WO2019160093A1 - コアシェル型半導体ナノ粒子、その製造方法および発光デバイス - Google Patents

コアシェル型半導体ナノ粒子、その製造方法および発光デバイス Download PDF

Info

Publication number
WO2019160093A1
WO2019160093A1 PCT/JP2019/005610 JP2019005610W WO2019160093A1 WO 2019160093 A1 WO2019160093 A1 WO 2019160093A1 JP 2019005610 W JP2019005610 W JP 2019005610W WO 2019160093 A1 WO2019160093 A1 WO 2019160093A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
shell
group
semiconductor nanoparticles
light
Prior art date
Application number
PCT/JP2019/005610
Other languages
English (en)
French (fr)
Inventor
桑畑 進
太郎 上松
知卓 輪島
鳥本 司
達矢 亀山
大祐 小谷松
Original Assignee
国立大学法人大阪大学
国立大学法人名古屋大学
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 国立大学法人名古屋大学, 日亜化学工業株式会社 filed Critical 国立大学法人大阪大学
Priority to US16/970,273 priority Critical patent/US20210040385A1/en
Priority to JP2020500587A priority patent/JP7307046B2/ja
Priority to CN201980013326.9A priority patent/CN111819267B/zh
Publication of WO2019160093A1 publication Critical patent/WO2019160093A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present disclosure relates to a core-shell type semiconductor nanoparticle, a manufacturing method thereof, and a light emitting device.
  • Quantum size effect refers to a phenomenon in which each band of a valence band and a conduction band considered to be continuous in bulk particles becomes discrete in nanoparticles, and the band gap energy changes according to the particle size.
  • quantum dots can absorb light and convert the wavelength into light corresponding to the band gap energy
  • a white light emitting device using light emission of quantum dots has been proposed (for example, Japanese Patent Application Laid-Open No. 2012-212862). Gazette and JP 2010-177656 A). Specifically, a part of the light emitted from the light emitting diode (LED) chip is absorbed by the quantum dots, and white light is obtained as a mixed color of the light emission from the quantum dots and the light emission from the LED chip.
  • a quantum dot of a binary system of Group 12 to Group 16 such as CdSe and CdTe
  • Group 14 to Group 16 such as PbS and PbSe.
  • An object of one embodiment of the present disclosure is to provide core-shell type semiconductor nanoparticles that exhibit band edge emission and are excellent in quantum yield.
  • the core and, and a shell which are placed on the surface of the core, a core-shell semiconductor nanoparticles that emit light when light is irradiated wherein the core, M 1, M 2 and Z M 1 includes at least one element selected from the group consisting of silver (Ag), copper (Cu), and gold (Au), and M 2 includes aluminum (Al) and gallium (Ga).
  • the shell includes a group 13 element and a group 16 element, includes a semiconductor having a larger band gap energy than the core, and a group 15 element is formed on the shell surface. No compound is disposed, said Group 15 element is the core-shell semiconductor nanoparticles containing phosphorus (P) having at least a negative oxidation number.
  • the second aspect is a light emitting device comprising a light conversion member containing the core-shell type semiconductor nanoparticles and a semiconductor light emitting element.
  • a third aspect includes preparing a core-shell particle including a core and a shell disposed on the surface of the core, and bringing the core-shell particle into contact with a compound containing a Group 15 element.
  • This is a method for producing core-shell type semiconductor nanoparticles that emit light.
  • the core includes a semiconductor including M 1 , M 2 and Z.
  • M 1 includes at least one selected from the group consisting of Ag, Cu, and Au
  • M 2 includes at least one selected from the group consisting of Al, Ga, In, and Tl
  • Z includes S, Se, and Te.
  • the shell includes a group 13 element and a group 16 element, and includes a semiconductor having a larger band gap energy than the core.
  • the Group 15 element includes at least P having a negative oxidation number.
  • Example 2 is an emission spectrum of semiconductor nanoparticles (core) and TOP-modified core semiconductor nanoparticles prepared in Comparative Example 1; It is an absorption spectrum of the semiconductor nanoparticle (core) produced in Example 2, a core-shell type semiconductor nanoparticle (core-shell), and a TOP modification core-shell type semiconductor nanoparticle. It is an emission spectrum of the semiconductor nanoparticles (core), core-shell type semiconductor nanoparticles (core-shell), and TOP-modified core-shell type semiconductor nanoparticles prepared in Example 2.
  • the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • content of each component in a composition means the total amount of the said some substance which exists in a composition, unless there is particular notice, when the substance applicable to each component exists in a composition in multiple numbers.
  • embodiments will be described in detail. However, the embodiment described below exemplifies a core-shell type semiconductor nanoparticle, a manufacturing method thereof, and a light emitting device for embodying the technical idea of the present invention, and the present invention includes the core-shell type semiconductor described below.
  • the present invention is not limited to nanoparticles, methods for producing the same, and light emitting devices.
  • the core-shell type semiconductor nanoparticle which is a 1st aspect is a core-shell type semiconductor nanoparticle provided with a core and the shell arrange
  • the core includes a semiconductor including M 1 , M 2 and Z.
  • M 1 in the semiconductor contains at least one selected from the group consisting of Ag, Cu and Au
  • M 2 contains at least one selected from the group consisting of Al, Ga, In and Tl
  • the shell includes a group 13 element and a group 16 element, and includes a semiconductor having a larger band gap energy than the core.
  • a compound containing a Group 15 element is disposed on the shell surface, and the Group 15 element contains P having at least a negative oxidation number.
  • the core of the core-shell type semiconductor nanoparticle is composed of a ternary semiconductor containing M 1 , M 2 and Z.
  • the crystal structure of the core may be at least one selected from the group consisting of tetragonal, hexagonal and orthorhombic.
  • M 1 includes at least one element selected from the group consisting of Ag, Cu, and Au, preferably includes at least one of Ag and Cu, and more preferably includes Ag.
  • M 1 contains Ag, it tends to be easy to synthesize a core (corresponding to semiconductor nanoparticles used in a manufacturing method described later).
  • the core may comprise two or more elements as M 1.
  • M 2 contains at least one element selected from the group consisting of Al, Ga, In and Tl, preferably contains at least one of In and Ga, and more preferably contains In. In is preferably used because it hardly generates a by-product.
  • the core may comprise two or more elements as M 2.
  • semiconductor forming the core may include Ga and In as M 2.
  • Z contains at least one element selected from the group consisting of S, Se and Te, and preferably contains S.
  • a core in which Z includes S has a wider band gap than a semiconductor in which Z is Se or Te, and thus easily emits light in the visible light region.
  • the core may contain two or more elements as Z.
  • M 1 , M 2 and Z examples include Cu / In / S, Ag / In / S, Ag / (In, Ga) / S, Ag / In / Se And Ag / Ga / S.
  • a semiconductor containing the specific element and having a tetragonal, hexagonal, or orthorhombic crystal structure generally has a composition represented by M 1 M 2 Z 2 .
  • a semiconductor having a composition represented by M 1 M 2 Z 2 and having a hexagonal crystal structure is a wurtzite type
  • a semiconductor having a tetragonal crystal structure is a chalcopyrite type.
  • the crystal structure is identified, for example, by measuring an XRD pattern obtained by X-ray diffraction (XRD).
  • the XRD pattern obtained from the core is an XRD pattern known as that of a semiconductor nanoparticle represented by a composition of M 1 M 2 Z 2 , or an XRD pattern obtained by performing simulation from a crystal structure parameter Compare with If there is a known pattern and a simulation pattern that match the core pattern, the crystal structure of the semiconductor nanoparticle can be said to be the crystal structure of the matching known or simulated pattern.
  • a plurality of types of semiconductor nanoparticles having different core crystal structures may be mixed. In that case, in the XRD pattern, peaks derived from a plurality of crystal structures are observed.
  • a core made of a ternary semiconductor is not actually of the stoichiometric composition represented by the above general formula, and in particular, the ratio of the number of M 1 atoms to the number of M 2 atoms (M 1 / M 2 ) May be smaller than 1 or vice versa. In addition, the sum of the number of M 1 atoms and the number of M 2 atoms may not be the same as the number of Z atoms.
  • the core made of a ternary semiconductor may be made of a semiconductor having such a non-stoichiometric composition.
  • the core may consist essentially of M 1 , M 2 and Z only.
  • the term “substantially” is used in consideration of the fact that elements other than M 1 , M 2, and Z are inevitably included due to contamination of impurities and the like.
  • the core may contain other elements.
  • a part of M 2 may be substituted with another metal element.
  • Other metal elements may be those that become trivalent metal ions. Specifically, Cr, Fe, Al, Y, Sc, La, V, Mn, Co, Ni, Ga, In, Rh, Ru , Mo, Nb, W, Bi, As, and Sb. Amount of substitution is when the number of atoms combined with other metallic elements to replace the M 2 is 100%, is preferably 10% or less.
  • the shell is a semiconductor having a band gap energy larger than that of a semiconductor constituting the core, and is made of a semiconductor containing a Group 13 element and a Group 16 element.
  • Group 13 elements include B, Al, Ga, In, and Tl.
  • Group 16 elements include O, S, Se, Te, and Po.
  • the semiconductor constituting the shell may contain only one type or two or more group 13 elements, and may contain only one type or two or more group 16 elements.
  • the shell may be composed of a semiconductor substantially composed of a Group 13 element and a Group 16 element.
  • substantially means that when the total number of atoms of all elements contained in the shell is 100%, the ratio of elements other than Group 13 elements and Group 16 elements is, for example, 10% or less. , Preferably 5% or less, more preferably 1% or less.
  • the band gap energy of the semiconductor constituting the core depends on its composition, but a ternary semiconductor of Group 11-Group 13-Group 16 generally has a band gap energy of 1.0 eV to 3.5 eV.
  • a semiconductor made of Ag—In—S has a band gap energy of 1.8 eV to 1.9 eV. Therefore, the shell may be configured by selecting the composition or the like according to the band gap energy of the semiconductor constituting the core.
  • the core may be designed so that the band gap energy of the semiconductor constituting the core is smaller than that of the shell.
  • the semiconductor constituting the shell may have a band gap energy of, for example, 2.0 eV or more and 5.0 eV or less, particularly 2.5 eV or more and 5.0 eV or less.
  • the band gap energy of the shell is, for example, about 0.1 eV or more and 3.0 eV or less, particularly about 0.3 eV or more and 3.0 eV or less, more particularly 0.5 eV or more and 1.0 eV or less than the core band gap energy. It can be large. If the difference between the band gap energy of the semiconductor constituting the shell and the band gap energy of the semiconductor constituting the core is equal to or greater than the lower limit, the ratio of light emission other than band edge light emission is reduced in light emission from the core. The ratio of edge emission tends to increase.
  • the band gap energy of the semiconductor that constitutes the core and shell should be selected to provide a type-I band alignment that sandwiches the core band gap energy at the core-shell heterojunction. Is preferred.
  • a barrier of at least 0.1 eV is preferably formed between the core band gap and the shell band gap, particularly 0.2 eV or more, more particularly 0.3 eV or more.
  • a barrier may be formed.
  • the upper limit of the barrier is, for example, 1.8 eV or less, and particularly 1.1 eV or less.
  • the semiconductor constituting the shell may include In or Ga as a Group 13 element.
  • the shell may contain S as a Group 16 element.
  • a semiconductor containing In or Ga or containing S tends to be a semiconductor having a larger band gap energy than a ternary semiconductor of Group 11—Group 13—Group 16.
  • the shell may have a crystal system similar to that of the core semiconductor, and the lattice constant may be the same as or close to that of the core semiconductor.
  • a shell made of a semiconductor that is familiar to the crystal system and has a close lattice constant (here, multiples of the lattice constant of the shell are close to the lattice constant of the core) May be covered.
  • Ag-In-S which is a ternary semiconductor of Group 11-Group 13-Group 16 is generally tetragonal, but the crystal system familiar to this is tetragonal, An orthorhombic system is mentioned.
  • the shell to be formed is preferably a tetragonal system or a cubic system, and the lattice constant or a multiple thereof is close to the lattice constant of the Ag—In—S semiconductor.
  • the shell may be amorphous (amorphous).
  • an amorphous shell is formed by observing the core-shell type semiconductor nanoparticles with HAADF-STEM.
  • amorphous (amorphous) shell specifically, a portion having a regular pattern (for example, a striped pattern or a dot pattern) is observed at the center, and a regular pattern is formed around the portion.
  • a portion not observed as having a pattern is observed in the HAADF-STEM.
  • those having a regular structure such as a crystalline substance are observed as an image having a regular pattern, and those having no regular structure such as an amorphous substance are It is not observed as an image having a regular pattern. Therefore, when the shell is amorphous, the shell is observed as a portion that is clearly different from the core (having a crystal structure such as tetragonal system as described above) that is observed as an image having a regular pattern. be able to.
  • the core is made of Ag—In—S and the shell is made of GaS
  • Ga is an element lighter than Ag and In
  • the shell is an image darker than the core in the image obtained by HAADF-STEM. Tend to be observed.
  • Whether or not an amorphous shell is formed can also be confirmed by observing the core-shell semiconductor nanoparticles of the present embodiment with a high-resolution transmission electron microscope (HRTEM).
  • HRTEM high-resolution transmission electron microscope
  • the core part is observed as a crystal lattice image (image having a regular pattern)
  • the shell part is not observed as a crystal lattice image
  • black and white contrast is observed, but regular Pattern is observed as an invisible part.
  • the shell does not constitute a solid solution with the core.
  • the two are integrated, and the mechanism of this embodiment in which the band edge emission is obtained by covering the core with the shell and changing the surface state of the core may not be obtained. is there.
  • Zn—S stoichiometric or non-stoichiometric zinc sulfide
  • band edge emission cannot be obtained from the core.
  • Zn—S satisfies the above-mentioned conditions with respect to band gap energy in relation to Ag—In—S, and provides type-I band alignment. Nonetheless, the band edge emission from the specific semiconductor could not be obtained because the specific semiconductor and ZnS formed a solid solution and the core-shell interface disappeared.
  • the shell may include a combination of In and S, a combination of Ga and S, or a combination of In, Ga and S as a combination of a Group 13 element and a Group 16 element, but is not limited thereto. is not.
  • the combination of In and S may be in the form of indium sulfide
  • the combination of Ga and S may be in the form of gallium sulfide
  • the combination of In, Ga and S is indium gallium sulfide.
  • the indium sulfide constituting the shell does not have to be of stoichiometric composition (In 2 S 3 ), and in this sense, indium sulfide is expressed by the formula InS x (x is not limited to an integer) in this specification.
  • gallium sulfide does not have to be of stoichiometric composition (Ga 2 S 3 ), in which sense gallium sulfide is used herein to represent the formula GaS x (where x is not limited to an integer, eg, 0.8 to 1.5).
  • Indium gallium sulfide may have a composition represented by In 2 (1-y) Ga 2y S 3 (y is an arbitrary number greater than 0 and less than 1), or In a Ga 1- a S b (a is an arbitrary number greater than 0 and less than 1, and b is an arbitrary numerical value not limited to an integer).
  • Indium sulfide has a band gap energy of 2.0 eV or more and 2.4 eV or less, and a cubic crystal system has a lattice constant of 10.775 ⁇ (1.0775 nm).
  • Gallium sulfide has a band gap energy of about 2.5 eV or more and 2.6 eV or less, and a crystal system of tetragonal crystal has a lattice constant of 5.215 ⁇ (0.5215 nm).
  • all the crystal systems and the like described here are reported values, and in actual core-shell type semiconductor nanoparticles, the shell does not always satisfy these reported values.
  • Indium sulfide and gallium sulfide are preferably used as semiconductors constituting the shell when the ternary semiconductors of Group 11-Group 13-Group 16, particularly Ag-In-S is the core.
  • gallium sulfide is preferably used because of its higher band gap energy. When gallium sulfide is used, stronger band edge emission may be obtained as compared with the case where indium sulfide is used.
  • the surface of the shell may be modified with a compound containing a Group 15 element containing P having a negative oxidation number (hereinafter also referred to as a specific modifier).
  • a specific modifier a compound containing a Group 15 element containing P having a negative oxidation number
  • the surface modifier of the shell contains the specific modifier, the quantum yield of band edge emission of the core-shell type semiconductor nanoparticles is improved.
  • the specific modifier contains P having a negative oxidation number as a Group 15 element.
  • the oxidation number of P becomes ⁇ 1 when one hydrogen atom or hydrocarbon group is bonded to P, and becomes +1 when one oxygen atom is bonded as a single bond, and changes depending on the substitution state of P.
  • the oxidation number of P in trialkylphosphine and triarylphosphine is ⁇ 3, and in trialkylphosphine oxide and triarylphosphine oxide, it is ⁇ 1.
  • the specific modifier may contain other Group 15 elements in addition to P having a negative oxidation number.
  • Examples of other Group 15 elements include N, As, and Sb.
  • the specific modifier may be, for example, a phosphorus-containing compound having a hydrocarbon group having 4 to 20 carbon atoms.
  • the hydrocarbon group having 4 to 20 carbon atoms include n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, octyl group, ethylhexyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group
  • a linear or branched saturated aliphatic hydrocarbon group such as a group; a linear or branched unsaturated aliphatic hydrocarbon group such as an oleyl group; an alicyclic hydrocarbon group such as a cyclopentyl group or a cyclohexyl group;
  • An aromatic hydrocarbon group such as a phenyl group and a naphthyl group; an arylalkyl group
  • Specific modifiers include tributylphosphine, triisobutylphosphine, tripentylphosphine, trihexylphosphine, trioctylphosphine, tris (ethylhexyl) phosphine, tridecylphosphine, tridodecylphosphine, tritetradecylphosphine, trihexadecyl Phosphine, Trioctadecylphosphine, Triphenylphosphine, Tributylphosphine oxide, Triisobutylphosphine oxide, Tripentylphosphine oxide, Trihexylphosphine oxide, Trioctylphosphine oxide, Tris (ethylhexyl) phosphine oxide, Tridecylphosphine oxide, Tridodecylphosphine oxide , Tritetradecyl phosphine oxide,
  • the surface of the shell may be surface modified with other surface modifiers in addition to the specific modifier.
  • other surface modifiers include nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms, sulfur-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms, and carbonization having 4 to 20 carbon atoms. It may be an oxygen-containing compound having a hydrogen group.
  • nitrogen-containing compounds include amines and amides
  • sulfur-containing compounds include thiols
  • oxygen-containing compounds include fatty acids.
  • nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms and sulfur-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms.
  • nitrogen-containing compound include alkylamines such as n-butylamine, isobutylamine, n-pentylamine, n-hexylamine, octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, and oleylamine.
  • alkylamines such as n-butylamine, isobutylamine, n-pentylamine, n-hexylamine, octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, and oleylamine.
  • alkenylamine alkenyl
  • n-tetradecylamine is preferred from the viewpoint that a highly pure product is easily available and the boiling point exceeds 290 ° C.
  • the sulfur-containing compound include n-butanethiol, isobutanethiol, n-pentanethiol, n-hexanethiol, octanethiol, decanethiol, dodecanethiol, hexadecanethiol, octadecanethiol, and the like.
  • the surface modifiers may be used in combination of two or more different ones.
  • one compound selected from the nitrogen-containing compounds exemplified above for example, oleylamine
  • one compound selected from the sulfur-containing compounds exemplified above for example, dodecanethiol
  • one compound selected from the nitrogen-containing compounds exemplified above for example, oleylamine
  • one compound selected from the sulfur-containing compounds exemplified above for example, dodecanethiol
  • the core-shell type semiconductor nanoparticles emit light having a wavelength longer than that of the irradiated light when irradiated with light such as ultraviolet light, visible light, or infrared light.
  • the core-shell type semiconductor nanoparticles when irradiated with, for example, ultraviolet light, visible light, or infrared light, the core-shell type semiconductor nanoparticles have light emission with a wavelength longer than that of the irradiated light, and the light emission life of the main component is long. It is possible to emit light with a wavelength of 200 ns or less and / or a half-value width of the emission spectrum of 70 nm or less. Furthermore, the quantum yield of band edge light emission can be improved because the surface of the shell containing an element of a specific group is modified with a specific modifier.
  • the core-shell type semiconductor nanoparticles may have an average particle size of 50 nm or less, for example.
  • the average particle diameter may be in the range of 1 nm to 20 nm, particularly in the range of 1 nm to 10 nm.
  • the average particle diameter of the nanoparticles may be obtained from a TEM image taken using, for example, a transmission electron microscope (TEM). Specifically, the particle diameter of a nanoparticle connects the two arbitrary points of the outer periphery of the particle
  • TEM transmission electron microscope
  • the length of the minor axis is regarded as the particle size.
  • the rod-shaped particles have a short axis and a long axis perpendicular to the short axis in the TEM image, and the ratio of the length of the long axis to the length of the short axis is larger than 1.2.
  • Rod-shaped particles are observed in a TEM image as, for example, a quadrilateral shape including a rectangular shape, an elliptical shape, or a polygonal shape.
  • the cross-sectional shape that is a plane orthogonal to the long axis of the rod shape may be, for example, a circle, an ellipse, or a polygon.
  • the length of the long axis indicates the length of the longest line segment connecting any two points on the outer periphery of the particle in the case of an elliptical shape.
