WO2022176088A1 - 電界発光素子 - Google Patents

電界発光素子 Download PDF

Info

Publication number
WO2022176088A1
WO2022176088A1 PCT/JP2021/006043 JP2021006043W WO2022176088A1 WO 2022176088 A1 WO2022176088 A1 WO 2022176088A1 JP 2021006043 W JP2021006043 W JP 2021006043W WO 2022176088 A1 WO2022176088 A1 WO 2022176088A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
olam
quantum yield
light
solution
Prior art date
Application number
PCT/JP2021/006043
Other languages
English (en)
French (fr)
Inventor
一輝 後藤
裕介 榊原
裕真 矢口
圭輔 北野
真樹 山本
惣一朗 荷方
曜子 道脇
佑子 小椋
ヴィート カロセク
章雄 三島
Original Assignee
シャープ株式会社
Nsマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, Nsマテリアルズ株式会社 filed Critical シャープ株式会社
Priority to US18/276,026 priority Critical patent/US20240107792A1/en
Priority to PCT/JP2021/006043 priority patent/WO2022176088A1/ja
Publication of WO2022176088A1 publication Critical patent/WO2022176088A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • C09K11/582Chalcogenides
    • C09K11/584Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Definitions

  • the present disclosure relates to electroluminescent devices containing quantum dots that do not contain cadmium.
  • Cd-based quantum dots containing cadmium are generally used.
  • Quantum dots containing Cd have the advantages of high fluorescence quantum yield and narrow fluorescence half width.
  • Cd is internationally regulated due to the problem of environmental impact, and there are high barriers to practical use.
  • Patent Documents 1 to 5 and Non-Patent Documents 1 and 2 AIS-based quantum dots containing Ag (silver), In (indium), and S (sulfur) as Cd-free chalcopyrite-based quantum dots, Alternatively, AIGS-based quantum dots containing Ag, In, and Ga (gallium) are disclosed.
  • any quantum dot has performance that should be an alternative to Cd-based quantum dots from the viewpoint of fluorescence half-value width and fluorescence quantum yield. has not reached
  • An object of the present disclosure is to provide an electroluminescent device containing quantum dots.
  • an electroluminescent device includes an anode, a cathode, and a quantum dot light-emitting layer containing quantum dots provided between the anode and the cathode, and the quantum dots are AgIn x Ga 1-x S y Se 1-y system or ZnAgIn x Ga 1-x Sy Se 1-y system (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) is a Cd-free quantum dot, and exhibits fluorescence characteristics such as a fluorescence half width of 45 nm or less and a fluorescence quantum yield of 35% or more in the green to red wavelength range.
  • an electroluminescent device includes Cd-free chalcopyrite-based quantum dots that have a narrow fluorescence half-width and a high fluorescence quantum yield in the green to red wavelength range. can do.
  • FIG. 1 is a cross-sectional view schematically showing a schematic configuration of a light emitting device according to Embodiment 1.
  • FIG. 1 is a schematic diagram showing an example of a QD according to Embodiment 1.
  • FIG. 4 is a schematic diagram showing another example of QDs according to Embodiment 1.
  • FIG. 4 is a graph showing the normalized luminescence luminance of samples (1) to (4) in Example 1 at 0.03 to 75 mA/cm 2 .
  • 4 is a fluorescence (PL: photoluminescence) spectrum of the AgInGaS-based QD finally obtained in Example 2.
  • FIG. 4 is a fluorescence (PL) spectrum of the AgInGaS-based QD finally obtained in Example 3.
  • FIG. 4 is a fluorescence (PL) spectrum of the AgInGaS-based QD finally obtained in Example 4.
  • FIG. 4 is a fluorescence (PL) spectrum of the AgInGaS-based QD finally obtained in Example 5.
  • FIG. FIG. 10 is a fluorescence (PL) spectrum of the AgInGaS-based QD finally obtained in Example 6.
  • FIG. 10 is a fluorescence (PL) spectrum of the AgInGaS-based QD finally obtained in Example 7.
  • FIG. 10 is a fluorescence (PL) spectrum of the AgInGaS-based QD finally obtained in Example 8.
  • FIG. 10 is a fluorescence (PL) spectrum of the AgInGaS-based QD finally obtained in Example 12.
  • FIG. 10 is a PL spectrum of fluorescence (PL) of AgInGaS-based QDs finally obtained in Example 13.
  • FIG. 10 is a fluorescence (PL) spectrum of the AgInGaS-based QD finally obtained in Example 14.
  • FIG. 10 is a fluorescence (PL) spectrum of the ZnAgInGaS-based QD finally obtained in Example 15.
  • FIG. 10 is a fluorescence (PL) spectrum of the ZnAgGaSeS-based QD finally obtained in Example 16.
  • FIG. 10 is a fluorescence (PL) spectrum of the ZnAgGaSeS-based QD finally obtained in Example 18.
  • FIG. FIG. 10 is a fluorescence (PL) spectrum of the ZnAgGaSeS-based QD finally obtained in Example 18.
  • FIG. 10 is a fluorescence (PL) spectrum of the ZnAgGaSeS-based QD finally obtained in Example 19.
  • FIG. 10 is a fluorescence (PL) spectrum of the ZnAgInGaSeS-based QD finally obtained in Example 20.
  • FIG. 10 is a fluorescence (PL) spectrum of the ZnAgGaSeS-based QD finally obtained in Example 21.
  • FIG. 10 is a scanning electron micrograph of AgInGaS-based QDs finally obtained in Example 8.
  • FIG. FIG. 10 is a diagram showing an analysis image by TEM-EDX of the ZnAgGaSSe-based QD finally obtained in Example 16.
  • FIG. FIG. 23 is a partial schematic diagram of the analysis image shown in FIG. 22;
  • FIG. 10 is a cross-sectional view schematically showing a schematic configuration of a main part of a display device according to Embodiment 2;
  • Electrode 1 The electroluminescence device (hereinafter simply referred to as “light emitting device”) according to this embodiment will be described below.
  • the description "A to B" for two numbers A and B means “A or more and B or less” unless otherwise specified.
  • the light-emitting device includes quantum dots that emit light when holes supplied from an anode and electrons (free electrons) supplied from a cathode combine. there is The quantum dots are contained in a quantum dot light-emitting layer (hereinafter simply referred to as "quantum dot layer") provided between the anode and the cathode.
  • quantum dot layer a quantum dot light-emitting layer
  • Examples of the light emitting device include a quantum dot light emitting diode (QLED). Quantum dots are abbreviated as “QD” hereinafter. Therefore, the quantum dot layer (quantum dot light emitting layer) is abbreviated as "QD layer (QD light emitting layer)".
  • FIG. 1 is a cross-sectional view schematically showing the schematic configuration of a light emitting device 1 according to this embodiment.
  • the light-emitting element 1 includes an anode 12 (anode, first electrode), a cathode 17 (cathode, second electrode), and QDs provided between the anode 12 and the cathode 17. and a functional layer including at least a QD layer 15 (QD light emitting layer).
  • the layers between the anode 12 and the cathode 17 are collectively referred to as functional layers.
  • the functional layer may be a single-layer type consisting of only the QD layer 15, or may be a multi-layer type including functional layers other than the QD layer 15.
  • Functional layers other than the QD layer 15 among the functional layers include, for example, a hole injection layer (hereinafter referred to as "HIL”), a hole transport layer (hereinafter referred to as “HTL”), an electron transport layer (hereinafter referred to as , “ETL”) and the like.
  • HIL hole injection layer
  • HTL hole transport layer
  • ETL electron transport layer
  • the direction from the anode 12 to the cathode 17 in FIG. 1 is called the upward direction, and the opposite direction is called the downward direction.
  • the horizontal direction is a direction perpendicular to the up-down direction (the main surface direction of each part provided in the light emitting element 1).
  • the vertical direction can also be said to be the normal direction of each part.
  • Each layer from the anode 12 to the cathode 17 is generally supported by a substrate as a support. Therefore, the light-emitting device 1 may have a substrate as a support.
  • the light emitting element 1 shown in FIG. 1 has a structure in which a substrate 11, an anode 12, a HIL 13, an HTL 14, a QD layer 15, an ETL 16, and a cathode 17 are stacked in this order upward in FIG. is doing.
  • the substrate 11 is a support for forming each layer from the anode 12 to the cathode 17, as described above.
  • the light emitting element 1 may be used as a light source for electronic equipment such as a display device, for example.
  • the substrate of the display device is used as the substrate 11 . Therefore, the light emitting element 1 may be called the light emitting element 1 including the substrate 11 or may be called the light emitting element 1 without including the substrate 11 .
  • the light-emitting element 1 itself may include the substrate 11, or the substrate 11 included in the light-emitting element 1 may be a substrate of an electronic device such as a display device including the light-emitting element 1. There may be. If the light-emitting element 1 is part of a display device, for example, an array substrate on which a plurality of thin film transistors are formed may be used as the substrate 11 . In this case, the anode 12, which is the first electrode provided on the substrate 11, may be electrically connected to a thin film transistor (TFT) on the array substrate.
  • TFT thin film transistor
  • the substrate 11 is provided with the light emitting element 1 as a light source for each pixel.
  • a red pixel (R pixel) is provided with a light emitting element (red light emitting element) that emits red light as a red light source.
  • a green pixel (G pixel) is provided with a light emitting element (green light emitting element) that emits green light as a green light source.
  • a blue pixel (B pixel) is provided with a light emitting element (blue light emitting element) that emits blue light as a blue light source. Therefore, the substrate 11 may be provided with banks as pixel separation films for partitioning the pixels so that a light-emitting element can be formed for each of the R, G, and B pixels.
  • a BE type light emitting device having a bottom emission (BE) structure light emitted from the QD layer 15 is emitted downward (that is, toward the substrate 11 side).
  • a TE light emitting device having a top emission (TE) structure light emitted from the QD layer 15 is emitted upward (that is, the side opposite to the substrate 11).
  • a double-sided light emitting device light emitted from the QD layer 15 is emitted downward and upward.
  • the substrate 11 is composed of a translucent substrate having relatively high translucency, such as a glass substrate.
  • the substrate 11 may be composed of a substrate having relatively low translucency, such as a plastic substrate, or a light-reflecting substrate having light reflectivity. It may be configured by a flexible substrate.
  • the aperture ratio is large and the external quantum efficiency can be further increased.
  • the electrode on the light extraction surface side needs to be translucent. Note that the electrode on the side opposite to the light extraction surface may or may not have translucency.
  • the electrode on the upper layer side is a light reflective electrode
  • the electrode on the lower layer side is a translucent electrode
  • the electrode on the upper layer side is a translucent electrode
  • the electrode on the lower layer side is a light-reflective electrode.
  • the light reflective electrode may be a laminate of a layer made of a light transmissive material and a layer made of a light reflective material.
  • the light emitting element 1 has the anode 12 as a lower electrode (lower layer electrode) and the cathode 17 as an upper electrode (upper layer electrode), and the light L emitted from the QD layer 15 is directed downward.
  • the anode 12 is a translucent electrode so that the light L emitted from the QD layer 15 can pass through the anode 12 .
  • the cathode 17 is a light reflective electrode so as to reflect the light L emitted from the QD layer 15 .
  • the anode 12 is an electrode that supplies holes to the QD layer 15 by applying a voltage.
  • the anode 12 is made of, for example, a material with a relatively large work function. Examples of such materials include tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), and antimony-doped tin oxide (ATO). Only one type of these materials may be used, or two or more types may be appropriately mixed and used.
  • the cathode 17 is an electrode that supplies electrons to the QD layer 15 when a voltage is applied.
  • the cathode 17 is made of, for example, a material with a relatively small work function. Examples of such materials include aluminum (Al), silver (Ag), barium (Ba), ytterbium (Yb), calcium (Ca), lithium (Li)—Al alloy, magnesium (Mg)—Al alloy, Mg— Ag alloys, Mg-indium (In) alloys, and Al-aluminum oxide (Al 2 O 3 ) alloys.
  • PVD physical vapor deposition method
  • a sputtering method or a vacuum deposition method a spin coating method, or an inkjet method is used.
  • the HIL 13 is a layer that transports holes supplied from the anode 12 to the HTL 14.
  • a hole-transporting material is used as the material of HIL13.
  • the hole-transporting material may be an organic material or an inorganic material.
  • examples of the organic material include conductive polymer materials.
  • the polymer material for example, a composite of poly(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid (PSS) (PEDOT:PSS) can be used. These polymer materials may be used singly or in combination of two or more.
  • HIL13 desirably contains PEDOT:PSS among the above polymeric materials. This makes it possible to provide the light-emitting element 1 that has high hole mobility and can obtain good light-emitting characteristics.
  • the HTL 14 is a layer that transports holes supplied from the HIL 13 to the QD layer 15 .
  • a hole-transporting material is used as the material of the HTL 14 .
  • the hole-transporting material may be an organic material or an inorganic material.
  • examples of the organic material include conductive polymer materials.
  • the polymer material include poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-butylphenyl)diphenylamine)) ] (TFB), poly(N-vinylcarbazole) (PVK) and the like can be used. These polymer materials may be used singly or in combination of two or more.
  • the HTL 14 preferably contains PVK among the above polymer materials. This makes it possible to provide the light-emitting element 1 that has high hole mobility and can obtain good light-emitting characteristics.
  • HIL 13 and HTL 14 for example, PVD such as a sputtering method or a vacuum deposition method, a spin coating method, an inkjet method, or the like is used. If the HTL 14 alone can sufficiently supply holes to the QD layer 15, the HIL 13 may not be provided.
  • the ETL 16 is a layer that transports electrons supplied from the cathode 17 to the QD layer 15.
  • An electron-transporting material is used as the material of the ETL 16 .
  • the electron-transporting material may be an organic material or an inorganic material.
  • the organic material is, for example, 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), 3-(biphenyl- 4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ), bathophenanthroline (Bphen) and tris(2,4,6-trimethyl It preferably contains at least one compound selected from the group consisting of -3-(pyridin-3-yl)phenyl)borane (3TPYMB).
  • ETL 16 is made of an organic material as described above, a vacuum deposition method, a spin coating method, an inkjet method, or the like is preferably used for film formation of the ETL 16 .
  • the inorganic material includes zinc (Zn), magnesium (Mg), titanium (Ti), silicon (Si), tin (Sn), tungsten (W), tantalum. (Ta), barium (Ba), zirconium (Zr), aluminum (Al), yttrium (Y), and nanoparticles made of a metal oxide containing at least one element selected from the group consisting of hafnium (Hf) Preferably.
  • a metal oxide for example, zinc oxide (ZnO), zinc magnesium oxide (ZnMgO), and the like are preferably used from the viewpoint of electron mobility. These metal oxides may be used singly or in combination of two or more.
  • the ETL 16 preferably contains ZnMgO. This makes it possible to provide the light-emitting element 1 that has high electron mobility and can obtain good light-emitting characteristics.
  • the ETL 16 is made of an inorganic material as described above, the ETL 16 is formed by PVD such as a sputtering method or a vacuum deposition method, a spin coating method, or an inkjet method, for example.
  • the QD layer 15 is a layer that contains QDs as a light-emitting material and emits light when holes supplied from the anode 12 and electrons supplied from the cathode 17 are combined.
  • a QD is an inorganic nanoparticle composed of several thousand to tens of thousands of atoms and having a particle size of several nanometers to ten and several nanometers.
  • QDs are also called fluorescent nanoparticles or QD phosphor particles because they emit fluorescence and have nano-order sizes.
  • QDs are also referred to as semiconductor nanoparticles because their composition is derived from semiconductor materials.
  • QDs are also called nanocrystals because their structure has a specific crystal structure.
  • QDs are composed of metal atoms that are positively charged cationic species (cation raw materials) and non-metallic or metalloid atoms that are negatively charged anionic species (anionic raw materials).
  • a metal atom and a metalloid atom are bonded by an ionic bond or a covalent bond.
  • the ionic bonding properties of the bond depend on the combination of properties of the metal atom and metalloid atom.
  • the emission wavelength of QDs can be changed in various ways depending on the particle diameter of the particles, the composition of the particles, and the like.
  • Cd-free chalcopyrite-type (ABX 2 ) QDs that substantially do not contain cadmium (Cd) are used as the QDs.
  • chalcopyrite-type cation species A and B the element contained in A is mainly silver (Ag), and the element contained in B is mainly indium (In) and gallium (Ga). is.
  • Elements contained in X, which is an anion species, are sulfur (S) and selenium (Se).
  • the QD uses a solid solution in which the cation raw material is based on at least Ag and Ga among Ag, Ga, In, and Zn, and the anionic raw material is based on at least one of Se and S. .
  • the light-emitting element 1 includes the QDs 25 shown in FIG. 2 or the QDs 25 shown in FIG. 3 as the QDs in the QD layer 15 .
  • FIG.2 and FIG.3 is a schematic diagram which shows an example of QD25 which concerns on this embodiment.
  • the QDs 25 according to this embodiment are nanocrystals substantially free of Cd.
  • the QD 25 is made of AgIn x Ga 1-x Sy Se 1-y system or ZnAgIn x Ga 1-x Sy Se 1-y system (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) material, These are chalcopyrite-based (chalcopyrite-type) Cd-free QDs.
  • QD25 is AgIn x Ga 1-x SySe 1-y system or ZnAgIn x Ga 1-x SySe 1-y system (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) Cd It is a free QD.
  • any one of AgGaS, AgGaSe, AgInGaS, AgInGaSe, ZnAgGaS, ZnAgGaSe, ZnAgInGaS, and ZnAgInGaSe is the main component, or AgGaS, AgGaSe, AgInGaS, AgInGaSe, ZnAgGaS, ZnAgGaSnGaSnGaInZn, ZnAgGaInZn, ZnAgGaSe
  • the QDs 25 are preferably nanocrystals containing at least Ag, Ga, and at least one of S and Se, and substantially free of Cd, and are nanocrystals free of Cd. is more preferable.
  • QD25 contains at least Ag, Ga, and at least one of S and Se means that QD25 contains at least Ag, Ga and S, or Ag, Ga and Se and In this way, the QD 25 contains at least Ag, Ga, and at least one of S and Se, so that the light-emitting device 1 having a narrow fluorescence half-value width and a high fluorescence quantum yield can be provided. can.
  • Nanonanocrystal here refers to nanoparticles having a particle size of several nm to several tens of nm. In this embodiment, a large number of QDs 25 can be produced with a substantially uniform particle size.
  • substantially free of Cd or “Cd-free” means that QD25 does not contain Cd at a mass ratio of 1/30 or more with respect to the total amount of chalcopyrite-type cation species.
  • the total amount of chalcopyrite-type cation species refers to the total amount of metal atoms represented by A and B in the chalcopyrite-type (ABX 2 ). Therefore, “substantially free of Cd” or “Cd-free” means that the QD25 preferably does not contain Cd at a mass ratio of 1/30 or more with respect to the total amount of Ag and Ga. means.
  • the QDs 25 may contain Ag, Ga, at least one of S and Se, and may further contain at least one of indium (In) and zinc (Zn).
  • QD25 shows fluorescence whether or not it contains In.
  • the QDs 25 that emit green light have good emission characteristics because the QDs 25 contain In.
  • the QDs 25 are AgGaS, for example, light emission has been confirmed, and the QDs 25 emit light even if they do not contain In, although the fluorescence half-value width tends to be somewhat large.
  • Zn when Zn is used as a material for chalcopyrite-based QDs such as AIS-based or AIGS-based QDs represented by ABX 2 , in general, defect emission tends to occur and the fluorescence half-value width tends to widen. This is due to the difference in valence between Zn and the metal atoms represented by A and B (for example, Zn is divalent, Ag is monovalent, Ga and In are trivalent).
  • Zn is not added at the initial stage of the reaction, for example, by post-adding Zn after the particles are formed at the initial stage of the reaction. It is possible to increase the fluorescence quantum yield while keeping the ⁇ narrow.
  • the QD25 synthesized in this way is a ZnAgIn x Ga 1-x Sy Se 1-y system (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) in which Zn is unevenly distributed mainly on the surface of the QD25. becomes.
  • the ratio Ag/Ga is more preferably in the range of 0.1 or more and 5 or less, and even more preferably in the range of 0.1 or more and 3 or less.
  • the ratio Zn/Ga is more preferably in the range of 0.1 or more and 5 or less, and even more preferably in the range of 0.5 or more and 5 or less.
  • the fluorescence wavelength can be adjusted, for example, from the blue wavelength range to the red wavelength range.
  • the QD 25 emits a fluorescence wavelength within the range of 400 nm or more and 700 nm or less, so that the light emitting device 1 that emits light in the blue to red wavelength range can be provided.
  • the fluorescence wavelength is preferably adjusted from the green wavelength range to the red wavelength range.
  • the fluorescence wavelength can be appropriately adjusted within the range of 500 nm or more and 660 nm or less.
  • the QDs 25 emit fluorescence wavelengths within the range of 500 nm or more and 660 nm or less, so that the light emitting device 1 that emits light in the green to red wavelength range can be provided.
  • "fluorescence peak wavelength” and “luminescence peak wavelength” are abbreviated as “fluorescence wavelength” and "luminescence wavelength", respectively.
  • the QD 25 may be a core-shell QD including a core 25a and a shell 25b.
  • the QD 25 shown in FIG. 3 has a core-shell structure having a core 25a and a shell 25b covering the surface of the core 25a.
  • the core 25a of QD25 shown in FIG. 3 is a nanocrystal shown as QD25 in FIG. Therefore, in the above description, the QD 25 can be read as the core 25a.
  • the core 25a contains AgIn x Ga 1-x Sy Se 1-y system or ZnAgIn x Ga 1-x Sy Se 1-y system (0 ⁇ x ⁇ 1, 0 ⁇ Cd-free particles with y ⁇ 1) are used.
  • the QD 25 Since the QD 25 emits fluorescence even with the core 25a alone, it does not necessarily need to be covered with the shell 25b as shown in FIG. Of the core 25a and the shell 25b, the QD 25 should include at least the core 25a.
  • the QDs 25 thus have a core-shell structure that includes a nanocrystal core 25a and shell 25b that includes at least Ag, Ga, and at least one of S and Se. A further increase in the fluorescence quantum yield can be expected while the half-value width remains narrow.
  • Zn is contained inside the particles of QD25, as described above, due to the difference in valence between Zn and the metal atoms represented by A and B, defect emission is dominant, or only defect emission may be confirmed. There is therefore, as described above, it is desirable that Zn is contained only on the particle surfaces by forming the particles in the initial stage of the reaction and subsequently adding Zn to cause the reaction only on the particle surfaces.
  • the QDs 25 that emit green light have good light emission characteristics because the QDs 25 contain In.
  • the core 25a alone emits fluorescence, for example.
  • fluorescence was observed in QD25 whether or not it contained In, and light emission was confirmed even though QD25 did not contain In.
  • the raw material of QD25 does not contain In in the initial reaction.
  • AgGaS or AgGaSe which does not contain In, has the best emission characteristics for the initial reaction particles formed at the initial stage of the reaction.
  • the core 25a is preferably a nanocrystal containing Ag, Ga, and at least one of S and Se and substantially free of Cd, more preferably a nanocrystal containing no Cd. preferable. Therefore, the core 25a is preferably AgGaS or AgGaSe.
  • the shell 25b does not contain or substantially does not contain Cd, like the core 25a.
  • the material of the shell 25b is not particularly limited, but examples include indium sulfide, gallium sulfide, aluminum sulfide, zinc sulfide, indium selenide, gallium selenide, aluminum selenide, and zinc selenide.
  • the gallium raw material (Ga raw material) used as a Ga source that becomes Ga contained in QD25 (in other words, a raw material for Ga contained in QD25) consists of gallium chloride, gallium bromide, and gallium iodide. It is preferable to use at least one Ga raw material selected from the group.
  • the shell 25b may be provided on the surface of the core 25a.
  • the shell 25b preferably covers the entire core 25a, but may cover at least part of the surface of the core 25a.
  • the QD 25 can be said to have a core-shell structure if it is found that the core 25a is wrapped by observing one cross section of the QD 25 .
  • the average diameter (assumed dot diameter) of the diameter of the circle corresponding to the area of the cross section of the QD 25 is calculated from cross-sectional observation of 50 adjacent QDs 25 .
  • the shell 25b surrounds the core 25a (covers the entire core 25a).
  • the cross-sectional observation can be performed, for example, with a scanning transmission electron microscope (STEM).
  • the shell 25b may be in a solid solution state on the surface of the core 25a.
  • the boundary between the core 25a and the shell 25b is indicated by a dotted line, which means that the boundary between the core 25a and the shell 25b may or may not be confirmed by analysis.
  • the initial reaction particles are first formed, and Zn is added in the final step. This allows reaction with Zn only on the particle surface. Therefore, in the ZnAgIn x Ga 1-x S y Se 1-y system (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) QD 25 according to the present embodiment, even if the core-shell structure cannot be confirmed, it contains Zn. Therefore, it can be assumed that the core 25a is covered with the shell 25b.
  • the QDs 25 shown in FIG. 3 can also appropriately adjust the fluorescence wavelength, for example, within the range of 400 nm or more and 700 nm or less, like the QDs 25 shown in FIG. Also, for example, it is possible to appropriately adjust the fluorescence wavelength within the range of 500 nm or more and 660 nm or less.
  • the QD25 is derived from at least one S raw material of a thiuram-based S raw material and a disulfide-based S raw material, regardless of whether the QD25 has a core-shell structure. It may contain a structure that The thiuram-based S raw material and the disulfide-based S raw material affect nucleation and contribute to the improvement of light emission characteristics, while they may become ligands in the process of decomposition.
  • the QD25 particularly the QD25 that emits light in the green wavelength region, has a structure derived from a thiuram-based S raw material and a disulfide-based S raw material, for example, a structure represented by the following formula (1) and the following formula (2): may contain at least one structure of
  • R 1 and R 2 each independently represent a —(CH 2 ) n —CH 3 group, —CH 3 group, or a benzyl group, and n is an integer of 1 to 3.
  • R3 represents a phenyl group, a benzyl group, or a pyridyl group.
  • the thiuram-based S raw material and the disulfide-based S raw material may serve as ligands while being used for nucleation. Therefore, the QD25 itself (for example, the core 25a or the shell 25b) may have the above structure, or the ligand coordinated to the surface of the QD25 may have the above structure.
  • the QD 25 having the above structure can provide the light-emitting device 1 capable of obtaining better light-emitting characteristics.
  • ligands 21 are coordinated (adsorbed) to the surface of the QD 25 as ligands.
  • Ligands 21 are surface-modifying groups (eg, organic ligands) that modify the surface of QD25.
  • the QD layer 15 formed by the solution method includes spherical QDs 25 and ligands 21 .
  • the ligand 21 that can be used in the reaction is not particularly limited, but typical examples thereof include amine-based (aliphatic primary amine-based), fatty acid-based, thiol-based, phosphine-based, and phosphine oxide-based ligands. mentioned.
  • Examples of the aliphatic primary amine ligand 21 include oleylamine (C 18 H 35 NH 2 ), stearyl (octadecyl) amine (C 18 H 37 NH 2 ), dodecyl (lauryl) amine (C 12 H 25 NH 2 ). ), decylamine (C 10 H 21 NH 2 ), octylamine (C 8 H 17 NH 2 ), and the like.
  • fatty acid-based ligands 21 examples include oleic acid (C 17 H 33 COOH), stearic acid (C 17 H 35 COOH), palmitic acid (C 15 H 31 COOH), myristic acid (C 13 H 27 COOH), Lauryl (dodecanoic) acid (C 11 H 23 COOH), decanoic acid (C 9 H 19 COOH), octanoic acid (C 7 H 15 COOH) and the like.
  • thiol-based ligands 21 examples include octadecanethiol (C 18 H 37 SH), hexanedecanethiol (C 16 H 33 SH), tetradecanethiol (C 14 H 29 SH), and dodecanethiol (C 12 H 25 SH). , decanethiol (C 10 H 21 SH), octanethiol (C 8 H 17 SH), and the like.
  • Examples of the phosphine ligand 21 include trioctylphosphine ((C 8 H 17 ) 3 P), triphenylphosphine ((C 6 H 5 ) 3 P), tributylphosphine ((C 4 H 9 ) 3 P). etc.
  • the QD 25 according to the present embodiment is AgIn x Ga 1-x S y Se 1-y system or ZnAgIn x Ga 1-x Sy Se 1-y system (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) Cd-free quantum dots.
  • the fluorescence half width is 45 nm or less in the green wavelength range to the red wavelength range
  • the fluorescence quantum yield (Quantum Yield) is It shows fluorescence properties of 35% or more.
  • a light-emitting device 1 containing Cd-free chalcopyrite-based quantum dots having a narrow fluorescence half-value width and a high fluorescence quantum yield in the green to red wavelength range is provided. can do.
  • fluorescence half width refers to the full width at half maximum, which indicates the spread of the fluorescence wavelength at half the intensity of the fluorescence intensity peak value in the fluorescence spectrum.
  • the QD layer 15 is AgIn x Ga 1-x S y Se 1-y system or ZnAgIn x Ga 1-x Sy Se 1-y system (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), and the QD25 has a fluorescence half-width of 45 nm or less and a fluorescence quantum yield of 35% or more in the green to red wavelength range. It is possible to provide a light-emitting device 1 containing chalcopyrite-based QDs 25 that do not contain Cd and have a narrow fluorescence half-width and a high fluorescence quantum yield in the green to red wavelength range.
  • the fluorescence half width of QD25 is preferably 35 nm or less.
  • the fluorescence half-value width of the QD25 is more preferably 30 nm or less, and even more preferably 25 nm or less.
  • the fluorescence half-value width of the QD 25 can be narrowed, so that it is possible to improve the widening of the color gamut.
