1の推定装置による推定結果を示す図である。より具体的には、図4Aは式(6-1)によって推定された伝達関数Gt2_i2のボード線図を示し、図4Bは式(6-3)によって推定された伝達関数Gt3_i2のボード線図を示し、図4Cは式(7-1)によって推定された伝達関数Gw2_i2のボード線図を示し、図4Dは式(7-3)によって推定された伝達関数Gw3_i2のボード線図を示し、図4Eは式(6-2)によって推定された伝達関数Gt2_i3のボード線図を示し、図4Fは式(6-4)によって推定された伝達関数Gt3_i3のボード線図を示し、図4Gは式(7-2)によって推定された伝達関数Gw2_i3のボード線図を示し、図4Hは式(7-4)によって推定された伝達関数Gw3_i3のボード線図を示す。また各図において、細実線は真の機械特性を示し、破線は実施例1の入出力特性推定方法による推定結果を示す。
 また各図における太実線は、それぞれ従来の入出力特性推定方法による推定結果を示す。ここで従来の入出力特性推定方法とは、単純に加振トルク入力に対する応答を測定するものをいう。より具体的には、図4Aの太実線は第2動力計に加振トルク入力d2を入力したときの第2軸トルク検出信号t2の応答(すなわち、式(4-2)のt2d2)であり、図4Bの太実線は第2動力計に加振トルク入力d2を入力したときの第3軸トルク検出信号t3の応答(すなわち、式(4-5)のt3d2)であり、図4Cの太実線は第2動力計に加振トルク入力d2を入力したときの第2速度検出信号w2の応答(すなわち、式(4-3)のw2d2)であり、図4Dの太実線は第2動力計に加振トルク入力d2を入力したときの第3速度検出信号w3の応答(すなわち、式(4-6)のw3d2)であり、図4Eの太実線は第3動力計に加振トルク入力d3を入力したときの第2軸トルク検出信号t2の応答(すなわち、式(5-2)のt2d3)であり、図4Fの太実線は第3動力計に加振トルク入力d3を入力したときの第3軸トルク検出信号t3の応答(すなわち、式(5-5)のt3d3)であり、図4Gの太実線は第3動力計に加振トルク入力d3を入力したときの第2速度検出信号w2の応答(すなわち、式(5-3)のw2d3)であり、図4Hの太実線は第3動力計に加振トルク入力d3を入力したときの第3速度検出信号w3の応答(すなわち、式(5-6)のw3d3)である。
 これら図4A~図4Hに示すように、従来の入出力特性推定方法のように、得ようとする機械特性について、単に加振トルク入力に対する応答を測定しただけでは、真の機械特性を得ることができない。これは、供試体が複数の軸を備えており、各軸が速度制御装置によって制御されており、この速度制御装置の特性を受けてしまうからである。これに対し実施例1の入出力特性装置では、供試体に接続されている複数の動力計を加振制御したときに得られる複数の応答を組み合わせて1つの伝達関数を推定することにより、図4A~図4Hに示すように、速度制御装置の特性を除きながら正確に試験システムの入出力特性を推定することができる。
 なお図3の処理では、各伝達関数を推定するにあたり、第1動力計に加振トルク入力d1を入力したときの応答を測定する必要はない。このため、実施例1の入出力特性方法を行うにあたっては、供試体Wの第1軸S1には第1動力計21を接続せずに、実際のエンジンを接続してもよい。
 次に、実施例2の試験システムの入出力特性推定方法について説明する。実施例2の入出力特性推定方法では、図2の速度制御装置73における2つの入力信号(第2速度検出信号w2又は第3速度検出信号w3)から第2トルク電流指令信号i2又は第3トルク電流指令信号i3までの伝達関数(すなわち、式(3)の伝達関数行列Cのうち、第2列第2行目成分C22と、第3列第2行目成分C23と、第2列第3行目成分C32と、第3列第3行目成分C33と、の4つの伝達関数)を推定する。
 図5は、実施例2の入出力特性推定方法によって入出力特性を推定する具体的な演算手順を示すフローチャートである。
 S21では、図3のS1と同様に、図2の動力計制御装置を用いた第1~第3動力計の制御を開始する。S22では、動力計制御装置は、図3のS2と同様に、第1~第3動力計の動作点を、入出力特性の測定用に予め定められた動作点に設定する。S23では、動力計制御装置は、図3のS3と同様に、第2加振トルク入力d2を生成しこれを第2トルク制御入力ib2に重畳し、第2トルク電流指令信号i2を振動させる。
 S24では、推定装置は、第2加振トルク入力d2と、第2トルク電流指令信号i2と、第2速度検出信号w2と、第3トルク電流指令信号i3と、第3速度検出信号w3と、を測定する。
 S25では、推定装置は、S24で測定した第2加振トルク入力d2と、他の出力信号i2,w2,i3,w3との比を算出することにより、下記式(8-1)~(8-4)に示すように、4つの周波数応答i2d2,w2d2,i3d2,w3d2を測定する。