  • the length is the length of the longest line segment that is parallel to the longest side of the edges that define the outer periphery and connects any two points on the outer periphery of the particle.
  • the length of the short axis indicates the length of the longest line segment that is orthogonal to the line segment that defines the length of the long axis among the line segments connecting any two points on the outer periphery.
  • the average particle diameter of the core-shell type semiconductor nanoparticles is measured for all measurable particles observed in a TEM image of 50,000 times to 150,000 times, and an arithmetic average of the particle diameters To do.
  • measurable particles are those in which the entire particles can be observed in a TEM image. Accordingly, a part of the TEM image is not included in the imaging range, and particles that are “cut” are not measurable.
  • the average particle diameter is obtained using the TEM image.
  • the imaging location can be changed to obtain more TEM images, and more than 100 measurable in two or more TEM images can be measured.
  • the average particle size is determined by measuring the particle size of the fine particles.
  • the core may have an average particle diameter of, for example, 10 nm or less, particularly 8 nm or less.
  • the average particle diameter of the core may be in the range of 2 nm to 10 nm, particularly in the range of 2 nm to 8 nm.
  • the shell may have a shell thickness in the range of 0.1 nm to 50 nm, in the range of 0.1 nm to 10 nm, particularly in the range of 0.3 nm to 3 nm.
  • the thickness of the shell is within the above range, the effect of covering the core with the shell is sufficiently obtained, and it is easy to obtain band edge light emission.
  • the average particle diameter of the core and the thickness of the shell may be obtained by observing the core-shell type semiconductor nanoparticles with, for example, HAADF-STEM.
  • HAADF-STEM the core-shell type semiconductor nanoparticles
  • the thickness of the shell that can be easily observed as a portion different from the core can be easily obtained by HAADF-STEM.
  • the particle size of the core can be determined according to the method described above for the semiconductor nanoparticles. If the shell thickness is not constant, the smallest thickness is taken as the shell thickness of the particle.
  • the average particle diameter of the core may be measured in advance before coating with the shell. Then, the thickness of the shell may be obtained by measuring the average particle size of the core-shell type semiconductor nanoparticles and obtaining the difference between the average particle size and the previously measured average particle size of the core.
  • the half-width of the emission peak in the core-shell type semiconductor nanoparticles may be, for example, 70 nm or less, 60 nm or less, 55 nm or less, 50 nm or less, or 40 nm or less.
  • the lower limit value of the full width at half maximum may be, for example, 10 nm or more, 20 nm or more, or 30 nm or more.
  • the “emission lifetime” refers to the lifetime of light emission measured using a device called a fluorescence lifetime measurement device as in the examples described later.
  • the “emission life of the main component” is obtained according to the following procedure. First, the core-shell semiconductor nanoparticles are irradiated with excitation light to emit light, and the attenuation (afterglow) of light having a wavelength in the vicinity of the peak of the emission spectrum, for example, a wavelength in the range of (peak wavelength ⁇ 50 nm). Measure the time course of. The change with time is measured from the point of time when the irradiation of the excitation light is stopped.
  • ⁇ 1 , ⁇ 2 and ⁇ 3 of each component are the time required for the emission intensity to decay to 1 / e (36.8%) of the initial stage, which corresponds to the emission lifetime of each component.
  • ⁇ 1 , ⁇ 2, and ⁇ 3 are set in order from the shortest emission lifetime.
  • a 1 , A 2 and A 3 are contribution rates of the respective components.
  • the principal component is the one with the largest integral value of the curve represented by A x exp ( ⁇ t / ⁇ x )
  • the light emission lifetime ⁇ of the principal component is 200 ns or less, 100 ns or less, or 80 ns or less. .
  • Such light emission is presumed to be band edge light emission.
  • a x ⁇ ⁇ x obtained by integrating the value of t of A x exp ( ⁇ t / ⁇ x ) from 0 to infinity is compared, and the largest value is obtained. Is the main component.
  • the light emission of the core-shell type semiconductor nanoparticles may include defect light emission (for example, donor-acceptor light emission) in addition to the band edge light emission, but it is preferable that the light emission is substantially only from the band edge light emission.
  • Defect emission generally has a long emission lifetime, has a broad spectrum, and has a peak at a longer wavelength than band edge emission.
  • substantially only band edge emission means that the purity of the band edge emission component in the emission spectrum is 40% or more, preferably 50% or more, more preferably 60% or more, and 65% or more. Is more preferable.
  • the upper limit value of the purity of the band edge light emitting component may be, for example, 100% or less, less than 100%, or 95% or less.
  • the quantum yield of band edge emission is measured at an excitation wavelength of 450 nm and a temperature of 25 ° C. using a quantum yield measuring device, and the purity of the above band edge emission component is calculated based on the internal quantum yield calculated in the range of 506 nm to 882 nm. Defined as the value multiplied by 100.
  • the quantum yield of band edge emission of the core-shell type semiconductor nanoparticles is, for example, 10% or more, preferably 20% or more, and more preferably 30% or more. Further, the upper limit value of the quantum yield may be, for example, 100% or less, less than 100%, or 95% or less.
  • the band edge emission emitted by the core-shell type semiconductor nanoparticles can change the peak position by changing the particle size of the core-shell type semiconductor nanoparticles. For example, when the particle diameter of the core-shell type semiconductor nanoparticles is made smaller, the peak wavelength of the band edge emission tends to shift to the short wavelength side. Furthermore, when the particle diameter of the core-shell type semiconductor nanoparticles is made smaller, the half-value width of the spectrum of the band edge emission tends to become smaller.
  • the emission peak wavelength of band edge emission in the core-shell type semiconductor nanoparticles is, for example, 500 nm to 600 nm, preferably 510 nm to 590 nm, 520 nm to 585 nm, or 550 nm to 580 nm.
  • the emission peak wavelength of defect emission may be, for example, more than 600 nm and 700 nm or less, or 605 nm to 690 nm.
  • the intensity ratio of band edge light emission obtained from the maximum peak intensity of band edge light emission and the maximum peak intensity of defect light emission is, for example, 0.75 or more.
  • the upper limit value is, for example, 1 or less, less than 1, or 0.99 or less, preferably 0.85 or more, more preferably 0.9 or more, and particularly preferably 0.93 or more. You can.
  • the intensity ratio of the band edge emission is obtained by performing parameter fitting on the emission spectrum assuming that the shapes of the peak of the band edge emission and the peak of the defect emission are normal distributions, respectively.
  • the peak intensities are b1 and b2, respectively, they are represented by the following formula.
  • Intensity ratio of band edge emission b1 / (b1 + b2) 0 if the emission spectrum does not include any band edge emission, that is, only includes defect emission, 0.5 if the peak intensity of the band edge emission and defect emission is the same, and 1 if only the band edge emission is included. .
  • the core-shell type semiconductor nanoparticles are also preferably those whose absorption spectrum or excitation spectrum (also referred to as fluorescence excitation spectrum) exhibits an exciton peak.
  • the exciton peak is a peak obtained by exciton generation, and that it is expressed in an absorption spectrum or an excitation spectrum means that the particle size distribution is small and the crystal is suitable for band edge emission with few crystal defects. Means. As the exciton peak becomes steeper, it means that the aggregate of core-shell type semiconductor nanoparticles is more contained in particles having a uniform particle size and few crystal defects. Therefore, it is expected that the half value width of light emission becomes narrow and the light emission efficiency is improved.
  • the exciton peak is observed within a range of 350 nm to 1000 nm, preferably 450 nm to 590 nm, for example.
  • the excitation spectrum for checking the presence or absence of the exciton peak may be measured with the observation wavelength set near the peak wavelength.
  • a method for producing core-shell type semiconductor nanoparticles that emit light when irradiated with light includes: a core-shell particle preparation step of preparing a core-shell particle including a core and a shell disposed on the core surface; and the core-shell particle and Group 15 And a modification step of bringing into contact with the compound containing the element.
  • the core includes a semiconductor including M 1 , M 2 and Z.
  • M 1 includes at least one selected from the group consisting of Ag, Cu, and Au
  • M 2 includes at least one selected from the group consisting of Al, Ga, In, and Tl
  • Z is S, Se.
  • at least one selected from the group consisting of Te The shell includes a group 13 element and a group 16 element, and includes a semiconductor having a larger band gap energy than the core.
  • the Group 15 element contained in the compound contains at least P having a negative oxidation number.
  • a specific modifier containing a Group 15 element is brought into contact with a core-shell particle that contains a specific element and exhibits band-edge emission, and the shell surface is modified to improve the quantum yield in band-edge emission.
  • Core-shell semiconductor nanoparticles can be efficiently produced.
  • the effect of improving the quantum yield cannot be obtained even when the semiconductor nanoparticles having only the core are subjected to the modification treatment with the specific modifier.
  • the effect of improving the quantum yield cannot be obtained. Therefore, the effect of improving the quantum yield by the modification of the specific modifier is considered to be an effect peculiar to the core-shell type nanoparticles having a shell containing a specific element and exhibiting band edge emission.
  • the core-shell particle preparation step is a core preparation step of preparing a dispersion in which semiconductor nanoparticles serving as a core are dispersed in a solvent, and the same as a source of a group 13 element in the dispersion.
  • a compound containing an element and a single element of the same element serving as a source of the group 16 element or a compound containing the element are added, and the group 13 element and the group 16 element are substantially formed on the surface of the semiconductor nanoparticle.
  • the semiconductor nanoparticles are nanoparticles made of a semiconductor containing M 1 , M 2 and Z.
  • the semiconductor nanoparticles commercially available nanoparticles may be used as they are, or if they are produced experimentally, they may be used, or produced by reacting an M 1 source, an M 2 source, and a Z source. You can do it.
  • the core-shell preparation step it is not necessary to immediately perform coating with the shell after producing the semiconductor nanoparticles, and the separately produced semiconductor nanoparticles may be used after a certain period of time.
  • the types of the M 1 salt and the M 2 salt are not particularly limited, and may be any of organic acid salts and inorganic acid salts.
  • the salt may be any organic acid salt such as acetate, inorganic acid salt such as nitrate, sulfate, hydrochloride, and sulfonate, and preferably an organic acid salt such as acetate. is there.
  • the organic acid salt has high solubility in an organic solvent and tends to allow the reaction to proceed more uniformly.
  • examples of the ligand having Z as a coordination element include ⁇ -dithiones such as 2,4-pentanedithione; 1,2-bis (trifluoromethyl) ethylene- Dithiols such as 1,2-dithiol; diethyl dithiocarbamate; thiourea and the like.
  • examples of the ligand having Z as a coordination element include diallyl telluride and dimethyl ditelluride.
  • Z selenium
  • examples of the ligand having Z as a coordination element include dimethyldiselenocarbamic acid and 2- (dimethylamino) ethaneselenol.
  • the complex is obtained by mixing a salt of M 1, a salt of M 2 and a ligand having Z as a coordination element.
  • the formation of the complex may be carried out by mixing an aqueous solution of the salt of M 1 and the salt of M 2 with an aqueous solution of the ligand, or alternatively, the salt of M 1 , the salt of M 2 and the ligand You may implement by the method of throwing in and mixing in an organic solvent (especially highly polar organic solvents, such as ethanol).
  • the organic solvent may be a surface modifier or a solution containing the surface modifier.
  • the charging ratio of the salt of M 1, the salt of M 2 and the ligand having Z as a coordination element should be 1: 1: 2 (molar ratio) corresponding to the composition of M 1 M 2 Z 2. Is preferred.
  • the obtained complex is heat-treated to form semiconductor nanoparticles.
  • the heat treatment of the complex may be carried out by precipitating and separating the obtained complex and then drying to form a powder, and heating the powder at a temperature of, for example, 100 ° C. or more and 300 ° C. or less.
  • the surface of the semiconductor nanoparticles obtained by heat treatment is preferably further modified by heat treatment in a solvent which is a surface modifier or a solvent containing a surface modifier.
  • the heat treatment of the complex may be performed by heating the complex obtained as a powder in a solvent that is a surface modifier or a solvent that includes a surface modifier, for example, at a temperature of 100 ° C. or higher and 300 ° C. or lower.
  • the organic solvent is a surface modifier or a solvent containing a surface modifier.
  • the complex formation, the heat treatment and the surface modification may be carried out continuously or simultaneously by adding a salt and a ligand and then carrying out a heat treatment.
  • the semiconductor nanoparticles may be formed by introducing an M 1 salt, an M 2 salt, and a compound serving as a supply source of Z into an organic solvent.
  • an organic solvent is reacted with at least one of M 1 and M 2 to form complexes, and these complexes are reacted with a compound serving as a supply source of Z.
  • the salts of salt and M 2 of M 1, is as described in connection with the manufacturing method including the formation of the complex.
  • the organic solvent that forms a complex by reacting with these salts includes, for example, at least one of alkylamine, alkenylamine, alkylthiol, alkenylamine, alkylphosphine, and alkenylphosphine having 4 to 20 carbon atoms. It may be. These organic solvents may ultimately modify the surface of the resulting semiconductor nanoparticles. These organic solvents may be used by mixing with other organic solvents. Also in this production method, the preparation ratio of the salt of M 1 , the salt of M 2 and the compound serving as the source of Z is 1: 1: 2 (molar ratio) corresponding to the composition formula of M 1 M 2 Z 2 ) Is preferable.
  • the compound serving as the supply source of Z is, for example, sulfur, thiourea, thioacetamide, or alkylthiol when Z is sulfur (S).
  • Z is tellurium (Te)
  • Te Te-phosphine complex obtained by heat-treating a mixed solution obtained by adding Te powder to trialkylphosphine at 200 ° C. or more and 250 ° C. or less serves as a supply source of Z. It may be used as a compound.
  • Z is selenium (Se)
  • Se-phosphine complex obtained by heat-treating a mixed solution obtained by adding Se powder to trialkylphosphine at 200 ° C. or more and 250 ° C. or less serves as a supply source of Z. It may be used as a compound.
  • the method for producing semiconductor nanoparticles may be a so-called hot injection method.
  • a compound for example, a salt of M 1, a salt of M 2 , or the like
  • a solvent heated to a temperature within a range of 100 ° C. or higher and 300 ° C. or lower to each element constituting the semiconductor nanoparticles.
  • a liquid also called a precursor solution
  • a compound or a ligand having Z as a coordinating element
  • Z a ligand having Z as a coordinating element
  • a compound serving as a supply source of some elements may be dissolved or dispersed in an organic solvent in advance, and after heating this, a precursor solution of other elements may be added.
  • the solvent is a surface modifier or a solvent containing a surface modifier, the surface modification can be performed simultaneously. According to the hot injection method, nanoparticles having a smaller particle diameter can be produced.
  • the surface modifier that modifies the surface of the semiconductor nanoparticles is as described above in connection with the shell.
  • the particles are stabilized, aggregation or growth of the particles is prevented, and / or dispersibility of the particles in a solvent is improved.
  • the shell grows at the timing when the surface modifier is detached. Therefore, the surface modifier that modifies the semiconductor nanoparticles is not usually present on the surface of the core, that is, the interface between the core and the shell in the finally obtained core-shell structured nanoparticles.
  • semiconductor nanoparticles are produced in an inert atmosphere, particularly in an argon atmosphere or a nitrogen atmosphere. This is to reduce or prevent oxide by-product and semiconductor nanoparticle surface oxidation.
  • the semiconductor nanoparticles prepared by the above method may be separated from the solvent after completion of the reaction, and may be further purified as necessary. Separation is performed, for example, by preparing particles and then subjecting the mixed solution to centrifugation and taking out the supernatant. For the purification, alcohol is added to the supernatant and centrifuged to precipitate, the precipitate is taken out, or the supernatant is removed, and the separated precipitate is dried by, for example, vacuum drying or natural drying, or organic You may implement by the method of making it melt
  • a halogen solvent such as chloroform
  • an aromatic hydrocarbon solvent such as toluene
  • an aliphatic hydrocarbon solvent such as cyclohexane, hexane, pentane, and octane
  • the drying may be performed by drying under reduced pressure, may be performed by natural drying, or may be performed by a combination of drying under reduced pressure and natural drying. Natural drying may be carried out, for example, by leaving it in the atmosphere at room temperature and normal pressure. In that case, it may be left for 20 hours or longer, for example, about 30 hours.
  • the semiconductor nanoparticles used in the shell forming step are prepared as a dispersion liquid dispersed in an appropriate solvent, and a semiconductor layer serving as a shell is formed in the dispersion liquid.
  • a liquid in which semiconductor nanoparticles are dispersed scattered light is not generated, and thus the dispersion liquid is generally obtained as a transparent (colored or colorless) liquid.
  • the solvent in which the semiconductor nanoparticles are dispersed is not particularly limited, and any organic solvent may be used as in the case of producing the semiconductor nanoparticles.
  • the organic solvent may be a surface modifier or a solution containing the surface modifier.
  • the organic solvent may be at least one selected from nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms, which are other surface modifiers described in connection with the shell, or carbon It may be at least one selected from sulfur-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms, or at least one selected from nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms and 4 carbon atoms. It may be a combination with at least one selected from sulfur-containing compounds having 20 or less hydrocarbon groups.
  • the nitrogen-containing compound preferably has a boiling point higher than the reaction temperature, and specific organic solvents include oleylamine, n-tetradecylamine, dodecanethiol, or combinations thereof.
  • the dispersion of semiconductor nanoparticles is prepared so that the proportion of particles in the dispersion is, for example, 0.02% by mass to 1% by mass, particularly 0.1% by mass to 0.6% by mass. Good.
  • the proportion of the particles in the dispersion is 0.02% by mass or more, the product tends to be easily recovered by the aggregation / precipitation process using a poor solvent.
  • the content is 1% by mass or less, Ostwald ripening of the material constituting the core and fusion due to collision tend to be suppressed, and the particle size distribution tends to be narrow.
  • Shell Formation Step Formation of a semiconductor layer to be a shell is performed by adding a compound containing a Group 13 element and a group 16 element or a compound containing a Group 16 element to the dispersion.
  • a compound containing a Group 13 element serves as a Group 13 element source, and examples thereof include organic salts, inorganic salts, and organometallic compounds of Group 13 elements.
  • Specific examples of compounds containing Group 13 elements include organic acid salts such as acetates; inorganic acid salts such as nitrates, sulfates, hydrochlorides, and sulfonates; and organometallic compounds such as acetylacetonate complexes.
  • An organic acid salt such as acetate, or an organometallic compound is preferable.
  • Organic acid salts and organometallic compounds have high solubility in organic solvents, and tend to allow the reaction to proceed more uniformly.
  • a single group 16 element or a compound containing a group 16 element is a group 16 element source.
  • a simple sulfur such as high-purity sulfur can be used.
  • thiols such as n-butanethiol, isobutanethiol, n-pentanethiol, n-hexanethiol, octanethiol, decanethiol, dodecanethiol, hexadecanethiol, octadecanethiol, disulfide such as dibenzyldisulfide, thiourea, 1 1,3-dimethylthiourea, sulfur-containing compounds such as thiocarbonyl compounds can be used.
  • oxygen (O) is used as a constituent element of the shell as a Group 16 element
  • alcohol, ether, carboxylic acid, ketone, or N-oxide compound may be used as a Group 16 element source.
  • selenium (Se) is used as a constituent element of the shell as a group 16 element, selenium alone, selenide phosphine oxide, organic selenium compound (dibenzyl diselenide or diphenyl diselenide), hydride, etc.
  • a compound may be used as a Group 16 element source.
  • tellurium (Te) is used as a constituent element of the shell as the Group 16 element, tellurium alone, tellurium phosphine oxide, or hydride may be used as the Group 16 element source.
  • the method of adding the group 13 element source and the group 16 element source to the dispersion is not particularly limited.
  • a mixed solution in which a group 13 element source and a group 16 element source are dispersed or dissolved in an organic solvent is prepared, and this mixed solution may be added to the dispersion little by little, for example, by dropping.
  • the mixed solution may be added at a rate of 0.1 mL / hour to 10 mL / hour, particularly 1 mL / hour to 5 mL / hour.
  • the mixture is gradually added while maintaining the peak temperature.
  • the shell layer may be formed by a method of lowering the temperature (slow injection method). The peak temperature may be maintained as necessary even after the addition of the mixed solution is completed.