  • the fluorescence quantum yield of QD25 is more preferably 40% or higher, more preferably 60% or higher, even more preferably 70% or higher, and most preferably 80% or higher.
  • the fluorescence quantum yield of QD25 can be increased. Therefore, according to the present embodiment, it is possible to provide the chalcopyrite-based light-emitting device 1 that exhibits better fluorescence characteristics.
  • the fluorescence half width can be narrowed and the fluorescence quantum yield can be increased from the green wavelength range to the red wavelength range.
  • the fluorescence wavelength of QDs 25 can be freely controlled to approximately 400 nm or more and 700 nm or less. Therefore, in this embodiment, the fluorescence wavelength of the QD layer 15 can be freely controlled to approximately 400 nm or more and 700 nm or less.
  • the QD 25 in this embodiment is a solid solution based on Ag, Ga, In, and Zn as cationic raw materials and Se and S as anionic raw materials.
  • the fluorescence wavelength of the QD25, and thus the emission wavelength (fluorescence wavelength) of the QD layer 15 can be controlled from blue to green to red. is.
  • the fluorescence wavelength of the QDs 25 and the fluorescence wavelength of the QD layer 15 are preferably 400 nm or more and 480 nm or less, more preferably 410 nm or more and 470 nm or less, and 420 nm or more and 460 nm or less for blue emission. More preferred.
  • Green light emission is preferably 500 nm or more and 560 nm or less, more preferably 510 nm or more and 550 nm or less, and even more preferably 520 nm or more and 540 nm or less.
  • Red light emission is preferably 600 nm or more and 660 nm or less, more preferably 610 nm or more and 650 nm or less, and even more preferably 620 nm or more and 640 nm or less.
  • the fluorescence wavelength of the QD 25 is in the range of 400 nm or more and 700 nm or less, so that the chalcopyrite-based light emitting device 1 that emits light in the blue to red wavelength range is provided. can do.
  • the fluorescence wavelength of the QDs 25 and the fluorescence wavelength of the QD layer 15 including the QDs 25 can be controlled to 400 nm or more and 700 nm or less. , green, or red light. This makes it possible to provide the chalcopyrite-based light emitting device 1 that emits light in the green to red wavelength range.
  • Chalcopyrite is generally a material that emits defect light with a fluorescence half-value width of 45 to 80 nm.
  • the QDs 25 according to the present embodiment have a narrow fluorescence half-width, a high fluorescence quantum yield, and a much shorter fluorescence lifetime than defect emission. From such characteristics, it is presumed that the QD 25 according to this embodiment emits band edge light.
  • the fluorescence half width is 30 ⁇ m or less, the fluorescence quantum yield is 80% or more, and the fluorescence wavelength is in the range of 510 nm or more and 650 nm or less. It is possible to synthesize QD25 where According to this embodiment, in this way, from the green fluorescence wavelength (near 510 to 540 nm) to the red fluorescence wavelength (near 610 to 650 nm), the fluorescence half width is narrow and the fluorescence quantum yield is high. It is possible to provide the light-emitting device 1 that exhibits better fluorescence characteristics.
  • the particle size of the QDs 25 is preferably in the range of 3 nm or more and 20 nm or less, more preferably in the range of 4 nm or more and 15 nm or less.
  • the particle size of the core 25a and the layer thickness of the shell 25b are not particularly limited.
  • the QD layer 15 is preferably formed to have a layer thickness of 2 nm or more and 20 nm or less. This makes it possible to provide the light-emitting element 1 that has a high emission intensity and can obtain better emission characteristics.
  • the QD layer 15 For film formation of the QD layer 15, it is preferable to use techniques such as spin coating, inkjet, and photolithography.
  • a forward voltage is applied between the anode 12 and the cathode 17 in the light emitting element 1 .
  • the anode 12 is brought to a higher potential than the cathode 17 .
  • electrons can be supplied from the cathode 17 to the QD layer 15 and
  • holes can be supplied from the anode 12 to the QD layer 15 .
  • light L can be generated with recombination of holes and electrons.
  • Application of the voltage may be controlled by a TFT (not shown).
  • a TFT layer containing multiple TFTs may be formed in the substrate 11 .
  • the light-emitting device 1 may include, as a functional layer, a hole blocking layer (HBL) that suppresses transport of holes.
  • HBL hole blocking layer
  • a hole blocking layer is provided between the cathode 17 and the QD layer 15, as an example. By providing the hole blocking layer, the balance of carriers (that is, holes and electrons) supplied to the QD layer 15 can be adjusted.
  • the light-emitting device 1 may include an electron blocking layer (EBL) that suppresses transport of electrons as a functional layer.
  • EBL electron blocking layer
  • An electron blocking layer is provided between the QD layer 15 and the cathode 17, as an example. The provision of the electron blocking layer can also adjust the balance of carriers (that is, holes and electrons) supplied to the QD layer 15 .
  • the light emitting element 1 may be sealed after the film formation up to the cathode 17 is completed.
  • Glass or plastic for example, can be used as the sealing member.
  • the sealing member desirably has, for example, a concave shape so that the laminate from the substrate 11 to the cathode 17 can be sealed.
  • the light-emitting element 1 is manufactured by applying a sealing adhesive (for example, an epoxy-based adhesive) between the sealing member and the substrate 11 and then sealing in a nitrogen (N 2 ) atmosphere. be.
  • the light-emitting device 1 may have a structure in which the cathode 17, the ETL 16, the QD layer 15, the HTL 14, the HIL 13, and the anode 12 are laminated in this order on the substrate 11. Further, when the light-emitting device 1 includes the ETL 16 as described above, the light-emitting device 1 may include an electron injection layer (EIL) between the ETL 16 and the cathode 17 .
  • EIL electron injection layer
  • the light emitting device 1 is manufactured by, for example, forming an anode 12, a HIL 13, an HTL 14, a QD layer 15, an ETL 16, and a cathode 17 on a substrate 11 in this order.
  • the anode 12 is formed on the substrate 11 by sputtering (anode forming step).
  • a solution containing a hole-transporting material such as PEDOT:PSS, which is used as a HIL material, is applied by spin coating, and then the solvent is volatilized by baking to form the HIL 13 ( HIL formation step).
  • a solution containing a hole-transporting material used as a HTL material, such as PVK is applied by spin coating, and then the solvent is volatilized by baking to form the HTL 14 (HTL formation step ).
  • a QD layer 15 is formed on the HTL 14 using a solution method.
  • a QD dispersion in which QDs 25 are dispersed is applied onto the HTL 14 by spin coating, and then the solvent is volatilized by baking to form the QD layer 15 (QD layer formation process).
  • a solution containing nanoparticles such as ZnMgO as an electron-transporting material is applied on the QD layer 15 by spin coating, and the solvent is volatilized by baking to form an ETL 16 (ETL formation step).
  • ETL formation step the cathode 17 is formed on the ETL 16 by vacuum deposition (cathode formation step).
  • the QDs 25 included in the QD layer 15 are manufactured (synthesized) from, for example, a silver raw material as an Ag source, a gallium raw material as a Ga source, and a sulfur raw material as an S source or a selenium raw material as a Se source. (QD manufacturing process).
  • Ag source indicates the raw material of Ag contained in QD25 (the material that becomes Ag contained in QD25).
  • a Ga source indicates a source of Ga contained in the QD25 (a material that becomes Ga contained in the QD25).
  • the S source indicates a raw material of S contained in the QD25 (a material that becomes S contained in the QD25).
  • the Se source indicates a raw material of Se contained in the QD25 (a material that becomes Se contained in the QD25).
  • the QD 25 may be manufactured (synthesized) by post-adding a predetermined element such as In or Zn.
  • QD25 after forming reaction initial particles from the Ag source, the In source, the Ga source, and the S source or the Se source, using the Zn source or the like, Zn or the like is QD25 may be manufactured (synthesized) by post-adding a predetermined element.
  • the In source indicates the raw material of In contained in the QDs 25 (the material that becomes In contained in the QDs 25).
  • the Zn source indicates a raw material of Zn contained in the QD25 (a material that becomes Zn contained in the QD25).
  • the QD layer 15 including the QDs 25 synthesized in this way is formed.
  • the QD layer 15 is formed so that the layer thickness of the QD layer 15 is 2 nm or more and 20 nm or less.
  • the substrate 11 and the laminate (anode 12 to cathode 17) formed on the substrate 11 may be sealed with a sealing member in an N2 atmosphere.
  • the QD 25 is AgIn x Ga 1-x S y Se 1-y system or ZnAgIn x Ga 1-x Sy Se 1-y system (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), and exhibit fluorescence characteristics such as a fluorescence half-width of 45 nm or less and a fluorescence quantum yield of 35% or more in the green to red wavelength range.
  • an Ag raw material as an Ag source
  • an In raw material indium raw material
  • an S raw material sulfur raw material
  • a Se raw material selenium raw material
  • QD25 or its reaction initial particles are synthesized by heating in one pot.
  • the reaction temperature is set in the range of 100° C. or higher and 320° C. or lower, and AgGaS, AgGaSe, AgInGaS, or AgInGaSe, for example, is synthesized as initial reaction particles.
  • the reaction temperature is preferably a lower temperature of 280° C. or lower.
  • an organic silver compound or an inorganic silver compound is used.
  • the Ag raw material may be added directly to the reaction solution, or may be used as an Ag raw material solution of a certain concentration dissolved in an organic solvent in advance.
  • an organic indium compound or an inorganic indium compound is used.
  • Ga raw material an organic indium compound or an inorganic indium compound is used.
  • gallium acetylacetonate (Ga(acac) 3 ) and gallium chloride (GaCl 3 ) are especially readily available and can provide good characteristics. Therefore, it is desirable to use at least one of gallium acetylacetonate and gallium chloride as the Ga source.
  • the above In raw material or Ga raw material may be added directly to the reaction solution, or may be used as an In raw material solution or Ga raw material solution of a certain concentration dissolved in an organic solvent in advance.
  • Organic sulfur compounds such as thiols, or sulfur (S) can be used as the S raw material.
  • the organic sulfur compound is not particularly limited, but examples include octadecanethiol (C 18 H 37 SH), hexanedecanethiol (C 16 H 33 SH), tetradecanethiol (C 14 H 29 SH), and dodecanethiol. (C 12 H 25 SH), decanethiol (C 10 H 21 SH), octanethiol (C 8 H 17 SH) and the like can be used. These S raw materials may be used singly or in combination of two or more.
  • the S raw material species greatly contributes to the fluorescence characteristics.
  • S raw material S source
  • thiurams thiuram-based S raw material
  • disulfide disulfide-based S raw material
  • sulfur S
  • OLED octadecene
  • S-ODE S-ODE raw material
  • S-OLAm/DDT a solution of S dissolved in oleylamine and dodecanethiol
  • Disulfides include, for example, diphenyl disulfide, dibenzyl disulfide, isopropyl xanthogen disulfide, and 4,4'-dithiodimorpholine.
  • Thiurams include, for example, thiuram disulfide, dipentamethylenethiuram tetrasulfide, tetraethylthiuram disulfide, and tetramethylthiuram disulfide.
  • the S raw material includes, for example, a raw material having a structure (-S-) n in which a plurality of sulfur atoms are linked, or a structure in which nitrogen is bonded to sulfur (N-S -), a structure in which carbon is bonded to sulfur (CS-), or the like.
  • an organic selenium compound (organic chalcogen compound) or selenium (Se) can be used.
  • These Se raw materials may be used singly or in combination of two or more.
  • the S raw material or Se raw material may also be added directly to the reaction solution, or may be used as a constant concentration S raw material solution or Se raw material solution dissolved in an organic solvent in advance.
  • the Se raw material species When synthesizing AgGaSe or AgInGaSe as QD25 or its reaction initial particles, the Se raw material species greatly contributes to the fluorescence properties.
  • a solution of Se dissolved in a mixture of oleylamine and dodecanethiol (Se-OLAm/DDT) exhibits good luminescence properties.
  • Te-OLAm/DDT dodecanethiol
  • two types of emission can be confirmed in the early stage of emission, a PL spectrum considered to be band edge emission and a PL spectrum considered to be defect emission, and the emission intensity ratio is band edge emission/defect emission is 10 or less in most cases.
  • the intensity of defect luminescence gradually decreases, and the intensity of band edge luminescence often increases accordingly.
  • Se-DDT/OLAm is used as the Se source as in the present embodiment, there is a single peak from the initial stage of emission, the band edge emission/defect emission is 10 or more, and there is a peak considered to be defect emission. Hardly identifiable.
  • the fluorescence lifetime is as short as 20 ns or less until it becomes 1/e, and only peaks that are not defective luminescence can be confirmed in the initial stage of luminescence. Therefore, by using Se-OLAm/DDT as the Se source, it is possible to provide the light-emitting device 1 capable of obtaining better light-emitting characteristics.
  • the Zn raw material an organic zinc compound or an inorganic zinc compound is used. These organic zinc compounds and inorganic zinc compounds are raw materials that are stable even in air and easy to handle.
  • the Zn raw material may also be added directly to the reaction solution, or may be used as a Zn raw material solution of a certain concentration dissolved in an organic solvent in advance.
  • the synthesized QD25 expresses fluorescence properties without performing various treatments such as washing, isolation and purification, coating treatment, and ligand exchange.
  • the fluorescence quantum yield can be further increased by covering the nanocrystal core 25a with a shell 25b.
  • the fluorescence quantum yield can be further increased by purifying QD25 with a specific solvent after forming the core-shell structure.
  • specific solvent include trioctylphosphine (TOP).
  • the method for manufacturing QD25 according to the present embodiment preferably includes a centrifugal separation step. By centrifuging the reaction solution obtained by the synthesis, QD25 with better luminescence properties can be obtained.
  • reaction solution obtained by the synthesis is mixed with a polar solvent such as toluene, methanol, ethanol, or acetone as a solvent (for example, a poor solvent), and the aggregates are removed by centrifugation, thereby improving the luminescence properties. and QD25 can be obtained.
  • a polar solvent such as toluene, methanol, ethanol, or acetone as a solvent (for example, a poor solvent
  • QD25 may be synthesized by post-adding a predetermined element after forming initial reaction particles.
  • In is preferably not included.
  • AgGaS or AgGaSe which does not contain In, has the best emission characteristics for the initial reaction particles formed at the initial stage of the reaction.
  • the raw material of QD25 does not contain In in the initial reaction.
  • the QDs 25 formed at the initial stage of the reaction preferably do not contain In. According to the present embodiment, it is speculated that emission characteristics with a narrow fluorescence half-value width can be obtained because the QDs 25 do not contain In at the initial stage of the reaction.
  • the QDs 25 that emit green light preferably contain In in the end, and the QDs 25 can contain In during the reaction process. However, it is not essential that the QDs 25 that emit green light contain In. As described above, for example, it has been confirmed that light is emitted even when the QD 25 does not contain In, although the fluorescence half-value width is somewhat widened.
  • Zn when Zn is included in the QD 25, it is preferable to add Zn while paying attention to the following points.
  • Zn is preferably added in the final step rather than during the initial reaction. This is because, as described above, if Zn is contained inside the particles of the QD25, there is a risk that defect luminescence is dominant, or only defect luminescence can be confirmed. Therefore, it is preferable to react with Zn only on the particle surface by adding Zn in the final step.
  • Zn is preferably added at low temperatures. Here, low temperature means about 150 to 200.degree. If the temperature at which Zn is added is high, Zn reacts with the inside of the QD25 particles, and defect emission is likely to occur. Therefore, in order to limit the reaction between QD25 and Zn to the surface of the QD25 particles, Zn is preferably allowed to react only with the surface of the QD25 particles at a low temperature.
  • Se-OLAm/DDT As the Se raw material, as described above. Thereby, defect light emission can be effectively suppressed.
  • thiuram-based S raw materials especially tetraethylthiuram disulfide, can be used as the S raw material instead of dissolving sulfur powder, which is generally used, because good light emission characteristics can be obtained. preferable.
  • centrifugation separates large particles from small particles.
  • a solvent such as toluene or ethanol is added and centrifuged in the centrifugal separation step.
  • the ratio of solvents such as toluene and ethanol
  • the degree of aggregation of QD25 can be changed depending on the type and amount of ligand 21 coordinated to the surface of QD25. can be changed.
  • QD25 with high fluorescence quantum yield and QD25 with low fluorescence quantum yield can be separated.
  • TOP trioctylphosphine
  • Cd-free quantum dots having a narrow fluorescence half-value width and a high fluorescence quantum yield can be safely and mass-produced. Synthesis is possible.
  • OLAc OLAc
  • OLAm OLAm
  • DDT DDT
  • TOP TOP
  • Ag(OAc) manufactured by Aldrich Co., Ltd. was used as silver acetate (Ag(OAc)).
  • Ag(OAc)-OLAm solution concentration 0.2 M was prepared by dissolving silver acetate (Ag(OAc)) in oleylamine (OLAm).
  • In raw material In(OAc) 3 manufactured by Shinko Kagaku Kogyo Co., Ltd. was used as indium acetate (In(OAc) 3 ).
  • a synthetic raw material indium thiocarbamate synthesized by the inventor was used for indium diethyldithiocarbamate.
  • In(OAc) 3 -OLAm/OLAc In(OAc) 3 -OLAm/OLAc solution) (concentration 0.2 M) converts indium acetate (In(OAc) 3 ) to oleylamine (OLAm) and oleic acid (OLAc).
  • a solution was prepared by dissolving.
  • In(acac) 3 -OLAm/OLAc In(OAc) 3 -OLAm/OLAc solution) (0.02 M concentration) prepared indium acetylacetonate (In(acac) 3 ) with oleylamine (OLAm) and oleic acid (OLAc ) to prepare a solution.
  • GaCl 3 manufactured by Shinko Kagaku Kogyo Co., Ltd. was used as gallium chloride (GaCl 3 ).
  • Ga(acac) 3 manufactured by Tokyo Chemical Industry Co., Ltd. was used as gallium acetylacetonate (Ga(acac) 3 ).
  • GaCl 3 /OLAc-ODE GaCl 3 /OLAc-ODE solution
  • GaCl 3 /OLAc-ODE solution gallium chloride (GaCl 3 ) and oleic acid (OLAc)
  • GaCl 3 /OLAc-ODE GaCl 3 /OLAc-ODE solution
  • Ga:OLAc concentration 0.1 M
  • GaCl 3 /OLAc-ODE solution concentration 0.1 M
  • Ga:OLAc gallium chloride
  • ODE octadecene
  • GaCl 3 /MA-ODE GaCl 3 /MA-ODE solution
  • concentration 0.1 M concentration 0.1 M
  • GaCl 3 /MA-ODE solution gallium chloride
  • MA myristic acid
  • GaCl 3 /OLAc-OLAm GaCl 3 /OLAc-OLAm solution
  • Ga:OLAc concentration 0.1 M
  • Ga:OLAc gallium chloride
  • Oc oleic acid
  • GaCl 3 /OLAc-OLAm GaCl 3 /OLAc-OLAm solution
  • S raw material S manufactured by Kishida Chemical Co., Ltd. was used as sulfur (S).
  • TETDS manufactured by Sanshin Chemical Industry Co., Ltd. was used as tetraethylthiuram disulfide (TETDS).
  • DPTT tetraethylthiuram disulfide
  • IPXDS IPXDS manufactured by Sanshin Chemical Industry Co., Ltd. was used as isopropyl xanthogen disulfide (IPXDS).
  • TMTDS manufactured by Sanshin Chemical Industry Co., Ltd. was used as tetramethylthiuram disulfide (TMTDS).
  • TETDS-OLAm (TETDS-OLAm solution) (concentration 0.4 M) was prepared by dissolving tetraethylthiuram disulfide (TETDS) in oleylamine (OLAm).
  • S-ODE S-ODE solution
  • S-ODE solution concentration 0.2 M
  • S-ODE sulfur
  • OLED octadecene
  • DPTT-OLAm DPTT-OLAm solution
  • DPTT-OLAm (concentration 0.4 M) was prepared by dissolving dipentamethylenethiuram tetrasulfide (DPTT) in oleylamine (OLAm).
  • DTDM-OLAm (DTDM-OLAm solution) (concentration 0.4 M) was prepared by dissolving 4,4′-dithiodimorpholine (DTDM) in oleylamine (OLAm).
  • IPXDS-OLAm IPXDS-OLAm solution
  • TMTDS-OLAm (TMTDS-OLAm solution) (concentration 0.4 M) was prepared by dissolving tetramethylthiuram disulfide (TMTDS) in oleylamine (OLAm).
  • S-TOP S-TOP solution
  • S-OLAm/DDT S-OLAm/DDT solution
  • DDT dodecanethiol
  • Se-OLAm/DDT Se-OLAm/DDT solution (0.7 M concentration) was prepared by dissolving selenium (Se) in oleylamine (OLAm) and dodecanethiol (DDT).
  • Zn raw material Zn(OAc) 2 manufactured by Kishida Chemical Co., Ltd. was used as zinc acetate (Zn(OAc) 2 ).
  • Zn(OAc) 2 -OLAc/TOP Zn(OAc) 2 -OLAc/TOP solution (0.8 M concentration) prepared zinc acetate (Zn(OAc) 2 ) with oleic acid (OLAc) and trioctylphosphine (TOP ) to prepare a solution.
  • Zn(OAc) 2 -OLAc/OLAm Zn(OAc) 2 -OLAm solution (concentration 0.4 M) dissolves zinc acetate (Zn(OAc) 2 ) in oleic acid (OLAc) and oleylamine (OLAm)
  • OVAc oleic acid
  • OAm oleylamine
  • JEM-ARM200CF manufactured by JEOL Ltd. was used as a TEM (transmission electron microscope).
  • EDX energy dispersive X-ray
  • Example 1 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 91.8 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT) 0.5 mL was added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 120° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution AgGaS dispersion liquid (1A) containing AgGaS-based particles as initial reaction particles was cooled to room temperature.
  • the QD25 was re-dispersed with oleylamine (OLAm) to obtain an AgInGaS dispersion liquid (1C) containing the QD25.
  • This AgInGaS dispersion (1C) was then reheated to 270° C. and stirred.
  • TOP trioctylphosphine
  • the QD25 was re-dispersed in toluene to obtain a QD dispersion (1F) containing the QD25. Then, the fluorescence wavelength and fluorescence half width of the QD25 in this QD dispersion (1F) were measured with the fluorescence spectrometer. In addition, the fluorescence quantum yield of the QD25 in the QD dispersion (1F) was measured with the quantum yield measurement device. As a result, optical characteristics were obtained such as a fluorescence wavelength of 532 nm, a fluorescence half width of 38 nm, and a fluorescence quantum yield of 45%. In addition, the particle size of the QD25 was measured with the scanning transmission electron microscope (STEM) and found to be 8.1 nm. The particle size was calculated from the average value of the observed samples in the particle observation by the STEM.
  • STEM scanning transmission electron microscope
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are shown in Table 1 later.
  • Table 1 "composition of initial reaction particles”, “fluorescence wavelength”, “fluorescence half-value width”, and “fluorescence quantum yield” are expressed in the order of "initial particle composition", “wavelength”, "half-value width", It is written as "PLQY".
  • a light emitting device that emits green light includes a chalcopyrite-based QD that does not contain Cd and has a narrow fluorescence half-value width and a high fluorescence quantum yield. 1 can be provided.
  • Sample (1) ITO (30 nm)/PEDOT:PSS (40 nm)/PVK (30 nm)/QD layer (10 nm)/ZnMgO (60 nm)/Al (100 nm)
  • Sample (2) ITO (30 nm)/PEDOT:PSS (40 nm)/PVK (30 nm)/QD layer (20 nm)/ZnMgO (60 nm)/Al (100 nm)
  • Sample (3) ITO (30 nm)/PEDOT:PSS (40 nm)/PVK (30 nm)/QD layer (30 nm)/ZnMgO (60 nm)/Al (100 nm)
  • an anode 12 having a thickness of 30 nm was formed in each sample by sputtering ITO on a substrate 11 which was a glass substrate.
  • HIL13 PEDOT:PSS layer
  • PVK PVK layer
  • the QD layer 15 (AgInGaS-based QD layer) was formed with a layer thickness of 10 nm for the sample (1), a layer thickness of 20 nm for the sample (2), and a layer thickness of 30 nm for the sample (3).
  • a solution containing ZnMgO nanoparticles was applied onto the QD layer 15 by spin coating, and the solvent was volatilized by baking.
  • ETL16 ZnMgO nanoparticle layer
  • Al was vacuum-deposited on the ETL 16 to form a cathode 17 with a thickness of 100 nm in each sample.
  • the substrate 11 and the laminate formed on the substrate 11 in each sample were sealed with a sealing member.
  • a current (more precisely, current density) of 0.03 mA/cm 2 to 75 mA/cm 2 was then applied to each sample.
  • the EL (electroluminescence) luminance of the light L emitted from each sample was measured using the LED measuring device (spectroscopic device).
  • FIG. 4 shows the normalized luminescence luminance obtained by normalizing the EL luminescence luminance of samples (1) to (4) at 0.03 to 75 mA/cm 2 with the EL luminescence luminance of sample (1) at 75 mA/cm 2 being 1. is a graph showing
  • the QD layer 15 having a thickness of 20 nm or less provides better light emission characteristics than the QD layer 15 having a thickness of 30 nm.
  • the HIL 13 and the HTL 14 are provided in this order from the anode 12 side between the anode 12 and the QD layer 15, and the cathode 17 and the QD layer 15 are provided.
  • ETL 16 in between, HIL 13 comprising PEDOT:PSS, a composite of poly(3,4-ethylenedioxythiophene) and polystyrene sulfonic acid, HTL 14 comprising PVK, and ETL 16 comprising ZnMgO. , it is possible to provide the light-emitting element 1 capable of obtaining good light-emitting characteristics.
  • Example 2 In a 300 mL reaction vessel, 1.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 165 mg of gallium acetylacetonate (Ga(acac) 3 ), 28.5 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 1.5 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 120° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution (AgGaS dispersion liquid (2A) containing AgGaS-based particles as initial reaction particles) was cooled to room temperature.
  • the fluorescence wavelength and fluorescence half width of QD25 in the obtained reaction solution were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the reaction solution (AgInGaS dispersion (2B)) was measured with the quantum yield measurement device.
  • optical characteristics were obtained such as a fluorescence wavelength of 539 nm, a fluorescence half width of 35 nm, and a fluorescence quantum yield of 49%.
  • the QD25 was washed and separated using toluene and ethanol, and then the QD25 was purified by repeating the operation of redispersing the QD25 with trioctylphosphine (TOP) twice.
  • TOP trioctylphosphine
  • the fluorescence wavelength and fluorescence half-value width of the QD25 in the QD dispersion (2C) containing the QD25 thus obtained were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (2C) was measured with the quantum yield measurement device.
  • optical characteristics were obtained with a fluorescence wavelength of 539 nm, a fluorescence half width of 35.4 nm, and a quantum yield of 75%.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 1 later.
  • Example 3 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 0.5 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 120° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • the fluorescence wavelength and fluorescence half width of QD25 in the obtained reaction solution (AgInGaS dispersion (3B)) were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the reaction solution (AgInGaS dispersion (3B)) was measured with the quantum yield measurement device.
  • optical characteristics were obtained such as a fluorescence wavelength of 526 nm, a fluorescence half width of 35.5 nm, and a fluorescence quantum yield of 34%.
  • the QD25 was washed and separated using toluene and ethanol, and then the QD25 was purified by repeating the operation of redispersing the QD25 with trioctylphosphine (TOP) twice.
  • TOP trioctylphosphine
  • the fluorescence wavelength and fluorescence half-value width of the QD25 in the QD dispersion (3C) containing the QD25 thus obtained were measured with a fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (3C) was measured with the quantum yield measurement device.
  • optical characteristics were obtained such as a fluorescence wavelength of 526.5 nm, a fluorescence half width of 34.8 nm, and a quantum yield of 54%.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 1 later.
  • Example 4 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 0.5 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 120° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution AgGaS dispersion liquid (4A) containing AgGaS-based particles as initial reaction particles was cooled to room temperature.
  • the fluorescence wavelength and fluorescence half width of QD25 in the obtained reaction solution were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the reaction solution (AgInGaS dispersion (4B)) was measured with the quantum yield measurement device.
  • optical characteristics were obtained such as a fluorescence wavelength of 526 nm, a fluorescence half width of 37.5 nm, and a quantum yield of 41%.
  • the QD25 was washed and separated using toluene and ethanol, and then the QD25 was purified by repeating the operation of redispersing the QD25 with trioctylphosphine (TOP) twice.
  • TOP trioctylphosphine
  • the fluorescence wavelength and fluorescence half-value width of the QD25 in the QD dispersion liquid (4C) containing the QD25 thus obtained were measured with a fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (4C) was measured with the quantum yield measurement device.
  • optical characteristics were obtained with a fluorescence wavelength of 527.5 nm, a fluorescence half width of 36.9 nm, and a quantum yield of 56%.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 1 later.
  • Example 5 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 0.5 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 120° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • the fluorescence wavelength and fluorescence half width of QD25 in the obtained reaction solution were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the reaction solution (AgInGaS dispersion (5B)) was measured with the quantum yield measurement device.
  • optical characteristics were obtained such that the fluorescence wavelength was 530 nm, the fluorescence half-width was 37 nm, and the quantum yield was 40%.
  • the QD25 was washed and separated using toluene and ethanol, and then the QD25 was purified by repeating the operation of redispersing the QD25 with trioctylphosphine (TOP) twice.
  • TOP trioctylphosphine
  • the fluorescence wavelength and fluorescence half width of the QD25 in the QD dispersion liquid (5C) containing the QD25 thus obtained were measured with a fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (5C) was measured with the quantum yield measurement device.
  • optical characteristics were obtained with a fluorescence wavelength of 532 nm, a fluorescence half width of 36.9 nm, and a quantum yield of 65%.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 1 later.