Figure JPOXMLDOC01-appb-M000008
 S26では、推定装置は、予め定められた周波数領域内で4つの周波数応答i2d2等の測定が完了したか否かを判定する。S26の判定がNOである場合には、S23に戻り第2加振トルク入力d2の加振周波数を変更してS24~S25の処理を再度実行する。S26の判定がYESである場合には、S27に移る。S27では、動力計制御装置は、図3のS7と同様に、第3加振トルク入力d3を生成しこれを第3トルク制御入力ib3に重畳し、第3トルク電流指令信号i3を振動させる。
 S28では、推定装置は、第3加振トルク入力d3と、第2トルク電流指令信号i2と、第2速度検出信号w2と、第3トルク電流指令信号i3と、第3速度検出信号w3と、を測定する。
 S29では、推定装置は、S28で測定した第3加振トルク入力d3と、他出力信号i2,w2,i3,w3との比を算出することにより、下記式(9-1)~(9-4)に示すように、4つの周波数応答i2d2,w2d3,i3d3,w3d3を測定する。
Figure JPOXMLDOC01-appb-M000009
 S30では、推定装置は、予め定められた周波数領域内で4つの周波数応答i2d3等の測定が完了したか否かを判定する。S30の判定がNOである場合には、S37に戻り第3加振トルク入力d3の加振周波数を変更してS28~S29の処理を再度実行する。S30の判定がYESである場合には、S31に移る。
 S31では、推定装置は、以上の処理によって測定した8組の周波数応答i2d2,w2d2,i3d2,w3d2,i2d3,w2d3,i3d3,w3d3を用いることにより、4つの伝達関数C22、C23,C32,C33を算出する。より具体的には、上記式(1)~(3)に基づいて導出される下記式(10-1)~(10-4)に上記周波数応答i2d2等を入力することにより、伝達関数C22等を算出する。下記式(10-1)のC22は、第2速度検出信号w2から第2トルク電流指令信号i2(又は第2トルク制御入力ib2)までの伝達関数を表し、下記式(10-2)のC23は、第3速度検出信号w3から第2トルク電流指令信号i2(又は第2トルク制御入力ib2)までの伝達関数を表し、下記式(10-3)のC32は、第2速度検出信号w2から第3トルク電流指令信号i3(又は第3トルク制御入力ib3)までの伝達関数を表し、下記式(10-4)のC33は、第3速度検出信号w3から第3トルク電流指令信号i3(又は第3トルク制御入力ib3)までの伝達関数を表す。
Figure JPOXMLDOC01-appb-M000010
 なお図5の処理では、各伝達関数を推定するにあたり、第1動力計に加振トルク入力d1を入力したときの応答を測定する必要はない。このため、実施例2の入出力特性方法を行うにあたっては、実施例1と同様に供試体Wの第1軸S1には第1動力計21を接続せずに、実際のエンジンを接続してもよい。
 以上のような実施例2の入出力特性推定方法によれば、S23~S25の処理では第2動力計を加振トルク入力d2によって加振制御したときにおける入力d2に対する周波数応答(i2d2,w2d2等)を測定し、S27~S29の処理では第3動力計を加振トルク入力d3によって加振制御したときにおける入力d3に対する周波数応答(i2d3,w2d3等)を測定する。そしてS31の処理では、これら加振制御によって測定された複数の周波数応答を用いることによって、第2及び第3動力計の速度を制御する速度制御装置における入力信号(w2又はw3)から出力信号(i2又はi3)までの伝達関数を推定する。このように実施例2の入出力特性推定方法では、第2動力計を入力d2で加振制御したときの周波数応答と、これとは別の第3動力計を入力d3で加振制御したときの周波数応答とを組み合わせて速度制御装置の入出力特性を表す伝達関数を推定することにより、速度制御装置を実際に稼働させた状態でその伝達関数を精度良く推定することができる。なお、実際の速度制御装置は、様々な制御回路を組み合わせて構成されていることから、特定の制御回路のみを稼働させてその入出力特性を推定することが困難である場合や、時間がかかったりする場合がある。実施例2の入出力特性推定方法では、速度制御装置を実際に稼働させた状態でその入出力特性を推定できるので、容易かつ短い時間でその入出力特性を推定できる。
 次に、実施例3の試験システムの入出力特性推定方法について説明する。実施例3の入出力推定装置では、上記式(1)~(3)に示す全ての伝達関数を推定する。
 図6A及び図6Bは、実施例3の入出力特性推定方法によって入出力特性を推定する具体的な演算手順を示すフローチャートである。
 なお、S51~S62の処理は、図3のS1~S12の処理と同じであり、S63の処理は、図5のS31の処理と同じであるので、詳細な説明は省略する。
