WO2018159699A1 - 半導体ナノ粒子およびその製造方法ならびに発光デバイス - Google Patents
半導体ナノ粒子およびその製造方法ならびに発光デバイス Download PDFInfo
- Publication number
- WO2018159699A1 WO2018159699A1 PCT/JP2018/007580 JP2018007580W WO2018159699A1 WO 2018159699 A1 WO2018159699 A1 WO 2018159699A1 JP 2018007580 W JP2018007580 W JP 2018007580W WO 2018159699 A1 WO2018159699 A1 WO 2018159699A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- semiconductor nanoparticles
- semiconductor
- less
- core
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 263
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 211
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000002245 particle Substances 0.000 claims abstract description 66
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 46
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 43
- 229910052738 indium Inorganic materials 0.000 claims abstract description 33
- 229910052709 silver Inorganic materials 0.000 claims abstract description 20
- 239000011258 core-shell material Substances 0.000 claims description 65
- 239000000203 mixture Substances 0.000 claims description 54
- 229910052798 chalcogen Inorganic materials 0.000 claims description 38
- 150000001875 compounds Chemical class 0.000 claims description 34
- 229910052795 boron group element Inorganic materials 0.000 claims description 32
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 28
- 125000004429 atom Chemical group 0.000 claims description 28
- 239000011593 sulfur Substances 0.000 claims description 28
- 125000004432 carbon atom Chemical group C* 0.000 claims description 26
- 239000003960 organic solvent Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 15
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 claims description 13
- 229940071536 silver acetate Drugs 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 150000003573 thiols Chemical class 0.000 claims description 5
- 150000001412 amines Chemical class 0.000 claims description 4
- 229910052696 pnictogen Inorganic materials 0.000 claims description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 2
- 238000004020 luminiscence type Methods 0.000 abstract 1
- 239000006185 dispersion Substances 0.000 description 56
- 239000003607 modifier Substances 0.000 description 28
- 238000010438 heat treatment Methods 0.000 description 27
- 239000013078 crystal Substances 0.000 description 23
- 150000002430 hydrocarbons Chemical group 0.000 description 23
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 238000000295 emission spectrum Methods 0.000 description 19
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 18
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 16
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 13
- 238000002441 X-ray diffraction Methods 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 239000002096 quantum dot Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 12
- 238000003917 TEM image Methods 0.000 description 12
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 239000006228 supernatant Substances 0.000 description 12
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 11
- 239000002244 precipitate Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000007547 defect Effects 0.000 description 10
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 10
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 9
- 238000000862 absorption spectrum Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 125000001931 aliphatic group Chemical group 0.000 description 8
- 238000005119 centrifugation Methods 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- 239000011259 mixed solution Substances 0.000 description 7
- -1 nitrogen-containing compound Chemical class 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- ZVYYAYJIGYODSD-LNTINUHCSA-K (z)-4-bis[[(z)-4-oxopent-2-en-2-yl]oxy]gallanyloxypent-3-en-2-one Chemical compound [Ga+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O ZVYYAYJIGYODSD-LNTINUHCSA-K 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000002223 garnet Substances 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 150000002902 organometallic compounds Chemical class 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000006862 quantum yield reaction Methods 0.000 description 5
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 5
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 4
- PMBXCGGQNSVESQ-UHFFFAOYSA-N 1-Hexanethiol Chemical compound CCCCCCS PMBXCGGQNSVESQ-UHFFFAOYSA-N 0.000 description 4
- BDFAOUQQXJIZDG-UHFFFAOYSA-N 2-methylpropane-1-thiol Chemical compound CC(C)CS BDFAOUQQXJIZDG-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- 150000001242 acetic acid derivatives Chemical class 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- VBXWCGWXDOBUQZ-UHFFFAOYSA-K diacetyloxyindiganyl acetate Chemical compound [In+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VBXWCGWXDOBUQZ-UHFFFAOYSA-K 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000011669 selenium Substances 0.000 description 4
- 230000005476 size effect Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910052714 tellurium Inorganic materials 0.000 description 4
- 229910052693 Europium Inorganic materials 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000000731 high angular annular dark-field scanning transmission electron microscopy Methods 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 3
- ZRKMQKLGEQPLNS-UHFFFAOYSA-N 1-Pentanethiol Chemical compound CCCCCS ZRKMQKLGEQPLNS-UHFFFAOYSA-N 0.000 description 2
- KDSNLYIMUZNERS-UHFFFAOYSA-N 2-methylpropanamine Chemical compound CC(C)CN KDSNLYIMUZNERS-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- PLZVEHJLHYMBBY-UHFFFAOYSA-N Tetradecylamine Chemical compound CCCCCCCCCCCCCCN PLZVEHJLHYMBBY-UHFFFAOYSA-N 0.000 description 2
- 235000005811 Viola adunca Nutrition 0.000 description 2
- 240000009038 Viola odorata Species 0.000 description 2
- 235000013487 Viola odorata Nutrition 0.000 description 2
- 235000002254 Viola papilionacea Nutrition 0.000 description 2
- 125000005595 acetylacetonate group Chemical group 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 150000001356 alkyl thiols Chemical class 0.000 description 2
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical group [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052951 chalcopyrite Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- VTXVGVNLYGSIAR-UHFFFAOYSA-N decane-1-thiol Chemical compound CCCCCCCCCCS VTXVGVNLYGSIAR-UHFFFAOYSA-N 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- GVPWHKZIJBODOX-UHFFFAOYSA-N dibenzyl disulfide Chemical compound C=1C=CC=CC=1CSSCC1=CC=CC=C1 GVPWHKZIJBODOX-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 150000002258 gallium Chemical class 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- ORTRWBYBJVGVQC-UHFFFAOYSA-N hexadecane-1-thiol Chemical compound CCCCCCCCCCCCCCCCS ORTRWBYBJVGVQC-UHFFFAOYSA-N 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 150000003840 hydrochlorides Chemical class 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 150000002471 indium Chemical class 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 125000004923 naphthylmethyl group Chemical group C1(=CC=CC2=CC=CC=C12)C* 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- QJAOYSPHSNGHNC-UHFFFAOYSA-N octadecane-1-thiol Chemical compound CCCCCCCCCCCCCCCCCCS QJAOYSPHSNGHNC-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- DPBLXKKOBLCELK-UHFFFAOYSA-N pentan-1-amine Chemical compound CCCCCN DPBLXKKOBLCELK-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- MDDUHVRJJAFRAU-YZNNVMRBSA-N tert-butyl-[(1r,3s,5z)-3-[tert-butyl(dimethyl)silyl]oxy-5-(2-diphenylphosphorylethylidene)-4-methylidenecyclohexyl]oxy-dimethylsilane Chemical compound C1[C@@H](O[Si](C)(C)C(C)(C)C)C[C@H](O[Si](C)(C)C(C)(C)C)C(=C)\C1=C/CP(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 MDDUHVRJJAFRAU-YZNNVMRBSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 238000009849 vacuum degassing Methods 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- HYAVEDMFTNAZQE-UHFFFAOYSA-N (benzyldiselanyl)methylbenzene Chemical compound C=1C=CC=CC=1C[Se][Se]CC1=CC=CC=C1 HYAVEDMFTNAZQE-UHFFFAOYSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- KIZGBMSFXOHDPW-UHFFFAOYSA-N 1-[bis(2-methylpropyl)phosphoryl]-2-methylpropane Chemical compound CC(C)CP(=O)(CC(C)C)CC(C)C KIZGBMSFXOHDPW-UHFFFAOYSA-N 0.000 description 1
- HVCIDAMVJRAKAM-UHFFFAOYSA-N 1-di(tetradecyl)phosphoryltetradecane Chemical compound CCCCCCCCCCCCCCP(=O)(CCCCCCCCCCCCCC)CCCCCCCCCCCCCC HVCIDAMVJRAKAM-UHFFFAOYSA-N 0.000 description 1
- MNZAKDODWSQONA-UHFFFAOYSA-N 1-dibutylphosphorylbutane Chemical compound CCCCP(=O)(CCCC)CCCC MNZAKDODWSQONA-UHFFFAOYSA-N 0.000 description 1
- BRLCBJSJAACAFG-UHFFFAOYSA-N 1-didodecylphosphoryldodecane Chemical compound CCCCCCCCCCCCP(=O)(CCCCCCCCCCCC)CCCCCCCCCCCC BRLCBJSJAACAFG-UHFFFAOYSA-N 0.000 description 1
- PPDZLUVUQQGIOJ-UHFFFAOYSA-N 1-dihexylphosphorylhexane Chemical compound CCCCCCP(=O)(CCCCCC)CCCCCC PPDZLUVUQQGIOJ-UHFFFAOYSA-N 0.000 description 1
- XHOHEJRYAPSRPZ-UHFFFAOYSA-N 1-dioctadecylphosphoryloctadecane Chemical compound CCCCCCCCCCCCCCCCCCP(=O)(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC XHOHEJRYAPSRPZ-UHFFFAOYSA-N 0.000 description 1
- SAIZTOCXWYRRNW-UHFFFAOYSA-N 1-dipentylphosphorylpentane Chemical compound CCCCCP(=O)(CCCCC)CCCCC SAIZTOCXWYRRNW-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- MZESLMXONSBAJB-UHFFFAOYSA-N 3-di(octan-3-yl)phosphoryloctane Chemical compound CCCCCC(CC)P(=O)(C(CC)CCCCC)C(CC)CCCCC MZESLMXONSBAJB-UHFFFAOYSA-N 0.000 description 1
- 229910016066 BaSi Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Chemical group CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 238000001016 Ostwald ripening Methods 0.000 description 1
- 229910003564 SiAlON Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910003668 SrAl Inorganic materials 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- LUFPJJNWMYZRQE-UHFFFAOYSA-N benzylsulfanylmethylbenzene Chemical compound C=1C=CC=CC=1CSCC1=CC=CC=C1 LUFPJJNWMYZRQE-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 239000000404 calcium aluminium silicate Substances 0.000 description 1
- 235000012215 calcium aluminium silicate Nutrition 0.000 description 1
- WNCYAPRTYDMSFP-UHFFFAOYSA-N calcium aluminosilicate Chemical compound [Al+3].[Al+3].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O WNCYAPRTYDMSFP-UHFFFAOYSA-N 0.000 description 1
- 229940078583 calcium aluminosilicate Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- GTDCAOYDHVNFCP-UHFFFAOYSA-N chloro(trihydroxy)silane Chemical compound O[Si](O)(O)Cl GTDCAOYDHVNFCP-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- FYWVTSQYJIPZLW-UHFFFAOYSA-K diacetyloxygallanyl acetate Chemical compound [Ga+3].CC([O-])=O.CC([O-])=O.CC([O-])=O FYWVTSQYJIPZLW-UHFFFAOYSA-K 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- YWWZCHLUQSHMCL-UHFFFAOYSA-N diphenyl diselenide Chemical compound C=1C=CC=CC=1[Se][Se]C1=CC=CC=C1 YWWZCHLUQSHMCL-UHFFFAOYSA-N 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- BASAKOUVGYHNRZ-UHFFFAOYSA-N oxido(tridecyl)phosphanium Chemical compound C(CCCCCCCCCCCC)[PH2]=O BASAKOUVGYHNRZ-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229940065287 selenium compound Drugs 0.000 description 1
- 150000003343 selenium compounds Chemical class 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- GKCNVZWZCYIBPR-UHFFFAOYSA-N sulfanylideneindium Chemical compound [In]=S GKCNVZWZCYIBPR-UHFFFAOYSA-N 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 150000003498 tellurium compounds Chemical class 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 150000003564 thiocarbonyl compounds Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- KIFVWTXDZKBNHH-UHFFFAOYSA-N tri(octan-3-yl)phosphane Chemical compound CCCCCC(CC)P(C(CC)CCCCC)C(CC)CCCCC KIFVWTXDZKBNHH-UHFFFAOYSA-N 0.000 description 1
- BNOPYGRAXZULSM-UHFFFAOYSA-N tri(tetradecyl)phosphane Chemical compound CCCCCCCCCCCCCCP(CCCCCCCCCCCCCC)CCCCCCCCCCCCCC BNOPYGRAXZULSM-UHFFFAOYSA-N 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- MOSFSEPBWRXKJZ-UHFFFAOYSA-N tridecylphosphane Chemical compound CCCCCCCCCCCCCP MOSFSEPBWRXKJZ-UHFFFAOYSA-N 0.000 description 1
- GRAKJTASWCEOQI-UHFFFAOYSA-N tridodecylphosphane Chemical compound CCCCCCCCCCCCP(CCCCCCCCCCCC)CCCCCCCCCCCC GRAKJTASWCEOQI-UHFFFAOYSA-N 0.000 description 1
- KENFVQBKAYNBKN-UHFFFAOYSA-N trihexadecyl phosphate Chemical compound CCCCCCCCCCCCCCCCOP(=O)(OCCCCCCCCCCCCCCCC)OCCCCCCCCCCCCCCCC KENFVQBKAYNBKN-UHFFFAOYSA-N 0.000 description 1
- YHLFKRHUIBDYJG-UHFFFAOYSA-N trihexadecylphosphane Chemical compound CCCCCCCCCCCCCCCCP(CCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCC YHLFKRHUIBDYJG-UHFFFAOYSA-N 0.000 description 1
- FPZZZGJWXOHLDJ-UHFFFAOYSA-N trihexylphosphane Chemical compound CCCCCCP(CCCCCC)CCCCCC FPZZZGJWXOHLDJ-UHFFFAOYSA-N 0.000 description 1
- KJFAJLYXKTVJDA-UHFFFAOYSA-N trioctadecylphosphane Chemical compound CCCCCCCCCCCCCCCCCCP(CCCCCCCCCCCCCCCCCC)CCCCCCCCCCCCCCCCCC KJFAJLYXKTVJDA-UHFFFAOYSA-N 0.000 description 1
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 description 1
- IWPNEBZUNGZQQQ-UHFFFAOYSA-N tripentylphosphane Chemical compound CCCCCP(CCCCC)CCCCC IWPNEBZUNGZQQQ-UHFFFAOYSA-N 0.000 description 1
- FIQMHBFVRAXMOP-UHFFFAOYSA-N triphenylphosphane oxide Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=O)C1=CC=CC=C1 FIQMHBFVRAXMOP-UHFFFAOYSA-N 0.000 description 1
- DAGQYUCAQQEEJD-UHFFFAOYSA-N tris(2-methylpropyl)phosphane Chemical compound CC(C)CP(CC(C)C)CC(C)C DAGQYUCAQQEEJD-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G15/00—Compounds of gallium, indium or thallium
- C01G15/006—Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G15/00—Compounds of gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
- C09K11/562—Chalcogenides
- C09K11/565—Chalcogenides with zinc cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/62—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/62—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
- C09K11/621—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/70—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
- C09K11/883—Chalcogenides with zinc or cadmium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/507—Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
- H01L33/504—Elements with two or more wavelength conversion materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Definitions
- the present invention relates to semiconductor nanoparticles, a method for producing the same, and a light emitting device.
- Quantum size effect refers to a phenomenon in which each band of a valence band and a conduction band considered to be continuous in bulk particles becomes discrete in nanoparticles, and the band gap energy changes according to the particle size.
- an object of one embodiment of the present invention is to provide semiconductor nanoparticles that exhibit band edge emission and have a short emission peak wavelength.
- the first aspect includes Ag, In, Ga, and S, and the ratio of the number of Ga atoms to the total number of In and Ga atoms is 0.95 or less, and the emission peak is in the range of 500 nm to less than 590 nm by light irradiation.
- a second aspect includes preparing a mixture containing silver acetate, acetylacetonate indium, acetylacetonate gallium, a sulfur source, and an organic solvent, and heat-treating the mixture. This is a method for producing nanoparticles.
- the third aspect is a light emitting device comprising a light conversion member containing the semiconductor nanoparticles and a semiconductor light emitting element.
- semiconductor nanoparticles that exhibit band edge emission and have a short emission peak wavelength can be provided.
- the semiconductor nanoparticle which is 1st embodiment contains silver (Ag), indium (In), gallium (Ga), and sulfur (S).
- the ratio of the number of Ga atoms to the total number of In and Ga atoms (Ga / (Ga + In)) is 0.95 or less.
- the semiconductor nanoparticles emit light with an emission peak wavelength in the range of 500 nm or more and less than 590 nm by light irradiation, and the half width of the emission peak in the emission spectrum is 70 nm or less.
- the semiconductor nanoparticles have an average particle size of 10 nm or less.
- the semiconductor nanoparticles contain Ag, In, Ga, and S, and the ratio of the number of Ga atoms to the total number of In and Ga atoms is within a predetermined range, so that the wavelength is longer than the excitation light, and the visible region It is possible to emit light at the band edge with an emission peak wavelength in the range of 500 nm to less than 590 nm.
- the crystal structure of the semiconductor nanoparticles can be at least one selected from the group consisting of tetragonal, hexagonal and orthorhombic.
- Semiconductor nanoparticles containing Ag, In, and S and having a crystal structure of tetragonal, hexagonal, or orthorhombic are generally expressed in the literature, etc. as expressed by the composition formula of AgInS 2 It has been introduced. It can be considered that the semiconductor nanoparticles according to the present embodiment are obtained by replacing, for example, a part of In that is a Group 13 element with Ga that is also a Group 13 element. That is, the composition of the semiconductor nanoparticles is represented by, for example, Ag—In—Ga—S or Ag (In, Ga) S 2 .
- semiconductor nanoparticles represented by a composition formula such as Ag—In—Ga—S and having a hexagonal crystal structure are wurtzite type, and a semiconductor having a tetragonal crystal structure is chalcopyrite. It is a type.
- the crystal structure is identified, for example, by measuring an XRD pattern obtained by X-ray diffraction (XRD) analysis. Specifically, the XRD pattern obtained from the semiconductor nanoparticles is compared with the XRD pattern known as that of the semiconductor nanoparticles represented by the composition of AgInS 2 or the XRD pattern obtained by performing simulations from crystal structure parameters. To do. If there is a known pattern and a simulation pattern that match the semiconductor nanoparticle pattern, the crystal structure of the semiconductor nanoparticle can be said to be the crystal structure of the matching known or simulated pattern.
- XRD X-ray diffraction
- semiconductor nanoparticles having different crystal structures may be mixed. In that case, in the XRD pattern, peaks derived from a plurality of crystal structures are observed.
- the ratio Ga / (Ga + In) (hereinafter also referred to as “Ga ratio”) of the number of Ga atoms to the total number of In and Ga atoms can be 0.95 or less, more preferably 0.2 or more and 0.0. It can be 9 or less.
- Ag ratio is 0.3 or more and 0.55 or less
- Ga ratio can be 0.5 or more and 0.9 or less, preferably Ag ratio is 0.35 or more and 0.53 or less, Ga ratio Can be 0.52 or more and 0.86 or less.
- the Ga ratio can be 0.2 or more and 0.9 or less, and the value of the Ga ratio + 2 ⁇ Ag ratio can be 1.2 or more and 1.7 or less.
- the Ga ratio is 0.2 or more and 0.00. It is 9 or less, Ag ratio is 0.3 or more and 0.55 or less, and the value of Ga ratio + 2 ⁇ Ag ratio can be 1.2 or more and 1.7 or less.
- the Ga ratio is 0.2 or more and 0.8 or less, and the value of Ga ratio + 2 ⁇ Ag ratio can be 0.6 or more and 1 or less.
- the Ga ratio is 0.2 or more and 0.8 or less.
- the Ag ratio is 0.05 or more and 0.4 or less, and the value of Ga ratio + 2 ⁇ Ag ratio can be 0.6 or more and 1 or less.
- the chemical composition of the semiconductor nanoparticles can be identified by, for example, fluorescent X-ray analysis (XRF).
- XRF fluorescent X-ray analysis
- the Ga ratio calculated by Ga / (Ga + In), the Ag ratio calculated by Ag / (Ag + In + Ga), and the S ratio calculated by S / (Ag + In + Ga) are calculated based on the chemical composition measured by this method. .
- the semiconductor nanoparticles have an average particle size of 10 nm or less.
- the average particle size is, for example, less than 10 nm, and preferably 5 nm or less. When the average particle size exceeds 10 nm, it becomes difficult to obtain the quantum size effect, and it becomes difficult to obtain band edge emission.
- the lower limit of the average particle diameter is 1 nm, for example.
- the particle size of the semiconductor nanoparticles can be determined from, for example, a TEM image taken using a transmission electron microscope (TEM). Specifically, it is a line segment connecting any two points on the outer periphery of the particle observed in the TEM image for a certain particle, and the length of the longest line segment among the line segments passing through the inside of the particle is set. It is set as the particle size of the particle.
- TEM transmission electron microscope
- the length of the minor axis is regarded as the particle size.
- the rod-shaped particles have a short axis and a long axis perpendicular to the short axis in the TEM image, and the ratio of the length of the long axis to the length of the short axis is larger than 1.2.
- Rod-shaped particles are observed in a TEM image as, for example, a quadrilateral shape including a rectangular shape, an elliptical shape, or a polygonal shape.
- the cross-sectional shape that is a plane orthogonal to the long axis of the rod shape may be, for example, a circle, an ellipse, or a polygon.
- the length of the long axis indicates the length of the longest line segment connecting any two points on the outer periphery of the particle in the case of an elliptical shape.
- the length is the length of the longest line segment that is parallel to the longest side of the edges that define the outer periphery and connects any two points on the outer periphery of the particle.
- the length of the short axis indicates the length of the longest line segment that is orthogonal to the line segment that defines the length of the long axis among the line segments connecting any two points on the outer periphery.
- the average particle diameter of the semiconductor nanoparticles is measured for all measurable particles observed in a TEM image of 50,000 to 150,000 times, and the arithmetic average of the particle diameters is measured.
- measurable particles are those in which the entire particles can be observed in a TEM image. Accordingly, a part of the TEM image is not included in the imaging range, and particles that are “cut” are not measurable.
- the average particle diameter is obtained using the TEM image.
- the imaging location can be changed to obtain more TEM images, and more than 100 measurable in two or more TEM images can be measured.
- the average particle size is determined by measuring the particle size of the fine particles.
- the semiconductor nanoparticles contain Ag, In, Ga, and S, and can emit band edge light when the ratio of the number of Ga atoms to the total number of In and Ga atoms is within a predetermined range.
- the semiconductor nanoparticles emit light having an emission peak wavelength in a range of 500 nm or more and less than 590 nm by irradiating light having a peak around 365 nm.
- the emission peak wavelength can be, for example, 500 nm or more and 580 nm or less, 500 nm or more and 575 nm or less, 505 nm or more and less than 575. Further, it can be set to 570 nm to 585 nm or 575 nm to 580 nm.
- the half width of the emission peak in the emission spectrum can be, for example, 70 nm or less, 60 nm or less, 55 nm or less, or 50 nm or less.
- the lower limit value of the full width at half maximum can be, for example, 10 nm or more or 20 nm or more.
- the band edge emission of the semiconductor nanoparticles can change the peak position by changing the composition of the semiconductor nanoparticles.
- the peak wavelength of band edge emission can be shifted to the short wavelength side by increasing the Ga ratio.
- the semiconductor nanoparticles preferably have an absorption spectrum exhibiting an exciton peak.
- the exciton peak is a peak obtained by exciton generation, and the fact that it is expressed in the absorption spectrum means that the particle has a small particle size distribution and is suitable for band edge emission with few crystal defects. .
- the exciton peak becomes steeper, it means that more particles with a uniform grain size and fewer crystal defects are contained in the aggregate of semiconductor nanoparticles, so the half-value width of light emission becomes narrower and the light emission efficiency is expected to improve. Is done.
- the exciton peak is observed within a range of 450 nm or more and less than 590 nm, for example.
- the surface of the semiconductor nanoparticles may be modified with a surface modifier.
- the surface modifier is, for example, for stabilizing semiconductor nanoparticles to prevent particle aggregation or growth and / or for improving the dispersibility of the particles in a solvent.
- Hydrocarbon groups unsaturated aliphatic hydrocarbon groups such as oleyl groups; alicyclic hydrocarbon groups such as cyclopentyl groups and cyclohexyl groups; aromatic hydrocarbon groups such as phenyl groups, benzyl groups, naphthyl groups, and naphthylmethyl groups Of these, saturated aliphatic hydrocarbon groups and unsaturated aliphatic hydrocarbon groups are preferred.
- nitrogen-containing compounds include amines and amides
- examples of sulfur-containing compounds include thiols
- oxygen-containing compounds include fatty acids.
- a nitrogen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms is preferable.
- nitrogen-containing compounds include n-butylamine, isobutylamine, n-pentylamine, n-hexylamine, octylamine, decylamine, dodecylamine, alkylamines such as hexadecylamine, octadecylamine, and oleylamine.
- An alkenylamine is mentioned.
- a sulfur-containing compound having a hydrocarbon group having 4 to 20 carbon atoms is also preferable.
- sulfur-containing compounds include alkyl thiols such as n-butanethiol, isobutanethiol, n-pentanethiol, n-hexanethiol, octanethiol, decanethiol, dodecanethiol, hexadecanethiol, and octadecanethiol.
- the surface modifier may be used in combination of two or more different ones.
- one compound selected from the nitrogen-containing compounds exemplified above for example, oleylamine
- one compound selected from the sulfur-containing compounds exemplified above for example, dodecanethiol
- one compound selected from the nitrogen-containing compounds exemplified above for example, oleylamine
- one compound selected from the sulfur-containing compounds exemplified above for example, dodecanethiol
- the manufacturing method of the semiconductor nanoparticle which concerns on 2nd embodiment prepares the mixture containing silver salt, indium salt, gallium salt, a sulfur source, and an organic solvent, and preparation Heat treating the resulting mixture.
- a mixture containing silver acetate, acetylacetonatoindium, acetylacetonatogallium, sulfur or thiourea as a sulfur source, and an organic solvent is prepared as a mixture.
- the mixture can be prepared by adding a silver salt, an indium salt, a gallium salt, and a sulfur source to an organic solvent and mixing them.
- the content ratio of Ag, In, Ga, and S in the mixture is appropriately selected according to the target composition.
- the molar ratio of Ga to the total molar amount of In and Ga is 0.2 or more and 0.9 or less.
- the molar ratio of Ag to the total molar amount of Ag, In, and Ga is set to 0.05 or more and 0.55 or less.
- the molar ratio of S to the total molar amount of Ag, In, and Ga is 0.6 or more and 1.6 or less.
- organic solvent examples include amines having a hydrocarbon group having 4 to 20 carbon atoms, particularly alkylamines or alkenylamines having 4 to 20 carbon atoms, and thiols having a hydrocarbon group having 4 to 20 carbon atoms, particularly carbon.
- These organic solvents can ultimately modify the surface of the resulting semiconductor nanoparticles.
- organic solvents may be used in combination of two or more, and in particular, have at least one selected from thiols having a hydrocarbon group having 4 to 20 carbon atoms and a hydrocarbon group having 4 to 20 carbon atoms.
- a mixed solvent in combination with at least one selected from amines may be used.
- These organic solvents may also be used as a mixture with other organic solvents.
- semiconductor nanoparticles are produced in an organic solvent by heat-treating the mixture.
- the temperature of the heat treatment of the mixture is, for example, 230 ° C. or higher and 310 ° C. or lower, preferably higher than 260 ° C. and 310 ° C. or lower, more preferably 290 ° C. or higher and 310 ° C. or lower.
- the heat treatment time is, for example, 5 minutes or more and 20 minutes or less, preferably 5 minutes or more and 15 minutes or less.
- the heat treatment of the mixture may be performed at two or more temperatures. For example, the heating may be performed at a temperature of 30 ° C. to 155 ° C. for 1 minute to 15 minutes and then heated at a temperature of 230 ° C. to 310 ° C. for 5 minutes to 20 minutes.
- the obtained semiconductor nanoparticles may be separated from the treated organic solvent, and further purified as necessary. Separation is performed, for example, by centrifuging an organic solvent containing nanoparticles after completion of production and taking out a supernatant liquid containing nanoparticles. Purification can be performed, for example, by adding an organic solvent to the supernatant and centrifuging to remove the semiconductor nanoparticles as a precipitate. In addition, it can take out also by volatilizing a supernatant liquid.
- the removed precipitate may be dried by, for example, vacuum degassing or natural drying, or a combination of vacuum degassing and natural drying. Natural drying may be carried out, for example, by leaving it in the atmosphere at room temperature and normal pressure. In that case, it may be left for 20 hours or longer, for example, about 30 hours.
- Core-shell type semiconductor nanoparticles have a band gap energy higher than that of the core, with at least one of the semiconductor nanoparticles according to the first embodiment and the semiconductor nanoparticles obtained by the manufacturing method according to the second embodiment as a core.
- Large core-shell type semiconductor nanoparticles including a shell heterojunction with the core can be obtained.
- the semiconductor nanoparticles can exhibit stronger band edge emission by having a core-shell structure.
- the shell may be a semiconductor material substantially composed of a Group 1 element, a Group 13 element, and a Group 16 element. Defect emission tends to be suppressed by including a Group 1 element in addition to a Group 13 element and a Group 16 element.
- the Group 1 element include Li, Na, K, Rb, and Cs, and Li is preferable in that the ionic radius is close to Ag.
- the band gap energy of the semiconductor constituting the core depends on its composition, but a ternary semiconductor of Group 11-Group 13-Group 16 generally has a band gap energy of 1.0 eV to 3.5 eV.
- a semiconductor composed of Ag—In—Ga—S has a band gap energy of 2.0 eV or more and 2.5 eV or less, and therefore the shell has a band gap energy of the semiconductor constituting the core.
- the composition and the like may be selected and configured.
- the core may be designed so that the band gap energy of the semiconductor constituting the core is smaller than that of the shell.
- the band gap energy of the core and the shell is preferably selected so as to give a type-I band alignment in which the band gap energy of the shell sandwiches the band gap energy of the core at the heterojunction of the core and the shell.
- a barrier of at least 0.1 eV is preferably formed between the core band gap and the shell band gap, particularly 0.2 eV or more, more particularly 0.3 eV or more.
- a barrier may be formed.
- the upper limit of the barrier is, for example, 1.8 eV or less, and particularly 1.1 eV or less.
- the shell may contain Ga as a Group 13 element and S as a Group 16 element.
- a semiconductor containing Ga and S tends to be a semiconductor having a larger band gap energy than a ternary semiconductor of Group 11—Group 13—Group 16.
- the shell may also be such that its semiconductor crystal system is familiar with the core semiconductor crystal system.
- the lattice constant may be the same as or close to that of the core semiconductor.
- a shell made of a semiconductor that is familiar to the crystal system and has a close lattice constant (here, multiples of the lattice constant of the shell are close to the lattice constant of the core) May be covered.
- Group 11-Group 13-Group 16 ternary semiconductors are generally tetragonal, but crystal systems familiar to them include tetragonal and orthorhombic. .
- the lattice constant is 5.8285, 5.828 ⁇ , 11.19 ⁇ , and the shell covering this is tetragonal or cubic.
- the lattice constant or a multiple thereof is preferably close to the lattice constant of the Ag—In—Ga—S semiconductor.
- the shell can be amorphous.
- an amorphous shell is formed can be confirmed by observing the core-shell type semiconductor nanoparticles with HAADF-STEM.
- HAADF-STEM those having a regular structure such as a crystalline substance are observed as an image having a regular pattern, and those having no regular structure such as an amorphous substance are It is not observed as an image having a regular pattern. Therefore, when the shell is amorphous, the shell is observed as a portion that is clearly different from the core (having a crystal structure such as tetragonal system as described above) that is observed as an image having a regular pattern. be able to.
- the shell is darker than the core in the image obtained by HAADF-STEM because Ga is a lighter element than Ag and In. It tends to be observed as an image.
- Whether or not an amorphous shell is formed can also be confirmed by observing the core-shell type semiconductor nanoparticles with a high-resolution transmission electron microscope (HRTEM).
- HRTEM high-resolution transmission electron microscope
- the core part is observed as a crystal lattice image (image having a regular pattern)
- the shell part is not observed as a crystal lattice image
- black and white contrast is observed, but regular Pattern is observed as an invisible part.
- the shell is a semiconductor including a combination of Ga and S as a combination of a Group 13 element and a Group 16 element
- the combination of Ga and S can be in the form of gallium sulfide.
- the gallium sulfide constituting the shell does not have to be of stoichiometric composition (Ga 2 S 3 ), and in this sense, gallium sulfide is expressed by the formula GaS x (x is not limited to an integer, For example, it may be represented by 0.8 or more and 1.5 or less.
- the shell when it is a semiconductor including a combination of Li, Ga, and S as a combination of the Group 1 element, the Group 13 element, and the Group 16 element, for example, it can be in the form of lithium gallium sulfide.
- Lithium gallium sulfide may not have a stoichiometric composition (for example, LiGaS 2 ), for example, the composition may be represented by LiGaSx (where x is not limited to an integer, for example, 1.1 to 2). . Further, for example, an amorphous form in which Li is dissolved in gallium sulfide may be used.
- the molar ratio of Li to Ga (Li / Ga) in the shell is, for example, 1/20 to 4, or 1/10 to 2.
- the specific modifier contains P having a negative oxidation number as a Group 15 element.
- the oxidation number of P becomes ⁇ 1 when one hydrogen atom or an alkyl group is bonded to P, and becomes +1 when one oxygen atom is bonded as a single bond, and changes depending on the substitution state of P.
- the oxidation number of P in trialkylphosphine and triarylphosphine is ⁇ 3, and in trialkylphosphine oxide and triarylphosphine oxide, it is ⁇ 1.
- the specific modifier may be, for example, a phosphorus-containing compound having a hydrocarbon group having 4 to 20 carbon atoms.
- the hydrocarbon group having 4 to 20 carbon atoms include n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, octyl group, ethylhexyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group
- a linear or branched saturated aliphatic hydrocarbon group such as a group; a linear or branched unsaturated aliphatic hydrocarbon group such as an oleyl group; an alicyclic hydrocarbon group such as a cyclopentyl group or a cyclohexyl group;
- An aromatic hydrocarbon group such as a phenyl group and a naphthyl group; an arylalkyl group
- Specific modifiers include tributylphosphine, triisobutylphosphine, tripentylphosphine, trihexylphosphine, trioctylphosphine, tris (ethylhexyl) phosphine, tridecylphosphine, tridodecylphosphine, tritetradecylphosphine, trihexadecyl Phosphine, Trioctadecylphosphine, Triphenylphosphine, Tributylphosphine oxide, Triisobutylphosphine oxide, Tripentylphosphine oxide, Trihexylphosphine oxide, Trioctylphosphine oxide, Tris (ethylhexyl) phosphine oxide, Tridecylphosphine oxide, Tridodecylphosphine oxide , Tritetradecyl phosphine oxide,
- a method for producing core-shell type semiconductor nanoparticles comprises preparing a dispersion containing semiconductor nanoparticles, and adding a semiconductor raw material to the dispersion of semiconductor nanoparticles. It is a manufacturing method including forming a semiconductor layer on the surface of particles. When coating the semiconductor nanoparticles with a shell, a dispersion in which the semiconductor nanoparticles are dispersed in an appropriate solvent is prepared, and a semiconductor layer serving as a shell is formed in the dispersion. In a liquid in which semiconductor nanoparticles are dispersed, scattered light is not generated, and thus the dispersion liquid is generally obtained as a transparent (colored or colorless) liquid.
- the solvent in which the semiconductor nanoparticles are dispersed can be any organic solvent (especially, a highly polar organic solvent such as an alcohol such as ethanol) as in the case of producing the semiconductor nanoparticles. Or a solution containing a surface modifying agent.
- the organic solvent can be at least one selected from nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms, which is the surface modifier described in relation to the method for producing semiconductor nanoparticles, Alternatively, it can be at least one selected from sulfur-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms, or at least one selected from nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms, It can be in combination with at least one selected from sulfur-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms.
- n-tetradecylamine, oleylamine, and the like are preferable from the viewpoint that a highly pure compound is easily available and the boiling point exceeds 290 ° C.
- Preferred examples of the sulfur-containing compound include dodecanethiol.
- Specific organic solvents include oleylamine, n-tetradecylamine, dodecanethiol, or combinations thereof.
- the concentration of particles in the dispersion is, for example, 5.0 ⁇ 10 ⁇ 7 mol / liter or more, 5.0 ⁇ 10 ⁇ 5 mol / liter or less, particularly 1.0 ⁇ 10 ⁇ It may be prepared to be 6 mol / liter or more and 1.0 ⁇ 10 ⁇ 5 mol / liter or less. If the proportion of particles in the dispersion is too small, it becomes difficult to recover the product by the coagulation / precipitation process with a poor solvent. If the proportion is too large, the Ostwald ripening of the material constituting the core, the proportion of fusion due to collision increases, The diameter distribution tends to be wide.
- a compound containing a Group 13 element is a Group 13 element source, and examples thereof include organic salts, inorganic salts, and organometallic compounds of Group 13 elements.
- examples of the compound containing a Group 13 element include nitrates, acetates, sulfates, hydrochlorides, sulfonates, and acetylacetonato complexes, preferably organic salts such as acetates, or organic metals.
- a single group 16 element or a compound containing a group 16 element is a group 16 element source.
- a single element of sulfur such as high-purity sulfur can be used, or n-butanethiol, isobutanethiol, n-pentanethiol N-hexanethiol, octanethiol, decanethiol, dodecanethiol, hexadecanethiol, octadecanethiol and other thiols, disulfide such as dibenzylsulfide, sulfur-containing compounds such as thiourea and thiocarbonyl compounds can be used.
- oxygen (O) is used as a constituent element of the shell as a Group 16 element
- alcohol, ether, carboxylic acid, ketone, or N-oxide compound may be used as a Group 16 element source.
- selenium (Se) is used as a constituent element of the shell as a group 16 element, selenium alone, selenide phosphine oxide, organic selenium compound (dibenzyl diselenide or diphenyl diselenide) or hydride
- a compound may be used as a Group 16 element source.
- tellurium (Te) is used as a constituent element of the shell as the Group 16 element, tellurium alone, tellurium phosphine oxide, or hydride may be used as the Group 16 element source.
- the method of adding the group 13 element source and the group 16 element source to the dispersion is not particularly limited.
- a mixed solution in which a group 13 element source and a group 16 element source are dispersed or dissolved in an organic solvent is prepared, and this mixed solution may be added to the dispersion little by little, for example, by dropping.
- the mixed solution may be added at a rate of 0.1 mL / hour to 10 mL / hour, particularly 1 mL / hour to 5 mL / hour.
- the surface modifier that modifies the semiconductor nanoparticles is sufficiently desorbed, or the chemical reaction for generating the shell proceeds sufficiently.
- the time for maintaining the peak temperature can be 1 minute to 300 minutes in total from the start of the addition of the mixed solution, particularly 10 minutes to 120 minutes.
- the retention time of the peak temperature is selected in relation to the peak temperature, with a longer retention time when the peak temperature is lower and a shorter retention time when the peak temperature is higher, a good shell layer Is easily formed.
- the temperature increase rate and the temperature decrease rate are not particularly limited, and the temperature decrease may be performed by, for example, holding the peak temperature for a predetermined time, then stopping heating by a heating source (for example, an electric heater) and allowing to cool.
- the entire amount of the group 13 element source and the group 16 element source may be added directly to the dispersion.
- a semiconductor layer as a shell may be formed on the surface of the semiconductor nanoparticles by heating the dispersion liquid to which the group 13 element source and the group 16 element source are added (heating up method).
- the dispersion to which the group 13 element source and the group 16 element source are added is gradually heated, for example, so that the peak temperature becomes 200 ° C. or more and 310 ° C. or less, After holding for 1 minute or more and 300 minutes or less, you may heat by the method of making it cool gradually.
- core-shell type semiconductor nanoparticles that give stronger band edge emission tend to be obtained as compared with the case where the shell is formed by the slow injection method.
- the charging ratio of the both corresponds to the stoichiometric composition ratio of the compound semiconductor composed of the group 13 element and the group 16 element.
- the charge ratio may be determined, and the stoichiometric composition ratio is not necessarily required.
- the charging ratio is not the stoichiometric composition ratio, the raw material may be charged in an excess amount than the target shell generation amount.
- the group 16 element source may be less than the stoichiometric composition ratio.
- the charging ratio may be 1: 1 (Group 13: Group 16).
- the preparation amount is selected in consideration of the amount of semiconductor nanoparticles contained in the dispersion so that a shell having a desired thickness is formed on the semiconductor nanoparticles present in the dispersion.
- a semiconductor nanoparticle having a substance amount of 10 nmol a compound semiconductor having a stoichiometric composition composed of a group 13 element and a group 16 element is generated in an amount of 1 ⁇ mol to 10 mmol, particularly 5 ⁇ mol to 1 mmol.
- the charged amounts of the Group 13 element source and the Group 16 element source may be determined.
- indium acetate or gallium acetylacetonate is used as the group 13 element source, and sulfur alone, thiourea or dibenzyl disulfide is used as the group 16 element source. It is preferable to form a shell containing indium sulfide or gallium sulfide using a mixed solution of oleylamine and dodecanethiol.
- the core shell gives an emission spectrum in which the intensity of the broad peak derived from defect emission is sufficiently smaller than the intensity of the peak of band edge emission Type semiconductor nanoparticles are obtained.
- the above tendency is significantly recognized even when a gallium source is used as the group 13 element source.
- the shell is formed to form the core-shell type semiconductor nanoparticles.
- the obtained core-shell semiconductor nanoparticles may be separated from the solvent, and may be further purified and dried as necessary.
- the separation, purification, and drying methods are as described above in connection with the semiconductor nanoparticles, and thus detailed description thereof is omitted here.
- the shell can be formed in the same manner as described above. That is, a shell containing a compound containing a group 1 element, a compound containing a group 13 element, and a group 16 element or a compound containing a group 16 element added to the core semiconductor nanoparticle dispersion. Can be formed.
- the compound containing a Group 1 element is, for example, an organic salt, an inorganic salt, or an organometallic compound of the Group 1 element.
- Specific examples of the compound containing a Group 1 element include nitrates, acetates, sulfates, hydrochlorides, sulfonates, and acetylacetonato complexes, preferably organic salts such as acetates or organometallic compounds. is there. This is because organic salts and organometallic compounds have high solubility in organic solvents, and the reaction is more likely to proceed more uniformly.
- the contact between the core-shell type semiconductor nanoparticles and the specific modifier can be performed, for example, by mixing a dispersion of the core-shell type semiconductor nanoparticles and the specific modifier.
- the core-shell particles may be mixed with a liquid specific modifier.
- a solution may be used as the specific modifier.
- a dispersion of core-shell semiconductor nanoparticles can be obtained by mixing core-shell semiconductor nanoparticles and an appropriate organic solvent. Examples of the organic solvent used for dispersion include halogen solvents such as chloroform; aromatic hydrocarbon solvents such as toluene; aliphatic hydrocarbon solvents such as cyclohexane, hexane, pentane, and octane.
- a light-emitting device includes a light conversion member including semiconductor nanoparticles and / or core-shell type semiconductor nanoparticles, and a semiconductor light-emitting element.
- a part of the light emitted from the semiconductor light emitting element is absorbed by the semiconductor nanoparticles and / or core-shell type semiconductor nanoparticles, and light having a longer wavelength is emitted.
- the light from the semiconductor nanoparticles and / or core-shell type semiconductor nanoparticles and the remaining light emitted from the semiconductor light emitting element are mixed, and the mixed light can be used as light emission of the light emitting device.
- a semiconductor light emitting device that emits blue-violet light or blue light having a peak wavelength of about 400 nm or more and 490 nm or less is used, and the semiconductor nanoparticles and / or core-shell type semiconductor nanoparticles absorb yellow light and emit yellow light. If a light emitting device is used, a light emitting device that emits white light can be obtained. Alternatively, two types of semiconductor nanoparticles and / or core-shell type semiconductor nanoparticles that absorb blue light and emit green light and those that absorb blue light and emit red light can be used. A light emitting device can be obtained.
- a semiconductor light-emitting element that emits ultraviolet light having a peak wavelength of 400 nm or less is used, and three types of semiconductor nanoparticles and / or core-shell type semiconductor nanoparticles that absorb ultraviolet light and emit blue light, green light, and red light, respectively. Even when particles are used, a white light emitting device can be obtained. In this case, it is desirable that all light from the light emitting element is absorbed and converted by the semiconductor nanoparticles and / or core-shell type semiconductor nanoparticles so that ultraviolet rays emitted from the light emitting elements do not leak outside.
- the semiconductor nanoparticles and / or core-shell type semiconductor nanoparticles of the present embodiment may be used in combination with other semiconductor quantum dots, or phosphors that are not other semiconductor quantum dots (for example, organic phosphors or inorganic phosphors). ) May be used in combination.
- the other semiconductor quantum dots are, for example, the binary semiconductor quantum dots described in the background art section.
- a garnet phosphor such as an aluminum garnet can be used as garnet can be used. Examples of garnet phosphors include yttrium / aluminum / garnet phosphors activated with cerium and lutetium / aluminum / garnet phosphors activated with cerium.
- the light conversion member including the semiconductor nanoparticles and / or the core-shell type semiconductor nanoparticles may be, for example, a sheet or a plate-like member, or may be a member having a three-dimensional shape.
- a member having a three-dimensional shape is a surface-mounted light emitting diode, in which a semiconductor light emitting element is disposed on the bottom surface of a concave portion formed in a package, and the concave portion is used to seal the light emitting element. It is a sealing member formed by filling a resin.
- the light conversion member is a resin formed so as to surround the upper surface and the side surface of the semiconductor light emitting element with a substantially uniform thickness when the semiconductor light emitting element is disposed on a flat substrate. It is a member.
- still another example of the light conversion member is a case where a resin member including a reflective material is filled around the semiconductor light emitting element so that the upper end of the semiconductor light emitting element is flush with the semiconductor light emitting element. It is a resin member formed in a flat plate shape with a predetermined thickness on the upper part of the resin member including the semiconductor light emitting element and the reflector.
- the light conversion member may be in contact with the semiconductor light emitting element or may be provided apart from the semiconductor light emitting element.
- the light conversion member may be a pellet-shaped member, a sheet member, a plate-shaped member, or a rod-shaped member disposed away from the semiconductor light-emitting element, or a member provided in contact with the semiconductor light-emitting element, for example, ,
- the two or more types of semiconductor nanoparticles of the present disclosure or core-shell type semiconductor nanoparticles exhibiting light emission of different wavelengths are used in a light emitting device
- the two or more types of the present disclosure of the present disclosure are included in one light conversion member.
- Semiconductor nanoparticles and / or core-shell type semiconductor nanoparticles may be mixed, or two or more light conversion members containing only one type of quantum dot may be used in combination.
- the two or more types of light conversion members may have a laminated structure, or may be arranged as a dot or stripe pattern on a plane.
- the light emitting device is preferably incorporated into a liquid crystal display device as a light source. Since band edge emission by the semiconductor nanoparticles and / or core-shell type semiconductor nanoparticles of the present disclosure has a short emission lifetime, a light-emitting device using the same is a liquid crystal display device that requires a relatively fast response speed. Suitable for light source.
- the semiconductor nanoparticles and / or core-shell type semiconductor nanoparticles of the present disclosure may exhibit an emission peak with a small half-value width as band edge emission.
- a blue semiconductor light emitting element is used to obtain blue light having a peak wavelength in a range of 420 nm or more and 490 nm or less, and the semiconductor nanoparticle and / or core-shell type semiconductor nanoparticle of the present disclosure allows a peak wavelength to be 510 nm or more and 550 nm or less; Preferably obtaining green light in the range of 530 nm to 540 nm and red light having a peak wavelength in the range of 600 nm to 680 nm, preferably 630 nm to 650 nm; or -In a light emitting device, ultraviolet light having a peak wavelength of 400 nm or less is obtained by a semiconductor light emitting element, and a peak wavelength of 430 nm or more and 470 nm or less, preferably 440 nm or more and 460 nm or less is obtained by the semiconductor nanoparticles and / or core-shell type semiconductor nanoparticles of the present disclosure.
- a sheet, a plate-like member, or a rod made of a resin or glass containing the semiconductor nanoparticles and / or core-shell type semiconductor nanoparticles of the present disclosure is used as a light conversion member independent of the light emitting device in the liquid crystal display device. May be incorporated.
- Example 1 0.1402 mmol silver acetate (AgOAc), 0.1875 mmol indium acetate (In (OAc) 3 ), 0.047 mmol gallium acetate (Ga (OAc) 3 ) and 0.3744 mmol thiourea as sulfur source, .05 cm 3 of 1-dodecanethiol and 2.95 cm 3 of oleylamine were mixed and dispersed.
- the dispersion is put into a test tube together with a stirrer and replaced with nitrogen. Then, the contents in the test tube are stirred in a nitrogen atmosphere for 10 minutes at 150 ° C. as the first stage heat treatment, in the second stage.
- a heat treatment a heat treatment was performed at 250 ° C. for 10 minutes.
- Example 2 A semiconductor nanoparticle dispersion was obtained in the same manner as in Example 1 except that the raw material charge composition was changed as shown in Table 1.
- Example 4 0.125 mmol silver acetate (AgOAc), 0.0375 mmol acetylacetonate indium (In (CH 3 COCHCOCH 3 ) 3 ; In (AcAc) 3 ), 0.0875 mmol acetylacetonate gallium (Ga (CH 3 COCHCOCH 3) ) 3 ; Ga (AcAc) 3 ) and 0.25 mmol sulfur as a sulfur source were added to and dispersed in a mixture of 0.25 cm 3 1-dodecanethiol and 2.75 cm 3 oleylamine. The dispersion was put into a test tube together with a stirrer and replaced with nitrogen, and then a heat treatment was performed at 300 ° C. for 10 minutes while stirring the contents in the test tube in a nitrogen atmosphere. After the heat treatment, post-treatment was performed in the same manner as in Example 1 to obtain a semiconductor nanoparticle dispersion. Table 2 shows the raw material charge composition.
- Example 5 A semiconductor nanoparticle dispersion was obtained in the same manner as in Example 4 except that the raw material composition and heat treatment conditions were changed as shown in Table 2.
- Example 9 Preparation of Semiconductor Nanoparticle Core
- the raw material composition and heat treatment conditions were as shown in Table 2, and heat treatment was performed in the same manner as described above to obtain a semiconductor nanoparticle core dispersion.
- the sample was taken out from the heating source, allowed to cool to room temperature, centrifuged (radius 150 mm, 4000 rpm, 5 minutes), and separated into a supernatant portion and a precipitation portion. Thereafter, methanol was added to each to obtain a precipitate of core-shell type semiconductor nanoparticles, and then the solid component was recovered by centrifugation (radius 150 mm, 4000 rpm, 5 minutes). Further, ethanol was added and centrifuged in the same manner, and each was dispersed in chloroform and various measurements were performed.
- the average particle size of the particles coated with the shell was measured, it was 4.3 nm for the core-shell particles obtained from the precipitation, and 3.5 nm for the particles obtained from the supernatant. From the difference, the shell thicknesses were about 0.75 nm and 0.35 nm on average, respectively.
- the core-shell type semiconductor nanoparticle dispersion liquid obtained from the supernatant part was designated as Example 10
- the core-shell type semiconductor nanoparticle dispersion liquid obtained from the precipitation part was designated as Example 11.
- the dispersion is put in a test tube together with a stir bar, and after nitrogen replacement, the contents in the test tube are stirred at 150 ° C. for 10 minutes as a first stage heat treatment while stirring the contents in the test tube under a nitrogen atmosphere. Furthermore, it heated at 250 degreeC for 10 minute (s) as a 2nd heat processing. After the heat treatment, the obtained suspension was allowed to cool and then subjected to centrifugation (radius 146 mm, 4000 rpm, 5 minutes) to precipitate semiconductor nanoparticles.
- Comparative Example 1 the obtained precipitate was washed with methanol, and chloroform was added to the precipitate, followed by centrifugation (radius 146 mm, 4000 rpm, 15 minutes), and the supernatant was collected to obtain a semiconductor nanoparticle dispersion. It was.
- Comparative Example 3 and Comparative Example 2 methanol was added to the dispersion as a supernatant until precipitation of nanoparticles occurred, and centrifugation (radius 146 mm, 4000 rpm, 5 minutes) was performed to precipitate semiconductor nanoparticles. . The precipitate was taken out and dispersed in chloroform to obtain semiconductor nanoparticle dispersions.
- composition analysis With respect to the obtained semiconductor nanoparticles, when the total number of Ag, In, Ga, and S atoms contained in the semiconductor nanoparticles is set to 100 using a fluorescent X-ray analyzer, what is the ratio of each atom? It was calculated whether there was a Ga ratio calculated by Ga / (Ga + In), an Ag ratio calculated by Ag / (Ag + In + Ga), and an S ratio calculated by S / (Ag + In + Ga). The results are shown in Table 3.
- Average particle size While observing the shape of the obtained semiconductor nanoparticles, the average particle size was measured. The shape of the obtained particles was spherical or polygonal. The average particle size is shown in Table 3.
- the X-ray diffraction (XRD) pattern of the semiconductor nanoparticles obtained in Example 4 was measured and compared with tetragonal (chalcopyrite type) AgInS 2 and orthorhombic AgInS 2 .
- the measured XRD pattern is shown in FIG. From the XRD pattern, it was found that the crystal structure of the semiconductor nanoparticles of Example 4 was almost the same as that of tetragonal AgInS 2 .
- the XRD pattern was measured using a powder X-ray diffractometer (trade name SmartLab) manufactured by Rigaku Corporation.
- the semiconductor nanoparticles of the present embodiment exhibit band edge emission having an emission peak wavelength shorter than that of Comparative Example 3. Further, from the results of Examples 10 and 11, it can be seen that the emission wavelength of the band edge emission becomes shorter as the average particle size of the obtained semiconductor nanoparticles is smaller, even if the manufacturing method of the semiconductor nanoparticles is the same.
- Example 12 0.0833 mmol of silver acetate (AgOAc), 0.050 mmol of In (AcAc) 3 , 0.075 mmol of Ga (AcAc) 3 and 0.229 mmol of sulfur as the sulfur source with 0.25 cm 3 of 1-dodecanethiol 2.75 cm 3 of oleylamine mixture was added and dispersed. The dispersion was placed in a test tube together with a stirrer and replaced with nitrogen, and then a heat treatment was performed at 300 ° C. for 10 minutes while stirring the contents in the test tube in a nitrogen atmosphere.
- the resulting suspension was allowed to cool and then centrifuged (radius 146 mm, 4000 rpm, 5 minutes) to take out the dispersion as the supernatant. Methanol was added thereto until the precipitation of the semiconductor nanoparticles, and centrifugation (radius 146 mm, 4000 rpm, 5 minutes) was performed to precipitate the semiconductor nanoparticles. The precipitate was taken out and dispersed in chloroform to obtain a semiconductor nanoparticle dispersion.
- the sample was taken out from the heating source, allowed to cool to room temperature, centrifuged (radius 150 mm, 4000 rpm, 5 minutes), and separated into a supernatant portion and a precipitation portion. Thereafter, methanol was added to the supernatant to obtain a precipitate of core-shell type semiconductor nanoparticles, and then the solid component was recovered by centrifugation (radius 150 mm, 4000 rpm, 5 minutes). Further, ethanol was added and centrifuged in the same manner, and each was dispersed in chloroform and various measurements were performed. The average particle diameter of the particles coated with the shell was measured to be 4.7 nm. From the difference from the average particle diameter of the semiconductor nanoparticle core, the thickness of each shell was about 0.75 nm on average. .
- the obtained core-shell semiconductor nanoparticles were subjected to composition analysis and emission spectrum measurement in the same manner as described above.
- the evaluation results are shown in Table 4, and the emission spectrum is shown in FIG.
- Example 13 to 16 The amount of Li (Ga / Ac) 3 and thiourea was fixed at 5.33 ⁇ 10 ⁇ 5 mol, and the molar ratio of Li to Ga (Li / Ga) in the dispersion was determined as shown in the table below. Core-shell type semiconductor nanoparticles were produced in the same manner as in Example 12 except that the above was changed. The evaluation results are shown in Table 4, and the emission spectrum is shown in FIG.
- Example 17 to 18 The amount of lithium acetate and thiourea was fixed at 5.33 ⁇ 10 ⁇ 5 mol, and the molar ratio of Li to Ga (Li / Ga) in the dispersion was determined by adding Ga (AcAc) 3 as shown in the table below. Core-shell type semiconductor nanoparticles were produced in the same manner as in Example 12 except that the above was changed. The evaluation results are shown in Table 4, and the emission spectrum is shown in FIG.
- the shell contains Li, which is a Group 1 element, DAP emission, which is defective emission, is reduced, and the intensity of band edge emission is improved.
- Li is increased more than Ga, the emission wavelength of band edge emission shifts to a short wavelength.
- Example 19 To the dispersion of core-shell semiconductor nanoparticles obtained in Example 12, approximately the same volume of trioctylphosphine (TOP) was added under a nitrogen atmosphere. After shaking and mixing at room temperature for 10 minutes, the mixture was allowed to stand at room temperature for 20 hours under light shielding to obtain a dispersion of core-shell type semiconductor nanoparticles modified with TOP.
- TOP trioctylphosphine
- the emission spectrum was measured in the same manner as described above, and the internal quantum yield was measured.
- the internal quantum yield of the core-shell type semiconductor nanoparticles was 13.5%, whereas the internal quantum yield of the TOP-modified core-shell type semiconductor nanoparticles was 31.4%.
- the emission spectrum is shown in FIG.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Abstract
Description
第一の実施形態である半導体ナノ粒子は、銀(Ag)、インジウム(In)、ガリウム(Ga)および硫黄(S)を含む。半導体ナノ粒子は、InとGaの原子数の合計に対するGaの原子数の比(Ga/(Ga+In))が0.95以下である。半導体ナノ粒子は、光照射により500nm以上590nm未満の範囲に発光ピーク波長を有して発光し、発光スペクトルにおける発光ピークの半値幅が70nm以下である。また半導体ナノ粒子は、平均粒径が10nm以下である。
第二の実施形態に係る半導体ナノ粒子の製造方法は、銀塩と、インジウム塩と、ガリウム塩と、硫黄源と、有機溶媒とを含む混合物を準備することと、準備した混合物を熱処理することとを含む。好ましくは混合物として、酢酸銀と、アセチルアセトナートインジウムと、アセチルアセトナートガリウムと、硫黄源として硫黄またはチオ尿素と、有機溶媒とを含む混合物を準備する。
半導体ナノ粒子は、第一の実施形態に係る半導体ナノ粒子および第二の実施形態に係る製造方法により得られる半導体ナノ粒子の少なくとも一方をコアとして、コアよりもバンドギャップエネルギーが大きく、コアとヘテロ接合するシェルとを備えるコアシェル型半導体ナノ粒子とすることができる。半導体ナノ粒子はコアシェル構造を有することでより強いバンド端発光を示すことができる。
コアシェル型半導体ナノ粒子の製造方法は、半導体ナノ粒子を含む分散液を準備することと、半導体ナノ粒子の分散液に半導体原料を添加することとを含み、半導体ナノ粒子の表面に半導体層を形成することを含む製造方法である。半導体ナノ粒子をシェルで被覆するに際しては、これを適切な溶媒に分散させた分散液を調整し、当該分散液中でシェルとなる半導体層を形成する。半導体ナノ粒子が分散した液体においては、散乱光が生じないため、分散液は一般に透明(有色または無色)のものとして得られる。半導体ナノ粒子を分散させる溶媒は、半導体ナノ粒子を作製するときと同様、任意の有機溶媒(特に、エタノール等のアルコールなどの極性の高い有機溶媒)とすることができ、有機溶媒は、表面修飾剤、または表面修飾剤を含む溶液とすることができる。例えば、有機溶媒は、半導体ナノ粒子の製造方法に関連して説明した表面修飾剤である、炭素数4以上20以下の炭化水素基を有する含窒素化合物から選ばれる少なくとも1つとすることができ、あるいは、炭素数4以上20以下の炭化水素基を有する含硫黄化合物から選ばれる少なくとも1つとすることができ、あるいは炭素数4以上20以下の炭化水素基を有する含窒素化合物から選ばれる少なくとも1つと炭素数4以上20以下の炭化水素基を有する含硫黄化合物から選ばれる少なくとも1つとの組み合わせでとすることができる。含窒素化合物としては、特に、特に純度の高いものが入手しやすい点と沸点が290℃を超える点とから、n‐テトラデシルアミン、オレイルアミン等が好ましい。含硫黄化合物としては、ドデカンチオール等が好ましく挙げられる。具体的な有機溶媒としては、オレイルアミン、n‐テトラデシルアミン、ドデカンチオール、またはその組み合わせが挙げられる。
シェルとなる半導体の層の形成は、例えば、第13族元素を含む化合物と、第16族元素の単体または第16族元素を含む化合物とを、上記分散液に加えて実施する。
第三の実施形態に係る発光デバイスは、半導体ナノ粒子および/またはコアシェル型の半導体ナノ粒子を含む光変換部材および半導体発光素子を含む。この発光デバイスによれば、例えば、半導体発光素子からの発光の一部を、半導体ナノ粒子および/またはコアシェル型の半導体ナノ粒子が吸収してより長波長の光が発せられる。そして、半導体ナノ粒子および/またはコアシェル型の半導体ナノ粒子からの光と半導体発光素子からの発光の残部とが混合され、その混合光を発光デバイスの発光として利用できる。
- 青色半導体発光素子によりピーク波長が420nm以上490nm以下の範囲内にある青色光を得るようにし、本開示の半導体ナノ粒子および/またはコアシェル型の半導体ナノ粒子により、ピーク波長が510nm以上550nm以下、好ましくは530nm以上540nm以下の範囲内にある緑色光、およびピーク波長が600nm以上680nm以下、好ましくは630nm以上650nm以下の範囲内にある赤色光を得るようにする;または、
- 発光デバイスにおいて、半導体発光素子によりピーク波長400nm以下の紫外光を得るようにし、本開示の半導体ナノ粒子および/またはコアシェル型の半導体ナノ粒子によりピーク波長430nm以上470nm以下、好ましくは440nm以上460nm以下の範囲内にある青色光、ピーク波長が510nm以上550nm以下、好ましくは530nm以上540nm以下の緑色光、およびピーク波長が600nm以上680nm以下、好ましくは630nm以上650nm以下の範囲内にある赤色光を得るようにする;
以上によって、濃いカラーフィルターを用いることなく、色再現性の良い液晶表示装置が得られる。本実施形態の発光デバイスは、例えば、直下型のバックライトとして、またはエッジ型のバックライトとして用いられる。
0.1402mmolの酢酸銀(AgOAc)、0.1875mmolの酢酸インジウム(In(OAc)3)、0.047mmolの酢酸ガリウム(Ga(OAc)3)および硫黄源として0.3744mmolのチオ尿素を、0.05cm3の1-ドデカンチオールと2.95cm3のオレイルアミンの混合液に投入して分散させた。分散液を、撹拌子とともに試験管に入れ、窒素置換を行った後、窒素雰囲気下で、試験管内の内容物を撹拌しながら、第1段階の加熱処理として150℃で10分、第2段階の加熱処理として250℃で10分の加熱処理を実施した。加熱処理後、得られた懸濁液を放冷した後、遠心分離(半径146mm、4000rpm、5分間)に付し、上澄みである分散液を取り出した。これに半導体ナノ粒子の沈殿が生じるまでメタノールを加えて、遠心分離(半径146mm、4000rpm、5分間)に付し、半導体ナノ粒子を沈殿させた。沈殿物を取り出して、クロロホルムに分散させて半導体ナノ粒子分散液を得た。原料の仕込み組成を表1に示す。
原料の仕込み組成を表1に示すように変更したこと以外は、実施例1と同様にして半導体ナノ粒子分散液を得た。
0.125mmolの酢酸銀(AgOAc)、0.0375mmolのアセチルアセトナートインジウム(In(CH3COCHCOCH3)3;In(AcAc)3)、0.0875mmolのアセチルアセトナートガリウム(Ga(CH3COCHCOCH3)3;Ga(AcAc)3)および硫黄源として0.25mmolの硫黄を、0.25cm3の1-ドデカンチオールと2.75cm3のオレイルアミンの混合液に投入して分散させた。分散液を、撹拌子とともに試験管に入れ、窒素置換を行った後、窒素雰囲気下で、試験管内の内容物を撹拌しながら、300℃で10分の加熱処理を実施した。加熱処理後、実施例1と同様に後処理して半導体ナノ粒子分散液を得た。原料の仕込み組成を表2に示す。
原料の仕込み組成と熱処理条件を表2に示すように変更したこと以外は、実施例4と同様にして半導体ナノ粒子分散液を得た。
半導体ナノ粒子コアの作製
原料の仕込み組成と熱処理条件を表2に示すようにし、上記と同様に加熱処理して半導体ナノ粒子コア分散液を得た。
コアシェル型の半導体ナノ粒子の作製
実施例9で得た半導体ナノ粒子コアの分散液のうち、ナノ粒子としての物質量(粒子数)で1.0×10-5mmolを量りとり、試験管内で溶媒を蒸発させた。5.33×10-5molのGa(AcAc)3(19.3mg)とチオ尿素(2.75mg)を2.75mLのオレイルアミンと0.25mLのドデカンチオールの混合溶媒に分散させた分散液を得、これを窒素雰囲気下で300℃120分間撹拌した。加熱源から取り出し、常温まで放冷し、遠心分離(半径150mm、4000rpm、5分間)し、上澄み部分と沈殿部分とに分けた。その後、それぞれにメタノールを加えて、コアシェル型半導体ナノ粒子の析出物を得た後、遠心分離(半径150mm、4000rpm、5分間)により固体成分を回収した。さらにエタノールを加えて同様に遠心分離し、それぞれをクロロホルムに分散し、各種測定を行った。また、シェルで被覆された粒子の平均粒径を測定したところ、沈殿から得たコアシェル粒子で4.3nm、上澄みから得た粒子で3.5nmであり、半導体ナノ粒子コアの平均粒径との差からシェルの厚さはそれぞれ平均で約0.75nmおよび0.35nmであった。以下では、上澄み部分から得られたコアシェル型半導体ナノ粒子分散液を実施例10とし、沈殿部分から得られたコアシェル型半導体ナノ粒子分散液を実施例11とした。
酢酸銀(AgOAc)および酢酸インジウム(In(OAc)3)を、Ag/Ag+Inがそれぞれ0.3(比較例1)、0.4(比較例3)、および0.5(比較例2)となり、かつ2つの金属塩を合わせた量が0.25mmolとなるように量り取った。酢酸銀(AgOAc)、酢酸インジウム(In(OAc)3)、および0.25mmolのチオ尿素を、0.10cm3のオレイルアミンと2.90cm3の1-ドデカンチオールの混合液に投入し、分散させた。分散液を、撹拌子とともに試験管に入れ、窒素置換を行った後、窒素雰囲気下で、試験管内の内容物を撹拌しながら、第1段階の加熱処理として150℃にて10分間加熱し、さらに第2段階の加熱処理として250℃にて10分間加熱した。加熱処理後、得られた懸濁液を放冷した後、遠心分離(半径146mm、4000rpm、5分間)に付して半導体ナノ粒子を沈殿させた。
得られた半導体ナノ粒子ついて、蛍光X線分析装置を用いて、半導体ナノ粒子に含まれるAg、In、GaおよびSの原子数を合わせて100としたときに、各原子の割合がどれだけであるかを求め、Ga/(Ga+In)で算出されるGa比、Ag/(Ag+In+Ga)で算出されるAg比およびS/(Ag+In+Ga)で算出されるS比をそれぞれ算出した。結果を表3に示す。
得られた半導体ナノ粒子の形状を観察するとともに、平均粒径を測定した。得られた粒子の形状は、球状もしくは多角形状であった。平均粒径を表3に示す。
得られた半導体ナノ粒子について、吸収および発光スペクトルを測定した。吸収スペクトルは、ダイオードアレイ式分光光度計(アジレントテクノロジー社製、商品名Agilent 8453A)を用いて、波長を190nm以上1100nm以下として測定した。発光スペクトルは、マルチチャンネル分光器(浜松ホトニクス社製、商品名PMA11)を用いて、励起波長365nmにて測定した。実施例3、4、6および比較例3の発光スペクトルを図1に、吸収スペクトルを図2に示す。実施例10および11の発光スペクトルを図4に、吸収スペクトルを図5に示す。各発光スペクトルにて観察された急峻な発光ピークの発光ピーク波長(バンド端発光)および半値幅を表3に示す。またDAP(ドナーアクセプタ対)遷移の発光ピーク強度に対するバンド端発光強度の比(Bandedge/DAP)を求めた。
実施例4で得られた半導体ナノ粒子についてX線回折(XRD)パターンを測定し、正方晶(カルコパイライト型)のAgInS2、および斜方晶のAgInS2と比較した。測定したXRDパターンを図3に示す。XRDパターンより、実施例4の半導体ナノ粒子の結晶構造は、正方晶のAgInS2とほぼ同じ構造であることがわかった。XRDパターンは、リガク社製の粉末X線回折装置(商品名SmartLab)を用いて測定した。
0.0833mmolの酢酸銀(AgOAc)、0.050mmolのIn(AcAc)3、0.075mmolのGa(AcAc)3および硫黄源として0.229mmolの硫黄を、0.25cm3の1-ドデカンチオールと2.75cm3のオレイルアミンの混合液に投入して分散させた。分散液を、撹拌子とともに試験管に入れ、窒素置換を行った後、窒素雰囲気下で、試験管内の内容物を撹拌しながら、300℃で10分加熱処理を実施した。加熱処理後、得られた懸濁液を放冷した後、遠心分離(半径146mm、4000rpm、5分間)に付し、上澄みである分散液を取り出した。これに半導体ナノ粒子の沈殿が生じるまでメタノールを加えて、遠心分離(半径146mm、4000rpm、5分間)に付し、半導体ナノ粒子を沈殿させた。沈殿物を取り出して、クロロホルムに分散させて半導体ナノ粒子分散液を得た。
上記で得られた半導体ナノ粒子コアの分散液のうち、ナノ粒子としての物質量(粒子数)で1.0×10-5mmolを量りとり、試験管内で溶媒を蒸発させた。5.33×10-5molのGa(AcAc)3と、5.33×10-5molのチオ尿素と、2.67×10-5molの酢酸リチウムと、3.0mLのオレイルアミンとを加えて分散させた分散液を得た。分散液中のGaに対するLiのモル比(Li/Ga)は、1/2であった。次いで分散液を窒素雰囲気下で300℃、15分間撹拌した。加熱源から取り出し、常温まで放冷し、遠心分離(半径150mm、4000rpm、5分間)し、上澄み部分と沈殿部分とに分けた。その後、上澄み部分にメタノールを加えて、コアシェル型半導体ナノ粒子の析出物を得た後、遠心分離(半径150mm、4000rpm、5分間)により固体成分を回収した。さらにエタノールを加えて同様に遠心分離し、それぞれをクロロホルムに分散し、各種測定を行った。また、シェルで被覆された粒子の平均粒径を測定したところ、4.7nmであり、半導体ナノ粒子コアの平均粒径との差からシェルの厚さはそれぞれ平均で約0.75nmであった。
Ga(AcAc)3とチオ尿素量を5.33×10-5molと固定し、分散液中のGaに対するLiのモル比(Li/Ga)を、下表に示すように酢酸リチウムの添加量を変更したこと以外は実施例12と同様にして、コアシェル型半導体ナノ粒子を作製した。評価結果を表4に、発光スペクトルを図6に示す。
酢酸リチウムとチオ尿素量を5.33×10-5molと固定し、分散液中のGaに対するLiのモル比(Li/Ga)を、下表に示すようにGa(AcAc)3の添加量を変更したこと以外は実施例12と同様にして、コアシェル型半導体ナノ粒子を作製した。評価結果を表4に、発光スペクトルを図7に示す。
実施例12で得られたコアシェル型半導体ナノ粒子の分散液に対して、窒素雰囲気下で、ほぼ同体積のトリオクチルホスフィン(TOP)を加えた。室温で10分振り混ぜた後、遮光下に室温で20時間静置し、TOP修飾されたコアシェル型半導体ナノ粒子の分散液を得た。
Claims (16)
- Ag、In、GaおよびSを含み、
InとGaの原子数の合計に対するGaの原子数の比が0.95以下であり、
500nm以上590nm未満の範囲に発光ピーク波長を有し、発光ピークの半値幅が70nm以下である光を発し、平均粒径が10nm以下である半導体ナノ粒子。 - 前記InとGaの原子数の合計に対するGaの原子数の比が0.2以上0.9以下である、請求項1に記載の半導体ナノ粒子。
- 前記AgとInとGaの原子数の合計に対するAgの原子数の比が0.05以上0.55以下である、請求項1または2に記載の半導体ナノ粒子。
- 前記AgとInとGaの原子数の合計に対するAgの原子数の比が0.3以上0.55以下であって、
前記InとGaの原子数の合計に対するGaの原子数の比が0.5以上0.9以下である、請求項1に記載の半導体ナノ粒子。 - 前記AgとInとGaの原子数の合計に対するAgの原子数の比が0.05以上0.27以下であって、
前記InとGaの原子数の合計に対するGaの原子数の比が0.25以上0.75以下である、請求項1に記載の半導体ナノ粒子。 - 請求項1から5のいずれか1項に記載の半導体ナノ粒子を含むコアと、
前記コアの表面に配置され、実質的に第13族元素および第16族元素からなる半導体材料を含むシェルと、を備え、
光照射により発光する、コアシェル型の半導体ナノ粒子。 - 請求項1から5のいずれか1項に記載の半導体ナノ粒子を含むコアと、
前記コアの表面に配置され、実質的に第1族元素、第13族元素および第16族元素からなる半導体材料を含むシェルと、を備え、
光照射により発光する、コアシェル型の半導体ナノ粒子。 - 前記シェルが、前記第13族元素としてGaを含む請求項6または7に記載の半導体ナノ粒子。
- 前記シェルが、前記第16族元素としてSを含む請求項6から8のいずれか1項に記載の半導体ナノ粒子。
- 前記シェル表面に、負の酸化数を有するPを少なくとも含む第15族元素を含む化合物が配置される請求項6から9のいずれか1項に記載の半導体ナノ粒子。
- 酢酸銀と、アセチルアセトナートインジウムと、アセチルアセトナートガリウムと、硫黄源と、有機溶媒とを含む混合物を準備することと、
前記混合物を熱処理することと、
を含む、半導体ナノ粒子の製造方法。 - 前記混合物の熱処理を、290℃以上310℃以下の温度で、5分間以上行うことを含む、請求項11に記載の製造方法。
- 前記有機溶媒が、炭素数4以上20以下の炭化水素基を有するチオールから選択される少なくとも1種と、炭素数4以上20以下の炭化水素基を有するアミンから選択される少なくとも1種とを含む、請求項11または12に記載の製造方法。
- 前記硫黄源が、硫黄単体である請求項11から13のいずれか1項に記載の製造方法。
- 請求項1から10のいずれか1項に記載の半導体ナノ粒子を含む光変換部材と、半導体発光素子とを備える、発光デバイス。
- 前記半導体発光素子はLEDチップである、請求項15に記載の発光デバイス。
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211302803.3A CN115612484B (zh) | 2017-02-28 | 2018-02-28 | 半导体纳米粒子及其制造方法、以及发光器件 |
US16/489,214 US11101413B2 (en) | 2017-02-28 | 2018-02-28 | Semiconductor nanoparticles, method of producing the semiconductor nanoparticles, and light-emitting device |
BR112019017412-5A BR112019017412B1 (pt) | 2017-02-28 | 2018-02-28 | Nanopartículas semicondutoras, método para produção de nanopartículas semicondutoras, e, dispositivo emissor de luz |
EP23175060.5A EP4235825A3 (en) | 2017-02-28 | 2018-02-28 | Semiconductor nanoparticle, method for producing same, and light-emitting device |
EP18761910.1A EP3591026B1 (en) | 2017-02-28 | 2018-02-28 | Semiconductor nanoparticle, method for producing same, and light-emitting device |
CN202211303175.0A CN115717065A (zh) | 2017-02-28 | 2018-02-28 | 半导体纳米粒子及其制造方法、以及发光器件 |
KR1020197027233A KR102495692B1 (ko) | 2017-02-28 | 2018-02-28 | 반도체 나노 입자 및 그 제조 방법 및 발광 디바이스 |
AU2018227186A AU2018227186B2 (en) | 2017-02-28 | 2018-02-28 | Semiconductor nanoparticles, method of producing the semiconductor nanoparticles, and light-emitting device |
CN201880014289.9A CN110337481B (zh) | 2017-02-28 | 2018-02-28 | 半导体纳米粒子及其制造方法、以及发光器件 |
KR1020237003589A KR102604186B1 (ko) | 2017-02-28 | 2018-02-28 | 반도체 나노 입자 및 그 제조 방법 및 발광 디바이스 |
KR1020237039182A KR20230163570A (ko) | 2017-02-28 | 2018-02-28 | 반도체 나노 입자 및 그 제조 방법 및 발광 디바이스 |
CA3054413A CA3054413A1 (en) | 2017-02-28 | 2018-02-28 | Semiconductor nanoparticles, method of producing the semiconductor nanoparticles, and light-emitting device |
US17/305,808 US11652194B2 (en) | 2017-02-28 | 2021-07-14 | Semiconductor nanoparticles, method of producing the semiconductor nanoparticles, and light-emitting device |
AU2022291457A AU2022291457A1 (en) | 2017-02-28 | 2022-12-20 | Semiconductor nanoparticles, method of producing the semiconductor nanoparticles, and light-emitting device |
US18/191,829 US12040433B2 (en) | 2017-02-28 | 2023-03-28 | Semiconductor nanoparticles, method of producing the semiconductor nanoparticles, and light-emitting device |
US18/735,999 US20240332462A1 (en) | 2017-02-28 | 2024-06-06 | Semiconductor nanoparticles, method of producing the semiconductor nanoparticles, and light-emitting device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017037477 | 2017-02-28 | ||
JP2017-037477 | 2017-02-28 | ||
JP2018-025251 | 2018-02-15 | ||
JP2018025251A JP7070826B2 (ja) | 2017-02-28 | 2018-02-15 | 半導体ナノ粒子およびその製造方法ならびに発光デバイス |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/489,214 A-371-Of-International US11101413B2 (en) | 2017-02-28 | 2018-02-28 | Semiconductor nanoparticles, method of producing the semiconductor nanoparticles, and light-emitting device |
US17/305,808 Continuation US11652194B2 (en) | 2017-02-28 | 2021-07-14 | Semiconductor nanoparticles, method of producing the semiconductor nanoparticles, and light-emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159699A1 true WO2018159699A1 (ja) | 2018-09-07 |
Family
ID=63370333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007580 WO2018159699A1 (ja) | 2017-02-28 | 2018-02-28 | 半導体ナノ粒子およびその製造方法ならびに発光デバイス |
Country Status (7)
Country | Link |
---|---|
US (2) | US12040433B2 (ja) |
EP (1) | EP4235825A3 (ja) |
JP (2) | JP7308433B2 (ja) |
KR (2) | KR102604186B1 (ja) |
CN (2) | CN115612484B (ja) |
AU (1) | AU2022291457A1 (ja) |
WO (1) | WO2018159699A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019160093A1 (ja) * | 2018-02-15 | 2019-08-22 | 国立大学法人大阪大学 | コアシェル型半導体ナノ粒子、その製造方法および発光デバイス |
WO2019160094A1 (ja) * | 2018-02-15 | 2019-08-22 | 国立大学法人大阪大学 | 半導体ナノ粒子、その製造方法および発光デバイス |
US10927294B2 (en) | 2019-06-20 | 2021-02-23 | Nanosys, Inc. | Bright silver based quaternary nanostructures |
WO2021039290A1 (ja) | 2019-08-23 | 2021-03-04 | Nsマテリアルズ株式会社 | 量子ドット、及び、その製造方法 |
WO2021182412A1 (ja) | 2020-03-09 | 2021-09-16 | 国立大学法人東海国立大学機構 | 発光材料及びその製造方法 |
CN113474291A (zh) * | 2019-02-08 | 2021-10-01 | 国立大学法人东海国立大学机构 | 半导体纳米粒子及其制造方法 |
US11360250B1 (en) | 2021-04-01 | 2022-06-14 | Nanosys, Inc. | Stable AIGS films |
WO2022138905A1 (ja) | 2020-12-25 | 2022-06-30 | Nsマテリアルズ株式会社 | 量子ドットの製造方法、及び、量子ドット |
US11407940B2 (en) | 2020-12-22 | 2022-08-09 | Nanosys, Inc. | Films comprising bright silver based quaternary nanostructures |
WO2022176088A1 (ja) * | 2021-02-18 | 2022-08-25 | シャープ株式会社 | 電界発光素子 |
WO2022191032A1 (ja) | 2021-03-08 | 2022-09-15 | 国立大学法人東海国立大学機構 | 半導体ナノ粒子の製造方法、半導体ナノ粒子及び発光デバイス |
JP2022136954A (ja) * | 2021-03-08 | 2022-09-21 | 国立大学法人東海国立大学機構 | 半導体ナノ粒子の製造方法及び発光デバイス |
CN115244154A (zh) * | 2020-03-09 | 2022-10-25 | 国立大学法人东海国立大学机构 | 半导体纳米粒子的制造方法 |
WO2023157640A1 (ja) * | 2022-02-17 | 2023-08-24 | 国立大学法人大阪大学 | 半導体ナノ粒子及びその製造方法 |
US11926776B2 (en) | 2020-12-22 | 2024-03-12 | Shoei Chemical Inc. | Films comprising bright silver based quaternary nanostructures |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007169605A (ja) * | 2005-11-24 | 2007-07-05 | National Institute Of Advanced Industrial & Technology | 蛍光体、及びその製造方法 |
JP2010177656A (ja) | 2009-02-02 | 2010-08-12 | Samsung Electronics Co Ltd | 発光ダイオードユニット及びこれを含む表示装置 |
JP2011178645A (ja) * | 2010-03-04 | 2011-09-15 | Idec Corp | 半導体ナノ粒子及びその製造方法 |
CN102212363A (zh) * | 2011-04-15 | 2011-10-12 | 吉林大学 | 一种核壳结构量子点的制备方法 |
JP2012212862A (ja) | 2011-03-24 | 2012-11-01 | Sumitomo Metal Mining Co Ltd | 白色led用積層体、及び白色led |
JP2016521232A (ja) * | 2013-03-04 | 2016-07-21 | ナノコ テクノロジーズ リミテッド | 薄膜ソーラーセル用の銅−インジウム−ガリウム−カルコゲナイド・ナノ粒子前駆体 |
JP2017014476A (ja) | 2015-07-03 | 2017-01-19 | 国立大学法人名古屋大学 | テルル化合物ナノ粒子および複合ナノ粒子とそれらの製造方法 |
JP2017025201A (ja) | 2015-07-22 | 2017-02-02 | 国立大学法人名古屋大学 | 半導体ナノ粒子およびその製造方法 |
JP2017037477A (ja) | 2015-08-10 | 2017-02-16 | 株式会社リクルートホールディングス | 待ち時間推定システムおよび待ち時間推定方法 |
JP2018025251A (ja) | 2016-08-10 | 2018-02-15 | 東洋ゴム工業株式会社 | ガスホルダ用シール材 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100810730B1 (ko) * | 2006-06-19 | 2008-03-07 | (주)인솔라텍 | 태양전지용 광흡수층의 제조방법 |
KR100857227B1 (ko) * | 2007-03-13 | 2008-09-05 | (주)인솔라텍 | 단일 유기금속 화학기상 증착 공정에 의한 ⅰ-ⅲ-ⅵ2화합물 박막의 제조방법 |
WO2012168192A2 (en) * | 2011-06-07 | 2012-12-13 | Bayer Intellectual Property Gmbh | Synthesis of highly fluorescing semiconducting core-shell nanoparticles based on ib, iib, iiia, via elements of the periodic classification. |
CN103582690B (zh) * | 2011-06-07 | 2016-05-25 | 拜耳技术工程(上海)有限公司 | 一种制备核壳纳米粒子及其溶液的方法 |
US20150162468A1 (en) | 2013-12-06 | 2015-06-11 | Nanoco Technologies Ltd. | Core-Shell Nanoparticles for Photovoltaic Absorber Films |
JP6255651B2 (ja) * | 2014-03-07 | 2018-01-10 | 富士フイルム株式会社 | 薄膜トランジスタ |
JP6100831B2 (ja) | 2015-05-26 | 2017-03-22 | シャープ株式会社 | 発光装置および画像表示装置 |
JP7070826B2 (ja) | 2017-02-28 | 2022-05-18 | 国立大学法人東海国立大学機構 | 半導体ナノ粒子およびその製造方法ならびに発光デバイス |
-
2018
- 2018-02-28 CN CN202211302803.3A patent/CN115612484B/zh active Active
- 2018-02-28 CN CN202211303175.0A patent/CN115717065A/zh active Pending
- 2018-02-28 KR KR1020237003589A patent/KR102604186B1/ko active IP Right Grant
- 2018-02-28 WO PCT/JP2018/007580 patent/WO2018159699A1/ja active Application Filing
- 2018-02-28 KR KR1020237039182A patent/KR20230163570A/ko not_active Application Discontinuation
- 2018-02-28 EP EP23175060.5A patent/EP4235825A3/en active Pending
-
2022
- 2022-04-19 JP JP2022068779A patent/JP7308433B2/ja active Active
- 2022-12-20 AU AU2022291457A patent/AU2022291457A1/en active Pending
-
2023
- 2023-03-28 US US18/191,829 patent/US12040433B2/en active Active
- 2023-06-21 JP JP2023101661A patent/JP2023145429A/ja active Pending
-
2024
- 2024-06-06 US US18/735,999 patent/US20240332462A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007169605A (ja) * | 2005-11-24 | 2007-07-05 | National Institute Of Advanced Industrial & Technology | 蛍光体、及びその製造方法 |
JP2010177656A (ja) | 2009-02-02 | 2010-08-12 | Samsung Electronics Co Ltd | 発光ダイオードユニット及びこれを含む表示装置 |
JP2011178645A (ja) * | 2010-03-04 | 2011-09-15 | Idec Corp | 半導体ナノ粒子及びその製造方法 |
JP2012212862A (ja) | 2011-03-24 | 2012-11-01 | Sumitomo Metal Mining Co Ltd | 白色led用積層体、及び白色led |
CN102212363A (zh) * | 2011-04-15 | 2011-10-12 | 吉林大学 | 一种核壳结构量子点的制备方法 |
JP2016521232A (ja) * | 2013-03-04 | 2016-07-21 | ナノコ テクノロジーズ リミテッド | 薄膜ソーラーセル用の銅−インジウム−ガリウム−カルコゲナイド・ナノ粒子前駆体 |
JP2017014476A (ja) | 2015-07-03 | 2017-01-19 | 国立大学法人名古屋大学 | テルル化合物ナノ粒子および複合ナノ粒子とそれらの製造方法 |
JP2017025201A (ja) | 2015-07-22 | 2017-02-02 | 国立大学法人名古屋大学 | 半導体ナノ粒子およびその製造方法 |
JP2017037477A (ja) | 2015-08-10 | 2017-02-16 | 株式会社リクルートホールディングス | 待ち時間推定システムおよび待ち時間推定方法 |
JP2018025251A (ja) | 2016-08-10 | 2018-02-15 | 東洋ゴム工業株式会社 | ガスホルダ用シール材 |
Non-Patent Citations (4)
Title |
---|
KUWABATA, S. ET AL.: "Synthesis of New Fluorecent Semiconductor Nanoparticles and Their Opitical Uses", ECS TRANSACTIONS, vol. 45, no. 5, 2012, pages 131 - 137, XP055539862 * |
TSUCHII, TOSHIHIRO ET AL.: "Optical characteristics of Ag (GaxIn1-x) S2", LECTURE PROCEEDINGS OF FLUORESCENT SUBSTANCE SOCIETY, vol. 327, 2009, pages 7, XP009517127 * |
TSUCHII, TOSHIHIRO ET AL.: "Review about synthesis and durability of AgGaxIn1-xS2 of quantum dot- fluorescent substance", LECTURE ABSTRACTS OF SOLID AND SURFACE PHOTOCHEMISTRY SYMPOSIUM, vol. 28, 2009, pages 59 - 60, XP009516646 * |
UEMATSU, T. ET AL.: "Preparation of Luminescent AglnS2- AgGaS2 Solid solution Nanoparticles and Their Opitical Properties", J. PHYS. CHEM. LETT., vol. 1, 2010, pages 3283 - 3287, XP055539875 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019160093A1 (ja) * | 2018-02-15 | 2019-08-22 | 国立大学法人大阪大学 | コアシェル型半導体ナノ粒子、その製造方法および発光デバイス |
WO2019160094A1 (ja) * | 2018-02-15 | 2019-08-22 | 国立大学法人大阪大学 | 半導体ナノ粒子、その製造方法および発光デバイス |
US11532767B2 (en) | 2018-02-15 | 2022-12-20 | Osaka University | Semiconductor nanoparticles, production method thereof, and light-emitting device |
US12074253B2 (en) | 2018-02-15 | 2024-08-27 | Osaka University | Semiconductor nanoparticles, production method thereof, and light-emitting device |
CN113474291B (zh) * | 2019-02-08 | 2023-07-18 | 国立大学法人东海国立大学机构 | 半导体纳米粒子及其制造方法 |
CN113474291A (zh) * | 2019-02-08 | 2021-10-01 | 国立大学法人东海国立大学机构 | 半导体纳米粒子及其制造方法 |
US10927294B2 (en) | 2019-06-20 | 2021-02-23 | Nanosys, Inc. | Bright silver based quaternary nanostructures |
US11970646B2 (en) | 2019-06-20 | 2024-04-30 | Shoei Chemical Inc. | Bright silver based quaternary nanostructures |
KR20240124431A (ko) | 2019-08-23 | 2024-08-16 | 엔에스 마테리얼스 아이엔씨. | 양자점, 및, 그 제조 방법 |
KR20210027276A (ko) | 2019-08-23 | 2021-03-10 | 엔에스 마테리얼스 아이엔씨. | 양자점, 및, 그 제조 방법 |
WO2021039290A1 (ja) | 2019-08-23 | 2021-03-04 | Nsマテリアルズ株式会社 | 量子ドット、及び、その製造方法 |
US11834596B2 (en) | 2019-08-23 | 2023-12-05 | Ns Materials Inc. | Quantum dot and method for producing the same |
WO2021182412A1 (ja) | 2020-03-09 | 2021-09-16 | 国立大学法人東海国立大学機構 | 発光材料及びその製造方法 |
CN115244154B (zh) * | 2020-03-09 | 2023-12-19 | 国立大学法人东海国立大学机构 | 半导体纳米粒子的制造方法 |
CN115244154A (zh) * | 2020-03-09 | 2022-10-25 | 国立大学法人东海国立大学机构 | 半导体纳米粒子的制造方法 |
US11407940B2 (en) | 2020-12-22 | 2022-08-09 | Nanosys, Inc. | Films comprising bright silver based quaternary nanostructures |
US11926776B2 (en) | 2020-12-22 | 2024-03-12 | Shoei Chemical Inc. | Films comprising bright silver based quaternary nanostructures |
KR20230125272A (ko) | 2020-12-25 | 2023-08-29 | 엔에스 마테리얼스 아이엔씨. | 양자점의 제조 방법, 및, 양자점 |
WO2022138905A1 (ja) | 2020-12-25 | 2022-06-30 | Nsマテリアルズ株式会社 | 量子ドットの製造方法、及び、量子ドット |
WO2022176088A1 (ja) * | 2021-02-18 | 2022-08-25 | シャープ株式会社 | 電界発光素子 |
JP7316618B2 (ja) | 2021-03-08 | 2023-07-28 | 国立大学法人東海国立大学機構 | 半導体ナノ粒子の製造方法及び発光デバイス |
JP2022136954A (ja) * | 2021-03-08 | 2022-09-21 | 国立大学法人東海国立大学機構 | 半導体ナノ粒子の製造方法及び発光デバイス |
WO2022191032A1 (ja) | 2021-03-08 | 2022-09-15 | 国立大学法人東海国立大学機構 | 半導体ナノ粒子の製造方法、半導体ナノ粒子及び発光デバイス |
US11360250B1 (en) | 2021-04-01 | 2022-06-14 | Nanosys, Inc. | Stable AIGS films |
WO2023157640A1 (ja) * | 2022-02-17 | 2023-08-24 | 国立大学法人大阪大学 | 半導体ナノ粒子及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US12040433B2 (en) | 2024-07-16 |
KR20230020589A (ko) | 2023-02-10 |
US20240332462A1 (en) | 2024-10-03 |
JP7308433B2 (ja) | 2023-07-14 |
KR20230163570A (ko) | 2023-11-30 |
EP4235825A2 (en) | 2023-08-30 |
CN115717065A (zh) | 2023-02-28 |
KR102604186B1 (ko) | 2023-11-20 |
JP2022115866A (ja) | 2022-08-09 |
JP2023145429A (ja) | 2023-10-11 |
AU2022291457A1 (en) | 2023-02-02 |
US20230253533A1 (en) | 2023-08-10 |
EP4235825A3 (en) | 2023-10-25 |
CN115612484A (zh) | 2023-01-17 |
CN115612484B (zh) | 2024-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7070826B2 (ja) | 半導体ナノ粒子およびその製造方法ならびに発光デバイス | |
JP7308433B2 (ja) | 半導体ナノ粒子およびその製造方法ならびに発光デバイス | |
JP6293710B2 (ja) | 半導体ナノ粒子およびその製造方法 | |
JP2019085575A (ja) | 半導体ナノ粒子およびその製造方法 | |
JP7214707B2 (ja) | 半導体ナノ粒子、その製造方法および発光デバイス | |
JP7307046B2 (ja) | コアシェル型半導体ナノ粒子、その製造方法および発光デバイス | |
JP7319402B2 (ja) | 半導体ナノ粒子、その製造方法及び発光デバイス | |
WO2020162622A1 (ja) | 半導体ナノ粒子及びその製造方法 | |
JP2019070158A (ja) | 半導体ナノ粒子および半導体ナノ粒子の製造方法ならびに発光デバイス | |
JP7456591B2 (ja) | 半導体ナノ粒子及びその製造方法、並びに発光デバイス | |
JP7005470B2 (ja) | 半導体ナノ粒子、その製造方法及び発光デバイス | |
WO2021039727A1 (ja) | 半導体ナノ粒子及びその製造方法並びに発光デバイス | |
WO2022215376A1 (ja) | 半導体ナノ粒子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18761910 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 122022020578 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 3054413 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019017412 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2018227186 Country of ref document: AU Date of ref document: 20180228 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197027233 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018761910 Country of ref document: EP Effective date: 20190930 |
|
ENP | Entry into the national phase |
Ref document number: 112019017412 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190821 |