  • Example 6 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 0.5 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 120° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • the fluorescence wavelength and fluorescence half width of QD25 in the obtained reaction solution were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the reaction solution (AgInGaS dispersion (6B)) was measured with the quantum yield measurement device.
  • optical properties were obtained with a fluorescence wavelength of 542 nm, a fluorescence half width of 36.5 nm, and a quantum yield of 54%.
  • the QD25 was washed and separated using toluene and ethanol, and then the QD25 was purified by repeating the operation of redispersing the QD25 with trioctylphosphine (TOP) twice.
  • TOP trioctylphosphine
  • the fluorescence wavelength and fluorescence half-value width of the QD25 in the QD dispersion (6C) containing the QD25 thus obtained were measured with a fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (6C) was measured with the quantum yield measurement device.
  • optical characteristics were obtained with a fluorescence wavelength of 542 nm, a fluorescence half width of 36.5 nm, and a quantum yield of 71%.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 1 later.
  • Example 7 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 0.5 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 120° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • the fluorescence wavelength and fluorescence half width of QD25 in the obtained reaction solution were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the reaction solution (AgInGaS dispersion (7B)) was measured with the quantum yield measurement device.
  • optical properties were obtained such that the fluorescence wavelength was 546 nm, the fluorescence half-width was 29.3 nm, and the quantum yield was 39%.
  • the QD25 was washed and separated using toluene and ethanol, and then the QD25 was purified by repeating the operation of redispersing the QD25 with trioctylphosphine (TOP) twice.
  • TOP trioctylphosphine
  • the fluorescence wavelength and fluorescence half-value width of the QD25 in the QD dispersion (7C) containing the QD25 thus obtained were measured with a fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (7C) was measured with the quantum yield measurement device.
  • optical characteristics were obtained with a fluorescence wavelength of 548.5 nm, a fluorescence half width of 30.5 nm, and a quantum yield of 59%.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 1 later.
  • Example 8 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 0.5 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 120° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • the fluorescence wavelength and fluorescence half width of QD25 in the obtained reaction solution were measured with the fluorescence spectrometer. Further, the fluorescence quantum yield of the QD25 in the reaction solution (AgInGaS dispersion (8B)) was measured with the quantum yield measurement device. As a result, optical characteristics were obtained such that the fluorescence wavelength was 546 nm, the fluorescence half-width was 36.5 nm, and the quantum yield was 55%.
  • the QD25 was washed and separated using toluene and ethanol, and then the QD25 was purified by repeating the operation of redispersing the QD25 with trioctylphosphine (TOP) twice.
  • TOP trioctylphosphine
  • the fluorescence wavelength and fluorescence half width of the QD25 in the QD dispersion liquid (8C) containing the QD25 thus obtained were measured with a fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (8C) was measured with the quantum yield measurement device.
  • optical characteristics were obtained with a fluorescence wavelength of 546.5 nm, a fluorescence half width of 36.2 nm, and a quantum yield of 81%.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 1 later.
  • Example 9 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 0.5 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 120° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • the fluorescence wavelength and fluorescence half width of QD25 in the obtained reaction solution were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the reaction solution (AgInGaS dispersion (9B)) was measured with the quantum yield measurement device.
  • optical characteristics were obtained such that the fluorescence wavelength was 523 nm, the fluorescence half-width was 36.5 nm, and the quantum yield was 25%.
  • the QD25 was washed and separated using toluene and ethanol, and then the QD25 was purified by repeating the operation of redispersing the QD25 with trioctylphosphine (TOP) twice.
  • TOP trioctylphosphine
  • the fluorescence wavelength and fluorescence half-value width of the QD25 in the QD dispersion liquid (9C) containing the QD25 thus obtained were measured with a fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (9C) was measured with the quantum yield measurement device. As a result, optical properties were obtained such that the fluorescence wavelength was 522 nm, the fluorescence half-width was 38 nm, and the quantum yield was 46%.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • Table 2 summarizes the composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example.
  • composition of initial reaction particles “fluorescence wavelength”, “fluorescence half-value width”, and “fluorescence quantum yield” are expressed in the order of "initial particle composition”, “wavelength”, "half-value width", It is written as "PLQY".
  • Example 10 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 0.5 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 120° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution AgGaS dispersion liquid (10A) containing AgGaS-based particles as initial reaction particles was cooled to room temperature.
  • the fluorescence wavelength and fluorescence half width of QD25 in the obtained reaction solution were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the reaction solution (AgInGaS dispersion (10B)) was measured with the quantum yield measurement device.
  • optical properties were obtained such that the fluorescence wavelength was 534 nm, the fluorescence half-width was 36 nm, and the quantum yield was 33%.
  • the QD25 was washed and separated using toluene and ethanol, and then the QD25 was purified by repeating the operation of redispersing the QD25 with trioctylphosphine (TOP) twice.
  • TOP trioctylphosphine
  • the fluorescence wavelength and fluorescence half-value width of the QD25 in the QD dispersion (10C) containing the QD25 thus obtained were measured with a fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (10C) was measured with the quantum yield measurement device. As a result, optical characteristics were obtained such that the fluorescence wavelength was 534 nm, the fluorescence half-width was 40 nm, and the quantum yield was 45%.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 2 later.
  • Example 11 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 73.4 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT) 0.3 mL was added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 120° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution AgGaS dispersion liquid (11A) containing AgGaS-based particles as initial reaction particles was cooled to room temperature.
  • TOP trioctylphosphine
  • the fluorescence wavelength and fluorescence half width of the QD25 in this QD dispersion (11D) were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (11D) was measured with the quantum yield measurement device.
  • optical properties were obtained with a fluorescence wavelength of 536.5 nm, a fluorescence half width of 29.4 nm, and a quantum yield of 71%.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 2 later.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 2 later.
  • Example 12 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 91.8 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT) 0.5 mL was added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 200° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution AgGaS dispersion liquid (12A) containing AgGaS-based particles as initial reaction particles was cooled to room temperature.
  • TOP trioctylphosphine
  • the fluorescence wavelength and fluorescence half width of the QD25 in this QD dispersion (12F) were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (12F) was measured with the quantum yield measurement device. As a result, as shown in FIG. 12, optical characteristics of a fluorescence wavelength of 530.5 nm, a fluorescence half width of 38 nm, and a quantum yield of 86% were obtained.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 2 later.
  • Example 13 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 0.5 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 200° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution AgGaS dispersion liquid (13A) containing AgGaS-based particles as initial reaction particles was cooled to room temperature.
  • reaction solution (AgInGaS dispersion (13C)) was centrifuged at 5500 rpm for 3 minutes in a centrifuge, and the supernatant was recovered. 3 mL of trioctylphosphine (TOP) was added to the recovered supernatant and heated at 200° C. for 10 minutes. After that, the resulting reaction solution (AgInGaS dispersion liquid (13D) containing AgInGaS-based QD25) was cooled to room temperature.
  • TOP trioctylphosphine
  • washing and separation refers to the step of controlling and separating the degree of aggregation due to the difference in the coordination state of the ligand 21 coordinating to the QD 25 by changing the ratio of toluene and ethanol. Through centrifugation and washing separation, only QD25 coordinated with ligand 21 could be recovered in a well-balanced manner, and as a result, as described above, a high quantum yield and good luminescence properties could be obtained.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 2 later.
  • Example 14 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 73.4 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT) 0.5 mL was added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 200° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution (AgInGaS dispersion (14B)) was centrifuged at 5500 rpm for 3 minutes in a centrifuge, and the supernatant was collected. 3 mL of trioctylphosphine (TOP) was added to the collected supernatant and heated at 180° C. for 10 minutes. Thereafter, the resulting reaction solution (AgInGaS dispersion (14C) containing AgInGaS-based QD25) was cooled to room temperature.
  • TOP trioctylphosphine
  • the fluorescence wavelength and fluorescence half width of the QD25 in this QD dispersion (14D) were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (14D) was measured with the quantum yield measurement device.
  • optical characteristics were obtained with a fluorescence wavelength of 531.0 nm, a fluorescence half width of 29.3 nm, and a quantum yield of 85%.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 2 later.
  • Example 15 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 73.4 mg of gallium acetylacetonate (Ga(acac) 3 ), 9.5 mL of oleylamine (OLAm), and dodecanethiol (DDT) 0.5 mL was added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 200° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution (AgInGaS dispersion (15B)) was centrifuged at 5500 rpm for 3 minutes in a centrifuge, and the supernatant was collected. 3 mL of trioctylphosphine (TOP) was added to the collected supernatant and heated at 180° C. for 10 minutes. Thereafter, the resulting reaction solution (AgInGaS dispersion (15C) containing AgInGaS-based QD25) was cooled to room temperature.
  • TOP trioctylphosphine
  • the fluorescence wavelength and fluorescence half width of the QD25 in this QD dispersion (15D) were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (15D) was measured with the quantum yield measurement device.
  • optical properties were obtained with a fluorescence wavelength of 529.5 nm, a fluorescence half width of 30.8 nm, and a quantum yield of 71%.
  • reaction solution (AgInGaS dispersion (15C)) was heated at 200° C. for 5 minutes. Thereafter, 0.075 mL of the Zn(OAc) 2 -OLAc/TOP (concentration: 0.8 M) and the S-TOP (concentration: 0.8 M) were added to the reaction solution heated with stirring at 200° C. from above. 2 mL of a mixed solution obtained by mixing 0.6 mL of 2M) and 1.325 mL of oleylamine (OLAm) was added dropwise over 120 minutes. After the dropping of the mixed solution was completed, the obtained reaction solution (ZnAgInGaS dispersion liquid (15D) containing ZnAgInGaS-based QD25) was cooled to room temperature.
  • ZnAgInGaS dispersion liquid (15D) containing ZnAgInGaS-based QD25
  • the fluorescence wavelength and fluorescence half width of the QD25 in this QD dispersion (15E) were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (15E) was measured with the quantum yield measurement device.
  • optical characteristics were obtained with a fluorescence wavelength of 528 nm, a fluorescence half-width of 31 nm, and a quantum yield of 84%.
  • the light emitting device 1 that emits green light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the particles in the initial stage of the reaction, the post-addition element, the fluorescence wavelength, the fluorescence half width, the fluorescence quantum yield, and the S raw material as the S source in this example are also shown in Table 2 later.
  • Example 16 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55.5 mg of gallium acetylacetonate (Ga(acac) 3 ), 20 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 3 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 150° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution was centrifuged at 5500 rpm for 3 minutes in a centrifuge to precipitate the initial reaction particles.
  • the precipitated initial reaction particles were re-dispersed with toluene, added with methanol and ethanol, and centrifuged at 5500 rpm for 3 minutes in a centrifuge. As a result, the initial reaction particles were precipitated again. Thereafter, 9.5 mL of oleylamine (OLAm) was added to the precipitated initial reaction particles to re-disperse the initial reaction particles with oleylamine (OLAm). As a result, an AgGaSe dispersion liquid (16B) in which the initial reaction particles were dispersed in oleylamine (OLAm) was obtained.
  • oleylamine oleylamine
  • concentration 0.1 M and 0.64 mL of the Se-OLAm/DDT (concentration 0.7 M)
  • 3.64 mL of the mixed solution was added dropwise over 20 minutes.
  • the reaction solution to which the mixed solution was dropped was heated while being stirred for 100 minutes.
  • the resulting reaction solution (AgGaSe dispersion (16C) containing AgGaSe-based particles) was cooled to room temperature.
  • the fluorescence wavelength and fluorescence half width of the particles in the obtained reaction solution were measured with the fluorescence spectrometer. As a result, optical characteristics were obtained with a fluorescence wavelength of 639 nm and a fluorescence half width of 28.5 nm.
  • TOP trioctylphosphine
  • a light emitting device that emits red light includes a chalcopyrite-based QD that does not contain Cd and has a narrow fluorescence half-value width and a high fluorescence quantum yield. 1 can be provided.
  • composition of the initial reaction particles, post-addition element, fluorescence wavelength, fluorescence half-value width, fluorescence quantum yield, S raw material as an S source and Se raw material as a Se source in this example are summarized in Table 3 later. is shown.
  • Table 3 “composition of initial reaction particles”, “fluorescence wavelength”, “fluorescence half-value width”, and “fluorescence quantum yield” are expressed in the order of "initial particle composition”, “wavelength”, "half-value width", It is written as "PLQY”.
  • Example 17 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55.5 mg of gallium acetylacetonate (Ga(acac) 3 ), 20 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 3 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 150° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution was centrifuged at 5500 rpm for 3 minutes in a centrifuge to precipitate the initial reaction particles.
  • the precipitated initial reaction particles were re-dispersed with toluene, added with methanol and ethanol, and centrifuged at 5500 rpm for 3 minutes in a centrifuge. As a result, the initial reaction particles were precipitated again. Thereafter, 9.5 mL of oleylamine (OLAm) was added to the precipitated initial reaction particles to re-disperse the initial reaction particles with oleylamine (OLAm). As a result, a dispersion liquid (17B) in which the initial reaction particles were dispersed in oleylamine (OLAm) was obtained.
  • oleylamine oleylamine
  • TOP trioctylphosphine
  • the light emitting device 1 that emits red light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the initial reaction particles, the post-addition element, the fluorescence wavelength, the fluorescence half-width, the fluorescence quantum yield, the S raw material as the S source, and the Se raw material as the Se source in this example are also shown in Table 3 later. Shown together.
  • Example 18 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55.5 mg of gallium acetylacetonate (Ga(acac) 3 ), 20 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 3 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 150° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution was centrifuged at 5500 rpm for 3 minutes in a centrifuge to precipitate the initial reaction particles.
  • the precipitated initial reaction particles were re-dispersed with toluene, added with methanol and ethanol, and centrifuged at 5500 rpm for 3 minutes in a centrifuge. As a result, the initial reaction particles were precipitated again. Thereafter, 9.5 mL of oleylamine (OLAm) was added to the precipitated initial reaction particles to re-disperse the initial reaction particles with oleylamine (OLAm). As a result, a dispersion liquid (18B) in which the initial reaction particles were dispersed in oleylamine (OLAm) was obtained.
  • oleylamine oleylamine
  • TOP trioctylphosphine
  • TOP trioctylphosphine
  • the reaction solution to which the TOP was added was centrifuged at 5500 rpm for 3 minutes in a centrifuge to remove precipitates.
  • a QD dispersion (18E) containing the QD25 was obtained.
  • the fluorescence wavelength and fluorescence half width of the QD25 in the obtained QD dispersion (18E) were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (18E) was measured with the quantum yield measurement device.
  • optical characteristics were obtained with a fluorescence wavelength of 633 nm, a fluorescence half width of 27 nm, and a quantum yield of 81%.
  • the light emitting device 1 that emits red light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the initial reaction particles, the post-addition element, the fluorescence wavelength, the fluorescence half-width, the fluorescence quantum yield, the S raw material as the S source, and the Se raw material as the Se source in this example are also summarized in Table 3 later. is shown.
  • Example 19 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55.5 mg of gallium acetylacetonate (Ga(acac) 3 ), 20 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 3 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 150° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution (AgGaSe dispersion (19A) containing AgGaSe-based particles as initial reaction particles) was once cooled to room temperature, then heated at 320°C for 20 minutes with stirring, and then Cooled to room temperature.
  • reaction solution was centrifuged at 5500 rpm for 3 minutes in a centrifuge to precipitate the initial reaction particles.
  • the precipitated initial reaction particles were re-dispersed with toluene, and the initial reaction particles were washed and separated using methanol and ethanol.
  • 9.5 mL of oleylamine (OLAm) was added to the initial reaction particles to redisperse the initial reaction particles with oleylamine (OLAm).
  • a dispersion liquid (19B) in which the initial reaction particles were dispersed in oleylamine (OLAm) was obtained.
  • TOP trioctylphosphine
  • TOP trioctylphosphine
  • the reaction solution to which the TOP was added was centrifuged at 5500 rpm for 3 minutes in a centrifuge to remove precipitates.
  • a QD dispersion (19E) containing the QD25 was obtained.
  • the fluorescence wavelength and fluorescence half width of the QD25 in the obtained QD dispersion (19E) were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (19E) was measured with the quantum yield measurement device.
  • optical characteristics of a fluorescence wavelength of 630.5 nm, a fluorescence half width of 24.5 nm, and a quantum yield of 70% were obtained.
  • the light emitting device 1 that emits red light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the initial reaction particles, the post-addition element, the fluorescence wavelength, the fluorescence half-width, the fluorescence quantum yield, the S raw material as the S source, and the Se raw material as the Se source in this example are also summarized in Table 3 later. is shown.
  • Example 20 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 53.3 mg of gallium acetylacetonate (Ga(acac) 3 ), and In(acac) 3 -OLAm/OLAc (concentration 0.02 M) and 2.5 mL of dodecanethiol (DDT) were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 150° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • the Se-OLAm/DDT concentration 0.7M
  • the temperature of the solution in the reaction vessel was raised to 150° C. and stirred for 10 minutes.
  • the obtained reaction solution (AgInGaSe dispersion (20A) containing AgInGaSe-based particles as initial reaction particles) was once cooled to room temperature, then heated at 320°C for 60 minutes with stirring, and then Cooled to room temperature.
  • reaction solution was centrifuged at 5500 rpm for 3 minutes in a centrifuge to precipitate the initial reaction particles.
  • the precipitated initial reaction particles were re-dispersed with toluene, and the initial reaction particles were washed and separated using methanol and ethanol.
  • 9.5 mL of oleylamine (OLAm) was added to the initial reaction particles to redisperse the initial reaction particles with oleylamine (OLAm).
  • a dispersion liquid (20B) in which the initial reaction particles were dispersed in oleylamine (OLAm) was obtained.
  • the reaction solution to which the mixed solution was dropped was heated while being stirred for 150 minutes. After that, the resulting reaction solution (AgInGaSe dispersion containing AgInGaSe particles (20C)) was cooled to room temperature.
  • the light emitting device 1 that emits red light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the initial reaction particles, the post-addition element, the fluorescence wavelength, the fluorescence half-width, the fluorescence quantum yield, the S raw material as the S source, and the Se raw material as the Se source in this example are also summarized in Table 3 later. is shown.
  • Example 21 In a 100 mL reaction vessel, 0.5 mL of the Ag(OAc)-OLAm (concentration 0.2 M), 55.5 mg of gallium acetylacetonate (Ga(acac) 3 ), 20 mL of oleylamine (OLAm), and dodecanethiol (DDT ) and 3 mL were added. Then, in an inert gas (N 2 ) atmosphere, the raw materials in the reaction vessel were dissolved by heating at 150° C. for 5 minutes while stirring to obtain a solution.
  • N 2 inert gas
  • reaction solution was centrifuged at 5500 rpm for 3 minutes in a centrifuge to precipitate the initial reaction particles.
  • the precipitated initial reaction particles were re-dispersed with toluene, and the initial reaction particles were washed and separated using methanol and ethanol.
  • 9.5 mL of oleylamine (OLAm) was added to the initial reaction particles to redisperse the initial reaction particles with oleylamine (OLAm).
  • a dispersion liquid (21B) in which the initial reaction particles were dispersed in oleylamine (OLAm) was obtained.
  • TOP trioctylphosphine
  • TOP trioctylphosphine
  • the reaction solution to which the TOP was added was centrifuged at 5500 rpm for 3 minutes in a centrifuge to remove precipitates.
  • a QD dispersion (21E) containing the QD25 was obtained.
  • the fluorescence wavelength and fluorescence half width of the QD25 in the obtained QD dispersion (21E) were measured with the fluorescence spectrometer.
  • the fluorescence quantum yield of the QD25 in the QD dispersion (21E) was measured with the quantum yield measurement device.
  • optical characteristics of a fluorescence wavelength of 633 nm, a fluorescence half width of 23.9 nm, and a quantum yield of 75% were obtained.
  • the light emitting device 1 that emits red light includes chalcopyrite-based QDs that do not contain Cd and have a narrow fluorescence half-value width and a high fluorescence quantum yield. can be provided.
  • composition of the initial reaction particles, the post-addition element, the fluorescence wavelength, the fluorescence half-width, the fluorescence quantum yield, the S raw material as the S source, and the Se raw material as the Se source in this example are also summarized in Table 3 later. is shown.
  • the "post-addition element” described in Tables 1 to 3 includes the composition of the shell 25b that covers the surface of the core 25a, the photographing by the TEM (transmission electron microscope) and the energy dispersive X-ray (EDX) As a result of analysis by TEM-EDX using an analyzer, a clear core-shell structure could not be confirmed, and it was found that all the added raw materials were mixed crystals.
  • "initial particle composition” and "subsequent added elements” are described separately.
  • Example 17 the QDs 25 do not contain Zn, and in Example 18, the QDs 25 contain Zn. As can be seen from the comparison between Example 17 and Example 18, Example 18 provided better light emission characteristics than Example 17.
  • the fluorescence half width of QD25 can be made 45 nm or less, preferably 30 nm or less. Further, as shown in Tables 1 to 3, according to Examples 1 to 21, the fluorescence quantum yield was found to be 35% or higher, preferably 70% or higher.
  • the fluorescence quantum yield becomes 35% or less, and the AgIn x Ga 1-x S y Se 1-y system having a narrow fluorescence half width and a high fluorescence quantum yield as in this example, or , ZnAgIn x Ga 1-x S y Se 1-y system (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) quantum dots could not be obtained.
  • Example 8 the AgInGaS-based QD25 in the AgInGaS dispersion (8B) of Example 8 was measured using the scanning electron microscope (SEM). 21 is a scanning electron micrograph of QD25 obtained in Example 8.
  • SEM scanning electron microscope
  • FIG. 22 shows an analysis image (observation image) of the ZnAgGaSSe-based QD25 of Example 16 analyzed by TEM-EDX.
  • FIG. 23 is a partial schematic diagram of the analysis image (observation image) shown in FIG. As shown in FIGS. 22 and 23, the more Zn detected, the darker the color detected, indicating that Zn is mainly present (unevenly distributed) on the surface of QD25.
  • QD25 that exhibits high-intensity green fluorescence or red fluorescence can be stably obtained.
  • QD25 that exhibits high-intensity green fluorescence or red fluorescence can be stably obtained.
  • light-emitting devices such as LEDs, backlight devices, and display devices, excellent light-emitting characteristics can be obtained in each device.
  • the light-emitting element 1 is applied, for example, as a light source of a display device, as described above.
  • the fluorescence wavelength of the QDs 25 and the fluorescence wavelength of the QD layer 15 can be controlled to 400 nm or more and 700 nm or less. preferably. Therefore, the light-emitting element 1 is suitably applied as, for example, a green light source or red light source of a display device.
  • the light emitting element 1 may be a light source that is lit by combining light sources of each color (red light source, green light source, blue light source) corresponding to each pixel (R pixel, G pixel, B pixel).
  • a display device using this light source can express an image with a plurality of pixels including R pixels, G pixels, and B pixels.
  • FIG. 6 is a cross-sectional view schematically showing a schematic configuration of a main part of the display device 400 (light emitting device) according to this embodiment.
  • the light-emitting device according to this embodiment is a display device
  • the light-emitting device according to this embodiment may be a lighting device such as an LED or a backlight device, as described above.
  • the light-emitting device may be used as, for example, a display panel or a light source (illumination device) of the display device 400 .
  • the display device 400 (light emitting device) according to this embodiment includes a plurality of pixels including R pixels (PIXR), G pixels (PIXG), and B pixels (PIXB).
  • R pixels PXR
  • G pixels PXG
  • B pixels PIXB
  • the R pixel may also be referred to as an R sub-pixel. This point is the same for G pixels and B pixels.
  • the display device 400 forms one picture element with PIXR, PIXG, and PIXB.
  • PIXR, PIXG, and PIXB are collectively referred to as PIX when there is no particular need to distinguish between PIXR, PIXG, and PIXB.
  • the display device 400 has a structure in which a light-emitting element layer including a plurality of types of light-emitting elements with different emission wavelengths is provided.
  • a light-emitting element is provided in the light-emitting element layer corresponding to each PIX.
  • the PIXR is provided with a light emitting element 41R as a red light emitting element.
  • PIXG is provided with a light emitting element 41G as a green light emitting element.
  • PIXB is provided with a light emitting element 41B as a blue light emitting element.
  • the light emitting element 41R has an anode 12R, a HIL 13R, an HTL 14R, a QD layer 15R, an ETL 16R, and a cathode 17.
  • the light-emitting element 41G has an anode 12G, a HIL 13G, an HTL 14G, a QD layer 15G, an ETL 16G, and a cathode 17.
  • the light emitting element 41B has an anode 12B, a HIL 13B, an HTL 14B, a QD layer 15B, an ETL 16B and a cathode 17.
  • the light-emitting element 41R, light-emitting element 41G, and light-emitting element 41B each have the same configuration as the light-emitting element 1 shown in FIG. Therefore, anode 12R, anode 12G, and anode 12B each have the same configuration as anode 12 shown in FIG. HIL13R, HIL13G, and HIL13B each have the same configuration as HIL13 shown in FIG. HTL 14R, HTL 14G, and HTL 14B each have the same configuration as HTL 14 shown in FIG.
  • the QD layer 15R, the QD layer 15G, and the QD layer 15B each have the same configuration as the QD layer 15 shown in FIG. ETL16R, ETL16G, and ETL16B each have the same configuration as ETL16 shown in FIG.
  • At least one of the red QDs and green QDs used in PIXR (light-emitting element 41R) and PIXG (light-emitting element 41G) is preferably the above-described QD25, and both of them may be the above-described QD25. more desirable.
  • the blue QD used for PIXB (light emitting element 41B) is not particularly limited. As the blue QD, ZnS, for example, may be used as long as it is limited to a non-Cd-based material.
  • PIXR, PIXG, and PIXB are formed, for example, by separately coating layers corresponding to the layers of the light-emitting element 1, including at least the QD layer 15, on the substrate 11 provided with the bank 18 using an inkjet or the like.
  • layers corresponding to the layers of the light-emitting element 1, including at least the QD layer 15, on the substrate 11 provided with the bank 18 using an inkjet or the like are formed by As the blue QDs used for the QD layer 15B of the PIXB (light emitting element 41B), ZnS, for example, may be used as long as the materials are limited to non-Cd-based materials.
  • the ETL 16 may be formed in units of a plurality of pixels. They may be formed in common.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Luminescent Compositions (AREA)