 S64では、動力計制御装置は、ベーストルク指令信号、平均速度指令信号及び差速度指令信号をS52の動作点で維持したまま、所定の加振周波数で変動する第1加振トルク入力d1を生成しこれをベーストルク指令信号ib1に重畳し、第1トルク電流指令信号i1を振動させる。なおこの際、他の加振トルク入力d2,d3は何れも0とする。
 S65では、推定装置は、第1加振トルク入力d1と、第1軸トルク検出信号t1と、第1速度検出信号w1と、第2軸トルク検出信号t2と、第2速度検出信号w2と、第3軸トルク検出信号t3と、第3速度検出信号w3と、を測定する。
 S66では、推定装置は、S65で測定した第1加振トルク入力d1と、他の出力信号t1,w1,t2,w2,t3,w3との比を算出することにより、下記式(11-1)~(11-6)に示すように、6つの周波数応答t1d1,w1d1,t2d1,w2d1,t3d1,w3d1を測定する。ここでt1d1は、第1動力計21に入力される第1加振トルク入力d1に対する第1軸トルク検出信号t1の周波数応答を表し、w1d1は入力d1に対する第1速度検出信号w1の周波数応答を表し、t2d1は入力d1に対する第2軸トルク検出信号t2の周波数応答を表し、w2d1は入力d1に対する第2速度検出信号w2の周波数応答を表し、t3d1は入力d1に対する第3軸トルク検出信号t3の周波数応答を表し、w3d1は入力d1に対する第3速度検出信号w3の周波数応答を表す。
Figure JPOXMLDOC01-appb-M000011
 S67では、推定装置は、予め定められた周波数領域内で6つの周波数応答t1d1等の測定が完了したか否かを判定する。S67の判定がNOである場合には、S64に戻り第1加振トルク入力d1の加振周波数を変更してS65~S66の処理を再度実行する。S67の判定がYESである場合には、S68に移る。
 S68では、推定装置は、S66で測定された6組の周波数応答t1d1,w1d1,t2d1,w2d1,t3d1,w3d1と、第2動力計に対する加振制御(S53~S55参照)及び第3動力計に対する加振制御(S57~S59参照)によって測定された周波数応答に基づいて算出された12組の伝達関数(S61~S63参照)と、を用いることにより、5組の伝達関数Gt1_i1,Gt1_i2,Gt1_i3,Gt2_i1,Gt3_i1を算出する。より具体的には、上記式(1)~(3)に基づいて導出される下記式(12-1)~(12-5)に、S66において測定された第1加振トルク入力d1に対する周波数応答t1d1等と、S55及びS59において測定された加振トルク入力d2,d3に対する周波数応答t1d2等と、これら周波数応答t1d2等に基づいてS61~S63において算出された伝達関数Gw2_i2,C22等と、を入力することにより、伝達関数Gt1_i1等を算出する。
Figure JPOXMLDOC01-appb-M000012
 S69では、推定装置は、S66で測定された6組の周波数応答t1d1,w1d1,t2d1,w2d1,t3d1,w3d1と、第2動力計に対する加振制御(S53~S55参照)及び第3動力計に対する加振制御(S57~S59参照)によって測定された周波数応答に基づいて算出された12組の伝達関数(S61~S63参照)と、を用いることにより、5組の伝達関数Gw1_i1,Gw1_i2,Gw1_i3,Gw2_i1,Gw3_i1を算出し、この処理を終了する。より具体的には、上記式(1)~(3)に基づいて導出される下記式(13-1)~(13-5)に、S66において測定された第1加振トルク入力d1に対する周波数応答t1d1等と、S55及びS59において測定された加振トルク入力d2,d3に対する周波数応答t1d2等と、これら周波数応答t1d2等に基づいてS61~S63において算出された伝達関数Gw2_i2,C22等と、を入力することにより、伝達関数Gw1_i1等を算出する。
Figure JPOXMLDOC01-appb-M000013
 図7A~図7Jは、それぞれ実施例3の入出力特性推定方法による推定結果を示す図である。より具体的には、図7Aは式(12-1)によって推定された伝達関数Gt1_i1のボード線図を示し、図7Bは式(12-4)によって推定された伝達関数Gt2_i1のボード線図を示し、図7Cは式(12-5)によって推定された伝達関数Gt3_i1のボード線図を示し、図7Dは式(13-1)によって推定された伝達関数Gw1_i1のボード線図を示し、図7Eは式(13-4)によって推定された伝達関数Gw2_i1のボード線図を示し、図7Fは式(13-5)によって推定された伝達関数Gw3_i1のボード線図を示し、図7Gは式(12-2)によって推定された伝達関数Gt1_i2のボード線図を示し、図7Hは式(12-3)によって推定された伝達関数Gt1_i3のボード線図を示し、図7Iは式(13-2)によって推定された伝達関数Gw1_i2のボード線図を示し、図7Jは式(13-3)によって推定された伝達関数Gw1_i3のボード線図を示す。また各図において、細実線は真の機械特性を示し、破線は実施例1の入出力特性推定方法による推定結果を示す。