  • the peak temperature is 200 ° C. or higher, the surface modifier that modifies the semiconductor nanoparticles is sufficiently desorbed and the chemical reaction for generating the shell proceeds sufficiently. ) Formation tends to proceed sufficiently.
  • the peak temperature is 290 ° C. or lower, alteration of the semiconductor nanoparticles is suppressed, and band edge emission due to shell formation tends to be sufficiently obtained.
  • the time for maintaining the peak temperature may be 1 minute or more and 300 minutes or less, particularly 10 minutes or more and 60 minutes or less in total after the addition of the mixed solution is started.
  • the retention time of the peak temperature is selected in relation to the peak temperature, with a longer retention time when the peak temperature is lower and a shorter retention time when the peak temperature is higher, a good shell layer Is easily formed.
  • the temperature increase rate and the temperature decrease rate are not particularly limited, and the temperature decrease may be performed by, for example, holding the peak temperature for a predetermined time, and then stopping the heating source (for example, an electric heater) and allowing to cool.
  • the entire amount of the group 13 element source and the group 16 element source may be added directly to the dispersion.
  • a semiconductor layer as a shell may be formed on the surface of the semiconductor nanoparticles by heating the dispersion liquid to which the group 13 element source and the group 16 element source are added (heating up method).
  • the dispersion to which the group 13 element source and the group 16 element source are added for example, is gradually heated so that the peak temperature becomes 200 ° C. or more and 290 ° C. or less, and the peak temperature is After holding for 1 minute or more and 300 minutes or less, you may heat by the method of making it cool gradually.
  • the temperature rising rate may be, for example, 1 ° C./min or more and 50 ° C./min or less, and the temperature lowering rate may be, for example, 1 ° C./min or more and 100 ° C./min or less.
  • heating may be performed to achieve a predetermined peak temperature without particularly controlling the rate of temperature increase, and it is not performed at a constant rate, but by stopping the heating source and allowing to cool. Also good.
  • the temperature may be lowered rapidly by immersing in water or other suitable liquid. The advantageous effect that the peak temperature is in a specific range is as described in the method of adding the mixed solution.
  • core-shell type semiconductor nanoparticles that give stronger band edge emission tend to be obtained as compared with the case where the shell is formed by the slow injection method.
  • the charging ratio of both corresponds to the stoichiometric composition ratio of the compound semiconductor composed of the Group 13 element and the Group 16 element. It is preferable. For example, when an In source is used as the Group 13 element source and an S source is used as the Group 16 element source, the charging ratio is 1: 1.5 (In: S) corresponding to the composition of In 2 S 3. It is preferable that Similarly, when a Ga source is used as the Group 13 element source and an S source is used as the Group 16 element source, the charging ratio is 1: 1.5 (Ga: S) corresponding to the composition of Ga 2 S 3. ) Is preferable.
  • the charging ratio does not necessarily have to be the stoichiometric composition ratio.
  • the group 16 element source is determined from the stoichiometric composition ratio.
  • the charging ratio may be 1: 1 (Group 13: Group 16).
  • the preparation amount is selected in consideration of the amount of semiconductor nanoparticles contained in the dispersion so that a shell having a desired thickness is formed on the semiconductor nanoparticles present in the dispersion.
  • a compound semiconductor having a stoichiometric composition composed of a Group 13 element and a Group 16 element is 0.01 mmol or more and 10 mmol or less, particularly 0.1 mmol or more and 1 mmol or less.
  • the charge of the group 13 element source and the group 16 element source may be determined so as to be generated.
  • indium acetate or gallium acetylacetonate is used as the group 13 element source
  • simple sulfur, thiourea or 1,3-dimethylthiourea is used as the group 16 element source
  • n is used as the dispersion.
  • a shell containing indium sulfide or gallium sulfide is formed using tetradecylamine or oleylamine.
  • 1,3-dimethylthiourea is used as a group 16 element source (sulfur source) in the heating-up method
  • a shell is sufficiently formed, and semiconductor nanoparticles that give strong band edge emission are easily obtained.
  • the shell is formed using only sulfur, if the retention time after reaching the peak temperature is increased (for example, 40 minutes or more, particularly 50 minutes or more, and the upper limit is 60 minutes or less), semiconductor nanoparticles having strong band edge emission are produced. It becomes easy to obtain.
  • the heating-up method using simple sulfur by extending the holding time, an emission spectrum in which the intensity of a broad peak derived from defect emission is sufficiently smaller than the intensity of the peak of band edge emission is given. Semiconductor nanoparticles are obtained.
  • the obtained core-shell particles may be separated from the solvent, and may be further purified and dried as necessary.
  • the separation, purification, and drying methods are as described above in connection with the semiconductor nanoparticles, and thus detailed description thereof is omitted here.
  • the prepared core-shell particles are brought into contact with a compound containing a Group 15 element containing P having a negative oxidation number (specific modifier) to modify the shell surface of the core-shell particles.
  • a compound containing a Group 15 element containing P having a negative oxidation number specifically modifier
  • the contact between the core-shell type semiconductor nanoparticles and the specific modifier can be performed, for example, by mixing a dispersion of the core-shell type semiconductor nanoparticles and the specific modifier.
  • the core-shell particles may be mixed with a liquid specific modifier.
  • a solution may be used as the specific modifier.
  • a dispersion of core-shell semiconductor nanoparticles can be obtained by mixing core-shell semiconductor nanoparticles and an appropriate organic solvent. Examples of the organic solvent used for dispersion include halogen solvents such as chloroform; aromatic hydrocarbon solvents such as toluene; aliphatic hydrocarbon solvents such as cyclohexane, hexane, pentane, and octane.
  • the concentration of the substance amount in the dispersion of the core-shell type semiconductor nanoparticles is, for example, 1 ⁇ 10 ⁇ 7 mol / L or more and 1 ⁇ 10 ⁇ 3 mol / L or less, preferably 1 ⁇ 10 ⁇ 6 mol / L or more and 1 ⁇ 10 ⁇ 4 mol / L or less.
  • the usage-amount with respect to the core-shell type semiconductor nanoparticle of a specific modifier is 1 time or more and 50,000 times or less by molar ratio, for example.
  • a dispersion of core-shell semiconductor nanoparticles having a concentration of a substance amount in a dispersion of core-shell semiconductor nanoparticles of 1.0 ⁇ 10 ⁇ 7 mol / L or more and 1.0 ⁇ 10 ⁇ 3 mol / L or less is used.
  • the dispersion and the specific modifier may be mixed at a volume ratio of 1: 1000 to 1000: 1.
  • the temperature at the time of contact between the core-shell type semiconductor nanoparticles and the specific modifier is, for example, ⁇ 100 ° C. or higher and 100 ° C. or lower or ⁇ 30 ° C. or higher and 75 ° C. or lower.
  • the contact time may be appropriately selected according to the amount of the specific modifier used, the concentration of the dispersion, and the like.
  • the contact time is, for example, 1 minute or more, preferably 1 hour or more, and 100 hours or less, preferably 48 hours or less.
  • the atmosphere at the time of contact is, for example, an inert gas atmosphere such as nitrogen gas or rare gas.
  • the method for producing core-shell type semiconductor nanoparticles may further include post-treatment steps such as separation, purification, and drying, as necessary, in addition to the core-shell particle preparation step and the modification step.
  • the light emitting device includes a light conversion member and a semiconductor light emitting element, and includes the core-shell type semiconductor nanoparticles described above in the light conversion member. According to this light emitting device, for example, a part of the light emitted from the semiconductor light emitting element is absorbed by the core-shell type semiconductor nanoparticles, and light having a longer wavelength is emitted. Then, light from the core-shell structured semiconductor nanoparticles and the remaining light emitted from the semiconductor light emitting element are mixed, and the mixed light can be used as light emission of the light emitting device.
  • a semiconductor light emitting element that emits blue-violet light or blue light having a peak wavelength of about 400 nm to 490 nm is used, and a core-shell type semiconductor nanoparticle that absorbs blue light and emits yellow light is used.
  • a light emitting device that emits white light can be obtained.
  • a white light emitting device can be obtained by using two types of core-shell type semiconductor nanoparticles, one that absorbs blue light and emits green light and one that absorbs blue light and emits red light. .
  • a semiconductor light emitting device that emits ultraviolet light having a peak wavelength of 400 nm or less.
  • a light emitting device can be obtained. In this case, it is desirable that all the light from the light emitting element is absorbed and converted by the semiconductor nanoparticles so that ultraviolet rays emitted from the light emitting element do not leak to the outside.
  • white light is emitted if a material that emits blue-green light having a peak wavelength of about 490 nm to 510 nm and a core-shell type semiconductor nanoparticle that absorbs the blue-green light and emits red light is used. You can get a device.
  • a semiconductor light emitting device that emits red light having a wavelength of 700 nm or more and 780 nm or less is used, and a core-shell type semiconductor nanoparticle that absorbs red light and emits near infrared light, the near infrared light is emitted.
  • a light emitting device can also be obtained.
  • the core-shell type semiconductor nanoparticles may be used in combination with other semiconductor quantum dots, or may be used in combination with a phosphor that is not another quantum dot (for example, an organic phosphor or an inorganic phosphor).
  • the other semiconductor quantum dots are, for example, the binary semiconductor quantum dots described in the background art section.
  • a garnet phosphor such as an aluminum garnet can be used as a phosphor that is not a quantum dot. Examples of garnet phosphors include yttrium / aluminum / garnet phosphors activated with cerium and lutetium / aluminum / garnet phosphors activated with cerium.
  • a K 2 SiF 6 : Mn phosphor or the like as the fluoride complex phosphor can be used
  • the light conversion member including the core-shell type semiconductor nanoparticles may be, for example, a sheet or a plate-like member, or a member having a three-dimensional shape.
  • a member having a three-dimensional shape is a surface-mounted light emitting diode, in which a semiconductor light emitting element is disposed on the bottom surface of a concave portion formed in a package, and the concave portion is used to seal the light emitting element. It is a sealing member formed by filling a resin.
  • the light conversion member is a resin formed so as to surround the upper surface and the side surface of the semiconductor light emitting element with a substantially uniform thickness when the semiconductor light emitting element is disposed on a flat substrate. It is a member.
  • still another example of the light conversion member is a case where a resin member including a reflective material is filled around the semiconductor light emitting element so that the upper end of the semiconductor light emitting element is flush with the semiconductor light emitting element. It is a resin member formed in a flat plate shape with a predetermined thickness on the upper part of the resin member including the semiconductor light emitting element and the reflector.
  • the light conversion member may be in contact with the semiconductor light emitting element or may be provided apart from the semiconductor light emitting element.
  • the light conversion member may be a pellet-shaped member, a sheet member, a plate-shaped member, or a rod-shaped member disposed away from the semiconductor light-emitting element, or a member provided in contact with the semiconductor light-emitting element, for example, ,
  • the two or more types of core-shell type semiconductor nanoparticles that emit light of different wavelengths are used in the light-emitting device, even if the two or more types of core-shell type semiconductor nanoparticles are mixed in one light conversion member.
  • two or more light conversion members including only one type of quantum dot may be used in combination.
  • the two or more types of light conversion members may have a laminated structure, or may be arranged as a dot or stripe pattern on a plane.
  • An LED chip is mentioned as a semiconductor light emitting element.
  • the LED chip may include one or more semiconductor layers selected from the group consisting of GaN, GaAs, InGaN, AlInGaP, GaP, SiC, ZnO, and the like.
  • a semiconductor light emitting element that emits blue-violet light, blue light, or ultraviolet light is, for example, a GaN-based material whose composition is represented by In X Al Y Ga 1-XY N (0 ⁇ X, 0 ⁇ Y, X + Y ⁇ 1).
  • a compound is provided as a semiconductor layer.
  • the light emitting device of this embodiment is preferably incorporated in a liquid crystal display device as a light source. Since the band edge emission by the core-shell type semiconductor nanoparticles has a short emission lifetime, a light emitting device using this is suitable for a light source of a liquid crystal display device that requires a relatively fast response speed. Moreover, the core-shell type semiconductor nanoparticles of the present embodiment can exhibit a light emission peak having a small half width as band edge light emission.
  • -Blue light having a peak wavelength in the range of 420 nm to 490 nm is obtained by the blue semiconductor light emitting element, and the peak wavelength is in the range of 510 nm to 550 nm, preferably 530 nm to 540 nm, by the core-shell type semiconductor nanoparticles.
  • ultraviolet light having a peak wavelength of 400 nm or less is obtained by a semiconductor light-emitting element, and blue light having a peak wavelength of 430 nm or more and 470 nm or less, preferably 440 nm or more and 460 nm or less by a core-shell type semiconductor nanoparticle, a peak wavelength Is obtained by obtaining green light having a wavelength of 510 nm to 550 nm, preferably 530 nm to 540 nm, and red light having a peak wavelength in the range of 600 nm to 680 nm, preferably 630 nm to 650 nm.
  • a liquid crystal display device with good color reproducibility can be obtained without using it.
  • the light emitting device is used, for example, as a direct type backlight
  • a sheet, a plate member, or a rod made of resin or glass containing core-shell type semiconductor nanoparticles may be incorporated in the liquid crystal display device as a light conversion member independent of the light emitting device.
  • Example 1 In a reaction vessel for the synthesis of semiconductor nanoparticles, 0.4 mmol of silver acetate (AgOAc) and 0.4 mmol of indium acetate (In (OAc) 3 ) were mixed with 8 mL of distilled oleylamine and stirred with dodecanethiol (1.25 mmol). , 300 ⁇ L) was added. The synthesis solution was degassed and replaced with an argon atmosphere. The temperature was raised to about 70 ° C., the lid was opened, and thiourea crystals (0.8 mmol, 60.8 mg) were added to obtain a first mixture.
  • AgOAc silver acetate
  • In (OAc) 3 indium acetate
  • the XRD pattern of the obtained semiconductor nanoparticles was measured and compared with tetragonal (chalcopyrite type) AgInS 2 , hexagonal (wurtzite type) AgInS 2 and orthorhombic AgInS 2 .
  • the measured XRD pattern is shown in FIG. From the XRD pattern, the crystal structure of this semiconductor nanoparticle was confirmed to be substantially the same as that of tetragonal AgInS 2 because the peak around 48 ° seen in hexagonal crystal and orthorhombic crystal was not observed. did it.
  • the XRD pattern was measured using a powder X-ray diffractometer (trade name SmartLab) manufactured by Rigaku Corporation.
  • the shape of the obtained semiconductor nanoparticles was observed using a transmission electron microscope (TEM, manufactured by Hitachi High-Technologies Corporation, trade name H-7650), and the average particle size thereof was increased from 80,000 times to 20 times. The measurement was performed from a 10,000 times TEM image.
  • TEM grid a trade name high resolution carbon HRC-C10 STEM Cu100P grid (Oken Shoji Co., Ltd.) was used.
  • the shape of the obtained particles was spherical or polygonal.
  • the particle diameters of the nanoparticles of 100 points or more in total were obtained using 3 or more TEM images.
  • the average particle size of the semiconductor nanoparticles was 4.17 nm.
  • the amount of indium contained in the obtained semiconductor nanoparticles was determined by ICP emission spectroscopy (Shimadzu Corporation, ICPS-7510) and found to be 41.5 ⁇ mol.
  • the volume of the semiconductor nanoparticles when the average particle size is 4.17 nm is calculated to be 37.95 nm 3 when it is spherical.
  • the unit lattice volume of the silver indium sulfide crystal in the case of tetragonal crystal is 0.38 nm 3 (lattice constants 5.828 0.5 (0.5828 nm), 5.828 ⁇ (0.5828 nm), 11.19 ⁇ (1.119 nm).
  • each nanoparticle must contain 400 indium atoms. Is calculated.
  • the amount of semiconductor nanoparticle as a nanoparticle is calculated to be 104 nmol.
  • the average particle diameter and XRD were measured in the same manner as the above-mentioned semiconductor nanoparticles.
  • the measured XRD pattern is shown in FIG.
  • the average particle size of the core-shell type semiconductor nanoparticles was 5.38 nm.
  • the crystal structure of the core-shell semiconductor nanoparticles is substantially the same as that of tetragonal AgInS 2 because the peak around 48 ° seen in hexagonal crystals and orthorhombic crystals was not observed. I understood it.
  • the absorption and emission spectra of semiconductor nanoparticles, core-shell semiconductor nanoparticles and TOP-modified core-shell semiconductor nanoparticles were measured. The results are shown in FIGS.
  • the absorption spectrum was measured using an ultraviolet-visible near-infrared spectrophotometer (trade name V-670, manufactured by JASCO Corporation) with a wavelength range of 350 nm to 850 nm.
  • the emission spectrum was measured at an excitation wavelength of 450 nm using a multichannel spectrometer (trade name PMA12, manufactured by Hamamatsu Photonics).
  • the quantum yield was measured at an excitation wavelength of 450 nm at room temperature (25 ° C.) using an apparatus equipped with an integrating sphere on a fluorescence spectrum measurement apparatus PMA-12 (manufactured by Hamamatsu Photonics), and in a wavelength range of 350 nm to 1100 nm. Measured and calculated from the wavelength range of 506 nm to 882 nm.
  • the luminescence lifetime was measured for the luminescence observed as the band edge luminescence of the core-shell type semiconductor nanoparticles and the TOP-modified core-shell type semiconductor nanoparticles.
  • the emission lifetime is measured by using a fluorescence lifetime measuring apparatus (trade name Quantaurus-Tau) manufactured by Hamamatsu Photonics Co., Ltd., by irradiating the semiconductor nanoparticles having a core-shell structure with light having a wavelength of 470 nm as excitation light.
  • the emission decay curve near the peak wavelength of the peak was determined.
  • the obtained attenuation curve was divided into three components by parameter fitting using fluorescence lifetime measurement / analysis software U11487-01 manufactured by Hamamatsu Photonics Co., Ltd.
  • ⁇ 1 , ⁇ 2 , and ⁇ 3 and the contribution ratios (A 1 , A 2, and A 3 ) of each component are as shown in Table 1 below.
  • TOP unmodified is a core-shell type semiconductor nanoparticle that is not TOP-modified
  • TOP modification is a core-shell type semiconductor nanoparticle that is TOP-modified.
  • the main component ( ⁇ 2 , A 2 ) of the core-shell type semiconductor nanoparticles (TOP unmodified) is 44.6 ns
  • the main component of the TOP-modified core-shell type semiconductor nanoparticles (TOP modified) ( ⁇ 2 , A 2 ) was 63.0 ns.
  • This emission lifetime is the same as the fluorescence lifetime (30 ns to 60 ns) of the component having the largest contribution ratio with the fluorescence emitted by CdSe (nanoparticles) whose band edge emission has been confirmed.
  • Example 2 Synthesis of semiconductor nanoparticles AgOAc 0.4 mmol, In (acac) 3 0.16 mmol, Ga (acac) 3 0.24 mmol and oleylamine 11.8 ml were mixed in a reaction vessel, and dodecanethiol (0.83 mmol, 200 ⁇ L) was added. did. The synthesis solution was degassed and replaced with a nitrogen atmosphere, heated to about 50 ° C. in a hot water bath, once opened, and thiourea (0.8 mmol, 60.8 mg) was added to obtain a first mixture.
  • the temperature was increased at a rate of temperature increase of 10 ° C./min until reaching 270 ° C., and heat treatment was performed at 270 ° C. for 60 minutes. Subsequently, when the temperature is lowered to 100 ° C. at room temperature, evacuation is once performed to remove volatile components such as hydrogen sulfide, and when the temperature is further lowered to about 60 ° C., 3 ml of hexane is added to the reaction solution to solidify tetradecylamine. Suppressed.
  • the absorption and emission spectra of the core-shell type semiconductor nanoparticles were measured. The results are shown in FIGS.
  • the absorption spectrum was measured using an ultraviolet-visible near-infrared spectrophotometer (trade name U-2900, manufactured by Hitachi High-Technology Corporation) with a wavelength range of 350 nm to 750 nm.
  • the emission spectrum was measured at room temperature (25 ° C.) with an excitation wavelength of 450 nm using a quantum efficiency measurement system QE-2100 (manufactured by Otsuka Electronics Co., Ltd.).
  • the quantum yield was calculated from the wavelength range of 506 nm to 882 nm of the spectrum measured with the same apparatus.
  • a 1.5 ml hexane dispersion of the core-shell type semiconductor nanoparticles obtained above was placed in a test tube, and hexane was removed by evaporation in a nitrogen stream, and then 1.5 ml of chloroform was added. The same amount of trioctylphosphine (TOP) was added thereto, and the upper part of the test tube was filled with nitrogen and sealed, and stirred at room temperature for 24 hours to obtain a dispersion of TOP-modified core-shell type semiconductor nanoparticles.
  • TOP trioctylphosphine
  • Quantum yield and emission spectrum were measured for the obtained TOP-modified core-shell type semiconductor nanoparticles.
  • FIG. 5 in the absorption spectrum of the core-shell type semiconductor nanoparticles modified with TOP, a shoulder was observed in the vicinity of 500 nm, and it was confirmed that there was almost no absorption after about 600 nm. It is speculated that there is.
  • band edge emission having a full width at half maximum of 39 nm was observed near 569 nm, and the quantum yield of band edge emission was 51.8%.
  • the purity of the band edge luminescent component was 83.1%, and the intensity ratio of the band edge luminescence was 0.95.
  • the quantum yield of light emission is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