Abstract

発光素子(1)は、陽極(12)と、陰極(17)と、上記陽極と上記陰極との間に設けられた、QD(25)を含むQD層(15)と、を備え、上記QDは、AgInGa1-xSe1-y系、或いは、ZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)のCdフリーのQDであり、緑色波長域から赤色波長域にて、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の蛍光特性を示す。

Description

電界発光素子
 本開示は、カドミウムを含有しない量子ドットを含む電界発光素子に関する。
 近年、量子ドットを含む電界発光素子に関する様々な技術が開発されている。
 量子ドットとしては、一般的に、カドミウム(Cd)を含むCd系の量子ドットが用いられている。Cdを含む量子ドットは、蛍光量子収率が高く、蛍光半値幅が狭いという利点がある。その一方で、Cdは、環境への影響の問題から、国際的に規制されており、実用化には高い障壁がある。
 そこで、近年、Cdを実質的に含まないCdフリーの量子ドットの開発が進められている。下記特許文献1~5及び非特許文献1~2には、Cdフリーのカルコパイライト系の量子ドットとして、Ag(銀)とIn(インジウム)とS(硫黄)とを含むAIS系の量子ドット、又は、AgとInとGa(ガリウム)とを含むAIGS系の量子ドットが開示されている。
日本国特開2017-025201号公報 日本国特開2018-039971号公報 日本国特開2018-044142号公報 日本国特開2018-141141号公報 国際公開WO2018/159699号パンフレット
NPG Asia Materials volume 10. 2018, pp713-726 ACS Publications 2018,10,49,41844-41855
 以上のように、Cdフリーのカルコパイライト系の量子ドットの研究開発は進んでいるものの、いずれの量子ドットも、蛍光半値幅及び蛍光量子収率の観点からCd系量子ドットの代替となるべき性能には到達していない。
 本開示の一態様は、上記問題点に鑑みてなされたものであり、緑色波長域から赤色波長域において、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdフリーのカルコパイライト系の量子ドットを含む電界発光素子を提供することを目的とする。
 上記の課題を解決するために、本開示の一態様に係る電界発光素子は、陽極と、陰極と、上記陽極と上記陰極との間に設けられた、量子ドットを含む量子ドット発光層と、を備え、上記量子ドットは、AgInGa1-xSe1-y系、或いは、ZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)のCdフリーの量子ドットであり、緑色波長域から赤色波長域にて、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の蛍光特性を示す。
 本開示の一態様によれば、緑色波長域から赤色波長域において、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系の量子ドットを含む電界発光素子を提供することができる。
実施形態1に係る発光素子の概略構成を模式的に示す断面図である。 実施形態1に係るQDの一例を示す模式図である。 実施形態1に係るQDの他の一例を示す模式図である。 実施例1におけるサンプル(1)~(4)の0.03~75mA/cmにおける規格化発光輝度を示すグラフである。 実施例2で最終的に得られたAgInGaS系のQDの蛍光(PL:フォトルミネッセンス)スペクトルである。 実施例3で最終的に得られたAgInGaS系のQDの蛍光(PL)スペクトルである。 実施例4で最終的に得られたAgInGaS系のQDの蛍光(PL)スペクトルである。 実施例5で最終的に得られたAgInGaS系のQDの蛍光(PL)スペクトルである。 実施例6で最終的に得られたAgInGaS系のQDの蛍光(PL)スペクトルである。 実施例7で最終的に得られたAgInGaS系のQDの蛍光(PL)スペクトルである。 実施例8で最終的に得られたAgInGaS系のQDの蛍光(PL)スペクトルである。 実施例12で最終的に得られたAgInGaS系のQDの蛍光(PL)スペクトルである。 実施例13で最終的に得られたAgInGaS系のQDの蛍光(PL)のPLスペクトルである。 実施例14で最終的に得られたAgInGaS系のQDの蛍光(PL)スペクトルである。 実施例15で最終的に得られたZnAgInGaS系のQDの蛍光(PL)スペクトルである。 実施例16で最終的に得られたZnAgGaSeS系のQDの蛍光(PL)スペクトルである。 実施例18で最終的に得られたZnAgGaSeS系のQDの蛍光(PL)スペクトルである。 実施例19で最終的に得られたZnAgGaSeS系のQDの蛍光(PL)スペクトルである。 実施例20で最終的に得られたZnAgInGaSeS系のQDの蛍光(PL)スペクトルである。 実施例21で最終的に得られたZnAgGaSeS系のQDの蛍光(PL)スペクトルである。 実施例8で最終的に得られたAgInGaS系のQDの走査電子顕微鏡写真を示す図である。 実施例16で最終的に得られたZnAgGaSSe系のQDのTEM-EDXによる分析画像を示す図である。 図22に示す分析画像の部分模式図である。 実施形態2に係る表示装置の要部の概略構成を模式的に示す断面図である。
 〔実施形態1〕
 本実施形態に係る電界発光素子(以下、単に「発光素子」と記す)について説明すれば、以下の通りである。なお、以下、2つの数A及びBについての「A~B」という記載は、特に明示されない限り、「A以上かつB以下」を意味するものとする。
 (発光素子の構造例)
 本実施形態に係る発光素子は、陽極(アノード)から供給された正孔(ホール)と陰極(カソード)から供給された電子(自由電子)との結合に伴って光を発する量子ドットを含んでいる。量子ドットは、陽極と陰極との間に設けられた量子ドット発光層(以下、単に「量子ドット層」と記す)に含まれている。上記発光素子としては、例えば量子ドット発光ダイオード(QLED)が挙げられる。なお、以下、量子ドットを「QD」と略記する。したがって、量子ドット層(量子ドット発光層)を「QD層(QD発光層)」と略記する。
 図1は、本実施形態に係る発光素子1の概略構成を模式的に示す断面図である。
 図1に示すように、発光素子1は、陽極12(アノード、第1電極)と、陰極17(カソード、第2電極)と、陽極12と陰極17との間に設けられた、QDを含むQD層15(QD発光層)を少なくとも含む機能層と、を備えている。なお、本実施形態では、陽極12と陰極17との間の層を総称して機能層と称する。
 上記機能層は、QD層15のみからなる単層型であってもよいし、QD層15以外の機能層を含む多層型であってもよい。上記機能層のうちQD層15以外の機能層としては、例えば、正孔注入層(以下、「HIL」と記す)、正孔輸送層(以下、「HTL」と記す)、電子輸送層(以下、「ETL」と記す)等が挙げられる。
 なお、本開示では、図1の陽極12から陰極17に向かう方向を上方向と称し、その反対方向を下方向と称する。また、本開示において、水平方向とは、上下方向に垂直な方向(発光素子1が備える各部の主面方向)である。上下方向は、上記各部の法線方向とも言える。
 これら陽極12から陰極17までの各層は、一般的に、支持体としての基板によって支持されている。したがって、発光素子1は、支持体として、基板を備えていてもよい。
 図1に示す発光素子1は、一例として、図1の上方向に向かって、基板11、陽極12、HIL13、HTL14、QD層15、ETL16、及び陰極17が、この順に積層された構成を有している。
 以下に、上記各層について、より詳細に説明する。
 基板11は、上述したように、陽極12から陰極17までの各層を形成するための支持体である。
 なお、発光素子1は、例えば、表示装置等の電子機器の光源として用いられてよい。発光素子1が、例えば表示装置の一部である場合、基板11には、上記表示装置の基板が用いられる。したがって、発光素子1は、基板11を含めて発光素子1と称される場合もあれば、基板11を含めずに発光素子1と称される場合もある。
 このように、発光素子1は、それ自体、基板11を備えていてもよいし、発光素子1が備えている基板11は、当該発光素子1を備えた、表示装置等の電子機器の基板であってもよい。発光素子1が例えば表示装置の一部である場合、基板11には、例えば、複数の薄膜トランジスタが形成されたアレイ基板が用いられてもよい。この場合、基板11上に設けられた第1電極である陽極12は、アレイ基板の薄膜トランジスタ(TFT)と電気的に接続されていてもよい。
 このように発光素子1が例えば表示装置の一部である場合、基板11には、光源として、画素毎に発光素子1が設けられる。具体的には、赤色画素(R画素)には、赤色光源として、赤色光を発する発光素子(赤色発光素子)が設けられる。緑色画素(G画素)には、緑色光源として、緑色光を発する発光素子(緑色発光素子)が設けられる。青色画素(B画素)には、青色光源として、青色光を発する発光素子(青色発光素子)が設けられる。したがって、基板11には、これらR画素、G画素、及びB画素毎に発光素子を形成することが可能なように、画素分離膜として、各画素を仕切るバンクが形成されていても構わない。
 ボトムエミッション(BE)構造を有するBE型の発光素子では、QD層15から発せられた光が、下方(つまり、基板11側)に向けて出射される。トップエミッション(TE)構造を有するTE型の発光素子では、QD層15から発せられた光が、上方(つまり、基板11とは反対側側)に向けて出射される。両面発光型の発光素子では、QD層15から発せられた光が、下方及び上方に向けて出射される。
 発光素子1がBE型又は両面発光型の発光素子である場合、基板11は、例えばガラス基板等の、相対的に透光性が高い透光性基板で構成される。
 一方、発光素子1がTE型の発光素子である場合、基板11は、例えば、プラスチック基板等の、相対的に透光性が低い基板によって構成されてもよいし、光反射性を有する光反射性基板によって構成されてもよい。なお、TE構造は、発光面にTFT等の光を遮るものが少ないため、開口率が大きく、外部量子効率をより高くすることが可能である。
 陽極12及び陰極17のうち、光の取出し面側となる電極は透光性を有している必要がある。なお、光の取出し面と反対側の電極は、透光性を有していてもよいし、有していなくてもよい。
 例えば、発光素子1をBE型の発光素子とする場合、上層側の電極を光反射性電極とし、下層側の電極を透光性電極とする。発光素子1をTE型の発光素子とする場合、上層側の電極を透光性電極とし、下層側の電極を光反射性電極とする。なお、光反射性電極は、透光性材料からなる層と光反射性材料からなる層との積層体であってもよい。
 図1では、一例として、発光素子1が、陽極12を下層側の電極(下層電極)とし、陰極17を上層側の電極(上層電極)とし、QD層15から発せられた光Lが下方に向けて出射されるBE型の発光素子である場合を例に挙げて図示している。このため、QD層15から発せられた光Lが陽極12を透過できるように、陽極12を透光性電極としている。また、QD層15から発せられた光Lを反射するように、陰極17を光反射性電極としている。
 陽極12は、電圧が印加されることにより、正孔(ホール)をQD層15に供給する電極である。陽極12は、例えば、仕事関数が比較的大きな材料によって構成される。当該材料としては、例えば、スズドープ酸化インジウム(ITO)、亜鉛ドープ酸化インジウム(IZO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)、アンチモンドープ酸化スズ(ATO)等が挙げられる。これら材料は、一種類のみを用いてもよく、適宜二種類以上を混合して用いても構わない。
 陰極17は、電圧が印加されることにより、電子をQD層15に供給する電極である。陰極17は、例えば、仕事関数が比較的小さな材料によって構成される。当該材料としては、例えば、アルミニウム(Al)、銀(Ag)、バリウム(Ba)、イッテルビウム(Yb)、カルシウム(Ca)、リチウム(Li)-Al合金、マグネシウム(Mg)-Al合金、Mg-Ag合金、Mg-インジウム(In)合金、及びAl-酸化アルミニウム(Al)合金が挙げられる。
 これら陽極12及び陰極17の成膜には、例えば、スパッタリング法や真空蒸着法等の物理的気相成長法(PVD)、スピンコート法、又はインクジェット法が用いられる。
 HIL13は、陽極12から供給された正孔をHTL14に輸送する層である。HIL13の材料には、正孔輸送性材料が用いられる。当該正孔輸送性材料は、有機材料であってもよく、無機材料であってもよい。当該正孔輸送性材料が有機材料である場合、当該有機材料としては、例えば、導電性の高分子材料が挙げられる。当該高分子材料としては、例えば、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)とポリスチレンスルホン酸(PSS)との複合物(PEDOT:PSS)等を用いることができる。これら高分子材料は、一種類のみを用いてもよく、適宜二種類以上を混合して用いても構わない。HIL13は、上記高分子材料のなかでも、PEDOT:PSSを含んでいることが望ましい。これにより、正孔移動度が高く、良好な発光特性を得ることができる発光素子1を提供することができる。
 HTL14は、HIL13から供給された正孔をQD層15に輸送する層である。HTL14の材料には、正孔輸送性材料が用いられる。当該正孔輸送性材料は、有機材料であってもよく、無機材料であってもよい。当該正孔輸送性材料が有機材料である場合、当該有機材料としては、例えば、導電性の高分子材料が挙げられる。当該高分子材料としては、例えば、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル)ジフェニルアミン))](TFB)、ポリ(N-ビニルカルバゾール)(PVK)等を用いることができる。これら高分子材料は、一種類のみを用いてもよく、適宜二種類以上を混合して用いても構わない。HTL14は、上記高分子材料のなかでも、PVKを含んでいることが好ましい。これにより、正孔移動度が高く、良好な発光特性を得ることができる発光素子1を提供することができる。
 HIL13及びHTL14の成膜には、例えば、スパッタリング法や真空蒸着法等のPVD、スピンコート法、又はインクジェット法等が用いられる。なお、HTL14のみで正孔をQD層15に十分供給できる場合には、HIL13を設けなくても構わない。
 ETL16は、陰極17から供給された電子をQD層15に輸送する層である。ETL16の材料には、電子輸送性材料が用いられる。当該電子輸送性材料は、有機材料であってもよく、無機材料であってもよい。当該電子輸送性材料が有機材料である場合、当該有機材料は、例えば、1,3,5-トリス(1-フェニル-1H-ベンゾイミダゾール-2-イル)ベンゼン(TPBi)、3-(ビフェニル-4-イル)-5-(4-tert-ブチルフェニル)-4-フェニル-4H-1,2,4-トリアゾール(TAZ)、バソフェナントロリン(Bphen)、及び、トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン(3TPYMB)からなる群より選ばれる少なくとも一種の化合物を含んでいることが好ましい。これら有機材料は、一種類のみを用いてもよいし、適宜二種類以上を混合して用いてもよい。このようにETL16が有機材料からなる場合、ETL16の成膜には、真空蒸着法、スピンコート法、又はインクジェット法等が好適に用いられる。
 また、上記電子輸送性材料が無機材料である場合、当該無機材料は、亜鉛(Zn)、マグネシウム(Mg)、チタン(Ti)、ケイ素(Si)、スズ(Sn)、タングステン(W)、タンタル(Ta)、バリウム(Ba)、ジルコニウム(Zr)、アルミニウム(Al)、イットリウム(Y)、及び、ハフニウム(Hf)からなる群より選ばれる少なくとも一種の元素を含む金属酸化物からなるナノ粒子であることが好ましい。このような金属酸化物としては、例えば、電子移動度の観点から、酸化亜鉛(ZnO)、酸化亜鉛マグネシウム(ZnMgO)等が好適に用いられる。これら金属酸化物は、一種類のみを用いてもよいし、適宜二種類以上を混合して用いてもよい。ETL16は、上記無機材料のなかでも、ZnMgOを含んでいることが好ましい。これにより、電子移動度が高く、良好な発光特性を得ることができる発光素子1を提供することができる。このようにETL16が無機材料からなる場合、ETL16の成膜には、例えば、スパッタリング法や真空蒸着法等のPVD、スピンコート法、又はインクジェット法が用いられる。
 QD層15は、発光材料としてQDを含み、陽極12から供給された正孔と、陰極17から供給された電子との結合に伴って光を発する層である。
 QDは、数千~数万個程度の原子から構成された、粒径が数nm~十数nm程度の無機ナノ粒子である。QDは、蛍光を発し、そのサイズがナノオーダーのサイズであることから、蛍光ナノ粒子或いはQD蛍光体粒子とも称される。また、QDは、その組成が半導体材料由来であることから、半導体ナノ粒子とも称される。また、QDは、その構造が特定の結晶構造を有することからナノクリスタルとも称される。
 QDは、正の電荷を有するカチオン種(カチオン原料)である金属原子と、負の電荷を有するアニオン種(アニオン原料)である非金属又は半金属原子とから構成される。金属原子と半金属原子とは、イオン結合又は共有結合で結合している。なお、結合のイオン結合性は、金属原子と半金属原子とのそれぞれの性質の組み合わせに依存している。
 QDは、粒子の粒径、粒子の組成等によって、発光波長を種々変更することができる。本実施形態では、QDとして、カドミウム(Cd)を実質的に含まない、Cdフリーのカルコパイライト型(ABX)のQDを使用する。なお、カルコパイライト型のカチオン種であるA及びBのうち、Aに含まれる元素は、主に銀(Ag)であり、Bに含まれる元素は、主にインジウム(In)、ガリウム(Ga)である。またアニオン種であるXに含まれる元素は、硫黄(S)、セレン(Se)である。本実施形態では、QDとして、例えば、カチオン原料が、Ag、Ga、In、Znのうち少なくともAgとGaとをベースとし、アニオン原料がSe及びSのうち少なくとも一方をベースとする固溶体を使用する。以下に、より詳細に説明する。
 発光素子1は、QD層15に、上記QDとして、例えば、図2に示すQD25又は図3に示すQD25を含んでいる。図2及び図3は、本実施形態に係るQD25の一例を示す模式図である。上述したように、本実施形態に係るQD25は、Cdを実質的に含まないナノクリスタルである。
 QD25は、AgInGa1-xSe1-y系、或いは、ZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)の材料からなる、カルコパイライト系(カルコパイライト型)のCdフリーのQDである。言い替えれば、QD25は、AgInGa1-xSe1-y系、或いは、ZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)のCdフリーのQDである。
 このようなQD25としては、AgGaS、AgGaSe、AgInGaS、AgInGaSe、ZnAgGaS、ZnAgGaSe、ZnAgInGaS、及びZnAgInGaSeの何れかを主成分とする、或いは、AgGaS、AgGaSe、AgInGaS、AgInGaSe、ZnAgGaS、ZnAgGaSe、ZnAgInGaS、及びZnAgInGaSeの何れかからなるQDが挙げられる。
 このように、QD25は、少なくとも、Agと、Gaと、S及びSeのうち少なくとも一方と、を含み、Cdを実質的に含まないナノクリスタルであることが好ましく、Cdを含まないナノクリスタルであることがより好ましい。
 ここで、QD25が、少なくとも、Agと、Gaと、S及びSeのうち少なくとも一方と、を含むとは、QD25が、少なくとも、AgとGaとSとを含むか、又は、AgとGaとSeとを含むことを指す。このようにQD25が、少なくとも、Agと、Gaと、S及びSeのうち少なくとも一方と、を含むことで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い発光素子1を提供することができる。
 また、ここで「ナノクリスタル」とは、数nm~数十nm程度の粒径を有するナノ粒子を指す。本実施形態では、多数のQD25を、略均一の粒径にて生成することができる。
 また、「Cdを実質的に含まない」或いは「Cdフリー」とは、QD25が、カルコパイライト型のカチオン種の合計量に対して質量比で1/30以上のCdを含まないことを意味する。ここで、カルコパイライト型のカチオン種の合計量とは、カルコパイライト型(ABX)においてA及びBで示される金属原子の合計量を指す。したがって、「Cdを実質的に含まない」或いは「Cdフリー」とは、QD25が、好適にはAgとGaとの合計量に対して、質量比で1/30以上のCdを含まないことを意味する。
 なお、上述したように、QD25は、Agと、Gaと、S及びSeのうち少なくとも一方と、を含むとともに、インジウム(In)及び亜鉛(Zn)のうち少なくとも一方を更に含むこともできる。
 QD25は、Inを含んでいても含んでいなくても蛍光がみられる。例えば、緑色発光するQD25では、該QD25がInを含むことで良好な発光特性を備える。しかしながら、QD25が例えばAgGaSである場合でも発光が確認できており、蛍光半値幅が多少大きくなる傾向があるものの、QD25は、Inを含まなくても発光する。
 また、ABXで示される、AIS系或いはAIGS系等のカルコパイライト系のQDの材料にZnを使用すると、一般的に、欠陥発光となり、蛍光半値幅が広がる傾向がある。これは、Znと、A及びBで示される金属原子との価数の違い(例えば、Znは2価、Agは1価、Ga及びInは3価)によるものである。しかしながら、本実施形態では、後述する実施例で示すように、Znを反応初期に加えずに、例えば、反応初期粒子形成後にZnを後添加することで、Znを添加しても、蛍光半値幅が狭いまま、蛍光量子収率を大きくすることができる。すなわち、上述したようにQD25にZnを使用することで、QD25の発光特性を向上させることが可能になる。このようにして合成されたQD25は、該QD25の主に表面にZnが偏在した、ZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)のQDとなる。
 本実施形態において、QD25に含まれる、AgとGaとの比率は、Ag/Ga=0.1以上、10以下の範囲であることが好ましい。上記比率Ag/Gaは、0.1以上、5以下の範囲であることがより好ましく、0.1以上、3以下の範囲であることが、更に好ましい。
 また、QD25に含むことができる、ZnとGaとの比率は、Zn/Ga=0.1以上、10以下の範囲であることが好ましい。上記比率Zn/Gaは、0.1以上、5以下の範囲であることがより好ましく、0.5以上、5以下の範囲であることが更に好ましい。これらの比率(比率Ag/Ga、比率Zn/Ga)を制御することによって、発光波長を調節することが可能となる。
 本実施形態では、後述するように、蛍光波長を、例えば青色波長域から赤色波長域にて調節することができる。特に、本実施形態では、蛍光波長を、400nm以上、700nm以下の範囲内で適切に調節することが可能である。QD25が、400nm以上、700nm以下の範囲内の蛍光波長を発することで、青色波長域から赤色波長域にて発光する発光素子1を提供することができる。
 また、本実施形態では、蛍光波長を、好適には、緑色波長域から赤色波長域にて調整する。例えば、本実施形態では、蛍光波長を、500nm以上、660nm以下の範囲内で適切に調節することが可能である。このようにQD25が、500nm以上、660nm以下の範囲内の蛍光波長を発することで、緑色波長域から赤色波長域にて発光する発光素子1を提供することができる。なお、本実施形態では、「蛍光ピーク波長」、「発光ピーク波長」を、それぞれ「蛍光波長」、「発光波長」と略記する。
 なお、図3に示すように、QD25は、コア25a及びシェル25bを含むコアシェル型のQDであってもよい。図3に示すQD25は、コア25aと、コア25aの表面に被覆されたシェル25bとを有するコアシェル構造を有している。図3に示すQD25のコア25aは、図2にQD25として示すナノクリスタルである。このため、上述した説明において、QD25は、コア25aと読み替えることができる。
 したがって、本実施形態において、コア25aには、AgInGa1-xSe1-y系、或いは、ZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)のCdフリーの粒子が用いられる。
 QD25は、コア25aのみでも蛍光を発するため、図2に示すように、必ずしもシェル25bによる被覆は必要ではない。QD25は、コア25a及びシェル25bのうち、少なくともコア25aを含んでいればよい。
 QD25が、このように、少なくとも、Agと、Gaと、S及びSeのうち少なくとも一方と、を含むナノクリスタルのコア25aと、シェル25bと、を含むコアシェル構造を有していることで、蛍光半値幅が狭いまま、蛍光量子収率の更なる上昇を期待することができる。
 但し、QD25の粒子内部にZnが含まれると、上述したようにZnと、A及びBで示される金属原子との価数の違いから、欠陥発光が優勢、或いは、欠陥発光のみしか確認できないおそれがある。このため、Znは、上述したように、反応初期粒子を形成した後、後添加して粒子表面でのみ反応させることで、粒子表面のみに含まれていることが望ましい。
 また、前述したように、例えば、緑色発光するQD25では、該QD25がInを含むことで良好な発光特性を備える。本実施形態では、コア25aに、AgGaS、AgGaSe、AgInGaS或いはAgInGaSeを使用することで、例えばコア25aのみでも蛍光を発することが確認できている。しかしながら、前述したように、QD25は、Inを含んでいても含んでいなくても蛍光がみられ、QD25がInを含んでいなくても発光が確認できている。
 また、組成のばらつきを抑制し、可能な限り少ない組成で合成するためには、初期反応においてはQD25の原料にInを含んでいないことが好ましい。反応初期に形成する反応初期粒子は、Inを含まない、AgGaS又はAgGaSeが最も良い発光特性になる。
 したがって、コア25aは、Agと、Gaと、S及びSeのうち少なくとも一方と、を含み、Cdを実質的に含まないナノクリスタルであることが好ましく、Cdを含まないナノクリスタルであることがより好ましい。したがって、コア25aは、AgGaS又はAgGaSeであることが好ましい。
 なお、シェル25bも、コア25aと同様に、Cdを含まないか、或いは、実質的に含まない。シェル25bは、特に材質を問うものではないが、例えば、硫化インジウム、硫化ガリウム、硫化アルミニウム、硫化亜鉛、セレン化インジウム、セレン化ガリウム、セレン化アルミニウム、セレン化亜鉛等を例示することができる。このとき、QD25に含まれるGaとなるGa源(言い替えれば、QD25に含まれるGaの原料)として使用されるガリウム原料(Ga原料)としては、塩化ガリウム、臭化ガリウム、及びヨウ化ガリウムからなる群より選ばれる少なくとも一種のGa原料を用いることが好ましい。
 QD25がシェル25bを含む場合、シェル25bは、コア25aの表面に設けられていればよい。シェル25bは、コア25a全体を被覆していることが望ましいが、コア25aの表面の少なくとも一部を覆っていてもよい。QD25は、該QD25の一断面における観察にてコア25aを包んでいることが分かれば、それでコアシェル構造を有していると言うことができる。例えば、近接する50個のQD25で断面観察からQD25の断面の面積に相当する円の面積となる直径の平均値(想定ドット径)を算出する。このとき、想定ドット径と想定コア径との差が0.3nm以上ある場合、シェル25bはコア25aを包んでいる(コア25a全体を被覆している)と言うことができる。なお、上記断面観察は、例えば、走査透過電子顕微鏡(STEM)にて行うことができる。
 また、シェル25bは、コア25aの表面に固溶化した状態であってもよい。図3では、コア25aとシェル25bとの境界を点線で示したが、これは、コア25aとシェル25bとの境界を分析により確認できてもできなくてもどちらでもよいことを指す。本実施形態では、後述するように、先に反応初期粒子を形成し、最終工程でZnを加える。これにより、粒子表面でのみZnと反応させる。このため、本実施形態に係るZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)のQD25では、コアシェル構造が確認できなくても、Znを含むことで、コア25aをシェル25bで被覆した形態であると推測できる。
 なお、図3に示すQD25も、図2に示すQD25と同様に、蛍光波長を、例えば400nm以上、700nm以下の範囲内で適切に調節することが可能である。また、例えば、500nm以上、660nm以下の範囲内で、蛍光波長を適切に調節することが可能である。
 上記QD25、特に、緑色波長域で発光するQD25は、該QD25がコアシェル構造を有しているか否かに拘らず、チウラム系のS原料及びジスルフィド系のS原料のうち少なくとも一方のS原料に由来する構造を含んでいてもよい。チウラム系のS原料及びジスルフィド系のS原料は、核形成に影響して発光特性の向上に寄与する一方、分解する過程で配位子と成る可能性がある。
 したがって、上記QD25、特に、緑色波長域で発光するQD25は、チウラム系のS原料及びジスルフィド系のS原料に由来する構造として、例えば、下記式(1)及び下記式(2)で示される構造のうち少なくとも一方の構造を含んでいてもよい。
 -S-C(=S)-NR‥(1)
 -S-R‥(2)
 なお、上記式(1)中、R及びRは、それぞれ独立して、-(CH-CH基、-CH基、又はベンジル基を表し、nは1~3の整数を表す。
 また、上記式(2)中、Rは、フェニル基、ベンジル基、又はピリジル基を表す。
 なお、上述したように、チウラム系のS原料及びジスルフィド系のS原料は、核形成に使用される一方で、配位子と成る可能性もある。したがって、QD25は、該QD25そのもの(例えばコア25a或いはシェル25b)に上記構造を有していてもよく、該QD25の表面に配位する配位子に上記構造を有していてもよい。
 何れの場合にも、QD25が上記構造を有することで、より良好な発光特性を得ることができる発光素子1を提供することができる。
 また、図2及び図3に示すように、QD25の表面には、配位子として、多数のリガンド21が配位(吸着)していることが好ましい。リガンド21は、QD25の表面を修飾する、表面修飾基(例えば有機配位子)である。溶液法で形成されたQD層15は、球状のQD25と、リガンド21と、を含む。QD25の表面にリガンド21を配位させることで、QD25同士の凝集を抑制できるので、目的とする光学特性を発現させ易い。反応に用いることのできるリガンド21は、特に限定はされないが、代表的なものとして、例えば、アミン系(脂肪族1級アミン系)、脂肪酸系、チオール系、ホスフィン系、ホスフィンオキシド系のリガンドが挙げられる。
 脂肪族1級アミン系のリガンド21としては、例えば、オレイルアミン(C1835NH)、ステアリル(オクタデシル)アミン(C1837NH)、ドデシル(ラウリル)アミン(C1225NH)、デシルアミン(C1021NH)、オクチルアミン(C17NH)等が挙げられる。
 脂肪酸系のリガンド21としては、例えば、オレイン酸(C1733COOH)、ステアリン酸(C1735COOH)、パルミチン酸(C1531COOH)、ミリスチン酸(C1327COOH)、ラウリル(ドデカン)酸(C1123COOH)、デカン酸(C19COOH)、オクタン酸(C15COOH)等が挙げられる。
 チオール系のリガンド21としては、例えば、オクタデカンチオール(C1837SH)、ヘキサンデカンチオール(C1633SH)、テトラデカンチオール(C1429SH)、ドデカンチオール(C1225SH)、デカンチオール(C1021SH)、オクタンチオール(C17SH)等が挙げられる。
 ホスフィン系のリガンド21としては、例えば、トリオクチルホスフィン((C17P)、トリフェニルホスフィン((CP)、トリブチルホスフィン((CP)等が挙げられる。
 ホスフィンオキシド系のリガンド21としては、例えば、トリオクチルホスフィンオキシド((C17P=O)、トリフェニルホスフィンオキシド((CP=O)、トリブチルホスフィンオキシド((CP=O)等が挙げられる。
 次に、上記QD25の特性について説明する。
 本実施形態に係るQD25は、上述したように、AgInGa1-xSe1-y系、或いは、ZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)のCdフリーの量子ドットである。本実施形態に係るQD25は、コアシェル構造を有しているか否かに拘らず、緑色波長域から赤色波長域にて、蛍光半値幅が、45nm以下で、蛍光量子収率(Quantum Yield)が、35%以上の蛍光特性を示す。このため、本実施形態によれば、緑色波長域から赤色波長域において、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdフリーのカルコパイライト系の量子ドットを含む発光素子1を提供することができる。
 ここで、「蛍光半値幅」とは、蛍光スペクトルにおける蛍光強度のピーク値の半分の強度での蛍光波長の広がりを示す半値全幅(Full Width at Half Maximum)を指す。
 本実施形態によれば、このように、QD層15が、AgInGa1-xSe1-y系、或いは、ZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)のQD25を含み、該QD25が、緑色波長域から赤色波長域にて、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の蛍光特性を示すことで、緑色波長域から赤色波長域において、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQD25を含む発光素子1を提供することができる。
 本実施形態において、QD25の蛍光半値幅は、35nm以下であることが好ましい。QD25の蛍光半値幅が35nm以下であることで、より良好な蛍光特性を示すカルコパイライト系の発光素子1を提供することができる。また、QD25の蛍光半値幅は、30nm以下であることがより好ましく、25nm以下であることが更に好ましい。このように、本実施形態では、QD25の蛍光半値幅を狭くすることができるため、高色域化の向上を図ることができる。
 また、QD25の蛍光量子収率は、40%以上であることがより好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましく、80%以上であることが最も好ましい。このように、本実施形態では、QD25の蛍光量子収率を高めることができる。したがって、本実施形態によれば、より良好な蛍光特性を示すカルコパイライト系の発光素子1を提供することができる。
 このように、本実施形態では、AgInGa1-xSe1-y系、或いはZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)のQD25において、緑色波長域から赤色波長域での、蛍光半値幅を狭くできるとともに、蛍光量子収率を高くすることができる。
 また、本実施形態では、前述したように、QD25の蛍光波長を、400nm以上、700nm以下程度にまで自由に制御することができる。このため、本実施形態では、QD層15の蛍光波長を、400nm以上、700nm以下程度にまで自由に制御することができる。本実施形態におけるQD25は、カチオン原料にAg、Ga、In、Zn、アニオン原料にSe、Sをベースとする固溶体である。本実施形態では、QD25の粒径及びQD25の組成を適宜調整することによって、該QD25の蛍光波長、ひいてはQD層15の発光波長(蛍光波長)を、青色~緑色~赤色まで制御することが可能である。このため、QD25の蛍光波長並びにQD層15の蛍光波長は、青色発光としては、400nm以上かつ480nm以下が好ましく、410nm以上かつ470nm以下であることがより好ましく、420nm以上かつ460nm以下であることが更に好ましい。緑色発光としては、500nm以上かつ560nm以下が好ましく、510nm以上かつ550nm以下であることがより好ましく、520nm以上かつ540nm以下であることが更に好ましい。また赤色発光としては、600nm以上かつ660nm以下であることが好ましく、610nm以上かつ650nm以下であることがより好ましく、620nm以上かつ640nm以下であることが更に好ましい。