 また各図における太実線は、それぞれ従来の入出力特性推定方法による推定結果を示す。より具体的には、図7Aの太実線は第1動力計に加振トルク入力d1を入力したときの第1軸トルク検出信号t1の応答(すなわち、式(11-1)のt1d1)であり、図7Bの太実線は第1動力計に加振トルク入力d1を入力したときの第2軸トルク検出信号t2の応答(すなわち、式(11-3)のt2d1)であり、図7Cの太実線は第3動力計に加振トルク入力d3を入力したときの第1軸トルク検出信号t1の応答(すなわち、式(11-5)のt3d1)であり、図7Dの太実線は第1動力計に加振トルク入力d1を入力したときの第1速度検出信号w1の応答(すなわち、式(11-2)のw1d1)であり、図7Eの太実線は第1動力計に加振トルク入力d1を入力したときの第2速度検出信号w2の応答(すなわち、式(11-4)のw2d1)であり、図7Fの太実線は第1動力計に加振トルク入力d1を入力したときの第3速度検出信号w3の応答(すなわち、式(11-6)のw3d1)であり、図7Gの太実線は第2動力計に加振トルク入力d2を入力したときの第1軸トルク検出信号t1の応答であり、図7Hの太実線は第3動力計に加振トルク入力d3を入力したときの第1軸トルク検出信号t1の応答であり、図7Iの太実線は第2動力計に加振トルク入力d2を入力したときの第1速度検出信号w1の応答であり、図7Jの太実線は第3動力計に加振トルク入力d3を入力したときの第1速度検出信号w1の応答である。
 これら図7A~図7Jに示すように、従来の入出力特性装置では、速度制御装置の特性を受けてしまい、真の機械特性を得ることができない。これに対し実施例3の入出力特性推定方法では、供試体に接続されている複数の動力計を加振制御したときに得られる複数の応答を組み合わせて1つの伝達関数を推定することにより、図7A~図7Jに示すように、速度制御装置の特性を除きながら正確に試験システムの入出力特性を推定することができる。
 S…試験システム
 W…供試体
 S1…第1軸
 S2…第2軸
 S3…第3軸
 21…第1動力計
 22…第2動力計
 23…第3動力計
 51…第1回転速度検出器
 52…第2回転速度検出器
 53…第3回転速度検出器
 61…第1軸トルク検出器
 62…第2軸トルク検出器
 63…第3軸トルク検出器
 7…動力計制御装置
 72…加振トルク生成部
 73…速度制御装置
 8…推定装置

Claims (12)

  1.  第1軸及び当該第1軸と動力伝達可能に接続された第2軸及び第3軸を備える供試体と、
     前記第2軸に連結された第2電動機と、
     前記第3軸に連結された第3電動機と、
     前記第2軸又は前記第2電動機の状態を検出し第2状態検出信号を発生する第2状態検出手段と、
     前記第3軸又は前記第3電動機の状態を検出し第3状態検出信号を発生する第3状態検出手段と、
     所定の入力信号に基づいて、前記第2電動機の回転速度を制御するための前記第2電動機への第2トルク制御入力と、前記第3電動機の回転速度を制御するための前記第3電動機への第3トルク制御入力と、を生成する速度制御装置と、
     所定の周波数で変化する加振入力を発生する加振入力発生手段と、を備える試験システムの入出力特性推定方法であって、
     前記第2トルク制御入力に前記加振入力を重畳したものを第2入力として前記第2電動機に入力しかつ前記第3トルク制御入力を第3入力として前記第3電動機に入力し、当該加振入力に対する応答を測定する第1加振測定工程と、
     前記第2トルク制御入力を第2入力として前記第2電動機に入力しかつ前記第3トルク制御入力に前記加振入力を重畳したものを第3入力として前記第3電動機に入力し、当該加振入力に対する応答を測定する第2加振測定工程と、
     前記第1加振測定工程において測定された応答と前記第2加振測定工程において測定された応答とを用いることによって、前記第2又は第3入力から前記第2又は第3状態検出信号までの伝達関数を推定する機械特性推定工程と、を備えることを特徴とする試験システムの入出力特性推定方法。
  2.  前記第2状態検出手段は、前記第2軸のトルクを検出し第2トルク検出信号を発生する第2トルク検出器と、前記第2電動機の回転速度を検出し第2速度信号を発生する第2回転速度検出器と、を備え、
     前記第3状態検出手段は、前記第3軸のトルクを検出し第3トルク検出信号を発生する第3トルク検出器と、前記第3電動機の回転速度を検出し第3速度信号を発生する第3回転速度検出器と、を備え、
     前記速度制御装置は、前記第2及び第3速度信号に基づいて、前記第2及び第3トルク制御入力を生成し、