コアと、前記コア表面に配置されるシェルと、を備え、光が照射されると発光するコアシェル型半導体ナノ粒子が提供される。前記コアは、M、MおよびZを含む半導体を含み、Mが、Ag、CuおよびAuからなる群より選ばれる少なくとも一種を含み、Mが、Al、Ga、InおよびTlからなる群より選ばれる少なくとも一種を含み、Zが、S、SeおよびTeからなる群より選ばれる少なくとも一種を含む。前記シェルは、第13族元素および第16族元素を含み、前記コアよりバンドギャップエネルギーが大きい半導体を含む。前記シェルの表面には第15族元素を含む化合物が配置され、前記第15族元素は少なくとも負の酸化数を有するPを含む。

Description

コアシェル型半導体ナノ粒子、その製造方法および発光デバイス
 本開示は、コアシェル型半導体ナノ粒子、その製造方法および発光デバイスに関する。
 半導体粒子はその粒径が例えば10nm以下になると、量子サイズ効果を発現することが知られており、そのようなナノ粒子は量子ドット(半導体量子ドットとも呼ばれる)と呼ばれる。量子サイズ効果とは、バルク粒子では連続とみなされる価電子帯と伝導帯のそれぞれのバンドが、ナノ粒子では離散的となり、粒径に応じてバンドギャップエネルギーが変化する現象を指す。
 量子ドットは、光を吸収して、そのバンドギャップエネルギーに対応する光に波長変換可能であるため、量子ドットの発光を利用した白色発光デバイスが提案されている(例えば、特開2012-212862号公報および特開2010-177656号公報参照)。具体的には、発光ダイオード(LED)チップから発せされる光の一部を量子ドットに吸収させて、量子ドットからの発光とLEDチップからの発光との混合色として白色光を得ることが提案されている。これらの特許文献では、CdSeおよびCdTe等の第12族-第16族、PbSおよびPbSe等の第14族-第16族の二元系の量子ドットを使用することが提案されている。またCdやPbを含む化合物の毒性を考慮して、これらの元素を含まないコアシェル構造型半導体量子ドットを使用した波長変換フィルムが提案されている(例えば、国際公開第2014/129067号参照)。さらにAgInS2-ZnSナノ結晶のフォトルミネッセンス内部量子効率を増加させるプロセスが提案されている(例えば、特開2016/196631号公報参照)。特開2016/196631号公報に記載のプロセスは、欠陥発光における内部量子収率の増加を示すものであって、バンド端発光における量子収率の増加を示すものではない。
 本開示の一態様は、バンド端発光を示し、量子収率に優れるコアシェル型半導体ナノ粒子を提供することを目的とする。
 第一態様は、コアと、前記コアの表面に配置されるシェルと、を備え、光が照射されると発光するコアシェル型半導体ナノ粒子であって、前記コアが、M、MおよびZを含む半導体を含み、Mが、銀(Ag)、銅(Cu)および金(Au)からなる群より選ばれる少なくとも一種の元素を含み、Mが、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)およびタリウム(Tl)からなる群より選ばれる少なくとも一種の元素を含み、Zが、硫黄(S)、セレン(Se)およびテルル(Te)からなる群より選ばれる少なくとも一種の元素である半導体を含み、前記シェルが、第13族元素および第16族元素を含み、前記コアよりバンドギャップエネルギーが大きい半導体を含み、前記シェル表面に第15族元素を含む化合物が配置され、前記第15族元素は少なくとも負の酸化数を有するリン(P)を含むコアシェル型半導体ナノ粒子である。
 第二態様は、前記コアシェル型半導体ナノ粒子を含む光変換部材と半導体発光素子とを備える発光デバイスである。
 第三態様は、コアと、前記コア表面に配置されるシェルとを備えるコアシェル粒子を準備することと、前記コアシェル粒子と第15族元素を含む化合物とを接触させることとを含む、光が照射されると発光するコアシェル型半導体ナノ粒子の製造方法である。前記コアは、M、MおよびZを含む半導体を含む。Mは、Ag、CuおよびAuからなる群より選ばれる少なくとも一種を含み、Mは、Al、Ga、InおよびTlからなる群より選ばれる少なくとも一種を含み、Zは、S、SeおよびTeからなる群より選ばれる少なくとも一種を含む。前記シェルは、第13族元素および第16族元素を含み、前記コアよりバンドギャップエネルギーが大きい半導体を含む。前記第15族元素は少なくとも負の酸化数を有するPを含む。
 本開示の一態様によれば、バンド端発光を示し、量子収率に優れるコアシェル型半導体ナノ粒子を提供することができる。
実施例1で作製した半導体ナノ粒子(コア)とコアシェル型半導体ナノ粒子(コアシェル)のXRDパターンである。 実施例1で作製した半導体ナノ粒子(コア)とコアシェル型半導体ナノ粒子(コアシェル)とTOP修飾コアシェル型半導体ナノ粒子の吸収スペクトルである。 実施例1で作製した半導体ナノ粒子(コア)とコアシェル型半導体ナノ粒子(コアシェル)とTOP修飾コアシェル型半導体ナノ粒子の発光スペクトルである。 比較例1で作製した半導体ナノ粒子(コア)とTOP修飾コア半導体ナノ粒子の発光スペクトルである。 実施例2で作製した半導体ナノ粒子(コア)とコアシェル型半導体ナノ粒子(コアシェル)とTOP修飾コアシェル型半導体ナノ粒子の吸収スペクトルである。 実施例2で作製した半導体ナノ粒子(コア)とコアシェル型半導体ナノ粒子(コアシェル)とTOP修飾コアシェル型半導体ナノ粒子の発光スペクトルである。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。以下、実施形態を詳細に説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するためのコアシェル型半導体ナノ粒子、その製造方法および発光デバイスを例示するものであって、本発明は、以下に示すコアシェル型半導体ナノ粒子、その製造方法および発光デバイスに限定されない。
コアシェル型半導体ナノ粒子
 第一態様であるコアシェル型半導体ナノ粒子は、コアと、前記コア表面に配置されるシェルと、を備え、光が照射されると発光するコアシェル型半導体ナノ粒子である。前記コアは、M、MおよびZを含む半導体を含む。半導体におけるMは、Ag、CuおよびAuからなる群より選ばれる少なくとも一種を含み、Mは、Al、Ga、InおよびTlからなる群より選ばれる少なくとも一種を含み、Zは、S、SeおよびTeからなる群より選ばれる少なくとも一種を含む。前記シェルは、第13族元素および第16族元素を含み、前記コアよりバンドギャップエネルギーが大きい半導体を含む。そして前記シェル表面には、第15族元素を含む化合物が配置され、前記第15族元素は少なくとも負の酸化数を有するPを含んでいる。
 特定の構成元素から構成されるコアと、第13族元素および第16族元素を含むシェルを備え、バンド端発光を示すコアシェル型半導体ナノ粒子のシェル表面に、負の酸化数を有するリン(P)を含む化合物が配置されることで、バンド端発光の量子収率が向上する。これは例えば、特定のリン含有化合物により、コアシェル型半導体ナノ粒子のシェルにおける欠陥が補償されるためと考えることができる。
[コア]
 コアシェル型半導体ナノ粒子のコアは、M、MおよびZを含む三元系の半導体から構成される。コアの結晶構造は、正方晶、六方晶および斜方晶からなる群より選ばれる少なくとも一種であってもよい。ここで、Mは、Ag、CuおよびAuからなる群より選ばれる少なくとも一種の元素を含み、好ましくはAgおよびCuの少なくとも一方を含み、より好ましくはAgを含む。MがAgを含むことで、コア(後述する製造方法で用いられる半導体ナノ粒子に相当する)の合成が容易になる傾向がある。コアはMとして2以上の元素を含んでいてもよい。
 Mは、Al、Ga、InおよびTlからなる群より選ばれる少なくとも一種の元素を含み、好ましくはInおよびGaの少なくとも一方を含み、より好ましくはInを含む。Inは副生成物を生じにくいことから好ましく用いられる。コアはMとして2以上の元素を含んでいてもよい。例えば、コアを構成する半導体はMとしてGaおよびInを含んでいてもよい。
 Zは、S、SeおよびTeからなる群より選ばれる少なくとも一種の元素を含み、好ましくはSを含む。ZがSを含むコアは、ZがSeまたはTeである半導体と比較してバンドギャップが広くなるため、可視光領域の発光を与えやすい。コアはZとして2以上の元素を含んでいてもよい。
 M、MおよびZの組み合わせ(M/M/Z)の例としては、Cu/In/S、Ag/In/S、Ag/(In、Ga)/S、Ag/In/SeおよびAg/Ga/Sが挙げられる。
 上記特定の元素を含み、かつその結晶構造が正方晶、六方晶、または斜方晶である半導体は、一般的には、Mで表される組成を有する。なお、Mで表される組成を有する半導体であって、六方晶の結晶構造を有するものはウルツ鉱型であり、正方晶の結晶構造を有する半導体はカルコパイライト型である。結晶構造は、例えば、X線回折(XRD)により得られるXRDパターンを測定することによって同定される。具体的には、コアから得られたXRDパターンを、Mの組成で表される半導体ナノ粒子のものとして既知のXRDパターン、または結晶構造パラメータからシミュレーションを行って求めたXRDパターンと比較する。既知のパターンおよびシミュレーションのパターンの中に、コアのパターンと一致するものがあれば、当該半導体ナノ粒子の結晶構造は、その一致した既知またはシミュレーションのパターンの結晶構造であるといえる。
 半導体ナノ粒子の集合体においては、コアの結晶構造が異なる複数種の半導体ナノ粒子が混在していてよい。その場合、XRDパターンにおいては、複数の結晶構造に由来するピークが観察される。
 三元系の半導体からなるコアは、実際には、上記一般式で表される化学量論組成のものではなく、特にMの原子数のMの原子数に対する比(M/M)が1よりも小さくなる場合もあるし、あるいは逆に1よりも大きくなる場合もある。また、Mの原子数とMの原子数の和が、Zの原子数と同じとはならないことがある。本実施形態の半導体ナノ粒子において、三元系の半導体からなるコアは、そのような非化学量論組成の半導体からなるものであってよい。本明細書では、特定の元素を含む半導体について、それが化学量論組成であるか否かを問わない場面では、M-M-Zのように、構成元素を「-」でつないだ式で半導体組成を表す。
 コアは、実質的にM、MおよびZのみから構成されていてよい。ここで「実質的に」という用語は、不純物の混入等に起因して不可避的にM、MおよびZ以外の元素が含まれることを考慮して使用している。
 コアは他の元素を含んでいてよい。例えば、Mの一部は他の金属元素により置換されていてよい。他の金属元素は+3価の金属イオンになるものであってよく、具体的には、Cr、Fe、Al、Y、Sc、La、V、Mn、Co、Ni、Ga、In、Rh、Ru、Mo、Nb、W、Bi、AsおよびSbからなる群から選択される少なくとも一種であってよい。その置換量は、Mと置換する他の金属元素とを合わせた原子の数を100%としたときに、10%以下であることが好ましい。
[シェル]
 シェルは、コアを構成する半導体よりも大きいバンドギャップエネルギーを有する半導体であって、第13族元素および第16族元素を含む半導体から構成される。第13族元素としては、B、Al、Ga、InおよびTlが挙げられ、第16族元素としては、O、S、Se、TeおよびPoが挙げられる。シェルを構成する半導体には、第13族元素が1種類だけ、または2種類以上含まれてよく、第16族元素が1種類だけ、または2種類以上含まれていてもよい。
 シェルは、実質的に第13族元素および第16族元素からなる半導体から構成されていてもよい。ここで「実質的に」とは、シェルに含まれるすべての元素の原子数の合計を100%としたときに、第13族元素および第16族元素以外の元素の割合が、例えば10%以下、好ましくは5%以下、より好ましくは1%以下であることを示す。
 コアを構成する半導体のバンドギャップエネルギーはその組成にもよるが、第11族-第13族-第16族の三元系の半導体は、一般に1.0eV以上3.5eV以下のバンドギャップエネルギーを有し、特に、Ag-In-Sから成る半導体は、1.8eV以上1.9eV以下のバンドギャップエネルギーを有する。したがって、シェルは、コアを構成する半導体のバンドギャップエネルギーに応じて、その組成等を選択して構成してもよい。あるいは、シェルの組成等が先に決定されている場合には、コアを構成する半導体のバンドギャップエネルギーがシェルのそれよりも小さくなるように、コアを設計してもよい。
 具体的には、シェルを構成する半導体は、例えば2.0eV以上5.0eV以下、特に2.5eV以上5.0eV以下のバンドギャップエネルギーを有してよい。また、シェルのバンドギャップエネルギーは、コアのバンドギャップエネルギーよりも、例えば0.1eV以上3.0eV以下程度、特に0.3eV以上3.0eV以下程度、より特には0.5eV以上1.0eV以下程度大きいものであってよい。シェルを構成する半導体のバンドギャップエネルギーとコアを構成する半導体のバンドギャップエネルギーとの差が前記下限値以上であると、コアからの発光において、バンド端発光以外の発光の割合が少なくなり、バンド端発光の割合が大きくなる傾向がある。
 さらに、コアおよびシェルを構成する半導体のバンドギャップエネルギーは、コアとシェルのヘテロ接合において、シェルのバンドギャップエネルギーがコアのバンドギャップエネルギーを挟み込むtype-Iのバンドアライメントを与えるように選択されることが好ましい。type-Iのバンドアライメントが形成されることにより、コアからのバンド端発光をより良好に得ることができる。type-Iのアライメントにおいて、コアのバンドギャップとシェルのバンドギャップとの間には、少なくとも0.1eVの障壁が形成されることが好ましく、特に0.2eV以上、より特には0.3eV以上の障壁が形成されてよい。障壁の上限は、例えば1.8eV以下であり、特に1.1eV以下である。障壁が前記下限値以上であると、コアからの発光において、バンド端発光以外の発光の割合が少なくなり、バンド端発光の割合が大きくなる傾向がある。
 シェルを構成する半導体は、第13族元素としてInまたはGaを含むものであってよい。またシェルは、第16族元素としてSを含むものであってよい。InまたはGaを含む、あるいはSを含む半導体は、第11族-第13族-第16族の三元系の半導体よりも大きいバンドギャップエネルギーを有する半導体となる傾向にある。
 シェルは、その半導体の晶系がコアの半導体の晶系となじみのあるものであってよく、またその格子定数が、コアの半導体のそれと同じまたは近いものであってよい。晶系になじみがあり、格子定数が近い(ここでは、シェルの格子定数の倍数がコアの格子定数に近いものも格子定数が近いものとする)半導体からなるシェルは、コアの周囲を良好に被覆することがある。例えば、第11族-第13族-第16族の三元系の半導体であるAg-In-Sは、一般に正方晶系であるが、これになじみのある晶系としては、正方晶系、斜方晶系が挙げられる。Ag-In-S半導体が正方晶系である場合、その格子定数は5.828Å(0.5828nm)、5.828Å(0.5828nm)、11.19Å(1.119nm)であり、これを被覆するシェルは、正方晶系または立方晶系であって、その格子定数またはその倍数が、Ag-In-S半導体の格子定数と近いものであることが好ましい。あるいは、シェルはアモルファス(非晶質)であってもよい。
 アモルファス(非晶質)のシェルが形成されているか否かは、コアシェル型半導体ナノ粒子を、HAADF-STEMで観察することにより確認できる。アモルファス(非晶質)のシェルが形成されている場合、具体的には、規則的な模様(例えば、縞模様ないしはドット模様等)を有する部分が中心部に観察され、その周囲に規則的な模様を有するものとしては観察されない部分がHAADF-STEMにおいて観察される。HAADF-STEMによれば、結晶性物質のように規則的な構造を有するものは、規則的な模様を有する像として観察され、非晶性物質のように規則的な構造を有しないものは、規則的な模様を有する像としては観察されない。そのため、シェルがアモルファスである場合には、規則的な模様を有する像として観察されるコア(前記のとおり、正方晶系等の結晶構造を有する)とは明確に異なる部分として、シェルを観察することができる。
 また、コアがAg-In-Sからなり、シェルがGaSからなる場合、GaがAgおよびInよりも軽い元素であるために、HAADF-STEMで得られる像において、シェルはコアよりも暗い像として観察される傾向にある。
 アモルファスのシェルが形成されているか否かは、高解像度の透過型電子顕微鏡(HRTEM)で本実施形態のコアシェル型半導体ナノ粒子を観察することによっても確認できる。HRTEMで得られる画像において、コアの部分は結晶格子像(規則的な模様を有する像)として観察され、シェルの部分は結晶格子像として観察されず、白黒のコントラストは観察されるが、規則的な模様は見えない部分として観察される。
 一方、シェルはコアと固溶体を構成しないものであることが好ましい。シェルがコアと固溶体を形成すると両者が一体のものとなり、シェルによりコアを被覆して、コアの表面状態を変化させることによりバンド端発光を得るという、本実施形態のメカニズムが得られなくなる場合がある。例えば、Ag-In-Sからなるコアの表面を、化学量論組成ないしは非化学量論組成の硫化亜鉛(Zn-S)で覆っても、コアからバンド端発光が得られないことが確認されている。Zn-Sは、Ag-In-Sとの関係では、バンドギャップエネルギーに関して上記の条件を満たし、type-Iのバンドアライメントを与えるものである。それにもかかわらず、前記特定の半導体からバンド端発光が得られなかったのは、前記特定の半導体とZnSとが固溶体を形成して、コア-シェルの界面が無くなったことによると推察される。
 シェルは、第13族元素および第16族元素の組み合わせとして、InとSの組み合わせ、GaとSとの組み合わせ、またはInとGaとSとの組み合わせを含んでよいが、これらに限定されるものではない。InとSとの組み合わせは硫化インジウムの形態であってよく、また、GaとSとの組み合わせは硫化ガリウムの形態であってよく、また、InとGaとSの組み合わせは硫化インジウムガリウムであってよい。シェルを構成する硫化インジウムは、化学量論組成のもの(In)でなくてよく、その意味で、本明細書では硫化インジウムを式InS(xは整数に限られない任意の数字、例えば0.8以上1.5以下)で表すことがある。同様に、硫化ガリウムは化学量論組成のもの(Ga)でなくてよく、その意味で、本明細書では硫化ガリウムを式GaS(xは整数に限られない任意の数字、例えば0.8以上1.5以下)で表すことがある。硫化インジウムガリウムは、In2(1-y)Ga2y(yは0よりも大きく1未満である任意の数字)で表される組成のものであってよく、あるいは、InGa1-a(aは0よりも大きく1未満である任意の数字であり、bは整数に限られない任意の数値である)で表されるものであってよい。
 硫化インジウムは、そのバンドギャップエネルギーが2.0eV以上2.4eV以下であり、晶系が立方晶であるものについては、その格子定数は10.775Å(1.0775nm)である。硫化ガリウムは、そのバンドギャップエネルギーが2.5eV以上2.6eV以下程度であり、晶系が正方晶であるものについては、その格子定数が5.215Å(0.5215nm)である。ただし、ここに記載された晶系等は、いずれも報告値であり、実際のコアシェル型半導体ナノ粒子において、シェルがこれらの報告値を満たしているとは限らない。
 硫化インジウムおよび硫化ガリウムは、第11族-第13族-第16族の三元系の半導体、特にAg-In-Sがコアである場合に、シェルを構成する半導体として好ましく用いられる。特に、硫化ガリウムは、バンドギャップエネルギーがより大きいことから好ましく用いられる。硫化ガリウムを使用する場合には、硫化インジウムを使用する場合と比較して、より強いバンド端発光を得ることができる場合がある。
[表面修飾剤]
 シェルは、その表面が負の酸化数を有するPを含む第15族元素を含む化合物(以下、特定修飾剤ともいう)で修飾されていてよい。シェルの表面修飾剤が特定修飾剤を含んでいることで、コアシェル型半導体ナノ粒子のバンド端発光の量子収率が向上する。
 特定修飾剤は、第15族元素として負の酸化数を有するPを含む。Pの酸化数は、Pに水素原子または炭化水素基が1つ結合することで-1となり、酸素原子が単結合で1つ結合することで+1となり、Pの置換状態で変化する。例えば、トリアルキルホスフィンおよびトリアリールホスフィンにおけるPの酸化数は-3であり、トリアルキルホスフィンオキシドおよびトリアリールホスフィンオキシドでは-1となる。
 特定修飾剤は、負の酸化数を有するPに加えて、他の第15族元素を含んでいてもよい。他の第15族元素としては、N、As、Sb等を挙げることができる。
 特定修飾剤は、例えば、炭素数4以上20以下の炭化水素基を有する含リン化合物であってよい。炭素数4以上20以下の炭化水素基としては、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、オクチル基、エチルヘキシル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基などの直鎖または分岐鎖状の飽和脂肪族炭化水素基;オレイル基などの直鎖または分岐鎖状の不飽和脂肪族炭化水素基;シクロペンチル基、シクロヘキシル基などの脂環式炭化水素基;フェニル基、ナフチル基などの芳香族炭化水素基;ベンジル基、ナフチルメチル基などのアリールアルキル基などが挙げられ、このうち飽和脂肪族炭化水素基や不飽和脂肪族炭化水素基が好ましい。特定修飾剤が複数の炭化水素基を有する場合、それらは同一であっても、異なっていてもよい。
 特定修飾剤として具体的には、トリブチルホスフィン、トリイソブチルホスフィン、トリペンチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン、トリス(エチルヘキシル)ホスフィン、トリデシルホスフィン、トリドデシルホスフィン、トリテトラデシルホスフィン、トリヘキサデシルホスフィン、トリオクタデシルホスフィン、トリフェニルホスフィン、トリブチルホスフィンオキシド、トリイソブチルホスフィンオキシド、トリペンチルホスフィンオキシド、トリヘキシルホスフィンオキシド、トリオクチルホスフィンオキシド、トリス(エチルヘキシル)ホスフィンオキシド、トリデシルホスフィンオキシド、トリドデシルホスフィンオキシド、トリテトラデシルホスフィンオキシド、トリヘキサデシルホスフィンオキシド、トリオクタデシルホスフィンオキシド、トリフェニルホスフィンオキシド等を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。
 シェルの表面は、特定修飾剤に加えて、その他の表面修飾剤で表面修飾されていてもよい。その他の表面修飾剤としては、例えば、炭素数4以上20以下の炭化水素基を有する含窒素化合物、炭素数4以上20以下の炭化水素基を有する含硫黄化合物、炭素数4以上20以下の炭化水素基を有する含酸素化合物等であってよい。含窒素化合物としてはアミン類やアミド類が挙げられ、含硫黄化合物としてはチオール類が挙げられ、含酸素化合物としては脂肪酸類などが挙げられる。
 その他の表面修飾剤としては、炭素数4以上20以下の炭化水素基を有する含窒素化合物、炭素数4以上20以下の炭化水素基を有する含硫黄化合物が好ましい。含窒素化合物としては、例えばn-ブチルアミン、イソブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミンなどのアルキルアミンや、オレイルアミンなどのアルケニルアミンが挙げられる。特に純度の高いものが入手しやすい点と沸点が290℃を超える点から、n‐テトラデシルアミンが好ましい。また含硫黄化合物としては、例えば、n-ブタンチオール、イソブタンチオール、n-ペンタンチオール、n-ヘキサンチオール、オクタンチオール、デカンチオール、ドデカンチオール、ヘキサデカンチオール、オクタデカンチオール等が挙げられる。
 表面修飾剤は、異なる二以上のものを組み合わせて用いてよい。例えば、上記において例示した含窒素化合物から選択される一つの化合物(例えば、オレイルアミン)と、上記において例示した含硫黄化合物から選択される一つの化合物(例えば、ドデカンチオール)とを組み合わせて用いてよい。
[コアシェル構造]
 コアシェル型半導体ナノ粒子は、紫外光、可視光または赤外線などの光が照射されると、照射された光よりも長い波長の光を発するものである。具体的には、コアシェル型半導体ナノ粒子は、例えば、紫外光、可視光または赤外線が照射されると、照射された光よりも長い波長の発光を有し、かつ、主成分の発光の寿命が200ns以下および/または発光スペクトルの半値幅が70nm以下である発光をすることができる。更に特定の族の元素を含むシェルの表面が、特定修飾剤で修飾されていることで、バンド端発光の量子収率を向上させることができる。
 コアシェル型半導体ナノ粒子は、例えば、50nm以下の平均粒径を有してよい。平均粒径は、1nm以上20nm以下の範囲内、特に1nm以上10nm以下の範囲内にあってよい。
 ナノ粒子の平均粒径は、例えば、透過型電子顕微鏡(TEM)を用いて撮影されたTEM像から求めてよい。ナノ粒子の粒径は、具体的には、TEM像で観察される粒子の外周の任意の二点を結び、粒子の内部に存在する線分のうち、最も長いものを指す。
 ただし、粒子がロッド形状を有するものである場合には、短軸の長さを粒径とみなす。ここで、ロッド形状の粒子とは、TEM像において短軸と短軸に直交する長軸とを有し、短軸の長さに対する長軸の長さの比が1.2より大きいものを指す。ロッド形状の粒子は、TEM像で、例えば、長方形状を含む四角形状、楕円形状、または多角形状等として観察される。ロッド形状の長軸に直交する面である断面の形状は、例えば、円、楕円、または多角形であってよい。具体的にはロッド状の形状の粒子について、長軸の長さは、楕円形状の場合には、粒子の外周の任意の二点を結ぶ線分のうち、最も長い線分の長さを指し、長方形状または多角形状の場合、外周を規定する辺の中で最も長い辺に平行であり、かつ粒子の外周の任意の二点を結ぶ線分のうち、最も長い線分の長さを指す。短軸の長さは、外周の任意の二点を結ぶ線分のうち、前記長軸の長さを規定する線分に直交し、かつ最も長さの長い線分の長さを指す。