 このように、本実施形態によれば、QD25の蛍光波長が、400nm以上、700nm以下の範囲内であることで、青色波長域から赤色波長域にて発光するカルコパイライト系の発光素子1を提供することができる。
 なお、本実施形態では、上述したように、QD25の蛍光波長並びに該QD25を含むQD層15の蛍光波長を、400nm以上、700nm以下まで制御することが可能であるが、QD25並びにQD層15は、緑色、又は赤色発光することが好ましい。これにより、緑色波長域から赤色波長域にて発光するカルコパイライト系の発光素子1を提供することができる。
 カルコパイライトは、一般的には、蛍光半値幅が、45~80nmの欠陥発光する材料である。これに対し、本実施形態に係るQD25は、蛍光半値幅が狭く、蛍光量子収率が高く、蛍光寿命を、欠陥発光よりも非常に短くすることができる。このような特徴から、本実施形態に係るQD25は、バンド端発光しているものと推測される。
 特に、本実施形態によれば、後述する実施例に示すように、蛍光半値幅が、30μm以下であり、蛍光量子収率が80%以上であり、蛍光波長が、510nm以上、650nm以下の範囲であるQD25を合成することが可能である。本実施形態によれば、このように、緑色の蛍光波長(510~540nm付近)から赤色の蛍光波長(610~650nm付近)にて、蛍光半値幅が狭く、且つ、蛍光量子収率が高い、より良好な蛍光特性を示す発光素子1を提供することができる。
 本実施形態において、QD25の粒径は、3nm以上、20nm以下の範囲内であることが好ましく、4nm以上、15nm以下の範囲内であることがより好ましい。なお、QD25がコアシェル構造を有している場合のコア25aの粒径及びシェル25bの層厚は、特に限定されない。
 また、QD層15は、その層厚が2nm以上、20nm以下となるように形成されることが好ましい。これにより、発光強度が高く、より良好な発光特性を得ることができる発光素子1を提供することができる。
 QD層15の成膜には、スピンコート、インクジェット、フォトリソグラフィ等の手法を用いることが好ましい。
 発光素子1では、陽極12と陰極17との間に順方向の電圧を印加する。言い替えれば、陽極12を陰極17よりも高電位にする。これにより、(i)陰極17からQD層15へ電子を供給するとともに、(ii)陽極12からQD層15へ正孔を供給できる。その結果、QD層15において、正孔と電子との再結合に伴って光Lを発生させることができる。上記電圧の印加は、図示しないTFTによって制御されても構わない。一例として、複数のTFTを含むTFT層が、基板11内に形成されてよい。
 なお、発光素子1は、機能層として、正孔の輸送を抑制する正孔ブロッキング層(HBL)を備えていても構わない。正孔ブロッキング層は、一例として、陰極17とQD層15との間に設けられる。正孔ブロッキング層を設けることで、QD層15へ供給されるキャリア(すなわち、正孔及び電子)のバランスを調整できる。
 また、発光素子1は、機能層として、電子の輸送を抑制する電子ブロッキング層(EBL)を備えていても構わない。電子ブロッキング層は、一例として、QD層15と陰極17との間に設けられる。電子ブロッキング層を設けることでも、QD層15へ供給されるキャリア(すなわち、正孔及び電子)のバランスを調整できる。
 また、発光素子1は、陰極17までの成膜が完了した後に封止されても構わない。封止部材としては、例えば、ガラス又はプラスチックを用いることができる。封止部材は、基板11から陰極17までの積層体を封止できるように、例えば凹形状を有することが望ましい。例えば、封止部材と基板11との間に封止接着剤(例えばエポキシ系の接着剤)を塗布した後、窒素(N)雰囲気下で封止されることで、発光素子1が製造される。
 また、発光素子1は、基板11上に、陰極17、ETL16、QD層15、HTL14、HIL13、及び陽極12が、この順に積層された構成を有していてもよい。また、上述したように発光素子1がETL16を備えている場合、発光素子1は、ETL16と陰極17との間に電子注入層(EIL)を備えていてもよい。
 (発光素子の製造方法)
 次に、発光素子1の製造方法の一例を示す。発光素子1は、例えば、基板11上に、陽極12、HIL13、HTL14、QD層15、ETL16、及び陰極17が、この順で成膜されることで製造される。
 具体的には、例えば、基板11上に、陽極12をスパッタリングによって形成する(陽極形成工程)。次いで、陽極12上に、例えばPEDOT:PSS等の、HILの材料として用いられる正孔輸送性材料を含む溶液をスピンコートで塗布した後、ベークで溶媒を揮発することによって、HIL13を形成する(HIL形成工程)。次いで、HIL13上に、例えばPVK等の、HTLの材料として用いられる正孔輸送性材料を含む溶液をスピンコートで塗布した後、ベークで溶媒を揮発することによって、HTL14を形成する(HTL形成工程)。次いで、HTL14上に、溶液法を用いてQD層15を形成する。具体的には、HTL14上に、QD25が分散しているQD分散液(液体組成物)をスピンコートで塗布した後、ベークで溶媒を揮発することによって、QD層15を形成する(QD層形成工程)。次いで、QD層15上に、電子輸送性材料として例えばZnMgO等のナノ粒子を含む溶液をスピンコートによって塗布した後、ベークで溶媒を揮発することによって、ETL16を形成する(ETL形成工程)。次いで、ETL16上に、陰極17を真空蒸着によって形成する(陰極形成工程)。
 なお、QD層15に含まれるQD25は、例えば、Ag源としての銀原料と、Ga源としてのガリウム原料と、S源としての硫黄原料又はSe源としてのセレン原料とから製造(合成)される(QD製造工程)。
 Ag源は、QD25に含まれるAgの原料(QD25に含まれるAgとなる材料)を示す。Ga源は、QD25に含まれるGaの原料(QD25に含まれるGaとなる材料)を示す。S源は、QD25に含まれるSの原料(QD25に含まれるSとなる材料)を示す。Se源は、QD25に含まれるSeの原料(QD25に含まれるSeとなる材料)を示す。
 なお、QD製造工程では、上記Ag源と、上記Ga源と、上記S源又は上記Se源とから反応初期粒子を形成した後、In源としてのインジウム原料、Zn源としての亜鉛原料等を用いて、In、Zn等の所定元素を後添加することでQD25を製造(合成)してもよい。また、QD製造工程では、上記Ag源と、上記In源と、上記Ga源と、上記S源又は上記Se源とから反応初期粒子を形成した後、上記Zn源等を用いて、Zn等の所定元素を後添加することでQD25を製造(合成)してもよい。
 In源は、QD25に含まれるInの原料(QD25に含まれるInとなる材料)を示す。Zn源は、QD25に含まれるZnの原料(QD25に含まれるZnとなる材料)を示す。
 QD層形成工程では、このように合成されたQD25を含むQD層15が形成される。
 このとき、QD層形成工程では、前述したように、QD層15の層厚が2nm以上、20nm以下となるように、QD層15が形成される。
 なお、陰極17の成膜後に、N雰囲気下において、基板11と、基板11上に形成された積層体(陽極12~陰極17)とを、封止部材で封止しても構わない。
 (QD25の製造方法)
 次に、QD25の製造方法(QD製造工程)の一例について説明する。
 本実施形態に係るQD製造工程では、QD25として、AgInGa1-xSe1-y系、或いは、ZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)からなり、緑色波長域から赤色波長域にて、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の蛍光特性を示すQDを合成する。
 まず、本実施形態では、Ag源としてのAg原料(銀原料)と、In源としてのIn原料(インジウム原料)と、S源としてのS原料(硫黄原料)又はSe源としてのSe原料(セレン原料)とから、ワンポットで、QD25或いはその反応初期粒子を加熱合成する。
 このとき、反応温度を100℃以上、320℃以下の範囲に設定し、反応初期粒子として、例えばAgGaS、AgGaSe、AgInGaS、或いはAgInGaSeを合成する。なお、反応温度は、より低温の280℃以下であることが好ましい。
 上記Ag原料としては、有機銀化合物、或いは無機銀化合物が用いられる。上記Ag原料としては、特に限定されるものでないが、例えば、酢酸銀(CHC(=O)OAg、別名:Ag(OAc));硝酸銀(AgNO);塩化銀(AgCl)、臭化銀(AgBr)、ヨウ化銀(AgI)、等のハロゲン化物;ジエチルジチオカルバミン酸銀(Ag(SC(=S)N(C))、ジメチルジチオカルバミン酸銀(Ag(SC(=S)N(CH))、等のカルバミン酸塩;等を用いることができる。これらAg原料は、一種類のみを用いてもよく、適宜二種類以上を混合して用いてもよい。
 また、上記Ag原料は、反応溶液に直接添加してもよいが、前もって有機溶媒に溶解させた一定濃度のAg原料溶液として用いてもよい。
 上記In原料としては、有機インジウム化合物、或いは無機インジウム化合物が用いられる。上記In原料としては、特に限定されるものでないが、例えば、酢酸インジウム(In(CHC(=O)O)、別名:In(OAc));硝酸インジウム(InNO)、インジウムアセチルアセトナート(In(CHC(=O)CH=C(=O)CH、別名:In(acac));塩化インジウム(InCl)、臭化銀(InBr)、ヨウ化インジウム(InI)、等のハロゲン化物;ジエチルジチオカルバミン酸インジウム(In[(SC(=S)N(C])、ジメチルジチオカルバミン酸インジウム(In[(SC(=S)N(CH)])、等のカルバミン酸塩;等を用いることができる。これらIn原料は、一種類のみを用いてもよく、適宜二種類以上を混合して用いてもよい。
 上記Ga原料としては、有機インジウム化合物、或いは無機インジウム化合物が用いられる。上記Ga原料としては、特に限定されるものでないが、例えば、酢酸ガリウム(Ga(OAc));硝酸ガリウム(GaNO);ガリウムアセチルアセトナート(Ga(CHC(=O)CH=C(=O)CH、別名:Ga(acac));塩化ガリウム(GaCl)、臭化ガリウム(GaBr)、ヨウ化ガリウム(Ga)、等のハロゲン化物;ジエチルジチオカルバミン酸ガリウム(Ga[(SC(=S)N(C])、等のカルバミン酸塩;等を用いることができる。これらGa原料は、一種類のみを用いてもよく、適宜二種類以上を混合して用いてもよい。これらGa原料のなかでも、特に、ガリウムアセチルアセトナート(Ga(acac))及び塩化ガリウム(GaCl)が、入手し易く、良好な特性を得ることができる。このため、Ga原料としては、ガリウムアセチルアセトナート及び塩化ガリウムのうち少なくとも一方を用いることが望ましい。
 また、上記In原料又はGa原料は、反応溶液に直接添加してもよいが、前もって有機溶媒に溶解させた一定濃度のIn原料溶液又はGa原料溶液として用いてもよい。
 上記S原料としては、チオール等の有機硫黄化合物、或いは硫黄(S)を用いることができる。上記有機硫黄化合物としては、特に限定されるものでないが、例えば、オクタデカンチオール(C1837SH)、ヘキサンデカンチオール(C1633SH)、テトラデカンチオール(C1429SH)、ドデカンチオール(C1225SH)、デカンチオール(C1021SH)、オクタンチオール(C17SH)等を用いることができる。これらS原料は、一種類のみを用いてもよく、適宜二種類以上を混合して用いてもよい。
 特に、QD25或いはその反応初期粒子としてAgGaS或いはAgInGaSを合成する際は、S原料種が蛍光特性に大きく寄与している。本実施形態では、S原料(S源)として、チウラム類(チウラム系のS原料)、ジスルフィド(ジスルフィド系のS原料)、硫黄(S)をオクタデセン(ODE)に溶解させた溶液(S-ODE(S-ODE原料))、及び、Sをオレイルアミン及びドデカンチオールに溶解させた溶液(S-OLAm/DDT)からなる群より選ばれる少なくとも一種のS原料を用いることが好ましい。これにより、より良好な発光特性を得ることができる発光素子1を提供することができる。このうち、S-ODEでは、40nm以下の蛍光半値幅、40%以上の蛍光量子収率を得ることができる。
 しかしながら、S原料としてジスルフィド(disulfide)を用いると更に良好な特性を得ることができる。ジスルフィド(ジスルフィド系のS原料)としては、例えば、ジフェニルジスルフィド、ジベンジルジスルフィド、イソプロピルキサントゲンジスルフィド、4,4’-ジチオジモルホリンが挙げられる。
 また、S原料としてチウラム類(チウラム系のS原料)を用いることで、更に良好な蛍光特性を得ることができる。チウラム類(チウラム系のS原料)としては、例えば、チウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムジスルフィド等が挙げられる。
 なお、上述したS原料の他にも、S原料としては、例えば、硫黄が複数連なっている構造(-S-)を有する原料、もしくは、硫黄に窒素が結合している構造(N-S-)、硫黄に炭素が結合している構造(C-S-)等の構造を有する原料であってもよい。
 上記Se原料としては、有機セレン化合物(有機カルコゲン化合物)、或いはセレン(Se)を用いることができる。上記有機セレン化合物(有機カルコゲン化合物)としては、特に限定されるものではないが、例えば、トリオクチルホスフィンにSeを溶解させたトリオクチルホスフィンセレニド((C17P=Se);トリブチルホスフィンにSeを溶解させたトリブチルホスフィンセレニド((CP=Se);オクタデセンのような長鎖の炭化水素である高沸点溶媒にSeを高温で溶解させた溶液;Seをオレイルアミンとドデカンチオールの混合物に溶解させた溶液(Se-OLAm/DDT)等を用いることができる。これらSe原料は、一種類のみを用いてもよく、適宜二種類以上を混合して用いてもよい。
 また、上記S原料又はSe原料も、反応溶液に直接添加してもよいが、前もって有機溶媒に溶解させた一定濃度のS原料溶液又はSe原料溶液として用いてもよい。
 QD25或いはその反応初期粒子としてAgGaSe或いはAgInGaSeを合成する際は、Se原料種が蛍光特性に大きく寄与している。特に、Seをオレイルアミンとドデカンチオールの混合物に溶解させた溶液(Se-OLAm/DDT)は、良好な発光特性を示す。通常のカルコパイライト系のQDは、発光初期ではバンド端発光と考えられるPLスペクトルと欠陥発光と考えられるPLスペクトルとの2種類の発光が確認でき、その発光強度比率は、バンド端発光/欠陥発光が10以下の場合が殆どである。その後、更に反応経過することで徐々に欠陥発光の強度が低減し、それに伴ってバンド端発光の強度も増大することが多い。しかし、本実施形態のように、Se源として、Se-DDT/OLAmを用いた場合、発光初期からシングルピークであり、バンド端発光/欠陥発光が10以上であり、欠陥発光と考えられるピークがほとんど確認できない。また蛍光寿命も1/eになるまでに20ns以下と短く、欠陥発光ではないピークのみを発光初期で確認することができる。したがって、Se源としてSe-OLAm/DDTを用いることで、より良好な発光特性を得ることができる発光素子1を提供することができる。
 上記Zn原料としては、有機亜鉛化合物、或いは無機亜鉛化合物が用いられる。これら有機亜鉛化合物及び無機亜鉛化合物は、空気中でも安定で取り扱いが容易な原料である。上記Zn原料としては、特に限定されるものではないが、例えば、酢酸塩である酢酸亜鉛(Zn(OAc));硝酸亜鉛(Zn(NO);ステアリン酸亜鉛(Zn(OC(=O)C1735)、オレイン酸亜鉛(Zn(OC(=O)C1733)、パルミチン酸亜鉛(Zn(OC(=O)C1531)、ミリスチン酸亜鉛(Zn(OC(=O)C1327)、ドデカン酸亜鉛(Zn(OC(=O)C1123)、亜鉛アセチルアセトナート(Zn(CHC(=O)CH=C(=O)CH、別名:Zn(acac))、等の脂肪酸塩;塩化亜鉛(ZnCl)、臭化亜鉛(ZnBr)、ヨウ化亜鉛(ZnI)、等のハロゲン化物;ジエチルジチオカルバミン酸亜鉛(Zn(SC(=S)N(C)、ジメチルジチオカルバミン酸亜鉛(Zn(SC(=S)N(CH)、ジブチルジチオカルバミン酸亜鉛(Zn(SC(=S)N(C)、等のカルバミン酸亜鉛;等を用いることができる。これらZn原料は、一種類のみを用いてもよく、適宜二種類以上を混合して用いてもよい。
 また、上記Zn原料も、反応溶液に直接添加してもよいが、前もって有機溶媒に溶解させた一定濃度のZn原料溶液として用いてもよい。
 本実施形態では、前駆体を単離・精製することなく、ワンポットで、QD25を得ることが可能である。
 また、本実施形態では、合成したQD25は、洗浄、単離精製、被覆処理、リガンド交換等の各種処理を行わずとも蛍光特性を発現する。
 但し、図3に示すように、ナノクリスタルからなるコア25aをシェル25bで被覆することによって、蛍光量子収率を更に増大させることができる。
 また、コアシェル構造を形成した後に、QD25を特定の溶媒で精製することで、蛍光量子収率を更に増大させることができる。上記特定の溶媒としては、例えば、トリオクチルフォスフィン(TOP)等が挙げられる。
 また、本実施形態に係るQD25の製造方法は、遠心分離工程を備えていることが好ましい。合成により得られた反応溶液を遠心分離することで、より発光特性が優れたQD25を得ることができる。
 特に、合成により得られた反応溶液に溶媒(例えば貧溶媒)としてトルエン、メタノール、エタノール、アセトン等の極性溶媒を混合して、凝集物を遠心分離して除去することで、より発光特性が優れたQD25を得ることができる。
 本実施形態に係るQD25の製造方法では、前述したように、QD25は、反応初期粒子を形成した後、所定元素を後添加して合成してもよく、このとき、QD25は、反応初期には、Inを含まないことが好ましい。前述したように、具体的には、反応初期に形成する反応初期粒子は、Inを含まないAgGaS、又はAgGaSeが最も良い発光特性になる。
 一般的には、反応初期からInを含み、In/Ga比率を調整等するが、本実施形態では、QD25の組成のばらつきを抑制し、可能な限り少ない組成でQD25を合成することを目的としている。そのため、前述したように、初期反応においては、QD25の原料にInを含んでいないことが好ましい。言い替えれば、反応初期に形成されるQD25は、Inを含まないことが好ましい。本実施形態によれば、このようにQD25が反応初期にInを含まないことで、蛍光半値幅の狭い発光特性を得ることができると推察される。
 なお、緑色発光するQD25は、最終的にはInを含んでいることが好ましく、反応過程でQD25にInを含めることができる。但し、緑色発光するQD25において、Inを含むことは必須ではない。前述したように、例えば、蛍光半値幅は多少広がるものの、QD25がInを含まない場合でも発光することが確認できている。
 また、本実施形態では、QD25にZnを含める際、以下の点に注意してZnを添加することが好ましい。第一に、Znは、初期反応時には加えずに、最終工程で加えることが好ましい。これは、前述したように、QD25の粒子内部にZnが含まれると、欠陥発光が優勢、或いは、欠陥発光のみしか確認できないおそれがあるためである。したがって、最終工程でZnを加えることで、粒子表面でのみZnと反応させることが好ましい。第2に、Znは低温で添加することが好ましい。ここで、低温とは、150~200℃程度を意味する。Znを添加する際の温度が高温の場合、ZnがQD25の粒子内部まで反応するため、欠陥発光になりやすい。そのため、QD25とZnとの反応をQD25の粒子表面までの反応で留めるために、Znは、低温で、QD25の粒子表面とのみ反応させることが好ましい。
 また、本実施形態では、AgGaSeを合成する際に、Se原料として、前述したように、Se-OLAm/DDTを使用することが好ましい。これにより、欠陥発光を効果的に抑制することができる。
 また、AgGaSを合成する際も、S原料としては、一般的に用いられる硫黄粉末を溶解させるものではなく、チウラム系のS原料、特にテトラエチルチウラムジスルフィドが、良好な発光特性を得ることができることから好ましい。
 また、遠心分離では、粒子の大きいものと小さいものとが分離される。本実施形態では、前記遠心分離工程において、トルエンやエタノール等の溶媒を加えて遠心分離を行う。これにより、QD25の粒子サイズが揃っていても、トルエンやエタノール等の溶媒の比率を制御することで、QD25の表面に配位しているリガンド21の種類や量等の違いによってQD25の凝集具合を変化させることができる。その際、上記比率は、QD25:トルエン:エタノール=1:0.5~2:0.5~2の比率の範囲内で制御することができる。なお、エタノールの代わりにメタノールを使用してもよい。その結果、蛍光量子収率が高いQD25と、蛍光量子収率が低いQD25とに分離することができる。その後、この分離したQD25に、トリオクチルホスフィン(TOP)を加えることで、更に蛍光量子収率を向上させることが可能である。
 以上のように、本実施形態の量子ドットの製造方法によれば、蛍光半値幅が狭く、且つ蛍光量子収率が高い、Cdを含まない量子ドットを、安全に、且つ、量産可能な方法で合成することが可能である。
 〔実施例〕
 次に、実施例及び比較例により、本実施形態に係るQD25及び発光素子1の効果について説明する。なお、本実施形態に係るQD25及び発光素子1は、以下の実施例にのみ限定されるものではない。
 なお、以下の実施例及び比較例で使用した原料並びに測定機器は、以下の通りである。
 (溶媒)
 オクタデセン(ODE)には、Aldrich株式会社製のODEを用いた。オレイルアミン(OLAm)には、花王株式会社製のOLAmを用いた。ドデカンチオール(DDT)には、花王株式会社製のDDTを用いた。オレイン酸(OLAc)には、花王株式会社製の「ルナックO-V」を用いた。トリオクチルホスフィン(TOP)には、北興化学株式会社製のTOPを用いた。ミリスチン酸(MA)には、キシダ化学株式会社製のMAを用いた。トルエンには、大伸化学株式会社製のトルエンを用いた。エタノールには、大伸化学株式会社製のエタノールを用いた。
 なお、上記溶媒のうち、OLAc、OLAm、DDT、TOPは、リガンドとしても機能する。
 (Ag原料)
 酢酸銀(Ag(OAc))には、Aldrich株式会社製のAg(OAc)を用いた。Ag(OAc)-OLAm溶液(濃度0.2M)は、酢酸銀(Ag(OAc))をオレイルアミン(OLAm)に溶解させることで調液した。
 (In原料)
 酢酸インジウム(In(OAc))には、新興化学工業株式会社製のIn(OAc)を用いた。ジエチルジチオカルバミン酸インジウムには、発明者が合成した合成原料(チオカルバミン酸インジウム)を用いた。In(OAc)-OLAm/OLAc(In(OAc)-OLAm/OLAc溶液)(濃度0.2M)は、酢酸インジウム(In(OAc))をオレイルアミン(OLAm)及びオレイン酸(OLAc)に溶解させることで調液した。In(acac)-OLAm/OLAc(In(OAc)-OLAm/OLAc溶液)(濃度0.02M)は、インジウムアセチルアセトナート(In(acac))をオレイルアミン(OLAm)及びオレイン酸(OLAc)に溶解させることで調液した。
 (Ga原料)
 塩化ガリウム(GaCl)には、新興化学工業株式会社製のGaClを用いた。ガリウムアセチルアセトナート(Ga(acac))には、東京化成工業株式会社製のGa(acac)を用いた。GaCl/OLAc-ODE(GaCl/OLAc-ODE溶液)(モル比率Ga:OLAc=1:1.5、濃度0.1M)は、塩化ガリウム(GaCl)とオレイン酸(OLAc)とを、モル比率がGa:OLAc=1:1.5になるようにオクタデセン(ODE)に溶解させることで調液した。GaCl/OLAc-ODE(GaCl/OLAc-ODE溶液)(モル比率Ga:OLAc=1:3、濃度0.1M)は、塩化ガリウム(GaCl)とオレイン酸(OLAc)とを、モル比率がGa:OLAc=1:3になるようにオクタデセン(ODE)に溶解させることで調液した。GaCl/MA-ODE(GaCl/MA-ODE溶液)(モル比率Ga:MA=1:3、濃度0.1M)は、塩化ガリウム(GaCl)とミリスチン酸(MA)とを、モル比率がGa:MA=1:3になるようにオクタデセン(ODE)に溶解させることで調液した。GaCl/OLAc-OLAm(GaCl/OLAc-OLAm溶液)(モル比率Ga:OLAc=1:3、濃度0.1M)は、塩化ガリウム(GaCl)とオレイン酸(OLAc)とを、モル比率がGa:OLAc=1:3になるようにオレイルアミン(OLAm)に溶解させることで調液した。GaCl/OLAc-OLAm(GaCl/OLAc-OLAm溶液)(モル比率Ga:OLAc=1:1.5、濃度0.1M)は、塩化ガリウム(GaCl)とオレイン酸(OLAc)とを、モル比率がGa:OLAc=1:1.5になるようにオレイルアミン(OLAm)に溶解させることで調液した。
 (S原料)
 硫黄(S)には、キシダ化学株式会社製のSを用いた。テトラエチルチウラムジスルフィド(TETDS)には、三新化学工業株式会社製のTETDSを用いた。ジペンタメチレンチウラムテトラスルフィド(DPTT)には、三新化学工業株式会社製のDPTTを用いた。イソプロピルキサントゲンジスルフィド(IPXDS)には、三新化学工業株式会社製のIPXDSを用いた。テトラメチルチウラムジスルフィド(TMTDS)には、三新化学工業株式会社製のTMTDSを用いた。TETDS-OLAm(TETDS-OLAm溶液)(濃度0.4M)は、テトラエチルチウラムジスルフィド(TETDS)をオレイルアミン(OLAm)に溶解させることで調液した。S-ODE(S-ODE溶液)(濃度0.2M)は、硫黄(S)をオクタデセン(ODE)に溶解させることで調液した。DPTT-OLAm(DPTT-OLAm溶液)(濃度0.4M)は、ジペンタメチレンチウラムテトラスルフィド(DPTT)をオレイルアミン(OLAm)に溶解させることで調液した。DTDM-OLAm(DTDM-OLAm溶液)(濃度0.4M)は、4,4'-ジチオジモルホリン(DTDM)をオレイルアミン(OLAm)に溶解させることで調液した。IPXDS-OLAm(IPXDS-OLAm溶液)(濃度0.4M)は、イソプロピルキサントゲンジスルフィドをオレイルアミン(OLAm)に溶解させることで調液した。TMTDS-OLAm(TMTDS-OLAm溶液)(濃度0.4M)は、テトラメチルチウラムジスルフィド(TMTDS)をオレイルアミン(OLAm)に溶解させることで調液した。S-TOP(S-TOP溶液)(濃度0.2M)は、硫黄(S)をトリオクチルホスフィン(TOP)に溶解させることで調液した。S-OLAm/DDT(S-OLAm/DDT溶液)(濃度0.8M)は、硫黄(S)をオレイルアミン(OLAm)及びドデカンチオール(DDT)に溶解させることで調液した。
 (Se原料)
 Se-OLAm/DDT(Se-OLAm/DDT溶液)(濃度0.7M)は、セレン(Se)をオレイルアミン(OLAm)及びドデカンチオール(DDT)に溶解させることで調液した。
 (Zn原料)
 酢酸亜鉛(Zn(OAc))にはキシダ化学株式会社製のZn(OAc)を用いた。Zn(OAc)-OLAc/TOP(Zn(OAc)-OLAc/TOP溶液)(濃度0.8M)は、酢酸亜鉛(Zn(OAc))をオレイン酸(OLAc)及びトリオクチルホスフィン(TOP)に溶解させることで調液した。Zn(OAc)-OLAc/OLAm(Zn(OAc)-OLAm溶液)(濃度0.4M)は、酢酸亜鉛(Zn(OAc))をオレイン酸(OLAc)及びオレイルアミン(OLAm)に溶解させることで調液した。
 (測定機器)
 蛍光分光計には日本分光株式会社製の「F-2700」を使用した。量子収率測定装置には大塚電子株式会社製の「QE-1100」を使用した。走査電子顕微鏡(SEM)には日立株式会社製の「SU9000」のSEM機能を使用した。LED(発光ダイオード)測定装置には、スペクトラ・コープ社製のLED測定装置(2次元CCD小型高感度分光装置:Carl Zeiss社製の「SolidLambda CCD」)を使用した。STEM(走査透過電子顕微鏡)には日立株式会社製の「SU9000」のSTEM機能を使用した。TEM(透過型電子顕微鏡)には日本電子株式会社製の「JEM-ARM200CF」を使用した。EDX(エネルギー分散形X線)分析装置には日本電子株式会社製の「JED 2300T」のEDX分析機能を使用した。
 [実施例1]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))91.8mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら120℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記TETDS-OLAm(濃度0.4M)を0.5mL添加した。その後、上記反応容器内の溶液の温度を、120℃から200℃に昇温し、合計20分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(1A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(1A))に、前記In(OAc)-OLAm/OLAc(濃度0.2M)0.375mLと、前記S-ODE1.225mLとを加えて、270℃で10分間、再び、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(1B))を、室温まで冷却した。その後、トルエンとエタノールとを用いて、上記QD25の洗浄分離を行った。なお、洗浄分離は、トルエン等の溶媒(非極性溶媒(無極性溶媒))とエタノール等の貧溶媒(極性溶媒)との比率によって、QD25に配位するリガンド21の配位状態の違いによる凝集具合を制御して分離する工程を示す。
 その後、上記QD25を、オレイルアミン(OLAm)で再分散させることで、上記QD25を含むAgInGaS分散液(1C)を得た。次いで、このAgInGaS分散液(1C)を、270℃に再び加熱し、攪拌した。
 その後、この270℃で攪拌しつつ加熱している反応溶液(AgInGaS分散液(1C))に、その上方から、前記GaCl/OLAc-ODE(モル比率Ga:OLAc=1:1.5、濃度0.1M)3mLと、前記S-ODE(濃度0.2M)1.5mLとを混合してなる混合溶液4.5mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、70分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(1D))を、室温まで冷却した。
 その後、上記反応溶液(AgInGaS分散液(1D))に、トリオクチルホスフィン(TOP)3mLを添加し、200℃で10分間加熱した。その後、得られた反応溶液(上記QD25を含むAgInGaS分散液(1E))を、室温まで冷却した。その後、トルエンとエタノールとを用いて、上記QD25の洗浄分離を行った。
 その後、上記QD25を、トルエンで再分散させることで、該QD25を含むQD分散液(1F)を得た。次いで、このQD分散液(1F)中の該QD25の蛍光波長及び蛍光半値幅を、前記蛍光分光計で測定した。また、上記QD分散液(1F)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が532nm、蛍光半値幅が38nm、蛍光量子収率が45%である光学特性が得られた。また、上記QD25の粒径を、前記走査透過電子顕微鏡(STEM)で測定した結果、8.1nmであった。上記粒径は、上記STEMによる粒子観察において、観察サンプルの平均値より算出した。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料を、後で、表1にまとめて示す。なお、表1では、「反応初期粒子の組成」、「蛍光波長」、「蛍光半値幅」、「蛍光量子収率」を、順に、「初期粒子組成」、「波長」、「半値幅」、「PLQY」と記す。
 このように、本実施例によれば、緑色発光するQD25が得られることが判った。また、本実施例によれば、蛍光半値幅を、45nm以下、好ましくは、40nm以下にできることが判った。また、蛍光量子収率を、35%以上、好ましくは40%以上にできることが判った。したがって、本実施例によれば、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 そこで、次に、上記QD分散液(1F)を用いて、サンプル(1)~(3)として、以下の積層構造を有する3種類の発光素子1を製造した。
 サンプル(1):ITO(30nm)/PEDOT:PSS(40nm)/PVK(30nm)/QD層(10nm)/ZnMgO(60nm)/Al(100nm)
 サンプル(2):ITO(30nm)/PEDOT:PSS(40nm)/PVK(30nm)/QD層(20nm)/ZnMgO(60nm)/Al(100nm)
 サンプル(3):ITO(30nm)/PEDOT:PSS(40nm)/PVK(30nm)/QD層(30nm)/ZnMgO(60nm)/Al(100nm)
 具体的には、まず、ガラス基板である基板11上に、ITOをスパッタリングすることによって、各サンプルにおいて、30nmの厚みの陽極12を形成した。次いで、該陽極12上に、PEDOT:PSSを含む溶液をスピンコートで塗布した後、ベークで溶媒を揮発させた。これにより、各サンプルにおいて、層厚40nmのHIL13(PEDOT:PSS層)を形成した。次いで、該HIL13上に、PVKを含む溶液をスピンコートで塗布した後、ベークで溶媒を揮発させた。これにより、各サンプルにおいて、層厚30nmのHTL14(PVK層)を形成した。次いで、該HTL14上に、上記QD分散液(1F)をスピンコートで塗布した後、ベークで溶媒を揮発させた。これにより、サンプル(1)では層厚10nm、サンプル(2)では層厚20nm、サンプル(3)では層厚30nmのQD層15(AgInGaS系のQD層)を形成した。次いで、該QD層15上に、ZnMgOナノ粒子を含む溶液をスピンコートで塗布した後、ベークで溶媒を揮発させた。これにより、各サンプルにおいて、層厚60nmのETL16(ZnMgOナノ粒子層)を形成した。次いで、該ETL16上に、Alを真空蒸着することによって、各サンプルにおいて、100nmの厚みの陰極17を形成した。次いで、N雰囲気下において、各サンプルにおける、基板11と、基板11上に形成された積層体とを、封止部材で封止した。
 次いで、各サンプルに対して、0.03mA/cm~75mA/cmの電流(より厳密には、電流密度)を印加した。そして、この電流の印加により、各サンプルから発せられた光LのEL(エレクトロルミネッセンス)発光輝度を、前記LED測定装置(分光装置)を用いて測定した。
 図4は、サンプル(1)における75mA/cmでのEL発光輝度を1としてサンプル(1)~(4)の0.03~75mA/cmにおけるEL発光輝度を規格化した規格化発光輝度を示すグラフである。
 図4に示す結果から、QD層15の層厚が20nm以下の方が、QD層15の層厚が30nmの場合に比べてより良好な発光特性を得られることが判る。
 また、本実施例によれば、上述したように、陽極12とQD層15との間に、陽極12側から、HIL13と、HTL14と、をこの順に備えるとともに、陰極17とQD層15との間に、ETL16を備え、HIL13が、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸との複合物であるPEDOT:PSSを含み、HTL14がPVKを含み、ETL16がZnMgOを含むことで、良好な発光特性を得ることができる発光素子1を提供することができることが判る。
 [実施例2]