     前記第1加振測定工程では、前記第2トルク制御入力に重畳した加振入力に対する前記第2及び第3入力の少なくとも何れかの応答を測定し、
     前記第2加振測定工程では、前記第3トルク制御入力に重畳した加振入力に対する前記第2及び第3入力の少なくとも何れかの応答を測定し、
     前記機械特性推定工程では、前記第1及び第2加振測定工程において測定された応答を用いることによって、前記第2若しくは第3入力から前記第2若しくは第3トルク検出信号又は前記第2若しくは第3速度信号までの伝達関数を推定することを特徴とする請求項1に記載の試験システムの入出力特性推定方法。
  3.  前記第1加振測定工程では、前記加振入力に対する前記第2入力、前記第3入力、前記第2トルク検出信号、及び前記第3トルク検出信号の応答を測定し、
     前記第2加振測定工程では、前記加振入力に対する前記第2入力、前記第3入力、前記第2トルク検出信号、及び前記第3トルク検出信号の応答を測定し、
     前記機械特性推定工程では、前記第1及び前記第2加振測定工程において測定された応答を用いることによって、前記第2又は第3入力から前記第2又は第3トルク検出信号までの伝達関数を推定することを特徴とする請求項2に記載の試験システムの入出力特性推定方法。
  4.  前記第1加振測定工程では、前記加振入力に対する前記第2入力、前記第3入力、前記第2速度信号、及び前記第3速度信号の応答を測定し、
     前記第2加振測定工程では、前記加振入力に対する前記第2入力、前記第3入力、前記第2速度信号、及び前記第3速度信号の応答を測定し、
     前記機械特性推定工程では、前記第1及び前記第2加振測定工程において測定された応答を用いることによって、前記第2又は第3入力から前記第2又は第3速度信号までの伝達関数を推定することを特徴とする請求項2に記載の試験システムの入出力特性推定方法。
  5.  前記第1加振測定工程において測定された応答と前記第2加振測定工程において測定された応答とを用いることによって、前記速度制御装置における前記入力信号から前記第2又は第3入力までの伝達関数を推定する制御回路特性推定工程をさらに備えることを特徴とする請求項1に記載の試験システムの入出力特性推定方法。
  6.  前記試験システムは、
     前記第1軸に連結された第1電動機と、
     前記第1軸又は前記第1電動機の状態を検出し第1状態検出信号を発生する第1状態検出手段と、をさらに備え、
     前記入出力特性推定方法は、
     所定の基準入力に前記加振入力を重畳したものを第1入力として前記第1電動機に入力しかつ前記第2及び第3トルク制御入力をそれぞれ第2及び第3入力として前記第2及び第3電動機に入力し、当該加振入力に対する応答を測定する第3加振測定工程をさらに備え、
     前記機械特性推定工程では、前記第1及び第2加振測定工程の何れか又は両方において測定された応答と前記第3加振測定工程において測定された応答とを用いることによって、前記第1入力から前記第1、第2若しくは第3状態検出信号までの伝達関数又は前記第2若しくは第3入力から前記第1状態検出信号までの伝達関数を推定することを特徴とする請求項1に記載の試験システムの入出力特性推定方法。
  7.  第1軸及び当該第1軸と動力伝達可能に接続された第2軸及び第3軸を備える供試体と、
     前記第2軸に連結された第2電動機と、
     前記第3軸に連結された第3電動機と、
     前記第2軸又は前記第2電動機の状態を検出し第2状態検出信号を発生する第2状態検出手段と、
     前記第3軸又は前記第3電動機の状態を検出し第3状態検出信号を発生する第3状態検出手段と、
     所定の入力信号に基づいて、前記第2電動機の回転速度を制御するための前記第2電動機への第2トルク制御入力と、前記第3電動機の回転速度を制御するための前記第3電動機への第3トルク制御入力と、を生成する速度制御装置と、
     所定の周波数で変化する加振入力を発生する加振入力発生手段と、を備える試験システムの入出力特性推定方法であって、
     前記第2トルク制御入力に前記加振入力を重畳したものを第2入力として前記第2電動機に入力しかつ前記第3トルク制御入力を第3入力として前記第3電動機に入力し、当該加振入力に対する応答を測定する第1加振測定工程と、
     前記第2トルク制御入力を第2入力として前記第2電動機に入力しかつ前記第3トルク制御入力に前記加振入力を重畳したものを第3入力として前記第3電動機に入力し、当該加振入力に対する応答を測定する第2加振測定工程と、
     前記第1加振測定工程において測定された応答と前記第2加振測定工程において測定された応答とを用いることによって、前記速度制御装置における前記入力信号から前記第2又は第3入力までの伝達関数を推定する制御回路特性推定工程と、を備えることを特徴とする試験システムの入出力特性推定方法。