 コアシェル型半導体ナノ粒子の平均粒径は、50,000倍以上150,000倍以下のTEM像で観察される、すべての計測可能な粒子について粒径を測定し、それらの粒径の算術平均とする。ここで、「計測可能な」粒子は、TEM像において粒子全体が観察できるものである。したがって、TEM像において、その一部が撮像範囲に含まれておらず、「切れて」いるような粒子は計測可能なものではない。1つのTEM像に含まれる計測可能な粒子数が100以上である場合には、そのTEM像を用いて平均粒径を求める。一方、1つのTEM像に含まれる計測可能な粒子の数が100未満の場合には、撮像場所を変更して、TEM像をさらに取得し、2以上のTEM像に含まれる100以上の計測可能な粒子について粒径を測定して平均粒径を求める。
 コアシェル型半導体ナノ粒子において、コアは、例えば、10nm以下、特に、8nm以下の平均粒径を有してよい。コアの平均粒径は、2nm以上10nm以下の範囲内、特に2nm以上8nm以下の範囲内にあってよい。コアの平均粒径が前記範囲であると、量子サイズ効果を得られ易くなり、バンド端発光を得られ易い。
 シェルは、シェルの厚さは0.1nm以上50nm以下の範囲内、0.1nm以上10nm以下の範囲内、特に0.3nm以上3nm以下の範囲内にあってよい。シェルの厚さが前記範囲である場合には、シェルがコアを被覆することによる効果が十分に得られ、バンド端発光を得られ易い。
 コアの平均粒径およびシェルの厚さは、コアシェル型半導体ナノ粒子を、例えば、HAADF-STEMで観察することにより求めてよい。特に、シェルがアモルファスである場合には、HAADF-STEMによって、コアとは異なる部分として観察されやすいシェルの厚さを容易に求めることができる。その場合、コアの粒径は半導体ナノ粒子について上記で説明した方法に従って求めることができる。シェルの厚さが一定でない場合には、最も小さい厚さを、当該粒子におけるシェルの厚さとする。
 あるいは、コアの平均粒径は、シェルによる被覆の前に予め測定しておいてよい。それから、コアシェル型半導体ナノ粒子の平均粒径を測定し、当該平均粒径と予め測定したコアの平均粒径との差を求めることにより、シェルの厚さを求めてよい。
 コアシェル型半導体ナノ粒子は、発光スペクトルにおける発光ピークの半値幅は、例えば、70nm以下、60nm以下、55nm以下、50nm以下または40nm以下であってよい。半値幅の下限値は例えば、10nm以上、20nm以上または30nm以上であってよい。
 ここで、「発光の寿命」とは、後述する実施例のように、蛍光寿命測定装置と称される装置を用いて測定される発光の寿命をいう。具体的には、上記「主成分の発光寿命」は、次の手順に従って求められる。まず、コアシェル型半導体ナノ粒子に励起光を照射して発光させ、発光スペクトルのピーク付近の波長、例えば、(ピークの波長±50nm)の範囲内にある波長の光について、その減衰(残光)の経時変化を測定する。経時変化は、励起光の照射を止めた時点から測定する。得られる減衰曲線は一般に、発光や熱等の緩和過程に由来する複数の減衰曲線を足し合わせたものとなっている。そこで、本実施形態では、3つの成分(すなわち、3つの減衰曲線)が含まれると仮定して、発光強度をI(t)としたときに、減衰曲線が下記の式で表せるように、パラメータフィッティングを行う。パラメータフィッティングは、専用ソフトを使用して実施する。
 I(t) = Aexp(-t/τ) + Aexp(-t/τ) + Aexp(-t/τ
 上記の式中、各成分のτ、τおよびτは、発光強度が初期の1/e(36.8%)に減衰するのに要する時間であり、これが各成分の発光寿命に相当する。発光寿命の短い順にτ、τおよびτとする。また、A、AおよびAは、各成分の寄与率である。例えば、Aexp(-t/τ)で表される曲線の積分値が最も大きいものを主成分としたときに、主成分の発光寿命τが200ns以下、100ns以下、または80ns以下である。そのような発光は、バンド端発光であると推察される。なお、主成分の特定に際しては、Aexp(-t/τ)のtの値を0から無限大まで積分することによって得られるA×τを比較し、この値が最も大きいものを主成分とする。
 なお、発光の減衰曲線が3つ、4つ、または5つの成分を含むものと仮定してパラメータフィッティングを行って得られる式がそれぞれ描く減衰曲線と、実際の減衰曲線とのずれは、それほど変わらない。そのため、本実施形態では、主成分の発光寿命を求めるにあたり、発光の減衰曲線に含まれる成分の数を3と仮定し、それによりパラメータフィッティングが煩雑となることを避けている。
 コアシェル型の半導体ナノ粒子の発光は、バンド端発光に加えて欠陥発光(例えば、ドナーアクセプター発光)を含むものであってもよいが、実質的にバンド端発光のみであることが好ましい。欠陥発光は一般に発光寿命が長く、またブロードなスペクトルを有し、バンド端発光よりも長波長側にそのピークを有する。ここで、実質的にバンド端発光のみであるとは、発光スペクトルにおけるバンド端発光成分の純度が40%以上であることをいい、50%以上が好ましく、60%以上がより好ましく、65%以上が更に好ましい。また、バンド端発光成分の純度の上限値は、例えば、100%以下、100%未満、または95%以下であってよい。「バンド端発光成分の純度」とは、発光スペクトルに対し、バンド端発光のピークと欠陥発光のピークの形状をそれぞれ正規分布と仮定したパラメータフィッティングを行って、バンド端発光のピークと欠陥発光のピークの2つに分離し、それらの面積をそれぞれa1、a2とした時、下記の式で表される。
 バンド端発光成分の純度(%) = a1/(a1+a2)×100
 発光スペクトルがバンド端発光を全く含まない場合、すなわち欠陥発光のみを含む場合は0%、バンド端発光と欠陥発光のピーク面積が同じ場合は50%、バンド端発光のみを含む場合は100%となる。
 バンド端発光の量子収率は量子収率測定装置を用いて、励起波長450nm、温度25℃で測定し、506nmから882nmの範囲で計算された内部量子収率に上記バンド端発光成分の純度を乗じ、100で除した値として定義される。コアシェル型半導体ナノ粒子のバンド端発光の量子収率は、例えば10%以上であり、20%以上が好ましく、30%以上がより好ましい。また、量子収率の上限値は、例えば、100%以下、100%未満、または95%以下であってよい。
 コアシェル型半導体ナノ粒子が発するバンド端発光は、コアシェル型半導体ナノ粒子の粒径を変化させることによって、ピークの位置を変化させることができる。例えば、コアシェル型半導体ナノ粒子の粒径をより小さくすると、バンド端発光のピーク波長が短波長側にシフトする傾向にある。さらにコアシェル型半導体ナノ粒子の粒径をより小さくすると、バンド端発光のスペクトルの半値幅がより小さくなる傾向にある。
 コアシェル型半導体ナノ粒子におけるバンド端発光の発光ピーク波長は、例えば、500nm以上600nm以下であり、好ましくは510nm以上590nm以下、520nm以上585nm以下、または550nm以上580nm以下であってよい。また、半導体ナノ粒子が欠陥発光も発する場合、欠陥発光の発光ピーク波長は、例えば、600nmを超えて700nm以下、または605nm以上690nm以下であってよい。
 コアシェル型半導体ナノ粒子がバンド端発光に加えて欠陥発光する場合、バンド端発光の最大ピーク強度および欠陥発光の最大ピーク強度より求められるバンド端発光の強度比は、例えば、0.75以上であり、好ましくは0.85以上であり、より好ましくは、0.9以上であり、特に好ましくは0.93以上であり、上限値は、例えば、1以下、1未満、または0.99以下であってよい 。なお、バンド端発光の強度比は、発光スペクトルに対し、バンド端発光のピークと欠陥発光のピークの形状をそれぞれ正規分布と仮定したパラメータフィッティングを行って、バンド端発光のピークと欠陥発光のピークの2つに分離し、それらのピーク強度をそれぞれb1、b2とした時、下記の式で表される。
 バンド端発光の強度比 = b1/(b1+b2)
 発光スペクトルがバンド端発光を全く含まない場合、すなわち欠陥発光のみを含む場合は0、バンド端発光と欠陥発光のピーク強度が同じ場合は0.5、バンド端発光のみを含む場合は1となる。
 コアシェル型半導体ナノ粒子はまた、その吸収スペクトルまたは励起スペクトル(蛍光励起スペクトルともいう)がエキシトンピークを示すものであることが好ましい。エキシトンピークは、励起子生成により得られるピークであり、これが吸収スペクトルまたは励起スペクトルにおいて発現しているということは、粒径の分布が小さく、結晶欠陥の少ないバンド端発光に適した粒子であることを意味する。エキシトンピークが急峻になるほど、粒径がそろった結晶欠陥の少ない粒子がコアシェル型半導体ナノ粒子の集合体により多く含まれていることを意味する。したがって、発光の半値幅は狭くなり、発光効率が向上すると予想される。本実施形態のコアシェル型半導体ナノ粒子の吸収スペクトルまたは励起スペクトルにおいて、エキシトンピークは、例えば、350nm以上1000nm以下、好ましくは450nm以上590nm以下の範囲内で観察される。エキシトンピークの有無を見るための励起スペクトルは、観測波長をピーク波長付近に設定して測定してよい。
[コアシェル型半導体ナノ粒子の製造方法]
 光が照射されると発光するコアシェル型半導体ナノ粒子の製造方法は、コアと、前記コア表面に配置されるシェルとを備えるコアシェル粒子を準備するコアシェル粒子準備工程と、前記コアシェル粒子と第15族元素を含む化合物とを接触させる修飾工程とを含む。前記コアは、M、MおよびZを含む半導体を含む。ここでMは、Ag、CuおよびAuからなる群より選ばれる少なくとも一種を含み、Mが、Al、Ga、InおよびTlからなる群より選ばれる少なくとも一種を含み、Zが、S、SeおよびTeからなる群より選ばれる少なくとも一種を含む。前記シェルは、第13族元素および第16族元素を含み、前記コアよりバンドギャップエネルギーが大きい半導体を含む。前記化合物が含む第15族元素は少なくとも負の酸化数を有するPを含んでいる。
 特定元素を含んで構成され、それ自体がバンド端発光を示すコアシェル粒子に、第15族元素を含む特定修飾剤を接触させて、シェル表面が修飾されてバンド端発光における量子収率が向上するコアシェル型半導体ナノ粒子を効率的に製造することができる。一方、コアのみの半導体ナノ粒子に特定修飾剤による修飾処理を行っても量子収率の向上効果は得られない。また特定元素以外の元素を含むシェルを有するコアシェル粒子に特定修飾剤による修飾処理を行っても量子収率の向上効果は得られない。したがって、特定修飾剤の修飾による量子収率の向上効果は、特定元素を含むシェルを有し、バンド端発光を示すコアシェル型ナノ粒子に特有の効果と考えられる。
コアシェル粒子準備工程
 コアシェル粒子準備工程は、コアとなる半導体ナノ粒子を溶媒中に分散させた分散液を準備するコア準備工程と、当該分散液に、第13族元素の源(ソース)となる同元素を含む化合物および第16族元素の源(ソース)となる同元素の単体または同元素を含む化合物を加えて、半導体ナノ粒子の表面に、実質的に第13族元素と第16族元素とからなる半導体の層を形成するシェル形成工程とを含んでいてもよい。
コア準備工程
 コア準備工程では、半導体ナノ粒子の分散液を準備する。半導体ナノ粒子は、M、MおよびZを含む半導体からなるナノ粒子である。半導体ナノ粒子は、市販されているものをそのまま用いてよく、あるいは試験的に生産されたものがあればそれを用いてよく、あるいはM源、M源およびZ源を反応させることにより作製してよい。コアシェル準備工程では、半導体ナノ粒子を作製した後、直ちにシェルによる被覆を実施しなければならないということはなく、別に作製された半導体ナノ粒子を、時間を置いて用いてよい。
 半導体ナノ粒子は、例えば、元素Mの塩と元素Mの塩と元素Zを配位元素とする配位子とを混合することにより錯体とし、この錯体を熱処理することを含む方法で作製してよい。Mの塩およびMの塩はいずれも、その種類は特に限定されず、有機酸塩および無機酸塩のいずれであってもよい。具体的には、塩は、酢酸塩等の有機酸塩、硝酸塩、硫酸塩、塩酸塩、スルホン酸塩等の無機酸塩のいずれであってもよく、好ましくは酢酸塩等の有機酸塩である。有機酸塩は有機溶媒への溶解度が高く、反応をより均一に進行させやすい。
 Zが硫黄(S)である場合、Zを配位元素とする配位子としては、例えば、2,4-ペンタンジチオンなどのβ-ジチオン類;1,2-ビス(トリフルオロメチル)エチレン-1,2-ジチオールなどのジチオール類;ジエチルジチオカルバミド酸塩;チオ尿素等が挙げられる。
 Zがテルル(Te)である場合、Zを配位元素とする配位子としては、例えば、ジアリルテルライド、ジメチルジテルライド等が挙げられる。Zがセレン(Se)である場合、Zを配位元素とする配位子としては、例えば、ジメチルジセレノカルバミド酸、2-(ジメチルアミノ)エタンセレノール等が挙げられる。
 錯体は、Mの塩、Mの塩およびZを配位元素とする配位子とを混合することにより得られる。錯体の形成は、Mの塩およびMの塩の水溶液と配位子の水溶液とを混合する方法で実施してよく、あるいは、Mの塩、Mの塩および配位子を、有機溶媒(特に、エタノール等の極性の高い有機溶媒)中に投入して混合する方法で実施してよい。有機溶媒は表面修飾剤、または表面修飾剤を含む溶液であってよい。Mの塩、Mの塩およびZを配位元素とする配位子の仕込み比は、Mの組成に対応して、1:1:2(モル比)とすることが好ましい。
 次に、得られた錯体を熱処理して、半導体ナノ粒子を形成する。錯体の熱処理は、得られた錯体を沈殿させて分離した後、乾燥させて粉末とし、粉末を例えば100℃以上300℃以下の温度で加熱することにより実施してよい。この場合、熱処理して得られる半導体ナノ粒子は、さらに表面修飾剤である溶媒、または表面修飾剤を含む溶媒中で熱処理して、その表面が修飾されることが好ましい。あるいは、錯体の熱処理は、粉末として得た錯体を、表面修飾剤である溶媒、または表面修飾剤を含む溶媒中で、例えば100℃以上300℃以下の温度で加熱することにより実施してよい。あるいはまた、Mの塩、Mの塩および配位子を、有機溶媒中に投入して混合する方法で錯体を形成する場合には、有機溶媒を表面修飾剤または表面修飾剤を含む溶媒として、塩および配位子を投入した後、加熱処理を実施することにより、錯体の形成、熱処理および表面修飾を連続的にまたは同時に実施してよい。
 あるいは、半導体ナノ粒子は、Mの塩、Mの塩およびZの供給源となる化合物を有機溶媒に投入して形成しても良い。あるいはまた、有機溶媒とM、M2少なくともいずれか一方の塩とを反応させて錯体を形成するとともに、これらの錯体とZの供給源となる化合物とを反応させ、得られた反応物を加熱することにより結晶成長させる方法で製造してよい。Mの塩およびMの塩については、上記錯体の形成を含む作製方法に関連して説明したとおりである。これらの塩と反応して錯体を形成する有機溶媒は、例えば、炭素数4以上20以下のアルキルアミン、アルケニルアミン、アルキルチオール、アルケニルアミン、アルキルホスフィン、アルケニルホスフィンのうち少なくとも1種類を含むものであってよい。これらの有機溶媒は、最終的には、得られる半導体ナノ粒子を表面修飾するものとなってよい。これらの有機溶媒は他の有機溶媒と混合して用いてよい。この製造方法においても、Mの塩、Mの塩およびZの供給源となる化合物の仕込み比は、Mの組成式に対応して、1:1:2(モル比)とすることが好ましい。
 Zの供給源となる化合物は、Zが硫黄(S)である場合には、例えば、硫黄、チオ尿素、チオアセトアミド、アルキルチオールである。Zがテルル(Te)である場合には、例えば、トリアルキルホスフィンにTe粉末を加えた混合液を200℃以上250℃以下で熱処理して得られるTe-ホスフィン錯体を、Zの供給源となる化合物として用いてよい。Zがセレン(Se)である場合には、例えば、トリアルキルホスフィンにSe粉末を加えた混合液を200℃以上250℃以下で熱処理して得られるSe-ホスフィン錯体を、Zの供給源となる化合物として用いてよい。
 あるいは、半導体ナノ粒子の製造方法は、いわゆるホットインジェクション法であってよい。ホットインジェクション法は、100℃以上300℃以下の範囲内にある温度に加熱した溶媒に、半導体ナノ粒子を構成する各元素の供給源となる化合物(例えば、Mの塩、Mの塩およびZの供給源となる化合物(またはZを配位元素とする配位子))を溶解または分散させた液体(前駆体溶液とも呼ぶ)を比較的短い時間(例えばミリ秒オーダー)で投入して、反応初期に多くの結晶核を生成させる半導体ナノ粒子の製造方法である。あるいは、ホットインジェクション法においては、一部の元素の供給源となる化合物を有機溶媒中に予め溶解または分散させておき、これを加熱してから、その他の元素の前駆体溶液を投入してよい。溶媒を表面修飾剤、または表面修飾剤を含む溶媒とすれば、表面修飾も同時に実施できる。ホットインジェクション法によれば、粒径のより小さいナノ粒子を製造することができる。
 半導体ナノ粒子の表面を修飾する表面修飾剤は、先に、シェルに関連して説明したとおりである。半導体ナノ粒子が表面修飾されていると、粒子が安定化されて、粒子の凝集または成長が防止され、ならびに/あるいは粒子の溶媒中での分散性が向上する。半導体ナノ粒子が表面修飾されている場合、シェルは、表面修飾剤が脱離したタイミングで成長する。したがって、半導体ナノ粒子を修飾している表面修飾剤は、最終的に得られるコアシェル構造のナノ粒子においては、コアの表面、すなわちコアとシェルとの界面には通常存在しない。
 なお、いずれの製造方法を採用する場合でも、半導体ナノ粒子の製造は不活性雰囲気下、特にアルゴン雰囲気下または窒素雰囲気下で実施される。これは、酸化物の副生および半導体ナノ粒子表面の酸化を、低減ないしは防止するためである。
 上記の方法で作製した半導体ナノ粒子は、反応終了後、溶媒から分離してよく、必要に応じて、さらに精製してよい。分離は、例えば、粒子を作製した後、混合液を遠心分離に付して、上澄み液を取り出すことにより行う。精製は、上澄み液にアルコールを加えて、遠心分離に付して沈殿させ、その沈殿を取り出し、あるいは上澄み液を除去して、分離した沈殿を、例えば減圧乾燥または自然乾燥により乾燥させる、あるいは有機溶媒に溶解させる方法で実施してよい。アルコールの添加と遠心分離による精製は必要に応じて複数回実施してよい。精製に用いるアルコールとして、メタノール、エタノール、n-プロパノール等の低級アルコールを用いてよい。沈殿を有機溶媒に溶解させる場合、有機溶媒として、クロロホルム等のハロゲン溶剤;トルエン等の芳香族炭化水素溶剤;シクロヘキサン、ヘキサン、ペンタン、オクタン等の脂肪族炭化水素溶剤などを用いてよい。
 半導体ナノ粒子を精製した後、乾燥させる場合、乾燥は減圧乾燥により実施してよく、あるいは自然乾燥により実施してよく、あるいはまた、減圧乾燥と自然乾燥との組み合わせにより実施してよい。自然乾燥は、例えば、大気中に常温常圧にて放置することにより実施してよく、その場合、20時間以上、例えば、30時間程度放置してよい。
 シェル形成工程に供される半導体ナノ粒子は、適切な溶媒に分散させた分散液として調製され、当該分散液中でシェルとなる半導体層が形成される。半導体ナノ粒子が分散した液体においては、散乱光が生じないため、分散液は一般に透明(有色または無色)のものとして得られる。半導体ナノ粒子を分散させる溶媒は特に限定されず、半導体ナノ粒子を作製するときと同様、任意の有機溶媒であってよい。有機溶媒は、表面修飾剤、または表面修飾剤を含む溶液であってよい。例えば、有機溶媒は、シェルに関連して説明したその他の表面修飾剤である、炭素数4以上20以下の炭化水素基を有する含窒素化合物から選ばれる少なくとも1つであってよく、あるいは、炭素数4以上20以下の炭化水素基を有する含硫黄化合物から選ばれる少なくとも1つであってよく、あるいは炭素数4以上20以下の炭化水素基を有する含窒素化合物から選ばれる少なくとも1つと炭素数4以上20以下の炭化水素基を有する含硫黄化合物から選ばれる少なくとも1つとの組み合わせであってよい。含窒素化合物としては、その沸点が反応温度より高いことが好ましく、具体的な有機溶媒としては、オレイルアミン、n-テトラデシルアミン、ドデカンチオール、またはその組み合わせが挙げられる。
 半導体ナノ粒子の分散液は、分散液に占める粒子の割合が、例えば、0.02質量%以上1質量%以下、特に0.1質量%以上0.6質量%以下となるように調製してよい。分散液に占める粒子の割合が0.02質量%以上であると、貧溶媒による凝集・沈澱プロセスによる生成物の回収が容易になる傾向がある。また1質量%以下であると、コアを構成する材料のオストワルド熟成、衝突による融合が抑制され、粒径分布が狭くなる傾向にある。
シェル形成工程
 シェルとなる半導体の層の形成は、第13族元素を含む化合物と、第16族元素の単体または第16族元素を含む化合物とを、上記分散液に加えて実施する。第13族元素を含む化合物は、第13族元素源となるものであり、例えば、第13族元素の有機塩、無機塩、および有機金属化合物等である。具体的に第13族元素を含む化合物としては、酢酸塩等の有機酸塩;硝酸塩、硫酸塩、塩酸塩、スルホン酸塩等の無機酸塩;アセチルアセトナート錯体等の有機金属化合物が挙げられ、好ましくは酢酸塩等の有機酸塩、または有機金属化合物である。有機酸塩および有機金属化合物は有機溶媒への溶解度が高く、反応をより均一に進行させやすい。
 第16族元素の単体または第16族元素を含む化合物は、第16族元素源となるものである。例えば、第16族元素として硫黄(S)をシェルの構成元素とする場合には、高純度硫黄のような硫黄単体を用いることができる。あるいは、n-ブタンチオール、イソブタンチオール、n-ペンタンチオール、n-ヘキサンチオール、オクタンチオール、デカンチオール、ドデカンチオール、ヘキサデカンチオール、オクタデカンチオール等のチオール、ジベンジルジスルフィドのようなジスルフィド、チオ尿素、1,3-ジメチルチオ尿素、チオカルボニル化合物等の硫黄含有化合物を用いることができる。
 第16族元素として、酸素(O)をシェルの構成元素とする場合には、アルコール、エーテル、カルボン酸、ケトン、N-オキシド化合物を、第16族元素源として用いてよい。第16族元素として、セレン(Se)をシェルの構成元素とする場合には、セレン単体、またはセレン化ホスフィンオキシド、有機セレン化合物(ジベンジルジセレニドやジフェニルジセレニド)もしくは水素化物等の化合物を、第16族元素源として用いてよい。第16族元素として、テルル(Te)をシェルの構成元素とする場合には、テルル単体、テルル化ホスフィンオキシド、または水素化物を、第16族元素源として用いてよい。
 第13族元素源および第16族元素源を分散液に添加する方法は特に限定されない。例えば、第13族元素源および第16族元素源を、有機溶媒に分散または溶解させた混合液を準備し、この混合液を分散液に少量ずつ、例えば、滴下する方法で添加してよい。この場合、混合液は、0.1mL/時間以上10mL/時間以下、特に1mL/時間以上5mL/時間以下の速度で添加してよい。また、混合液は、加熱した分散液に添加してよい。具体的には、例えば、分散液を昇温して、そのピーク温度が200℃以上290℃以下となるようにし、ピーク温度に達してから、ピーク温度を保持した状態で、混合液を少量ずつ加え、その後、降温させる方法で、シェル層を形成してよい(スローインジェクション法)。ピーク温度は、混合液の添加を終了した後も必要に応じて保持してよい。
 ピーク温度が200℃以上であると、半導体ナノ粒子を修飾している表面修飾剤が十分に脱離し、またシェル生成のための化学反応が十分に進行する等の理由により、半導体の層(シェル)の形成が十分に進行する傾向がある。ピーク温度が290℃以下であると、半導体ナノ粒子に変質が生じることが抑制され、シェル形成によるバンド端発光が十分に得られる傾向がある。ピーク温度を保持する時間は、混合液の添加が開始されてからトータルで1分間以上300分間以下、特に10分間以上60分間以下であってよい。ピーク温度の保持時間は、ピーク温度との関係で選択され、ピーク温度がより低い場合には保持時間をより長くし、ピーク温度がより高い場合には保持時間をより短くすると、良好なシェル層が形成されやすい。昇温速度および降温速度は特に限定されず、降温は、例えばピーク温度で所定時間保持した後、加熱源(例えば電気ヒーター)を停止して放冷することにより実施してよい。
 あるいは、第13族元素源および第16族元素源は、直接、全量を分散液に添加してよい。それから、第13族元素源および第16族元素源が添加された分散液を加熱することにより、シェルである半導体層を半導体ナノ粒子の表面に形成してよい(ヒーティングアップ法)。具体的には、第13族元素源および第16族元素源を添加した分散液は、例えば、徐々に昇温して、そのピーク温度が200℃以上290℃以下となるようにし、ピーク温度で1分間以上300分間以下保持した後、徐々に降温させるやり方で加熱してよい。昇温速度は例えば1℃/分以上50℃/分以下としてよく、降温速度は例えば1℃/分以上100℃/分以下としてよい。あるいは、昇温速度を特に制御することなく、所定のピーク温度となるように加熱してよく、また、降温を一定速度で実施せず、加熱源を停止して放冷することにより実施してもよい。また、降温を水もしくは他の適切な液体に浸漬することによって急速に行ってもよい。ピーク温度が特定の範囲である有利な効果については上記混合液を添加する方法で説明したとおりである。
 ヒーティングアップ法によれば、スローインジェクション法でシェルを形成する場合と比較して、より強いバンド端発光を与えるコアシェル型半導体ナノ粒子が得られる傾向にある。
 いずれの方法で第13族元素源および第16族元素源を添加する場合でも、両者の仕込み比は、第13族元素と第16族元素とからなる化合物半導体の化学量論組成比に対応させることが好ましい。例えば、第13族元素源としてIn源を、第16族元素源としてS源を用いる場合には、Inの組成に対応して、仕込み比は1:1.5(In:S)とすることが好ましい。同様に、第13族元素源としてGa源を、第16族元素源としてS源を用いる場合には、Gaの組成に対応して、仕込み比は1:1.5(Ga:S)とすることが好ましい。尤も、仕込み比は、必ずしも化学量論組成比にしなくてよく、目的とするシェルの生成量よりも過剰量で原料を仕込む場合には、例えば、第16族元素源を化学量論組成比より少なくしてよく、例えば、仕込み比を1:1(第13族:第16族)としてもよい。
