WO2018159840A1 - 軸受部品及び転がり軸受、ならびに軸受部品の製造方法 - Google Patents
軸受部品及び転がり軸受、ならびに軸受部品の製造方法 Download PDFInfo
- Publication number
- WO2018159840A1 WO2018159840A1 PCT/JP2018/008149 JP2018008149W WO2018159840A1 WO 2018159840 A1 WO2018159840 A1 WO 2018159840A1 JP 2018008149 W JP2018008149 W JP 2018008149W WO 2018159840 A1 WO2018159840 A1 WO 2018159840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- martensite
- martensite block
- sample
- belonging
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/28—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
- C23C8/30—Carbo-nitriding
- C23C8/32—Carbo-nitriding of ferrous surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/62—Selection of substances
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/36—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for balls; for rollers
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/40—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/04—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
- F16C19/06—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/32—Balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/34—Rollers; Needles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/64—Special methods of manufacture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/60—Ferrous alloys, e.g. steel alloys
- F16C2204/70—Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
Definitions
- the present invention relates to a bearing component, a rolling bearing, and a method for manufacturing the bearing component, and more particularly, to a bearing component and a rolling bearing that are used in an environment in which foreign matters are likely to be mixed inside the bearing (foreign matter mixed environment), and a method for manufacturing the bearing components.
- a bearing component a rolling bearing
- a method for manufacturing the bearing component and more particularly, to a bearing component and a rolling bearing that are used in an environment in which foreign matters are likely to be mixed inside the bearing (foreign matter mixed environment), and a method for manufacturing the bearing components.
- a method for producing bearing parts As a method for producing bearing parts, a method is known in which a carbonitriding process, a quenching process, and a tempering process are sequentially performed on a molded body made of chromium molybdenum steel (SCM).
- SCM chromium molybdenum steel
- the bearing parts manufactured by the above manufacturing method do not have wear resistance and toughness that can withstand use in a foreign matter-contaminated environment, and the surface when used in a foreign matter-contaminated environment There was a case where it was damaged and reached the end of its life early.
- carbon nitrides such as silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), vanadium (V), and titanium (Ti) are formed on conventional general bearing parts.
- Si silicon
- Mn manganese
- Cr chromium
- Mo molybdenum
- V vanadium
- Ti titanium
- carbides and nitrides of the additive elements are precipitated on the raceway surface or rolling surface of the bearing component in accordance with the element content, thereby improving wear resistance (for example, JP-A-2-27764, JP-A-3-64431, JP-A-8-49057, JP-A-8-31603, JP-A-11-201168, JP-A-2001-323939, (See JP 2007-232201, JP 2013-11010).
- the steel material is expensive because it contains elements that can form carbonitrides in various ratios.
- An object of the present invention is to provide a bearing component and a rolling bearing that have sufficient wear resistance to withstand use in a foreign matter-mixed environment and that have a lower manufacturing cost than conventional bearing components that use the above steel materials. It is another object of the present invention to provide a method for manufacturing a bearing component.
- the bearing part according to the present invention is made of chromium molybdenum steel and has a raceway surface or a rolling surface.
- Compound grains made of at least one of carbide, nitride, and carbonitride are present on the raceway surface or the rolling surface.
- the area ratio of the compound grains on the raceway surface or the rolling surface is 3% or more.
- the average particle diameter of the compound grains on the raceway surface or the rolling surface is 0.3 ⁇ m or less.
- the above-mentioned bearing part is a bearing part made of chromium molybdenum steel having a diffusion layer on the surface.
- the diffusion layer includes a plurality of compound grains and a plurality of martensite blocks.
- the average particle size of the compound particles is 0.3 ⁇ m or less.
- the area ratio of the compound grains in the diffusion layer is 3% or more.
- the maximum particle size of the martensite block is 3.8 ⁇ m or less.
- the martensite block having a crystal grain size of 1.0 ⁇ m or less may constitute the first group.
- the value obtained by dividing the total area of the martensite blocks belonging to the first group by the total area of the martensite blocks may be 0.55 or more and 0.75 or less.
- the martensite block may be composed of a martensite block belonging to the second group and a martensite block belonging to the third group.
- the minimum value of the crystal grain size of the martensite block belonging to the third group may be larger than the maximum value of the crystal grain size of the martensite block included in the second group.
- the value obtained by dividing the total area of the martensite blocks belonging to the third group by the total area of the martensite blocks may be 0.5 or more.
- a value obtained by dividing the total area of martensite blocks belonging to the third group other than the martensite block belonging to the third group other than the martensite block having the largest crystal grain diameter by the total area of the martensite blocks may be less than 0.5.
- the average particle size of the martensite block belonging to the third group may be 0.7 ⁇ m or more and 1.4 ⁇ m or less.
- the martensite block may be composed of a martensite block belonging to the fourth group and a martensite block belonging to the fifth group.
- the minimum value of the crystal grain size of the martensite block belonging to the fifth group may be larger than the maximum value of the crystal grain size of the martensite block included in the fourth group.
- the value obtained by dividing the total area of the martensite blocks belonging to the fifth group by the total area of the martensite blocks may be 0.7 or more.
- a value obtained by dividing the total area of martensite blocks belonging to the fifth group other than the martensite block belonging to the fifth group other than the martensite block having the largest crystal grain diameter by the total area of the martensite blocks may be less than 0.7.
- the average particle size of the martensite block belonging to the fifth group may be not less than 0.6 ⁇ m and not more than 1.1 ⁇ m.
- the martensite block may be composed of a martensite block belonging to the second group and a martensite block belonging to the third group.
- the minimum value of the crystal grain size of the martensite block belonging to the third group may be larger than the maximum value of the crystal grain size of the martensite block included in the second group.
- the value obtained by dividing the total area of the martensite blocks belonging to the third group by the total area of the martensite blocks may be 0.5 or more.
- a value obtained by dividing the total area of the martensite blocks belonging to the third group excluding the martensite block belonging to the third group, which has the largest crystal grain size, by the total area of the martensite blocks may be less than 0.5.
- the average aspect ratio of the martensite block belonging to the third group may be 2.5 or more and 2.8 or less.
- the martensite block may be composed of a martensite block belonging to the fourth group and a martensite block belonging to the fifth group.
- the minimum value of the crystal grain size of the martensite block belonging to the fifth group may be larger than the maximum value of the crystal grain size of the martensite block included in the fourth group.
- the value obtained by dividing the total area of the martensite blocks belonging to the fifth group by the total area of the martensite blocks may be 0.7 or more.
- a value obtained by dividing the total area of the martensite blocks belonging to the fifth group excluding the martensite block belonging to the fifth group, which has the largest crystal grain size, by the total area of the martensite blocks may be less than 0.7.
- the average aspect ratio of the martensite block belonging to the fifth group may be 2.4 or more and 2.6 or less.
- the average grain size of the prior austenite crystal grains on the raceway surface or the rolling surface is 8 ⁇ m or less.
- the average particle size of the prior austenite grains in the diffusion layer may be 8 ⁇ m or less.
- the compound grains include (Fe, Cr) 3 (C, N).
- the average carbon concentration in the shallow region from the raceway surface or the rolling surface to a depth of 10 ⁇ m is 0.7% by weight or more, and the average nitrogen concentration in the shallow region is 0.2% by weight or more.
- the chromium molybdenum steel may be SCM435 defined in the JIS standard.
- the rolling bearing according to the present invention includes an outer ring, an inner ring disposed inside the outer ring, and a plurality of rolling elements arranged between the outer ring and the inner ring. At least one of the outer ring, the inner ring, and the rolling element is the bearing component.
- the rolling bearing has an outer ring made of chromium molybdenum steel having an outer ring raceway surface provided on an inner peripheral surface, an inner ring raceway surface provided on an outer peripheral surface, and a second raceway surface facing the first raceway surface.
- An inner ring made of chrome molybdenum steel and a rolling element made of chrome molybdenum steel that is arranged to roll between the first raceway surface and the second raceway surface and has a rolling surface are provided.
- a diffusion layer is provided on at least one of the outer ring raceway surface, the inner ring raceway surface, and the rolling surface.
- the diffusion layer includes a plurality of compound grains and a plurality of martensite blocks.
- the average particle size of the compound particles is 0.3 ⁇ m or less.
- the area ratio of the compound grains in the diffusion layer is 3% or more.
- the maximum particle size of the martensite block is 3.8 ⁇ m or less.
- the method of manufacturing a bearing component according to the present invention includes a step of preparing a molded body made of chromium molybdenum steel, and heating the molded body to 930 ° C. or higher and 940 ° C. or lower in a carbonitriding atmosphere containing ammonia.
- the body is carbonitrided, and the carbonitrided molded body is heated to a primary quenching temperature of 850 ° C. or higher and lower than 930 ° C., and then cooled to a temperature below the Ms point, thereby first quenching the molded body.
- the primary quenching temperature is 860 ° C. or higher and 880 ° C. or lower
- the secondary quenching temperature is 820 ° C. or higher and 840 ° C. or lower.
- the above steel material containing an element capable of forming a carbonitride having both wear resistance and toughness enough to withstand use in a foreign matter-contaminated environment is used. It is possible to provide a bearing component, a rolling bearing, and a manufacturing method of the bearing component that are lower in manufacturing cost than conventional bearing components.
- FIG. 2 is a graph showing the concentration distribution of carbon and nitrogen in the inner ring of Sample 1 of Example 1.
- FIG. 3 is a graph showing the concentration distribution of carbon and nitrogen in the inner ring of Sample 2 of Example 1.
- FIG. 2 is an electron microscopic image of the surface of the inner ring of the sample 1 of Example 1.
- FIG. 2 is an electron microscopic image of the surface of the roller of Sample 1 in Example 1.
- FIG. 2 is an electron microscopic image of the surface of the inner ring of sample 2 of Example 1.
- FIG. 2 is an electron microscopic image of the surface of the roller of Sample 2 in Example 1.
- FIG. 2 is an optical microscope image of the surface of the inner ring of Sample 1 of Example 1.
- FIG. 2 is an optical microscopic image of the surface of the roller of Sample 1 of Example 1.
- FIG. 2 is an optical microscope image of the surface of the inner ring of the sample 2 of Example 1.
- FIG. 3 is an optical microscope image of the surface of the roller of the sample 2 of Example 1.
- FIG. 3 is a graph showing the results of wear resistance tests of test pieces 1 and 2 of Example 1.
- 3 is a graph showing the Charpy impact test results of test pieces 3 and 4 of Example 1.
- FIG. 3 is a graph showing the results of wear resistance tests of test pieces 1 and 2 of Example 1.
- FIG. 6 is a top view of a bearing component according to Embodiment 2.
- FIG. It is sectional drawing in XVII-XVII of FIG. It is an enlarged view in the area
- FIG. 6 is a process diagram showing a method for manufacturing a bearing component according to Embodiment 2.
- 6 is a graph showing a heat pattern in a method for manufacturing a bearing component according to Embodiment 2. It is sectional drawing of the rolling bearing 100 which concerns on Embodiment 2.
- FIG. 6 is a graph showing measurement results of carbon concentration and nitrogen concentration by EPMA for Sample 5.
- FIG. 6 is a graph showing measurement results of carbon concentration and nitrogen concentration by EPMA for Sample 7.
- 3 is an electron microscope image in the vicinity of the surface of the sample 5.
- 7 is an electron microscopic image in the vicinity of the surface of the sample 6.
- 7 is an electron microscope image in the vicinity of the surface of the sample 7.
- FIG. 3 is an electron microscope image in the vicinity of the surface of the sample 8.
- 3 is an EBSD image in the vicinity of the surface of the sample 6.
- 3 is an EBSD image in the vicinity of the surface of the sample 8.
- 3 is an optical microscope image in the vicinity of the surface of the sample 5.
- 2 is an optical microscope image in the vicinity of the surface of a sample 7; It is a graph which shows the average particle diameter of the martensite block which belongs to the 3rd group in the surface vicinity of the sample 5 and the sample 7, and a 5th group. It is a graph which shows the average particle diameter of the martensite block which belongs to the 3rd group and the 5th group in the surface vicinity of the sample 6 and the sample 8. It is a graph which shows the average aspect-ratio of the martensite block which belongs to the 3rd group in the surface vicinity of the sample 5 and the sample 7, and a 5th group.
- 7 is a graph showing the Charpy impact test results for Sample 9 and Sample 10. It is an electron microscope image on the notch side surface of the sample 9 after the Charpy impact test was performed. It is an electron microscope image on the notch side surface of the sample 10 after the Charpy impact test was performed. It is a graph which shows the rolling fatigue test result with respect to the sample 11 and the sample 12.
- FIG. It is a graph which shows the abrasion test result with respect to the sample 13 and the sample 14.
- the rolling bearing 1 mainly includes an outer ring 10, an inner ring 11, a ball 12, and a cage 13.
- the outer ring 10, the inner ring 11, and the ball 12 are bearing parts according to the present embodiment.
- the rolling bearing 1 is a deep groove ball bearing as shown in FIG. 1, for example, but is not limited thereto.
- the rolling bearing 1 may be a radial ball bearing such as an angular ball bearing, or may be a thrust ball bearing, a radial roller bearing, or a thrust roller bearing.
- the outer ring 10 is ring-shaped and has an outer ring raceway surface 10A on the inner peripheral surface.
- the inner ring 11 has an annular shape and has an inner ring raceway surface 11A on the outer peripheral surface.
- the inner ring 11 is disposed on the inner peripheral side of the outer ring 10 so that the inner ring raceway surface 11A faces the outer ring raceway surface 10A.
- the outer ring 10 and the inner ring 11 are made of chromium molybdenum steel (SCM), for example, SCM435.
- the ball 12 is disposed on the inner peripheral surface of the outer ring 10.
- the balls 12 are arranged at a predetermined pitch on an annular track along the circumferential direction of the outer ring 10 and the inner ring 11 by, for example, the cage 13.
- the balls 12 are held by the cage 13 so as to roll on the track.
- the ball 12 has a ball rolling surface 12A, and the ball rolling surface 12A is in contact with the outer ring raceway surface 10A and the inner ring raceway surface 11A.
- the ball 12 is composed of SCM, for example, SCM435.
- retainer 13 contains a synthetic resin, for example. With such a configuration, the outer ring 10 and the inner ring 11 of the deep groove ball bearing 1 are rotatable relative to each other.
- the carbon concentration in the surface region 10B where the depth from the outer ring raceway surface 10A of the outer ring 10 is within 0.5 mm is more than the carbon concentration in the inner region of the outer ring 10 where the depth from the outer ring raceway surface 10A is more than 0.5 mm. Is also expensive.
- the nitrogen concentration in the surface region 10B where the depth from the outer ring raceway surface 10A of the outer ring 10 is within 0.5 mm is higher than the nitrogen concentration in the inner region of the outer ring 10.
- the outer ring raceway surface 10 ⁇ / b> A of the outer ring 10 compound grains (precipitated compound) made of at least one of carbide, nitride, and carbonitride exist.
- the area ratio of the precipitated compound on the outer ring raceway surface 10A is 3% or more.
- the average particle size of the deposited compound on the outer ring raceway surface 10A is 0.3 ⁇ m or less.
- the deposited compound contains iron (Fe) and chromium (Cr), and mainly contains (Fe, Cr) 3 (C, N).
- the average carbon concentration in the outer ring shallow region from the outer ring raceway surface 10A to the depth of 10 ⁇ m is 0.7% by weight or more.
- the average nitrogen concentration in the outer ring shallow region is 0.2% by weight or more.
- the average carbon concentration (or average nitrogen concentration) in the shallow region is analyzed by EPMA (Electron Probe Micro Analysis) in the depth direction for the cross section perpendicular to the raceway surface or rolling surface. It is calculated as an average value of carbon concentration (or nitrogen concentration) from the surface to a depth of 10 ⁇ m.
- the average grain size of the prior austenite crystal grains on the outer ring raceway surface 10A of the outer ring 10 is 8 ⁇ m or less.
- the carbon concentration of the surface region 11B in which the depth from the inner ring raceway surface 11A of the inner ring 11 is within 0.5 mm is more than the carbon concentration of the inner region of the inner ring 11 in which the depth from the inner ring raceway surface 11A is more than 0.5 mm. Is also expensive.
- the nitrogen concentration in the surface region 11B where the depth of the inner ring 11 from the inner ring raceway surface 11A is within 0.5 mm is higher than the nitrogen concentration in the inner region of the inner ring 11.
- a precipitated compound composed of at least one of carbide, nitride, and carbonitride exists on the inner ring raceway surface 11A of the inner ring 11.
- the area ratio of the deposited compound on the inner ring raceway surface 11A is 3% or more.
- the average particle size of the precipitated compound on the inner ring raceway surface 11A is 0.3 ⁇ m or less.
- the deposited compound contains iron (Fe) and chromium (Cr), and mainly contains (Fe, Cr) 3 (C, N).
- the average carbon concentration in the inner ring shallow layer region from the inner ring raceway surface 11A to a depth of 10 ⁇ m is 0.7% by weight or more.
- the average nitrogen concentration in the inner ring shallow region is 0.2% by weight or more.
- the average grain size of the prior austenite crystal grains in the inner ring raceway surface 11A of the inner ring 11 is 8 ⁇ m or less.
- the carbon concentration of the surface region 12B where the depth from the ball rolling surface 12A of the ball 12 is within 0.5 mm is the carbon concentration of the inner region of the ball 12 where the depth from the ball rolling surface 12A is more than 0.5 mm. Higher than concentration.
- the nitrogen concentration in the surface region 12B in which the depth of the ball 12 from the ball rolling surface 12A is within 0.5 mm is higher than the nitrogen concentration in the inner region of the ball 12.
- a precipitated compound composed of at least one of carbide, nitride, and carbonitride is present on the ball rolling surface 12A of the ball 12.
- the area ratio of the precipitated compound on the ball rolling surface 12A is 3% or more.
- the average particle size of the precipitated compound on the ball rolling surface 12A is 0.3 ⁇ m or less.
- the deposited compound contains iron (Fe) and chromium (Cr), and mainly contains (Fe, Cr) 3 (C, N).
- the average carbon concentration in the ball shallow layer region from the ball rolling surface 12A to the depth of 10 ⁇ m is 0.7% by weight or more.
- the average nitrogen concentration in the Tamasa layer region is 0.2% by weight or more.
- the average grain size of the prior austenite crystal grains on the ball rolling surface 12A of the balls 12 is 8 ⁇ m or less.
- the thickness from the outer ring raceway surface 10A to the outer peripheral surface of the outer ring 10 is, for example, 10 mm or more.
- the thickness from the inner ring raceway surface 11A to the inner peripheral surface of the inner ring 11 is, for example, 10 mm or more.
- the diameter of the ball 12 is, for example, 10 mm or more.
- the average particle diameter of the precipitation compound on the raceway surface and the rolling surface can be calculated from, for example, electron microscope images of the raceway surface and the rolling surface.
- the average grain size of the prior austenite crystal grains on the raceway surface and the rolling surface can be calculated from optical microscope images of the raceway surface and the rolling surface, for example.
- the average particle diameter means an arithmetic average of the particle diameters of a sufficient number (for example, 20 particles).
- the area ratio of the said precipitation compound in a raceway surface and a rolling surface is a ratio with respect to the surface area of the said area
- the region of the predetermined surface area of the raceway surface and the rolling surface is a region in the observation visual field when the raceway surface and the rolling surface are observed with a microscope or the like, for example.
- the total surface area of the precipitated compound is perpendicular to the direction of the precipitated compound that is confirmed when the observation area is viewed from a direction (substantially perpendicular) where the angle formed with respect to the plane having the observation area is 90 ° ⁇ 2 °. This is the sum of the projected areas on a flat surface.
- step (S10) molded bodies to be the outer ring 10, the inner ring 11, and the balls 12 are formed (step (S10)).
- step (S10) a molded body having a predetermined shape is formed by machining the SCM material.
- the machining method any method such as cutting or pressing can be used.
- the horizontal direction in FIG. 2 indicates the elapsed time in the heat treatment process, and indicates that the time has passed toward the right.
- the vertical direction in FIG. 2 indicates the heating temperature of the molded body in the heat treatment step, and indicates that the temperature increases as it goes upward.
- a molded member as an object to be processed is carbonitrided (step (S20)).
- the molded body prepared in the previous step (S10) has an A 1 point or more in an atmosphere in which ammonia (NH 3 ) gas is introduced into an endothermic shift gas such as R gas.
- the temperature is heated to a carbonitriding temperature T1 of 930 ° C. or higher and 940 ° C. or lower.
- the heating and holding time is, for example, 10 hours to 15 hours.
- the atmosphere in this step (S20) is the amount of undecomposed ammonia (in the atmosphere without being decomposed) using the amount of carbon monoxide (CO), the amount of carbon dioxide (CO 2 ), and the amount of undecomposed NH 3 in the atmosphere.
- the amount of NH 3 gas present in the atmosphere is controlled to be, for example, 0.1% by volume or more. Thereby, the carbon concentration and the nitrogen concentration in the region including the surface of the carbonitrided molded body are higher than the carbon concentration and the nitrogen concentration in other regions of the molded body.
- the carbonitrided molded body is then subjected to nitrogen diffusion treatment (step (S25)).