 300mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)1.5mLと、ガリウムアセチルアセトナート(Ga(acac))165mgと、オレイルアミン(OLAm)28.5mLと、ドデカンチオール(DDT)1.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら120℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記TETDS-OLAm(濃度0.4M)を1.5mL添加した。その後、上記反応容器内の溶液の温度を、120℃から200℃に昇温し、合計20分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(2A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(2A))に、カルバミン酸塩としてジエチルジチオカルバミン酸インジウム(In[SC(=S)N(C])125.7mgを加えて、270℃で10分間、再び、攪拌しつつ加熱した。
 その後、この270℃で攪拌しつつ加熱している反応溶液に、その上方から、前記GaCl/MA-ODE(モル比率Ga:MA=1:3、濃度0.1M)9mLと、前記S-ODE(濃度0.2M)4.5mLとを混合してなる混合溶液13.5mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、70分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(2B))を、室温まで冷却した。
 得られた上記反応溶液(AgInGaS分散液(2B))中のQD25の蛍光波長及び蛍光半値幅を前記蛍光分光計で測定した。また、上記反応溶液(AgInGaS分散液(2B))中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が539nm、蛍光半値幅が35nm、蛍光量子収率が49%である光学特性が得られた。
 その後、トルエンとエタノールとを用いて、上記QD25の洗浄分離を行い、その後、上記QD25を、トリオクチルホスフィン(TOP)で再分散させる操作を2回繰り返すことで精製した。これにより得られた、上記QD25を含むQD分散液(2C)中の上記QD25の蛍光波長及び蛍光半値幅を前記蛍光分光計で測定した。また、上記QD分散液(2C)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図5に示すように、蛍光波長が539nm、蛍光半値幅が35.4nm、量子収率75%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表1にまとめて示す。
 [実施例3]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら120℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記DPTT-OLAm(濃度0.4M)を、0.5mL添加した。その後、上記反応容器内の溶液の温度を、120℃から200℃に昇温し、合計20分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(3A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(3A))に、カルバミン酸塩としてジエチルジチオカルバミン酸インジウム(In[SC(=S)N(C])41.9mgを加えて、270℃で10分間、再び、攪拌しつつ加熱した。
 その後、この270℃で攪拌しつつ加熱している反応溶液に、その上方から、前記GaCl/MA-ODE(モル比率Ga:MA=1:3、濃度0.1M)3mLと、前記S-ODE(濃度0.2M)1.5mLとを混合してなる混合溶液4.5mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、70分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(3B))を、室温まで冷却した。
 得られた上記反応溶液(AgInGaS分散液(3B))中のQD25の蛍光波長及び蛍光半値幅を前記蛍光分光計で測定した。また、上記反応溶液(AgInGaS分散液(3B))中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が526nm、蛍光半値幅が35.5nm、蛍光量子収率が34%である光学特性が得られた。
 その後、トルエンとエタノールとを用いて、上記QD25の洗浄分離を行い、その後、上記QD25を、トリオクチルホスフィン(TOP)で再分散させる操作を2回繰り返すことで精製した。これにより得られた、上記QD25を含むQD分散液(3C)中の上記QD25の蛍光波長及び蛍光半値幅を蛍光分光計で測定した。また、上記QD分散液(3C)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図6に示すように、蛍光波長が526.5nm、蛍光半値幅が34.8nm、量子収率が54%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表1にまとめて示す。
 [実施例4]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら120℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記DTDM-OLAm(濃度0.4M)を0.5mL添加した。その後、上記反応容器内の溶液の温度を、120℃から200℃に昇温し、合計20分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(4A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(4A))に、カルバミン酸塩としてジエチルジチオカルバミン酸インジウム(In[SC(=S)N(C])41.9mgを加えて、270℃で10分間、再び、攪拌しつつ加熱した。
 その後、この270℃で攪拌しつつ加熱している反応溶液に、その上方から、前記GaCl/MA-ODE(モル比率Ga:MA=1:3、濃度0.1M)3mLと、前記S-ODE(濃度0.2M)1.5mLとを混合してなる混合溶液4.5mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、70分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(4B))を、室温まで冷却した。
 得られた上記反応溶液(AgInGaS分散液(4B))中のQD25の蛍光波長及び蛍光半値幅を前記蛍光分光計で測定した。また、上記反応溶液(AgInGaS分散液(4B))中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が526nm、蛍光半値幅が37.5nm、量子収率が41%である光学特性が得られた。
 その後、トルエンとエタノールとを用いて、上記QD25の洗浄分離を行い、その後、上記QD25を、トリオクチルホスフィン(TOP)で再分散させる操作を2回繰り返すことで精製した。これにより得られた、上記QD25を含むQD分散液(4C)中の上記QD25の蛍光波長及び蛍光半値幅を蛍光分光計で測定した。また、上記QD分散液(4C)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図7に示すように、蛍光波長が527.5nm、蛍光半値幅が36.9nm、量子収率が56%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表1にまとめて示す。
 [実施例5]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら120℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記IPXDS-OLAm(濃度0.4M)を、0.5mL添加した。その後、上記反応容器内の溶液の温度を、120℃から200℃に昇温し、合計20分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(5A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(5A))に、カルバミン酸塩としてジエチルジチオカルバミン酸インジウム(In[SC(=S)N(C])41.9mgを加えて、270℃で10分間、再び、攪拌しつつ加熱した。
 その後、この270℃で攪拌しつつ加熱している反応溶液に、その上方から、前記GaCl/MA-ODE(モル比率Ga:MA=1:3、濃度0.1M)3mLと、前記S-ODE(濃度0.2M)1.5mLとを混合してなる混合溶液4.5mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、70分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(5B))を、室温まで冷却した。
 得られた上記反応溶液(AgInGaS分散液(5B))中のQD25の蛍光波長及び蛍光半値幅を前記蛍光分光計で測定した。また、上記反応溶液(AgInGaS分散液(5B))中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が530nm、蛍光半値幅が37nm、量子収率が40%である光学特性が得られた。
 その後、トルエンとエタノールとを用いて、上記QD25の洗浄分離を行い、その後、上記QD25を、トリオクチルホスフィン(TOP)で再分散させる操作を2回繰り返すことで精製した。これにより得られた、上記QD25を含むQD分散液(5C)中の上記QD25の蛍光波長及び蛍光半値幅を蛍光分光計で測定した。また、上記QD分散液(5C)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図8に示すように、蛍光波長が532nm、蛍光半値幅が36.9nm、量子収率が65%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表1にまとめて示す。
 [実施例6]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら120℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記TMTDS-OLAm(濃度0.4M)を0.5mL添加した。その後、上記反応容器内の溶液の温度を、120℃から200℃に昇温し、合計20分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(6A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(6A))に、カルバミン酸塩としてジエチルジチオカルバミン酸インジウム(In[SC(=S)N(C])41.9mgを加えて、270℃で10分間、再び、攪拌しつつ加熱した。
 その後、この270℃で攪拌しつつ加熱している反応溶液に、その上方から、前記GaCl/MA-ODE(モル比率Ga:MA=1:3、濃度0.1M)3mLと、前記S-ODE(濃度0.2M)1.5mLとを混合してなる混合溶液4.5mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、70分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(6B))を、室温まで冷却した。
 得られた上記反応溶液(AgInGaS分散液(6B))中のQD25の蛍光波長及び蛍光半値幅を前記蛍光分光計で測定した。また、上記反応溶液(AgInGaS分散液(6B))中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が542nm、蛍光半値幅が36.5nm、量子収率が54%である光学特性が得られた。
 その後、トルエンとエタノールとを用いて、上記QD25の洗浄分離を行い、その後、上記QD25を、トリオクチルホスフィン(TOP)で再分散させる操作を2回繰り返すことで精製した。これにより得られた、上記QD25を含むQD分散液(6C)中の上記QD25の蛍光波長及び蛍光半値幅を蛍光分光計で測定した。また、上記QD分散液(6C)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図9に示すように、蛍光波長が542nm、蛍光半値幅が36.5nm、量子収率が71%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表1にまとめて示す。
 [実施例7]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら120℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記TETDS-OLAm(濃度0.4M)を、0.5mL添加した。その後、上記反応容器内の溶液の温度を、120℃から200℃に昇温し、合計20分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(7A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(7A))に、カルバミン酸塩としてジエチルジチオカルバミン酸インジウム(In[SC(=S)N(C])41.9mgを加えて、270℃で10分間、再び、攪拌しつつ加熱した。
 その後、この270℃で攪拌しつつ加熱している反応溶液に、その上方から、前記GaCl/OLAc-ODE(モル比率Ga:OLAc=1:3、濃度0.1M)3mLと、前記S-ODE(濃度0.2M)1.5mLとを混合してなる混合溶液4.5mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、70分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(7B))を、室温まで冷却した。
 得られた上記反応溶液(AgInGaS分散液(7B))中のQD25の蛍光波長及び蛍光半値幅を前記蛍光分光計で測定した。また、上記反応溶液(AgInGaS分散液(7B))中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が546nm、蛍光半値幅が29.3nm、量子収率が39%である光学特性が得られた。
 その後、トルエンとエタノールとを用いて、上記QD25の洗浄分離を行い、その後、上記QD25を、トリオクチルホスフィン(TOP)で再分散させる操作を2回繰り返すことで精製した。これにより得られた、上記QD25を含むQD分散液(7C)中の上記QD25の蛍光波長及び蛍光半値幅を蛍光分光計で測定した。また、上記QD分散液(7C)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図10に示すように、蛍光波長が548.5nm、蛍光半値幅が30.5nm、量子収率が59%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表1にまとめて示す。
 [実施例8]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら120℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記TMTDS-OLAm(濃度0.4M)を、0.5mL添加した。その後、上記反応容器内の溶液の温度を、120℃から200℃に昇温し、合計20分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(8A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(8A))に、酢酸インジウム(In(OAc))21.8mgと、S-ODE(濃度0.2M)0.75mLと、を加えて、270℃で10分間、再び、攪拌しつつ加熱した。
 その後、この270℃で攪拌しつつ加熱している反応溶液に、その上方から、前記GaCl/MA-ODE(モル比率Ga:MA=1:3、濃度0.1M)3mLと、前記S-ODE(濃度0.2M)1.5mLとを混合してなる混合溶液4.5mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、70分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(8B))を、室温まで冷却した。
 得られた上記反応溶液(AgInGaS分散液(8B))中のQD25の蛍光波長及び蛍光半値幅を前記蛍光分光計で測定した。また、上記反応溶液(AgInGaS分散液(8B))中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が546nm、蛍光半値幅が36.5nm、量子収率が55%である光学特性が得られた。
 その後、トルエンとエタノールとを用いて、上記QD25の洗浄分離を行い、その後、上記QD25を、トリオクチルホスフィン(TOP)で再分散させる操作を2回繰り返すことで精製した。これにより得られた、上記QD25を含むQD分散液(8C)中の上記QD25の蛍光波長及び蛍光半値幅を蛍光分光計で測定した。また、上記QD分散液(8C)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図11に示すように、蛍光波長が546.5nm、蛍光半値幅が36.2nm、量子収率が81%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表1にまとめて示す。
 [実施例9]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら120℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記S-ODE(濃度0.2M)を1mL添加した。その後、上記反応容器内の溶液の温度を、120℃から200℃に昇温し、合計20分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(9A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(9A))に、酢酸インジウム(In(OAc))21.8mgと、S-ODE(濃度0.2M)2.25mLと、を加えて、270℃で10分間、再び、攪拌しつつ加熱した。
 その後、この270℃で攪拌しつつ加熱している反応溶液に、その上方から、前記GaCl/MA-ODE(モル比率Ga:MA=1:3、濃度0.1M)3mLと、前記S-ODE(濃度0.2M)1.5mLとを混合してなる混合溶液4.5mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、70分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(9B))を、室温まで冷却した。
 得られた上記反応溶液(AgInGaS分散液(9B))中のQD25の蛍光波長及び蛍光半値幅を前記蛍光分光計で測定した。また、上記反応溶液(AgInGaS分散液(9B))中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が523nm、蛍光半値幅が36.5nm、量子収率が25%である光学特性が得られた。
 その後、トルエンとエタノールとを用いて、上記QD25の洗浄分離を行い、その後、上記QD25を、トリオクチルホスフィン(TOP)で再分散させる操作を2回繰り返すことで精製した。これにより得られた、上記QD25を含むQD分散液(9C)中の上記QD25の蛍光波長及び蛍光半値幅を蛍光分光計で測定した。また、上記QD分散液(9C)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が522nm、蛍光半値幅が38nm、量子収率が46%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料を、後で、表2にまとめて示す。なお、表2でも、「反応初期粒子の組成」、「蛍光波長」、「蛍光半値幅」、「蛍光量子収率」を、順に、「初期粒子組成」、「波長」、「半値幅」、「PLQY」と記す。
 [実施例10]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら120℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記S-ODE(濃度0.2M)を、1mL添加した。その後、上記反応容器内の溶液の温度を、120℃から200℃に昇温し、合計20分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(10A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(10A))に、カルバミン酸塩としてジエチルジチオカルバミン酸インジウム(In[SC(=S)N(C])41.9mgを加えて、270℃で10分間、再び、攪拌しつつ加熱した。
 その後、この270℃で攪拌しつつ加熱している反応溶液に、その上方から、前記GaCl/MA-ODE(モル比率Ga:MA=1:3、濃度0.1M)3mLと、前記S-ODE(濃度0.2M)1.5mLとを混合してなる混合溶液4.5mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、70分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(10B))を、室温まで冷却した。
 得られた上記反応溶液(AgInGaS分散液(10B))中のQD25の蛍光波長及び蛍光半値幅を前記蛍光分光計で測定した。また、上記反応溶液(AgInGaS分散液(10B))中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が534nm、蛍光半値幅が36nm、量子収率が33%である光学特性が得られた。
 その後、トルエンとエタノールとを用いて、上記QD25の洗浄分離を行い、その後、上記QD25を、トリオクチルホスフィン(TOP)で再分散させる操作を2回繰り返すことで精製した。これにより得られた、上記QD25を含むQD分散液(10C)中の上記QD25の蛍光波長及び蛍光半値幅を蛍光分光計で測定した。また、上記QD分散液(10C)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が534nm、蛍光半値幅が40nm、量子収率が45%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表2にまとめて示す。
 [実施例11]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))73.4mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.3mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら120℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記TETDS-OLAm(濃度0.4M)を、0.5mL添加した。その後、上記反応容器内の溶液の温度を、120℃から200℃に昇温し、合計20分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(11A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(11A))に、前記In(OAc)-OLAm/OLAc(濃度0.2M)0.375mLと、S-ODE(濃度0.2M)1.225mLと、を加えて、270℃で10分間、再び、攪拌しつつ加熱した。
 その後、この270℃で攪拌しつつ加熱している反応溶液に、その上方から、前記GaCl/OLAc-ODE(モル比率Ga:OLAc=1:1.5、濃度0.1M)3mLと、前記S-ODE(濃度0.2M)1.5mLとを混合してなる混合溶液4.5mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、70分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(11B))を、室温まで冷却した。
 その後、上記反応溶液(AgInGaS分散液(11B))に、トリオクチルホスフィン(TOP)3mLを添加し、200℃で10分間加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(11C))を、室温まで冷却した。その後、トルエンとエタノールとを用いて、上記QD25の洗浄分離を行った。その後、このQD25を、トルエンで再分散させることで、上記QD25を含むQD分散液(11D)を得た。次いで、このQD分散液(11D)中の該QD25の蛍光波長及び蛍光半値幅を、前記蛍光分光計で測定した。また、上記QD分散液(11D)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が536.5nm、蛍光半値幅が29.4nm、量子収率が71%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表2にまとめて示す。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表2にまとめて示す。
 [実施例12]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))91.8mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら200℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記TETDS-OLAm(濃度0.4M)を1mL添加した。その後、上記反応容器内の溶液の温度を、200℃で40分間、攪拌しつつ加熱した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(12A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(12A))に、In(OAc)-OLAm/OLAc(濃度0.2M)0.375mLと、S-ODE(濃度0.2M)0.375mLと、を加えて、270℃で10分間、再び、攪拌しつつ加熱した。
 その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(12B))に、トルエン3mLとエタノール30mLとを加えて、上記QD25の洗浄分離を行った。その後、上記QD25を、オレイルアミン(OLAm)10mLで再分散させた。これにより、AgInGaS系のQD25を含むAgInGaS分散液(12C)を得た。
 その後、上記AgInGaS分散液(12C)を、270℃で攪拌しつつ加熱しながら、上記AgInGaS分散液(12C)の上方から、前記GaCl/OLAc-ODE(モル比率Ga:OLAc=1:1.5、濃度0.1M)3mLと、前記S-ODE溶液(濃度0.2M)1.5mLとを混合してなる混合溶液4.5mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、70分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(12D))を、室温まで冷却した。
 その後、上記反応溶液(AgInGaS分散液(12D))に、トリオクチルホスフィン(TOP)3mLを添加し、200℃で10分間加熱することで、上記QD25を精製した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(12E))を、室温まで冷却した。その後、トルエンとエタノールとを用いて、上記QD25の洗浄分離を行った。その後、このQD25を、トリオクチルホスフィン(TOP)で再分散させることで、上記QD25を含むQD分散液(12F)を得た。次いで、このQD分散液(12F)中の該QD25の蛍光波長及び蛍光半値幅を、前記蛍光分光計で測定した。また、上記QD分散液(12F)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図12に示すように、蛍光波長が530.5nm、蛍光半値幅が38nm、量子収率が86%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表2にまとめて示す。
 [実施例13]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら200℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記TETDS-OLAm(濃度0.4M)を0.5mL添加した。その後、上記反応容器内の溶液の温度を、200℃で40分間、攪拌しつつ加熱した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(13A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(13A))に、In(OAc)-OLAm/OLAc(濃度0.2M)0.375mLと、S-ODE(濃度0.2M)1.125mLと、を加えて、300℃で10分間、再び、攪拌しつつ加熱した。
 その後、この300℃で攪拌しつつ加熱している反応溶液に、その上方から、前記GaCl/OLAc-ODE(モル比率Ga:OLAc=1:3、濃度0.1M)3mLと、前記S-ODE(濃度0.2M)1.5mLと、オレイルアミン(OLAm)0.141mLとを混合してなる混合溶液4.641mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、20分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(13B))を、室温まで冷却した。
 その後、上記反応溶液(AgInGaS分散液(13B))に、前記S-ODE溶液(濃度0.2M)1.5mLを添加し、200℃で30分間攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(13C))を、室温まで冷却した。
 その後、上記反応溶液(AgInGaS分散液(13C))を遠心分離機にて5500rpmで3分間遠心分離し、上澄み液を回収した。回収した上澄み液に、トリオクチルホスフィン(TOP)3mLを添加し、200℃で10分間加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(13D))を、室温まで冷却した。
 その後、上記反応溶液(AgInGaS分散液(13D))1mLに対して、トルエン1mLとエタノール1.5mLとを加えて、遠心分離機にて5500rpmで3分間遠心分離し、上澄み液を回収した。この回収した上澄み液に、エタノール2mLを加えて5500rpmで3分間遠心分離した。これにより、上記QD25の洗浄分離を行った。その後、このQD25を、トルエンで再分散させることで、上記QD25を含むQD分散液(13E)を得た。次いで、このQD分散液(13E)中の該QD25の蛍光波長及び蛍光半値幅を、前記蛍光分光計で測定した。また、上記QD分散液(13E)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図13に示すように、蛍光波長が537.5nm、蛍光半値幅が25nm、量子収率が63%である光学特性が得られた。なお、洗浄分離は、前述したように、トルエン、エタノールの比率によって、QD25に配位するリガンド21の配位状態の違いによる凝集具合を制御して分離する工程を示す。遠心分離及び洗浄分離を経ることで、バランスよくリガンド21が配位したQD25のみを回収でき、その結果、上述したように、量子収率が高く、良好な発光特性を得ることができた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表2にまとめて示す。
 [実施例14]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))73.4mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら200℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記TETDS-OLAm(濃度0.4M)を0.5mL添加した。その後、上記反応容器内の溶液の温度を、200℃で40分間、攪拌しつつ加熱した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(14A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(14A))に、In(OAc)-OLAm/OLAc(濃度0.2M)0.6mLと、S-ODE(濃度0.2M)1.8mLと、を加えて、290℃で10分間、再び、攪拌しつつ加熱した。
 その後、この290℃で攪拌しつつ加熱している反応溶液に、その上方から、前記GaCl/OLAc-ODE(モル比率Ga:OLAc=1:3、濃度0.1M)3.6mLと、前記S-ODE(濃度0.2M)1.8mLと、オレイルアミン(OLAm)2.7mLとを混合してなる混合溶液8.1mLを、50分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、20分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(14B))を、室温まで冷却した。
 その後、上記反応溶液(AgInGaS分散液(14B))を遠心分離機にて5500rpmで3分間遠心分離し、上澄み液を回収した。回収した上澄み液に、トリオクチルホスフィン(TOP)3mLを添加し、180℃で10分間加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(14C))を、室温まで冷却した。
 その後、上記反応溶液(AgInGaS分散液(14C))1mLに対して、トルエン1mLとエタノール1.5mLとを加えて、遠心分離機にて5500rpmで3分間遠心分離し、上澄み液を回収した。この回収した上澄み液に、エタノール2mLを加えて5500rpmで3分間遠心分離することで、上記QD25の洗浄分離を行った。その後、このQD25を、トルエンで再分散させることで、上記QD25を含むQD分散液(14D)を得た。次いで、このQD分散液(14D)中の該QD25の蛍光波長及び蛍光半値幅を、前記蛍光分光計で測定した。また、上記QD分散液(14D)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図14に示すように、蛍光波長が531.0nm、蛍光半値幅が29.3nm、量子収率が85%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表2にまとめて示す。
 [実施例15]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))73.4mgと、オレイルアミン(OLAm)9.5mLと、ドデカンチオール(DDT)0.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら200℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記TETDS-OLAm(濃度0.4M)を0.5mL添加した。その後、上記反応容器内の溶液の温度を、200℃で40分間、攪拌しつつ加熱した。その後、得られた反応溶液(反応初期粒子としてAgGaS系粒子を含むAgGaS分散液(15A))を、室温まで冷却した。
 得られた上記反応溶液(AgGaS分散液(15A))に、In(OAc)-OLAm/OLAc(濃度0.2M)0.5mLと、S-ODE(濃度0.2M)1.5mLと、を加えて、290℃で10分間、再び、攪拌しつつ加熱した。
 その後、この290℃で攪拌しつつ加熱している反応溶液に、その上方から、前記GaCl/OLAc-OLAm(モル比率Ga:OLAc=1:3、濃度0.1M)3mLと、前記TETDS-OLAm(TETDS-OLAm溶液)(濃度0.4M)0.5mLと、オレイルアミン(OLAm)3mLとを混合してなる混合溶液6.5mLを、80分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、10分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(15B))を、室温まで冷却した。