 また、分散液中に存在する半導体ナノ粒子に所望の厚さのシェルが形成されるように、仕込み量は、分散液に含まれる半導体ナノ粒子の量を考慮して選択する。例えば、半導体ナノ粒子の、粒子としての物質量10nmolに対して、第13族元素および第16族元素から成る化学量論組成の化合物半導体が0.01mmol以上10mmol以下、特に0.1mmol以上1mmol以下生成されるように、第13族元素源および第16族元素源の仕込み量を決定してよい。ただし、粒子としての物質量というのは、粒子1つを巨大な分子と見なしたときのモル量であり、分散液に含まれるナノ粒子の個数を、アボガドロ数(N=6.022×1023)で除した値に等しい。
 製造方法においては、第13族元素源として、酢酸インジウムまたはガリウムアセチルアセトナートを用い、第16族元素源として、硫黄単体、チオ尿素あるいは1,3-ジメチルチオ尿素を用いて、分散液として、n‐テトラデシルアミンあるいはオレイルアミンを用いて、硫化インジウムまたは硫化ガリウムを含むシェルを形成することが好ましい。
 ヒーティングアップ法で、1,3-ジメチルチオ尿素を第16族元素源(硫黄源)として用いると、シェルが十分に形成されて、強いバンド端発光を与える半導体ナノ粒子が得られやすい。硫黄単体を用いてシェルを形成する場合、ピーク温度到達後の保持時間を長くすると(例えば、40分以上、特に50分以上、上限は例えば60分以下)、バンド端発光の強い半導体ナノ粒子が得られやすくなる。また、硫黄単体を使用したヒーティングアップ法によれば、保持時間を長くすることにより、欠陥発光に由来するブロードなピークの強度がバンド端発光のピークの強度よりも十分に小さい発光スペクトルを与える半導体ナノ粒子が得られる。さらにまた、硫黄源の種類によらず、保持時間を長くするほど、得られる半導体ナノ粒子が発するバンド端発光のピークが長波長側にシフトする傾向にある。また、ヒーティングアップ法で、分散液にn‐テトラデシルアミンを用いると、欠陥発光に由来するブロードなピークの強度がバンド端発光のピークの強度よりも十分に小さい発光スペクトルを与える半導体ナノ粒子が得られる。上記の傾向は、第13族元素源としてガリウム源を使用した場合に、有意に認められる。
 このようにして、シェルを形成してコアシェル粒子が形成される。得られたコアシェル粒子は、溶媒から分離してよく、必要に応じて、さらに精製および乾燥してよい。分離、精製および乾燥の方法は、先に半導体ナノ粒子に関連して説明したとおりであるから、ここではその詳細な説明を省略する。
修飾工程
 修飾工程では、準備したコアシェル粒子と、酸化数が負のPを含む第15族元素を含む化合物(特定修飾剤)とを接触させて、コアシェル粒子のシェル表面を修飾する。これにより、優れた量子収率でバンド端発光を示すコアシェル型半導体ナノ粒子が製造される。
 コアシェル型半導体ナノ粒子と特定修飾剤との接触は、例えば、コアシェル型半導体ナノ粒子の分散液と特定修飾剤とを混合することで行うことができる。またコアシェル粒子を、液状の特定修飾剤と混合して行ってもよい。特定修飾剤には、その溶液を用いてもよい。コアシェル型半導体ナノ粒子の分散液は、コアシェル型半導体ナノ粒子と適当な有機溶媒とを混合することで得られる。分散に用いる有機溶剤としては、例えばクロロホルム等のハロゲン溶剤;トルエン等の芳香族炭化水素溶剤;シクロヘキサン、ヘキサン、ペンタン、オクタン等の脂肪族炭化水素溶剤などを挙げることができる。コアシェル型半導体ナノ粒子の分散液における物質量の濃度は、例えば、1×10-7mol/L以上1×10-3mol/L以下であり、好ましくは1×10-6mol/L以上1×10-4mol/L以下である。
 特定修飾剤のコアシェル型半導体ナノ粒子に対する使用量は、例えば、モル比で1倍以上50,000倍以下である。また、コアシェル型半導体ナノ粒子の分散液における物質量の濃度が1.0×10-7mol/L以上1.0×10-3mol/L以下であるコアシェル型半導体ナノ粒子の分散液を用いる場合、分散液と特定修飾剤とを体積比で1:1000から1000:1で混合してもよい。
 コアシェル型半導体ナノ粒子と特定修飾剤との接触時の温度は、例えば、-100℃以上100℃以下または-30℃以上75℃以下である。接触時間は特定修飾剤の使用量、分散液の濃度等に応じて適宜選択すればよい。接触時間は、例えば、1分以上、好ましくは1時間以上であり、100時間以下、好ましくは48時間以下である。接触時の雰囲気は、例えば、窒素ガス、希ガス等の不活性ガス雰囲気である。
 コアシェル型半導体ナノ粒子の製造方法は、コアシェル粒子準備工程および修飾工程に加えて、必要に応じて、分離、精製、乾燥等の後処理工程を更に含んでいてもよい。
[発光デバイス]
 発光デバイスは、光変換部材および半導体発光素子を備え、光変換部材に上記において説明したコアシェル型半導体ナノ粒子を含むものである。この発光デバイスによれば、例えば、半導体発光素子からの発光の一部を、コアシェル型半導体ナノ粒子が吸収してより長波長の光が発せられる。そして、コアシェル構造の半導体ナノ粒子からの光と半導体発光素子からの発光の残部とが混合され、その混合光を発光デバイスの発光として利用できる。
 具体的には、半導体発光素子としてピーク波長が400nm以上490nm以下程度の青紫色光または青色光を発するものを用い、コアシェル型半導体ナノ粒子として青色光を吸収して黄色光を発光するものを用いれば、白色光を発光する発光デバイスを得ることができる。あるいは、コアシェル型半導体ナノ粒子として、青色光を吸収して緑色光を発光するものと、青色光を吸収して赤色光を発光するものの2種類を用いても、白色発光デバイスを得ることができる。
 あるいは、ピーク波長が400nm以下の紫外線を発光する半導体発光素子を用い、紫外線を吸収して青色光、緑色光、赤色光をそれぞれ発光する、三種類のコアシェル型半導体ナノ粒子を用いる場合でも、白色発光デバイスを得ることができる。この場合、発光素子から発せられる紫外線が外部に漏れないように、発光素子からの光をすべて半導体ナノ粒子に吸収させて変換させることが望ましい。
 あるいはまた、ピーク波長が490nm以上510nm以下程度の青緑色光を発するものを用い、コアシェル型半導体ナノ粒子として上記の青緑色光を吸収して赤色光を発するものを用いれば、白色光を発光するデバイスを得ることができる。
 あるいはまた、半導体発光素子として波長700nm以上780nm以下の赤色光を発光するものを用い、コアシェル型半導体ナノ粒子として、赤色光を吸収して近赤外線を発光するものを用いれば、近赤外線を発光する発光デバイスを得ることもできる。
 コアシェル型半導体ナノ粒子は、他の半導体量子ドットと組み合わせて用いてよく、あるいは他の量子ドットではない蛍光体(例えば、有機蛍光体または無機蛍光体)と組み合わせて用いてよい。他の半導体量子ドットは、例えば、背景技術の欄で説明した二元系の半導体量子ドットである。量子ドットではない蛍光体として、アルミニウムガーネット系等のガーネット系蛍光体を用いることができる。ガーネット蛍光体としては、セリウムで賦活されたイットリウム・アルミニウム・ガーネット系蛍光体、セリウムで賦活されたルテチウム・アルミニウム・ガーネット系蛍光体が挙げられる。他にユウロピウムおよび/またはクロムで賦活された窒素含有アルミノ珪酸カルシウム系蛍光体、ユウロピウムで賦活されたシリケート系蛍光体、β-SiAlON系蛍光体、CASN系またはSCASN系等の窒化物系蛍光体、LnSi11系またはLnSiAlON系等の希土類窒化物系蛍光体、BaSi:Eu系またはBaSi12:Eu系等の酸窒化物系蛍光体、CaS系、SrGaS4系、SrAl系、ZnS系等の硫化物系蛍光体、クロロシリケート系蛍光体、SrLiAl:Eu蛍光体、SrMgSiN:Eu蛍光体、マンガンで賦活されたフッ化物錯体蛍光体としてのKSiF:Mn蛍光体などを用いることができる。
 発光デバイスにおいて、コアシェル型半導体ナノ粒子を含む光変換部材は、例えばシートまたは板状部材であってよく、あるいは三次元的な形状を有する部材であってよい。三次元的な形状を有する部材の例は、表面実装型の発光ダイオードにおいて、パッケージに形成された凹部の底面に半導体発光素子が配置されているときに、発光素子を封止するために凹部に樹脂が充填されて形成された封止部材である。
 または、光変換部材の別の例は、平面基板上に半導体発光素子が配置されている場合にあっては、前記半導体発光素子の上面および側面を略均一な厚みで取り囲むように形成された樹脂部材である。あるいはまた、光変換部材のさらに別の例は、半導体発光素子の周囲にその上端が半導体発光素子と同一平面を構成するように反射材を含む樹脂部材が充填されている場合にあっては、前記半導体発光素子および前記反射材を含む樹脂部材の上部に、所定の厚さで平板状に形成された樹脂部材である。
 光変換部材は半導体発光素子に接してよく、あるいは半導体発光素子から離れて設けられていてよい。具体的には、光変換部材は、半導体発光素子から離れて配置される、ペレット状部材、シート部材、板状部材または棒状部材であってよく、あるいは半導体発光素子に接して設けられる部材、例えば、封止部材、コーティング部材(モールド部材とは別に設けられる発光素子を覆う部材)またはモールド部材(例えば、レンズ形状を有する部材を含む)であってよい。
 また、発光デバイスにおいて、異なる波長の発光を示す2種類以上のコアシェル型半導体ナノ粒子を用いる場合には、1つの光変換部材内で前記2種類以上のコアシェル型半導体ナノ粒子が混合されていてもよいし、あるいは1種類の量子ドットのみを含む光変換部材を2つ以上組み合わせて用いてもよい。この場合、2種類以上の光変換部材は積層構造を成してもよいし、平面上にドット状ないしストライプ状のパターンとして配置されていてもよい。
 半導体発光素子としてはLEDチップが挙げられる。LEDチップは、GaN、GaAs、InGaN、AlInGaP、GaP、SiC、およびZnO等からなる群より選択される1種または2種以上から成る半導体層を備えたものであってよい。青紫色光、青色光、または紫外線を発光する半導体発光素子は、例えば、組成がInAlGa1-X-YN(0≦X、0≦Y、X+Y<1)で表わされるGaN系化合物を半導体層として備えたものである。
 本実施形態の発光デバイスは、光源として液晶表示装置に組み込まれることが好ましい。コアシェル型半導体ナノ粒子によるバンド端発光は発光寿命の短いものであるため、これを用いた発光デバイスは、比較的速い応答速度が要求される液晶表示装置の光源に適している。また、本実施形態のコアシェル型半導体ナノ粒子は、バンド端発光として半値幅の小さい発光ピークを示し得る。したがって、発光デバイスにおいて:
- 青色半導体発光素子によりピーク波長が420nm以上490nm以下の範囲内にある青色光を得るようにし、コアシェル型半導体ナノ粒子により、ピーク波長が510nm以上550nm以下、好ましくは530nm以上540nm以下の範囲内にある緑色光、およびピーク波長が600nm以上680nm以下、好ましくは630nm以上650nm以下の範囲内にある赤色光を得るようにする;または、
- 発光デバイスにおいて、半導体発光素子によりピーク波長400nm以下の紫外光を
得るようにし、コアシェル型半導体ナノ粒子によりピーク波長430nm以上470nm以下、好ましくは440nm以上460nm以下の範囲内にある青色光、ピーク波長が510nm以上550nm以下、好ましくは530nm以上540nm以下の緑色光、およびピーク波長が600nm以上680nm以下、好ましくは630nm以上650nm以下の範囲内にある赤色光を得るようにすることによって、濃いカラーフィルターを用いることなく、色再現性の良い液晶表示装置が得られる。発光デバイスは、例えば、直下型のバックライトとして、またはエッジ型のバックライトとして用いられる。
 あるいは、コアシェル型半導体ナノ粒子を含む、樹脂もしくはガラス等からなるシート、板状部材、またはロッドが、発光デバイスとは独立した光変換部材として液晶表示装置に組み込まれていてよい。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 半導体ナノ粒子の合成
反応容器にて酢酸銀(AgOAc)0.4mmol、酢酸インジウム(In(OAc))0.4mmolを、蒸留精製したオレイルアミン8mLと混合し、攪拌しながらドデカンチオール(1.25mmol,300μL)を添加した。合成溶液を脱気してアルゴン雰囲気に置換し、およそ70℃まで昇温し、いったんフタを開けてチオ尿素の結晶(0.8mmol,60.8mg)を加え第一混合物を得た。続いて、ごく短時間の脱気を行い、30℃/分の昇温速度にて130°Cに達するまで昇温した。実測で130℃に到達した後600秒間熱処理を続けた。続いて反応容器を室温下の水に浸漬して急冷(急冷時平均して約50℃/分の速度で降温)合成を停止した。遠心分離によって粗大粒子を除去した後、上澄みにメタノールを加えてコアとなる半導体ナノ粒子を沈殿させ、遠心分離によって回収した。回収した固体をオレイルアミン2mLに分散した。
 得られた半導体ナノ粒子についてXRDパターンを測定し、正方晶(カルコパイライト型)のAgInS、六方晶(ウルツ鉱型)のAgInSおよび斜方晶AgInSと比較した。測定したXRDパターンを図1に示す。XRDパターンより、この半導体ナノ粒子の結晶構造は、六方晶および斜方晶にみられる48°付近のピークが観察されなかったため、実質的に正方晶のAgInSとほぼ同じ構造であることを確認できた。XRDパターンは、リガク社製の粉末X線回折装置(商品名SmartLab)を用いて測定した。
 また、得られた半導体ナノ粒子の形状を、透過型電子顕微鏡(TEM、(株)日立ハイテクノロジーズ製、商品名H-7650)を用いて観察するとともに、その平均粒径を8万倍から20万倍のTEM像から測定した。ここでは、TEMグリッドとして、商品名ハイレゾカーボン HRC-C10 STEM Cu100Pグリッド(応研商事(株)を用いた。得られた粒子の形状は、球状もしくは多角形状であった。平均粒径は、3か所以上のTEM画像を選択し、これらに含まれているナノ粒子のうち、計測可能なものをすべて、すなわち、画像の端において粒子の像が切れているようなものを除くすべての粒子について、粒径を測定し、その算術平均を求める方法で求めた。本実施例を含む全ての実施例および比較例において、3以上のTEM像を用いて、合計100点以上のナノ粒子の粒径を測定した。半導体ナノ粒子の平均粒径は4.17nmであった。
 続いて得られた半導体ナノ粒子に含まれるインジウムの物質量をICP発光分光(島津製作所、ICPS-7510)測定により求めたところ、41.5μmolであった。
 平均粒径が4.17nmである場合の半導体ナノ粒子の体積は、球状とした場合に37.95nmと算出される。また、正方晶である場合の硫化銀インジウム結晶の単位格子体積は0.38nm(格子定数 5.828Å(0.5828nm)、5.828Å(0.5828nm)、11.19Å(1.119nm))と算出されることから、半導体ナノ粒子の体積を単位格子体積にて除することにより半導体ナノ粒子1個の中に100個の単位格子が含まれていることが算出される。次に正方晶である場合の硫化銀インジウム結晶の1個の単位格子には4個のインジウム原子が含まれているため、ナノ粒子1個あたりには400個のインジウム原子が含まれていることが算出される。インジウムの物質量をナノ粒子1個あたりのインジウム原子数で除することにより半導体ナノ粒子の、ナノ粒子としての物質量は、104nmolであると算出される。
コアシェル型半導体ナノ粒子の合成
 ガリウムアセチルアセトナート(Ga(acac))0.1mmol、1,3-ジメチルチオ尿素0.1mmolを測り取り、蒸留精製したオレイルアミン8mLと、上記で合成した半導体ナノ粒子のオレイルアミン分散液0.5mL(ナノ粒子としての物質量が30nmol)とを加え第二混合物を得た。溶液を60℃程度で脱気し、その後60℃/分の昇温速度で、230℃に達するまで昇温し、230℃以降は2℃/分の速度で280℃まで昇温し、280℃にて30分間熱処理した。続いて室温下にて150℃まで降温したところで一度真空引きを行い硫化水素などの揮発成分を除去したのち、100℃以下になったところでフラスコを水に浸して室温まで急冷した。メタノールを加えてコアシェル粒子を沈殿させ、洗浄を行った後、得られたコアシェル型半導体ナノ粒子をクロロホルム(4mL)に分散した。
 得られたコアシェル型半導体ナノ粒子について上述の半導体ナノ粒子と同様に平均粒径およびXRDを測定した。測定したXRDパターンを図1に示す。コアシェル型半導体ナノ粒子の平均粒径は5.38nmであった。また、XRDパターンより、このコアシェル型半導体ナノ粒子の結晶構造は、六方晶および斜方晶にみられる48°付近のピークが観察されなかったため、実質的に正方晶のAgInSと同じ構造であることがわかった。
修飾工程
 得られたコアシェル型半導体ナノ粒子のクロロホルム分散液のうち2mlを分取し、2mlのトリオクチルホスフィン(TOP)を加えた。室温で10分振り混ぜた後、室温で24時間静置し、TOP修飾されたコアシェル粒子である半導体ナノ粒子の分散液を得た。
吸収、発光スペクトルおよび量子収率の測定
 半導体ナノ粒子と、コアシェル型半導体ナノ粒子およびTOP修飾されたコアシェル型半導体ナノ粒子の吸収、発光スペクトルを測定した。その結果を図2と図3に示す。なお、吸収スペクトルは、紫外可視近赤外分光光度計(日本分光製、商品名V-670)を用いて、波長範囲を350nmから850nmとして測定した。発光スペクトルは、マルチチャンネル分光器(浜松ホトニクス社製、商品名PMA12)を用いて、励起波長450nmにて測定した。量子収率については、蛍光スペクトル測定装置PMA-12(浜松ホトニクス社製)に積分球を取り付けた装置を用いて、室温(25℃)で、励起波長450nmで行い、350nmから1100nmの波長範囲で測定し、506nmから882nmの波長範囲より計算した。
 図2に示すように、コアシェル型半導体ナノ粒子の吸収スペクトルにおいては500nm付近にわずかながらショルダーが見られ、600nm付近以降ほぼ吸収がないことを確認できたことから、400nmから600nm付近にエキシトンピークがあることが推測される。図3に示すように、577nm付近に半値幅が約44nmであるバンド端発光が観察され、バンド端発光の量子収率は12.3%であり、バンド端発光成分の純度は44.4%であり、バンド端発光の強度比は、0.81であった。
 図2に示すように、TOP修飾されたコアシェル型半導体ナノ粒子の吸収スペクトルにおいては500nm付近にわずかながらショルダーが見られ、600nm付近以降ほぼ吸収がないことを確認できたことから400nmから600nm付近にエキシトンピークがあることが推測される。図3に示すように、579nm付近に半値幅が約46nmであるバンド端発光が観察され、バンド端発光の量子収率は31.7%であり、バンド端発光成分の純度は67.1%であり、バンド端発光の強度比は、0.89であった。
 コアシェル型半導体ナノ粒子およびTOP修飾されたコアシェル型半導体ナノ粒子のバンド端発光として観察される発光について発光寿命を測定した。発光寿命の測定は、浜松ホトニクス株式会社製の蛍光寿命測定装置(商品名Quantaurus-Tau)を用いて、波長470nmの光を励起光として、コアシェル構造の半導体ナノ粒子に照射して、バンド端発光ピークのピーク波長付近の発光の減衰曲線を求めた。得られた減衰曲線を浜松ホトニクス株式会社製の蛍光寿命測定/解析ソフトウェアU11487-01を用いてパラメータフィッティングにより、3つの成分に分けた。その結果、τ、τ、およびτ、ならびに各成分の寄与率(A、AおよびA)は以下の表1に示すとおりとなった。なお、TOP未修飾は、TOP修飾していないコアシェル型半導体ナノ粒子であり、TOP修飾は、TOP修飾されたコアシェル型半導体ナノ粒子である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、コアシェル型半導体ナノ粒子(TOP未修飾)の主成分(τ、A)は44.6nsであり、TOP修飾されたコアシェル型半導体ナノ粒子(TOP修飾)の主成分(τ、A)は63.0nsであった。この発光寿命は、バンド端発光が確認されているCdSe(ナノ粒子)が発する蛍光で、寄与率の最も大きい成分の蛍光寿命(30nsから60ns)と同程度であった。
エネルギー分散型X線分析装置による分析
 TOP修飾されたコアシェル型半導体ナノ粒子に含まれる各元素の原子百分率を、エネルギー分散型X線分析装置(EDAX製、商品名OCTANE)により分析した。その結果を表2に示す。表2に示すようにTOP修飾されたコアシェル型半導体ナノ粒子はPを含むことを確認した。また、組成をコアの組成をAgInS、シェルの組成をGaSした場合に、表2のAgおよびGaの結果より計算した硫黄の原子百分率は、49.4%(13.4×2+22.6÷1×1=49.4)となり、表2のSの値に対して良い一致を示した。
Figure JPOXMLDOC01-appb-T000002
(比較例1)
 実施例1と同様に合成した半導体ナノ粒子(コア)をオレイルアミン2mLに分散したものに対して、2mLのトリオクチルホスフィン(TOP)を加えた。室温で10分振り混ぜた後、室温で24時間静置し、TOP修飾された半導体ナノ粒子の分散液を得た。半導体ナノ粒子および得られたTOP修飾された半導体ナノ粒子については、実施例1と同様に発光スペクトルを測定した。それぞれの結果を図4に示す。
 図4に示すようにTOP修飾された半導体ナノ粒子においてバンド端発光は見られず、ブロードな発光が見られた。
(実施例2)
 半導体ナノ粒子の合成
 反応容器にてAgOAc0.4mmol、In(acac)0.16mmol、Ga(acac)0.24mmol、オレイルアミン11.8mlを混合し、ドデカンチオール(0.83mmol,200μL)を添加した。合成溶液を脱気して窒素雰囲気に置換し、湯浴でおよそ50℃まで昇温し、いったんフタを開けてチオ尿素(0.8mmol,60.8mg)を加え第一混合物を得た。続いて、ごく短時間の脱気を行い、再度窒素を導入した後、10℃/分の昇温速度にて150°Cに達するまで昇温した。実測で150℃に到達した後600秒間熱処理を続けた。続いて反応容器を約50℃の湯に浸漬して急冷(降温速度は冷却開始直後で約90℃/分、60℃までの平均で約37℃/分)して合成を停止した。遠心分離によって粗大粒子を除去した後、上澄みにメタノールを加えてコアとなる半導体ナノ粒子を沈殿させた。沈殿をメタノールで1回洗浄した後、30分間真空乾燥させ、ヘキサン5mLに分散した。
コアシェル型半導体ナノ粒子の合成
 Ga(acac)0.1mmol、1,3-ジメチルチオ尿素0.15mmolを測り取り、テトラデシルアミン7.79gと、上記で合成した半導体ナノ粒子のヘキサン分散液3.3mL(ナノ粒子としての物質量が約60nmol)とを加え第二混合物を得た。反応容器を脱気し、窒素を導入した後、攪拌を開始し、湯浴でおよそ50℃まで昇温してテトラデシルアミンを融解させた。その後10℃/分の昇温速度で、270℃に達するまで昇温し、270℃にて60分間熱処理した。続いて室温下にて100℃まで降温したところで一度真空引きを行い硫化水素などの揮発成分を除去したのち、さらに約60℃まで下がったところで反応溶液にヘキサン3mlを加え、テトラデシルアミンの凝固を抑制した。内容物を取り出し、遠心分離によって粗大な粒子を沈殿分離した後、上澄みにメタノールを加えてコアシェル粒子を沈殿させ、沈殿をメタノールで1回洗浄した後、得られたコアシェル粒子をヘキサン(3mL)に分散した。
吸収、発光スペクトルおよび量子収率の測定
 コアシェル型半導体ナノ粒子の吸収、発光スペクトルを測定した。その結果を図5と図6に示す。なお、吸収スペクトルは、紫外可視近赤外分光光度計(日立ハイテクノロジー社製、商品名U-2900)を用いて、波長範囲を350nmから750nmとして測定した。発光スペクトルは、量子効率測定システムQE-2100(大塚電子社製)を用いて室温(25℃)、励起波長450nmにて測定した。また、量子収率は同装置で測定したスペクトルの506nmから882nmの波長範囲より計算した。
 図5に示すように、コアシェル型半導体ナノ粒子の吸収スペクトルにおいては500nm付近にショルダーが見られ、600nm付近以降ほぼ吸収がないことを確認できたことから、400nmから600nm付近にエキシトンピークがあることが推測される。図6に示すように、567nm付近に半値幅が約36nmであるバンド端発光が観察され、バンド端発光の量子収率は23.6%であった。また、バンド端発光成分の純度は69.5%であり、バンド端発光の強度比は、0.93であった。
 上記で得られたコアシェル型半導体ナノ粒子のヘキサン分散液1.5mlを試験管に取り、窒素気流中でヘキサンを蒸発させて除去した後、クロロホルム1.5mlを加えた。これに同量のトリオクチルホスフィン(TOP)を加え、試験管上部を窒素で満たして密栓し、室温で24時間攪拌してTOP修飾されたコアシェル型半導体ナノ粒子の分散液を得た。
 得られたTOP修飾されたコアシェル型半導体ナノ粒子について量子収率と発光スペクトルを測定した。図5に示すように、TOP修飾されたコアシェル型半導体ナノ粒子の吸収スペクトルにおいては500nm付近にショルダーが見られ、600nm付近以降ほぼ吸収がないことを確認できたことから400nmから600nm付近にエキシトンピークがあることが推測される。図6に示すように、569nm付近に半値幅が39nmであるバンド端発光が観察され、バンド端発光の量子収率は51.8%であった。また、バンド端発光成分の純度は83.1%であり、バンド端発光の強度比は、0.95であった。
 バンド端発光を示すコアシェル型半導体ナノ粒子を、TOP修飾することで発光の量子収率、特にバンド端発光における量子収率が向上する。
 日本国特許出願2018-025409号(出願日:2018年2月15日)の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (12)