- the formed carbonitrided in the previous step (S20) is, for example, carbonitrided in an atmosphere in which ammonia (NH 3 ) gas is introduced into an endothermic shift gas such as R gas. Heated and held at temperature T1.
- the heating and holding time is, for example, 5 hours or more and 10 hours or less.
- the atmosphere in this step (S25) is the same as in the carbonitriding process, using the amount of carbon monoxide (CO), the amount of carbon dioxide (CO 2 ), and the amount of undecomposed NH 3 in the atmosphere. For example, it is controlled to be 0.1 volume% or more.
- ⁇ in the nitrogen diffusion treatment is controlled to be lower than ⁇ in the carbonitriding treatment.
- the carbonitrided molded body is subjected to primary quenching (step (S30)).
- step (S30) the compact subjected to the nitrogen diffusion treatment in the previous step (S25) is less than the carbonitriding temperature T1 but sufficiently higher than the A1 point in an atmosphere not containing ammonia gas.
- the compact that has been heated to the carbonitriding temperature T1 in the previous step (S25) is heated to the primary quenching temperature T2 without being cooled to a temperature below the A1 point.
- the primary quenching temperature T2 is set to a temperature higher than a general quenching temperature of 850 ° C. in order to suppress an excessive increase in a precipitated compound mainly composed of (Fe, Cr) 3 (C, N), for example, It is 860 degreeC or more and 880 degrees C or less, for example, 870 degreeC.
- the heating and holding time is, for example, not less than 0.5 hours and not more than 2 hours.
- the cooling is, for example, oil cooling.
- the molded body that has been subjected to the primary quenching process is then subjected to a secondary quenching process (step (S40)).
- step (S40) the molded body that has been quenched and hardened in the previous step (S30) is heated and held at a secondary quenching temperature T3 that is equal to or higher than A1 and lower than the primary quenching temperature T2, and then M S. It is cooled to a temperature below the point.
- the secondary quenching temperature T3 is less than 850 ° C., for example, 820 ° C. or more and 840 ° C. or less, for example, 830 ° C.
- the heating time is, for example, 1 hour or more and 2 hours or less.
- the cooling is, for example, oil cooling.
- tempering is then performed (step (S50)).
- step (S50) the molded body quenched and hardened in the previous step (S40) is tempered by being heated to a tempering temperature T4 of A1 or lower.
- Tempering temperature T4 is 150 degreeC or more and 350 degrees C or less, for example, for example, is 180 degreeC.
- the heating and holding time is, for example, not less than 0.5 hours and not more than 5 hours.
- step (S60) the molded body that has been subjected to the heat treatment step is finished.
- finishing such as polishing is performed on the surface of the molded body.
- the depth of the position made into the surface of a machine component with respect to the surface of the molded object and the amount of processing by finishing is 250 micrometers, for example.
- step (S70) the outer ring 10, the inner ring 11, and the ball 12 are assembled.
- step (S70) the outer ring 10, inner ring 11, ball 12 and separately prepared cage 13 are assembled. Thereby, the deep groove ball bearing 1 shown in FIG. 1 is manufactured.
- the method for manufacturing a bearing component according to the first embodiment includes a step of preparing a molded body made of chromium molybdenum steel (S10), and heating the molded body to 930 ° C. or higher and 940 ° C. or lower in a carbonitriding atmosphere containing ammonia. By carbonitriding the molded body (S20), and heating the carbonitrided molded body to a primary quenching temperature of more than 850 ° C. and less than 930 ° C., and then cooling to a temperature below the Ms point.
- S10 chromium molybdenum steel
- the primary quenching temperature T2 is higher than a general primary quenching temperature of 850 ° C. in a method for manufacturing a bearing component made of bearing steel, for example, 860 ° C. or more and 880 ° C. or less.
- the primary quenching temperature T2 is higher than a general primary quenching temperature of 850 ° C. in a method for manufacturing a bearing component made of bearing steel, for example, 860 ° C. or more and 880 ° C. or less.
- the secondary quenching temperature T3 is lower than a general primary quenching temperature of 850 ° C. in a method for manufacturing a bearing component made of bearing steel, for example, 820 ° C. or more and 840 ° C. or less.
- the carbon concentration and the nitrogen concentration dissolved in the substrate are lower than those at the time of the primary quenching treatment, and the above-described precipitated compounds are hardly formed. Therefore, by setting the secondary quenching temperature T3 within the numerical range as described above, a large amount of fine precipitated compounds can be formed.
- each of the outer ring 10, the inner ring 11 and the balls 12 obtained by the method for manufacturing a bearing component according to the first embodiment has the following characteristics (details will be described later). See Example 1).
- the outer ring raceway surface 10A, the inner ring raceway surface 11A, and the ball rolling surface 12A contain a precipitated compound composed of at least one of carbide, nitride, and carbonitride.
- the area ratio of the precipitated compound on the outer ring raceway surface 10A, the inner ring raceway surface 11A, and the ball rolling surface 12A is 3% or more. This value is higher than that of a conventional bearing part made of carburized steel and manufactured by a conventional heat treatment process. Furthermore, the average particle diameter of the said precipitation compound is 0.3 micrometer or less. This value is smaller than that of conventional bearing parts.
- the outer ring 10, the inner ring 11 and the balls 12 have higher wear resistance than conventional bearing parts, and the outer ring raceway surface 10A and the inner ring raceway are used even in a foreign matter mixed environment.
- the surface 11A and the ball rolling surface 12A are not easily damaged and have a long life.
- the manufacturing cost is higher than that of a conventional bearing component using the steel material containing an element capable of forming carbonitride. Is low.
- the average grain size of the prior austenite crystal grains is 8 ⁇ m or less. This value is smaller than that of conventional bearing parts. Therefore, such outer ring 10, inner ring 11 and ball 12 have higher toughness than conventional bearing parts.
- conventional bearing parts made of carburizing steel it is necessary to increase the content of elements capable of forming carbonitrides in order to increase the precipitation amount of carbides and nitrides in order to improve wear resistance. is there.
- the toughness of bearing parts tends to decrease as the content of elements capable of forming carbonitrides increases. For this reason, it has been difficult for conventional bearing parts to achieve both wear resistance and toughness that can sufficiently withstand use in a foreign matter-mixed environment.
- the precipitated compound is present in a large amount in the surface regions 10B, 11B and 12B and the prior austenite crystal grains are present in comparison with the conventional bearing parts. Since it is miniaturized, it has both wear resistance and toughness enough to withstand use in a foreign matter-mixed environment, and therefore has a long life even when used in a foreign matter-mixed environment.
- the material constituting the precipitated compound includes (Fe, Cr) 3 (C, N).
- the average carbon concentration in the shallow layer region from the outer ring raceway surface 10A, the inner ring raceway surface 11A, and the ball rolling surface 12A to the depth of 10 ⁇ m is 0.7% by weight or more, and the average nitrogen concentration in the shallow layer region Is 0.2% by weight or more. These values are equal to or greater than those of conventional bearing parts. This indicates that at least two of carbide, nitride, and carbonitride are precipitated in the shallow region in the bearing component as compared with the conventional bearing component.
- At least one of the outer ring 10, the inner ring 11, and the ball 12 is made of SCM material, carbonitride is precipitated on the raceway surface and the rolling surface, and the area ratio of the carbonitride is 3% or more, and The average particle size of the carbonitride may be 0.3 ⁇ m or less.
- Sample 1 was produced according to the bearing component manufacturing method according to the first embodiment. Specifically, first, a molded body made of JIS standard SCM435 and molded into the shape of the inner ring of a rolling bearing was prepared. Next, the carbonitriding process, the primary quenching process, the secondary quenching process, and the tempering process were sequentially performed on the molded body.
- a carbonitriding temperature was set to 930 ° C. or more and 940 ° C. or less using a mixed gas of R gas and NH 3 gas, and the heating and holding time was set to 13 hours.
- the atmosphere in the furnace of the carbonitriding process is controlled using the amount of carbon monoxide (CO), the amount of carbon dioxide (CO 2 ), and the amount of NH 3 in the atmosphere, and the amount of CO is 11% by volume to 17% by volume.
- the amount of 2 was 0.05 to 0.15% by volume, and the amount of NH 3 was 0.1 to 0.3% by volume.
- the diffusion treatment temperature was set to 930 ° C. or more and 940 ° C. or less using a mixed gas of R gas and NH 3 gas, and the heating and holding time was 6 hours.
- the furnace atmosphere of the diffusion treatment is controlled using the amount of carbon monoxide (CO), the amount of carbon dioxide (CO 2 ), and the amount of NH 3 in the atmosphere in the same manner as the carbonitriding treatment, and the CO amount is 11 volume% or more. 17 vol% or less, CO 2 amount 0.05% by volume or more and 0.15% by volume or less, which is the amount of NH 3 0.1 vol% to 0.3 vol%.
- the ⁇ in the nitrogen diffusion treatment was controlled to be lower than the ⁇ in the carbonitriding treatment.
- the primary quenching temperature was 870 ° C., and the heating and holding time was 1 hour.
- the cooling was oil cooling.
- the secondary quenching temperature was 830 ° C., and the heating and holding time was 1.5 hours.
- the cooling was oil cooling.
- the tempering temperature was 180 ° C., and the heating and holding time was 3 hours. Cooling was air cooling.
- ⁇ Finishing was performed on each molded body subjected to the heat treatment.
- the finishing process was performed by mechanical polishing, and the polishing amount was 150 ⁇ m.
- Sample 2 was produced as a comparative example according to a conventional method for manufacturing a bearing component. Specifically, first, a molded body made of JIS standard SCM435 and molded into each shape of an outer ring, an inner ring and a roller of a rolling bearing was prepared. Next, a carbonitriding process, a quenching process, and a tempering process were sequentially performed on each molded body.
- a carbonitriding temperature was set to 930 ° C. or more and 940 ° C. or less using a mixed gas of R gas and NH 3 gas, and the heating and holding time was 8 hours.
- the atmosphere in the furnace of the carbonitriding process is controlled by using the amount of carbon monoxide (CO), the amount of carbon dioxide (CO 2 ), and the amount of NH 3 in the atmosphere, and the amount of CO is 16 volume% or more and 22 volume% or less.
- 2 amount was 0.2% by volume or more and 0.4% by volume or less
- NH 3 amount was 0.1% by volume or more and 0.3% by volume or less.
- the diffusion treatment a mixed gas of R gas and NH 3 gas was used, the diffusion treatment temperature was 930 ° C. or more and 940 ° C. or less, and the heating and holding time was 4 hours.
- Furnace atmosphere of the diffusion process carbon monoxide (CO) content in the atmosphere, carbon dioxide (CO 2) amount, and is controlled using the amount of NH 3, CO content 16% by volume to 22% by volume or less, CO 2 the amount 0.2 vol% to 0.4 vol%, was the NH 3 amount 0.1 vol% to 0.3 vol%.
- the ⁇ in the nitrogen diffusion treatment was controlled to be lower than the ⁇ in the carbonitriding treatment.
- the quenching temperature was 870 ° C., and the heating and holding time was 1 hour.
- the cooling was oil cooling.
- the tempering temperature was 180 ° C., and the heating and holding time was 3 hours. Cooling was air cooling.
- ⁇ Finishing was performed on each molded body subjected to the heat treatment.
- the finishing process was performed by mechanical polishing, and the polishing amount was 150 ⁇ m.
- FIG. 3 shows the analysis result for the inner ring of sample 1
- FIG. 4 shows the analysis result for the inner ring of sample 2.
- the horizontal axis in FIGS. 3 and 4 indicates the depth [unit: mm] from the surface, and the vertical axis in FIGS. 3 and 4 indicates the concentration [unit: wt%] of carbon and nitrogen.
- the average carbon concentration in the shallow layer region from the surface to a depth of 10 ⁇ m is 0.7 wt% or more and 1.2 wt% or less, and the average nitrogen concentration in the shallow layer region is 0.2 wt%. % To 0.4% by weight was confirmed. Furthermore, in the sample 1, it was confirmed that the carburization depth and the nitriding depth are about 1.0 mm or more and 1.5 mm or less.
- the average carbon concentration in the shallow region from the surface to a depth of 10 ⁇ m is 0.7 wt% or more and 0.8 wt% or less, and the average nitrogen concentration in the shallow region is 0.2 wt%. % To 0.4% by weight was confirmed. Furthermore, in the sample 2, it was confirmed that the carburization depth and the nitriding depth are about 1.0 mm or more and 1.5 mm or less.
- Sample 1 has a carburization depth and nitridation depth similar to those of Sample 2, but a larger amount of precipitated compound (Fe, Cr) 3 (C, N) than Sample 2 has a surface region. It was confirmed to exist.
- FIG. 5 shows an electron microscope image of the inner ring of sample 1
- FIG. 6 shows an electron microscope image of the roller of sample 1.
- 7 shows an electron microscope image of the inner ring of sample 2
- FIG. 8 shows an electron microscope image of the roller of sample 2.
- FIG. 9 shows an optical microscope image of the inner ring of sample 1
- FIG. 10 shows an optical microscope image of the roller of sample 1.
- FIG. 11 shows an optical microscope image of the inner ring of sample 2
- FIG. 12 shows an optical microscope image of the roller of sample 2.
- the grain size of the prior austenite crystal grains on the surface of Sample 1 was 1 ⁇ m or more and 10 ⁇ m or less, and the average grain size was 4 ⁇ m or more and 8 ⁇ m or less.
- test piece 1 as an example prepared by the same method as the sample 1 and the test as a comparative example prepared by the same method as the sample 2
- a wear test was performed on the piece 2.
- Test pieces 1 and 2 were flat.
- the surface roughness Ra of the test pieces 1 and 2 was 0.010 ⁇ m.
- the load at the time of the test was 50 N
- the relative speed between the test piece and the counterpart material was 0.05 m / s
- the test time was 60 minutes
- the specific wear amount was computed from the wear amount of the test piece after completion
- FIG. 13 shows the specific wear amount [unit: ⁇ 10 ⁇ 10 mm 3 / N ⁇ m] of the test pieces 1 and 2. As shown in FIG. 13, it was confirmed that the specific wear amount of the test piece 1 was suppressed to about 20% of that of the test piece 2. Similar to the sample 1 in the above-described example, the test piece 1 has a large number of fine precipitated compounds in the surface area as compared with the test piece 2, so the test piece 1 is considered to have high wear resistance. It is done.
- test piece 3 As an example prepared by the same method as the sample 1 and the test piece 4 as a comparative example prepared by the same method as the sample 2
- a Charpy impact test was conducted.
- the test pieces 3 and 4 were formed with U notches having a notch depth of 2 mm and a notch bottom curvature radius of 1 mm.
- FIG. 14 shows the Charpy impact value [unit: J / cm 2 ] of the test pieces 3 and 4.
- the test piece 3 has a Charpy impact value of 1.5 times or more as compared with the test piece 4, and it was confirmed that the test piece 3 has high toughness. This is because, like the sample 1 described above, since the austenite crystal grains having a fine and small variation in grain size are present in the surface region of the test piece 3, the test piece 3 is considered to have high toughness. It is done.
- FIG. 15 shows the life test results of Sample 3 as an example and Sample 4 as a comparative example.
- the horizontal axis in FIG. 15 indicates the lifetime [unit: time], and the vertical axis in FIG. 15 indicates the cumulative failure probability [unit:%].
- the L 10 life of the comparative example was 38 hours and the L 50 life was 76 hours, whereas the L 10 life of the example was 89 hours and the L 50 life was 152 hours.
- the rolling fatigue life of the example was at least twice that of the comparative example.
- the example has higher wear resistance and higher toughness than the comparative example, it has a rolling fatigue life of twice or more. Conceivable.
- FIG. 16 is a top view of the bearing component according to the second embodiment. 17 is a cross-sectional view taken along the line II-II in FIG. As shown in FIGS. 16 and 17, the bearing component according to the second embodiment is, for example, an inner ring 110 of a deep groove ball bearing.
- the bearing component according to Embodiment 2 is not limited to this.
- the bearing component according to Embodiment 2 may be, for example, an outer ring of a deep groove ball bearing or a rolling element of a deep groove ball bearing.
- the inner ring 110 is made of chromium molybdenum steel.
- the chromium molybdenum steel used for the inner ring 110 is a steel that belongs to the SCM steel type defined in, for example, the JIS standard (JIS G 4053: 2008).
- the chromium molybdenum steel used for the inner ring 110 may be SCM435 defined in the JIS standard.
- the inner ring 110 has a surface. More specifically, the inner ring 110 has an inner peripheral surface 110a and an outer peripheral surface 110b.
- the inner peripheral surface 110a is a surface on the side where the shaft is attached.
- the outer peripheral surface 110 b is a surface that constitutes the raceway surface of the inner ring 110.
- FIG. 18 is an enlarged view of region III in FIG.
- the inner ring 110 has a diffusion layer 111 on the surface (outer peripheral surface 110b).
- the diffusion layer 111 is a portion where the concentration of nitrogen and carbon is higher than the concentration of nitrogen and carbon in the chromium molybdenum steel constituting the inner ring 110.
- the depth D of the diffusion layer 111 is, for example, not less than 1 mm and not more than 1.5 mm.
- the diffusion layer 111 contains a plurality of compound grains (precipitated compounds) and a plurality of martensite blocks.
- the compound grains are crystal grains of iron (Fe) carbide, iron nitride, or iron carbonitride. More specifically, the compound grain is a compound in which part of the iron site of cementite (Fe 3 C) is replaced by chromium and part of the carbon (C) site is replaced by nitrogen (N) ( That is, it is a crystal grain of a compound represented by (Fe, Cr) 3 (C, N).
- the average particle size of the compound particles in the diffusion layer 111 is 0.3 ⁇ m or less.
- the average particle size of the compound particles in the diffusion layer 111 is preferably 0.25 ⁇ m or less.
- the area ratio of the compound grains in the diffusion layer 111 is 3% or more.
- the area ratio of the compound grains in the diffusion layer 111 is preferably 8% or more.
- the area ratio of the compound grains in the diffusion layer 111 is, for example, 10% or less.
- the average particle diameter and area ratio of the compound grains in the diffusion layer 111 are measured by the following method.
- SEM image an image obtained by SEM imaging is referred to as “SEM image”.
- the SEM image is taken so that a sufficient number (20 or more) of compound particles are included.
- the value obtained by dividing the total equivalent circle diameter of each compound particle displayed in the SEM image by the number of compound particles displayed in the SEM image is the average particle size of the compound particles in the diffusion layer 111. It is said.
- a value obtained by dividing the total area of the compound grains displayed in the SEM image by the area of the SEM image is the area ratio of the compound grains in the diffusion layer 111.
- Martensite block is a block of martensite phase composed of crystals with uniform crystal orientation.
- the martensite phase is a non-equilibrium phase obtained by quenching the iron austenite phase in which carbon is dissolved.
- the first martensite The phase block and the second martensite phase block are different martensite blocks.
- the deviation between the crystal orientation of the first martensite phase block and the crystal orientation of the second martensite block adjacent to the first martensite phase block is less than 5 °, The block of martensite phase and the block of second martensite phase constitute one martensite block.
- the maximum particle size of the martensite block in the diffusion layer 111 is 3.8 ⁇ m or less.
- the maximum particle size of the martensite block in the diffusion layer 111 is, for example, 3.6 ⁇ m or more.
- the martensite block included in the diffusion layer 111 having a crystal grain size of 1 ⁇ m or less constitutes the first group.
- the area ratio of the martensite blocks constituting the first group to the total area of the martensite blocks included in the diffusion layer 111 is preferably 0.55 or more and 0.75 or less.
- the martensite block included in the diffusion layer 111 may be divided into a second group and a third group.
- the maximum value of the crystal grain size of the martensite block belonging to the second group is smaller than the minimum value of the crystal grain size of the martensite block belonging to the third group.
- a value obtained by dividing the total area of the martensite blocks belonging to the third group by the total area of the martensite blocks included in the diffusion layer 111 is 0.5 or more.
- a value obtained by dividing the total area of the martensite blocks belonging to the third group excluding the martensite block having the largest crystal grain size belonging to the third group by the total area of the martensite blocks included in the diffusion layer 111 is less than 0.5. It is.
- the martensite block included in the second group and the martensite block belonging to the third group are classified by the following method. That is, first, each martensite block is assigned to the first group in order from the smallest crystal grain size, and the total number of martensite blocks assigned to the second group with respect to the total area of the martensite block. The area is calculated sequentially. Second, when the ratio of the total area of the martensite block assigned to the second group to the total area of the martensite block reaches a limit not exceeding 50 percent, the assignment of the martensite block to the second group is performed. Stop. Thirdly, martensite blocks not assigned to the second group are assigned to the third group.
- the average particle size of the martensite block included in the third group is 0.7 ⁇ m or more and 1.4 ⁇ m or less.
- the average aspect ratio of the martensite block included in the third group is 2.5 or more and 2.8 or less.
- the martensite block included in the diffusion layer 111 may be divided into a fourth group and a fifth group.
- the maximum value of the crystal grain size of the martensite block belonging to the fourth group is smaller than the minimum value of the crystal grain size of the martensite block belonging to the fifth group.
- a value obtained by dividing the total area of the martensite blocks belonging to the fifth group by the total area of the martensite blocks included in the diffusion layer 111 is 0.7 or more.
- a value obtained by dividing the total area of the martensite blocks belonging to the fifth group excluding the martensite block having the largest crystal grain size belonging to the fifth group by the total area of the martensite blocks included in the diffusion layer 111 is less than 0.7. It is.
- the martensite block included in the fourth group and the martensite block belonging to the fifth group are classified by the following method. That is, first, each martensite block is assigned to the fourth group in order from the smallest crystal grain size, and the total number of martensite blocks assigned to the fourth group with respect to the total area of the martensite block. The area is calculated sequentially. Second, when the ratio of the total area of the martensite block allocated to the fourth group to the total area of the martensite block reaches a limit not exceeding 30 percent, the allocation of the martensite block to the fourth group is performed. Stop. Thirdly, martensite blocks not assigned to the fourth group are assigned to the fifth group.
- the average particle size of the martensite block included in the fifth group is 0.7 ⁇ m or more and 1.1 ⁇ m or less.
- the average aspect ratio of the martensite block included in the fifth group is 2.4 or more and 2.6 or less.
- the crystal grain size of the martensite block and the aspect ratio of the martensite block in the diffusion layer 111 are measured using an EBSD (Electron Backscattered Diffraction) method.
- a cross-sectional image in the diffusion layer 111 is taken based on the EBSD method (hereinafter referred to as “EBSD image”).
- the EBSD image is taken so that a sufficient number (20 or more) of martensite blocks are included.
- the deviation of the crystal orientation of the adjacent martensite phase block is specified.
- the boundary of each martensite block is specified.
- the area and shape of each martensite block displayed in the EBSD image are calculated based on the identified martensite block boundaries.
- the circle of each martensite block displayed in the EBSD image is calculated by calculating the square root of the value obtained by dividing the area of each martensite block displayed in the EBSD image by 4 / ⁇ .
- the equivalent diameter is calculated.
- the largest value among the equivalent circle diameters of the martensite blocks displayed in the EBSD image is set as the maximum particle diameter of the martensite blocks in the diffusion layer 111.
- the martensite block belonging to the first group is determined.
- a value obtained by dividing the total area of martensite blocks belonging to the first group among the martensite blocks displayed in the EBSD image by the total area of the martensite blocks displayed in the EBSD image is a diffusion belonging to the first group.
- the total area of the martensite block in the layer 111 is divided by the total area of the martensite block in the diffusion layer 111.
- the martensite blocks displayed in the EBSD image are classified into the second group and the third group (or the fourth group). And the fifth group).
- the sum of the equivalent circle diameters of the martensite blocks displayed in the EBSD image classified in the third group (or fifth group) is displayed in the EBSD image classified in the third group (or fifth group).
- the value divided by the number of martensite blocks is the average particle size of the martensite blocks in the diffusion layer 111 belonging to the third group (or belonging to the fifth group).
- each martensite block displayed in the EBSD image is elliptically approximated by the least square method.
- This elliptic approximation by the least square method is performed according to the method described in S. Biggin and D. J. Dingley, Journal of Applied Crystallography, (1977) 10, 376-378.
- the aspect ratio of each martensite block displayed in the EBSD method image is calculated by dividing the major axis dimension by the minor axis dimension.
- the sum of the aspect ratios of the martensite blocks displayed in the EBSD image classified into the third group (or the fifth group) is displayed in the martensite displayed in the EBSD image classified into the third group (or the fifth group).
- the value divided by the number of site blocks is the average aspect ratio of the martensite blocks in the diffusion layer 111 belonging to the third group (or belonging to the fifth group).
- the diffusion layer 111 includes a plurality of prior austenite grains.
- the prior austenite grains are regions defined by the crystal grain boundaries (old austenite grain boundaries) of the austenite grains formed in the holding step S41 and the holding step S51.
- the average particle size of the prior austenite grains is preferably 8 ⁇ m or less.
- the average particle size of the prior austenite grains is more preferably 6 ⁇ m or less.
- the average particle diameter of the prior austenite grains in the diffusion layer 111 is measured by the following method.
- the optical microscope image is taken so that a sufficient number (20 or more) of prior austenite grains are included.
- Fourth, by performing image processing on the obtained optical microscope image the area of each prior austenite grain in the optical microscope image is calculated.
- the equivalent circle diameter of each prior austenite grain displayed in the optical microscope image is calculated. Is done.
- the value obtained by dividing the total equivalent circle diameter of each prior austenite grain displayed in the optical microscope image by the number of former austenite grains displayed in the optical microscope image is the average grain size of the prior austenite grains in the diffusion layer 111. The diameter.
- the average carbon concentration in the diffusion layer 111 between the surface of the inner ring 110 (outer peripheral surface 110b) and a position at a distance of 10 ⁇ m from the surface of the inner ring 110 is preferably 0.7 mass percent or more.
- the average carbon concentration in the diffusion layer 111 between the surface of the inner ring 110 (outer peripheral surface 110b) and a position at a distance of 10 ⁇ m from the surface of the inner ring 110 is preferably 1.2 mass percent or less.
- the average nitrogen concentration in the diffusion layer 111 between the surface of the inner ring 110 (outer peripheral surface 110b) and a position at a distance of 10 ⁇ m from the surface of the inner ring 110 is preferably 0.2 mass percent or more.
- the average nitrogen concentration in the diffusion layer 111 between the surface of the inner ring 110 (outer peripheral surface 110b) and a position at a distance of 10 ⁇ m from the surface of the inner ring 110 is preferably 0.4 mass percent or less.
- the average carbon concentration and average nitrogen concentration in the diffusion layer 111 between the surface of the inner ring 110 (outer peripheral surface 110b) and a position at a distance of 10 ⁇ m from the surface of the inner ring 110 are measured using EPMA (Electron Probe Micro Analyzer). Measured.
- FIG. 19 is a process diagram showing a method for manufacturing a bearing component according to the second embodiment.
- the manufacturing method of the bearing component according to the second embodiment includes a preparation step S1, a carbonitriding step S2, a diffusion step S3, a primary quenching step S4, and a secondary quenching step S5. And tempering step S6 and post-processing step S7.
- a member to be processed that becomes the inner ring 110 is prepared through the carbonitriding step S2, the diffusion step S3, the primary quenching step S4, the secondary quenching step S5, the tempering step S6, and the post-processing step S7. Is done.
- the member to be processed is made of chromium molybdenum steel such as SCM steel grade defined in JIS standard.
- first holding temperature a predetermined temperature
- first holding time a predetermined time
- first holding temperature a gas containing an endothermic modified gas (R gas) and ammonia (NH 3 )
- R gas endothermic modified gas
- NH 3 ammonia
- the first holding temperature is, for example, 930 ° C. or more and 940 ° C. or less.
- the first holding time is, for example, not less than 10 hours and not more than 15 hours.
- the diffusion step S3 the carbon and nitrogen introduced from the surface of the processing target member in the carbonitriding step S2 diffuse into the processing target member.
- the diffusion step S3 is performed by holding in a furnace at a predetermined temperature (hereinafter referred to as “second holding temperature”) for a predetermined time (hereinafter referred to as “second holding time”).
- a gas containing an endothermic modified gas (R gas) and ammonia (NH 3 ) is used for the furnace atmosphere.
- the second holding temperature is, for example, 930 ° C. or higher and 940 ° C. or lower.
- the second holding time is, for example, 5 hours or more and 10 hours or less.
- the ⁇ defined by the above formula (1) and the above formula (2) is adjusted to be lower than the carbonitriding step S2.
- the adjustment of ⁇ is performed by adjusting the amount of carbon monoxide, the amount of carbon dioxide and the amount of undecomposed ammonia in the atmosphere, as is apparent from the above formulas (1) and (2).
- the amount of undecomposed ammonia in the atmosphere is preferably 0.1 volume percent or more.
- the primary quenching step S4 has a holding step S41 and a cooling step S42.
- the holding step S41 is performed by holding the member to be processed in a furnace at a predetermined temperature (hereinafter referred to as “third holding temperature”) in a furnace for a predetermined time (hereinafter referred to as “second holding time”). Is called.
- the atmosphere in the furnace does not contain ammonia.
- Third holding temperature is a A 1 transformation point or more temperature of the steel, which is lower temperature than the first holding temperature and the second holding temperature.
- the third holding temperature is, for example, not less than 850 ° C. and less than 930 ° C.
- the third holding temperature is 860 ° C. or higher and 880 ° C. or lower.
- the third holding time is, for example, not less than 0.5 hours and not more than 2 hours.
- the cooling step S42 the workpiece is cooled.
- the cooling step S42 is performed by oil cooling, for example.
- the secondary quenching step S5 has a holding step S51 and a cooling step S52.
- the holding step S51 is performed by holding the workpiece to be processed in a furnace at a predetermined temperature (hereinafter referred to as “fourth holding temperature”) for a predetermined time (hereinafter referred to as “fourth holding time”). Is called.
- fourth holding temperature is a A 1 transformation point or above the temperature of the steel constituting the processing target member is a temperature lower than the third holding temperature. Fourth holding temperature, for example processing target member is below the 850 ° C. A 1 transformation point or above of the steel constituting.
- the fourth holding temperature is preferably 820 ° C. or higher and 840 ° C. or lower.
- the fourth holding time is, for example, 1 hour or more and 2 hours or less.
- the cooling step S52 the workpiece is cooled.
- the cooling step S52 is performed by oil cooling, for example.
- the compound particles in the diffusion layer 111 are precipitated mainly in the holding step S41 and the holding step S51.
- the solid solubility limit of carbon and nitrogen in steel increases as the holding temperature increases (lower as the holding temperature decreases).
- the third holding temperature is set higher than the holding temperature during normal quenching in order to avoid excessive precipitation of compound grains in the diffusion layer 111 in the holding step S41 (than during normal quenching). It is set so that the solid solubility limit of carbon and nitrogen in steel is relatively wide).
- the fourth holding temperature is set lower than the third holding temperature in order to narrow the solid solubility limit of nitrogen and carbon in the steel and promote the precipitation of compound grains in the holding step S51.
- the area ratio of the compound grains in the diffusion layer 111 can be set to 3% or more.
- the average particle size can be 0.3 ⁇ m or less.
- the growth of the austenite crystal grains is suppressed by the pinning effect of the compound grains precipitated in a large amount and finely as described above, and the austenite crystal grains remain fine.
- martensitic transformation a plurality of martensite blocks are formed in one austenite crystal grain. From another point of view, one martensite block is not formed across a plurality of austenite crystal grains. Therefore, the more austenite crystal grains are made finer, the more fine the martensite block contained therein.
- tempering is performed on the workpiece.
- the member to be processed is held in a furnace at a predetermined temperature (hereinafter referred to as “fifth holding temperature”) for a predetermined time (hereinafter referred to as “fifth holding time”). This is done by cooling.
- the fifth holding temperature is the temperature below the A 1 transformation point of the steel constituting the processing target member.
- the fifth holding temperature is, for example, 150 ° C. or higher and 350 ° C. or lower.
- the fourth holding time is, for example, 0.5 hours or more and 5 hours.
- the cooling in the tempering step S6 is performed by air cooling, for example.
- FIG. 20 is a graph showing a heat pattern in the bearing component manufacturing method according to the second embodiment.
- FIG. 20 schematically shows the relationship between the first holding temperature to the fifth holding temperature and the first holding time to the fifth holding time.
- post-processing process S7 the post-processing with respect to a process target member is performed.
- the post-processing step S7 for example, cleaning of the processing target member, machining such as grinding and polishing on the processing target member, and the like are performed.
- the bearing component according to the second embodiment is manufactured.
- FIG. 21 is a cross-sectional view of the rolling bearing 100 according to the second embodiment.
- the rolling bearing 100 is, for example, a deep groove ball bearing.
- the rolling bearing 100 according to Embodiment 2 is not limited to this.
- the rolling bearing 100 according to the second embodiment may be a tapered roller bearing, for example.
- the rolling bearing 100 according to the second embodiment includes an inner ring 110, an outer ring 120, a rolling element 130, and a cage 140.
- the configuration of the inner ring 110 is as described above.
- the outer ring 120 is made of chrome molybdenum steel.
- the outer ring 120 for example, SCM steel types defined in JIS standards are used.
- the chromium molybdenum steel used for the outer ring 120 is, for example, SCM435 defined in JIS standards.
- the outer ring 120 has an inner peripheral surface 120a and an outer peripheral surface 120b.
- the inner peripheral surface 120a constitutes a raceway surface of the outer ring 120.
- the inner ring 110 and the outer ring 120 are disposed so that the outer peripheral surface 110b and the inner peripheral surface 120a face each other.
- a diffusion layer 121 is provided on the surface (inner peripheral surface 120 a) of the outer ring 120.
- the diffusion layer 121 has the same configuration as that of the diffusion layer 111.
- the rolling element 130 is made of chromium molybdenum steel.
- an SCM steel type defined in JIS standards is used.
- the chromium molybdenum steel used for the rolling element 130 is, for example, SCM435 defined in the JIS standard.
- the rolling element 130 is disposed between the outer peripheral surface 110b and the inner peripheral surface 120a so as to be freely rollable.
- the rolling element 130 has a spherical shape.
- the rolling element 130 has a surface 130a.
- the surface 130a constitutes a rolling surface of the rolling element 130.
- a diffusion layer 31 is provided on the surface 130 a of the rolling element 130.
- the diffusion layer 31 has the same configuration as the diffusion layer 111.
- the outer peripheral surface 110b, the inner peripheral surface 120a, and the surface 130a are all provided with a diffusion layer.
- the diffusion layer may be provided on at least one of the outer peripheral surface 110b, the inner peripheral surface 120a, and the surface 130a.
- the cage 140 is made of, for example, a resin material.
- the cage 140 has a ring shape.
- the cage 140 is disposed between the inner ring 110 and the outer ring 120.
- the cage 140 is provided with a plurality of through holes.
- the through hole passes through the cage 140 in a direction from the inner peripheral surface toward the outer peripheral surface.
- the through holes are arranged at equal intervals in the circumferential direction of the cage 140.
- a rolling element 130 is disposed in the through hole. Thereby, the space
- the bearing component according to Embodiment 2 is made of chromium molybdenum steel. Therefore, in the bearing component according to the second embodiment, the alloy element content is relatively low, and an increase in steel material costs and an increase in processing costs are suppressed.
- the average particle diameter of the compound grains in the diffusion layer 111 is 0.3 ⁇ m or less, and the area ratio of the compound grains in the diffusion layer 111 is 3% or more. A large amount of compound particles are dispersed. Therefore, due to the pinning effect of the compound grains, the prior austenite grains in the diffusion layer 111 are refined, and consequently the martensite block in the diffusion layer 111 is also refined.
- the hardness and toughness of the diffusion layer 111 are improved as the compound grains having relatively high hardness are finely dispersed in a large amount and the crystal grain size of the martensite block is refined. Therefore, according to the bearing component according to the second embodiment, it is possible to ensure wear resistance and toughness of the bearing component while suppressing an increase in steel material cost and a processing cost due to an increase in alloying element content.
- the diffusion layer 111 when the total area of the martensite blocks belonging to the first group is divided by the total area of the martensite blocks is 0.55 or more and 0.75 or less, 1.0 ⁇ m in the diffusion layer 111 is obtained.
- the ratio of fine martensite blocks having the following crystal grain size is relatively high. Therefore, in this case, the wear resistance and toughness of the bearing component can be further improved.
- the ratio of fine martensite blocks in the diffusion layer 111 is relatively high. Therefore, in this case, the wear resistance and toughness of the bearing component can be further improved.
- the martensite block is less likely to become a stress concentration source as the aspect ratio is smaller (closer to 1). Therefore, when the average aspect ratio of the martensite block belonging to the third group in the diffusion layer 111 is 2.5 or more and 2.8 or less, the toughness of the bearing component can be further improved.
- the average particle size of martensite blocks belonging to the fifth group is 0.6 ⁇ m or more and 1.1 ⁇ m or less
- the ratio of fine martensite blocks in the diffusion layer 111 is relatively high. Therefore, in this case, the wear resistance and toughness of the bearing component can be further improved.
- the average aspect ratio of the martensite block belonging to the fifth group in the diffusion layer 111 is 2.4 or more and 2.6 or less, the toughness of the bearing component can be further improved.
- a plurality of martensite blocks are generated from one austenite grain, and one martensite block is not formed across a plurality of austenite grains. Therefore, the smaller the crystal grain size of the prior austenite grain, the smaller the crystal grain size of the martensite block formed in the grain. Therefore, when the average grain size of the prior austenite grains in the diffusion layer 111 is 8 ⁇ m or less, the grain size of the martensite block in the diffusion layer 111 can be further refined, and the wear resistance and toughness of the bearing component can be reduced. Further improvements can be made.
- a diffusion layer having the same configuration as the diffusion layer 111 is provided on at least one of the outer peripheral surface 110b, the inner peripheral surface 120a, and the surface 130a. Therefore, according to the rolling bearing 100 according to the second embodiment, it is possible to ensure wear resistance and toughness of the rolling bearing while suppressing an increase in steel material cost and a processing cost due to an increase in alloy element content.
- main experiment performed to confirm the effect of the bearing component according to the second embodiment and the rolling bearing 100 according to the second embodiment will be described.
- Samples 5 to 8 were used in this experiment. As shown in Table 1, the steel used for Sample 5 to Sample 8 is SCM435. Sample 5 and sample 7 are inner rings of a tapered roller bearing, and sample 6 and sample 8 are tapered rollers of a tapered roller bearing.
- the carbonitriding step S2 was performed under the conditions that the first holding temperature was 930 ° C. or more and 940 ° C. or less and the first holding time was 13 hours.
- the diffusion step S3 was performed under the conditions that the second holding temperature was 930 ° C. or higher and 940 ° C. or lower and the second holding time was 6 hours.
- the carbon monoxide amount, carbon dioxide amount, and ammonia amount in the atmosphere in the carbonitriding step S2 and the diffusion step S3 are 11 volume percent to 17 volume percent, 0.05 volume percent to 0.15 volume percent, respectively. 0.1 volume percent or more and 0.3 volume percent or less.
- Sample 5 to Sample 8 were subjected to the primary quenching step S4 under the conditions that the third holding temperature was 870 ° C. and the third holding time was 1 hour.
- the secondary quenching step S5 was performed under the conditions of a fourth holding temperature of 830 ° C. and a fourth holding temperature of 1.5 hours.
- tempering step S6 was performed under the conditions that the fifth holding temperature was 180 ° C. and the fifth holding time was 3 hours.
- Samples 5 to 8 were subjected to mechanical polishing with a polishing amount of 150 ⁇ m as post-processing step S7.
- FIG. 22 is a graph showing measurement results of carbon concentration and nitrogen concentration by EPMA for Sample 5.
- FIG. 23 is a graph showing the measurement results of carbon concentration and nitrogen concentration by EPMA for Sample 7. 22 and 23, the horizontal axis represents the distance (unit: mm) from the surfaces of the sample 5 and the sample 7, and the vertical axis represents the carbon concentration and the nitrogen concentration (unit: mass percent concentration).
- FIG. 24 is an electron microscope image in the vicinity of the surface of the sample 5.
- FIG. 25 is an electron microscope image in the vicinity of the surface of the sample 6.
- a large number of compound grains having a size of 0.2 ⁇ m or more and 3.0 ⁇ m or less were deposited in the vicinity of the surfaces of Sample 5 and Sample 6.
- the average particle size of the compound particles was about 0.25 ⁇ m.
- the area ratio of the compound grains was about 8 percent.
- FIG. 26 is an electron microscopic image in the vicinity of the surface of the sample 7.
- FIG. 27 is an electron microscope image in the vicinity of the surface of the sample 8. As shown in FIGS. 26 and 27, it was confirmed that the area ratio of the compound grains was about 1 percent in the vicinity of the surfaces of Sample 7 and Sample 8.
- FIG. 28 is an EBSD image near the surface of the sample 6.
- the maximum particle size of the martensite block was in the range of 3.6 ⁇ m or more and 3.8 ⁇ m or less.
- 90% or more of the area of the martensite block was occupied by the martensite block having a crystal grain size of 2 ⁇ m or less.
- the martensite block having a crystal grain size of 1 ⁇ m or less occupied 55% to 75% of the area of the martensite block.
- FIG. 29 is an EBSD image in the vicinity of the surface of the sample 8.
- the maximum particle size of the martensite block was in the range of 5.1 ⁇ m or more and 7.3 ⁇ m or less.
- the martensite block having a crystal grain size of 2 ⁇ m or less occupied 65% to 80% of the area of the martensite block.
- the martensite block having a crystal grain size of 1 ⁇ m or less occupies 35% to 45% of the area of the martensite block.
- FIG. 30 is an optical microscope image in the vicinity of the surface of the sample 5.
- the average grain size of the prior austenite grains is in the range of 4 ⁇ m to 8 ⁇ m, and the crystal grain size of the prior austenite grains is distributed in the range of 1 ⁇ m to 10 ⁇ m.
- FIG. 31 is an optical microscope image in the vicinity of the surface of the sample 7.
- the average grain size of the prior austenite grains is in the range of 12 ⁇ m to 25 ⁇ m, and the crystal grain size of the prior austenite grains is distributed in a wide range of 5 ⁇ m to 100 ⁇ m. It was confirmed that
- FIG. 32 is a graph showing the average particle diameters of martensite blocks belonging to the third group and the fifth group in the vicinity of the surfaces of Sample 5 and Sample 7.
- the vertical axis represents the average particle size (unit: ⁇ m).
- FIG. 33 is a graph showing the average particle diameters of martensite blocks belonging to the third group and the fifth group in the vicinity of the surfaces of Sample 6 and Sample 8. In FIG. 33, the vertical axis represents the average particle size (unit: ⁇ m).
- the average particle size of the martensite block belonging to the third group was about 1.0 ⁇ m.
- the average particle size of the martensite block belonging to the third group was about 0.9 ⁇ m. From this, in Sample 5 and Sample 6, it was confirmed that the average particle size of the martensite block belonging to the third group was in the range of 0.7 ⁇ m to 1.4 ⁇ m.
- the average particle size of the martensite block belonging to the fifth group was about 0.8 ⁇ m.
- the average particle size of the martensite block belonging to the fifth group was about 0.7 ⁇ m. From this, in Sample 5 and Sample 6, it was confirmed that the average particle size of the martensite block belonging to the fifth group was in the range of 0.6 ⁇ m to 1.1 ⁇ m.
- the average particle sizes of the martensite blocks belonging to the third group were about 1.7 ⁇ m and about 2.2 ⁇ m, respectively. Further, in the vicinity of Sample 7 and Sample 8, the average particle sizes of the martensite blocks belonging to the fifth group were about 1.3 ⁇ m and about 1.5 ⁇ m, respectively.
- FIG. 34 is a graph showing average aspect ratios of martensite blocks belonging to the third group and the fifth group in the vicinity of the surfaces of Sample 5 and Sample 7.
- the vertical axis indicates the average aspect ratio.
- FIG. 35 is a graph showing the average aspect ratios of martensite blocks belonging to the third group and the fifth group in the vicinity of the surfaces of the samples 6 and 8. In FIG. 35, the vertical axis indicates the aspect ratio.
- the average aspect ratio of the martensite block belonging to the third group was about 2.8.
- the average aspect ratio of the martensite block belonging to the third group was about 2.8. From this, it was confirmed that in Sample 5 and Sample 6, the average aspect ratio of the martensite block belonging to the third group is in the range of 2.5 or more and 2.8 or less.
- the average aspect ratio of the martensite block belonging to the fifth group was about 2.6.
- the average aspect ratio of the martensite block belonging to the fifth group was about 2.6. From this, it was confirmed that in Sample 5 and Sample 6, the average aspect ratio of the martensite block belonging to the fifth group is in the range of 2.4 or more and 2.6 or less.
- the average aspect ratios of the martensite blocks belonging to the third group were about 3.2 and about 3.5, respectively. Further, in the vicinity of Sample 7 and Sample 8, the average aspect ratios of the martensite blocks belonging to the fifth group were about 3.0 and about 3.1, respectively.
- FIG. 36 is a graph showing the Charpy impact test results for Sample 9 and Sample 10.
- the vertical axis represents the Charpy impact value (unit: J / cm 2 ). As shown in FIG. 36, it was confirmed that the Charpy impact value of Sample 9 was 1.5 times or more that of Sample 10.
- FIG. 37 is an electron microscope image of the notch side surface of the sample 9 after the Charpy impact test was performed.
- FIG. 38 is an electron microscope image on the notch side surface of the sample 10 after the Charpy impact test was performed. 37 and 38, the upper side corresponds to the notch side. As shown in FIG. 37, on the fracture surface of the sample 9 after the Charpy impact test, many dimples indicating ductile fracture were observed. On the other hand, as shown in FIG. 38, it was confirmed that the dimples decreased on the fracture surface after the Charpy impact test of Sample 10 and exhibited a brittle fracture fracture surface.
- Rolling fatigue life test under lubrication with foreign matter>
- the sample 11 and the sample 12 were subjected to a rolling fatigue test (hereinafter referred to as “rolling fatigue test”) under lubrication mixed with foreign matter.
- Sample 11 and sample 12 are tapered roller bearings of JIS standard 30206 model number.
- the inner ring, outer ring and tapered roller used for sample 11 were prepared by the same method as sample 5 and sample 6 above.
- the inner ring, the outer ring and the tapered roller used for the sample 12 were prepared by the same method as the sample 5 and the sample 6 described above.
- Lubrication in the rolling fatigue test was oil bath lubrication using turbine oil VG56.
- the load in the rolling fatigue test was 17 kN, and the outer ring temperature was 65 ° C.
- the inner ring was rotated at a rotational speed of 2000 rpm with the outer ring fixed.
- L 10 life (the time from the start of the test to the occurrence of delamination is statistically analyzed, the test time when the cumulative failure probability is 10%)
- L 50 life (the delamination from the start of the test) The time until the occurrence of the failure was statistically analyzed, and the evaluation was performed based on the test time when the cumulative failure probability was 50%.
- FIG. 39 is a graph showing the rolling fatigue test results for Sample 11 and Sample 12.
- the horizontal axis represents the life (unit: time), and the vertical axis represents the cumulative failure probability (unit: percent).
- the L 10 life was 89 hours and the L 50 life was 152 hours.
- the L 10 life was 38 hours and the L 50 life was 76 hours.
- Sample 11 has a rolling fatigue life that is twice or more longer than Sample 12.
- ⁇ Abrasion test> A wear test was performed on Sample 13 prepared according to the same method as Sample 5 and Sample 6, and Sample 14 prepared according to the same method as Sample 7 and Sample 8.
- the abrasion test was performed using a Sabang type abrasion tester.
- the shape of the sample 13 and the sample 14 was flat form, and surface roughness (arithmetic mean roughness) Ra was 0.010 micrometer.
- the load during the test was 50 N, and the relative speed with respect to the counterpart material was 0.05 m / s.
- the test time was 60 minutes. 3 (registered trademark) (VG2) was used.
- the wear resistance was evaluated by calculating the specific wear amount from the wear amount of each sample after the test.
- FIG. 40 is a graph showing the wear test results for Sample 13 and Sample 14.
- the vertical axis represents the specific wear amount (unit: 10 ⁇ 10 ⁇ 10 mm 3 / N ⁇ m).
- the specific wear amount in the sample 13 was about 20 percent of the specific wear amount in the sample 14.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Rolling Contact Bearings (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
異物混入環境下での使用に十分に耐え得る程度の耐摩耗性を有しており、かつ炭窒化物を形成し得る元素を数%以上十数%以下含有させた鋼材を用いた従来の軸受部品よりも製造コストが低い軸受部品および転がり軸受ならびに軸受部品の製造方法を提供する。軸受部品は、クロムモリブデン鋼からなり、軌道面または転動面を備える。軌道面または転動面には炭化物、窒化物、および炭窒化物の少なくともいずれかからなる析出化合物が存在している。軌道面または転動面における析出化合物の面積率が3%以上である。軌道面または転動面における析出化合物の平均粒径が0.3μm以下である。
Description
本発明は、軸受部品及び転がり軸受、ならびに軸受部品の製造方法に関し、特に軸受内部に異物が混入しやすい環境(異物混入環境)下で使用される軸受部品及び転がり軸受、ならびに軸受部品の製造方法に関する。
軸受部品の製造方法として、クロムモリブデン鋼(SCM)からなる成形体に対し浸炭窒化処理、焼入処理、および焼戻処理を順に施す方法が知られている。しかし、上記の製造方法により製造された軸受部品は、異物混入環境下での使用に耐え得る程度の耐摩耗性や靱性を有しておらず、異物混入環境下で使用されたときに表面が損傷して早期に寿命に至る場合があった。
そこで、従来の一般的な軸受部品には、珪素(Si)、マンガン(Mn)、クロム(Cr)、モリブデン(Mo)、バナジウム(V)、およびチタン(Ti)などの炭窒化物を形成し得る元素群の少なくともいずれかが数%以上十数%以下程度含有された鋼材が使用されている。上記鋼材に所定の熱処理を施すことにより、軸受部品の軌道面または転動面に上記添加元素の炭化物および窒化物をその元素含有率に応じて析出させ、耐摩耗性の向上を図っている(例えば、特開平2-277764号公報、特開平3-64431号公報、特開平8-49057号公報、特開平8-311603号公報、特開平11-201168号公報、特開2001-323939号公報、特開2007-232201号公報、特開2013-11010号公報参照)。
しかしながら、上記鋼材は、炭窒化物を形成し得る元素を種々の比率で含有しているため高価である。
本発明の目的は、異物混入環境下での使用に十分に耐え得る程度の耐摩耗性を有しており、かつ上記鋼材を用いた従来の軸受部品よりも製造コストが低い軸受部品および転がり軸受ならびに軸受部品の製造方法を提供することにある。
本発明に従った軸受部品は、クロムモリブデン鋼鋼材からなり、軌道面または転動面を備える。軌道面または転動面には炭化物、窒化物、および炭窒化物の少なくともいずれかからなる化合物粒が存在している。軌道面または転動面における化合物粒の面積率が3%以上である。軌道面または転動面における化合物粒の平均粒径が0.3μm以下である。
上記の軸受部品は、表面に拡散層を備えるクロムモリブデン鋼製の軸受部品である。拡散層は、複数の化合物粒と、複数のマルテンサイトブロックとを含む。化合物粒の平均粒径は、0.3μm以下である。拡散層中における化合物粒の面積比率は3パーセント以上である。マルテンサイトブロックの最大粒径は、3.8μm以下である。
上記の軸受部品において、結晶粒径が1.0μm以下のマルテンサイトブロックは、第1群を構成していてもよい。第1群に属するマルテンサイトブロックの総面積をマルテンサイトブロックの総面積により除した値は、0.55以上0.75以下であってもよい。
上記の軸受部品において、マルテンサイトブロックは、第2群に属するマルテンサイトブロックと、第3群に属するマルテンサイトブロックとからなっていてもよい。第3群に属するマルテンサイトブロックの結晶粒径の最小値は、第2群に含まれるマルテンサイトブロックの結晶粒径の最大値よりも大きくてもよい。第3群に属するマルテンサイトブロックの総面積をマルテンサイトブロックの総面積により除した値は、0.5以上であってもよい。第3群に属する最も結晶粒径が大きいマルテンサイトブロック以外の第3群に属するマルテンサイトブロックの総面積をマルテンサイトブロックの総面積により除した値は、0.5未満であってもよい。第3群に属するマルテンサイトブロックの平均粒径は、0.7μm以上1.4μm以下であってもよい。
上記の軸受部品において、マルテンサイトブロックは、第4群に属するマルテンサイトブロックと、第5群に属するマルテンサイトブロックとからなっていてもよい。第5群に属するマルテンサイトブロックの結晶粒径の最小値は、第4群に含まれるマルテンサイトブロックの結晶粒径の最大値よりも大きくてもよい。第5群に属するマルテンサイトブロックの総面積をマルテンサイトブロックの総面積により除した値は、0.7以上であってもよい。第5群に属する最も結晶粒径が大きいマルテンサイトブロック以外の第5群に属するマルテンサイトブロックの総面積をマルテンサイトブロックの総面積により除した値は、0.7未満であってもよい。第5群に属するマルテンサイトブロックの平均粒径は、0.6μm以上1.1μm以下であってもよい。
上記の軸受部品において、マルテンサイトブロックは、第2群に属するマルテンサイトブロックと、第3群に属するマルテンサイトブロックとからなっていてもよい。第3群に属するマルテンサイトブロックの結晶粒径の最小値は、第2群に含まれるマルテンサイトブロックの結晶粒径の最大値よりも大きくてもよい。第3群に属するマルテンサイトブロックの総面積をマルテンサイトブロックの総面積により除した値は、0.5以上であってもよい。第3群に属する最も結晶粒径が大きいマルテンサイトブロックを除く第3群に属するマルテンサイトブロックの総面積をマルテンサイトブロックの総面積により除した値は、0.5未満であってもよい。第3群に属するマルテンサイトブロックの平均アスペクト比は、2.5以上2.8以下であってもよい。
上記の軸受部品において、マルテンサイトブロックは、第4群に属するマルテンサイトブロックと、第5群に属するマルテンサイトブロックとからなっていてもよい。第5群に属するマルテンサイトブロックの結晶粒径の最小値は、第4群に含まれるマルテンサイトブロックの結晶粒径の最大値よりも大きくてもよい。第5群に属するマルテンサイトブロックの総面積をマルテンサイトブロックの総面積により除した値は、0.7以上であってもよい。第5群に属する最も結晶粒径が大きいマルテンサイトブロックを除く第5群に属するマルテンサイトブロックの総面積をマルテンサイトブロックの総面積により除した値は、0.7未満であってもよい。第5群に属するマルテンサイトブロックの平均アスペクト比は、2.4以上2.6以下であってもよい。
上記軸受部品では、軌道面または転動面における旧オーステナイト結晶粒の平均粒径が8μm以下である。上記の軸受部品において、拡散層中における旧オーステナイト粒の平均粒径は、8μm以下であってもよい。
上記軸受部品では、化合物粒は(Fe,Cr)3(C,N)を含む。
上記軸受部品では、軌道面または転動面から深さ10μmまでの浅層領域の平均炭素濃度が0.7重量%以上であり、浅層領域の平均窒素濃度が0.2重量%以上である。
上記軸受部品では、軌道面または転動面から深さ10μmまでの浅層領域の平均炭素濃度が0.7重量%以上であり、浅層領域の平均窒素濃度が0.2重量%以上である。
上記の軸受部品において、クロムモリブデン鋼は、JIS規格に定めるSCM435であってもよい。
本発明に従った転がり軸受は、外輪と、外輪の内側に配置される内輪と、外輪と内輪との間に配列される複数の転動体とを備える。外輪、内輪および転動体のうち少なくともいずれかは、上記軸受部品である。該転がり軸受は、内周面に外輪軌道面が設けられたクロムモリブデン鋼製の外輪と、外周面に内輪軌道面が設けられ、かつ、第2軌道面が第1軌道面に対向するように配置されるクロムモリブデン鋼製の内輪と、第1軌道面と第2軌道面との間で転動自在に配置され、かつ、転動面を有するクロムモリブデン鋼製の転動体とを備える。外輪軌道面、内輪軌道面及び転動面の少なくとも1つには、拡散層が設けられる。拡散層は、複数の化合物粒と、複数のマルテンサイトブロックとを含む。化合物粒の平均粒径は、0.3μm以下である。拡散層中における化合物粒の面積比率は3パーセント以上である。マルテンサイトブロックの最大粒径は、3.8μm以下である。
本発明に従った軸受部品の製造方法は、クロムモリブデン鋼からなる成形体を準備する工程と、成形体を、アンモニアを含む浸炭窒化雰囲気中で930℃以上940℃以下に加熱することにより、成形体を浸炭窒化する工程と、浸炭窒化された成形体を850℃以上930℃未満の1次焼入温度に加熱した後、Ms点以下の温度まで冷却することにより、成形体を1次焼入れする工程と、1次焼入れされた成形体をA1点以上850℃未満の2次焼入温度に加熱した後、Ms点以下の温度まで冷却することにより、成形体を2次焼入れする工程とを備える。
上記軸受部品の製造方法では、1次焼入温度は860℃以上880℃以下であり、2次焼入温度は820℃以上840℃以下である。
本発明によれば、異物混入環境下での使用に十分に耐え得る程度の耐摩耗性と靱性とが両立されており、かつ炭窒化物を形成し得る元素を含有させた上記鋼材を用いた従来の軸受部品よりも製造コストが低い軸受部品および転がり軸受ならびに軸受部品の製造方法を提供することができる。
以下、図面を参照して、本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
<実施の形態1に係る転がり軸受の構成>
図1に示されるように、本実施の形態1に係る転がり軸受1は、外輪10、内輪11、玉12および保持器13を主に備える。外輪10、内輪11および玉12が本実施の形態に係る軸受部品である。なお、転がり軸受1は、例えば図1に示されるように深溝玉軸受であるが、これに限られるものではない。転がり軸受1は、アンギュラ玉軸受などのラジアル玉軸受であってもよいし、スラスト玉軸受、ラジアルころ軸受、スラストころ軸受であってもよい。
図1に示されるように、本実施の形態1に係る転がり軸受1は、外輪10、内輪11、玉12および保持器13を主に備える。外輪10、内輪11および玉12が本実施の形態に係る軸受部品である。なお、転がり軸受1は、例えば図1に示されるように深溝玉軸受であるが、これに限られるものではない。転がり軸受1は、アンギュラ玉軸受などのラジアル玉軸受であってもよいし、スラスト玉軸受、ラジアルころ軸受、スラストころ軸受であってもよい。
外輪10は、環形状であって、内周面に外輪軌道面10Aを有している。内輪11は、環形状であって、外周面に内輪軌道面11Aを有している。内輪11は、内輪軌道面11Aが外輪軌道面10Aに対向するように外輪10の内周側に配置されている。外輪10および内輪11は、クロムモリブデン鋼(SCM)により構成されており、例えばSCM435により構成されている。
玉12は、外輪10の内周面上に配置されている。玉12は、例えば保持器13により外輪10および内輪11の周方向に沿った円環状の軌道上において所定のピッチで並べて配置されている。玉12は、保持器13により当該軌道上を転動自在に保持されている。玉12は、玉転動面12Aを有し、当該玉転動面12Aにおいて外輪軌道面10Aおよび内輪軌道面11Aに接触している。玉12はSCMにより構成されており、例えばSCM435により構成されている。保持器13を構成する材料は、例えば合成樹脂を含む。このような構成により、深溝玉軸受1の外輪10および内輪11は、互いに相対的に回転可能となっている。
<軸受部品の具体的構成>
外輪10の外輪軌道面10Aからの深さが0.5mm以内である表面領域10Bの炭素濃度は、外輪軌道面10Aからの深さが0.5mm超えである外輪10の内部領域の炭素濃度よりも高い。外輪10の外輪軌道面10Aからの深さが0.5mm以内である表面領域10Bの窒素濃度は、外輪10の上記内部領域の窒素濃度よりも高い。
外輪10の外輪軌道面10Aからの深さが0.5mm以内である表面領域10Bの炭素濃度は、外輪軌道面10Aからの深さが0.5mm超えである外輪10の内部領域の炭素濃度よりも高い。外輪10の外輪軌道面10Aからの深さが0.5mm以内である表面領域10Bの窒素濃度は、外輪10の上記内部領域の窒素濃度よりも高い。
外輪10の外輪軌道面10Aには、炭化物、窒化物、および炭窒化物の少なくともいずれかからなる化合物粒(析出化合物)が存在している。外輪軌道面10Aにおける上記析出化合物の面積率は3%以上である。外輪軌道面10Aにおける上記析出化合物の平均粒径は0.3μm以下である。上記析出化合物は、鉄(Fe)およびクロム(Cr)を含み、主に(Fe,Cr)3(C,N)を含む。
外輪10の表面領域10Bのうち、外輪軌道面10Aから深さ10μmまでの外輪浅層領域の平均炭素濃度は0.7重量%以上である。当該外輪浅層領域の平均窒素濃度は0.2重量%以上である。なお、浅層領域における平均炭素濃度(または平均窒素濃度)は、軌道面または転動面に垂直な断面についてEPMA(Electron Probe Micro Analysis)により深さ方向に線分析を行ない、軌道面または転動面から10μm深さまでの炭素濃度(または窒素濃度)の平均値として算出される。
外輪10の外輪軌道面10Aにおける旧オーステナイト結晶粒の平均粒径は8μm以下である。
内輪11の内輪軌道面11Aからの深さが0.5mm以内である表面領域11Bの炭素濃度は、内輪軌道面11Aからの深さが0.5mm超えである内輪11の内部領域の炭素濃度よりも高い。内輪11の内輪軌道面11Aからの深さが0.5mm以内である表面領域11Bの窒素濃度は、内輪11の上記内部領域の窒素濃度よりも高い。
内輪11の内輪軌道面11Aには、炭化物、窒化物、および炭窒化物の少なくともいずれかからなる析出化合物が存在している。内輪軌道面11Aにおける上記析出化合物の面積率は3%以上である。内輪軌道面11Aにおける上記析出化合物の平均粒径は0.3μm以下である。上記析出化合物は、鉄(Fe)およびクロム(Cr)を含み、主に(Fe,Cr)3(C,N)を含む。
内輪11の表面領域11Bのうち、内輪軌道面11Aから深さ10μmまでの内輪浅層領域の平均炭素濃度は0.7重量%以上である。当該内輪浅層領域の平均窒素濃度は0.2重量%以上である。
内輪11の内輪軌道面11Aにおける旧オーステナイト結晶粒の平均粒径は8μm以下である。
玉12の玉転動面12Aからの深さが0.5mm以内である表面領域12Bの炭素濃度は、玉転動面12Aからの深さが0.5mm超えである玉12の内部領域の炭素濃度よりも高い。玉12の玉転動面12Aからの深さが0.5mm以内である表面領域12Bの窒素濃度は、玉12の上記内部領域の窒素濃度よりも高い。
玉12の玉転動面12Aには、炭化物、窒化物、および炭窒化物の少なくともいずれかからなる析出化合物が存在している。玉転動面12Aにおける上記析出化合物の面積率は3%以上である。玉転動面12Aにおける上記析出化合物の平均粒径は0.3μm以下である。上記析出化合物は、鉄(Fe)およびクロム(Cr)を含み、主に(Fe,Cr)3(C,N)を含む。
玉12の表面領域12Bのうち、玉転動面12Aから深さ10μmまでの玉浅層領域の平均炭素濃度は0.7重量%以上である。当該玉浅層領域の平均窒素濃度は0.2重量%以上である。
玉12の玉転動面12Aにおける旧オーステナイト結晶粒の平均粒径は8μm以下である。
外輪10の外輪軌道面10Aから外周面までの厚みは例えば10mm以上である。内輪11の内輪軌道面11Aから内周面までの厚みは例えば10mm以上である。玉12の直径は例えば10mm以上である。
なお、軌道面および転動面における上記析出化合物の平均粒径は、例えば軌道面および転動面の電子顕微鏡像から算出され得る。軌道面および転動面における旧オーステナイト結晶粒の平均粒径は、例えば軌道面および転動面の光学顕微鏡像から算出され得る。本明細書において、平均粒径とは、十分な数(例えば20個)の粒子の粒径の算術平均をいう。
また、軌道面および転動面における上記析出化合物の面積率は、軌道面および転動面の予め定められた表面積の領域内に存在する析出化合物の総表面積の、当該領域の表面積に対する割合である。軌道面および転動面の予め定められた表面積の領域とは、例えば軌道面および転動面を顕微鏡などで観察したときの観察視野における領域である。析出化合物の総表面積とは、観察領域を有する面に対して成す角度が90°±2°の方向(略垂直な方向)から観察領域を見たときに確認される析出化合物の当該方向に垂直な平面への投影面積の総和である。
<軸受部品および転がり軸受の製造方法>
本実施の形態1に係る転がり軸受1の製造方法では、まず外輪10、内輪11、玉12となるべき成形体がそれぞれ形成される(工程(S10))。本工程(S10)では、SCM材を機械加工することにより、所定の形状を有する成形体を形成する。機械加工方法としては、切削やプレス加工など任意の方法を用いることができる。
本実施の形態1に係る転がり軸受1の製造方法では、まず外輪10、内輪11、玉12となるべき成形体がそれぞれ形成される(工程(S10))。本工程(S10)では、SCM材を機械加工することにより、所定の形状を有する成形体を形成する。機械加工方法としては、切削やプレス加工など任意の方法を用いることができる。
次に、上記成形体に対し、図2に示されるような熱処理が実施される。図2の横方向は、熱処理工程での経過時間を示しており、右に行くほど時間が経過していることを示している。図2の縦方向は、熱処理工程での成形体の加熱温度を示しており、上に行くほど温度が高いことを示している。
上記熱処理工程では、まず、被処理物としての成形部材が浸炭窒化処理される(工程(S20))。本工程(S20)では、先の工程(S10)において準備された成形体が、例えばRガスなどの吸熱型変成ガスにアンモニア(NH3)ガスが導入された雰囲気中において、A1点以上の温度である930℃以上940℃以下の浸炭窒化温度T1に加熱される。加熱保持時間は、例えば10時間以上15時間以下である。本工程(S20)の雰囲気は、雰囲気中の一酸化炭素(CO)量、二酸化炭素(CO2)量、および未分解NH3量を用いて、未分解アンモニア量(分解されることなく雰囲気中に存在するNH3ガスの雰囲気中の量)が例えば0.1体積%以上となるように、制御される。これにより、浸炭窒化処理された成形体の表面を含む領域の炭素濃度および窒素濃度は、該成形体の他の領域の炭素濃度および窒素濃度と比べて高くなる。
上記熱処理工程では、次に、浸炭窒化処理された成形体が窒素拡散処理される(工程(S25))。本工程(S25)では、先の工程(S20)において浸炭窒化処理された成形体が、例えばRガスなどの吸熱型変成ガスにアンモニア(NH3)ガスが導入された雰囲気中において、例えば浸炭窒化温度T1に加熱保持される。加熱保持時間は、例えば5時間以上10時間以下である。本工程(S25)の雰囲気は、上記浸炭窒化処理と同様に雰囲気中の一酸化炭素(CO)量、二酸化炭素(CO2)量、および未分解NH3量を用いて、未分解アンモニア量が例えば0.1体積%以上となるように、制御される。また、以下の式(1)および(2)により定義されるαに関し、窒素拡散処理におけるαは浸炭窒化処理におけるαよりも低く制御される。
上記熱処理工程では、次に、浸炭窒化処理された成形体が1次焼入処理される(工程(S30))。本工程(S30)では、先の工程(S25)にて窒素拡散処理された成形体が、アンモニアガスを含まない雰囲気中において、上記浸炭窒化温度T1未満であるがA1点よりも十分に高い1次焼入温度T2に所定時間加熱保持された後、MS点以下の温度域に冷却される。このとき、先の工程(S25)において上記浸炭窒化温度T1に加熱されていた成形体は、A1点未満の温度に冷却されることなく1次焼入温度T2に加熱される。1次焼入温度T2は、主に(Fe,Cr)3(C,N)からなる析出化合物の過大化を抑制するために一般的な焼入温度である850℃より高い温度とされ、例えば860℃以上880℃以下であり、例えば870℃である。加熱保持時間は、例えば0.5時間以上2時間以下である。冷却は例えば油冷である。
上記熱処理工程では、次に、1次焼入処理された成形体が2次焼入処理される(工程(S40))。本工程(S40)では、先の工程(S30)において焼入硬化された成形体が、A1点以上上記1次焼入温度T2未満の2次焼入温度T3に加熱保持された後、MS点以下の温度に冷却される。2次焼入温度T3は、850℃未満であり、例えば820℃以上840℃以下であり、例えば830℃である。加熱時間は、例えば1時間以上2時間以下である。冷却は例えば油冷である。
上記熱処理工程では、次に、焼戻処理される(工程(S50))。本工程(S50)では、先の工程(S40)において焼入硬化された成形体がA1点以下の焼戻温度T4に加熱されることにより、焼戻処理される。焼戻温度T4は、例えば150℃以上350℃以下であり、例えば180℃である。加熱保持時間は、例えば0.5時間以上5時間以下である。以上の工程により、熱処理工程は完了する。
次に、上記熱処理工程が施された成形体が仕上げ加工される(工程(S60))。本工程(S60)では、例えば成形体の表面に対して研磨加工などの仕上げ加工が実施される。なお、仕上げ加工による加工量、成形体の表面に対する機械部品の表面とされる位置の深さは、例えば250μmである。このようにして、本実施の形態1に係る軸受部品としての外輪10、内輪11、および玉12が製造される。
次に、外輪10、内輪11、および玉12が組み立てられる(工程(S70))。本工程(S70)では、外輪10、内輪11、玉12および別途準備された保持器13が組み立てられる。これにより、図1に示した深溝玉軸受1が製造される。
<作用効果>
本実施の形態1に係る軸受部品の製造方法は、クロムモリブデン鋼からなる成形体を準備する工程(S10)と、成形体を、アンモニアを含む浸炭窒化雰囲気中で930℃以上940℃以下に加熱することにより、成形体を浸炭窒化する工程(S20)と、浸炭窒化された成形体を850℃超え930℃未満の1次焼入温度に加熱した後、Ms点以下の温度まで冷却することにより、成形体を1次焼入れする工程(S30)と、1次焼入れされた成形体をA1点以上850℃未満の2次焼入温度に加熱した後、Ms点以下の温度まで冷却することにより、成形体を2次焼入れする工程(S40)とを備える。
本実施の形態1に係る軸受部品の製造方法は、クロムモリブデン鋼からなる成形体を準備する工程(S10)と、成形体を、アンモニアを含む浸炭窒化雰囲気中で930℃以上940℃以下に加熱することにより、成形体を浸炭窒化する工程(S20)と、浸炭窒化された成形体を850℃超え930℃未満の1次焼入温度に加熱した後、Ms点以下の温度まで冷却することにより、成形体を1次焼入れする工程(S30)と、1次焼入れされた成形体をA1点以上850℃未満の2次焼入温度に加熱した後、Ms点以下の温度まで冷却することにより、成形体を2次焼入れする工程(S40)とを備える。
好ましくは、1次焼入温度T2は、軸受鋼からなる軸受部品の製造方法における一般的な1次焼入温度850℃よりも高く、例えば860℃以上880℃以下である。1次焼入温度T2をこのように設定することにより、SCM材からなる軸受部品において上記析出化合物の過大化を抑制することができる。好ましくは、2次焼入温度T3は、軸受鋼からなる軸受部品の製造方法における一般的な1次焼入温度850℃よりも低く、例えば820℃以上840℃以下である。2次焼入処理時の成形体では、素地に固溶する炭素濃度および窒素濃度が1次焼入処理時よりも低下しており、上記析出化合物が形成されにくくなっている。そこで、2次焼入温度T3を上記のような数値範囲内に設定することにより、微細な析出化合物を多量に形成することができる。
本発明者らは、本実施の形態1に係る軸受部品の製造方法により得られる外輪10、内輪11および玉12の各々が、以下の特徴を有していることを確認した(詳細は後述する実施例1参照)。
外輪軌道面10A、内輪軌道面11Aおよび玉転動面12Aには炭化物、窒化物、および炭窒化物の少なくともいずれかからなる析出化合物が存在している。外輪軌道面10A、内輪軌道面11Aおよび玉転動面12Aにおける上記析出化合物の面積率が3%以上である。この値は、浸炭用鋼からなり従来の熱処理工程が施されることにより製造された従来の軸受部品のそれと比べて高い。さらに、上記析出化合物の平均粒径が0.3μm以下である。この値は、従来の軸受部品のそれと比べて小さい。そのため、このような外輪10、内輪11および玉12は、従来の軸受部品と比べて高い耐摩耗性を有しており、異物混入環境下で使用されたときにも外輪軌道面10A、内輪軌道面11Aおよび玉転動面12Aが損傷されにくく、長寿命である。
さらに、本実施の形態1に係る外輪10、内輪11および玉12は、SCM材からなるため、炭窒化物を形成し得る元素を含有させた上記鋼材を用いた従来の軸受部品よりも製造コストが低い。
上記軸受部品において、旧オーステナイト結晶粒の平均粒径が8μm以下である。この値は、従来の軸受部品のそれと比べて小さい。そのため、このような外輪10、内輪11および玉12は従来の軸受部品と比べて高い靱性を有している。なお、浸炭用鋼からなる従来の軸受部品では、耐摩耗性を向上するために炭化物や窒化物の析出量を増加させるには、炭窒化物を形成し得る元素の含有率を高くする必要がある。しかし、炭窒化物を形成し得る元素の含有率が高いほど、軸受部品の靱性は低下する傾向にある。そのため、従来の軸受部品では、異物混入環境下での使用に十分に耐え得る程度の耐摩耗性と靱性とを両立させることが困難であった。これに対し、上記のような外輪10、内輪11および玉12では、従来の軸受部品と比べて、上記析出化合物が表面領域10B、11B,12Bに多量に存在しておりかつ旧オーステナイト結晶粒が微細化されているため、異物混入環境下での使用に十分に耐え得る程度の耐摩耗性と靱性とが両立されているため、異物混入環境下で使用されたときにも長寿命である。
さらに、上記軸受部品において、上記析出化合物を構成する材料が(Fe,Cr)3(C,N)を含む。
上記軸受部品において、外輪軌道面10A、内輪軌道面11Aおよび玉転動面12Aから深さ10μmまでの浅層領域の平均炭素濃度が0.7重量%以上であり、浅層領域の平均窒素濃度が0.2重量%以上である。これらの値は、従来の軸受部品と比べて同等以上である。このことは、上記軸受部品では、従来の軸受部品と比べて、当該浅層領域に炭化物、窒化物、および炭窒化物のうち少なくとも2つが多量に析出していることを示している。
<変形例>
外輪10、内輪11、および玉12の少なくとも1つが、SCM材からなり、軌道面および転動面には炭窒化物が析出しており、炭窒化物の面積率が3%以上であり、かつ炭窒化物の平均粒径が0.3μm以下であってもよい。
外輪10、内輪11、および玉12の少なくとも1つが、SCM材からなり、軌道面および転動面には炭窒化物が析出しており、炭窒化物の面積率が3%以上であり、かつ炭窒化物の平均粒径が0.3μm以下であってもよい。
以下、本開示に係る転動部品および軸受の効果を確認するために行った実験を説明する。
<試料1>
試料1は、本実施の形態1に係る軸受部品の製造方法に従って作製された。具体的には、まず、JIS規格SCM435からなり、転がり軸受の内輪の形状に成形された成形体を準備した。次に、当該成形体に対し、浸炭窒化処理、1次焼入処理、2次焼入処理および焼戻処理を順に施した。
試料1は、本実施の形態1に係る軸受部品の製造方法に従って作製された。具体的には、まず、JIS規格SCM435からなり、転がり軸受の内輪の形状に成形された成形体を準備した。次に、当該成形体に対し、浸炭窒化処理、1次焼入処理、2次焼入処理および焼戻処理を順に施した。
浸炭窒化処理では、RガスとNH3ガスの混合ガスを用いて、浸炭窒化処理温度を930℃以上940℃以下とし、加熱保持時間は13時間とした。浸炭窒化処理の炉内雰囲気は、雰囲気中の一酸化炭素(CO)量、二酸化炭素(CO2)量、およびNH3量を用いて制御され、CO量11体積%以上17体積%以下、CO2量0.05体積%以上0.15体積%以下、NH3量0.1体積%以上0.3体積%以下とされた。
拡散処理では、RガスとNH3ガスの混合ガスを用いて、拡散処理温度を930℃以上940℃以下とし、加熱保持時間は6時間とした。拡散処理の炉内雰囲気は、上記浸炭窒化処理と同様に雰囲気中の一酸化炭素(CO)量、二酸化炭素(CO2)量、およびNH3量を用いて制御され、CO量11体積%以上17体積%以下、CO2量0.05体積%以上0.15体積%以下、NH3量0.1体積%以上0.3体積%以下とされた。窒素拡散処理における上記αは浸炭窒化処理における上記αよりも低く制御された。
1次焼入処理では、1次焼入温度を870℃とし、加熱保持時間を1時間とした。冷却は油冷とした。
2次焼入処理では、2次焼入温度を830℃とし、加熱保持時間を1.5時間とした。冷却は油冷とした。
焼戻処理では、焼戻温度を180℃とし、加熱保持時間を3時間とした。冷却は空冷とした。
上記熱処理が施された各成形体に対し、仕上げ加工を施した。仕上げ加工は機械研磨により行い、研磨量は150μmとした。
<試料2>
試料2は、比較例として、従来の軸受部品の製造方法に従って作製された。具体的には、まず、JIS規格SCM435からなり、転がり軸受の外輪、内輪およびころの各形状に成形された成形体を準備した。次に、各成形体に対し、浸炭窒化処理、焼入処理および焼戻処理を順に施した。
試料2は、比較例として、従来の軸受部品の製造方法に従って作製された。具体的には、まず、JIS規格SCM435からなり、転がり軸受の外輪、内輪およびころの各形状に成形された成形体を準備した。次に、各成形体に対し、浸炭窒化処理、焼入処理および焼戻処理を順に施した。
浸炭窒化処理では、RガスとNH3ガスの混合ガスを用いて、浸炭窒化処理温度を930℃以上940℃以下とし、加熱保持時間は8時間とした。浸炭窒化処理の炉内雰囲気は、雰囲気中の一酸化炭素(CO)量、二酸化炭素(CO2)量、およびNH3量を用いて制御され、CO量16体積%以上22体積%以下、CO2量0.2体積%以上0.4体積%以下、NH3量0.1体積%以上0.3体積%以下とされた。
拡散処理では、RガスとNH3ガスの混合ガスを用いて、拡散処理温度を930℃以上940℃以下とし、加熱保持時間は4時間とした。拡散処理の炉内雰囲気は、雰囲気中の一酸化炭素(CO)量、二酸化炭素(CO2)量、およびNH3量を用いて制御され、CO量16体積%以上22体積%以下、CO2量0.2体積%以上0.4体積%以下、NH3量0.1体積%以上0.3体積%以下とされた。窒素拡散処理における上記αは浸炭窒化処理における上記αよりも低く制御された。
焼入処理では、焼入温度を870℃とし、加熱保持時間を1時間とした。冷却は油冷とした。
焼戻処理では、焼戻温度を180℃とし、加熱保持時間を3時間とした。冷却は空冷とした。
上記熱処理が施された各成形体に対し、仕上げ加工を施した。仕上げ加工は機械研磨により行い、研磨量は150μmとした。
<評価>
(1)電子プローブマイクロアナライザー (Electron Probe Micro Analyzer; EPMA)分析 EPMAを用いて上記試料1および2の内輪の表面領域の炭素濃度分布および窒素濃度分布を評価した。図3は試料1の内輪に対する分析結果を、図4は試料2の内輪に対する分析結果を示す。図3および図4の横軸は表面からの深さ[単位:mm]を示し、図3および図4の縦軸は炭素および窒素の濃度[単位:重量%]を示す。
(1)電子プローブマイクロアナライザー (Electron Probe Micro Analyzer; EPMA)分析 EPMAを用いて上記試料1および2の内輪の表面領域の炭素濃度分布および窒素濃度分布を評価した。図3は試料1の内輪に対する分析結果を、図4は試料2の内輪に対する分析結果を示す。図3および図4の横軸は表面からの深さ[単位:mm]を示し、図3および図4の縦軸は炭素および窒素の濃度[単位:重量%]を示す。
図3に示されるように、実施例としての試料1では、表面からの深さが0.5mmまでの表面領域に、炭素濃度および窒素濃度に鋭いピークが多数確認された。これにより、当該表面領域には、炭化物、窒化物、および炭窒化物の少なくともいずれかからなる析出化合物が多数存在し、かつこれらの析出化合物の粗大化が抑制されていることが確認された。
また、試料1では、表面から深さ10μmまでの浅層領域の平均炭素濃度が0.7重量%以上1.2重量%以下であること、該浅層領域の平均窒素濃度が0.2重量%以上0.4重量%以下であることが確認された。さらに、試料1では、浸炭深さおよび窒化深さが1.0mm以上1.5mm以下程度であることが確認された。
図4に示されるように、比較例としての試料2では、表面からの深さが0.5mmまでの表面領域に、炭素濃度および窒素濃度に鋭いピークが多数確認されなかった。試料2の当該表面領域には、炭化物、窒化物および炭窒化物の少なくともいずれかからなる析出化合物が多数存在していないことが確認された。
また、試料2では、表面から深さ10μmまでの浅層領域の平均炭素濃度が0.7重量%以上0.8重量%以下であること、該浅層領域の平均窒素濃度が0.2重量%以上0.4重量%以下であることが確認された。さらに、試料2では、浸炭深さおよび窒化深さが1.0mm以上1.5mm以下程度であることが確認された。
また、EPMA分析から、試料1の析出化合物が主に(Fe,Cr)3(C,N)であることが確認された。
以上の結果から、試料1は、試料2と同程度の浸炭深さおよび窒化深さを有しながらも、試料2よりも多量の析出化合物(Fe,Cr)3(C,N)が表面領域に存在することが確認された。
(2)電子顕微鏡観察
電子顕微鏡を用いて、試料1および2の内輪およびころの表面観察を行った。図5は試料1の内輪の電子顕微鏡像を示し、図6は試料1のころの電子顕微鏡像を示す。図7は試料2の内輪の電子顕微鏡像を示し、図8は試料2のころの電子顕微鏡像を示す。
電子顕微鏡を用いて、試料1および2の内輪およびころの表面観察を行った。図5は試料1の内輪の電子顕微鏡像を示し、図6は試料1のころの電子顕微鏡像を示す。図7は試料2の内輪の電子顕微鏡像を示し、図8は試料2のころの電子顕微鏡像を示す。
図5および図6に示されるように、試料1の表面には、平均粒径が0.2μm以上0.3μm以下の析出化合物が多数存在することが確認された。さらに、図5および図6に示される視野の面積に対する当該析出化合物の総表面積の割合(面積率)は、3%以上10%以下であることが確認された。
図7および図8に示されるように、試料2の表面には、平均粒径が0.1μm以上0.2μm以下の析出化合物がわずかに存在することが確認された。さらに、図7および図8に示される視野の面積に対する当該析出化合物の総表面積の割合(面積率)は、1%程度であることが確認された。
以上の結果から、試料1には、試料2よりも多くの析出化合物が存在していることが確認された。また、試料1の多数の析出化合物は微細な構造を有していることが確認された。
(3)光学顕微鏡観察
光学顕微鏡を用いて、試料1および2の内輪およびころの表面観察を行った。図9は試料1の内輪の光学顕微鏡像を示し、図10は試料1のころの光学顕微鏡像を示す。図11は試料2の内輪の光学顕微鏡像を示し、図12は試料2のころの光学顕微鏡像を示す。
光学顕微鏡を用いて、試料1および2の内輪およびころの表面観察を行った。図9は試料1の内輪の光学顕微鏡像を示し、図10は試料1のころの光学顕微鏡像を示す。図11は試料2の内輪の光学顕微鏡像を示し、図12は試料2のころの光学顕微鏡像を示す。
図9および図10に示されるように、試料1の表面における旧オーステナイト結晶粒の粒径は1μm以上10μm以下であり、その平均粒径は4μm以上8μm以下であることが確認された。
図11および図12に示されるように、試料2の表面における旧オーステナイト結晶粒の粒径は5μm以上100μm以下であり、その平均粒径は12μm以上25μm以下であることが確認された。
以上の結果から、試料1では、試料2と比べて、旧オーステナイト結晶粒が微細化されていることが確認された。また、試料1では、試料2と比べて、旧オーステナイト結晶粒の粒径のばらつきが少ないことが確認された。
(4)摩耗試験
サバン型摩耗試験機を用いて、上記試料1と同様の方法により準備された実施例としての試験片1、および上記試料2と同様の方法により準備された比較例としての試験片2に対し、摩耗試験を行った。試験片1および2は平板状とした。試験片1および2の表面粗さRaは0.010μmとした。試験時の荷重は50N、試験片と相手材との相対速度は0.05m/s、試験時間は60分間、潤滑油にはモービルベロシティーオイルNo.3(登録商標)(VG2)を採用した。そして、試験終了後の試験片の摩耗量から比摩耗量を算出し、耐摩耗性を評価した。
サバン型摩耗試験機を用いて、上記試料1と同様の方法により準備された実施例としての試験片1、および上記試料2と同様の方法により準備された比較例としての試験片2に対し、摩耗試験を行った。試験片1および2は平板状とした。試験片1および2の表面粗さRaは0.010μmとした。試験時の荷重は50N、試験片と相手材との相対速度は0.05m/s、試験時間は60分間、潤滑油にはモービルベロシティーオイルNo.3(登録商標)(VG2)を採用した。そして、試験終了後の試験片の摩耗量から比摩耗量を算出し、耐摩耗性を評価した。
図13は、試験片1および2の比摩耗量[単位:×10-10mm3/N・m]を示す。図13に示されるように、試験片1の比摩耗量は、試験片2のそれの20%程度に抑えられていることが確認された。上述した実施例における試料1と同様に、試験片1では上記表面領域に微細な析出化合物が試験片2と比べて多数存在するため、試験片1は高い耐摩耗性を有していると考えられる。
(5)シャルピー衝撃試験
JIS規格Z2242に従って、上記試料1と同様の方法により準備された実施例としての試験片3、および上記試料2と同様の方法により準備された比較例としての試験片4に対し、シャルピー衝撃試験を行った。試験片3および4は、ノッチ深さ2mm、ノッチ底曲率半径1mmであるUノッチが形成されたものとした。
JIS規格Z2242に従って、上記試料1と同様の方法により準備された実施例としての試験片3、および上記試料2と同様の方法により準備された比較例としての試験片4に対し、シャルピー衝撃試験を行った。試験片3および4は、ノッチ深さ2mm、ノッチ底曲率半径1mmであるUノッチが形成されたものとした。
図14は試験片3および4のシャルピー衝撃値[単位:J/cm2]を示す。図14に示されるように、試験片3は、試験片4と比べて、シャルピー衝撃値が1.5倍以上であり、高い靱性を有していることが確認された。これは、上述した試料1と同様に、試験片3の上記表面領域には微細かつ粒径のばらつきが小さい旧オーステナイト結晶粒が存在するため、試験片3は高い靱性を有していると考えられる。
(6)異物混入潤滑下での転動疲労寿命試験
上記試料1と同様の方法により準備された実施例としての試料3のJIS規格30206型番の円錐ころ軸受と、上記試料2と同様の方法により準備された比較例としての試料4のJIS規格30206型番の円錐ころ軸受とに対し、異物混入潤滑下での転動疲労寿命試験を行った。該寿命試験は、潤滑油としてタービン油VG56を用いた油浴潤滑とし、荷重17kN、外輪温度65℃の条件下で、外輪を固定し、内輪を2000rpmの回転速度で回転させた。そして、試験開始から剥離が発生するまでの時間(寿命)を調査して統計的に解析し、累積破損確率が10%であるときのL10寿命と、累積破損確率が50%であるときのL50寿命とを算出した。
上記試料1と同様の方法により準備された実施例としての試料3のJIS規格30206型番の円錐ころ軸受と、上記試料2と同様の方法により準備された比較例としての試料4のJIS規格30206型番の円錐ころ軸受とに対し、異物混入潤滑下での転動疲労寿命試験を行った。該寿命試験は、潤滑油としてタービン油VG56を用いた油浴潤滑とし、荷重17kN、外輪温度65℃の条件下で、外輪を固定し、内輪を2000rpmの回転速度で回転させた。そして、試験開始から剥離が発生するまでの時間(寿命)を調査して統計的に解析し、累積破損確率が10%であるときのL10寿命と、累積破損確率が50%であるときのL50寿命とを算出した。
図15は、実施例としての試料3および比較例としての試料4の寿命試験結果を示す。図15の横軸は寿命[単位:時間]を示し、図15の縦軸は累積破損確率[単位:%]を示す。図15に示されるように、比較例のL10寿命が38時間、L50寿命が76時間であったのに対し、実施例のL10寿命は89時間、L50寿命は152時間であった。実施例の転動疲労寿命は、比較例の転動疲労寿命の2倍以上であることが確認された。上記試料1、試験片1および3と同様に、実施例は、比較例と比べて高耐摩耗性および高靱性を有しているため、2倍以上の転動疲労寿命を有していると考えられる。
(実施の形態2に係る軸受部品)
以下に、実施の形態2に係る軸受部品の構成を説明する。
以下に、実施の形態2に係る軸受部品の構成を説明する。
図16は、実施の形態2に係る軸受部品の上面図である。図17は、図16のII-IIにおける断面図である。図16及び図17に示すように、実施の形態2に係る軸受部品は、例えば深溝玉軸受の内輪110である。実施の形態2に係る軸受部品は、これに限られるものではない。実施の形態2に係る軸受部品は、例えば、深溝玉軸受の外輪であってもよく、深溝玉軸受の転動体であってもよい。
内輪110は、クロムモリブデン鋼により形成されている。内輪110に用いられるクロムモリブデン鋼は、例えばJIS規格(JIS G 4053:2008)に規定されるSCM鋼種に属する鋼である。内輪110に用いられるクロムモリブデン鋼は、JIS規格に規定されるSCM435であってもよい。
内輪110は、表面を有している。より具体的には、内輪110は、内周面110aと、外周面110bとを有している。内周面110aは、軸が取り付けられる側の面である。外周面110bは、内輪110の軌道面を構成する面である。
図18は、図17の領域IIIにおける拡大図である。図18に示すように、内輪110は、表面(外周面110b)において、拡散層111を有している。拡散層111は、窒素及び炭素の濃度が、内輪110を構成するクロムモリブデン鋼中の窒素及び炭素の濃度よりも高くなっている部分である。拡散層111の深さDは、例えば1mm以上1.5mm以下である。
拡散層111は、複数の化合物粒(析出化合物)と、複数のマルテンサイトブロックとを含有している。化合物粒は、鉄(Fe)の炭化物、鉄の窒化物又は鉄の炭窒化物の結晶粒である。より具体的には、化合物粒は、セメンタイト(Fe3C)の鉄サイトの一部がクロムによって置換されており、炭素(C)サイトの一部が窒素(N)により置換されている化合物(すなわち、(Fe,Cr)3(C,N)により示される化合物)の結晶粒である。
拡散層111中における化合物粒の平均粒径は、0.3μm以下である。拡散層111中における化合物粒の平均粒径は、0.25μm以下であることが好ましい。拡散層111中における化合物粒の面積比率は、3パーセント以上である。拡散層111中における化合物粒の面積比率は、8パーセント以上であることが好ましい。拡散層111中における化合物粒の面積比率は、例えば10パーセント以下である。
なお、拡散層111中における化合物粒の平均粒径及び面積比率は、以下の方法で測定される。第1に、拡散層111の断面研磨が行われる。第2に、研磨面の腐食が行われる。第3に、腐食が行われた研磨面に対して、SEM(Scanning Electron Microscopy)撮影が行われる(以下においては、SEM撮影によって得られた画像を、「SEM画像」という)。なお、SEM画像は、十分な数(20個以上)の化合物粒が含まれるように撮影される。第4に、得られたSEM画像に対して画像処理を行うことにより、当該SEM画像中における各々の化合物粒の面積及び化合物粒の総面積が算出される。
化合物粒の円相当径と化合物粒の面積との間には、π×(化合物粒の円相当径)2/4=化合物粒の面積との関係が成立する。そのため、当該SEM画像中に表示されている各々の化合物粒の面積を4/πで除した値の平方根を計算することにより、当該SEM画像中に表示されている各々の化合物粒の円相当径が算出される。当該SEM画像中に表示されている各々の化合物粒の円相当径の合計を当該SEM画像中に表示されている化合物粒の数で除した値が、拡散層111中における化合物粒の平均粒径とされる。当該SEM画像中に表示されている化合物粒の総面積を当該SEM画像の面積で除した値が、拡散層111中における化合物粒の面積比率とされる。
マルテンサイトブロックは、結晶方位が揃った結晶により構成されているマルテンサイト相のブロックである。マルテンサイト相は、炭素が固溶した鉄のオーステナイト相を急冷することにより得られる非平衡相である。第1のマルテンサイト相のブロックの結晶方位と第1のマルテンサイト相のブロックに隣接する第2のマルテンサイト相のブロックの結晶方位とのずれが5°以上である場合、第1のマルテンサイト相のブロックと第2のマルテンサイト相のブロックとは、異なるマルテンサイトブロックである。他方、第1のマルテンサイト相のブロックの結晶方位と第1のマルテンサイト相のブロックに隣接する第2のマルテンサイト相のブロックの結晶方位とのずれが5°未満である場合、第1のマルテンサイト相のブロックと第2のマルテンサイト相のブロックとは、1つのマルテンサイトブロックを構成している。
拡散層111中におけるマルテンサイトブロックの最大粒径は、3.8μm以下である。拡散層111中におけるマルテンサイトブロックの最大粒径は、例えば3.6μm以上である。
結晶粒径が1μm以下の拡散層111中に含まれるマルテンサイトブロックは、第1群を構成している。拡散層111中に含まれているマルテンサイトブロックの総面積に対する第1群を構成しているマルテンサイトブロックの面積比率は、0.55以上0.75以下であることが好ましい。
拡散層111に含まれるマルテンサイトブロックは、第2群と、第3群とに区分されていてもよい。第2群に属するマルテンサイトブロックの結晶粒径の最大値は、第3群に属するマルテンサイトブロックの結晶粒径の最小値よりも小さい。第3群に属するマルテンサイトブロックの総面積を拡散層111に含まれるマルテンサイトブロックの総面積で除した値は、0.5以上である。第3群に属する結晶粒径が最も大きいマルテンサイトブロックを除く第3群に属するマルテンサイトブロックの総面積を拡散層111に含まれるマルテンサイトブロックの総面積で除した値は、0.5未満である。
このことを別の観点からいえば、第2群に含まれるマルテンサイトブロックと第3群に属するマルテンサイトブロックとは、以下の方法により区分される。すなわち、第1に、各々のマルテンサイトブロックを、結晶粒径が最も小さいものから順次第1群に割り当てていくとともに、マルテンサイトブロックの総面積に対する第2群に割り当てられたマルテンサイトブロックの総面積を順次計算していく。第2に、マルテンサイトブロックの総面積に対する第2群に割り当てられたマルテンサイトブロックの総面積の割合が50パーセントを超えない限界に達した時点で、第2群へのマルテンサイトブロックの割り当てを停止する。第3に、第2群に割り当てられていないマルテンサイトブロックを、第3群に割り当てる。
好ましくは、第3群に含まれるマルテンサイトブロックの平均粒径は、0.7μm以上1.4μm以下である。好ましくは、第3群に含まれるマルテンサイトブロックの平均アスペクト比は、2.5以上2.8以下である。
拡散層111に含まれるマルテンサイトブロックは、第4群と、第5群とに区分されていてもよい。第4群に属するマルテンサイトブロックの結晶粒径の最大値は、第5群に属するマルテンサイトブロックの結晶粒径の最小値よりも小さい。第5群に属するマルテンサイトブロックの総面積を拡散層111に含まれるマルテンサイトブロックの総面積で除した値は、0.7以上である。第5群に属する結晶粒径が最も大きいマルテンサイトブロックを除く第5群に属するマルテンサイトブロックの総面積を拡散層111に含まれるマルテンサイトブロックの総面積で除した値は、0.7未満である。
このことを別の観点からいえば、第4群に含まれるマルテンサイトブロックと第5群に属するマルテンサイトブロックとは、以下の方法により区分される。すなわち、第1に、各々のマルテンサイトブロックを、結晶粒径が最も小さいものから順次第4群に割り当てていくとともに、マルテンサイトブロックの総面積に対する第4群に割り当てられたマルテンサイトブロックの総面積を順次計算していく。第2に、マルテンサイトブロックの総面積に対する第4群に割り当てられたマルテンサイトブロックの総面積の割合が30パーセントを超えない限界に達した時点で、第4群へのマルテンサイトブロックの割り当てを停止する。第3に、第4群に割り当てられていないマルテンサイトブロックを、第5群に割り当てる。
好ましくは、第5群に含まれるマルテンサイトブロックの平均粒径は、0.7μm以上1.1μm以下である。好ましくは、第5群に含まれるマルテンサイトブロックの平均アスペクト比は、2.4以上2.6以下である。
拡散層111中におけるマルテンサイトブロックの結晶粒径及びマルテンサイトブロックのアスペクト比は、EBSD(Electron Backscattered Diffraction)法を用いて測定される。
第1に、EBSD法に基づいて、拡散層111における断面画像が撮影される(以下においては、「EBSD画像」という)。なお、EBSD画像は、十分な数(20個以上)のマルテンサイトブロックが含まれるように撮影される。EBSD画像に基づいて、隣接するマルテンサイト相のブロックの結晶方位のずれが特定される。これにより、各々のマルテンサイトブロックの境界が特定される。第2に、特定されたマルテンサイトブロックの境界に基づいて、EBSD画像に表示されている各々のマルテンサイトブロックの面積及び形状が算出される。
より具体的には、EBSD画像に表示されている各々のマルテンサイトブロックの面積を4/πで除した値の平方根を計算することにより、EBSD画像に表示されている各々のマルテンサイトブロックの円相当径が算出される。EBSD画像に表示されているマルテンサイトブロックの円相当径のうち、最も大きな値を、拡散層111中におけるマルテンサイトブロックの最大粒径とする。
上記のように算出された各々のマルテンサイトブロックの円相当径に基づいて、EBSD画像に表示されているマルテンサイトブロックのうち、第1群に属するマルテンサイトブロックが決定される。EBSD画像に表示されているマルテンサイトブロックのうち第1群に属するマルテンサイトブロックの総面積を、EBSD画像に表示されているマルテンサイトブロックの総面積で除した値は、第1群に属する拡散層111中のマルテンサイトブロックの総面積を拡散層111中のマルテンサイトブロックの総面積により除した値とされる。
上記のように算出された各々のマルテンサイトブロックの円相当径に基づいて、EBSD画像に表示されているマルテンサイトブロックは、第2群と第3群とに分類される(又は、第4群と第5群とに分類される)。第3群(又は第5群)に分類されたEBSD画像に表示されているマルテンサイトブロックの円相当径の合計を第3群(又は第5群)に分類されたEBSD画像に表示されているマルテンサイトブロックの個数で除した値が、第3群に属する(又は第5群に属する)拡散層111中のマルテンサイトブロックの平均粒径とされる。
EBSD画像に表示されている各々のマルテンサイトブロックの形状から、EBSD画像に表示されている各々のマルテンサイトブロックの形状を最小二乗法により楕円近似する。この最小二乗法による楕円近似は、S. Biggin and D. J. Dingley, Journal of Applied Crystallography, (1977)10, 376-378に記載の方法にしたがって行われる。この楕円形状において、長軸の寸法を短軸の寸法で除することにより、EBSD法画像に表示されている各々のマルテンサイトブロックのアスペクト比が算出される。第3群(又は第5群)に分類されたEBSD画像に表示されているマルテンサイトブロックのアスペクト比の合計を第3群(又は第5群)に分類されたEBSD画像に表示されているマルテンサイトブロックの個数で除した値が、第3群に属する(又は第5群に属する)拡散層111中のマルテンサイトブロックの平均アスペクト比とされる。
拡散層111中には、複数の旧オーステナイト粒が含まれている。なお、旧オーステナイト粒は、保持工程S41及び保持工程S51において形成されるオーステナイト粒の結晶粒界(旧オーステナイト粒界)により画される領域である。旧オーステナイト粒の平均粒径は、8μm以下であることが好ましい。旧オーステナイト粒の平均粒径は、6μm以下であることがさらに好ましい。
なお、拡散層111中における旧オーステナイト粒の平均粒径は、以下の方法で測定される。第1に、拡散層111の断面研磨が行われる。第2に、研磨面の腐食が行われる。第3に、腐食が行われた研磨面に対して、光学顕微鏡撮影が行われる(以下においては、光学顕微鏡撮影によって得られた画像を、「光学顕微鏡画像」という)。なお、光学顕微鏡画像は、十分な数(20個以上)の旧オーステナイト粒が含まれるように撮影される。第4に、得られた光学顕微鏡画像に対して画像処理を行うことにより、当該光学顕微鏡画像中における各々の旧オーステナイト粒の面積が算出される。
光学顕微鏡画像に表示されている各々の旧オーステナイト粒の面積を4/πで除した値の平方根を計算することにより、光学顕微鏡像に表示されている各々の旧オーステナイト粒の円相当径が算出される。光学顕微鏡像に表示されている各々の旧オーステナイト粒の円相当径の合計を光学顕微鏡像に表示されている旧オーステナイト粒の数で除した値が、拡散層111中における旧オーステナイト粒の平均粒径とされる。
内輪110の表面(外周面110b)と内輪110の表面から10μmの距離にある位置との間にある拡散層111中における平均炭素濃度は、0.7質量パーセント以上であることが好ましい。内輪110の表面(外周面110b)と内輪110の表面から10μmの距離にある位置との間にある拡散層111中における平均炭素濃度は、1.2質量パーセント以下であることが好ましい。
内輪110の表面(外周面110b)と内輪110の表面から10μmの距離にある位置との間にある拡散層111中における平均窒素濃度は、0.2質量パーセント以上であることが好ましい。内輪110の表面(外周面110b)と内輪110の表面から10μmの距離にある位置との間にある拡散層111中における平均窒素濃度は、0.4質量パーセント以下であることが好ましい。
内輪110の表面(外周面110b)と内輪110の表面から10μmの距離にある位置との間にある拡散層111中における平均炭素濃度及び平均窒素濃度は、EPMA(Electron Probe Micro Analyzer)を用いて測定される。
(実施の形態2に係る軸受部品の製造方法)
以下に、実施の形態2に係る軸受部品の製造方法を説明する。
以下に、実施の形態2に係る軸受部品の製造方法を説明する。
図19は、実施の形態2に係る軸受部品の製造方法を示す工程図である。図19に示すように、実施の形態2に係る軸受部品の製造方法は、準備工程S1と、浸炭窒化工程S2と、拡散工程S3と、一次焼き入れ工程S4と、二次焼き入れ工程S5と、焼き戻し工程S6と、後処理工程S7とを有している。
準備工程S1においては、浸炭窒化工程S2、拡散工程S3、一次焼き入れ工程S4、二次焼き入れ工程S5、焼き戻し工程S6及び後処理工程S7を経ることで内輪110となる加工対象部材が準備される。加工対象部材は、JIS規格に定められるSCM鋼種等のクロムモリブデン鋼製である。
浸炭窒化工程S2においては、加工対象部材の表面に対する浸炭窒化が行われる。浸炭窒化工程S2は、加工対象部材を、所定の温度(以下においては、「第1保持温度」という)において、所定の時間(以下においては、「第1保持時間」という)炉内に保持することにより行われる。炉内雰囲気には、例えば、吸熱型変成ガス(Rガス)及びアンモニア(NH3)を含有するガスが用いられる。第1保持温度は、例えば930℃以上940℃以下である。第1保持時間は、例えば10時間以上15時間以下である。
拡散工程S3においては、浸炭窒化工程S2において加工対象部材の表面から導入された炭素及び窒素が加工対象部材の内部へと拡散する。拡散工程S3は、所定の温度(以下においては、「第2保持温度」という)において、所定の時間(以下においては、「第2保持時間」という)炉内に保持することにより行われる。炉内雰囲気には、例えば、吸熱型変成ガス(Rガス)及びアンモニア(NH3)を含有するガスが用いられる。第2保持温度は、例えば930℃以上940℃以下である。第2保持時間は、例えば5時間以上10時間以下である。
拡散工程S3においては、上記式(1)及び上記式(2)により定義されるαが、浸炭窒化工程S2よりも低くなるように調整される。αの調整は、上記式(1)及び上記式(2)から明らかなとおり、雰囲気中の一酸化炭素の量、二酸化炭素の量及び未分解のアンモニアの量を調整することにより、行われる。なお、雰囲気中の未分解のアンモニアの量は、0.1体積パーセント以上であることが好ましい。
一次焼き入れ工程S4においては、加工対象部材に対する焼き入れが行われる。一次焼き入れ工程S4は、保持工程S41と、冷却工程S42とを有している。保持工程S41は、加工対象部材を所定の温度(以下においては、「第3保持温度」という)において所定の時間(以下においては「第2保持時間」という)炉内に保持することにより、行われる。なお、一次焼き入れ工程S4においては、炉内の雰囲気に、アンモニアは含まれていない。第3保持温度は、鋼のA1変態点以上の温度であって、第1保持温度及び第2保持温度よりも低い温度である。第3保持温度は、例えば850℃以上930℃未満である。好ましくは、第3保持温度は、860℃以上880℃以下である。第3保持時間は、例えば0.5時間以上2時間以下である。冷却工程S42においては、加工対象部材の冷却が行われる。冷却工程S42は、例えば油冷により行われる。
二次焼き入れ工程S5においては、加工対象部材の焼き入れが行われる。二次焼き入れ工程S5は、保持工程S51と、冷却工程S52とを有している。保持工程S51は、加工対象部材を所定の温度(以下においては、「第4保持温度」という)において所定の時間(以下においては「第4保持時間」という)炉内に保持することにより、行われる。なお、二次焼き入れ工程S5においては、炉内の雰囲気にアンモニアは含まれていない。第4保持温度は、加工対象部材を構成する鋼のA1変態点以上の温度であって、第3保持温度よりも低い温度である。第4保持温度は、例えば加工対象部材を構成する鋼のA1変態点以上850℃以下である。第4保持温度は、820℃以上840℃以下であることが好ましい。第4保持時間は、例えば1時間以上2時間以下である。冷却工程S52においては、加工対象部材の冷却が行われる。冷却工程S52は、例えば油冷により行われる。
拡散層111中の化合物粒は、主として保持工程S41及び保持工程S51において析出する。鋼中における炭素及び窒素の固溶限は、保持温度が高くなるほど大きくなる(保持温度が低くなるほど小さくなる)。第3保持温度は、保持工程S41における拡散層111中に化合物粒が過大に析出することを避けるため、通常の焼き入れ時の保持温度よりも高く設定されている(通常の焼き入れ時よりも鋼中における炭素及び窒素の固溶限が相対的に広くなるように設定されている)。
保持工程S51においては、保持工程S41において既に化合物粒が析出している。つまり、保持工程S51においては、母材中の炭素濃度及び窒素濃度が低下しており、保持工程S41よりも相対的に化合物粒が析出しにくくなっている。そのため、第4保持温度は、鋼中における窒素及び炭素の固溶限を狭くして保持工程S51における化合物粒の析出を促進するため、第3保持温度よりも低く設定されている。これにより、拡散層111中における化合物粒の面積比率と3パーセント以上とすることができる。また、第4保持温度を第3保持温度よりも低く設定することにより、保持工程S41及び保持工程S51において析出した化合物粒の粗大化を抑制することができるため、拡散層111中における化合物粒の平均粒径を0.3μm以下とすることができる。
保持工程S41及び保持工程S51においては、上記のようにして多量かつ微細に析出させた化合物粒のピン止め効果によりオーステナイト結晶粒の成長が抑制され、オーステナイト結晶粒が微細なままとされる。マルテンサイト変態に際しては、1つのオーステナイト結晶粒内に複数のマルテンサイトブロックが形成される。このことを別の観点からいえば、1つのマルテンサイトブロックは、複数のオーステナイト結晶粒に跨って形成されることはない。そのため、オーステナイト結晶粒が微細化されるほど、それに含まれるマルテンサイトブロックも微細化される。
焼き戻し工程S6においては、加工対象部材に対する焼き戻しが行われる。焼き戻し工程S6は、加工対象部材を、所定の温度(以下においては、「第5保持温度」という)において所定の時間(以下においては、「第5保持時間」という)炉内に保持した後に冷却することにより行われる。第5保持温度は、加工対象部材を構成する鋼のA1変態点以下の温度である。第5保持温度は、例えば150℃以上350℃以下である。第4保持時間は、例えば0.5時間以上5時間である。焼き戻し工程S6における冷却は、例えば空冷により行われる。
図20は、実施の形態2に係る軸受部品の製造方法におけるヒートパターンを示すグラフである。図20には、上記の第1保持温度~第5保持温度及び第1保持時間~第5保持時間の関係が模式的に示されている。
後処理工程S7においては、加工対象部材に対する後処理が行われる。後処理工程S7においては、例えば、加工対象部材の洗浄、加工対象部材に対する研削、研磨等の機械加工等が行われる。以上により、実施の形態2に係る軸受部品の製造が行われる。
(実施の形態2に係る転がり軸受の構成)
以下に、実施の形態2に係る転がり軸受100の構成を説明する。
以下に、実施の形態2に係る転がり軸受100の構成を説明する。
図21は、実施の形態2に係る転がり軸受100の断面図である。図21に示すように、転がり軸受100は、例えば深溝玉軸受である。但し、実施の形態2に係る転がり軸受100は、これに限られるものではない。実施の形態2に係る転がり軸受100は、例えば円錐ころ軸受であってもよい。実施の形態2に係る転がり軸受100は、内輪110と、外輪120と、転動体130と、保持器140とを有している。内輪110の構成は、上記のとおりである。
外輪120は、クロムモリブデン鋼製である、外輪120には、例えばJIS規格に定めるSCM鋼種が用いられる。外輪120に用いられるクロムモリブデン鋼は、例えばJIS規格に定めるSCM435である。外輪120は、内周面120aと、外周面120bとを有している。内周面120aは、外輪120の軌道面を構成している。内輪110及び外輪120は、外周面110bと内周面120aとが対向するように配置されている。外輪120の表面(内周面120a)には、拡散層121が設けられている。拡散層121は、拡散層111と同様の構成を有している。
転動体130は、クロムモリブデン鋼製である、転動体130には、例えばJIS規格に定めるSCM鋼種が用いられる。転動体130に用いられるクロムモリブデン鋼は、例えばJIS規格に定めるSCM435である。転動体130は、外周面110bと内周面120aとの間において、転動自在に配置されている。転動体130は、球形状を有している。
転動体130は、表面130aを有している。表面130aは、転動体130の転動面を構成している。転動体130の表面130aには、拡散層31が設けられている。拡散層31は、拡散層111と同様の構成を有している。
なお、外周面110b、内周面120a及び表面130aの全てに拡散層が設けられている必要はない。拡散層は、外周面110b、内周面120a及び表面130aの少なくとも1つに設けられていればよい。
保持器140は、例えば樹脂材料により構成されている。保持器140は、リング状の形状を有している。保持器140は、内輪110と外輪120との間に配置されている。保持器140には、複数の貫通穴が設けられている。貫通穴は、内周面から外周面に向かう方向に、保持器140を貫通している。貫通穴は、保持器140の周方向において、等間隔で配置されている。貫通穴には、転動体130が配置されている。これにより、隣接する転動体130の周方向における間隔が保持されている。
(実施の形態2に係る軸受部品及び実施の形態2に係る転がり軸受の効果)
以下に、実施の形態2に係る軸受部品及び実施の形態2に係る転がり軸受100の効果を説明する。
以下に、実施の形態2に係る軸受部品及び実施の形態2に係る転がり軸受100の効果を説明する。
実施の形態2に係る軸受部品は、クロムモリブデン鋼製である。そのため、実施の形態2に係る軸受部品においては、合金元素の含有率が相対的に低く、鋼材コストの増加及び加工コストの増加が抑制されている。
拡散層111中における化合物粒の平均粒径は、0.3μm以下であり、拡散層111中における化合物粒の面積比率が3パーセント以上であるため、拡散層111中には、相対的に微細かつ多量の化合物粒が分散している。そのため、化合物粒のピン止め効果により、拡散層111中における旧オーステナイト粒が微細化され、ひいては拡散層111中におけるマルテンサイトブロックも微細化される。相対的に硬度の高い化合物粒が微細かつ多量に分散するほど、またマルテンサイトブロックの結晶粒径が微細化されるほど、拡散層111の硬度及び靱性が改善される。したがって、実施の形態2に係る軸受部品によると、合金元素含有率の上昇に伴う鋼材コスト上昇及び加工コスト上昇を抑制しつつ、軸受部品の耐摩耗性及び靱性を確保することができる。
拡散層111中において、第1群に属するマルテンサイトブロックの総面積をマルテンサイトブロックの総面積により除した値は、0.55以上0.75以下である場合、拡散層111中における1.0μm以下の結晶粒径を有する微細なマルテンサイトブロックの比率が相対的に高くなる。そのため、この場合、軸受部品の耐摩耗性及び靱性をさらに改善することができる。
拡散層111中において、第3群に属するマルテンサイトブロックの平均粒径が0.7μm以上1.4μm以下である場合、拡散層111中における微細なマルテンサイトブロックの比率が相対的に高くなる。そのため、この場合、軸受部品の耐摩耗性及び靱性をさらに改善することができる。マルテンサイトブロックは、アスペクト比が小さいほど(1に近いほど)応力集中源となりにくい。そのため、拡散層111中において第3群に属するマルテンサイトブロックの平均アスペクト比が2.5以上2.8以下である場合、軸受部品の靱性をさらに改善することができる。
拡散層111中において、第5群に属するマルテンサイトブロックの平均粒径が0.6μm以上1.1μm以下である場合、拡散層111中における微細なマルテンサイトブロックの比率が相対的に高くなる。そのため、この場合、軸受部品の耐摩耗性及び靱性をさらに改善することができる。拡散層111中において第5群に属するマルテンサイトブロックの平均アスペクト比が2.4以上2.6以下である場合、軸受部品の靱性をさらに改善することができる。
1つのオーステナイト粒からは、複数のマルテンサイトブロックが生じ、また1つのマルテンサイトブロックは、複数のオーステナイト粒に跨って形成されない。そのため、旧オーステナイト粒の結晶粒径が小さくなるほど、その粒内に形成されるマルテンサイトブロックの結晶粒径は小さくなる。したがって、拡散層111中における旧オーステナイト粒の平均粒径が8μm以下である場合、拡散層111中におけるマルテンサイトブロックの粒径をさらに微細化することができ、軸受部品の耐摩耗性及び靱性をさらに改善することができる。
実施の形態2に係る転がり軸受100においては、外周面110b、内周面120a及び表面130aの少なくとも1つには、拡散層111と同様の構成の拡散層が設けられている。そのため、実施の形態2に係る転がり軸受100によると、合金元素含有率の上昇に伴う鋼材コスト上昇及び加工コスト上昇を抑制しつつ、転がり軸受の耐摩耗性及び靱性を確保することができる。
以下に、実施の形態2に係る軸受部品及び実施の形態2に係る転がり軸受100の効果を確認するために行った実験(以下において「本実験」という)を説明する。
<試料>
本実験には、試料5~試料8が用いられた。試料5~試料8に用いられた鋼は、表1に示されるようにSCM435である。試料5及び試料7は、円錐ころ軸受の内輪であり、試料6及び試料8は、円錐ころ軸受の円錐ころである。
本実験には、試料5~試料8が用いられた。試料5~試料8に用いられた鋼は、表1に示されるようにSCM435である。試料5及び試料7は、円錐ころ軸受の内輪であり、試料6及び試料8は、円錐ころ軸受の円錐ころである。
表2に示すように、試料5~試料8に対しては、第1保持温度が930℃以上940℃以下、第1保持時間が13時間の条件で浸炭窒化工程S2が行われた。試料5~試料8に対しては、第2保持温度が930℃以上940℃以下、第2保持時間が6時間の条件で拡散工程S3が行われた。なお、浸炭窒化工程S2及び拡散工程S3における雰囲気中の一酸化炭素量、二酸化炭素量、及びアンモニア量は、それぞれ11体積パーセント以上17体積パーセント以下、0.05体積パーセント以上0.15体積パーセント以下、0.1体積パーセント以上0.3体積パーセント以下とされた。
試料5~試料8に対しては、第3保持温度が870℃、第3保持時間が1時間の条件で一次焼き入れ工程S4が行われた。試料5及び試料6に対しては、第4保持温度が830℃、第4保持温度が1.5時間の条件で二次焼き入れ工程S5が行われた。また、試料5~試料8に対しては、第5保持温度が180℃、第5保持時間が3時間の条件で焼き戻し工程S6が行われた。試料5~試料8に対しては、後処理工程S7として、研磨量が150μmの機械研磨が行われた。
<炭素濃度及び窒素濃度の測定>
図22は、試料5に対するEPMAによる炭素濃度及び窒素濃度の測定結果を示すグラフである。図23は、試料7に対するEPMAによる炭素濃度及び窒素濃度の測定結果を示すグラフである。なお、図22及び図23においては、横軸は試料5及び試料7の表面からの距離(単位:mm)であり、縦軸は炭素濃度及び窒素濃度(単位:質量パーセント濃度)である。
図22は、試料5に対するEPMAによる炭素濃度及び窒素濃度の測定結果を示すグラフである。図23は、試料7に対するEPMAによる炭素濃度及び窒素濃度の測定結果を示すグラフである。なお、図22及び図23においては、横軸は試料5及び試料7の表面からの距離(単位:mm)であり、縦軸は炭素濃度及び窒素濃度(単位:質量パーセント濃度)である。
図22に示されるように、試料5の表面近傍においては、炭素濃度及び窒素濃度に、鋭いピークが多数確認された。この結果から、試料5においては、表面近傍に炭化物、窒化物及び炭窒化物等の微細な化合物粒が析出していることが実験的に確認された。また、試料5においては、表面と表面から10μmの距離にある位置との間の領域における平均炭素濃度が0.7パーセント以上1.2パーセント以下の範囲内にあり、当該領域における平均窒素濃度が0.2質量パーセント以上0.4質量パーセント以下の範囲内にあった。他方、図23に示されるように、試料6の表面近傍において、炭素濃度及び窒素濃度に、鋭いピークが多数確認されなかった。この結果から、試料7においては、表面近傍に炭化物、窒化物及び炭窒化物等の微細な化合物粒が析出していないことが実験的に確認された。
<組織観察>
図24は、試料5の表面近傍における電子顕微鏡像である。図25は、試料6の表面近傍における電子顕微鏡像である。図24及び図25に示すように、試料5及び試料6の表面近傍においては、0.2μm以上3.0μm以下の化合物粒が多数析出していることが確認された。また、試料5及び試料6の表面近傍においては、化合物粒の平均粒径が約0.25μmであることが確認された。さらに、試料5及び試料6の表面近傍においては、化合物粒の面積比率が約8パーセントであることが確認された。
図24は、試料5の表面近傍における電子顕微鏡像である。図25は、試料6の表面近傍における電子顕微鏡像である。図24及び図25に示すように、試料5及び試料6の表面近傍においては、0.2μm以上3.0μm以下の化合物粒が多数析出していることが確認された。また、試料5及び試料6の表面近傍においては、化合物粒の平均粒径が約0.25μmであることが確認された。さらに、試料5及び試料6の表面近傍においては、化合物粒の面積比率が約8パーセントであることが確認された。
図26は、試料7の表面近傍における電子顕微鏡像である。図27は、試料8の表面近傍における電子顕微鏡像である。図26及び図27に示すように、試料7及び試料8の表面近傍においては、化合物粒の面積比率が約1パーセントであることが確認された。
図28は、試料6の表面近傍におけるEBSD画像である。図28に示すように、試料6の表面近傍においては、マルテンサイトブロックの最大粒径が3.6μm以上3.8μm以下の範囲内にあることが確認された。また、試料6の表面近傍においては、マルテンサイトブロックの面積の90パーセント以上を結晶粒径が2μm以下のマルテンサイトブロックが占めていることが確認された。さらに、試料6の表面近傍においては、マルテンサイトブロックの面積の55パーセント以上75パーセント以下を結晶粒径が1μm以下のマルテンサイトブロックが占めていることが確認された。
図29は、試料8の表面近傍におけるEBSD画像である。図29に示すように、試料8の表面近傍においては、マルテンサイトブロックの最大粒径が5.1μm以上7.3μm以下の範囲内にあることが確認された。また、試料8の表面近傍においては、マルテンサイトブロックの面積の65パーセント以上80パーセント以下を結晶粒径が2μm以下のマルテンサイトブロックが占めていることが確認された。さらに、試料8の表面近傍においては、マルテンサイトブロックの面積の35パーセント以上45パーセント以下を結晶粒径が1μm以下のマルテンサイトブロックが占めていることが確認された。
図30は、試料5の表面近傍における光学顕微鏡像である。図30に示すように、試料5の表面近傍においては、旧オーステナイト粒の平均粒径が4μm以上8μm以下の範囲にあり、旧オーステナイト粒の結晶粒径は1μm以上10μm以下の範囲で分布していることが確認された。図31は、試料7の表面近傍における光学顕微鏡像である。図31に示すように、試料7の表面近傍においては、旧オーステナイト粒の平均粒径が12μm以上25μm以下の範囲にあり、旧オーステナイト粒の結晶粒径は5μm以上100μm以下の広い範囲で分布していることが確認された。
図32は、試料5及び試料7の表面近傍における第3群及び第5群に属するマルテンサイトブロックの平均粒径を示すグラフである。なお、図32においては、縦軸は平均粒径(単位:μm)を示している。図33は、試料6及び試料8の表面近傍における第3群及び第5群に属するマルテンサイトブロックの平均粒径を示すグラフである。なお、図33においては、縦軸は平均粒径(単位:μm)を示している。
図32に示すように、試料5の表面近傍においては、第3群に属するマルテンサイトブロックの平均粒径が約1.0μmであった。図33に示すように、試料6の表面近傍においては、第3群に属するマルテンサイトブロックの平均粒径は約0.9μmであった。このことから、試料5及び試料6においては、第3群に属するマルテンサイトブロックの平均粒径が、0.7μm以上1.4μm以下の範囲内にあることが確認された。
図32に示すように、試料5の表面近傍においては、第5群に属するマルテンサイトブロックの平均粒径が約0.8μmであった。図33に示すように、試料6の表面近傍においては、第5群に属するマルテンサイトブロックの平均粒径は約0.7μmであった。このことから、試料5及び試料6においては、第5群に属するマルテンサイトブロックの平均粒径が、0.6μm以上1.1μmの範囲内にあることが確認された。
他方で、試料7及び試料8の表面近傍においては、第3群に属するマルテンサイトブロックの平均粒径が、それぞれ約1.7μm、約2.2μmであった。また、試料7及び試料8の近傍においては、第5群に属するマルテンサイトブロックの平均粒径は、それぞれ約1.3μm、約1.5μmであった。
図34は、試料5及び試料7の表面近傍における第3群及び第5群に属するマルテンサイトブロックの平均アスペクト比を示すグラフである。なお、図34においては、縦軸は平均アスペクト比を示している。図35は、試料6及び試料8の表面近傍における第3群及び第5群に属するマルテンサイトブロックの平均アスペクト比を示すグラフである。なお、図35においては、縦軸はアスペクト比を示している。
図34に示すように、試料5の表面近傍においては、第3群に属するマルテンサイトブロックの平均アスペクト比が、約2.8であった。図35に示すように、試料6の表面近傍において、第3群に属するマルテンサイトブロックの平均アスペクト比は、約2.8であった。このことから、試料5及び試料6においては、第3群に属するマルテンサイトブロックの平均アスペクト比が2.5以上2.8以下の範囲内にあることが確認された。
図34に示すように、試料5の表面近傍においては、第5群に属するマルテンサイトブロックの平均アスペクト比が、約2.6であった。図35に示すように、試料6の表面近傍において、第5群に属するマルテンサイトブロックの平均アスペクト比は、約2.6であった。このことから、試料5及び試料6においては、第5群に属するマルテンサイトブロックの平均アスペクト比が2.4以上2.6以下の範囲内にあることが確認された。
他方で、試料7及び試料8の表面近傍においては、第3群に属するマルテンサイトブロックの平均アスペクト比が、それぞれ約3.2、約3.5であった。また、試料7及び試料8の近傍においては、第5群に属するマルテンサイトブロックの平均アスペクト比は、それぞれ約3.0、約3.1であった。
<シャルピ-衝撃試験>
上記の試料5及び試料6と同様の方法にしたがって準備された試料9並びに上記の試料7及び試料8と同様の方法にしたがって準備された試料10に対して、シャルピ-衝撃試験が行われた。シャルピ-衝撃試験は、JIS規格(JIS Z 2242:2005)にしたがって行われた。試料9及び試料10には、ノッチ深さが2mm、ノッチ底曲率半径が1mmのUノッチが形成された。
上記の試料5及び試料6と同様の方法にしたがって準備された試料9並びに上記の試料7及び試料8と同様の方法にしたがって準備された試料10に対して、シャルピ-衝撃試験が行われた。シャルピ-衝撃試験は、JIS規格(JIS Z 2242:2005)にしたがって行われた。試料9及び試料10には、ノッチ深さが2mm、ノッチ底曲率半径が1mmのUノッチが形成された。
図36は、試料9及び試料10に対するシャルピ-衝撃試験結果を示すグラフである。なお、図36においては、縦軸はシャルピ-衝撃値(単位:J/cm2)である。図36に示すように、試料9のシャルピ-衝撃値は、試料10のシャルピ-衝撃値の1.5倍以上であることが確認された。
図37は、シャルピ-衝撃試験が行われた後の試料9のノッチ側表面における電子顕微鏡像である。図38は、シャルピ-衝撃試験が行われた後の試料10のノッチ側表面における電子顕微鏡像である。なお、図37及び図38においては、上側がノッチ側に対応している。図37に示すように、試料9のシャルピ-衝撃試験後の破面においては、延性的な破壊であったことを示すディンプルが多数観察された。他方、図38に示すように、試料10のシャルピ-衝撃試験後の破面においては、ディンプルが減少し、脆性破壊的な破面を呈していることが確認された。
<異物混入潤滑下における転動疲労寿命試験>
試料11及び試料12に対して、異物混入潤滑下における転動疲労試験(以下においては、「転動疲労試験」という)が行われた。試料11及び試料12は、JIS規格30206型番の円錐ころ軸受である。
試料11及び試料12に対して、異物混入潤滑下における転動疲労試験(以下においては、「転動疲労試験」という)が行われた。試料11及び試料12は、JIS規格30206型番の円錐ころ軸受である。
試料11に用いられた内輪、外輪及び円錐ころは、上記の試料5及び試料6と同様の方法により準備された。試料12に用いられた内輪、外輪及び円錐ころは、上記の試料5及び試料6と同様の方法により準備された。転動疲労試験における潤滑は、タービン油VG56を用いた油浴潤滑とされた。転動疲労試験における荷重は17kN、外輪温度は65℃とされた。転動疲労試験においては、外輪を固定した状態で、内輪を2000rpmの回転速度で回転させた。
転動疲労試験においては、L10寿命(試験開始から剥離が発生するまでの時間を統計的に解析し、累積破損確率が10パーセントとなるときの試験時間)、L50寿命(試験開始から剥離が発生するまでの時間を統計的に解析し、累積破損確率が50パーセントとなるときの試験時間)で評価を行った。
図39は、試料11及び試料12に対する転動疲労試験結果を示すグラフである。なお、図39において、横軸は寿命(単位:時間)、縦軸は累積破損確率(単位:パーセント)である。図39に示すように、試料11においては、L10寿命は89時間、L50寿命は152時間であった。他方、試料12においては、L10寿命は38時間、L50寿命は76時間であった。このように、試料11は、試料12よりも2倍以上転動疲労寿命が長いことが確認された。
<摩耗試験>
上記の試料5及び試料6と同様の方法にしたがって準備された試料13並びに上記の試料7及び試料8と同様の方法にしたがって準備された試料14に対して、摩耗試験が行われた。摩耗試験は、サバン型摩耗試験機を用いて行われた。試料13及び試料14の形状は、平板状であり、表面粗さ(算術平均粗さ)Raは、0.010μmとされた。試験時の荷重は50Nとされ、相手材に対する相対速度は0.05m/sとされた。試験時間は60分とされ、潤滑油にはモービルベロシティオイルNo.3(登録商標)(VG2)が用いられた。摩耗試験においては、試験後における各試料の摩耗量から比摩耗量を算出することにより、耐摩耗性を評価した。
上記の試料5及び試料6と同様の方法にしたがって準備された試料13並びに上記の試料7及び試料8と同様の方法にしたがって準備された試料14に対して、摩耗試験が行われた。摩耗試験は、サバン型摩耗試験機を用いて行われた。試料13及び試料14の形状は、平板状であり、表面粗さ(算術平均粗さ)Raは、0.010μmとされた。試験時の荷重は50Nとされ、相手材に対する相対速度は0.05m/sとされた。試験時間は60分とされ、潤滑油にはモービルベロシティオイルNo.3(登録商標)(VG2)が用いられた。摩耗試験においては、試験後における各試料の摩耗量から比摩耗量を算出することにより、耐摩耗性を評価した。
図40は、試料13及び試料14に対する摩耗試験結果を示すグラフである。図40において、縦軸は比摩耗量(単位:10×10-10mm3/N・m)である。図40に示すように、試料13における比摩耗量は、試料14における比摩耗量の20パーセント程度であった。
今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
10,120 外輪、10A,120a 外輪軌道面(内周面)、10B,11B,12B 表面領域、11,110 内輪、11A,110b 内輪軌道面(外周面)、12,130 玉(転動体)、12A,130a 玉転動面(表面)、13,140 保持器、100 転がり軸受、111 拡散層、121 拡散層。
Claims (14)
- クロムモリブデン鋼からなり、
軌道面または転動面を備え、
前記軌道面または前記転動面には炭化物、窒化物、および炭窒化物の少なくともいずれかからなる化合物粒が存在しており、
前記軌道面または前記転動面における前記化合物粒の面積率が3%以上であり、
前記軌道面または前記転動面における前記化合物粒の平均粒径が0.3μm以下である、軸受部品。 - 前記軌道面または前記転動面に拡散層を備え、
前記拡散層は、複数の前記化合物粒と、複数のマルテンサイトブロックとを含み、
前記拡散層中における前記化合物粒の面積比率は3パーセント以上であり、
前記マルテンサイトブロックの最大粒径は、3.8μm以下である、請求項1に記載の軸受部品。 - 結晶粒径が1.0μm以下の前記マルテンサイトブロックは、第1群を構成し、
前記第1群に属する前記マルテンサイトブロックの総面積を前記マルテンサイトブロックの総面積により除した値は、0.55以上0.75以下である、請求項2に記載の軸受部品。 - 前記マルテンサイトブロックは、第2群に属する前記マルテンサイトブロックと、第3群に属する前記マルテンサイトブロックとからなり、
前記第3群に属する前記マルテンサイトブロックの結晶粒径の最小値は、前記第2群に含まれる前記マルテンサイトブロックの結晶粒径の最大値よりも大きく、
前記第3群に属する前記マルテンサイトブロックの総面積を前記マルテンサイトブロックの総面積により除した値は、0.5以上であり、
前記第3群に属する最も結晶粒径が大きい前記マルテンサイトブロック以外の前記第3群に属する前記マルテンサイトブロックの総面積を前記マルテンサイトブロックの総面積により除した値は、0.5未満であり、
前記第3群に属する前記マルテンサイトブロックの平均粒径は、0.7μm以上1.4μm以下である、請求項2又は請求項3に記載の軸受部品。 - 前記マルテンサイトブロックは、第4群に属する前記マルテンサイトブロックと、第5群に属する前記マルテンサイトブロックとからなり、
前記第5群に属する前記マルテンサイトブロックの結晶粒径の最小値は、前記第4群に含まれる前記マルテンサイトブロックの結晶粒径の最大値よりも大きく、
前記第5群に属する前記マルテンサイトブロックの総面積を前記マルテンサイトブロックの総面積により除した値は、0.7以上であり、
前記第5群に属する最も結晶粒径が大きい前記マルテンサイトブロック以外の前記第5群に属する前記マルテンサイトブロックの総面積を前記マルテンサイトブロックの総面積により除した値は、0.7未満であり、
前記第5群に属する前記マルテンサイトブロックの平均粒径は、0.6μm以上1.1μm以下である、請求項2又は請求項3に記載の軸受部品。 - 前記マルテンサイトブロックは、第2群に属する前記マルテンサイトブロックと、第3群に属する前記マルテンサイトブロックとからなり、
前記第3群に属する前記マルテンサイトブロックの結晶粒径の最小値は、前記第2群に含まれる前記マルテンサイトブロックの結晶粒径の最大値よりも大きく、
前記第3群に属する前記マルテンサイトブロックの総面積を前記マルテンサイトブロックの総面積により除した値は、0.5以上であり、
前記第3群に属する最も結晶粒径が大きい前記マルテンサイトブロックを除く前記第3群に属する前記マルテンサイトブロックの総面積を前記マルテンサイトブロックの総面積により除した値は、0.5未満であり、
前記第3群に属する前記マルテンサイトブロックの平均アスペクト比は、2.5以上2.8以下である、請求項2又は請求項3に記載の軸受部品。 - 前記マルテンサイトブロックは、第4群に属する前記マルテンサイトブロックと、第5群に属する前記マルテンサイトブロックとからなり、
前記第5群に属する前記マルテンサイトブロックの結晶粒径の最小値は、前記第4群に含まれる前記マルテンサイトブロックの結晶粒径の最大値よりも大きく、
前記第5群に属する前記マルテンサイトブロックの総面積を前記マルテンサイトブロックの総面積により除した値は、0.7であり、
前記第5群に属する最も結晶粒径が大きい前記マルテンサイトブロック以外の前記第5群に属する前記マルテンサイトブロックの総面積を前記マルテンサイトブロックの総面積により除した値は、0.7未満であり、
前記第5群に属する前記マルテンサイトブロックの平均アスペクト比は、2.4以上2.6以下である、請求項2又は請求項3に記載の軸受部品。 - 前記軌道面または前記転動面における旧オーステナイト結晶粒の平均粒径が8μm以下である、請求項1~7のいずれか1項に記載の軸受部品。
- 前記化合物粒は、(Fe,Cr)3(C,N)を含む、請求項1~8のいずれか1項に記載の軸受部品。
- 前記軌道面または前記転動面から深さ10μmまでの浅層領域の平均炭素濃度が0.7重量%以上であり、前記浅層領域の平均窒素濃度が0.2重量%以上である、請求項1~9のいずれか1項に記載の軸受部品。
- 前記クロムモリブデン鋼は、JIS規格に定めるSCM435である、請求項1~10のいずれか1項に記載の軸受部品。
- 外輪と、
前記外輪の内側に配置される内輪と、
前記外輪と前記内輪との間に配列される複数の転動体とを備え、
前記外輪、前記内輪および前記転動体のうち少なくともいずれかは、請求項1~11のいずれか1項に記載の軸受部品である、転がり軸受。 - クロムモリブデン鋼からなる成形体を準備する工程と、
前記成形体を、アンモニアを含む浸炭窒化雰囲気中で930℃以上940℃以下に加熱することにより、前記成形体を浸炭窒化する工程と、
浸炭窒化された前記成形体を850℃超え930℃未満の1次焼入温度に加熱した後、Ms点以下の温度まで冷却することにより、前記成形体を1次焼入れする工程と、
1次焼入れされた前記成形体をA1点以上850℃未満の2次焼入温度に加熱した後、Ms点以下の温度まで冷却することにより、前記成形体を2次焼入れする工程とを備える、軸受部品の製造方法。 - 前記1次焼入温度は860℃以上880℃以下であり、
前記2次焼入温度は820℃以上840℃以下である、請求項13に記載の軸受部品の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/490,856 US11137031B2 (en) | 2017-03-03 | 2018-03-02 | Bearing part, rolling bearing, and method for manufacturing bearing part |
CN201880015417.1A CN110494584A (zh) | 2017-03-03 | 2018-03-02 | 轴承部件、滚动轴承、和轴承部件的制造方法 |
EP18760826.0A EP3591089A4 (en) | 2017-03-03 | 2018-03-02 | BEARING ELEMENT, ROLLER BEARING AND BEARING ELEMENT MANUFACTURING METHOD |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017040524 | 2017-03-03 | ||
JP2017-040524 | 2017-03-03 | ||
JP2017-241498 | 2017-12-18 | ||
JP2017241498A JP6827914B2 (ja) | 2017-12-18 | 2017-12-18 | 軸受部品及び転がり軸受 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159840A1 true WO2018159840A1 (ja) | 2018-09-07 |
Family
ID=63370119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008149 WO2018159840A1 (ja) | 2017-03-03 | 2018-03-02 | 軸受部品及び転がり軸受、ならびに軸受部品の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11137031B2 (ja) |
EP (1) | EP3591089A4 (ja) |
CN (1) | CN110494584A (ja) |
WO (1) | WO2018159840A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021002179A1 (ja) * | 2019-07-04 | 2021-01-07 | Ntn株式会社 | 転がり軸受の軌道輪 |
CN114555961A (zh) * | 2019-09-26 | 2022-05-27 | Ntn株式会社 | 滚动轴承 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6827914B2 (ja) * | 2017-12-18 | 2021-02-10 | Ntn株式会社 | 軸受部品及び転がり軸受 |
JP2021055167A (ja) * | 2019-10-01 | 2021-04-08 | Ntn株式会社 | 軸受部品 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02277764A (ja) | 1989-01-13 | 1990-11-14 | Nippon Seiko Kk | 転がり軸受 |
JPH0364431A (ja) | 1989-07-31 | 1991-03-19 | Nippon Seiko Kk | 転がり軸受 |
JPH0849057A (ja) | 1994-08-08 | 1996-02-20 | Nippon Seiko Kk | 耐摩耗性に優れた転がり軸受 |
JPH08311603A (ja) | 1994-09-29 | 1996-11-26 | Nippon Seiko Kk | 転がり軸受 |
JPH11201168A (ja) | 1998-01-12 | 1999-07-27 | Nippon Seiko Kk | 転がり軸受 |
JPH11217626A (ja) * | 1997-11-27 | 1999-08-10 | Aisin Seiki Co Ltd | 鋼の熱処理方法 |
JP2001323939A (ja) | 2000-05-18 | 2001-11-22 | Nsk Ltd | 転がり軸受 |
JP2005314789A (ja) * | 2004-03-31 | 2005-11-10 | Nsk Ltd | 転動装置 |
JP2006083988A (ja) * | 2004-09-17 | 2006-03-30 | Nsk Ltd | ボールねじ |
JP2007016848A (ja) * | 2005-07-06 | 2007-01-25 | Ntn Corp | ボールねじナットおよびその製造方法 |
JP2007232201A (ja) | 2006-03-03 | 2007-09-13 | Nsk Ltd | 転がり軸受 |
JP2008255399A (ja) * | 2007-04-03 | 2008-10-23 | Nsk Ltd | 転がり軸受 |
JP2013011010A (ja) | 2011-06-02 | 2013-01-17 | Nsk Ltd | 転がり軸受およびその製造方法 |
WO2015105187A1 (ja) * | 2014-01-10 | 2015-07-16 | 新日鐵住金株式会社 | 軸受部品 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2590645B2 (ja) * | 1991-09-19 | 1997-03-12 | 日本精工株式会社 | 転がり軸受 |
JPH08303470A (ja) | 1995-05-12 | 1996-11-19 | Ntn Corp | 転がり軸受 |
EP1624085B1 (en) * | 1997-04-03 | 2010-06-09 | JTEKT Corporation | Rolling bearing |
US6877901B2 (en) | 2001-10-16 | 2005-04-12 | William E. Wollenweber | Bearing system for high-speed rotating machinery |
US7438477B2 (en) | 2001-11-29 | 2008-10-21 | Ntn Corporation | Bearing part, heat treatment method thereof, and rolling bearing |
JP2005090680A (ja) | 2003-09-19 | 2005-04-07 | Koyo Seiko Co Ltd | 転がり軸受部品およびその製造方法 |
WO2005066513A1 (ja) * | 2004-01-09 | 2005-07-21 | Ntn Corporation | スラスト針状ころ軸受、カーエアコン・コンプレッサのスラスト荷重を受ける支持構造、オートマチックトランスミッションのスラスト荷重を受ける支持構造、無段変速機用の支持構造、およびマニュアルトランスミッションのスラスト荷重を受ける支持構造 |
KR20070091345A (ko) | 2004-12-24 | 2007-09-10 | 가부시키가이샤 제이텍트 | 구름 미끄럼 운동 부품 및 그 제조 방법 |
US20080047633A1 (en) * | 2005-12-22 | 2008-02-28 | Jtekt Corporation | Rolling-Sliding Elements and Process for Production of the Same |
JP4923776B2 (ja) * | 2006-06-22 | 2012-04-25 | 株式会社ジェイテクト | 転がり、摺動部品およびその製造方法 |
DE112008001331T5 (de) | 2007-05-17 | 2010-04-22 | Ntn Corp. | Wälzelement, Wälzlager und Verfahren zur Herstellung eines Wälzelements |
JP5489111B2 (ja) | 2009-03-25 | 2014-05-14 | Ntn株式会社 | 軸受部品、転がり軸受および軸受部品の製造方法 |
JP2014101896A (ja) * | 2012-11-16 | 2014-06-05 | Nsk Ltd | 転がり軸受 |
-
2018
- 2018-03-02 CN CN201880015417.1A patent/CN110494584A/zh active Pending
- 2018-03-02 US US16/490,856 patent/US11137031B2/en active Active
- 2018-03-02 EP EP18760826.0A patent/EP3591089A4/en active Pending
- 2018-03-02 WO PCT/JP2018/008149 patent/WO2018159840A1/ja active Application Filing
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02277764A (ja) | 1989-01-13 | 1990-11-14 | Nippon Seiko Kk | 転がり軸受 |
JPH0364431A (ja) | 1989-07-31 | 1991-03-19 | Nippon Seiko Kk | 転がり軸受 |
JPH0849057A (ja) | 1994-08-08 | 1996-02-20 | Nippon Seiko Kk | 耐摩耗性に優れた転がり軸受 |
JPH08311603A (ja) | 1994-09-29 | 1996-11-26 | Nippon Seiko Kk | 転がり軸受 |
JPH11217626A (ja) * | 1997-11-27 | 1999-08-10 | Aisin Seiki Co Ltd | 鋼の熱処理方法 |
JPH11201168A (ja) | 1998-01-12 | 1999-07-27 | Nippon Seiko Kk | 転がり軸受 |
JP2001323939A (ja) | 2000-05-18 | 2001-11-22 | Nsk Ltd | 転がり軸受 |
JP2005314789A (ja) * | 2004-03-31 | 2005-11-10 | Nsk Ltd | 転動装置 |
JP2006083988A (ja) * | 2004-09-17 | 2006-03-30 | Nsk Ltd | ボールねじ |
JP2007016848A (ja) * | 2005-07-06 | 2007-01-25 | Ntn Corp | ボールねじナットおよびその製造方法 |
JP2007232201A (ja) | 2006-03-03 | 2007-09-13 | Nsk Ltd | 転がり軸受 |
JP2008255399A (ja) * | 2007-04-03 | 2008-10-23 | Nsk Ltd | 転がり軸受 |
JP2013011010A (ja) | 2011-06-02 | 2013-01-17 | Nsk Ltd | 転がり軸受およびその製造方法 |
WO2015105187A1 (ja) * | 2014-01-10 | 2015-07-16 | 新日鐵住金株式会社 | 軸受部品 |
Non-Patent Citations (2)
Title |
---|
S. BIGGIND. J. DINGLEY, JOURNAL OF APPLIED CRYSTALLOGRAPHY, vol. 10, 1977, pages 376 - 378 |
See also references of EP3591089A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021002179A1 (ja) * | 2019-07-04 | 2021-01-07 | Ntn株式会社 | 転がり軸受の軌道輪 |
JP2021011894A (ja) * | 2019-07-04 | 2021-02-04 | Ntn株式会社 | 転がり軸受の軌道輪 |
JP7328032B2 (ja) | 2019-07-04 | 2023-08-16 | Ntn株式会社 | 転がり軸受の軌道輪 |
JP7515673B2 (ja) | 2019-07-04 | 2024-07-12 | Ntn株式会社 | 転がり軸受の軌道輪及び転がり軸受 |
CN114555961A (zh) * | 2019-09-26 | 2022-05-27 | Ntn株式会社 | 滚动轴承 |
Also Published As
Publication number | Publication date |
---|---|
US20200003259A1 (en) | 2020-01-02 |
EP3591089A4 (en) | 2020-08-05 |
CN110494584A (zh) | 2019-11-22 |
EP3591089A1 (en) | 2020-01-08 |
US11137031B2 (en) | 2021-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6827914B2 (ja) | 軸受部品及び転がり軸受 | |
WO2018159840A1 (ja) | 軸受部品及び転がり軸受、ならびに軸受部品の製造方法 | |
WO2013084864A1 (ja) | 機械部品、転がり軸受、円錐ころ軸受および機械部品の製造方法 | |
JP2008151236A (ja) | 転がり軸受 | |
JP4857746B2 (ja) | 転がり支持装置 | |
JP2007100126A (ja) | 転動部材および転がり軸受 | |
JP2019039044A (ja) | 転がり摺動部材及び転がり軸受 | |
JP2014077481A (ja) | 円錐ころ軸受 | |
JP7538770B2 (ja) | 転がり軸受 | |
JP7049490B2 (ja) | 軸受部品及び転がり軸受 | |
JP7049492B2 (ja) | 軸受部品及び転がり軸受 | |
JP7049491B2 (ja) | 軸受部品及び転がり軸受 | |
JP2011080096A (ja) | 転がり摺動部材の製造方法 | |
JP6843786B2 (ja) | 軸受部品及び転がり軸受、ならびに軸受部品の製造方法 | |
JP2006045591A (ja) | 円すいころ軸受 | |
JP7212100B2 (ja) | 転がり軸受 | |
WO2023037846A1 (ja) | 機械部品 | |
WO2023058518A1 (ja) | 転動部品及び転がり軸受 | |
JP2009235446A (ja) | 鋼の熱処理方法、機械部品の製造方法、機械部品および転がり軸受 | |
JP2009092161A (ja) | 転がり軸受 | |
JP6658143B2 (ja) | 転がり摺動部材及び転がり軸受 | |
JP2022107970A (ja) | 軸受部品及び転がり軸受 | |
JP2022189424A (ja) | 転がり軸受の製造方法 | |
JP2022107971A (ja) | 軸受部品及び転がり軸受 | |
JP2023081036A (ja) | 転動部品及び転がり軸受 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760826 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018760826 Country of ref document: EP |