 その後、上記反応溶液(AgInGaS分散液(15B))を遠心分離機にて5500rpmで3分間遠心分離し、上澄み液を回収した。回収した上澄み液に、トリオクチルホスフィン(TOP)3mLを添加し、180℃で10分間加熱した。その後、得られた反応溶液(AgInGaS系のQD25を含むAgInGaS分散液(15C))を、室温まで冷却した。
 その後、上記反応溶液(AgInGaS分散液(15C))1mLに対して、トルエン1mLとエタノール1.5mLとを加えて、遠心分離機にて5500rpmで3分間遠心分離し、上澄み液を回収した。この回収した上澄み液に、エタノール2mLを加えて、遠心分離機にて5500rpmで3分間、再度遠心分離することで、上記QD25の洗浄分離を行った。その後、このQD25を、トルエンで再分散させることで、上記QD25を含むQD分散液(15D)を得た。次いで、このQD分散液(15D)中の該QD25の蛍光波長及び蛍光半値幅を、前記蛍光分光計で測定した。また、上記QD分散液(15D)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が529.5nm、蛍光半値幅が30.8nm、量子収率が71%である光学特性が得られた。
 その後、上記反応溶液(AgInGaS分散液(15C))を200℃で5分間加熱した。その後、この200℃で攪拌しつつ加熱している反応溶液に、その上方から、前記Zn(OAc)-OLAc/TOP(濃度0.8M)0.075mLと、前記S-TOP(濃度0.2M)0.6mLと、オレイルアミン(OLAm)1.325mLとを混合してなる混合溶液2mLを、120分間かけて滴下した。上記混合溶液の滴下完了後、得られた反応溶液(ZnAgInGaS系のQD25を含むZnAgInGaS分散液(15D))を、室温まで冷却した。
 その後、上記反応溶液(ZnAgInGaS分散液(15D))1mLに対して、トルエン1mLとエタノール1.6mLとを加えて、遠心分離機にて5500rpmで3分間遠心分離し、上澄み液を回収した。この回収した上澄み液に、エタノール2mLを加えて5500rpmで3分間遠心分離することで、上記QD25の洗浄分離を行った。その後、このQD25を、トルエンで再分散させることで、上記QD25を含むQD分散液(15E)を得た。次いで、このQD分散液(15E)中の該QD25の蛍光波長及び蛍光半値幅を、前記蛍光分光計で測定した。また、上記QD分散液(15E)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図15に示すように、蛍光波長が528nm、蛍光半値幅が31nm、量子収率が84%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、緑色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、緑色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料も、後で、表2にまとめて示す。
 [実施例16]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55.5mgと、オレイルアミン(OLAm)20mLと、ドデカンチオール(DDT)3mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら150℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記Se-OLAm/DDT(濃度0.7M)を0.36mL添加した。その後、上記反応容器内の溶液の温度を、150℃で10分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaSe系粒子を含むAgGaSe分散液(16A))を、一旦、室温まで冷却し、その後、320℃で20分間、攪拌しながら加熱した後、再度、室温まで冷却した。
 その後、この反応溶液を、遠心分離機にて5500rpmで3分間遠心分離することで、上記反応初期粒子を沈殿させた。沈殿した反応初期粒子を、トルエンで再分散させ、メタノール及びエタノールを加えた後、遠心分離機にて5500rpmで3分間遠心分離した。これにより、再び上記反応初期粒子を沈殿させた。その後、沈殿した上記反応初期粒子にオレイルアミン(OLAm)9.5mLを加えて、上記反応初期粒子をオレイルアミン(OLAm)で再分散させた。これにより、上記反応初期粒子がオレイルアミン(OLAm)に分散されたAgGaSe分散液(16B)を得た。
 その後、上記AgGaSe分散液(16B)を、290℃で攪拌しつつ加熱しながら、上記分散液(16B)の上方から、前記GaCl/OLAc-OLAm(モル比率Ga:OLAc=1:1.5、濃度0.1M)3mLと、前記Se-OLAm/DDT(濃度0.7M)0.64mLとを混合してなる混合溶液3.64mLを、20分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、100分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgGaSe系粒子を含むAgGaSe分散液(16C))を、室温まで冷却した。
 得られた上記反応溶液(AgGaSe分散液(16C))中の上記粒子の蛍光波長及び蛍光半値幅を前記蛍光分光計で測定した。その結果、蛍光波長が639nm、蛍光半値幅が28.5nmである光学特性が得られた。
 その後、上記反応溶液(AgGaSe分散液(16C))に、トリオクチルホスフィン(TOP)8mLを添加し、200℃で5分間加熱撹拌した。
 その後、この200℃で攪拌しつつ加熱している反応溶液に、その上方から、前記Zn(OAc)-OLAc/TOP(濃度0.8M)1mLと、前記S-OLAm/DDT(濃度0.8M)1mLとを混合してなる混合溶液2mLを、20分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、130分間、攪拌しつつ加熱した。その後、得られた反応溶液(ZnAgGaSeS系のQD25を含むQD分散液(16D))を、室温まで冷却した。
 その後、上記反応溶液(QD分散液(16D))2mLに、トリオクチルホスフィン(TOP)2mLを添加した。その後、このTOPを追加した上記反応溶液を遠心分離機にて5500rpmで3分間遠心分離し、沈殿物を除去した。これにより、上記QD25を含むQD分散液(16E)を得た。得られたQD分散液(16E)中の上記QD25の蛍光波長及び蛍光半値幅を、前記蛍光分光計で測定した。また、上記QD分散液(16E)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図16に示すように、蛍光波長が642nm、蛍光半値幅が33nm、量子収率が76%である光学特性が得られた。
 このように、本実施例によれば、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、赤色発光するQD25を得ることができた。したがって、本実施例によれば、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、赤色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料及びSe源としてのSe原料を、後で、表3にまとめて示す。なお、表3でも、「反応初期粒子の組成」、「蛍光波長」、「蛍光半値幅」、「蛍光量子収率」を、順に、「初期粒子組成」、「波長」、「半値幅」、「PLQY」と記す。
 [実施例17]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55.5mgと、オレイルアミン(OLAm)20mLと、ドデカンチオール(DDT)3mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら150℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記Se-OLAm/DDT(濃度0.7M)を0.36mL添加した。その後、上記反応容器内の溶液の温度を、150℃で10分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaSe系粒子を含むAgGaSe分散液(17A))を、一旦、室温まで冷却し、その後、320℃で20分間、攪拌しながら加熱した後、再度、室温まで冷却した。
 その後、この反応溶液を、遠心分離機にて5500rpmで3分間遠心分離することで、上記反応初期粒子を沈殿させた。沈殿した反応初期粒子を、トルエンで再分散させ、メタノール及びエタノールを加えた後、遠心分離機にて5500rpmで3分間遠心分離した。これにより、再び上記反応初期粒子を沈殿させた。その後、沈殿した上記反応初期粒子にオレイルアミン(OLAm)9.5mLを加えて、上記反応初期粒子をオレイルアミン(OLAm)で再分散させた。これにより、上記反応初期粒子がオレイルアミン(OLAm)に分散された分散液(17B)を得た。
 その後、上記分散液(17B)を、290℃で攪拌しつつ加熱しながら、上記分散液(17B)の上方から、前記GaCl/OLAc-OLAm(モル比率Ga:OLAc=1:1.5、濃度0.1M)3mLと、前記Se-OLAm/DDT(濃度0.7M)0.64mLとを混合してなる混合溶液3.64mLを、30分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、90分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgGaSe系粒子を含むAgGaSe分散液(17C))を、室温まで冷却した。
 その後、上記反応溶液(AgGaSe分散液(17C))に、トリオクチルホスフィン(TOP)8mLを添加し、150℃で5分間加熱撹拌した。
 その後、この150℃で攪拌しつつ加熱している反応溶液に、その上方から、前記Se-OLAm/DDT(濃度0.7M)0.34mLを添加し、150℃で40分間加熱した。
 その後、この反応溶液に、前記Se-OLAm/DDT(濃度0.7M)0.17mLと、前記S-OLAm/DDT(濃度0.8M)0.15mLとを添加し、150℃で40分間加熱した。その後、得られた反応溶液(AgGaSSe系のQD25を含むQD分散液(17C))を、室温まで冷却した。
 その後、上記反応溶液(QD分散液(17C))2mLに、トリオクチルホスフィン(TOP)0.4mLを添加した。その後、このTOPを追加した上記反応溶液を遠心分離機にて5500rpmで3分間遠心分離し、沈殿物を除去した。これにより、上記QD25を含むQD分散液(17D)を得た。得られたQD分散液(17D)中の上記QD25の蛍光波長及び蛍光半値幅を、前記蛍光分光計で測定した。また、上記QD分散液(17D)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、蛍光波長が639nm、蛍光半値幅が30.5nm、量子収率が56%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、赤色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、赤色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料、及びSe源としてのSe原料も、後で、表3にまとめて示す。
 [実施例18]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55.5mgと、オレイルアミン(OLAm)20mLと、ドデカンチオール(DDT)3mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら150℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記Se-OLAm/DDT(濃度0.7M)を0.36mL添加した。その後、上記反応容器内の溶液の温度を、150℃で10分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaSe系粒子を含むAgGaSe分散液(18A))を、一旦、室温まで冷却し、その後、320℃で20分間、攪拌しながら加熱した後、再度、室温まで冷却した。
 その後、この反応溶液を、遠心分離機にて5500rpmで3分間遠心分離することで、上記反応初期粒子を沈殿させた。沈殿した反応初期粒子を、トルエンで再分散させ、メタノール及びエタノールを加えた後、遠心分離機にて5500rpmで3分間遠心分離した。これにより、再び上記反応初期粒子を沈殿させた。その後、沈殿した上記反応初期粒子にオレイルアミン(OLAm)9.5mLを加えて、上記反応初期粒子をオレイルアミン(OLAm)で再分散させた。これにより、上記反応初期粒子がオレイルアミン(OLAm)に分散された分散液(18B)を得た。
 その後、上記分散液(18B)を、290℃で攪拌しつつ加熱しながら、上記分散液(18B)の上方から、前記GaCl/OLAc-OLAm(モル比率Ga:OLAc=1:1.5、濃度0.1M)3mLと、前記Se-OLAm/DDT(濃度0.7M)0.64mLとを混合してなる混合溶液3.64mLを、30分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、90分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgGaSe系粒子を含むAgGaSe分散液(18C))を、室温まで冷却した。
 その後、上記反応溶液(AgGaSe分散液(18C))に、トリオクチルホスフィン(TOP)8mLを添加し、150℃で5分間加熱撹拌した。
 その後、この150℃で攪拌しつつ加熱している反応溶液に、その上方から、前記Se-OLAm/DDT(濃度0.7M)0.34mLを添加し、150℃で20分間加熱した。
 その後、この反応溶液に、前記Zn(OAc)-OLAc/TOP(濃度0.8M)0.3mLを添加し、150℃で20分間加熱した。続いて、この反応溶液に、その上方から、前記Se-OLAm/DDT(濃度0.7M)0.17mLと、前記S-OLAm/DDT(濃度0.8M)0.15mLと、を添加し、150℃で20分間加熱した。その後、この反応溶液に、前記Zn(OAc)-OLAc/TOP(濃度0.8M)0.3mLを添加し、150℃で20分間加熱した。その後、得られた反応溶液(ZnAgGaSSe系のQD25を含むQD分散液(18D))を、室温まで冷却した。
 その後、上記反応溶液(QD分散液(18D))2mLに、トリオクチルホスフィン(TOP)0.4mLを添加した。その後、このTOPを追加した上記反応溶液を遠心分離機にて5500rpmで3分間遠心分離し、沈殿物を除去した。これにより、上記QD25を含むQD分散液(18E)を得た。得られたQD分散液(18E)中の上記QD25の蛍光波長及び蛍光半値幅を、前記蛍光分光計で測定した。また、上記QD分散液(18E)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図17に示すように、蛍光波長が633nm、蛍光半値幅が27nm、量子収率が81%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、赤色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、赤色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料及びSe源としてのSe原料も、後で、表3にまとめて示す。
 [実施例19]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55.5mgと、オレイルアミン(OLAm)20mLと、ドデカンチオール(DDT)3mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら150℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記Se-OLAm/DDT(濃度0.7M)を0.36mL添加した。その後、上記反応容器内の溶液の温度を、150℃で10分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaSe系粒子を含むAgGaSe分散液(19A))を、一旦、室温まで冷却し、その後、320℃で20分間、攪拌しながら加熱した後、再度、室温まで冷却した。
 その後、この反応溶液を、遠心分離機にて5500rpmで3分間遠心分離することで、上記反応初期粒子を沈殿させた。沈殿した反応初期粒子を、トルエンで再分散させ、メタノールとエタノールとを用いて、上記反応初期粒子の洗浄分離を行った。その後、この反応初期粒子にオレイルアミン(OLAm)9.5mLを加えて、上記反応初期粒子をオレイルアミン(OLAm)で再分散させた。これにより、上記反応初期粒子がオレイルアミン(OLAm)に分散された分散液(19B)を得た。
 その後、上記分散液(19B)を、290℃で攪拌しつつ加熱しながら、上記分散液(19B)の上方から、前記GaCl/OLAc-OLAm(モル比率Ga:OLAc=1:1.5、濃度0.1M)3mLと、前記Se-OLAm/DDT(濃度0.7M)0.64mLとを混合してなる混合溶液3.64mLを、20分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、100分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgGaSe系粒子を含むAgGaSe分散液(19C))を、室温まで冷却した。
 その後、上記反応溶液(AgGaSe分散液(19C))に、トリオクチルホスフィン(TOP)8mLを添加し、150℃で5分間加熱撹拌した。
 その後、この150℃で攪拌しつつ加熱している反応溶液に、その上方から、前記Se-OLAm/DDT(濃度0.7M)0.34mLを添加し、150℃で20分間加熱した。
 その後、この反応溶液に、前記Zn(OAc)-OLAm(濃度0.4M)0.6mLを添加し、150℃で20分間加熱した。続いて、この反応溶液に、その上方から、前記Se-OLAm/DDT(濃度0.7M)0.17mLと、前記S-OLAm/DDT(濃度0.8M)0.15mLと、を添加し、150℃で20分間加熱した。その後、この反応溶液に、前記Zn(OAc)-OLAm(濃度0.4M)0.6mLを添加し、150℃で20分間加熱した。その後、得られた反応溶液(ZnAgGaSSe系のQD25を含むQD分散液(19D))を、室温まで冷却した。
 その後、上記反応溶液(QD分散液(19D))2mLに、トリオクチルホスフィン(TOP)0.4mLを添加した。その後、このTOPを追加した上記反応溶液を遠心分離機にて5500rpmで3分間遠心分離し、沈殿物を除去した。これにより、上記QD25を含むQD分散液(19E)を得た。得られたQD分散液(19E)中の上記QD25の蛍光波長及び蛍光半値幅を、前記蛍光分光計で測定した。また、上記QD分散液(19E)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図18に示すように、蛍光波長が630.5nm、蛍光半値幅が24.5nm、量子収率が70%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、赤色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、赤色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料及びSe源としてのSe原料も、後で、表3にまとめて示す。
 [実施例20]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))53.3mgと、In(acac)-OLAm/OLAc(濃度0.02M)0.25mLと、ドデカンチオール(DDT)2.5mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら150℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記Se-OLAm/DDT(濃度0.7M)を0.36mL添加した。その後、上記反応容器内の溶液の温度を、150℃で10分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgInGaSe系粒子を含むAgInGaSe分散液(20A))を、一旦、室温まで冷却し、その後、320℃で60分間、攪拌しながら加熱した後、再度、室温まで冷却した。
 その後、この反応溶液を、遠心分離機にて5500rpmで3分間遠心分離することで、上記反応初期粒子を沈殿させた。沈殿した反応初期粒子を、トルエンで再分散させ、メタノールとエタノールとを用いて、上記反応初期粒子の洗浄分離を行った。その後、この反応初期粒子にオレイルアミン(OLAm)9.5mLを加えて、上記反応初期粒子をオレイルアミン(OLAm)で再分散させた。これにより、上記反応初期粒子がオレイルアミン(OLAm)に分散された分散液(20B)を得た。
 その後、上記分散液(20B)を、260℃で攪拌しつつ加熱しながら、上記分散液(20B)の上方から、前記GaCl/OLAc-OLAm(モル比率Ga:OLAc=1:1.5、濃度0.1M)3mLと、前記S-OLAm/DDT(濃度0.8M)0.57mLとを混合してなる混合溶液3.57mLを、30分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、150分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgInGaSe系粒子を含むAgInGaSe分散液(20C))を、室温まで冷却した。
 その後、上記反応溶液(AgInGaSe分散液(20C))に、Zn(OAc)-OLAc/TOP(濃度0.8M)15mLと、S-OLAm/DDT(S-OLAm/DDT溶液)(濃度0.8M)15mLとを添加し、150℃で5分間加熱撹拌した。続いて、この反応溶液に、その上方から、トリオクチルホスフィン(TOP)3mLを添加し、150℃で10分間加熱した。その後、この反応溶液に、前記Zn(OAc)-OLAc/TOP(濃度0.8M)0.15mLと、S-OLAm/DDT(濃度0.8M)0.15mLとを添加し、150℃で20分間加熱した。
 続いて、この反応溶液2mLに、トリオクチルホスフィン(TOP)0.4mLを添加した。その後、この反応溶液を遠心分離機にて5500rpmで3分間遠心分離し、沈殿物を除去した。これにより、ZnAgInGaSSe系のQD25を含むQD分散液(20D)を得た。得られたQD分散液(20D)中の上記QD25の蛍光波長及び蛍光半値幅を、前記蛍光分光計で測定した。また、上記QD分散液(20D)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図18に示すように、蛍光波長が631nm、蛍光半値幅が25nm、量子収率が67%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、赤色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、赤色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料及びSe源としてのSe原料も、後で、表3にまとめて示す。
 [実施例21]
 100mL反応容器に、前記Ag(OAc)-OLAm(濃度0.2M)0.5mLと、ガリウムアセチルアセトナート(Ga(acac))55.5mgと、オレイルアミン(OLAm)20mLと、ドデカンチオール(DDT)3mLと、を入れた。そして、不活性ガス(N)雰囲気下で、上記反応容器内の原料を、攪拌しながら150℃で5分間加熱して溶解させることで溶液とした。
 次いで、上記反応容器内の溶液に、その上方から、前記Se-OLAm/DDT(濃度0.7M)を0.36mL添加した。その後、上記反応容器内の溶液の温度を、150℃で10分間、攪拌した。その後、得られた反応溶液(反応初期粒子としてAgGaSe系粒子を含むAgGaSe分散液(21A))を、一旦、室温まで冷却し、その後、320℃で20分間、攪拌しながら加熱した後、再度、室温まで冷却した。
 その後、この反応溶液を、遠心分離機にて5500rpmで3分間遠心分離することで、上記反応初期粒子を沈殿させた。沈殿した反応初期粒子を、トルエンで再分散させ、メタノールとエタノールとを用いて、上記反応初期粒子の洗浄分離を行った。その後、この反応初期粒子にオレイルアミン(OLAm)9.5mLを加えて、上記反応初期粒子をオレイルアミン(OLAm)で再分散させた。これにより、上記反応初期粒子がオレイルアミン(OLAm)に分散された分散液(21B)を得た。
 その後、上記分散液(21B)を、290℃で攪拌しつつ加熱しながら、上記分散液(21B)の上方から、前記GaCl/OLAc-OLAm(モル比率Ga:OLAc=1:1.5、濃度0.1M)3mLと、前記S-OLAm/DDT(濃度0.8M)3.5mLとを混合してなる混合溶液3.5mLを、10分間かけて滴下した。上記混合溶液の滴下完了後、上記混合溶液が滴下された上記反応溶液を、110分間、攪拌しつつ加熱した。その後、得られた反応溶液(AgGaSe系粒子を含むAgGaSe分散液(21C))を、室温まで冷却した。
 その後、上記反応溶液(AgGaSe分散液(21C))に、トリオクチルホスフィン(TOP)8mLを添加し、150℃で5分間加熱撹拌した。
 その後、この反応溶液に、その上方から、前記Se-OLAm/DDT(濃度0.7M)0.34mLを添加し、150℃で20分間加熱した。続いて、この反応溶液に、その上方から、前記Zn(OAc)-OLAc/TOP(濃度0.8M)0.3mLを添加し、150℃で20分間加熱した。続いて、この反応溶液に、その上方から、前記Se-OLAm/DDT(Se-OLAm/DDT溶液)濃度0.7M)0.17mLと、S-OLAm/DDT(S-OLAm/DDT溶液)(濃度0.8M)0.15mLとを添加し、150℃で20分間加熱した。その後、この反応溶液に、Zn(OAc)-OLAc/TOP(濃度0.8M)0.3mLを添加し、150℃で20分間加熱した。その後、得られた反応溶液(ZnAgGaSSe系のQD25を含むQD分散液(21D))を、室温まで冷却した。
 その後、上記反応溶液(QD分散液(21D))2mLに、トリオクチルホスフィン(TOP)0.4mLを添加した。その後、このTOPを追加した上記反応溶液を遠心分離機にて5500rpmで3分間遠心分離し、沈殿物を除去した。これにより、上記QD25を含むQD分散液(21E)を得た。得られたQD分散液(21E)中の上記QD25の蛍光波長及び蛍光半値幅を、前記蛍光分光計で測定した。また、上記QD分散液(21E)中の上記QD25の蛍光量子収率を前記量子収率測定装置で測定した。その結果、図20に示すように、蛍光波長が633nm、蛍光半値幅が23.9nm、量子収率が75%である光学特性が得られた。
 したがって、本実施例でも、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の、赤色発光するQD25を得ることができた。このため、本実施例でも、QDとして上記QD25を用いることで、蛍光半値幅が狭く、かつ、蛍光量子収率が高い、Cdを含有しないカルコパイライト系のQDを含み、赤色発光する発光素子1を提供することができることが判る。
 なお、本実施例における反応初期粒子の組成、後添加元素、蛍光波長、蛍光半値幅、蛍光量子収率、S源としてのS原料及びSe源としてのSe原料も、後で、表3にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3に示すように、実施例1~21によれば、何れも良好な発光特性が得られた。
 なお、表1~3に記載の「後添加元素」では、コア25aの表面を被覆するシェル25bの組成を含むが、前記TEM(透過型電子顕微鏡)による撮影及びエネルギー分散型X線(EDX)分析装置によるTEM-EDXでの分析の結果、明確なコアシェル構造を確認できず、添加した原料が全て混晶化していることが判った。なお、表1~3では、「初期粒子組成」と「後添加元素」とを分けて記載した。
 また、実施例17ではQD25がZnを含んでおらず、実施例18ではQD25がZnを含んでいる。実施例17と実施例18との比較から判るように、実施例18の方が実施例17に比べて、良好な発光特性が得られた。
 表1~3に示すように、実施例1~21によれば、何れも、QD25の蛍光半値幅を、45nm以下、好ましくは、30nm以下にできることが判った。また、表1~3に示すように、実施例1~21によれば、蛍光量子収率を、35%以上、好ましくは70%以上にできることが判った。
 また、表1~3に示すように、実施例1~21によれば、蛍光波長を、400nm~700nmの範囲内で調整することが可能であり、実施例1~実施例15によって緑色発光のQD25を合成可能であり、実施例16~21によって赤色発光のQD25を合成可能であることが判った。
 これに対して、前記特許文献1~5及び非特許文献1~2に記載のAIS系のQDの合成方法は、何れも、QDの合成が困難であるか、もしくは、QDを合成できたとしても、発光強度が低いQDしか得ることができなかった。具体的には、前記特許文献1~5及び非特許文献1~2に記載のQDの合成方法では、QDを合成できたとしても、緑色波長域から赤色波長域にて、蛍光半値幅が45nm以上となるか、蛍光量子収率が35%以下となり、本実施例のように、蛍光半値幅が狭く、且つ蛍光量子収率が高いAgInGa1-xSe1-y系、或いは、ZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)の量子ドットを得ることができなかった。
 また、実施例8のAgInGaS分散液(8B)中のAgInGaS系のQD25を、前記走査電子顕微鏡(SEM)を用いて測定した。図21は、実施例8で得られたQD25の走査電子顕微鏡写真を示す図である。
 図21に示すように、実施例8によれば、多数のQD25を、略均一の粒径に大量生産できることが判った。
 また、実施例16のZnAgGaSSe系のQD25をTEM-EDXにて分析した分析画像(観察像)を図22に示す。図23は、図22に示す分析画像(観察像)の部分模式図である。図22及び図23に示すように、Znの検出が多いほど色が濃く検出され、ZnはQD25の主に表面に存在(偏在)していることが判った。
 以上のように、本実施形態によれば、例えば、高輝度の緑色蛍光或いは赤色蛍光を示すQD25を安定して得ることができる。そして上記QD25を、LEDやバックライト装置、表示装置等の発光装置に適用することで、各装置において優れた発光特性を得ることができる。
 〔実施形態2〕
 本開示の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 (表示装置への適用)
 発光素子1は、前述したように、例えば、表示装置の光源として適用される。前述したように、本実施形態では、QD25の蛍光波長並びにQD層15の蛍光波長を、400nm以上、700nm以下まで制御することが可能であるが、QD25並びにQD層15は、緑色発光又は赤色発光することが好ましい。したがって、発光素子1は、例えば、表示装置の緑色光源又は赤色光源として好適に適用される。また、発光素子1は、各画素(R画素、G画素、B画素)に対応する各色の光源(赤色光源、緑色光源、青色光源)を組み合わせて点灯させる光源としてもよい。この光源を利用した表示装置は、R画素、G画素及びB画素を含む複数の画素によって画像を表現できる。
 図6は、本実施形態に係る表示装置400(発光装置)の要部の概略構成を模式的に示す断面図である。
 なお、本実施形態では、本実施形態に係る発光装置が表示装置である場合を例に挙げて説明する。しかしながら、本実施形態に係る発光装置は、前述したように、LED、バックライト装置等の照明装置であってもよい。また、該発光装置は、表示装置400の例えば表示パネルあるいは光源(照明装置)として用いられてよい。
 図6に示すように、本実施形態に係る表示装置400(発光装置)は、R画素(PIXR)とG画素(PIXG)とB画素(PIXB)とを含む複数の画素を備えている。なお、R画素は、Rサブ画素と称されてもよい。この点については、G画素及びB画素も同様である。
 表示装置400は、PIXRとPIXGとPIXBとで1つの絵素を構成する。また、本実施形態では、これらPIXRとPIXGとPIXBとを特に区別する必要がない場合、これらPIXR、PIXG、及びPIXBを総称して、単にPIXと称する。
 表示装置400は、発光波長が異なる複数種類の発光素子を含む発光素子層が設けられた構成を有している。
 発光素子層には、各PIXに対応して、それぞれ発光素子が設けられている。PIXRには、赤色発光素子として発光素子41Rが設けられている。PIXGには、緑色発光素子として発光素子41Gが設けられている。PIXBには、青色発光素子として発光素子41Bが設けられている。
 図6に示すように、発光素子41Rは、陽極12R、HIL13R、HTL14R、QD層15R、ETL16R、陰極17を備えている。発光素子41Gは、陽極12G、HIL13G、HTL14G、QD層15G、ETL16G、陰極17を備えている。発光素子41Bは、陽極12B、HIL13B、HTL14B、QD層15B、ETL16B、陰極17を備えている。
 これら発光素子41R、発光素子41G、発光素子41Bは、それぞれ、図1に示す発光素子1と同様の構成を有している。したがって、陽極12R、陽極12G、陽極12Bは、それぞれ、それぞれ、図1に示す陽極12と同様の構成を有している。また、HIL13R、HIL13G、HIL13Bは、それぞれ、それぞれ、図1に示すHIL13と同様の構成を有している。HTL14R、HTL14G、HTL14Bは、それぞれ、それぞれ、図1に示すHTL14と同様の構成を有している。QD層15R、QD層15G、QD層15Bは、それぞれ、それぞれ、図1に示すQD層15と同様の構成を有している。ETL16R、ETL16G、ETL16Bは、それぞれ、それぞれ、図1に示すETL16と同様の構成を有している。
 なお、PIXR(発光素子41R)及びPIXG(発光素子41G)にそれぞれ用いられる赤色QD及び緑色QDの少なくとも一方には、上述したQD25を用いることが望ましく、その両方に、上述したQD25を用いることがより望ましい。但し、PIXB(発光素子41B)に用いられる青色QDとしては、特に限定されない。なお、該青色QDとしては、非Cd系の材料に限定するのであれば、例えばZnSを用いてもよい。
 これらPIXR、PIXG、及びPIXBは、例えば、それぞれ、バンク18が設けられた基板11に、少なくともQD層15を含む、前記発光素子1の各層に対応する層を、インクジェット等を用いて塗り分けることで形成される。なお、PIXB(発光素子41B)のQD層15Bに用いられる青色QDとしては、非Cd系の材料に限定するのであれば、例えばZnSを用いてもよい。
 また、上記表示装置400が、PIXR、PIXG、及びPIXBのそれぞれの画素を個別に点灯できる構成であれば、ETL16が複数の画素単位で成膜されていても構わないし、複数の画素に対して共通に成膜されていても構わない。
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。更に、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
   1、41B、41G、41R  発光素子(電界発光素子)
  12、12B、12G、12R  陽極
  13、13B、13G、13R  HIL(正孔注入層)
  14、14B、14G、14R  HTL(正孔輸送層)
  15、15B、15G、15R  QD層
  16、16B、16G、16R  ETL(電子輸送層)
  17  陰極
  21  リガンド
  25  QD(量子ドット)
  25a コア
  25b シェル
 400  表示装置(発光装置)