  1.  コアと、前記コア表面に配置されるシェルと、を備え、光が照射されると発光するコアシェル型半導体ナノ粒子であって、
     前記コアが、M、MおよびZを含む半導体を含み、Mが、Ag、CuおよびAuからなる群より選ばれる少なくとも一種を含み、Mが、Al、Ga、InおよびTlからなる群より選ばれる少なくとも一種を含み、Zが、S、SeおよびTeからなる群より選ばれる少なくとも一種を含み、
     前記シェルが、第13族元素および第16族元素を含み、前記コアよりバンドギャップエネルギーが大きい半導体を含み、
     前記シェル表面に第15族元素を含む化合物が配置され、
     前記第15族元素は少なくとも負の酸化数を有するPを含むコアシェル型半導体ナノ粒子。
  2.  前記シェルが、前記第13族元素としてGaを含む請求項1に記載のコアシェル型半導体ナノ粒子。
  3.  前記シェルが、前記第16族元素としてSを含む請求項1または2に記載のコアシェル型半導体ナノ粒子。
  4.  前記コアが、MとしてAgを含み、MとしてInおよびGaの少なくともいずれか一方を含み、ZとしてSを含む請求項1から3のいずれか1項に記載のコアシェル型半導体ナノ粒子。
  5.  発光スペクトルの半値幅が70nm以下であるピークを有する、請求項1から4のいずれか1項に記載のコアシェル型半導体ナノ粒子。
  6.  発光寿命が200ns以下である、請求項1から5のいずれか1項に記載のコアシェル型半導体ナノ粒子。
  7.  励起スペクトルまたは吸収スペクトルがエキシトンピークを示す、請求項1から6のいずれか1項に記載のコアシェル型半導体ナノ粒子。
  8.  発光スペクトル全体におけるバンド端発光成分の純度が40%以上である、請求項1から7のいずれか1項に記載のコアシェル型半導体ナノ粒子。
  9.  バンド端発光成分の純度が40%以上で、かつ量子収率が10%以上である、請求項1から8のいずれか1項に記載のコアシェル型半導体ナノ粒子。
  10.  コアと、前記コア表面に配置されるシェルとを備えるコアシェル粒子を準備することと、前記コアシェル粒子と第15族元素を含む化合物とを接触させることとを含み、
     前記コアが、M、MおよびZを含む半導体を含み、Mが、Ag、CuおよびAuからなる群より選ばれる少なくとも一種を含み、Mが、Al、Ga、InおよびTlからなる群より選ばれる少なくとも一種を含み、Zが、S、SeおよびTeからなる群より選ばれる少なくとも一種を含み、
     前記シェルが、第13族元素および第16族元素を含み、前記コアよりバンドギャップエネルギーが大きい半導体を含み、
     前記第15族元素は少なくとも負の酸化数を有するPを含む、
     光が照射されると発光するコアシェル型半導体ナノ粒子の製造方法。
  11.  光変換部材および半導体発光素子を備える発光デバイスであって、前記光変換部材が請求項1から9のいずれか1項に記載のコアシェル型半導体ナノ粒子を含む発光デバイス。
  12.  前記半導体発光素子は、LEDチップである、請求項11に記載の発光デバイス。
PCT/JP2019/005610 2018-02-15 2019-02-15 コアシェル型半導体ナノ粒子、その製造方法および発光デバイス WO2019160093A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/970,273 US20210040385A1 (en) 2018-02-15 2019-02-15 Core-shell semiconductor nanoparticles, production method thereof, and light-emitting device
JP2020500587A JP7307046B2 (ja) 2018-02-15 2019-02-15 コアシェル型半導体ナノ粒子、その製造方法および発光デバイス
CN201980013326.9A CN111819267B (zh) 2018-02-15 2019-02-15 核壳型半导体纳米粒子、其制造方法和发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-025409 2018-02-15
JP2018025409 2018-02-15

Publications (1)

Publication Number Publication Date
WO2019160093A1 true WO2019160093A1 (ja) 2019-08-22

Family

ID=67619475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005610 WO2019160093A1 (ja) 2018-02-15 2019-02-15 コアシェル型半導体ナノ粒子、その製造方法および発光デバイス

Country Status (4)

Country Link
US (1) US20210040385A1 (ja)
JP (1) JP7307046B2 (ja)
CN (1) CN111819267B (ja)
WO (1) WO2019160093A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039290A1 (ja) * 2019-08-23 2021-03-04 Nsマテリアルズ株式会社 量子ドット、及び、その製造方法
WO2021065782A1 (ja) * 2019-10-03 2021-04-08 Nsマテリアルズ株式会社 量子ドット、及び、その製造方法
WO2021182417A1 (ja) * 2020-03-09 2021-09-16 国立大学法人東海国立大学機構 半導体ナノ粒子の製造方法
WO2022113967A1 (ja) * 2020-11-25 2022-06-02 出光興産株式会社 色変換粒子
WO2022113984A1 (ja) * 2020-11-25 2022-06-02 出光興産株式会社 色変換粒子
WO2022191032A1 (ja) * 2021-03-08 2022-09-15 国立大学法人東海国立大学機構 半導体ナノ粒子の製造方法、半導体ナノ粒子及び発光デバイス
WO2023013361A1 (ja) * 2021-08-02 2023-02-09 国立大学法人東海国立大学機構 半導体ナノ粒子の製造方法、半導体ナノ粒子及び発光デバイス
WO2024135488A1 (ja) * 2022-12-20 2024-06-27 出光興産株式会社 色変換粒子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141626B (zh) * 2022-07-26 2023-08-08 河南师范大学 一种硫量子点的制备方法及其在测定水样中头孢噻肟钠的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169421A (ja) * 2013-03-05 2014-09-18 Kaneka Corp 半導体ナノ粒子を含む蛍光体
JP2016196631A (ja) * 2015-03-23 2016-11-24 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ ナノ結晶の、特にAgInS2−ZnSナノ結晶のフォトルミネッセンス内部量子効率を増加するためのプロセス
JP2018039971A (ja) * 2016-09-06 2018-03-15 国立大学法人名古屋大学 半導体ナノ粒子および半導体ナノ粒子の製造方法ならびに発光デバイス
JP2018044142A (ja) * 2016-03-18 2018-03-22 国立大学法人大阪大学 半導体ナノ粒子およびその製造方法
WO2018159699A1 (ja) * 2017-02-28 2018-09-07 国立大学法人名古屋大学 半導体ナノ粒子およびその製造方法ならびに発光デバイス

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282710B1 (en) * 2002-01-02 2007-10-16 International Business Machines Corporation Scanning probe microscopy tips composed of nanoparticles and methods to form same
US20070077594A1 (en) * 2003-12-02 2007-04-05 Koninklijke Philips Electronics Electroluminescent device
DE102006012467A1 (de) * 2006-03-17 2007-09-20 Merck Patent Gmbh Redispergierbare Nanopartikel
GB0714865D0 (en) * 2007-07-31 2007-09-12 Nanoco Technologies Ltd Nanoparticles
ATE513890T1 (de) * 2007-09-28 2011-07-15 Nanoco Technologies Ltd Kern-hülle-nanopartikel und herstellungsverfahren dafür
KR101462658B1 (ko) * 2008-12-19 2014-11-17 삼성전자 주식회사 반도체 나노 결정 및 그 제조 방법
US20100270504A1 (en) * 2009-04-28 2010-10-28 Crystalplex Corporation Photoluminescent metal nanoclusters
KR101738551B1 (ko) * 2010-06-24 2017-05-23 삼성전자주식회사 반도체 나노 결정
KR101978691B1 (ko) * 2010-09-16 2019-05-15 이섬 리서치 디벨러프먼트 컴파니 오브 더 히브루 유니버시 티 오브 예루살렘 엘티디. 이방성 반도체 나노입자
EP2625313B1 (en) * 2010-10-06 2020-12-09 3M Innovative Properties Company Anti-reflective articles with nanosilica-based coatings
CN102718249B (zh) * 2012-05-07 2014-03-12 华中农业大学 CuInS2纳米晶及CuInS2/ZnS核壳结构纳米晶的制备方法
US9951272B2 (en) * 2013-04-19 2018-04-24 Samsung Research America, Inc. Method of making semiconductor nanocrystals
CN105264042A (zh) * 2013-06-05 2016-01-20 柯尼卡美能达株式会社 光学材料、光学膜及发光器件
KR101946739B1 (ko) * 2014-11-20 2019-02-11 후지필름 가부시키가이샤 코어 셸 입자, 코어 셸 입자의 제조 방법 및 필름
KR102390960B1 (ko) * 2015-06-05 2022-04-27 삼성디스플레이 주식회사 표시 장치
KR102415248B1 (ko) * 2015-12-29 2022-06-30 삼성디스플레이 주식회사 양자점 및 이를 이용한 발광 소자
US10563122B2 (en) * 2016-03-18 2020-02-18 Osaka University Semiconductor nanoparticles and method of producing semiconductor nanoparticles
US10550322B2 (en) * 2016-09-06 2020-02-04 National University Corporation Nagoya University Semiconductor nanoparticles, method of producing semiconductor nanoparticles, and light-emitting device
CN107983272A (zh) * 2016-10-26 2018-05-04 中国科学院化学研究所 硫化物包覆型颗粒及其制备方法与应用
CN109996762A (zh) * 2016-11-15 2019-07-09 富士胶片株式会社 核壳粒子、核壳粒子的制造方法及薄膜
JP7070826B2 (ja) * 2017-02-28 2022-05-18 国立大学法人東海国立大学機構 半導体ナノ粒子およびその製造方法ならびに発光デバイス
KR20180105873A (ko) * 2017-03-16 2018-10-01 동우 화인켐 주식회사 양자점을 포함하는 유기-무기전계발광소자
US10954439B2 (en) * 2018-05-10 2021-03-23 National University Corporation Tokai National Higher Education And Research System Semiconductor nanoparticles, method of producing the semiconductor nanoparticles, and light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169421A (ja) * 2013-03-05 2014-09-18 Kaneka Corp 半導体ナノ粒子を含む蛍光体
JP2016196631A (ja) * 2015-03-23 2016-11-24 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ ナノ結晶の、特にAgInS2−ZnSナノ結晶のフォトルミネッセンス内部量子効率を増加するためのプロセス
JP2018044142A (ja) * 2016-03-18 2018-03-22 国立大学法人大阪大学 半導体ナノ粒子およびその製造方法
JP2018039971A (ja) * 2016-09-06 2018-03-15 国立大学法人名古屋大学 半導体ナノ粒子および半導体ナノ粒子の製造方法ならびに発光デバイス
WO2018159699A1 (ja) * 2017-02-28 2018-09-07 国立大学法人名古屋大学 半導体ナノ粒子およびその製造方法ならびに発光デバイス

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAMEYAMA TATSUYA ET AL.: "Wavelength-Tunable Band-Edge Photoluminescence of Nonstoichiometric Ag-In-S Nanoparticles via Ga3+ Doping", ACS APPLIED MATERIALS & INTERFACES, vol. 10, no. 49, 3 December 2018 (2018-12-03), pages 42844 - 42855, XP055634907 *
KUWABATA, SUSUMU ET AL: "Band-edge photoluminescence from Ag 工nS2 colloidal quantum dots by the formation of 工工工-V 工 semiconductor shells", PROCEEDINGS OF THE 78TH JSAP AUTUMN MEETING, 25 August 2017 (2017-08-25), pages 8p-A414-6 *
UEMATSU TARO ET AL.: "Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous III-VI semiconductor shells", NPG ASIA MATERIALS, vol. 10, no. 8, 7 August 2018 (2018-08-07), pages 713 - 726, XP055634909 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834596B2 (en) 2019-08-23 2023-12-05 Ns Materials Inc. Quantum dot and method for producing the same
KR20210027276A (ko) * 2019-08-23 2021-03-10 엔에스 마테리얼스 아이엔씨. 양자점, 및, 그 제조 방법
CN112752828A (zh) * 2019-08-23 2021-05-04 Ns材料株式会社 量子点及其制造方法
US20210363422A1 (en) * 2019-08-23 2021-11-25 Ns Materials Inc. Quantum dot and method for producing the same
WO2021039290A1 (ja) * 2019-08-23 2021-03-04 Nsマテリアルズ株式会社 量子ドット、及び、その製造方法
KR102693926B1 (ko) * 2019-08-23 2024-08-12 엔에스 마테리얼스 아이엔씨. 양자점, 및, 그 제조 방법
JP7524766B2 (ja) 2019-08-23 2024-07-30 Toppanホールディングス株式会社 量子ドットの製造方法
WO2021065782A1 (ja) * 2019-10-03 2021-04-08 Nsマテリアルズ株式会社 量子ドット、及び、その製造方法
WO2021182417A1 (ja) * 2020-03-09 2021-09-16 国立大学法人東海国立大学機構 半導体ナノ粒子の製造方法
WO2022113967A1 (ja) * 2020-11-25 2022-06-02 出光興産株式会社 色変換粒子
WO2022113984A1 (ja) * 2020-11-25 2022-06-02 出光興産株式会社 色変換粒子
WO2022191032A1 (ja) * 2021-03-08 2022-09-15 国立大学法人東海国立大学機構 半導体ナノ粒子の製造方法、半導体ナノ粒子及び発光デバイス
WO2023013361A1 (ja) * 2021-08-02 2023-02-09 国立大学法人東海国立大学機構 半導体ナノ粒子の製造方法、半導体ナノ粒子及び発光デバイス
WO2024135488A1 (ja) * 2022-12-20 2024-06-27 出光興産株式会社 色変換粒子

Also Published As

Publication number Publication date
US20210040385A1 (en) 2021-02-11
CN111819267A (zh) 2020-10-23
JP7307046B2 (ja) 2023-07-11
CN111819267B (zh) 2023-06-30
JPWO2019160093A1 (ja) 2021-03-04

Similar Documents

Publication Publication Date Title
JP7314327B2 (ja) 半導体ナノ粒子およびその製造方法
JP7070826B2 (ja) 半導体ナノ粒子およびその製造方法ならびに発光デバイス
JP7308433B2 (ja) 半導体ナノ粒子およびその製造方法ならびに発光デバイス
JP7307046B2 (ja) コアシェル型半導体ナノ粒子、その製造方法および発光デバイス
JP7214707B2 (ja) 半導体ナノ粒子、その製造方法および発光デバイス
US11788003B2 (en) Semiconductor nanoparticles and method of producing semiconductor nanoparticles
JP7319402B2 (ja) 半導体ナノ粒子、その製造方法及び発光デバイス
US20220089452A1 (en) Semiconductor nanoparticles and method for producing same
JP7456591B2 (ja) 半導体ナノ粒子及びその製造方法、並びに発光デバイス
WO2021182417A1 (ja) 半導体ナノ粒子の製造方法
JP7005470B2 (ja) 半導体ナノ粒子、その製造方法及び発光デバイス
WO2021039727A1 (ja) 半導体ナノ粒子及びその製造方法並びに発光デバイス
JP7316618B2 (ja) 半導体ナノ粒子の製造方法及び発光デバイス
JP7362077B2 (ja) 半導体ナノ粒子の製造方法及び発光デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500587

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19755080

Country of ref document: EP

Kind code of ref document: A1