  8.  前記第2状態検出手段は、前記第2軸のトルクを検出し第2トルク検出信号を発生する第2トルク検出器と、前記第2電動機の回転速度を検出し第2速度信号を発生する第2回転速度検出器と、を備え、
     前記第3状態検出手段は、前記第3軸のトルクを検出し第3トルク検出信号を発生する第3トルク検出器と、前記第3電動機の回転速度を検出し第3速度信号を発生する第3回転速度検出器と、を備え、
     前記速度制御装置は、前記第2及び第3速度信号に基づいて、前記第2及び第3トルク制御入力を生成し、
     前記第1加振測定工程では、前記第2トルク制御入力に重畳した加振入力に対する前記第2及び第3速度信号の応答を測定し、
     前記第2加振測定工程では、前記第3トルク制御入力に重畳した加振入力に対する前記第2及び第3速度信号の応答を測定し、
     前記制御回路特性推定工程では、前記第1及び第2加振測定工程において測定された応答を用いることによって、前記速度制御装置における前記第2又は第3速度信号から前記第2又は第3入力までの伝達関数を推定することを特徴とする請求項7に記載の試験システムの入出力特性推定方法。
  9.  第1軸及び当該第1軸と動力伝達可能に接続された第2軸を備える供試体と、
     前記第1軸に連結された第1電動機と、
     前記第2軸に連結された第2電動機と、
     前記第1軸又は前記第1電動機の状態を検出し第1状態検出信号を発生する第1状態検出手段と、
     前記第2軸又は前記第2電動機の状態を検出し第2状態検出信号を発生する第2状態検出手段と、
     所定の入力信号に基づいて、前記第2電動機の回転速度を制御するための前記第2電動機への第2トルク制御入力を生成する速度制御装置と、
     所定の周波数で変化する加振入力を発生する加振入力発生手段と、を備える試験システムの入出力特性推定方法であって、
     所定の基準入力に前記加振入力を重畳したものを第1入力として前記第1電動機に入力しかつ前記第2トルク制御入力を第2入力として前記第2電動機に入力し、当該加振入力に対する応答を測定する第1加振測定工程と、
     前記基準入力を第1入力として前記第1電動機に入力しかつ前記第2トルク制御入力に前記加振入力を重畳したものを第2入力として前記第2電動機に入力し、当該加振入力に対する応答を測定する第2加振測定工程と、
     前記第1加振測定工程において測定された応答と前記第2加振測定工程において測定された応答とを用いることによって、前記第1入力から前記第1又は第2状態検出信号までの伝達関数を推定する機械特性推定工程と、を備えることを特徴とする試験システムの入出力特性推定方法。
  10.  前記第1状態検出手段は、前記第1軸のトルクを検出し第1トルク検出信号を発生する第1トルク検出器と、前記第1電動機の回転速度を検出し第1速度信号を発生する第1回転速度検出器と、を備え、
     前記第2状態検出手段は、前記第2軸のトルクを検出し第2トルク検出信号を発生する第2トルク検出器と、前記第2電動機の回転速度を検出し第2速度信号を発生する第2回転速度検出器と、を備え、
     前記第1加振測定工程では、前記基準入力に重畳した加振入力に対する前記第2速度信号及び前記第1トルク検出信号の応答を測定し、
     前記機械特性推定工程では、前記第1及び第2加振測定工程において測定された応答を用いることによって、前記第1入力から前記第1トルク検出信号までの伝達関数を推定することを特徴とする請求項9に記載の試験システムの入出力特性推定方法。
  11.  前記第1加振測定工程では、前記基準入力に重畳した加振入力に対する前記第2速度信号並びに前記第1及び第2トルク検出信号の応答を測定し、
     前記機械特性推定工程では、前記第1及び第2加振測定工程において測定された応答を用いることによって、前記第1入力から前記第1トルク検出信号までの伝達関数及び前記第1入力から前記第2トルク検出信号までの伝達関数を推定することを特徴とする請求項10に記載の試験システムの入出力特性推定方法。
  12.  前記第1状態検出手段は、前記第1軸のトルクを検出し第1トルク検出信号を発生する第1トルク検出器と、前記第1電動機の回転速度を検出し第1速度信号を発生する第1回転速度検出器と、を備え、
     前記第2状態検出手段は、前記第2軸のトルクを検出し第2トルク検出信号を発生する第2トルク検出器と、前記第2電動機の回転速度を検出し第2速度信号を発生する第2回転速度検出器と、を備え、
     前記第1加振測定工程では、前記基準入力に重畳した加振入力に対する前記第1及び第2速度信号の応答を測定し、
     前記機械特性推定工程では、前記第1及び第2加振測定工程において測定された応答を用いることによって、前記第1入力から前記第1速度信号までの伝達関数及び前記第1入力から前記第2速度信号までの伝達関数を推定することを特徴とする請求項9に記載の試験システムの入出力特性推定方法。
PCT/JP2018/009256 2017-03-10 2018-03-09 試験システムの入出力特性推定方法 WO2018164266A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197024470A KR102069654B1 (ko) 2017-03-10 2018-03-09 시험 시스템의 입출력 특성 추정 방법
US16/492,843 US11029233B2 (en) 2017-03-10 2018-03-09 Input/output characteristic estimation method for drivetrain testing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017045875A JP6390734B1 (ja) 2017-03-10 2017-03-10 試験システムの入出力特性推定方法
JP2017-045875 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018164266A1 true WO2018164266A1 (ja) 2018-09-13

Family

ID=63448815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009256 WO2018164266A1 (ja) 2017-03-10 2018-03-09 試験システムの入出力特性推定方法

Country Status (4)

Country Link
US (1) US11029233B2 (ja)
JP (1) JP6390734B1 (ja)
KR (1) KR102069654B1 (ja)
WO (1) WO2018164266A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155728A1 (ja) * 2018-02-08 2019-08-15 株式会社明電舎 試験システムの機械特性推定方法及び機械特性推定装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7018242B2 (ja) * 2018-08-10 2022-02-10 株式会社大一商会 遊技機
JP7018241B2 (ja) * 2018-08-10 2022-02-10 株式会社大一商会 遊技機
JP7018245B2 (ja) * 2018-08-10 2022-02-10 株式会社大一商会 遊技機
JP7018244B2 (ja) * 2018-08-10 2022-02-10 株式会社大一商会 遊技機
JP7018246B2 (ja) * 2018-08-10 2022-02-10 株式会社大一商会 遊技機
JP7018243B2 (ja) * 2018-08-10 2022-02-10 株式会社大一商会 遊技機
CN112378674A (zh) * 2020-09-29 2021-02-19 盛瑞传动股份有限公司 一种车辆测试系统及控制方法
KR102441955B1 (ko) * 2020-10-13 2022-09-08 주식회사 피티엠 전기차용 감속기 실차 조건 테스트장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215643A (ja) * 1992-02-05 1993-08-24 Hitachi Ltd 電動機駆動試験装置
WO2015136626A1 (ja) * 2014-03-11 2015-09-17 株式会社明電舎 ドライブトレインの試験システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960006313B1 (ko) * 1988-10-25 1996-05-13 가부시끼가이샤 메이덴샤 자동 변속기용 구동 시험 장치
KR20050112290A (ko) * 2004-05-25 2005-11-30 현대자동차주식회사 파워 트레인 시험을 통한 실차 소음 예측방법
JP4788543B2 (ja) * 2006-09-19 2011-10-05 株式会社明電舎 エンジンベンチシステムのパラメータ推定装置
JP5344067B1 (ja) * 2012-06-13 2013-11-20 株式会社明電舎 動力計システム
KR101408566B1 (ko) * 2013-01-02 2014-06-17 (주)유메카 토크 검출 장치
JP5673727B2 (ja) * 2013-04-26 2015-02-18 株式会社明電舎 トルク指令生成装置
JP5776731B2 (ja) * 2013-06-19 2015-09-09 株式会社明電舎 ドライブトレインの試験システム
JP6217797B1 (ja) * 2016-06-22 2017-10-25 株式会社明電舎 共振抑制制御回路及びこれを用いた試験システム並びに共振抑制制御回路の設計方法
JP6465164B2 (ja) * 2017-06-20 2019-02-06 株式会社明電舎 機械特性推定方法
JP6390774B1 (ja) * 2017-09-13 2018-09-19 株式会社明電舎 動力計制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215643A (ja) * 1992-02-05 1993-08-24 Hitachi Ltd 電動機駆動試験装置
WO2015136626A1 (ja) * 2014-03-11 2015-09-17 株式会社明電舎 ドライブトレインの試験システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155728A1 (ja) * 2018-02-08 2019-08-15 株式会社明電舎 試験システムの機械特性推定方法及び機械特性推定装置
US11371912B2 (en) 2018-02-08 2022-06-28 Meidensha Corporation Mechanical characteristics estimation method and mechanical characteristics estimation device of test system

Also Published As

Publication number Publication date
KR102069654B1 (ko) 2020-01-28
JP2018151183A (ja) 2018-09-27
US20200264072A1 (en) 2020-08-20
JP6390734B1 (ja) 2018-09-19
US11029233B2 (en) 2021-06-08
KR20190101490A (ko) 2019-08-30

Similar Documents

Publication Publication Date Title
JP6390734B1 (ja) 試験システムの入出力特性推定方法
US10421483B2 (en) Input/output device and steering measurement device
JP3775284B2 (ja) エンジンベンチシステムおよびエンジン特性の測定方法
JP3772721B2 (ja) エンジンベンチシステムおよびエンジン特性の測定方法
US11085851B2 (en) Method for calculating estimation value of mechanical characteristic parameter
JP2017090195A (ja) ダイナモメータシステムのダイナモ制御装置及びそのエンジン始動方法
JP4788543B2 (ja) エンジンベンチシステムのパラメータ推定装置
JP4645231B2 (ja) 動力伝達系の試験装置とその制御方法
JP4655677B2 (ja) 動力伝達系の試験装置とその制御方法
JP6659492B2 (ja) エンジン試験装置
JP2004361255A (ja) 動力計測システムの電気慣性制御方式
KR102431573B1 (ko) 시험 시스템의 기계 특성 추정 방법 및 기계 특성 추정 장치
JP4045860B2 (ja) 動力伝達系の試験装置とその制御方法
JP2002098617A (ja) エンジンベンチシステムのエンジントルク推定方法
JP2003207421A (ja) エンジンベンチシステム
JP2003061379A (ja) モータ制御装置の周波数特性演算装置
JP2008286613A (ja) 電気慣性制御応答の評価方法
JP2009288036A (ja) ローラ表面駆動力の推定方法とその装置
JP2009145364A (ja) 動力伝達系の試験装置とその制御方法
JP2005180956A (ja) 動力伝達系の試験装置とその制御方法
JP2003207423A (ja) エンジンベンチシステム
JP2008203053A (ja) 動力計測システムの電気慣性制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024470

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764317

Country of ref document: EP

Kind code of ref document: A1