Claims (13)

  1.  陽極と、陰極と、上記陽極と上記陰極との間に設けられた、量子ドットを含む量子ドット発光層と、を備え、
     上記量子ドットは、AgInGa1-xSe1-y系、或いは、ZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)のCdフリーの量子ドットであり、緑色波長域から赤色波長域にて、蛍光半値幅が45nm以下で、蛍光量子収率が35%以上の蛍光特性を示すことを特徴とする電界発光素子。
  2.  上記量子ドットは、少なくとも、Agと、Gaと、S及びSeのうち少なくとも一方と、を含むことを特徴とする請求項1に記載の電界発光素子。
  3.  上記量子ドットは、少なくとも、Agと、Gaと、S及びSeのうち少なくとも一方と、を含むナノクリスタルのコアと、シェルと、を含むコアシェル構造を有していることを特徴とする請求項2に記載の電界発光素子。
  4.  上記量子ドットの上記蛍光半値幅は、35nm以下であることを特徴とする請求項1~3の何れか1項に記載の電界発光素子。
  5.  上記量子ドットは、上記蛍光量子収率が70%以上の蛍光特性を示すことを特徴とする請求項1~4の何れか1項に記載の電界発光素子。
  6.  上記量子ドットの蛍光波長が、400nm以上、700nm以下の範囲内であることを特徴とする請求項1~5の何れか1項に記載の電界発光素子。
  7.  上記量子ドットは、蛍光半値幅が30nm以下であり、蛍光量子収率が80%以上であり、蛍光波長が、510nm以上、650nm以下の範囲内であることを特徴とする請求項1に記載の電界発光素子。
  8.  上記量子ドットは、下記式(1)
     -S-C(=S)-NR‥(1)
     (式中、R及びRは、それぞれ独立して、-(CH-CH基、-CH基、又はベンジル基を表し、nは1~3の整数を表す)
    及び下記式(2)
     -S-R‥(2)
     (式中、Rは、フェニル基、ベンジル基、又はピリジル基を表す)
    で示される構造のうち少なくとも一方の構造を含むことを特徴とする請求項1~7の何れか1項に記載の電界発光素子。
  9.  上記量子ドット発光層の層厚が、2nm以上、20nm以下の範囲内であることを特徴とする請求項1~8の何れか1項に記載の電界発光素子。
  10.  上記陽極と上記量子ドット発光層との間に、上記陽極側から、正孔注入層と、正孔輸送層と、をこの順に備えるとともに、
     上記陰極と上記量子ドット発光層との間に、電子輸送層を備え、
     上記正孔注入層が、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸との複合物を含み、
     上記正孔輸送層が、ポリ(N-ビニルカルバゾール)を含み、
     上記電子輸送層が、ZnMgOを含むことを特徴とする請求項1~9の何れか1項に記載の電界発光素子。
  11.  上記量子ドットは、ZnAgInGa1-xSe1-y系(0≦x<1、0≦y≦1)の量子ドットであり、Znが、上記量子ドットの主に表面に偏在していることを特徴とする請求項1~10の何れか1項に記載の電界発光素子。
  12.  請求項1~11の何れか1項に記載の電界発光素子を少なくとも1つ備えていることを特徴とする発光装置。
  13.  当該発光装置が表示装置であることを特徴とする請求項12に記載の発光装置。
PCT/JP2021/006043 2021-02-18 2021-02-18 電界発光素子 WO2022176088A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/276,026 US20240107792A1 (en) 2021-02-18 2021-02-18 Electroluminescent element
PCT/JP2021/006043 WO2022176088A1 (ja) 2021-02-18 2021-02-18 電界発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006043 WO2022176088A1 (ja) 2021-02-18 2021-02-18 電界発光素子

Publications (1)

Publication Number Publication Date
WO2022176088A1 true WO2022176088A1 (ja) 2022-08-25

Family

ID=82930339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006043 WO2022176088A1 (ja) 2021-02-18 2021-02-18 電界発光素子

Country Status (2)

Country Link
US (1) US20240107792A1 (ja)
WO (1) WO2022176088A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116285963A (zh) * 2022-11-30 2023-06-23 北京交通大学 窄谱带发光量子点、制备方法及电致发光器件、制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356462A (zh) * 2016-08-23 2017-01-25 苏州星烁纳米科技有限公司 包括量子点和能量转移分子的发光二极管装置及其制备方法、显示装置
WO2018159699A1 (ja) * 2017-02-28 2018-09-07 国立大学法人名古屋大学 半導体ナノ粒子およびその製造方法ならびに発光デバイス
WO2019074083A1 (ja) * 2017-10-12 2019-04-18 Nsマテリアルズ株式会社 量子ドット及びその製造方法、量子ドットを用いた波長変換部材、照明部材、バックライト装置、並びに、表示装置
JP2019145505A (ja) * 2018-02-21 2019-08-29 三星電子株式会社Samsung Electronics Co.,Ltd. 半導体ナノ結晶粒子とその製造方法、及びその集団、並びに電界発光素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356462A (zh) * 2016-08-23 2017-01-25 苏州星烁纳米科技有限公司 包括量子点和能量转移分子的发光二极管装置及其制备方法、显示装置
WO2018159699A1 (ja) * 2017-02-28 2018-09-07 国立大学法人名古屋大学 半導体ナノ粒子およびその製造方法ならびに発光デバイス
WO2019074083A1 (ja) * 2017-10-12 2019-04-18 Nsマテリアルズ株式会社 量子ドット及びその製造方法、量子ドットを用いた波長変換部材、照明部材、バックライト装置、並びに、表示装置
JP2019145505A (ja) * 2018-02-21 2019-08-29 三星電子株式会社Samsung Electronics Co.,Ltd. 半導体ナノ結晶粒子とその製造方法、及びその集団、並びに電界発光素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116285963A (zh) * 2022-11-30 2023-06-23 北京交通大学 窄谱带发光量子点、制备方法及电致发光器件、制备方法

Also Published As

Publication number Publication date
US20240107792A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
CN110240896B (zh) 量子点以及包括其的电致发光器件和电子器件
JP6710248B2 (ja) 量子ドット発光ダイオードおよびこれを含む量子ドット発光装置
CN110172348B (zh) 半导体纳米晶体颗粒、其制造方法、和包括其的量子点群及发光器件
US11186770B2 (en) II-VI based non-Cd quantum dots, manufacturing method thereof and QLED using the same
KR20210027276A (ko) 양자점, 및, 그 제조 방법
US20060236918A1 (en) Interfused nanocrystals and method of preparing the same
US20220199925A1 (en) Electroluminescent element, display device, and method for manufacturing electroluminescent element
KR20140121351A (ko) 아연 셀레나이드 양자점 기반의 청색 발광 다이오드
WO2022176088A1 (ja) 電界発光素子
CN112442371B (zh) 量子点、其制造方法、包括其的量子点群和电致发光器件
US20220199924A1 (en) Electroluminescent element, display device, and method for manufacturing electroluminescent element
WO2021166054A1 (ja) 電界発光素子
Yoo et al. Synthesis of narrow blue emission gradient ZnSeS quantum dots and their quantum dot light-emitting diode device performance
WO2022208736A1 (ja) 電界発光素子及び発光装置並びに電界発光素子の製造方法
US20220199926A1 (en) Electroluminescence element, display device, and method for producing electroluminescence element
JP7469891B2 (ja) 量子ドット発光素子及び表示装置
WO2022003948A1 (ja) 量子ドット分散液及びそれを用いた電界発光素子の製造方法
WO2022162840A1 (ja) 量子ドット及び電界発光素子
WO2022208704A1 (ja) 電界発光素子及び発光装置並びに電界発光素子の製造方法
WO2022162841A1 (ja) 量子ドット、電界発光素子及びその製造方法、発光装置、表示装置及びその制御方法
US20220195300A1 (en) Electroluminescent element, display, method for manufacturing electroluminescent element, and liquid composition
KR20200026163A (ko) 양자점을 포함하는 전자 소자
US20240164129A1 (en) Electroluminescent device and display device including the same
US20240074222A1 (en) Light emitting device and display device including the same
KR20190027065A (ko) 비카드뮴계 발광 입자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926526

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18276026

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP