WO2021182417A1 - 半導体ナノ粒子の製造方法 - Google Patents

半導体ナノ粒子の製造方法 Download PDF

Info

Publication number
WO2021182417A1
WO2021182417A1 PCT/JP2021/009071 JP2021009071W WO2021182417A1 WO 2021182417 A1 WO2021182417 A1 WO 2021182417A1 JP 2021009071 W JP2021009071 W JP 2021009071W WO 2021182417 A1 WO2021182417 A1 WO 2021182417A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor nanoparticles
core
less
emission
mixture
Prior art date
Application number
PCT/JP2021/009071
Other languages
English (en)
French (fr)
Inventor
鳥本 司
達矢 亀山
桑畑 進
太郎 上松
陽平 五十川
大祐 小谷松
朋也 久保
Original Assignee
国立大学法人東海国立大学機構
国立大学法人大阪大学
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構, 国立大学法人大阪大学, 日亜化学工業株式会社 filed Critical 国立大学法人東海国立大学機構
Priority to JP2022507191A priority Critical patent/JPWO2021182417A1/ja
Priority to US17/905,900 priority patent/US20230151271A1/en
Priority to CN202180019484.2A priority patent/CN115244154B/zh
Publication of WO2021182417A1 publication Critical patent/WO2021182417A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/64Thiosulfates; Dithionites; Polythionates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • This disclosure relates to a method for producing semiconductor nanoparticles.
  • quantum size effect refers to a phenomenon in which the bands of the valence band and the conduction band, which are considered to be continuous in bulk particles, become discrete in nanoparticles, and the bandgap energy changes according to the particle size.
  • the quantum dots can absorb light and convert the wavelength into light corresponding to the bandgap energy
  • a white light emitting device utilizing the light emission of the quantum dots has been proposed (for example, Japanese Patent Application Laid-Open No. 2012-212862). See Japanese Patent Application Laid-Open No. 2010-177656).
  • a part of the light emitted from the light emitting diode (LED) chip is absorbed by the quantum dots to obtain white light as a mixed color of the light emitted from the quantum dots and the light emitted from the LED chip. Has been done.
  • One aspect of the present disclosure is to provide a method for producing semiconductor nanoparticles capable of exhibiting band-end emission at a short emission peak wavelength.
  • the first aspect is to obtain a first mixture containing a silver (Ag) salt, an indium (In) salt, a compound containing gallium (Ga) and sulfur (S), and an organic solvent, and 125 the first mixture.
  • This is a method for producing semiconductor nanoparticles, which comprises heat-treating at a temperature in the range of ° C. or higher and 300 ° C. or lower to obtain first semiconductor nanoparticles (hereinafter, also referred to as “core”).
  • the second aspect is a second mixture containing the first semiconductor nanoparticles obtained by the production method of the first aspect, a compound containing a Group 13 element, and a simple substance of the Group 16 element or a compound containing a Group 16 element.
  • This is a method for producing semiconductor nanoparticles, which comprises preparing the second mixture and heat-treating the second mixture to obtain second semiconductor nanoparticles (hereinafter, also referred to as “core-shell type semiconductor nanoparticles”).
  • the third aspect is a third mixture containing a silver (Ag) salt, an indium (In) salt, a compound having a gallium (Ga) -sulfur (S) bond, a gallium halide, and an organic solvent.
  • This is a method for producing semiconductor nanoparticles, which comprises heat-treating to obtain a third semiconductor nanoparticles.
  • the method for producing the semiconductor nanoparticles may further include obtaining the fourth semiconductor nanoparticles by the fourth heat treatment of the fourth mixture containing the third semiconductor nanoparticles and the gallium halide.
  • 3 is an absorption spectrum of core-shell type semiconductor nanoparticles according to Examples 1 to 3.
  • 3 is an emission spectrum of core-shell type semiconductor nanoparticles according to Examples 1 to 3.
  • 6 is an absorption spectrum of core-shell type semiconductor nanoparticles according to Examples 4 to 6.
  • 6 is an emission spectrum of core-shell type semiconductor nanoparticles according to Examples 4 to 6.
  • 6 is an absorption spectrum of semiconductor nanoparticles according to Example 7.
  • 6 is an emission spectrum of semiconductor nanoparticles according to Example 7.
  • 8 is an emission spectrum of core-shell type semiconductor nanoparticles according to Examples 8 to 11. It is an absorption spectrum of the core-shell type semiconductor nanoparticles which concerns on Comparative Example 1. It is an emission spectrum of the core-shell type semiconductor nanoparticles according to Comparative Example 1.
  • 2 is an absorption spectrum of core-shell type semiconductor nanoparticles according to Comparative Examples 2 to 4. It is an emission spectrum of the core-shell type semiconductor nanoparticles according to Comparative Examples 2 to 4. It is a schematic diagram of a light emitting material containing a metal compound embedding core-shell type semiconductor nanoparticles.
  • 6 is an emission spectrum of core-shell type semiconductor nanoparticles according to Examples 12 and 13. It is a figure which shows an example of the emission spectrum of the semiconductor nanoparticles of Example 14 and Comparative Example 5. It is a figure which shows an example of the emission spectrum of the semiconductor nanoparticles of Examples 15, 16, 17 and 18. It is a figure which shows an example of the emission spectrum of the semiconductor nanoparticles of Examples 19, 20, 21 and 22.
  • the term "process” is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. ..
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • the upper limit and the lower limit of the numerical range described in the present specification can be arbitrarily selected and combined.
  • embodiments of the present invention will be described in detail. However, the embodiments shown below exemplify a method for producing semiconductor nanoparticles in order to embody the technical idea of the present invention, and the present invention is limited to the method for producing semiconductor nanoparticles shown below. Not done.
  • the semiconductor nanoparticles include a semiconductor containing Ag, In, Ga, and S, and emit light having a half width of an emission peak of, for example, 70 nm or less when irradiated with light.
  • the crystal structure of the semiconductor nanoparticles may include at least tetragonal crystals, and may be substantially tetragonal crystals.
  • Semiconductor nanoparticles can exhibit band-end emission with good quantum yield. Further, by including Ga in addition to In, it is possible to exhibit a short emission peak wavelength (for example, 545 nm or less) as compared with the case where only In is contained.
  • the content of Ag in the composition of the semiconductor nanoparticles is, for example, 10 mol% or more and 30 mol% or less, preferably 15 mol% or more and 25 mol% or less.
  • the total content of In and Ga is, for example, 15 mol% or more and 35 mol% or less, preferably 20 mol% or more and 30 mol% or less.
  • the content of S is, for example, 35 mol% or more and 55 mol% or less, preferably 40 mol% or more and 55 mol% or less.
  • Semiconductor nanoparticles containing Ag, In, and S and whose crystal structure is tetragonal, hexagonal, or orthorhombic are generally represented by the composition formula of AgInS 2 in the literature and the like. Introduced.
  • the semiconductor nanoparticles according to the present embodiment are not actually limited to those having a stoichiometric composition represented by the above composition formula, and in particular, the ratio of the atomic number of Ag to the total atomic number of In and Ga (Ag /). (In + Ga)) may be smaller than 1 or, conversely, larger than 1. Further, the sum of the number of atoms of Ag and the total number of atoms of In and Ga may not be the same as the number of atoms of S.
  • the constituent elements are connected by "-" like Ag-In-Ga-S in a situation regardless of whether or not the semiconductor has a stoichiometric composition.
  • the formula may represent the semiconductor composition.
  • the semiconductor nanoparticles containing the above-mentioned elements those having a hexagonal crystal structure are of the wurtzite type, and those having a tetragonal crystal structure are of the chalcopyrite type.
  • the crystal structure is identified, for example, by measuring the XRD pattern obtained by X-ray diffraction (XRD) analysis. Specifically, the XRD pattern obtained from the semiconductor nanoparticles is compared with the XRD pattern known as that of the semiconductor nanoparticles represented by the composition of AgInS 2 or the XRD pattern obtained by simulating from the crystal structure parameters. do. If any of the known patterns and simulation patterns match the pattern of the semiconductor nanoparticles, it can be said that the crystal structure of the semiconductor nanoparticles is the crystal structure of the matching known or simulation pattern.
  • XRD X-ray diffraction
  • semiconductor nanoparticles having different crystal structures may coexist.
  • peaks derived from a plurality of crystal structures are observed.
  • the nanoparticles are substantially composed of tetragonal crystals, peaks corresponding to the tetragonal crystals are observed, and peaks derived from other crystal structures are not substantially observed.
  • the Ag constituting the semiconductor nanoparticles may be partially substituted and may contain at least one of Cu, Au and an alkali metal, but may be substantially composed of Ag.
  • substantially means that the ratio of the number of atoms of the element other than Ag to the total number of atoms of the element other than Ag and Ag is, for example, 10% or less, preferably 5% or less, and more preferably 1%. It is shown that it is as follows.
  • the semiconductor nanoparticles are substantially Ag and alkali metal (hereinafter, sometimes referred to as M a) may be a constituent element corresponding to the Ag to.
  • “substantially” means that the ratio of the atomic numbers of Ag and elements other than alkali metal to the total atomic numbers of Ag, alkali metal and elements other than Ag and alkali metal is, for example, 10% or less, preferably 10% or less. It indicates that it is 5% or less, more preferably 1% or less.
  • the alkali metal includes lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs).
  • the alkali metal can be a monovalent cation like Ag, it can replace a part of Ag in the composition of the semiconductor nanoparticles.
  • Li has an ionic radius similar to that of Ag and is preferably used.
  • the band gap is widened and the emission peak wavelength is shifted to a short wavelength.
  • the semiconductor nanoparticles may contain at least Li.
  • the content of alkali metal in the composition of the semiconductor nanoparticles for example, less than 0 greater than the molar% 30 mol%, preferably 1 mol% or more It is 25 mol% or less.
  • the atomic number ratio of alkali metal to the atomic sum of Ag in an atomic and alkali metal in the composition of the semiconductor nanoparticle (M a) (M a) (M a / (Ag + M a)) for example, 1 It is less than, preferably 0.8 or less, more preferably 0.4 or less, still more preferably 0.2 or less.
  • the ratio is, for example, greater than 0, preferably 0.05 or more, and more preferably 0.1 or more.
  • In and Ga may be partially substituted and contain at least one of Al and Tl, but it is preferably composed substantially of In and Ga.
  • substantially means that the ratio of the number of atoms of elements other than In and Ga to the total number of atoms of elements other than In and Ga and elements other than In and Ga is, for example, 10% or less, preferably 5% or less. , More preferably 1% or less.
  • the ratio of the number of atoms of In to the total number of atoms of In and Ga in the semiconductor nanoparticles may be, for example, 0.01 or more and less than 1, preferably 0.1 or more and 0.99 or less. Is.
  • a short emission peak wavelength for example, 545 nm or less
  • the ratio of the number of atoms of Ag to the total number of atoms of In and Ga is, for example, 0.3 or more and 1.2 or less, preferably 0.5 or more and 1.1 or less. ..
  • the ratio of the number of atoms of S to the total number of atoms of Ag, In and Ga is, for example, 0.8 or more and 1.5 or less, preferably 0.9 or more and 1.2 or less. ..
  • S may be partially substituted and contain at least one element of Se and Te, but it is preferably composed substantially of S.
  • substantially means that the ratio of the number of atoms of the element other than S to the total number of atoms of the elements other than S and S is, for example, 10% or less, preferably 5% or less, and more preferably 1%. It is shown that it is as follows.
  • Semiconductor nanoparticles can be substantially composed of Ag, In, Ga, S and the above-mentioned elements in which some of them are substituted.
  • the term "substantially” considers that Ag, In, Ga, S and other elements other than the above-mentioned partially substituted elements are inevitably included due to the inclusion of impurities or the like. And use it.
  • the semiconductor nanoparticles have, for example, a composition formula represented by the following formula (1).
  • p, q and r satisfy 0 ⁇ p ⁇ 1, 0.20 ⁇ q ⁇ 1.2 and 0 ⁇ r ⁇ 1.
  • M a represents an alkali metal.
  • Core-shell type semiconductor nanoparticles The semiconductor nanoparticles in the present specification may be the above-mentioned semiconductor nanoparticles (first semiconductor nanoparticles), or the above-mentioned Group 13 elements and the 16th group elements on the surface of the above-mentioned first semiconductor nanoparticles.
  • Second semiconductor nanoparticles core-shell type semiconductor nanoparticles having deposits containing group elements (hereinafter, also referred to as “shell”) may be used.
  • the deposit may cover the surface of the first semiconductor nanoparticles. Therefore, in the surface analysis of the second semiconductor nanoparticles, it is not necessary to detect an element (for example, Ag) that can be contained only in the first semiconductor nanoparticles.
  • the second semiconductor nanoparticles may be those in which a semiconductor containing a Group 13 element and a Group 16 element is arranged in the vicinity of the surface of the first semiconductor nanoparticles, or the first semiconductor particles and the first semiconductor particles.
  • a semiconductor layer containing a Group 13 element and a Group 16 element arranged on the surface of the semiconductor nanoparticles may be provided.
  • the second semiconductor nanoparticles may include semiconductors containing Ag, In, Ga and S, and semiconductors containing Group 13 and Group 16 elements may be arranged on the surface.
  • the first semiconductor nanoparticles are referred to as cores
  • the deposits are referred to as shells
  • the second semiconductor nanoparticles are referred to as core-shell type semiconductor nanoparticles.
  • the core may be the semiconductor nanoparticles containing the above-mentioned Ag, In, Ga, and S.
  • the shell may consist substantially of Group 13 and Group 16 elements and may include a semiconductor having a bandgap energy greater than that of the core.
  • the crystal structure of the core-shell type semiconductor nanoparticles may be substantially tetragonal.
  • the core-shell type semiconductor nanoparticles may emit light having a half width of an emission peak of 70 nm or less.
  • Core-shell semiconductor nanoparticles exhibit band-end emission with good quantum yield. This can be considered, for example, because the crystal structure of the core-shell type semiconductor nanoparticles is substantially tetragonal.
  • the core-shell type semiconductor nanoparticles can exhibit a short emission peak wavelength (for example, 545 nm or less) as compared with the case where the core does not contain Ga.
  • Group 13 elements constituting the shell include boron (B), aluminum (Al), gallium (Ga), indium (In) and thallium (Tl).
  • Group 16 elements constituting the shell include oxygen (O), sulfur (S), selenium (Se), tellurium (Te) and polonium (Po).
  • the semiconductor constituting the shell may contain only one type or two or more types of Group 13 elements, and may contain only one type or two or more types of Group 16 elements.
  • the shell may be substantially composed of a semiconductor composed of Group 13 elements and Group 16 elements.
  • substantially means that, when the total number of atoms of all the elements contained in the shell is 100%, the ratio of the number of atoms of elements other than Group 13 elements and Group 16 elements is, for example. It indicates that it is 10% or less, preferably 5% or less, and more preferably 1% or less.
  • the shell may be configured by selecting its composition or the like according to the bandgap energy of the semiconductor constituting the core described above.
  • the core may be designed so that the bandgap energy of the semiconductor constituting the core is smaller than that of the shell.
  • a semiconductor made of Ag—In—S has a bandgap energy of 1.8 eV or more and 1.9 eV or less.
  • the semiconductor constituting the shell may have, for example, a bandgap energy of 2.0 eV or more and 5.0 eV or less, particularly 2.5 eV or more and 5.0 eV or less.
  • the bandgap energy of the shell is, for example, 0.1 eV or more and 3.0 eV or less, particularly 0.3 eV or more and 3.0 eV or less, more particularly 0.5 eV or more and 1.0 eV or less, which is higher than the band gap energy of the core. It may be as large as possible.
  • the difference between the bandgap energy of the semiconductors constituting the shell and the bandgap energy of the semiconductors constituting the core is equal to or greater than the above lower limit value, the proportion of light emitted from the core other than the band edge light emission decreases, and the band The rate of edge emission tends to be large.
  • the bandgap energy of the semiconductors constituting the core and the shell is selected so that the bandgap energy of the shell provides the bandgap energy of type-I that sandwiches the bandgap energy of the core in the heterojunction of the core and the shell. Is preferable.
  • a barrier of at least 0.1 eV is preferably formed between the band gap of the core and the band gap of the shell, for example, a barrier of 0.2 eV or more, or 0.3 eV or more. May be formed.
  • the upper limit of the barrier is, for example, 1.8 eV or less, and particularly 1.1 eV or less.
  • the semiconductor constituting the shell may contain In or Ga as a Group 13 element. Further, the shell may contain S as a Group 16 element. Semiconductors containing In or Ga, or containing S, tend to be semiconductors having a larger bandgap energy than the above-mentioned core semiconductors. Further, the semiconductor constituting the shell may contain an oxygen (O) element. Semiconductors containing In or Ga and S and O tend to be semiconductors having a bandgap energy larger than that of the core described above.
  • the crystal system of the semiconductor of the shell may be familiar to that of the semiconductor of the core, and the lattice constant of the shell may be the same as or close to that of the semiconductor of the core.
  • a shell made of semiconductors, which is familiar to the crystal system and has a close lattice constant (here, a multiple of the shell's lattice constant is close to the core's lattice constant but also has a close lattice constant), has a good circumference of the core. May be covered.
  • the above-mentioned core is generally a tetragonal system, and examples of a crystal system familiar to this include a tetragonal system and an orthorhombic system.
  • the lattice constants are 0.5828 nm, 0.5828 nm, and 1.119 nm
  • the shell covering it is tetragonal or cubic, and its lattice constant is 0.5828 nm, 0.5828 nm, and 1.119 nm.
  • the lattice constant or a multiple thereof is close to the lattice constant of Ag—In—S.
  • the shell may be amorphous.
  • an amorphous shell is formed by observing semiconductor nanoparticles having a core-shell structure with HAADF-STEM.
  • a portion having a regular pattern for example, a striped pattern or a dot pattern is observed in the central portion, and a regular pattern is observed around the portion.
  • the portion that is not observed as having is observed in HAADF-STEM.
  • HAADF-STEM a substance having a regular structure such as a crystalline substance is observed as an image having a regular pattern, and a substance having no regular structure such as an amorphous substance is observed. It is not observed as an image with a regular pattern. Therefore, when the shell is amorphous, the shell is observed as a part clearly different from the core (which may have a crystal structure such as a tetragonal system) observed as an image having a regular pattern. be able to.
  • the shell is composed of Ga-S
  • Ga is an element lighter than Ag and In contained in the core
  • the shell tends to be observed as a darker image than the core in the image obtained by HAADF-STEM. It is in.
  • Whether or not an amorphous shell is formed can also be confirmed by observing the semiconductor nanoparticles having the core-shell structure of the present embodiment with a high-resolution transmission electron microscope (HRTEM).
  • HRTEM high-resolution transmission electron microscope
  • the core part is observed as a crystal lattice image (an image having a regular pattern)
  • the amorphous shell part is not observed as a crystal lattice image
  • black and white contrast is observed.
  • Regular patterns are observed as invisible parts.
  • the shell does not form a core and a solid solution.
  • the two become one, and the mechanism of the present embodiment, in which the core is covered with the shell and the surface state of the core is changed to obtain band-end emission, cannot be obtained.
  • Zn—S zinc sulfide
  • band-end emission cannot be obtained from the core.
  • Zn—S satisfies the above conditions with respect to bandgap energy and gives type-I band alignment. Nevertheless, it is presumed that the band-end emission was not obtained from the specific semiconductor because the core semiconductor and ZnS formed a solid solution and the core-shell interface disappeared.
  • the shell may include, but is limited to, a combination of In and S, a combination of Ga and S, or a combination of In, Ga and S as a combination of Group 13 and Group 16 elements. is not it.
  • the combination of In and S may be in the form of indium sulfide
  • the combination of Ga and S may be in the form of gallium sulfide
  • the combination of In, Ga and S may be indium gallium sulfide. good.
  • the indium sulfide constituting the shell does not have to have a stoichiometric composition (In 2 S 3 ), and in that sense, indium sulfide is expressed in the formula InS x (x is an arbitrary number not limited to an integer) in this specification.
  • gallium sulfide does not have to have a stoichiometric composition (Ga 2 S 3 ), and in that sense, gallium sulfide is referred to herein as GaS x (x is any number not limited to an integer, for example. It may be expressed as 0.8 or more and 1.5 or less).
  • Indium gallium sulfide may have a composition represented by In 2 (1-y) Ga 2y S 3 (y is any number greater than 0 and less than 1), or In p Ga 1-. It may be represented by p S q (p is any number greater than 0 and less than 1 and q is any number not limited to an integer).
  • the form of the oxygen element constituting the shell is not clear, but may be, for example, Ga-OS, Ga 2 O 3, or the like.
  • Indium sulfide has a bandgap energy of 2.0 eV or more and 2.4 eV or less, and a cubic crystal system has a lattice constant of 1.0775 nm.
  • the bandgap energy of gallium sulfide is about 2.5 eV or more and 2.6 eV or less, and the lattice constant of gallium sulfide having a tetragonal crystal system is 0.5215 nm.
  • the crystal systems and the like described here are all reported values, and the shell does not always satisfy these reported values in the semiconductor nanoparticles having an actual core-shell structure.
  • Indium sulfide and gallium sulfide are preferably used as semiconductors constituting a shell arranged on the surface of the core.
  • gallium sulfide is preferably used because it has a larger bandgap energy. When gallium sulfide is used, stronger band-end emission can be obtained as compared with the case where indium sulfide is used. Twice
  • Constituting the shell semiconductor may further include an alkali metal (M a) in addition to the group 13 elements and Group 16 elements.
  • the alkali metal contained in the semiconductor constituting the shell may contain at least lithium.
  • the ratio of the number of alkali metal atoms to the total number of alkali metal atoms and the total number of Group 13 element atoms is, for example, 0.01 or more and less than 1, or 0.1. It may be 0.9 or more and 0.9 or less.
  • the ratio of the number of atoms of the Group 16 element to the total number of atoms of the alkali metal and the number of atoms of the Group 13 element may be, for example, 0.25 or more and 0.75 or less.
  • the particle size of the core-shell type semiconductor nanoparticles having the above-mentioned core and the above-mentioned shell arranged on the core surface may have, for example, an average particle size of 50 nm or less.
  • the average particle size is preferably in the range of 1 nm or more and 20 nm or less, more preferably 1.6 nm or more and 8 nm or less, and particularly preferably 2 nm or more and 7.5 nm or less in terms of ease of production and the quantum yield of band edge emission.
  • the average particle size of the core-shell type semiconductor nanoparticles may be obtained from, for example, a TEM image taken with a transmission electron microscope (TEM). Specifically, the particle size of each particle connects any two points on the outer circumference of the particle observed in the TEM image, and refers to the longest line segment existing inside the particle.
  • TEM transmission electron microscope
  • the length of the minor axis is regarded as the particle size.
  • the rod-shaped particles have a minor axis and a major axis orthogonal to the minor axis in the TEM image, and the ratio of the length of the major axis to the length of the minor axis is larger than 1.2. ..
  • the rod-shaped particles are observed in a TEM image as, for example, a rectangular shape including a rectangular shape, an elliptical shape, a polygonal shape, or the like.
  • the shape of the cross section which is a plane orthogonal to the long axis of the rod shape, may be, for example, a circle, an ellipse, or a polygon.
  • the length of the major axis refers to the length of the longest line segment connecting any two points on the outer circumference of the particle in the case of an elliptical shape.
  • Rectangular or polygonal refers to the length of the longest line segment that is parallel to the longest side that defines the outer circumference and connects any two points on the outer circumference of the particle.
  • the length of the minor axis refers to the length of the longest line segment orthogonal to the line segment defining the length of the major axis among the line segments connecting arbitrary two points on the outer circumference.
  • the average particle size of the semiconductor nanoparticles is measured by measuring the particle size of all measurable particles observed in the TEM image of 50,000 times or more and 150,000 times or less, and used as the arithmetic mean of those particle sizes.
  • a "measurable" particle is one in which the contour of the entire particle can be observed in a TEM image. Therefore, in the TEM image, a part of the outline of the particle is not included in the imaging range, and the particle that is "cut” is not measurable.
  • the average particle size is obtained using the TEM image.
  • the imaging location is changed to further acquire the TEM image, and 100 or more measurable particles included in two or more TEM images are possible.
  • the particle size of the particles is measured to obtain the average particle size.
  • the core may have an average particle size of, for example, 10 nm or less, particularly 8 nm or less.
  • the average particle size of the core may be in the range of 1.5 nm or more and 10 nm or less, particularly in the range of 1.7 nm or more and 7.5 nm or less.
  • the quantum size effect can be easily obtained.
  • the shell may have a thickness of 0.1 nm or more and 50 nm or less, 0.1 nm or more and 10 nm or less, and particularly 0.3 nm or more and 3 nm or less.
  • the thickness of the shell is at least the above lower limit value, the effect of covering the core with the shell can be sufficiently obtained, and band end light emission can be easily obtained.
  • the average particle size of the core and the thickness of the shell may be determined by observing the semiconductor nanoparticles having a core-shell structure with, for example, HAADF-STEM.
  • HAADF-STEM can easily determine the thickness of the shell, which is easily observed as a portion different from the core.
  • the particle size of the core can be determined according to the method described above for the semiconductor nanoparticles. If the thickness of the shell is not constant, the smallest thickness is taken as the thickness of the shell in the particles.
  • the average particle size of the core may be measured in advance before coating with the shell. Then, the thickness of the shell may be obtained by measuring the average particle size of the semiconductor nanoparticles having a core-shell structure and obtaining the difference between the average particle size and the previously measured average particle size of the core.
  • the core-shell type semiconductor nanoparticles have a substantially tetragonal crystal structure.
  • the crystal structure is identified by measuring the XRD pattern obtained by X-ray diffraction (XRD) analysis as described above.
  • XRD X-ray diffraction
  • “Substantially tetragonal” means that the ratio of the peak height around 48 °, which indicates that it is hexagonal and orthorhombic, to the main peak near 26 °, which indicates that it is tetragonal, is, for example, 10%. It means that it is less than or equal to 5% or less.
  • Core-shell type semiconductor nanoparticles emit light with a wavelength longer than the irradiated light when irradiated with light such as ultraviolet light, visible light, or infrared light.
  • the semiconductor nanoparticles have a wavelength longer than that of the irradiated light when irradiated with, for example, ultraviolet light, visible light or infrared light, and the emission life of the main component is 200 ns or less, and It is possible to emit light that satisfies at least one of the half-value widths of the emission spectrum of 70 nm or less.
  • Core-shell type semiconductor nanoparticles containing In and Ga in the core composition emit light having an emission peak wavelength in the range of 490 nm or more and 545 nm or less by irradiating light having a peak in the vicinity of 450 nm.
  • the emission peak wavelength is preferably 495 nm or more and 540 nm or less.
  • the half width of the emission peak in the emission spectrum is, for example, 70 nm or less, preferably 60 nm or less, more preferably 50 nm or less, and particularly preferably 40 nm or less.
  • the lower limit of the half width may be, for example, 10 nm or more.
  • the emission peak shifts to the short wavelength side.
  • the "light emission life” refers to the light emission life measured by using a device called a fluorescence life measuring device as in Examples described later.
  • the above-mentioned “primary component emission lifetime” is obtained according to the following procedure.
  • the semiconductor nanoparticles are irradiated with excitation light to emit light, and the decay (afterglow) of light having a wavelength near the peak of the emission spectrum, for example, a wavelength within the peak wavelength range of ⁇ 50 nm, is changed with time. taking measurement.
  • the change with time is measured from the time when the irradiation of the excitation light is stopped.
  • the resulting attenuation curve is generally the sum of a plurality of attenuation curves derived from relaxation processes such as light emission and heat.
  • the parameters are such that the attenuation curve can be expressed by the following equation.
  • ⁇ 1 , ⁇ 2 and ⁇ 3 of each component are the time required for the emission intensity to be attenuated to the initial 1 / e (36.8%), which corresponds to the emission lifetime of each component. do. Let ⁇ 1 , ⁇ 2 and ⁇ 3 be in ascending order of light emission lifetime. Further, A 1 , A 2 and A 3 are contribution ratios of each component. For example, when the integral value of the curve represented by A x exp ( ⁇ t / ⁇ x ) is the main component, the emission lifetime ⁇ of the main component is 200 ns or less, 100 ns or less, or 80 ns or less. .. Such luminescence is presumed to be band-end luminescence. When specifying the principal component, compare A x x ⁇ x obtained by integrating the t value of A x exp (-t / ⁇ x ) from 0 to infinity, and the one with the largest value. Is the main component.
  • the deviation between the attenuation curve drawn by the equation obtained by performing parameter fitting assuming that the attenuation curve of light emission includes three, four, or five components and the actual attenuation curve is not so different. No. Therefore, in the present embodiment, in determining the emission lifetime of the principal component, the number of components included in the emission attenuation curve is assumed to be 3, thereby avoiding complicated parameter fitting.
  • the light emission of the core-shell type semiconductor nanoparticles may include defective light emission (for example, donor acceptor light emission) in addition to band end light emission, but it is preferable that the light emission is substantially only band end light emission.
  • Defect emission generally has a long emission lifetime, has a broad spectrum, and has a peak on the longer wavelength side than band-end emission.
  • substantially only band-end emission means that the purity of the band-end emission component in the emission spectrum is 40% or more, preferably 50% or more, more preferably 60% or more, and 65% or more. Is more preferable.
  • the upper limit of the purity of the band-end luminescent component may be, for example, 100% or less, less than 100%, or 95% or less.
  • the quantum yield of band-end emission is the internal quantum yield calculated under the conditions of an excitation light wavelength of 450 nm and a fluorescence wavelength range of 470 nm or more and 900 nm or less using a quantum yield measuring device at a temperature of 25 ° C., or an excitation light wavelength of 365 nm. Multiply the internal quantum yield calculated under the conditions of the fluorescence wavelength range of 450 nm or more and 950 nm or less, or the internal quantum yield calculated under the conditions of the excitation light wavelength of 450 nm and the fluorescence wavelength range of 500 nm or more and 950 nm or less by the purity of the band edge. It is defined as a value divided by 100.
  • the quantum yield of band-end emission of core-shell type semiconductor nanoparticles is, for example, 10% or more, preferably 20% or more, and more preferably 30% or more.
  • the band-end emission emitted by the core-shell type semiconductor nanoparticles can change the position of the peak by changing the particle size of the semiconductor nanoparticles. For example, when the particle size of the semiconductor nanoparticles is made smaller, the peak wavelength of band-end emission tends to shift to the short wavelength side. Further, when the particle size of the semiconductor nanoparticles is made smaller, the half width of the spectrum of band-end emission tends to be smaller.
  • the intensity ratio of band edge emission obtained from the maximum peak intensity of band edge emission and the maximum peak intensity of defect emission is, for example, 0.75 or more. It is often, preferably 0.85 or more, more preferably 0.9 or more, particularly preferably 0.93 or more, and the upper limit is, for example, 1 or less, less than 1, or 0.99 or less. You can do it.
  • the intensity ratio of band-end emission parameter fitting is performed on the emission spectrum assuming that the shapes of the band-end emission peak and the defect emission peak are normally distributed, respectively, and the band-end emission peak and the defect emission peak are obtained.
  • the maximum peak intensities of these are b 1 and b 2 , respectively, they are expressed by the following equations.
  • Intensity ratio of band end emission b 1 / (b 1 + b 2 )
  • the intensity ratio of band-end emission is 0 when the emission spectrum does not include band-end emission at all, that is, contains only defective emission, 0.5 when the maximum peak intensity of band-end emission and defect emission is the same, and band-end emission. It is 1 when only light emission is included.
  • the core-shell type semiconductor nanoparticles have an absorption spectrum or an excitation spectrum (also referred to as a fluorescence excitation spectrum) showing an exciton peak.
  • the exciton peak is a peak obtained by exciton generation, and the fact that it is expressed in the absorption spectrum or the excitation spectrum means that the particle has a small particle size distribution and is suitable for band-end emission with few crystal defects. Means. The steeper the exciton peak, the more particles having the same particle size and less crystal defects are contained in the aggregate of semiconductor nanoparticles. Therefore, it is expected that the half-value width of light emission will be narrowed and the light emission efficiency will be improved.
  • the exciton peak is observed in the range of, for example, 350 nm or more and 1000 nm or less, preferably 450 nm or more and 590 nm or less.
  • the excitation spectrum for observing the presence or absence of the exciton peak may be measured by setting the observation wavelength near the peak wavelength.
  • the method for producing semiconductor nanoparticles is a first mixture containing a silver (Ag) salt, an indium (In) salt, a compound containing gallium (Ga) and sulfur (S), and an organic solvent.
  • the first preparatory step for obtaining the first semiconductor nanoparticles and the first heat treatment step for obtaining the first semiconductor nanoparticles by heat-treating the first mixture at a temperature in the range of 125 ° C. or higher and 300 ° C. or lower are included.
  • the first semiconductor nanoparticles obtained in the first heat treatment step may be in the state of a dispersion liquid.
  • the composition of the semiconductor nanoparticles By using a compound containing Ga and S as a source of Ga and S contained in the composition of the semiconductor nanoparticles, it becomes easy to control the composition of the produced semiconductor nanoparticles, and a short emission peak wavelength (for example, for example). It exhibits band-end emission at (545 nm or less), and semiconductor nanoparticles having a narrow half-value width in the emission spectrum can be easily produced.
  • the particle size of the semiconductor nanoparticles to be produced can be easily controlled, and the semiconductor nanoparticles having a narrow particle size distribution and a narrow half-value width in the emission spectrum can be easily produced.
  • an Ag salt, an In salt, a compound containing Ga and S, and an organic solvent are mixed to obtain a first mixture.
  • Ag salt and In salt used in the production method include organic acid salt and inorganic acid salt.
  • the inorganic acid salt include nitrates, acetates, sulfates, hydrochlorides, and sulfonates
  • organic acid salts include acetates and acetylacetonate salts. Of these, organic acid salts are preferable because they have high solubility in organic solvents.
  • the Ag salt used in the first preparation step may contain a compound containing Ag and S from the viewpoint of quantum yield.
  • the compound containing Ag and S include Ag salts of sulfur-containing compounds.
  • the Ag salt of the sulfur-containing compound includes a complex of the sulfur-containing compound and Ag ions.
  • the sulfur-containing compound include thiocarbamic acid, dithiocarbamic acid, thiocarbonate, dithiocarbonate (xanthate), trithiocarbonate, thiocarboxylic acid, dithiocarboxylic acid and derivatives thereof.
  • aliphatic thiocarbamic acid examples include aliphatic thiocarbamic acid, aliphatic dithiocarbamic acid, aliphatic thiocarbonic acid, aliphatic dithiocarbonic acid, aliphatic trithiocarbonic acid, aliphatic thiocarboxylic acid, aliphatic dithiocarboxylic acid, and the like.
  • Thiocarbamic acid and aliphatic dithiocarbamic acid include dialkylthiocarbamic acid and dialkyldithiocarbamic acid. Examples of the aliphatic group in these include an alkyl group having 1 or more and 12 or less carbon atoms, an alkenyl group and the like.
  • the alkyl group in dialkylthiocarbamic acid, dialkyldithiocarbamic acid and the like may have, for example, 1 or more and 12 or less carbon atoms, preferably 1 or more and 4 or less carbon atoms, and the two alkyl groups may be the same or different. good.
  • Examples of the compound containing Ga and S include Ga salts of sulfur-containing compounds.
  • the Ga salt of the sulfur-containing compound includes a complex of the sulfur-containing compound and Ga ions.
  • Examples of the sulfur-containing compound include thiocarbamic acid, dithiocarbamic acid, thiocarbonate, dithiocarbonate (xanthate), trithiocarbonate, thiocarboxylic acid, dithiocarboxylic acid and derivatives thereof.
  • aliphatic thiocarbamic acid examples include aliphatic thiocarbamic acid, aliphatic dithiocarbamic acid, aliphatic thiocarbonic acid, aliphatic dithiocarbonic acid, aliphatic trithiocarbonic acid, aliphatic thiocarboxylic acid, aliphatic dithiocarboxylic acid, and the like.
  • Thiocarbamic acid and aliphatic dithiocarbamic acid include dialkylthiocarbamic acid and dialkyldithiocarbamic acid. Examples of the aliphatic group in these include an alkyl group having 1 or more and 12 or less carbon atoms, an alkenyl group and the like.
  • the alkyl group in dialkylthiocarbamic acid, dialkyldithiocarbamic acid and the like may have, for example, 1 or more and 12 or less carbon atoms, preferably 1 or more and 4 or less carbon atoms, and the two alkyl groups may be the same or different. good.
  • the content ratio of Ag, In, Ga and S in the first mixture may be appropriately selected according to the target composition. At that time, the content ratios of Ag, In, Ga and S do not have to be consistent with the stoichiometric ratio.
  • the ratio of the number of moles of Ga to the total number of moles of In and Ga (Ga / (In + Ga)) is 0.2 or more and 0.95 or less, 0.6 or more and 0.9 or less, or 0.8 or more and 0.9. It may be: Further, for example, the ratio of the number of moles of Ag to the total number of moles of Ag, In, and Ga (Ag / (Ag + In + Ga)) may be 0.05 or more and 0.55 or less. Further, for example, the ratio of the number of moles of S to the total number of moles of Ag, In, and Ga (S / (Ag + In + Ga)) may be 0.6 or more and 1.6 or less.
  • organic solvent examples include amines having a hydrocarbon group having 4 to 20 carbon atoms, particularly alkylamines or alkenylamines having 4 to 20 carbon atoms, and thiols having a hydrocarbon group having 4 to 20 carbon atoms, particularly carbon.
  • a carboxylic acid having a hydrocarbon group having 4 to 20 carbon atoms particularly an alkyl carboxylic acid or an alkenyl carboxylic acid having 4 to 20 carbon atoms.
  • these organic solvents can surface-modify the resulting semiconductor nanoparticles. Two or more of these organic solvents may be used in combination.
  • a mixed solvent in which at least one selected from thiols having a hydrocarbon group having 4 to 20 carbon atoms and at least one selected from amines having a hydrocarbon group having 4 to 20 carbon atoms are combined.
  • a mixed solvent or the like in which at least one selected from alkenylamines having 4 or more and 20 or less carbon atoms and at least one selected from alkenylcarboxylic acids having 4 or more and 20 or less carbon atoms may be used.
  • These organic solvents may also be mixed with other organic solvents. Further, the organic solvent may be solid at room temperature as long as it dissolves at 125 ° C. or higher.
  • the first mixture may further contain an alkali metal salt.
  • Alkali metal as the (hereinafter sometimes referred to as M a), lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs) can be mentioned, ionic radius is close to Ag It is preferable to contain Li in terms of points.
  • the alkali metal salt include organic acid salts and inorganic acid salts. Specific examples of the inorganic acid salt include nitrates, acetates, sulfates, hydrochlorides, and sulfonates, and examples of organic acid salts include acetates and acetylacetonate salts. Of these, organic acid salts are preferable because they have high solubility in organic solvents.
  • the ratio of Ag and the number of atoms alkali metal to the total number of atoms of the alkali metal may be less than 1, preferably 0 It is 8.8 or less, more preferably 0.4 or less, still more preferably 0.2 or less.
  • the ratio may be, for example, larger than 0, preferably 0.05 or more, and more preferably 0.1 or more.
  • the first mixture is heat-treated at a temperature in the range of 125 ° C. or higher and 300 ° C. or lower to obtain first semiconductor nanoparticles.
  • the first heat treatment step includes a temperature raising step of raising the temperature of the first mixture to a temperature in the range of 125 ° C. or higher and 300 ° C. or lower, and a heat treatment of the first mixture at a temperature in the range of 125 ° C. or higher and 300 ° C. or lower for a predetermined time. It may include a synthesis step to be performed.
  • the temperature range for raising the temperature in the heating step is preferably 125 ° C. or higher and 200 ° C. or lower, more preferably 125 ° C. or higher and 175 ° C. or lower, further preferably 130 ° C. or higher and 160 ° C. or lower, and particularly preferably 135 ° C. or higher and 155 ° C. or lower.
  • the rate of temperature rise is not particularly limited as long as the maximum temperature during temperature rise is adjusted so as not to exceed 300 ° C., but is, for example, 1 ° C./min or more and 50 ° C./min or less.
  • the temperature of the heat treatment in the synthesis step is preferably 125 ° C. or higher and 200 ° C. or lower, more preferably 125 ° C. or higher and 175 ° C. or lower, further preferably 130 ° C. or higher and 160 ° C. or lower, and particularly preferably 135 ° C. or higher and 155 ° C. or lower.
  • the heat treatment time in the synthesis step may be, for example, 3 seconds or longer, preferably 1 minute or longer, and more preferably 10 minutes or longer.
  • the heat treatment time may be, for example, 60 minutes or less.
  • the heat treatment time in the synthesis step is set at the time when the temperature reaches the temperature set in the above temperature range (for example, the time when the temperature reaches 150 ° C. when set at 150 ° C.) as the start time, and the time when the operation for lowering the temperature is performed. Is the end time.
  • the atmosphere of the heat treatment in the method for producing semiconductor nanoparticles is preferably an inert atmosphere, particularly an argon atmosphere or a nitrogen atmosphere.
  • an inert atmosphere By creating an inert atmosphere, it is possible to reduce or prevent the by-product of oxides and the oxidation of the surface of the obtained semiconductor nanoparticles.
  • the method for producing semiconductor nanoparticles may include a cooling step of lowering the temperature of the dispersion liquid containing the semiconductor nanoparticles following the above-mentioned synthesis step.
  • the cooling step starts at the time when the operation for lowering the temperature is performed, and ends at the time when the temperature is cooled to 50 ° C. or lower.
  • the cooling step preferably includes a period in which the temperature lowering rate is 50 ° C./min or more from the viewpoint of suppressing the production of silver sulfide from the unreacted Ag salt.
  • the temperature is 50 ° C./min or more at the time when the temperature lowering starts after the operation for lowering the temperature is performed.
  • the atmosphere of the cooling step is preferably an inert atmosphere, particularly an argon atmosphere or a nitrogen atmosphere.
  • an inert atmosphere By creating an inert atmosphere, it is possible to reduce or prevent the by-product of oxides and the oxidation of the surface of the obtained semiconductor nanoparticles.
  • the method for producing semiconductor nanoparticles may further include a separation step of separating the semiconductor nanoparticles from the dispersion, and may further include a purification step, if necessary.
  • the separation step for example, the dispersion liquid containing the semiconductor nanoparticles may be subjected to centrifugation to take out the supernatant liquid containing the nanoparticles.
  • the purification step for example, the supernatant obtained in the separation step may be subjected to centrifugation by adding an appropriate organic solvent such as alcohol, and the semiconductor nanoparticles may be taken out as a precipitate.
  • the semiconductor nanoparticles can also be taken out by volatilizing the organic solvent from the supernatant liquid.
  • the taken-out precipitate may be dried by, for example, vacuum degassing or natural drying, or a combination of vacuum degassing and natural drying.
  • the natural drying may be carried out by, for example, leaving it in the air at normal temperature and pressure, and in that case, it may be left for 20 hours or more, for example, about 30 hours.
  • the taken-out precipitate may be dispersed in a suitable organic solvent.
  • a purification step by adding an organic solvent such as alcohol and centrifugation may be performed a plurality of times as necessary.
  • an organic solvent such as alcohol and centrifugation
  • a lower alcohol having 1 to 4 carbon atoms such as methanol, ethanol and n-propyl alcohol may be used.
  • a halogen-based solvent such as chloroform, dichloromethane, dichloroethane, trichloroethane, or tetrachloroethane
  • a hydrocarbon solvent such as toluene, cyclohexane, hexane, pentane, or octane may be used as the organic solvent.
  • the organic solvent that disperses the precipitate may be a halogen-based solvent from the viewpoint of quantum yield.
  • the method for producing core-shell type semiconductor nanoparticles includes semiconductor nanoparticles obtained by the above-mentioned method for producing semiconductor nanoparticles, a compound containing a Group 13 element, a simple substance of a Group 16 element, or A second preparatory step of obtaining a second mixture by mixing a compound containing a Group 16 element and a shell forming step of heat-treating the second mixture to obtain core-shell type semiconductor nanoparticles (hereinafter, also referred to as a second heat treatment step). Includes).
  • the method for producing core-shell type semiconductor nanoparticles includes a first preparatory step for obtaining a first mixture containing an Ag salt, an In salt, a compound containing Ga and S, and an organic solvent, and 125 ° C. for the first mixture.
  • the semiconductor nanoparticles obtained by the above-mentioned method for producing semiconductor nanoparticles may be used as a core, and the surface of the core may be substantially composed of Group 13 elements and Group 16 elements. Form a shell.
  • the core semiconductor nanoparticles may be used in the form of a dispersion.
  • the solvent for dispersing the semiconductor nanoparticles can be any organic solvent as in the case of producing the semiconductor nanoparticles, and the organic solvent can be a surface modifier or a solution containing a surface modifier.
  • the organic solvent can be at least one selected from nitrogen-containing compounds having a hydrocarbon group having 4 to 20 carbon atoms, which is a surface modifier described in relation to the method for producing semiconductor nanoparticles.
  • it can be at least one selected from sulfur-containing compounds having a hydrocarbon group having 4 or more and 20 or less carbon atoms, or at least one selected from a nitrogen-containing compound having a hydrocarbon group having 4 or more and 20 or less carbon atoms. It can be combined with at least one selected from sulfur-containing compounds having a hydrocarbon group having 4 or more and 20 or less carbon atoms.
  • the nitrogen-containing compound it is preferable that the temperature is higher than the reaction temperature because a particularly high-purity compound is easily available and the boiling point exceeds 290 ° C.
  • Specific organic solvents include oleylamine and n-tetra. Examples thereof include decylamine, dodecanethiol, or a combination thereof.
  • the solvent for dispersing the semiconductor nanoparticles may contain a halogen-based solvent such as chloroform, or may be substantially a halogen-based solvent. Further, after dispersing the semiconductor nanoparticles in a halogen-based solvent, the solvent may be exchanged with an organic solvent containing a surface modifier such as a nitrogen-containing compound to obtain a dispersion liquid of the semiconductor nanoparticles.
  • the solvent exchange can be performed, for example, by adding a surface modifier to a dispersion of semiconductor nanoparticles containing a halogen-based solvent and then removing at least a part of the halogen-based solvent.
  • a dispersion liquid containing a halogen-based solvent and a surface modifier is heat-treated under reduced pressure to remove at least a part of the halogen-based solvent, and a dispersion liquid of semiconductor nanoparticles containing the surface modifier.
  • the reduced pressure condition and the heat treatment temperature in the heat treatment under reduced pressure may be the conditions under which at least a part of the halogen-based solvent is removed and the surface modifier remains.
  • the depressurization condition may be, for example, 1 Pa or more and 2000 Pa or less, preferably 50 Pa or more and 500 Pa or less.
  • the heat treatment temperature may be, for example, 20 ° C. or higher and 120 ° C. or lower, preferably 50 ° C. or higher and 80 ° C. or lower.
  • the concentration of particles in the dispersion liquid is, for example, 5.0 ⁇ 10-7 mol / liter or more and 5.0 ⁇ 10-5 mol / liter or less, particularly 1.0 ⁇ 10-6. It may be prepared to be at least mol / liter and at least 1.0 ⁇ 10-5 mol / liter. If the proportion of particles in the dispersion is too small, it will be difficult to recover the product by the aggregation / precipitation process with a poor solvent, and if it is too large, the proportion of Ostwald ripening and collision of the core materials will increase, and the particles will increase. The diameter distribution tends to be wide.
  • a compound containing a Group 13 element is a source of a Group 13 element, and is, for example, an organic salt, an inorganic salt, an organic metal compound, or the like of the Group 13 element.
  • the compound containing a Group 13 element include nitrates, acetates, sulfates, hydrochlorides, sulfonates, acetylacetonate complexes and the like, and preferred are organic salts such as acetates or organic metal compounds. This is because the organic salt and the organometallic compound have high solubility in the organic solvent, and the reaction can proceed more uniformly.
  • the Group 13 element include aluminum (Al), gallium (Ga), indium (In) and thallium (Tl), and at least one selected from the group consisting of these is preferable.
  • a simple substance of a Group 16 element or a compound containing a Group 16 element is a source of a Group 16 element.
  • sulfur (S) when sulfur (S) is used as a constituent element of the shell as the Group 16 element, a single sulfur such as high-purity sulfur can be used, or n-butanethiol, isobutanethiol, and n-pentanethiol can be used.
  • S source group 16 element source
  • oxygen (O) is a constituent element of the shell as the group 16 element
  • specific examples of the oxygen source include a compound containing an oxygen atom and a gas containing an oxygen atom.
  • the compound containing an oxygen atom include water, alcohol, ether, carboxylic acid, ketone, N-oxide compound and the like, and at least one selected from the group consisting of these is preferable.
  • the gas containing an oxygen atom include oxygen gas and ozone gas, and at least one selected from the group consisting of these is preferable.
  • the oxygen source may be added by dissolving or dispersing a compound containing an oxygen atom in a second mixture which is a mixture for forming a shell, or by blowing a gas containing an oxygen atom into the second mixture.
  • selenium When selenium (Se) is a constituent element of the shell as a group 16 element, selenium alone, selenium phosphine oxide, an organic selenium compound (dibenzyl diselenide, diphenyl diselenide, etc.), a hydride, etc. Compound 16 may be used as a group 16 element source.
  • tellurium Te is a constituent element of the shell as the group 16 element, tellurium alone, tellurized phosphine oxide, or hydride may be used as the group 16 element source.
  • the second mixture may further contain an alkali metal salt, if necessary.
  • the details of the alkali metal salt are as described above.
  • the ratio of the number of alkali metal atoms to the sum of the number of alkali metal atoms and the number of Group 13 element atoms in the second mixture is, for example, 0.01 or more and less than 1, or It may be 0.1 or more and 0.9 or less.
  • the ratio of the number of atoms of the Group 16 element to the total number of atoms of the alkali metal and the number of atoms of the Group 13 element in the second mixture may be, for example, 0.25 or more and 0.75 or less.
  • the temperature of the dispersion liquid containing the core semiconductor nanoparticles is raised so that the peak temperature is 200 ° C. or higher and 310 ° C. or lower, and after reaching the peak temperature, the peak temperature is maintained.
  • a mixed solution in which a group 13 element source and a group 16 element source and, if necessary, an alkali metal salt are dispersed or dissolved in an organic solvent is added little by little, and then the temperature is lowered to form a shell layer. You can do it (slow injection method). In this case, the heat treatment proceeds immediately after the dispersion liquid containing the semiconductor nanoparticles and the mixed liquid are mixed to obtain a second mixture.
  • the mixed solution may be added at a rate of 0.1 mL / hour or more and 10 mL / hour or less, particularly 1 mL / hour or more and 5 mL / hour or less.
  • the peak temperature may be maintained as needed even after the addition of the mixed solution is completed.
  • the surface modifier that modifies the semiconductor nanoparticles is sufficiently desorbed, or the chemical reaction for shell formation proceeds sufficiently, and so on, the semiconductor layer (shell).
  • the time for maintaining the peak temperature can be 1 minute or more and 300 minutes or less in total, particularly 10 minutes or more and 120 minutes or less after the addition of the mixed solution is started.
  • the peak temperature retention time is selected in relation to the peak temperature, with a longer retention time when the peak temperature is lower and a shorter retention time when the peak temperature is higher, a better shell layer.
  • the rate of temperature increase and the rate of temperature decrease are not particularly limited, and the temperature decrease may be carried out by, for example, holding the temperature at a peak temperature for a predetermined time, then stopping heating by a heating source (for example, an electric heater) and allowing it to cool.
  • a heating source for example, an electric heater
  • a dispersion liquid containing semiconductor nanoparticles is mixed with a group 13 element source and a group 16 element source, and if necessary, an alkali metal salt to obtain a second mixture, and then the mixture is obtained.
  • a semiconductor layer as a shell may be formed on the surface of semiconductor nanoparticles as a core (heating-up method).
  • the temperature of the second mixture is gradually raised so that the peak temperature is 200 ° C. or higher and 310 ° C. or lower, the temperature is maintained at the peak temperature for 1 minute or more and 300 minutes or less, and then the temperature is gradually lowered. May be heated.
  • the heating rate may be, for example, 1 ° C./min or more and 50 ° C./min or less, but in order to minimize the deterioration of the core caused by continuous heat treatment without a shell, the temperature rise rate is 50 ° C./min or more and 100 ° C. up to 200 ° C. It is preferably less than / minute. Further, when it is desired to further raise the temperature to 200 ° C. or higher, the temperature is preferably 1 ° C./min or higher and 5 ° C./min or lower thereafter.
  • the temperature lowering rate may be, for example, 1 ° C./min or more and 50 ° C./min or less.
  • Predetermined peak temperature The advantage of having the peak temperature in the above range is as described in the slow injection method.
  • core-shell type semiconductor nanoparticles that give stronger band-end emission tend to be obtained as compared with the case where the shell is formed by the slow injection method.
  • the charging ratio of the group 13 element source and the group 16 element source may be determined according to the chemical quantitative composition ratio of the compound semiconductor composed of the group 13 element and the group 16 element. Often, it does not necessarily have to be a chemical composition ratio.
  • the charging ratio of the Group 16 element to the Group 13 element can be 0.75 or more and 1.5 or less.
  • the amount to be charged is selected in consideration of the amount of semiconductor nanoparticles contained in the dispersion liquid so that a shell having a desired thickness is formed on the semiconductor nanoparticles existing in the dispersion liquid.
  • a compound semiconductor having a chemical quantitative composition composed of Group 13 elements and Group 16 elements is produced in an amount of 1 ⁇ mol or more and 10 mmol or less, particularly 5 ⁇ mol or more and 1 mmol or less, based on a substance amount of 10 nmol of semiconductor nanoparticles.
  • the amount of the Group 13 element source and the Group 16 element source charged may be determined.
  • indium acetate or gallium acetylacetonate is used as a group 13 element source, and sulfur alone, thiourea, dibenzyl disulfide or alkyl thiourea is used as a group 16 element source. It is preferable to form a shell containing indium sulfide or gallium sulfide using a mixed solution of oleylamine and dodecanethiol as an organic solvent, or an alkylamine or alkenylamine having 4 to 20 carbon atoms.
  • a shell is formed to form core-shell type semiconductor nanoparticles having a core-shell structure.
  • the obtained core-shell type semiconductor nanoparticles may be separated from the solvent, and may be further purified and dried if necessary. Since the methods of separation, purification and drying are as described above in relation to the semiconductor nanoparticles, detailed description thereof will be omitted here.
  • the shell surface of the core-shell type semiconductor nanoparticles may be modified with a surface modifier.
  • the surface modifier include an amino alcohol having 2 to 20 carbon atoms, an ionic surface modifier, a nonionic surface modifier, a nitrogen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms, and 4 carbon atoms.
  • examples thereof include a sulfur-containing compound having a hydrocarbon group of 4 or more and 20 or less, an oxygen-containing compound having a hydrocarbon group having 4 or more and 20 or less carbon atoms, and a phosphorus-containing compound having a hydrocarbon group having 4 or more and 20 or less carbon atoms.
  • the surface modifier two or more different types may be used in combination.
  • the amino alcohol may be a compound having an amino group and an alcoholic hydroxyl group and containing a hydrocarbon group having 2 or more and 20 or less carbon atoms.
  • the carbon number of the amicolcohol is preferably 10 or less, more preferably 6 or less.
  • the hydrocarbon groups constituting the amino alcohol may be derived from hydrocarbons such as linear, branched or cyclic alkanes, alkenes and alkynes. Derived from a hydrocarbon means that it is composed by removing at least two hydrogen atoms from the hydrocarbon.
  • Specific examples of the amino alcohol include aminoethanol, aminopropanol, aminobutanol, aminopentanol, aminohexanol, and aminooctanol.
  • the amino group of the amino alcohol is bonded to the surface of the core-shell type semiconductor nanoparticles, and the hydroxyl group is exposed on the outermost surface of the particles on the opposite side, so that the polarity of the core-shell type semiconductor nanoparticles is changed, and an alcohol solvent (for example, methanol) is used.
  • an alcohol solvent for example, methanol
  • Ethanol, propanol, butanol, etc. improves dispersibility.
  • ionic surface modifier examples include nitrogen-containing compounds, sulfur-containing compounds, oxygen-containing compounds, etc., which have an ionic functional group in the molecule.
  • the ionic functional group may be cationic or anionic, and preferably has at least a cationic group.
  • Specific examples of the surface modifier and the method of surface modification are described in, for example, Chemistry Letters, Vol. 45, pp898-900, 2016 can be referred to.
  • the ionic surface modifier may be, for example, a sulfur-containing compound having a tertiary or quaternary alkylamino group.
  • the alkyl group of the alkylamino group may have, for example, 1 or more and 4 or less carbon atoms.
  • the sulfur-containing compound may be an alkyl or alkenyl thiol having 2 to 20 carbon atoms.
  • Specific examples of the ionic surface modifier include a hydrohalide of dimethylaminoethanethiol, a halogen salt of trimethylammonium ethanethiol, a hydrogen halide of dimethylaminobutanethiol, and a halogen salt of trimethylammonium butanethiol. ..
  • nonionic surface modifier examples include nitrogen-containing compounds, sulfur-containing compounds, oxygen-containing compounds and the like having a nonionic functional group containing an alkylene glycol unit, an alkylene glycol monoalkyl ether unit and the like.
  • the carbon number of the alkylene group in the alkylene glycol unit may be, for example, 2 or more and 8 or less, preferably 2 or more and 4 or less.
  • the number of repetitions of the alkylene glycol unit may be, for example, 1 or more and 20 or less, preferably 2 or more and 10 or less.
  • the nitrogen-containing compound constituting the nonionic surface modifier may have an amino group
  • the sulfur-containing compound may have a thiol group
  • the oxygen compound may have a hydroxyl group.
  • Specific examples of the nonionic surface modifier include methoxytriethyleneoxyethanethiol, methoxyhexaethyleneoxyethanethiol and the like.
  • Examples of the nitrogen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms include amines and amides.
  • Examples of the sulfur-containing compound having a hydrocarbon group having 4 to 20 carbon atoms include thiols.
  • Examples of the oxygen-containing compound having a hydrocarbon group having 4 to 20 carbon atoms include carboxylic acids, alcohols, ethers, aldehydes, and ketones.
  • Examples of the phosphorus-containing compound having a hydrocarbon group having 4 to 20 carbon atoms include trialkylphosphine, triarylphosphine, trialkylphosphine oxide, and triarylphosphine oxide.
  • the core-shell type semiconductor nanoparticles are subjected to the above-mentioned amino alcohol having 2 or more and 20 or less carbon atoms, an ionic surface modifier, a nonionic surface modifier, and 4 or more carbon atoms.
  • Nitrogen-containing compounds having 20 or less hydrocarbon groups, sulfur-containing compounds having 4 to 20 carbon atoms, oxygen-containing compounds having 4 or more and 20 or less hydrocarbon groups, and 4 to 20 carbon atoms It may include a surface modification step of contacting with a surface modifier (hereinafter, also referred to as a specific surface modifier) such as a phosphorus-containing compound having a hydrocarbon group of.
  • the core-shell type semiconductor nanoparticles may be brought into contact with the specific surface modifier by mixing the core-shell type semiconductor nanoparticles with the above-mentioned specific surface modifier.
  • the amount ratio of the specific surface modifier to the core-shell type semiconductor nanoparticles in the surface modification step may be, for example, 0.1 mL or more with respect to 1 ⁇ 10 to 8 mol of the core-shell type semiconductor nanoparticles, preferably 0. It is 5 mL or more and 10 mL or less.
  • the contact temperature may be, for example, 0 ° C. or higher and 100 ° C. or lower, preferably 10 ° C. or higher and 80 ° C. or lower.
  • the contact time may be, for example, 10 seconds or more and 10 days or less, preferably 1 minute or more and 1 day or less.
  • the atmosphere of contact may be an inert atmosphere, and an argon atmosphere or a nitrogen atmosphere is particularly preferable.
  • the method for producing semiconductor nanoparticles may be in the following manner.
  • the method for producing semiconductor nanoparticles is as follows: a silver (Ag) salt, an indium (In) salt, a compound having a gallium (Ga) -sulfur (S) bond, a gallium halide, and an organic solvent.
  • the third step of heat-treating the third mixture containing and to obtain the third semiconductor nanoparticles is included.
  • the method for producing semiconductor nanoparticles may further include other steps in addition to the third step, if necessary.
  • the third step is a third mixing step of obtaining a third mixture containing an Ag salt, an In salt, a compound having a Ga—S bond, a gallium halide, and an organic solvent, and a third obtained step. It may include a third heat treatment step of subjecting the mixture to a third heat treatment to obtain third semiconductor nanoparticles.
  • a third mixture is prepared by mixing an Ag salt, an In salt, a compound having a Ga—S bond, a gallium halide, and an organic solvent.
  • the mixing method in the third mixing step may be appropriately selected from the commonly used mixing methods.
  • the Ag salt and In salt in the third mixture may be either an organic acid salt or an inorganic acid salt.
  • the inorganic acid salt include nitrates, sulfates, hydrochlorides, sulfonates and the like.
  • the organic acid salt include formate, acetate, oxalic acid, and acetylacetonate salt.
  • the Ag salt and In salt may be at least one selected from the group consisting of these salts, and are more preferably acetates because they have high solubility in organic solvents and the reaction proceeds more uniformly. , At least one selected from the group consisting of organic acid salts such as acetylacetonate salts.
  • the third mixture may contain each of the Ag salt and the In salt individually, or may contain two or more of each in combination.
  • the Ag salt in the third mixture may contain a compound having an Ag—S bond because it can suppress the by-production of silver sulfide in the third heat treatment step described later.
  • the Ag—S bond may be any of a covalent bond, an ionic bond, a coordination bond and the like.
  • Examples of the compound having an Ag—S bond include an Ag salt of a sulfur-containing compound, and may be an organic acid salt, an inorganic acid salt, an organic metal compound, or the like of Ag.
  • sulfur-containing compound examples include thiocarbamic acid, dithiocarbamic acid, thiocarbonate ester, dithiocarbonate ester (xanthogenic acid), trithiocarbonate ester, thiocarboxylic acid, dithiocarboxylic acid and derivatives thereof.
  • thiocarbamic acid dithiocarbamic acid
  • thiocarbonate ester dithiocarbonate ester (xanthogenic acid)
  • trithiocarbonate ester thiocarboxylic acid
  • dithiocarboxylic acid and derivatives thereof examples include thiocarbamic acid, dithiocarbamic acid, thiocarbonate ester, dithiocarbonate ester (xanthogenic acid), trithiocarbonate ester, thiocarboxylic acid, dithiocarboxylic acid and derivatives thereof.
  • at least one selected from the group consisting of xanthate acid and its derivatives is preferable because it decomposes at a relatively low temperature.
  • sulfur-containing compound examples include aliphatic thiocarbamic acid, aliphatic dithiocarbamic acid, aliphatic thiocarbonate ester, aliphatic dithiocarbonate ester, aliphatic trithiocarbonate ester, aliphatic thiocarboxylic acid, and aliphatic dithiocarboxylic acid. And so on.
  • aliphatic group in these sulfur-containing compounds include an alkyl group having 1 to 12 carbon atoms and an alkenyl group.
  • the aliphatic thiocarbamic acid may contain dialkylthiocarbamic acid and the like, and the aliphatic dithiocarbamic acid may contain dialkyldithiocarbamic acid and the like.
  • the alkyl group in dialkylthiocarbamic acid and dialkyldithiocarbamic acid may have, for example, 1 or more and 12 or less carbon atoms, and preferably 1 or more and 4 or less carbon atoms.
  • the two alkyl groups in dialkylthiocarbamic acid and dialkyldithiocarbamic acid may be the same or different.
  • the compound having an Ag—S bond include silver dimethyldithiocarbamate, silver diethyldithiocarbamate (Ag (DDTC)), silver ethylxanthogenate (Ag (EX)) and the like.
  • the In salt in the third mixture may contain a compound having an In—S bond.
  • the In—S bond may be any of a covalent bond, an ionic bond, a coordination bond and the like.
  • the compound having an In—S bond include an In salt of a sulfur-containing compound, which may be an organic acid salt of In, an inorganic acid salt, an organic metal compound, or the like.
  • Specific examples of the sulfur-containing compound include thiocarbamic acid, dithiocarbamic acid, thiocarbonate ester, dithiocarbonate ester (xanthogenic acid), trithiocarbonate ester, thiocarboxylic acid, dithiocarboxylic acid and derivatives thereof.
  • At least one selected from the group consisting of xanthate acid and its derivatives is preferable because it decomposes at a relatively low temperature.
  • Specific examples of the sulfur-containing compound are the same as described above.
  • Specific examples of the compound having an In—S bond include indium trisdimethyldithiocarbamate, indium trisdithiocarbamate (In (DDTC) 3 ), indium chlorobisdithiocarbamate, and indium ethylxanthogenate (In (EX) 3 ). And so on.
  • the Ga—S bond of the compound having a Ga—S bond in the third mixture may be any of a covalent bond, an ionic bond, a coordination bond and the like.
  • the compound having a Ga—S bond include a Ga salt of a sulfur-containing compound, and may be an organic acid salt of Ga, an inorganic acid salt, an organic metal compound, or the like.
  • Specific examples of the sulfur-containing compound include thiocarbamic acid, dithiocarbamic acid, thiocarbonate ester, dithiocarbonate ester (xanthogenic acid), trithiocarbonate ester, thiocarboxylic acid, dithiocarboxylic acid and derivatives thereof.
  • At least one selected from the group consisting of xanthate acid and its derivatives is preferable because it decomposes at a relatively low temperature.
  • Specific examples of the sulfur-containing compound are the same as described above.
  • Specific examples of the compound having a Ga—S bond include gallium trisdimethyldithiocarbamate, gallium trisdithiocarbamate (Ga (DDTC) 3 ), gallium chlorobisdithiocarbamate, gallium ethylxanthogenate (Ga (EX) 3 ). And so on.
  • the third mixture may contain a compound having a Ga—S bond alone or in combination of two or more.
  • gallium halide in the third mixture examples include gallium fluoride, gallium chloride, gallium bromide, gallium iodide, and the like, and at least one selected from the group consisting of these may be contained. Further, the gallium halide may contain at least gallium chloride. The gallium halide may be used alone or in combination of two or more.
  • Examples of the organic solvent in the third mixture include amines having a hydrocarbon group having 4 to 20 carbon atoms, for example, alkylamines or alkenylamines having 4 to 20 carbon atoms, and thiols having a hydrocarbon group having 4 to 20 carbon atoms.
  • alkyl thiols or alkenyl thiols having 4 to 20 carbon atoms, phosphines having a hydrocarbon group having 4 to 20 carbon atoms, for example, alkyl phosphine or alkenyl phosphine having 4 to 20 carbon atoms can be mentioned, and from the group consisting of these. It is preferable to include at least one selected.
  • organic solvents may, for example, surface-modify the finally obtained third semiconductor nanoparticles.
  • Two or more kinds of organic solvents may be used in combination, for example, at least one selected from thiols having a hydrocarbon group having 4 to 20 carbon atoms and amine having a hydrocarbon group having 4 to 20 carbon atoms.
  • a mixed solvent in combination with at least one of the above is used.
  • These organic solvents may be mixed with other organic solvents and used.
  • the volume ratio of the thiol to the amine is, for example, greater than 0 and 1 or less, preferably 0.007 or more and 0.2 or less.
  • the content ratio of Ag, In, Ga and S in the third mixture may be appropriately selected according to the target composition. At that time, the content ratios of Ag, In, Ga and S do not have to be consistent with the stoichiometric ratio.
  • the ratio of the number of moles of Ga to the total number of moles of In and Ga (Ga / (In + Ga)) is 0.2 or more and 0.95 or less, 0.4 or more and 0.9 or less, or 0.6 or more and 0.9. It may be: Further, for example, the ratio of the number of moles of Ag to the total number of moles of Ag, In, and Ga (Ag / (Ag + In + Ga)) may be 0.05 or more and 0.55 or less. Further, for example, the ratio of the number of moles of S to the total number of moles of Ag, In, and Ga (S / (Ag + In + Ga)) may be 0.6 or more and 1.6 or less.
  • the third mixture may further contain an alkali metal salt.
  • the alkali metal (M a), lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs) can be mentioned, that the ion radius containing Li at a point close to the Ag preferable.
  • the alkali metal salt include organic acid salts and inorganic acid salts. Specific examples of the inorganic acid salt include nitrates, sulfates, hydrochlorides, sulfonates and the like, and examples of the organic acid salt include acetates and acetylacetonate salts. Of these, organic acid salts are preferable because they have high solubility in organic solvents.
  • the ratio of Ag and the number of atoms alkali metal to the total number of atoms of the alkali metal may be less than 1, preferably 0 It is 8.8 or less, more preferably 0.4 or less, still more preferably 0.2 or less.
  • the ratio may be, for example, larger than 0, preferably 0.05 or more, and more preferably 0.1 or more.
  • the molar ratio of the gallium halide content to the Ag salt in the third mixture may be, for example, 0.01 or more and 1 or less, and preferably 0.12 or more and 0.45 or less from the viewpoint of internal quantum yield. It may be there.
  • the concentration of Ag salt in the third mixture may be, for example, 0.01 mmol / liter or more and 500 mmol / liter or less, and preferably 0.05 mmol / liter or more and 100 mmol / liter from the viewpoint of internal quantum yield. It may be less than or equal to, more preferably 0.1 mmol / liter or more and 10 mmol / liter or less.
  • the third mixture is subjected to the third heat treatment to obtain the third semiconductor nanoparticles.
  • the temperature of the third heat treatment may be, for example, 200 ° C. or higher and 320 ° C. or lower.
  • the temperature range for raising the temperature in the raising step of the third heat treatment step may be 200 ° C. or higher and 320 ° C. or lower, preferably 230 ° C. or higher and 290 ° C. or lower.
  • the rate of temperature rise may be adjusted so that the maximum temperature during temperature rise does not exceed the target temperature, and is, for example, 1 ° C./min or more and 50 ° C./min or less.
  • the heat treatment temperature in the synthesis step of the third heat treatment step may be 200 ° C. or higher and 320 ° C. or lower, preferably 230 ° C. or higher and 290 ° C. or lower.
  • the heat treatment time in the synthesis step may be, for example, 3 seconds or longer, preferably 1 minute or longer, 10 minutes or longer, 30 minutes or longer, 60 minutes or longer, or 90 minutes or longer.
  • the heat treatment time may be, for example, 300 minutes or less, preferably 180 minutes or less, or 150 minutes or less.
  • the heat treatment time in the synthesis step is set at the time when the temperature reaches the temperature set in the above temperature range (for example, the time when the temperature reaches 250 ° C. when set to 250 ° C.) as the start time, and the time when the operation for lowering the temperature is performed. Is the end time.
  • a dispersion liquid containing the third semiconductor nanoparticles can be obtained by the synthesis step.
  • the atmosphere of the third heat treatment step is preferably an inert gas atmosphere, particularly an argon atmosphere or a nitrogen atmosphere.
  • an inert gas atmosphere By creating an inert gas atmosphere, it is possible to reduce or prevent the by-product of oxides and the oxidation of the surface of the obtained third semiconductor nanoparticles.
  • the method for producing semiconductor nanoparticles may further include a cooling step of lowering the temperature of the obtained dispersion liquid containing the third semiconductor nanoparticles, following the above-mentioned synthesis step.
  • the cooling step starts at the time when the operation for lowering the temperature is performed, and ends at the time when the temperature is cooled to 50 ° C. or lower.
  • the cooling step may include a period in which the temperature lowering rate is 50 ° C./min or more from the viewpoint of suppressing the production of silver sulfide from the unreacted Ag salt.
  • the temperature may be set to 50 ° C./min or higher at the time when the temperature drop starts after the operation for lowering the temperature is performed.
  • the atmosphere of the cooling step is preferably an inert gas atmosphere, particularly an argon atmosphere or a nitrogen atmosphere.
  • an inert gas atmosphere By creating an inert gas atmosphere, it is possible to reduce or prevent the by-product of oxides and the oxidation of the surface of the obtained third semiconductor nanoparticles.
  • the method for producing semiconductor nanoparticles may further include a separation step of separating the third semiconductor nanoparticles from the dispersion, and may further include a purification step, if necessary.
  • the separation step for example, the dispersion liquid containing the third semiconductor nanoparticles may be subjected to centrifugation to take out the supernatant liquid containing the third semiconductor nanoparticles.
  • the purification step for example, the supernatant obtained in the separation step may be subjected to centrifugation by adding an appropriate organic solvent such as alcohol, and the third semiconductor nanoparticles may be taken out as a precipitate.
  • the third semiconductor nanoparticles can also be taken out by volatilizing the organic solvent from the supernatant liquid.
  • the taken-out precipitate may be dried by, for example, vacuum degassing or natural drying, or a combination of vacuum degassing and natural drying.
  • the natural drying may be carried out by, for example, leaving it in the air at normal temperature and pressure, and in that case, it may be left for 20 hours or more, for example, about 30 hours.
  • the taken-out precipitate may be dispersed in a suitable organic solvent.
  • the purification process by adding an organic solvent such as alcohol and centrifugation may be performed a plurality of times as necessary.
  • a lower alcohol having 1 to 4 carbon atoms such as methanol, ethanol and n-propyl alcohol may be used.
  • a halogen-based solvent such as chloroform, dichloromethane, dichloroethane, trichloroethane, or tetrachloroethane
  • a hydrocarbon solvent such as toluene, cyclohexane, hexane, pentane, or octane may be used as the organic solvent.
  • the organic solvent that disperses the precipitate may be a halogen-based solvent from the viewpoint of the internal quantum yield.
  • the third semiconductor nanoparticles obtained as described above may be in the state of a dispersion liquid or may be a dried powder.
  • the third semiconductor nanoparticles exhibit band-end emission and can exhibit high band-end emission purity.
  • the semiconductor nanoparticles obtained by the method for producing semiconductor nanoparticles may be the third semiconductor nanoparticles or the fourth semiconductor nanoparticles obtained after the fourth step described later.
  • the method for producing semiconductor nanoparticles may further include a fourth step of subjecting a fourth mixture containing the third semiconductor nanoparticles and a gallium halide to a fourth heat treatment to obtain fourth semiconductor nanoparticles.
  • the fourth step is a fourth mixing step of obtaining a fourth mixture containing the third semiconductor nanoparticles obtained in the above-mentioned third step and a gallium halide, and a fourth heat treatment of the obtained fourth mixture. It may include a fourth heat treatment step of obtaining the fourth semiconductor nanoparticles.
  • Ga defects for example, a portion lacking Ga
  • a semiconductor containing Ga and S existing on the surface of the third semiconductor nanoparticles for example, GaS x ; x is, for example, 0.8 or more and 1.5 or less
  • the Ga portion of the gallium halide reacts to fill the Ga defect and further reacts with the S atom existing in the reaction system, so that the concentrations of Ga and S in the vicinity of the Ga defect increase and the Ga defect is compensated. Therefore, it can be considered that the band-end emission purity and the internal quantum yield are improved.
  • the Ga atom of the gallium halide is coordinated with the S atom of the semiconductor surface containing Ga and S existing on the surface of the third semiconductor nanoparticles, and the halogen atom of the gallium halide further coordinated with the halogen atom of the gallium halide in the reaction system. It can also be considered that the band-end emission purity and the internal quantum yield are improved by reacting with the S component existing in the surface, increasing the concentrations of Ga and S in the vicinity of the surface, and reducing the remaining surface defects.
  • the obtained third semiconductor nanoparticles are partially xanthogen.
  • the acid remains, and the gallium halide acts on the partially remaining xanthate, which promotes conversion to GaS x , increases the concentration of Ga and S near the surface, and remains surface defects. It can also be considered that the band-end emission purity and the internal quantum yield are improved by reducing the amount.
  • the third semiconductor nanoparticles and the gallium halide are mixed to obtain a fourth mixture.
  • the fourth mixture may further contain an organic solvent.
  • the organic solvent contained in the fourth mixture is the same as the organic solvent exemplified in the third step described above.
  • the concentration of the third semiconductor nanoparticles is, for example, 5.0 ⁇ 10 -7 mol / liter or more and 5.0 ⁇ 10 -5 mol / liter or less, particularly 1.0 ⁇ 10.
  • the fourth mixture may be prepared to be -6 mol / liter or more and 1.0 ⁇ 10 -5 mol / liter or less.
  • the concentration of the third semiconductor nanoparticles is set based on the amount of substance as particles.
  • gallium halide in the fourth mixture examples include gallium fluoride, gallium chloride, gallium bromide, gallium iodide, and the like, and at least one selected from the group consisting of these may be contained. Further, the gallium halide may contain at least gallium chloride. The gallium halide may be used alone or in combination of two or more.
  • the molar ratio of the gallium halide content to the third semiconductor nanoparticles in the fourth mixture may be, for example, 0.01 or more and 50 or less, preferably 0.1 or more and 10 or less.
  • the fourth mixture is subjected to the fourth heat treatment to obtain the fourth semiconductor nanoparticles.
  • the temperature of the fourth heat treatment may be, for example, 200 ° C. or higher and 320 ° C. or lower.
  • the fourth heat treatment step includes a temperature raising step of raising the temperature of the fourth mixture to a temperature in the range of 200 ° C. or higher and 320 ° C. or lower, and a heat treatment of the fourth mixture at a temperature in the range of 200 ° C. or higher and 320 ° C. or lower for a predetermined time. It may include a modification step to be performed.
  • the fourth heat treatment step may further include a preheat treatment step of heat-treating the fourth mixture at a temperature of 60 ° C. or higher and 100 ° C. or lower before the temperature raising step.
  • the temperature of the heat treatment in the preheat treatment step may be, for example, 70 ° C. or higher and 90 ° C. or lower.
  • the heat treatment time in the preheat treatment step may be, for example, 1 minute or more and 30 minutes or less, preferably 5 minutes or more and 20 minutes or less.
  • the temperature range for raising the temperature in the raising step of the fourth heat treatment step may be 200 ° C. or higher and 320 ° C. or lower, preferably 230 ° C. or higher and 290 ° C. or lower.
  • the rate of temperature rise may be adjusted so that the maximum temperature during temperature rise does not exceed the target temperature, and is, for example, 1 ° C./min or more and 50 ° C./min or less.
  • the heat treatment temperature in the modification step of the fourth heat treatment step may be 200 ° C. or higher and 320 ° C. or lower, preferably 230 ° C. or higher and 290 ° C. or lower.
  • the heat treatment time in the modification step may be, for example, 3 seconds or longer, preferably 1 minute or longer, 10 minutes or longer, 30 minutes or longer, 60 minutes or longer, or 90 minutes or longer.
  • the heat treatment time may be, for example, 300 minutes or less, preferably 180 minutes or less, or 150 minutes or less.
  • the heat treatment time in the modification step is the time when the temperature reaches the temperature set in the above temperature range (for example, the time when the temperature reaches 250 ° C. when set to 250 ° C.) as the start time, and the time when the operation for lowering the temperature is performed. Is the end time.
  • the atmosphere of the fourth heat treatment step is preferably an inert gas atmosphere, particularly an argon atmosphere or a nitrogen atmosphere.
  • an inert gas atmosphere By creating an inert gas atmosphere, it is possible to reduce or prevent the by-product of oxides and the oxidation of the surface of the obtained fourth semiconductor nanoparticles.
  • the method for producing semiconductor nanoparticles may further include a cooling step of lowering the temperature of the obtained dispersion liquid containing the fourth semiconductor nanoparticles, following the modification step described above.
  • the cooling step starts at the time when the operation for lowering the temperature is performed, and ends at the time when the temperature is cooled to 50 ° C. or lower.
  • the cooling step may include a period in which the temperature lowering rate is 50 ° C./min or more.
  • the temperature may be set to 50 ° C./min or higher at the time when the temperature drop starts after the operation for lowering the temperature is performed.
  • the atmosphere of the cooling step is preferably an inert gas atmosphere, particularly an argon atmosphere or a nitrogen atmosphere.
  • an inert gas atmosphere By creating an inert gas atmosphere, it is possible to reduce or prevent the by-product of oxides and the oxidation of the surface of the obtained fourth semiconductor nanoparticles.
  • the method for producing semiconductor nanoparticles may further include a separation step of separating the fourth semiconductor nanoparticles from the dispersion liquid, and may further include a purification step, if necessary. Since the separation step and the purification step are as described above in relation to the third semiconductor nanoparticles, detailed description thereof will be omitted here.
  • the method for producing semiconductor nanoparticles may further include a surface modification step.
  • the surface modification step may include contacting the obtained fourth semiconductor nanoparticles with the surface modifier.
  • the fourth semiconductor nanoparticles may be brought into contact with the surface modifier by mixing the fourth semiconductor nanoparticles and the surface modifier.
  • the amount ratio of the surface modifier to the second semiconductor nanoparticles in the surface modification step may be, for example , 1 ⁇ 10-8 mol or more, preferably 1 ⁇ 10-8 mol or more, with respect to 1 ⁇ 10-8 mol of the fourth semiconductor nanoparticles. It is 2 ⁇ 10-8 mol or more and 5 ⁇ 10-8 mol or less.
  • the contact temperature may be, for example, 0 ° C. or higher and 300 ° C. or lower, preferably 10 ° C. or higher and 300 ° C. or lower.
  • the contact time may be, for example, 10 seconds or more and 10 days or less, preferably 1 minute or more and 1 day or less.
  • the atmosphere of contact may be an inert gas atmosphere, and an argon atmosphere or a nitrogen atmosphere is particularly preferable.
  • the surface modifier used in the surface modification step include an amino alcohol having 2 to 20 carbon atoms, an ionic surface modifier, a nonionic surface modifier, and a nitrogen-containing nitrogen-containing group having 4 to 20 carbon atoms.
  • the surface modifier may be used alone or in combination of two or more different ones. The details of these surface modifiers are as described above.
  • the light-emitting material may include the above-mentioned core-shell type semiconductor nanoparticles and a metal compound that embeds the core-shell type semiconductor nanoparticles.
  • the metal compound that embeds the core-shell type semiconductor nanoparticles may contain at least one of Zn and Ga and at least one of S and O.
  • the luminescent material is composed of core-shell type semiconductor nanoparticles having a specific composition and a specific metal compound that embeds the luminescent material
  • the durability of the luminescent material is improved, and it can be used for water, oxygen, etc. in the environment.
  • the resulting deterioration of the light emitting characteristics of the light emitting material is suppressed.
  • the metal compound is considered to function, for example, as a matrix for embedding core-shell type semiconductor nanoparticles.
  • At least a part of the core-shell type semiconductor nanoparticles is embedded in a metal compound to form a light emitting material.
  • a plurality of particles may be embedded in the metal compound in an aggregated state, or individual particles may be independently embedded in the metal compound.
  • FIG. 12 is a schematic view schematically showing an example of the light emitting material 1.
  • the light emitting material 1 is composed of core-shell type semiconductor nanoparticles 2 and a metal compound 3 that embeds the core-shell type semiconductor nanoparticles 2.
  • the core-shell type semiconductor nanoparticles 2 are embedded in the metal compound 3 as a matrix as single particles or aggregated particles. Further, some core-shell type semiconductor nanoparticles 2 may be partially exposed from the surface of the metal compound 3.
  • FIG. 12 is a schematic view schematically showing an example of the light emitting material 1.
  • the light emitting material 1 is composed of core-shell type semiconductor nanoparticles 2 and a metal compound 3 that embeds the core-shell type semiconductor nanoparticles 2.
  • the core-shell type semiconductor nanoparticles 2 are embedded in the metal compound 3 as a matrix as single particles or aggregated particles. Further, some core-shell type semiconductor nanoparticles 2 may be partially exposed from the surface of the metal compound 3.
  • FIG. 12 is a schematic view schematically showing an example of
  • the core-shell type semiconductor nanoparticles 2 have a spherical shape for the sake of simplification of the description, but the shape of the core-shell type semiconductor nanoparticles is not limited to the spherical shape.
  • the metal compound 3 is drawn as a cube shape, but the shape of the metal compound 3 is not limited to the cube shape.
  • the content of the core-shell type semiconductor nanoparticles in the light emitting material may be, for example, 0.01% by mass or more and 10% by mass or less, preferably 0.1% by mass or more and 5% by mass, based on the total mass of the light emitting material. It is as follows.
  • the metal compound constituting the light emitting material contains at least one of Zn and Ga and at least one of S and O, and embeds core-shell type semiconductor nanoparticles.
  • the metal compound may be substantially a compound composed of at least one of Zn and Ga and at least one of S and O.
  • substantially means that, when the total number of atoms of all the elements contained in the metal compound is 100%, the ratio of the number of atoms of elements other than Zn, Ga, S and O is, for example, 10. % Or less, preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.
  • the proportion of elements contained in the metal compound can be confirmed, for example, by ICP emission spectrometry for Zn, Ga and S, and elemental analysis by the combustion method for O.
  • the metal compound may contain at least one selected from the group consisting of metal sulfides, metal acid sulfides and metal oxides. It can be confirmed by, for example, SEM-EPMA that the metal compound contains at least one selected from the group consisting of metal sulfides, metal acid sulfides and metal oxides.
  • the metal sulfide may contain at least one of Zn and Ga and S.
  • the metal sulfide When the metal sulfide is substantially formed of Zn and S, it may have a composition represented by ZnS.
  • substantially means that, when the total number of atoms of all the elements contained in the metal sulfide is 100%, the ratio of the number of atoms of elements other than Zn and S is, for example, 5% or less. It is preferably 3% or less, more preferably 1% or less.
  • the metal sulfide when the metal sulfide is substantially formed of Ga and S, it may have a composition represented by Ga 2 S 3.
  • substantially means that, when the total number of atoms of all the elements contained in the metal sulfide is 100%, the ratio of the number of atoms of elements other than Ga and S is, for example, 5% or less. It is preferably 3% or less, more preferably 1% or less.
  • the metallic acid sulfide may contain at least one of Zn and Ga, and S and O.
  • the metallic acid sulfide when it is formed, for example, substantially from Zn, S and O, it may have a composition represented by ZnO x S (1-x) (0 ⁇ X ⁇ 1).
  • substantially means that, when the total number of atoms of all the elements contained in the metallic acid sulfide is 100%, the ratio of the number of atoms of elements other than Zn, S and O is, for example, 5. % Or less, preferably 3% or less, more preferably 1% or less.
  • the metallic acid sulfide when substantially formed of Ga, S and O, it has a composition represented by Ga 2 O x S (3-x) (0 ⁇ X ⁇ 3). It's okay.
  • substantially means that, when the total number of atoms of all the elements contained in the metallic acid sulfide is 100%, the ratio of the number of atoms of elements other than Ga, S and O is, for example, 5. % Or less, preferably 3% or less, more preferably 1% or less.
  • the metal oxide may contain at least one of Zn and Ga and O.
  • the metal oxide when the metal oxide is formed, for example, substantially from Zn and O, it may have a composition represented by ZnO.
  • substantially means that, when the total number of atoms of all the elements contained in the metal oxide is 100%, the ratio of the number of atoms of elements other than Zn and O is, for example, 5% or less. It is preferably 3% or less, more preferably 1% or less.
  • the metal oxide when the metal oxide is substantially formed of Ga and O, it may have a composition represented by Ga 2 O 3.
  • substantially means that, when the total number of atoms of all the elements contained in the metal oxide is 100%, the ratio of the number of atoms of elements other than Ga and O is, for example, 5% or less. It is preferably 3% or less, more preferably 1% or less.
  • the metal compound that embeds the core-shell type semiconductor nanoparticles may be a compound produced by a solution reaction, as described later.
  • the metal compound is obtained by reacting an organic acid salt or an inorganic acid salt of a metal with at least one of a sulfur-containing compound and an oxygen-containing compound at a low temperature of 100 ° C. or lower in the presence of water, alcohol or the like. It may be a solvolysis product.
  • the metal compound may be crystalline or amorphous. The crystal state of the metal compound can be confirmed by, for example, an X-ray diffraction method.
  • the method for producing a luminescent material includes a preparatory step for preparing the core-shell type semiconductor nanoparticles described above, a core-shell type semiconductor nanoparticles, a compound containing at least one of Zn and Ga, and at least one of S and O.
  • a mixing step of obtaining a mixture of a luminescent material containing a compound containing a compound and a solvent, and embedding core-shell type semiconductor nanoparticles containing at least one of Zn and Ga and at least one of S and O from the mixture of the luminescent material. Includes a synthetic step to obtain the metal compound to be produced.
  • a compound containing at least one of Zn and Ga and a compound containing at least one of S and O are reacted via a solvent to make at least one of Zn and Ga a metal.
  • the contained metal compound is precipitated. Since the metal compound embeds and precipitates core-shell type semiconductor nanoparticles, a light emitting material can be efficiently produced by a solution reaction.
  • a core-shell type semiconductor nanoparticles In the mixing step in the method for producing a luminescent material, a core-shell type semiconductor nanoparticles, a compound containing at least one of Zn and Ga, a compound containing at least one of S and O, and a solvent are mixed to obtain a luminescent material. Get the mixture.
  • the core-shell type semiconductor nanoparticles used in the mixing step may be in the form of a dispersion liquid.
  • Examples of the compound containing at least one of Zn and Ga include an organic acid salt and an inorganic acid salt containing at least one of Zn and Ga.
  • Specific examples of the inorganic acid salt include nitrates, sulfates, hydrochlorides, sulfonates, carbonates and the like.
  • Examples of the organic acid salt include acetate and acetylacetonate. Of these, organic acid salts are preferable because they have high solubility in organic solutions.
  • Examples of the compound containing S include thioamides such as thioacetamide in addition to the above-mentioned sulfur-containing compounds.
  • Examples of the compound containing O include water, alcohol, amino alcohol and the like.
  • the solvent examples include water, alcohols having 1 to 8 carbon atoms, alkylene glycols having 2 to 8 carbon atoms, and other polyols such as glycerin.
  • the alcohol include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, hexanol, octanol, 2-ethylhexanol and the like.
  • the solvent may be a mixed solvent of water and alcohol, but it is preferable that the solvent is substantially alcohol because deterioration of the core-shell type semiconductor nanoparticles can be suppressed.
  • Substantially means that the content of the component other than alcohol is, for example, 5% by weight or less, preferably 1% by weight or less, and more preferably 0.5% by weight or less.
  • the content of the core-shell type semiconductor nanoparticles in the mixture of luminescent materials may be, for example, 10 nanomoles / liter or more and 10 micromoles / liter or less as a concentration based on the amount of substance (number of particles) as nanoparticles. It is preferably 100 nanomoles / liter or more and 1 micromol / liter or less.
  • the content of the compound containing at least one of Zn and Ga in the mixture of the luminescent material may be, for example, 1 mmol / liter or more and 1 mol / liter or less, preferably 10 mmol / liter or more and 200 mmol / liter or less. ..
  • the content of the compound containing at least one of S and O in the mixture of the luminescent material may be, for example, 1 mmol / liter or more and 1 mol / liter or less, preferably 10 mmol / liter or more and 200 mmol / liter or less. ..
  • the molar ratio of the content of the compound containing at least one of S and O to the content of the compound containing at least one of Zn and Ga in the mixture of the luminescent material may be, for example, 0.1 or more and 10 or less, preferably 0.1 or more. It may be 0.5 or more and 2 or less.
  • a compound containing at least one of S and O is added to a mixture of a solution containing a compound containing at least one of Zn and Ga and a dispersion liquid of core-shell type semiconductor nanoparticles to prepare a mixture of luminescent materials.
  • a compound containing at least one of Zn and Ga may be added to a mixture of a solution containing a compound containing at least one of S and O and a dispersion liquid of core-shell type semiconductor nanoparticles to obtain a mixture of luminescent materials. ..
  • the mixing temperature may be, for example, 0 ° C. or higher and 100 ° C. or lower, preferably 10 ° C. or higher and 80 ° C. or lower.
  • the mixed atmosphere may be, for example, an inert atmosphere, and when only alcohol is used as the solvent, a dehydrated atmosphere is more preferable.
  • the method for producing the luminescent material may include a surface modification step of bringing the above-mentioned core-shell type semiconductor nanoparticles into contact with a specific surface modifier.
  • a surface modification step of bringing the above-mentioned core-shell type semiconductor nanoparticles into contact with a specific surface modifier.
  • Step of Synthesizing Light-emitting Material In the step of synthesizing a light-emitting material, a metal compound containing at least one of Zn and Ga and at least one of S and O and embedding core-shell type semiconductor nanoparticles is obtained from a mixture of the light-emitting materials. From the mixture of luminescent materials, a metal compound is precipitated while embedding core-shell type semiconductor nanoparticles by a synthetic reaction involving solvolysis (so-called sol-gel method).
  • the metal compound may be precipitated at room temperature (for example, 25 ° C.), or the metal compound may be precipitated by performing a heat treatment.
  • the temperature of the heat treatment may be, for example, less than 100 ° C., preferably 80 ° C. or lower, and more preferably 60 ° C. or lower.
  • the temperature of the heat treatment may be 0 ° C. or higher, preferably 30 ° C. or higher.
  • the time required for the synthesis step may be, for example, 1 minute or more, preferably 10 minutes or more.
  • the time required for the synthesis step may be, for example, 10 days or less, preferably 3 days or less.
  • the atmosphere of the synthesis step is preferably an inert atmosphere, particularly an argon atmosphere or a nitrogen atmosphere.
  • an inert atmosphere By creating an inert atmosphere, a light emitting material having better light emitting characteristics can be obtained.
  • a dehydrated atmosphere may be used.
  • the embedding rate of the core-shell type semiconductor nanoparticles in the metal compound in the process of synthesizing the luminescent material may be, for example, 10% or more, preferably 80% or more.
  • the embedding ratio is obtained by dividing the amount of core-shell type semiconductor nanoparticles contained in the precipitated metal compound by the amount of core-shell type semiconductor nanoparticles added to the mixture of light emitting materials.
  • the method for producing a luminescent material may further include a separation step of separating the metal compound produced in the synthesis step from the solvent, and may further include a purification step, if necessary.
  • the separation step for example, the reaction solution containing the luminescent material may be subjected to centrifugation and the luminescent material may be recovered as a precipitate. Further, the precipitate of the light emitting material may be recovered by a solid-liquid separation means such as filtration.
  • the purification step for example, the precipitate obtained in the separation step may be washed with an organic solvent such as alcohol, and the washed precipitate may be dried.
  • a light-emitting device includes a light conversion member and a light source having a light emission peak wavelength in the ultraviolet to visible light range, and the light conversion member includes at least one of the core-shell type semiconductor nanoparticles and the light-emitting material described above. ..
  • the light emitting device for example, a part of light emitted from a light source is absorbed by core-shell type semiconductor nanoparticles or a light emitting material to emit light having a longer wavelength. Then, the light from the core-shell type semiconductor nanoparticles or the light emitting material and the balance of the light emitted from the light source are mixed, and the mixed light can be used as the light emission of the light emitting device.
  • a light emitting material may be used instead of the core shell type semiconductor nanoparticles, or the core shell type semiconductor nanoparticles and the light emitting material may be used in combination.
  • the light source a light source having an emission peak wavelength in the short wavelength region of 380 nm or more and 485 nm or less is used.
  • the emission peak wavelength of the light source is preferably 420 nm or more and 485 nm or less, and more preferably 440 nm or more and 480 nm or less.
  • the core-shell type semiconductor nanoparticles may be used in combination with other semiconductor quantum dots, or may be used in combination with other non-quantum dot phosphors (eg, organic or inorganic phosphors).
  • the other semiconductor quantum dots are, for example, the dual-system semiconductor quantum dots described in the background technology section.
  • a garnet-based phosphor such as an aluminum garnet-based phosphor can be used.
  • the garnet phosphor include a cerium-activated yttrium-aluminum-garnet-based phosphor and a cerium-activated lutetium-aluminum-garnet-based phosphor.
  • a nitrogen-containing calcium aluminosilicate-based phosphor activated with europium and / or chromium a silicate-based phosphor activated with europium, a ⁇ -SiAlON-based phosphor, a nitride-based phosphor such as CASN-based or SCANS-based, LnSi 3 N 11 system or LnSiAlON rare earth nitride phosphor such systems, BaSi 2 O 2 N 2: Eu -based or Ba 3 Si 6 O 12 N 2 : Eu -based oxynitride-based fluorescent material or the like, CaS system, SrGa 2 S 4 type, sulfide-based phosphor of ZnS-based, etc., chloro silicate-based phosphor, SrLiAl 3 N 4: Eu phosphor, SrMg 3 SiN 4: Eu phosphor, the fluoride complex phosphor activated with manganese K 2 SiF 6
  • the light conversion member containing the core-shell type semiconductor nanoparticles may be, for example, a sheet or a plate-shaped member, or a member having a three-dimensional shape.
  • a member having a three-dimensional shape is a surface mount type light emitting diode in which, when a light source is arranged on the bottom surface of a recess formed in a package, resin is placed in the recess to seal the light emitting element. It is a sealing member formed by filling.
  • another example of the light conversion member is a resin member formed so as to surround the upper surface and the side surface of the light source with a substantially uniform thickness when the light source is arranged on a flat substrate.
  • another example of the light conversion member is the light source and the light source when a resin member containing a reflective material is filled around the light source so that its upper end forms the same plane as the light source. It is a resin member formed in a flat plate shape with a predetermined thickness on the upper part of the resin member including the reflective material.
  • the light conversion member may be in contact with the light source or may be provided away from the light source.
  • the light conversion member may be a pellet-shaped member, a sheet member, a plate-shaped member or a rod-shaped member arranged away from the light source, or a member provided in contact with the light source, for example, a sealing member.
  • a coating member a member that covers a light emitting element provided separately from the mold member
  • a mold member including, for example, a member having a lens shape
  • the two or more types of core-shell type semiconductor nanoparticles exhibiting light emission of different wavelengths are used in the light emitting device, even if the two or more types of core-shell type semiconductor nanoparticles are mixed in one light conversion member.
  • two or more optical conversion members containing only one type of quantum dot may be used in combination.
  • the two or more types of light conversion members may form a laminated structure, or may be arranged as a dot-shaped or striped pattern on a plane.
  • a semiconductor light emitting element As the light source.
  • the semiconductor light emitting element include an LED chip.
  • the LED chip may include one or more semiconductor layers selected from the group consisting of GaN, GaAs, InGaN, AlInGaP, GaP, SiC, ZnO and the like.
  • the semiconductor light emitting device that emits blue-violet light, blue light, or ultraviolet light is, for example, a GaN-based device whose composition is represented by In X Al Y Ga 1-XY N (0 ⁇ X, 0 ⁇ Y, X + Y ⁇ 1). The compound is provided as a semiconductor layer.
  • the light emitting device of the present embodiment is preferably incorporated in a liquid crystal display device as a light source. Since band-end emission by core-shell type semiconductor nanoparticles has a short emission life, a emission device using this is suitable as a light source for a liquid crystal display device that requires a relatively fast response speed. Further, the core-shell type semiconductor nanoparticles of the present embodiment may exhibit an emission peak having a small half-value width as band-end emission. Therefore, the light emitting device may have the following aspects.
  • the blue semiconductor light emitting element is used to obtain blue light having a peak wavelength in the range of 420 nm or more and 490 nm or less, and the core-shell type semiconductor nanoparticles are used to obtain a peak wavelength in the range of 510 nm or more and 550 nm or less, preferably 530 nm or more and 540 nm or less.
  • blue light having a peak wavelength of 400 nm or less is obtained by a semiconductor light emitting element, and a peak wavelength of 430 nm or more and 470 nm or less, preferably 440 nm or more and 460 nm or less is obtained by a core-shell type semiconductor nanoparticles.
  • a liquid crystal display device having good color reproducibility can be obtained without using a dark color filter.
  • the light emitting device is used, for example, as a direct type backlight or an edge type backlight.
  • a sheet, plate-shaped member, or rod made of resin, glass, or the like containing semiconductor nanoparticles having a core-shell structure may be incorporated in the liquid crystal display device as an optical conversion member independent of the light emitting device.
  • Example 1 Synthesis of semiconductor nanoparticles
  • silver acetate (AgOAc) 0.2 mmol, indium acetate (In (OAc) 3 ) 0.1 mmol, gallium diethyldithiocarbamate (Ga (DDTC) 3 ) 0.4 mmol was mixed with 10 mL of distilled and purified oleylamine (OLA) to give a first mixture.
  • the first mixture was heated to 80 ° C., vacuum degassed and then replaced with an argon atmosphere. Subsequently, the mixture was heated to 150 ° C., and the liquid temperature was maintained at 150 ° C. for 30 minutes.
  • the particles were allowed to cool to room temperature, coarse particles were removed by centrifugation, and methanol was added to the supernatant to precipitate semiconductor nanoparticles as cores, which were then recovered by centrifugation.
  • the recovered solid was dispersed in 2 mL of oleylamine.
  • the shape of the obtained semiconductor nanoparticles was observed using a transmission electron microscope (TEM, manufactured by Hitachi High-Technologies Corporation, trade name H-7650), and the average particle size was 80,000 to 20 times. It was measured from a 10,000-fold TEM image.
  • TEM grid the trade name High-Resolution Carbon HRC-C10 STEM Cu100P Grid (Ohken Shoji Co., Ltd. was used.
  • the shape of the obtained particles is considered to be spherical or polygonal.
  • the average particle size is 3? Select the above TEM images and select all the nanoparticles contained in them that can be measured, that is, all the particles except those in which the image of the particles is cut off at the edge of the image.
  • the particle size was determined by a method of calculating the arithmetic average thereof. In both Examples and Comparative Examples described later, the particle size of nanoparticles of 100 points or more in total was measured using 3 or more TEM images. The average particle size of the core semiconductor nanoparticles was 4.4 nm, and the standard deviation was 0.8 nm.
  • the amount of substance of indium contained in the obtained semiconductor nanoparticles was determined by ICP emission spectroscopy (Shimadzu Corporation, ICPS-7510) measurement.
  • the amount of substance of the particles produced based on silver was calculated to be 82 ⁇ mol.
  • the volume of the semiconductor nanoparticles when the average particle size is 4.4 nm is calculated to be 45 nm3 when it is spherical.
  • the unit cell volume of the gallium sulfide indium gallium crystal, which is square and has an indium: gallium ratio of 1: 1, is calculated to be 0.36 nm3 (lattice constants 0.578 nm, 0.578 nm, 1.07 nm).
  • the absorption and emission spectra of semiconductor nanoparticles, core-shell type semiconductor nanoparticles and TBP-modified core-shell type semiconductor nanoparticles were measured. The results are shown in Table 1.
  • the absorption spectrum was measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, trade name V-670) with a wavelength range of 350 nm to 850 nm.
  • the emission spectrum is set to an excitation light wavelength of 450 nm for core particles and an observation wavelength of 460 nm to 1010 nm using a spectrofluorometer (manufactured by Nippon Kogaku Co., Ltd., trade name FP-8600), and excitation for core / shell particles.
  • the measurement was performed by setting the light wavelength to 365 nm and the observation wavelength from 380 nm to 1010 nm.
  • the quantum yield was measured at room temperature (25 ° C.) at an excitation wavelength of 450 nm using a fluorescence spectrum measuring device PMA-12 (manufactured by Hamamatsu Photonics Co., Ltd.) with an integrating sphere attached, and in the wavelength range of 350 nm to 1100 nm. It was measured and calculated from the wavelength range of 470 nm to 900 nm.
  • band-end emission having a half-value width of about 43 nm was observed near 516 nm, the quantum yield of band-end emission was 68%, and the band-end emission component.
  • Example 2 Synthesis of semiconductor nanoparticles In a reaction vessel, 0.2 mmol of silver acetate (AgOAc), 0.1 mmol of indium acetate (In (OAc) 3 ) and 0.4 mmol of gallium diethyldithiocarbamate (Ga (DDTC) 3 ) were added.
  • Semiconductor nanoparticles, core-shell semiconductor nanoparticles and core-shell semiconductor nanoparticles were obtained in the same manner as in Example 1 except that 6.5 mL of distilled and purified oleylamine (OLA) and 3.2 mL of oleic acid (OA) were mixed to obtain a first mixture. TBP-modified core-shell semiconductor nanoparticles were obtained.
  • Table 1 shows the measurement results measured under the same conditions as in Example 1. Further, FIG. 1 shows an absorption spectrum of relative absorbance normalized by the maximum absorbance of the core-shell type semiconductor nanoparticles of Example 1 in the core-shell type semiconductor nanoparticles, and FIG. 2 shows an example in the core-shell type semiconductor nanoparticles. The emission spectrum of the relative emission intensity standardized by the maximum emission intensity of the core-shell type semiconductor nanoparticles of No. 1 is shown.
  • Example 3 Semiconductor nanoparticles and core-shell semiconductor nanos are the same as in Example 2, except that the amount of oleylamine (OLA) in the synthesis of semiconductor nanoparticles was 3.3 mL and the amount of oleic acid (OA) was 6.3 mL. Particles and TBP-modified core-shell semiconductor nanoparticles were obtained. Table 1 shows the measurement results measured under the same conditions as in Example 1. Further, FIG. 1 shows an absorption spectrum of relative absorbance normalized by the maximum absorbance of the core-shell type semiconductor nanoparticles of Example 1 in the core-shell type semiconductor nanoparticles, and FIG. 2 shows an example in the core-shell type semiconductor nanoparticles. The emission spectrum of the relative emission intensity standardized by the maximum emission intensity of the core-shell type semiconductor nanoparticles of No. 1 is shown.
  • OVA oleylamine
  • OA oleic acid
  • Example 4 Semiconductor nanoparticles, core-shell semiconductor nanoparticles, and TBP-modified core-shell semiconductor nanoparticles were obtained in the same manner as in Example 1 except that the amount of indium acetate in the synthesis of semiconductor nanoparticles was 0.067 mmol. Table 1 shows the measurement results measured under the same conditions as in Example 1. Further, the absorption spectrum of the core-shell type semiconductor nanoparticles is shown in FIG. 3, and the emission spectrum of the core-shell type semiconductor nanoparticles is shown in FIG.
  • Example 5 Semiconductor nanoparticles and core-shell semiconductor nanos are the same as in Example 4, except that the amount of oleylamine (OLA) in the synthesis of semiconductor nanoparticles was 6.5 mL and the amount of oleic acid (OA) was 3.2 mL. Particles and TBP-modified core-shell semiconductor nanoparticles were obtained. Table 1 shows the measurement results measured under the same conditions as in Example 1. Further, FIG. 3 shows an absorption spectrum of relative absorbance normalized by the maximum absorbance of the core-shell type semiconductor nanoparticles of Example 4 in the core-shell type semiconductor nanoparticles, and FIG. 4 shows an example in the core-shell type semiconductor nanoparticles. The emission spectrum of the relative emission intensity standardized by the maximum emission intensity of the core-shell type semiconductor nanoparticles of No. 4 is shown.
  • OVA oleylamine
  • OA oleic acid
  • Example 6 Semiconductor nanoparticles and core-shell semiconductor nanos are the same as in Example 4, except that the amount of oleylamine (OLA) in the synthesis of semiconductor nanoparticles was 3.3 mL and the amount of oleic acid (OA) was 6.3 mL. Particles and TBP-modified core-shell semiconductor nanoparticles were obtained. Table 1 shows the measurement results measured under the same conditions as in Example 1. Further, FIG. 3 shows an absorption spectrum of relative absorbance normalized by the maximum absorbance of the core-shell type semiconductor nanoparticles of Example 4 in the core-shell type semiconductor nanoparticles, and FIG. 4 shows an example in the core-shell type semiconductor nanoparticles. The emission spectrum of the relative emission intensity standardized by the maximum emission intensity of the core-shell type semiconductor nanoparticles of No. 4 is shown.
  • OVA oleylamine
  • OA oleic acid
  • Example 7 Synthesis of semiconductor nanoparticles
  • a reaction vessel 0.2 mmol of silver acetate ( AgOAc), 0.132 mmol of indium acetate (In (OAc) 3 ) and 0.266 mmol of gallium diethyldithiocarbamate (Ga (DDTC) 3 ) were added. It was mixed with 8 mL of dehydrated oleylamine (OLA) to give the first mixture. The first mixture was evacuated and then replaced with a nitrogen atmosphere. Subsequently, the temperature was raised to 150 ° C. at a rate of 10 ° C./min, and after reaching 150 ° C., the temperature was maintained for 30 minutes.
  • OVA dehydrated oleylamine
  • the particles were allowed to cool to room temperature, and coarse particles were removed by centrifugation. Then, 6 mL of methanol was added to the supernatant to precipitate particles having a large particle size and a low quantum yield, which were removed by centrifugation. Further, 3 mL of methanol was added to the supernatant to precipitate the semiconductor nanoparticles as the core, which were recovered by centrifugation. The recovered solid was washed with 4 mL of methanol and dispersed in 5 mL of chloroform.
  • the mixture was allowed to cool to about 100 ° C., and the reaction vessel was vacuum degassed to remove by-products such as volatile sulfur compounds, and the mixture was allowed to cool to about 60 ° C.
  • the obtained reaction solution was centrifuged to remove coarse particles, 9 mL of methanol was added to precipitate core-shell type semiconductor particles, and the particles were recovered by centrifugation. After washing with 10 mL of methanol, the obtained core-shell type semiconductor was obtained. The nanoparticles were dispersed in 3 mL of chloroform.
  • TOP trioctylphosphine
  • the absorption and emission spectra of semiconductor nanoparticles, core-shell type semiconductor nanoparticles and TOP-modified core-shell type semiconductor nanoparticles were measured. The results are shown in Table 1.
  • the absorption spectrum is shown in FIG. 5, and the emission spectrum is shown in FIG.
  • the absorption spectrum was measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by Hitachi High-Tech Science, trade name U-3310) with a wavelength range of 350 nm to 750 nm.
  • the emission spectrum and quantum yield were measured using a quantum efficiency measurement system (manufactured by Otsuka Electronics, trade name QE-2100) at room temperature (25 ° C.) at an excitation light wavelength of 365 nm and in the wavelength range of 300 nm to 950 nm.
  • the quantum efficiency was calculated from the wavelength range of 450 nm to 950 nm. Further, as each sample for which the absorption spectrum and the emission spectrum were measured, the one in which the particle concentration was adjusted so that the absorbance at 450 nm when the absorption spectrum was measured was about 0.15 was used.
  • band-end emission having a half-value width of about 37 nm was observed near 540 nm, and the quantum yield of band-end emission was 55%. Yes, the purity of the band-end luminescent component was 87%.
  • Example 8 Synthesis of semiconductor nanoparticles
  • AgOAc silver acetate
  • In (OAc) 3 0.65 mmol of indium acetate
  • Ga (DDTC) 3 gallium diethyldithiocarbamate
  • OVA oleylamine
  • the particles were allowed to cool to room temperature, and coarse particles were removed by centrifugation. Then, 6 mL of methanol was added to the supernatant to precipitate particles having a large particle size and a low quantum yield, which were removed by centrifugation. Further, 3 mL of methanol was added to the supernatant to precipitate the semiconductor nanoparticles as the core, which were recovered by centrifugation. The recovered solid was washed with 4 mL of methanol and dispersed in 5 mL of chloroform.
  • the mixture was allowed to cool to about 100 ° C., and the reaction vessel was vacuum degassed to remove by-products such as volatile sulfur compounds, and the mixture was allowed to cool to about 60 ° C.
  • the obtained reaction solution was centrifuged to remove coarse particles, 9 mL of methanol was added to precipitate core-shell type semiconductor particles, and the particles were recovered by centrifugation. After washing with 10 mL of methanol, the obtained core-shell type semiconductor was obtained. The nanoparticles were dispersed in 3 mL of chloroform.
  • the emission spectra of semiconductor nanoparticles and core-shell type semiconductor nanoparticles were measured. The results are shown in Table 1.
  • the emission spectrum and quantum yield were measured using a quantum efficiency measurement system (manufactured by Otsuka Electronics, trade name QE-2100) at room temperature (25 ° C.) at an excitation light wavelength of 450 nm and measured in the wavelength range of 300 nm to 950 nm.
  • the quantum efficiency was calculated from the wavelength range of 500 nm to 950 nm.
  • Example 9 Semiconductor nanoparticles and core-shell type semiconductor nanoparticles were obtained in the same manner as in Example 8 except that the heating temperature of the first mixture in the synthesis of semiconductor nanoparticles was set to 150 ° C. Table 1 and FIG. 7 show the measurement results measured under the same conditions as in Example 8. As the sample for which the emission spectrum was measured, a sample in which the particle concentration was adjusted so that the absorbance at 450 nm when the absorption spectrum was measured was approximately 0.15 was used.
  • Example 10 Semiconductor nanoparticles and core-shell type semiconductor nanoparticles were obtained in the same manner as in Example 8 except that the heating temperature of the first mixture in the synthesis of semiconductor nanoparticles was set to 180 ° C. Table 1 and FIG. 7 show the measurement results measured under the same conditions as in Example 8. As the sample for which the emission spectrum was measured, a sample in which the particle concentration was adjusted so that the absorbance at 450 nm when the absorption spectrum was measured was approximately 0.15 was used.
  • Example 11 Semiconductor nanoparticles and core-shell type semiconductor nanoparticles were obtained in the same manner as in Example 8 except that the heating temperature of the first mixture in the synthesis of semiconductor nanoparticles was set to 200 ° C. Table 1 and FIG. 7 show the measurement results measured under the same conditions as in Example 8. As the sample for which the emission spectrum was measured, a sample in which the particle concentration was adjusted so that the absorbance at 450 nm when the absorption spectrum was measured was approximately 0.15 was used.
  • the temperature was maintained for 1 hour after reaching 270 ° C. Subsequently, the mixture was allowed to cool to about 100 ° C., and the reaction vessel was vacuum degassed to remove by-products such as volatile sulfur compounds, and the mixture was allowed to cool to about 60 ° C. After adding 3 mL of hexane to the obtained reaction solution, the mixture was centrifuged to remove coarse particles.
  • TOP trioctylphosphine
  • the absorption and emission spectra of semiconductor nanoparticles, core-shell type semiconductor nanoparticles and TOP-modified core-shell type semiconductor nanoparticles were measured. The results are shown in Table 2.
  • the absorption spectrum is shown in FIG. 8, and the emission spectrum is shown in FIG.
  • the absorption spectrum was measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by Hitachi High-Tech Science, trade name U-2900) with a wavelength range of 350 nm to 750 nm.
  • the emission spectrum and quantum yield were measured using a quantum efficiency measurement system (manufactured by Otsuka Electronics, trade name QE-2100) at room temperature (25 ° C.) at an excitation light wavelength of 450 nm and measured in the wavelength range of 300 nm to 950 nm.
  • the quantum efficiency was calculated from the wavelength range of 500 nm to 950 nm. Further, as each sample for which the absorption spectrum and the emission spectrum were measured, the one in which the particle concentration was adjusted so that the absorbance at 450 nm when the absorption spectrum was measured was about 0.15 was used.
  • Comparative Example 2 A core-shell semiconductor similar to Comparative Example 1 except that the amount of indium acetate (In (OAc) 3 ) was 0.12 mmol and the amount of gallium acetylacetonate (Ga (acac) 3) was 0.28 mmol. Nanoparticles were obtained. Table 2 shows the measurement results measured under the same conditions as in Comparative Example 1. The absorption spectrum is shown in FIG. 10, and the emission spectrum is shown in FIG. As each sample for which the absorption spectrum and the emission spectrum were measured, the one in which the particle concentration was adjusted so that the absorbance at 450 nm when the absorption spectrum was measured was approximately 0.15 was used.
  • the absorption spectrum was measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by Hitachi High-Tech Science, trade name U-2900) with a wavelength range of 350 nm to 750 nm.
  • the emission spectrum and quantum yield were measured using a quantum efficiency measurement system (manufactured by Otsuka Electronics, trade name QE-2100) at room temperature (25 ° C.) at an excitation light wavelength of 450 nm and measured in the wavelength range of 300 nm to 950 nm.
  • the quantum efficiency was calculated from the wavelength range of 500 nm to 950 nm.
  • Comparative Example 4 Synthesis of semiconductor nanoparticles Same as Comparative Example 1 except that the amount of indium acetate (In (OAc) 3 ) was 0.08 mmol and the amount of gallium acetylacetonate (Ga (acac) 3) was 0.32 mmol.
  • Table 2 shows the measurement results measured under the same conditions as in Comparative Example 1. The absorption spectrum is shown in FIG. 10, and the emission spectrum is shown in FIG. As each sample for which the absorption spectrum and the emission spectrum were measured, the one in which the particle concentration was adjusted so that the absorbance at 450 nm when the absorption spectrum was measured was approximately 0.15 was used.
  • Example 4 From the comparison between Example 1 and Example 4, it was found that the emission peak wavelength of the core-shell type semiconductor nanoparticles was shortened by increasing the ratio of the number of atoms of Ga to the total number of atoms of In and Ga contained in the first mixture. confirmed.
  • Example 2 From the comparison between Example 1 and Example 2, it was confirmed that when the organic solvent in the first mixture contained unsaturated fatty acids, the emission peak wavelength of the core-shell type semiconductor nanoparticles was shifted.
  • Example 12 Synthesis of semiconductor nanoparticles
  • a reaction vessel 0.5 mmol of silver acetate (AgOAc), 0.33 mmol of indium acetate (In (OAc) 3 ) and 0.65 mmol of gallium ethylxanthate (Ga (EX) 3 ) were added. It was mixed with 16 mL of dehydrated oleylamine (OLA) to give the first mixture. The first mixture was evacuated and then replaced with a nitrogen atmosphere. Subsequently, the temperature was raised to 150 ° C. at a rate of 10 ° C./min, and after reaching 150 ° C., the temperature was maintained for 30 minutes.
  • OVA dehydrated oleylamine
  • the particles were allowed to cool to room temperature, and coarse particles were removed by centrifugation. Then, 6 mL of methanol was added to the supernatant to precipitate particles having a large particle size and a low quantum yield, which were removed by centrifugation. Further, 3 mL of methanol was added to the supernatant to precipitate the semiconductor nanoparticles as the core, which were recovered by centrifugation. The recovered solid was washed with 4 mL of methanol and dispersed in 5 mL of chloroform.
  • the mixture was allowed to cool to about 100 ° C., and the reaction vessel was vacuum degassed to remove by-products such as volatile sulfur compounds, and the mixture was allowed to cool to about 60 ° C.
  • the obtained reaction solution was centrifuged to remove coarse particles, 9 mL of methanol was added to precipitate core-shell type semiconductor particles, and the particles were recovered by centrifugation. After washing with 10 mL of methanol, the obtained core-shell type semiconductor was obtained. The nanoparticles were dispersed in 3 mL of chloroform.
  • the emission spectrum of core-shell type semiconductor nanoparticles was measured. The results are shown in Table 3.
  • the emission spectrum and quantum yield were measured using a quantum efficiency measurement system (manufactured by Otsuka Electronics, trade name QE-2100) at room temperature (25 ° C.) at an excitation light wavelength of 365 nm and in the wavelength range of 300 nm to 950 nm.
  • the quantum efficiency was calculated from the wavelength range of 450 nm to 950 nm.
  • FIG. 13 shows an emission spectrum of core-shell type semiconductor nanoparticles.
  • band-end emission having a half-value width of 39 nm was observed near 538 nm, the quantum yield of band-end emission was 25%, and the band-end emission component.
  • the purity of was 85%.
  • Example 13 Synthesis of semiconductor nanoparticles
  • a reaction vessel 0.5 mmol of silver ethylxanthate (Ag (EX)), 0.5 mmol of indium acetate (In (OAc) 3 ) and gallium ethylxanthate (Ga (EX) 3 ) 0.85 mmol was mixed with 16 mL of dehydrated oleylamine (OLA) to give the first mixture.
  • the first mixture was evacuated and then replaced with a nitrogen atmosphere. Subsequently, the temperature was raised to 150 ° C. at a rate of 10 ° C./min, and after reaching 150 ° C., the temperature was maintained for 30 minutes.
  • the particles were allowed to cool to room temperature, and coarse particles were removed by centrifugation. Then, 6 mL of methanol was added to the supernatant to precipitate particles having a large particle size and a low quantum yield, which were removed by centrifugation. Further, 3 mL of methanol was added to the supernatant to precipitate the semiconductor nanoparticles as the core, which were recovered by centrifugation. The recovered solid was washed with 4 mL of methanol and dispersed in 5 mL of chloroform.
  • the mixture was allowed to cool to about 100 ° C., and the reaction vessel was vacuum degassed to remove by-products such as volatile sulfur compounds, and the reaction vessel was allowed to cool to about 60 ° C.
  • the obtained reaction solution was centrifuged to remove coarse particles, 9 mL of methanol was added to precipitate core-shell type semiconductor particles, and the particles were recovered by centrifugation. After washing with 10 mL of methanol, the obtained core-shell type semiconductor was obtained. The nanoparticles were dispersed in 3 mL of chloroform.
  • the emission spectrum of core-shell type semiconductor nanoparticles was measured. The results are shown in Table 3.
  • the emission spectrum and quantum yield were measured using a quantum efficiency measurement system (manufactured by Otsuka Electronics, trade name QE-2100) at room temperature (25 ° C.) at an excitation light wavelength of 365 nm and in the wavelength range of 300 nm to 950 nm.
  • the quantum efficiency was calculated from the wavelength range of 450 nm to 950 nm.
  • FIG. 13 shows an emission spectrum of relative emission intensity normalized by the maximum emission intensity of the core-shell type semiconductor nanoparticles of Example 12 in the core-shell type semiconductor nanoparticles.
  • band-end emission having a half-value width of 38 nm was observed near 533 nm, the quantum yield of band-end emission was 34%, and the band-end emission component. The purity of was 88%.
  • Step 3 0.1 mmol silver ethylxanthate (Ag (EX)), 0.12 mmol indium acetate (In (OAc) 3 ), 0.2 mmol gallium ethylxanthate (Ga (EX) 3 ), 0. 020 mmol of gallium chloride was mixed with 20 mL of oleylamine (OLA) to give a third mixture.
  • the third mixture was heat-treated at 260 ° C. for 120 minutes with stirring under a nitrogen atmosphere. After allowing the obtained suspension to cool, it was subjected to centrifugation (radius 146 mm, 3800 rpm, 5 minutes) to remove the precipitate, and a dispersion liquid of the third semiconductor nanoparticles was obtained.
  • the emission spectrum of the first semiconductor nanoparticles obtained above was measured, and the band-end emission peak wavelength, full width at half maximum, band-end emission purity, and internal quantum yield of band-end emission were calculated.
  • the emission spectrum was measured using a quantum efficiency measurement system (manufactured by Otsuka Electronics, trade name QE-2100) at room temperature (25 ° C.) at an excitation light wavelength of 365 nm, measured in the wavelength range of 300 nm to 950 nm, and inside.
  • the quantum yield was calculated from the wavelength range of 450 nm to 950 nm. The results are shown in Table 4 and FIG.
  • the temperature was maintained for 1 hour after reaching 270 ° C. Subsequently, the mixture was allowed to cool to about 100 ° C., and the reaction vessel was vacuum degassed to remove by-products such as volatile sulfur compounds, and the mixture was allowed to cool to about 60 ° C. After adding 3 mL of hexane to the obtained reaction solution, the mixture was centrifuged to remove coarse particles. Next, 8 mL of methanol was added and centrifuged to remove particles having a large particle size, and then 12 mL of methanol was further added to the supernatant to precipitate the semiconductor nanoparticles, which were recovered by centrifugation and washed with 10 mL of methanol.
  • Table 4 shows the measurement results of the emission spectrum of the obtained semiconductor nanoparticles in the same manner as in Example 14. Further, FIG. 14 shows an emission spectrum of relative emission intensity standardized by the maximum emission intensity of the semiconductor nanoparticles of Example 14.
  • Step 3 0.1 mmol silver ethylxanthate (Ag (EX)), 0.12 mmol indium acetate (In (OAc) 3 ), 0.2 mmol gallium ethylxanthate (Ga (EX) 3 ), 0. 010 mmol of gallium chloride was mixed with 20 mL of oleylamine to give a third mixture.
  • the third mixture was heat treated at 260 ° C. for 120 minutes in a nitrogen atmosphere with stirring. After allowing the obtained suspension to cool, it was subjected to centrifugation (radius 146 mm, 3800 rpm, 5 minutes) to remove the precipitate, and a dispersion liquid of the third semiconductor nanoparticles was obtained.
  • Fourth Step A fourth mixture was obtained by mixing 0.07 mmol of gallium chloride (GaCl 3 ) with a dispersion containing 0.02 mmol of the 10 ml of the third semiconductor nanoparticles obtained above at a nanoparticle concentration.
  • the fourth mixture was depressurized with stirring, heated to 80 ° C., and heat-treated at 80 ° C. for 10 minutes while being depressurized. Then, the temperature was raised to 260 ° C. in a nitrogen atmosphere, and heat treatment was carried out for 120 minutes. After the heat treatment, the obtained suspension was allowed to cool to obtain a dispersion liquid of the fourth semiconductor nanoparticles.
  • Table 4 and FIG. 15 show the measurement results of the emission spectrum of the obtained fourth semiconductor nanoparticles measured in the same manner as in Example 1.
  • Example 16 A dispersion liquid of the fourth semiconductor nanoparticles was obtained in the same manner as in Example 15 except that the amount of gallium chloride in the third mixture in the third step was changed to 0.020 mmol.
  • Table 4 shows the measurement results of the emission spectra of the obtained fourth semiconductor nanoparticles measured in the same manner as in Example 14. Further, FIG. 15 shows an emission spectrum of relative emission intensity standardized by the maximum emission intensity of the semiconductor nanoparticles of Example 15.
  • Example 17 The same procedure as in Example 15 was carried out except that the amount of gallium chloride in the third mixture in the third step was changed to 0.015 mmol, to obtain a dispersion liquid of the fourth semiconductor nanoparticles.
  • Table 4 shows the measurement results of the emission spectra of the obtained fourth semiconductor nanoparticles measured in the same manner as in Example 14. Further, FIG. 15 shows an emission spectrum of relative emission intensity standardized by the maximum emission intensity of the semiconductor nanoparticles of Example 15.
  • Example 18 A dispersion liquid of the fourth semiconductor nanoparticles was obtained in the same manner as in Example 15 except that the amount of gallium chloride in the third mixture in the third step was changed to 0.050 mmol.
  • Table 4 shows the measurement results of the emission spectra of the obtained fourth semiconductor nanoparticles measured in the same manner as in Example 14. Further, FIG. 15 shows an emission spectrum of relative emission intensity standardized by the maximum emission intensity of the semiconductor nanoparticles of Example 15.
  • Example 19 In the third step, 0.04 mmol of silver ethylxanthate (Ag (EX)), 0.048 mmol of indium acetate (In (OAc) 3 ), 0.08 mmol of gallium ethylxanthate (Ga (EX) 3 ), A third mixture was obtained by mixing 0.008 mmol of gallium chloride with 20 mL of oleylamine, and the same procedure as in Example 15 was carried out to obtain a dispersion of fourth semiconductor nanoparticles.
  • Table 4 and FIG. 16 show the measurement results of the emission spectrum of the obtained fourth semiconductor nanoparticles measured in the same manner as in Example 14.
  • Example 20 A dispersion liquid of the fourth semiconductor nanoparticles was obtained in the same manner as in Example 19 except that the amount of gallium chloride in the third mixture in the third step was changed to 0.016 mmol.
  • Table 4 shows the measurement results of the emission spectra of the obtained fourth semiconductor nanoparticles measured in the same manner as in Example 14. Further, FIG. 16 shows an emission spectrum of relative emission intensity standardized by the maximum emission intensity of the semiconductor nanoparticles of Example 19.
  • Example 21 In the third step, 0.06 mmol of silver ethylxanthate (Ag (EX)), 0.072 mmol of indium acetate (In (OAc) 3 ), 0.12 mmol of gallium ethylxanthate (Ga (EX) 3 ), The same procedure as in Example 15 was carried out except that 0.012 mmol of gallium chloride was mixed with 20 mL of oleylamine to obtain a third mixture, and a dispersion of fourth semiconductor nanoparticles was obtained. Table 4 shows the measurement results of the emission spectra of the obtained fourth semiconductor nanoparticles measured in the same manner as in Example 14. Further, FIG. 16 shows an emission spectrum of relative emission intensity standardized by the maximum emission intensity of the semiconductor nanoparticles of Example 19.
  • Example 22 In the third step, 0.14 mmol of silver ethylxanthate (Ag (EX)), 0.168 mmol of indium acetate (In (OAc) 3 ), 0.28 mmol of gallium ethylxanthate (Ga (EX) 3 ), A third mixture was obtained by mixing 0.028 mmol of gallium chloride with 20 mL of oleylamine, and the same procedure as in Example 15 was carried out to obtain a dispersion of fourth semiconductor nanoparticles.
  • Table 4 shows the measurement results of the emission spectra of the obtained fourth semiconductor nanoparticles measured in the same manner as in Example 19. Further, FIG. 16 shows an emission spectrum of relative emission intensity standardized by the maximum emission intensity of the semiconductor nanoparticles of Example 19.
  • Example 14 semiconductor nanoparticles having a band-end emission having an emission peak wavelength in the range of 480 nm to 560 nm and exhibiting high band-end emission purity were obtained by one-pot synthesis. Therefore, Comparative Example 5 It was confirmed that the manufacturing method is more efficient than that of the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

短波長の発光ピーク波長でバンド端発光を示すことができる半導体ナノ粒子の製造方法が提供される。半導体ナノ粒子の製造方法は、Ag塩と、In塩と、Ga及びSを含む化合物と、有機溶剤とを含む第1混合物を得ることと、第1混合物を125℃以上300℃以下の範囲にある温度にて熱処理して、第1半導体ナノ粒子を得ることとを含む。

Description

半導体ナノ粒子の製造方法
 本開示は、半導体ナノ粒子の製造方法に関する。
 半導体粒子はその粒径が例えば10nm以下になると、量子サイズ効果を発現することが知られており、そのようなナノ粒子は量子ドット(半導体量子ドットとも呼ばれる)と呼ばれる。量子サイズ効果とは、バルク粒子では連続とみなされる価電子帯と伝導帯のそれぞれのバンドが、ナノ粒子では離散的となり、粒径に応じてバンドギャップエネルギーが変化する現象を指す。
 量子ドットは、光を吸収して、そのバンドギャップエネルギーに対応する光に波長変換可能であるため、量子ドットの発光を利用した白色発光デバイスが提案されている(例えば、特開2012-212862号公報及び特開2010-177656号公報参照)。具体的には、発光ダイオード(LED)チップから発せされる光の一部を量子ドットに吸収させて、量子ドットからの発光とLEDチップからの発光との混合色として白色光を得ることが提案されている。これらの特許文献では、CdSe及びCdTe等の第12族-第16族、PbS及びPbSe等の第14族-第16族の二元系の量子ドットを使用することが提案されている。またCd、Pb等を含む化合物の毒性を考慮して、これらの元素を含まないコアシェル構造型半導体量子ドットを使用した波長変換フィルムが提案されている(例えば、国際公開第2014/129067号参照)。またバンド端発光が可能で低毒性組成となり得る三元系の半導体ナノ粒子として、硫化物ナノ粒子(例えば、国際公開第2018/159699号及び国際公開第2019/160094号参照)が検討されている。
 本開示の一態様は、短波長の発光ピーク波長でバンド端発光を示すことができる半導体ナノ粒子の製造方法を提供することを目的とする。
 第1態様は、銀(Ag)塩と、インジウム(In)塩と、ガリウム(Ga)及びイオウ(S)を含む化合物と、有機溶剤とを含む第1混合物得ることと、第1混合物を125℃以上300℃以下の範囲にある温度にて熱処理して、第1半導体ナノ粒子(以下、「コア」ともいう)を得ることと、を含む半導体ナノ粒子の製造方法である。
 第2態様は、第1態様の製造法で得られる第1半導体ナノ粒子と、第13族元素を含む化合物と、第16族元素の単体又は第16族元素を含む化合物とを含む第2混合物を準備することと、前記第2混合物を熱処理して、第2半導体ナノ粒子(以下、「コアシェル型半導体ナノ粒子」ともいう)を得ることと、を含む半導体ナノ粒子の製造方法である。
 第3態様は、銀(Ag)塩と、インジウム(In)塩と、ガリウム(Ga)-イオウ(S)結合を有する化合物と、ガリウムハロゲン化物と、有機溶剤とを含む第3混合物を第3熱処理して第3半導体ナノ粒子を得ることを含む半導体ナノ粒子の製造方法である。半導体ナノ粒子の製造方法は、前記第3半導体ナノ粒子と、ガリウムハロゲン化物とを含む第4混合物を第4熱処理して第4半導体ナノ粒子を得ることを更に含んでいてもよい。
 本開示の一態様によれば、短波長の発光ピーク波長でバンド端発光を示すことができる半導体ナノ粒子の製造方法を提供することができる。
実施例1から3に係るコアシェル型半導体ナノ粒子の吸収スペクトルである。 実施例1から3に係るコアシェル型半導体ナノ粒子の発光スペクトルである。 実施例4から6に係るコアシェル型半導体ナノ粒子の吸収スペクトルである。 実施例4から6に係るコアシェル型半導体ナノ粒子の発光スペクトルである。 実施例7に係る半導体ナノ粒子の吸収スペクトルである。 実施例7に係る半導体ナノ粒子の発光スペクトルである。 実施例8から11に係るコアシェル型半導体ナノ粒子の発光スペクトルである。 比較例1に係るコアシェル型半導体ナノ粒子の吸収スペクトルである。 比較例1に係るコアシェル型半導体ナノ粒子の発光スペクトルである。 比較例2から4に係るコアシェル型半導体ナノ粒子の吸収スペクトルである。 比較例2から4に係るコアシェル型半導体ナノ粒子の発光スペクトルである。 コアシェル型半導体ナノ粒子を包埋する金属化合物を含む発光材料の模式図である。 実施例12及び13に係るコアシェル型半導体ナノ粒子の発光スペクトルである。 実施例14及び比較例5の半導体ナノ粒子の発光スペクトルの一例を示す図である。 実施例15、16、17及び18の半導体ナノ粒子の発光スペクトルの一例を示す図である。 実施例19、20、21及び22の半導体ナノ粒子の発光スペクトルの一例を示す図である。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。さらに本明細書に記載される数値範囲の上限及び下限は、当該数値を任意に選択して組み合わせることが可能である。以下、本発明の実施形態を詳細に説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための、半導体ナノ粒子の製造方法を例示するものであって、本発明は、以下に示す半導体ナノ粒子の製造方法に限定されない。
半導体ナノ粒子
 半導体ナノ粒子は、AgとInとGaとSとを含む半導体を含み、光の照射により、発光ピークの半値幅が例えば70nm以下である光を発する。半導体ナノ粒子の結晶構造は、少なくとも正方晶を含んでいてよく、実質的に正方晶であってもよい。半導体ナノ粒子は、良好な量子収率でバンド端発光を示すことができる。また、Inに加えてGaを含むことで、Inのみを含む場合に比べて短波長の発光ピーク波長(例えば、545nm以下)を示すことができる。
 半導体ナノ粒子の組成におけるAgの含有率は、例えば、10モル%以上30モル%以下であり、好ましくは、15モル%以上25モル%以下である。In及びGaの総含有率は、例えば、15モル%以上35モル%以下であり、好ましくは、20モル%以上30モル%以下である。Sの含有率は、例えば、35モル%以上55モル%以下であり、好ましくは、40モル%以上55モル%以下である。
 Ag、In及びSを含み、かつその結晶構造が正方晶、六方晶、又は斜方晶である半導体ナノ粒子は、一般的には、AgInSの組成式で表されるものとして、文献等において紹介されている。本実施形態に係る半導体ナノ粒子は、実際には、上記組成式で表される化学量論組成のものに限定されず、特にAgの原子数のIn及びGaの総原子数に対する比(Ag/(In+Ga))が1よりも小さくなる場合もあるし、あるいは逆に1よりも大きくなる場合もある。また、Agの原子数と、In及びGaの総原子数との和が、Sの原子数と同じとはならないことがある。よって本明細書では、特定の元素を含む半導体について、それが化学量論組成であるか否かを問わない場面では、Ag-In-Ga-Sのように、構成元素を「-」でつないだ式で半導体組成を表す場合がある。
 なお、上述の元素を含む半導体ナノ粒子であって、六方晶の結晶構造を有するものはウルツ鉱型であり、正方晶の結晶構造を有する半導体はカルコパイライト型である。結晶構造は、例えば、X線回折(XRD)分析により得られるXRDパターンを測定することによって同定される。具体的には、半導体ナノ粒子から得られたXRDパターンを、AgInSの組成で表される半導体ナノ粒子のものとして既知のXRDパターン、又は結晶構造パラメータからシミュレーションを行って求めたXRDパターンと比較する。既知のパターン及びシミュレーションのパターンの中に、半導体ナノ粒子のパターンと一致するものがあれば、当該半導体ナノ粒子の結晶構造は、その一致した既知又はシミュレーションのパターンの結晶構造であるといえる。
 半導体ナノ粒子の集合体においては、異なる結晶構造の半導体ナノ粒子が混在していてよい。その場合、XRDパターンにおいては、複数の結晶構造に由来するピークが観察される。第1態様のコアシェル型半導体ナノ粒子では、実質的に正方晶からなることから、正方晶に対応するピークが観察され、他の結晶構造に由来するピークは実質的に観察されない。
 半導体ナノ粒子を構成するAgは、その一部が置換されてCu、Au及びアルカリ金属の少なくとも1種を含んでいてもよいが、実質的にAgから構成されていてよい。ここで「実質的に」とは、AgとAg以外の元素の総原子数に対するAg以外の元素の原子数の割合が、例えば10%以下であり、好ましくは5%以下、より好ましくは1%以下であることを示す。
 また、半導体ナノ粒子は、実質的にAg及びアルカリ金属(以下、Mと記すことがある)をAgに対応する構成元素としていてもよい。ここで「実質的に」とは、Ag、アルカリ金属並びにAg及びアルカリ金属以外の元素の総原子数に対するAg及びアルカリ金属以外の元素の原子数の割合が、例えば10%以下であり、好ましくは5%以下、より好ましくは1%以下であることを示す。なお、アルカリ金属には、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)が含まれる。アルカリ金属は、Agと同じく1価の陽イオンとなり得るため、半導体ナノ粒子の組成におけるAgの一部を置換することができる。特にLiはAgとイオン半径が同程度であり、好ましく用いられる。半導体ナノ粒子の組成において、Agの一部が置換されることで、例えば、バンドギャップが広がって発光ピーク波長が短波長にシフトする。また、詳細は不明であるが、半導体ナノ粒子の格子欠陥が低減されてバンド端発光量子収率が向上すると考えられる。半導体ナノ粒子がアルカリ金属を含む場合、少なくともLiを含んでいてよい。
 半導体ナノ粒子がAg及びアルカリ金属(M)を含む場合、半導体ナノ粒子の組成におけるアルカリ金属の含有率は、例えば、0モル%より大きく30モル%未満であり、好ましくは、1モル%以上25モル%以下である。また、半導体ナノ粒子の組成におけるAgの原子数及びアルカリ金属(M)の原子数の合計に対するアルカリ金属(M)の原子数の比(M/(Ag+M))は、例えば、1未満であり、好ましくは0.8以下、より好ましくは0.4以下、更に好ましくは0.2以下である。またその比は、例えば、0より大きく、好ましくは0.05以上、より好ましくは0.1以上である。
 In及びGaは、その一部が置換されてAl及びTlの少なくとも一方を含んでいてもよいが、実質的にIn及びGaから構成されることが好ましい。ここで「実質的に」とは、In及びGa並びにIn及びGa以外の元素の総原子数に対するIn及びGa以外の元素の原子数の割合が、例えば10%以下であり、好ましくは5%以下、より好ましくは1%以下であることを示す。
 半導体ナノ粒子におけるIn及びGaの総原子数に対するInの原子数の比(In/(In+Ga))は、例えば、0.01以上1未満であってよく、好ましくは0.1以上0.99以下である。In及びGaの総原子数に対するInの原子数の比が所定の範囲であると、短波長の発光ピーク波長(例えば、545nm以下)を得ることができる。また、InとGaの総原子数に対するAgの原子数の比(Ag/(In+Ga))は、例えば、0.3以上1.2以下であり、好ましくは0.5以上1.1以下である。Ag、In及びGaの総原子数に対するSの原子数の比(S/(Ag+In+Ga))は、例えば、0.8以上1.5以下であり、好ましくは0.9以上1.2以下である。
 Sは、一部が置換されてSe及びTeの少なくとも一方の元素を含んでいてもよいが、実質的にSから構成されることが好ましい。ここで「実質的に」とは、S及びS以外の元素の総原子数に対するS以外の元素の原子数の割合が、例えば10%以下であり、好ましくは5%以下、より好ましくは1%以下であることを示す。
 半導体ナノ粒子は、実質的にAg、In、Ga、S及び前述のそれら一部が置換した元素から構成され得る。ここで「実質的に」という用語は、不純物の混入等に起因して不可避的にAg、In、Ga、S及び前述のそれら一部が置換した元素以外の他の元素が含まれることを考慮して使用している。
 半導体ナノ粒子は、例えば、以下の式(1)で表される組成式を有する。
  (Ag (1-p)InGa(1-r)(q+3)/2  (1)
 ここで、p、q及びrは、0<p≦1、0.20<q≦1.2、0<r<1を満たす。Mはアルカリ金属を示す。
コアシェル型半導体ナノ粒子
 本明細書における半導体ナノ粒子は、上述の半導体ナノ粒子(第1半導体ナノ粒子)であってもよいし、上述の第1半導体ナノ粒子の表面に第13族元素と第16族元素を含む付着物(以下、「シェル」ともいう)を有する第2半導体ナノ粒子(コアシェル型半導体ナノ粒子)であってもよい。付着物は第1半導体ナノ粒子の表面を被覆していてよい。従って、第2半導体ナノ粒子の表面分析では、第1半導体ナノ粒子にのみ含まれ得る元素(例えば、Ag)が検出されなくてもよい。
 また、第2半導体ナノ粒子は、第1半導体ナノ粒子の表面近傍に第13族元素と第16族元素を含む半導体が配置されてなるものであってもよいし、第1半導体粒子と第1半導体ナノ粒子の表面に配置される第13族元素と第16族元素を含む半導体層とを備えていてもよい。更に、第2半導体ナノ粒子は、Ag、In、Ga及びSを含む半導体を含み、第13族元素及び第16族元素を含む半導体が表面に配置されてなるものであってもよい。以下、本明細書においては、便宜上、第1半導体ナノ粒子をコア、付着物をシェル、第2半導体ナノ粒子をコアシェル型半導体ナノ粒子と称する。
 コアシェル型半導体ナノ粒子においては、コアは上述したAgとInとGaとSとを含む半導体ナノ粒子であってよい。シェルは、実質的に第13族元素及び第16族元素からなっていてよく、コアよりバンドギャップエネルギーが大きい半導体を含んでいてよい。コアシェル型半導体ナノ粒子の結晶構造は、実質的に正方晶であってよい。また、コアシェル型半導体ナノ粒子は、発光ピークの半値幅が70nm以下である光を発してよい。コアシェル型半導体ナノ粒子は、良好な量子収率でバンド端発光を示す。これは例えば、コアシェル型半導体ナノ粒子の結晶構造が実質的に正方晶であるためと考えることができる。また、コアシェル型半導体ナノ粒子は、コアにGaを含まない場合に比べて短波長の発光ピーク波長(例えば、545nm以下)を示すことができる。
 シェルを構成する第13族元素としては、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)及びタリウム(Tl)が挙げられる。シェルを構成する第16族元素としては、酸素(O)、イオウ(S)、セレン(Se)、テルル(Te)及びポロニウム(Po)が挙げられる。シェルを構成する半導体には、第13族元素が1種類だけ、又は2種類以上含まれてよく、第16族元素が1種類だけ、又は2種類以上含まれていてもよい。
 シェルは、実質的に第13族元素及び第16族元素からなる半導体から構成されていてもよい。ここで「実質的に」とは、シェルに含まれるすべての元素の原子数の合計を100%としたときに、第13族元素及び第16族元素以外の元素の原子数の割合が、例えば10%以下、好ましくは5%以下、より好ましくは1%以下であることを示す。
 シェルは、上述のコアを構成する半導体のバンドギャップエネルギーに応じて、その組成等を選択して構成してもよい。あるいは、シェルの組成等が先に決定されている場合には、コアを構成する半導体のバンドギャップエネルギーがシェルのそれよりも小さくなるように、コアを設計してもよい。一般にAg-In-Sからなる半導体は、1.8eV以上1.9eV以下のバンドギャップエネルギーを有する。
 シェルを構成する半導体は、例えば2.0eV以上5.0eV以下、特に2.5eV以上5.0eV以下のバンドギャップエネルギーを有してよい。また、シェルのバンドギャップエネルギーは、コアのバンドギャップエネルギーよりも、例えば0.1eV以上3.0eV以下程度、特に0.3eV以上3.0eV以下程度、より特には0.5eV以上1.0eV以下程度大きいものであってよい。シェルを構成する半導体のバンドギャップエネルギーとコアを構成する半導体のバンドギャップエネルギーとの差が前記下限値以上であると、コアからの発光において、バンド端発光以外の発光の割合が少なくなり、バンド端発光の割合が大きくなる傾向がある。
 さらに、コア及びシェルを構成する半導体のバンドギャップエネルギーは、コアとシェルのヘテロ接合において、シェルのバンドギャップエネルギーがコアのバンドギャップエネルギーを挟み込むtype-Iのバンドアライメントを与えるように選択されることが好ましい。type-Iのバンドアライメントが形成されることにより、コアからのバンド端発光をより良好に得ることができる。type-Iのアライメントにおいて、コアのバンドギャップとシェルのバンドギャップとの間には、少なくとも0.1eVの障壁が形成されることが好ましく、例えば0.2eV以上、又は0.3eV以上の障壁が形成されてよい。障壁の上限は、例えば1.8eV以下であり、特に1.1eV以下である。障壁が前記下限値以上であると、コアからの発光において、バンド端発光以外の発光の割合が少なくなり、バンド端発光の割合が大きくなる傾向がある。
 シェルを構成する半導体は、第13族元素としてIn又はGaを含むものであってよい。またシェルは、第16族元素としてSを含むものであってよい。In又はGaを含む、あるいはSを含む半導体は、上述のコアの半導体よりも大きいバンドギャップエネルギーを有する半導体となる傾向にある。さらにシェルを構成する半導体は、酸素(O)元素を含んでいてよい。In又はGaと、S及びOとを含む半導体は、上述のコアよりも大きいバンドギャップエネルギーを有する半導体となる傾向にある。
 シェルは、その半導体の晶系がコアの半導体の晶系となじみのあるものであってよく、またその格子定数が、コアの半導体のそれと同じ又は近いものであってよい。晶系になじみがあり、格子定数が近い(ここでは、シェルの格子定数の倍数がコアの格子定数に近いものも格子定数が近いものとする)半導体からなるシェルは、コアの周囲を良好に被覆することがある。例えば、上述のコアは、一般に正方晶系であるが、これになじみのある晶系としては、正方晶系、斜方晶系が挙げられる。Ag-In-Sが正方晶系である場合、その格子定数は0.5828nm、0.5828nm、1.119nmであり、これを被覆するシェルは、正方晶系又は立方晶系であって、その格子定数又はその倍数が、Ag-In-Sの格子定数と近いものであることが好ましい。あるいは、シェルはアモルファス(非晶質)であってもよい。
 アモルファス(非晶質)のシェルが形成されているか否かは、コアシェル構造の半導体ナノ粒子を、HAADF-STEMで観察することにより確認できる。アモルファス(非晶質)のシェルが形成されている場合、具体的には、規則的な模様、例えば、縞模様ないしはドット模様等を有する部分が中心部に観察され、その周囲に規則的な模様を有するものとしては観察されない部分がHAADF-STEMにおいて観察される。HAADF-STEMによれば、結晶性物質のように規則的な構造を有するものは、規則的な模様を有する像として観察され、非晶性物質のように規則的な構造を有しないものは、規則的な模様を有する像としては観察されない。そのため、シェルがアモルファスである場合には、規則的な模様を有する像として観察されるコア(正方晶系等の結晶構造を有していてよい)とは明確に異なる部分として、シェルを観察することができる。
 また、シェルがGa-Sからなる場合、Gaがコアに含まれるAg及びInよりも軽い元素であるために、HAADF-STEMで得られる像において、シェルはコアよりも暗い像として観察される傾向にある。
 アモルファスのシェルが形成されているか否かは、高解像度の透過型電子顕微鏡(HRTEM)で本実施形態のコアシェル構造の半導体ナノ粒子を観察することによっても確認できる。HRTEMで得られる画像において、コアの部分は結晶格子像(規則的な模様を有する像)として観察され、アモルファスであるシェルの部分は結晶格子像として観察されず、白黒のコントラストは観察されるが、規則的な模様は見えない部分として観察される。
 一方、シェルはコアと固溶体を構成しないものであることが好ましい。シェルがコアと固溶体を形成すると両者が一体のものとなり、シェルによりコアを被覆して、コアの表面状態を変化させることによりバンド端発光を得るという、本実施形態のメカニズムが得られなくなる。例えば、Ag-In-Sからなるコアの表面を、化学量論組成ないしは非化学量論組成の硫化亜鉛(Zn-S)で覆っても、コアからバンド端発光が得られないことが確認されている。Zn-Sは、Ag-In-Sとの関係では、バンドギャップエネルギーに関して上記の条件を満たし、type-Iのバンドアライメントを与えるものである。それにもかかわらず、前記特定の半導体からバンド端発光が得られなかったのは、前記コアの半導体とZnSとが固溶体を形成して、コア-シェルの界面が無くなったことによると推察される。
 シェルは、第13族元素及び第16族元素の組み合わせとして、InとSの組み合わせ、GaとSとの組み合わせ、又はInとGaとSとの組み合わせを含んでよいが、これらに限定されるものではない。InとSとの組み合わせは硫化インジウムの形態であってよく、また、GaとSとの組み合わせは硫化ガリウムの形態であってよく、また、InとGaとSの組み合わせは硫化インジウムガリウムであってよい。シェルを構成する硫化インジウムは、化学量論組成のもの(In)でなくてよく、その意味で、本明細書では硫化インジウムを式InS(xは整数に限られない任意の数字、例えば0.8以上1.5以下)で表すことがある。同様に、硫化ガリウムは化学量論組成のもの(Ga)でなくてよく、その意味で、本明細書では硫化ガリウムを式GaS(xは整数に限られない任意の数字、例えば0.8以上1.5以下)で表すことがある。硫化インジウムガリウムは、In2(1-y)Ga2y(yは0よりも大きく1未満である任意の数字)で表される組成のものであってよく、あるいは、InGa1-p(pは0よりも大きく1未満である任意の数字であり、qは整数に限られない任意の数値である)で表されるものであってよい。
 シェルを構成する酸素元素の形態は明確ではないが、例えば、Ga-O-S、Ga等であってよい。
 硫化インジウムは、そのバンドギャップエネルギーが2.0eV以上2.4eV以下であり、結晶系が立方晶であるものについては、その格子定数は1.0775nmである。硫化ガリウムは、そのバンドギャップエネルギーが2.5eV以上2.6eV以下程度であり、晶系が正方晶であるものについては、その格子定数が0.5215nmである。ただし、ここに記載された晶系等は、いずれも報告値であり、実際のコアシェル構造の半導体ナノ粒子において、シェルがこれらの報告値を満たしているとは限らない。
 硫化インジウム及び硫化ガリウムは、コアの表面に配置されるシェルを構成する半導体として好ましく用いられる。特に、硫化ガリウムは、バンドギャップエネルギーがより大きいことから好ましく用いられる。硫化ガリウムを使用する場合には、硫化インジウムを使用する場合と比較して、より強いバンド端発光を得ることができる。 
 シェルを構成する半導体は、第13族元素及び第16族元素に加えてアルカリ金属(M)を更に含んでいてもよい。シェルを構成する半導体に含まれるアルカリ金属は、少なくともリチウムを含んでいてよい。シェルを構成する半導体がアルカリ金属を含む場合、アルカリ金属の原子数と第13族元素の原子数の総和に対するアルカリ金属の原子数の比は、例えば、0.01以上1未満、又は0.1以上0.9以下であってよい。また、アルカリ金属の原子数と第13族元素の原子数の総和に対する第16族元素の原子数の比は、例えば、0.25以上0.75以下であってよい。
 上述のコアとコア表面に配置される上述のシェルを備えるコアシェル型半導体ナノ粒子の粒径は、例えば、50nm以下の平均粒径を有してよい。平均粒径は、製造のしやすさとバンド端発光の量子収率の点より、1nm以上20nm以下の範囲が好ましく、1.6nm以上8nm以下がより好ましく、2nm以上7.5nm以下が特に好ましい。
 コアシェル型半導体ナノ粒子の平均粒径は、例えば、透過型電子顕微鏡(TEM)を用いて撮影されたTEM像から求めてよい。個々の粒子の粒径は、具体的には、TEM像で観察される粒子の外周の任意の2点を結び、粒子の内部に存在する線分のうち、最も長いものを指す。
 ただし、粒子がロッド形状を有するものである場合には、短軸の長さを粒径とみなす。ここで、ロッド形状の粒子とは、TEM像において短軸と短軸に直交する長軸とを有し、短軸の長さに対する長軸の長さの比が1.2より大きいものを指す。ロッド形状の粒子は、TEM像で、例えば、長方形状を含む四角形状、楕円形状、又は多角形状等として観察される。ロッド形状の長軸に直交する面である断面の形状は、例えば、円、楕円、又は多角形であってよい。具体的にはロッド状の形状の粒子について、長軸の長さは、楕円形状の場合には、粒子の外周の任意の2点を結ぶ線分のうち、最も長い線分の長さを指し、長方形状又は多角形状の場合、外周を規定する辺の中で最も長い辺に平行であり、かつ粒子の外周の任意の二点を結ぶ線分のうち、最も長い線分の長さを指す。短軸の長さは、外周の任意の2点を結ぶ線分のうち、前記長軸の長さを規定する線分に直交し、かつ最も長さの長い線分の長さを指す。
 半導体ナノ粒子の平均粒径は、50,000倍以上150,000倍以下のTEM像で観察される、すべての計測可能な粒子について粒径を測定し、それらの粒径の算術平均とする。ここで、「計測可能な」粒子は、TEM像において粒子全体の輪郭が観察できるものである。したがって、TEM像において、粒子の輪郭の一部が撮像範囲に含まれておらず、「切れて」いるような粒子は計測可能なものではない。1つのTEM像に含まれる計測可能な粒子数が100以上である場合には、そのTEM像を用いて平均粒径を求める。一方、1つのTEM像に含まれる計測可能な粒子の数が100未満の場合には、撮像場所を変更して、TEM像をさらに取得し、2以上のTEM像に含まれる100以上の計測可能な粒子について粒径を測定して平均粒径を求める。
 コアシェル構造の半導体ナノ粒子において、コアは、例えば、10nm以下、特に、8nm以下の平均粒径を有してよい。コアの平均粒径は、1.5nm以上10nm以下の範囲内、特に1.7nm以上7.5nm以下の範囲内にあってよい。コアの平均粒径が前記上限値以下であると、量子サイズ効果を得られ易い。
 シェルは、シェルの厚さは0.1nm以上50nm以下の範囲内、0.1nm以上10nm以下の範囲内、特に0.3nm以上3nm以下の範囲内にあってよい。シェルの厚さが前記下限値以上である場合には、シェルがコアを被覆することによる効果が十分に得られ、バンド端発光を得られ易い。
 コアの平均粒径及びシェルの厚さは、コアシェル構造の半導体ナノ粒子を、例えば、HAADF-STEMで観察することにより求めてよい。特に、シェルがアモルファスである場合には、HAADF-STEMによって、コアとは異なる部分として観察されやすいシェルの厚さを容易に求めることができる。その場合、コアの粒径は半導体ナノ粒子について上記で説明した方法に従って求めることができる。シェルの厚さが一定でない場合には、最も小さい厚さを、当該粒子におけるシェルの厚さとする。
 あるいは、コアの平均粒径は、シェルによる被覆の前に予め測定しておいてよい。それから、コアシェル構造の半導体ナノ粒子の平均粒径を測定し、当該平均粒径と予め測定したコアの平均粒径との差を求めることにより、シェルの厚さを求めてよい。
 コアシェル型半導体ナノ粒子は、結晶構造が実質的に正方晶であることが好ましい。結晶構造は、上述と同様にX線回折(XRD)分析により得られるXRDパターンを測定することによって同定される。実質的に正方晶であるとは、正方晶であることを示す26°付近のメインピークに対する六方晶及び斜方晶であることを示す48°付近のピーク高さの比が、例えば、10%以下、又は5%以下であることをいう。
 コアシェル型半導体ナノ粒子は、紫外光、可視光又は赤外線などの光が照射されると、照射された光よりも長い波長の光を発するものである。具体的には、半導体ナノ粒子は、例えば、紫外光、可視光又は赤外線が照射されると、照射された光よりも長い波長を有し、かつ、主成分の発光の寿命が200ns以下、及び発光スペクトルの半値幅が70nm以下の少なくとも一方を満たす発光をすることができる。
 コアの組成にIn及びGaを含むコアシェル型半導体ナノ粒子は、450nm付近にピークを有する光を照射することにより、490nm以上545nm以下の範囲に発光ピーク波長を有して発光する。発光ピーク波長は、495nm以上540nm以下が好ましい。発光スペクトルにおける発光ピークの半値幅は例えば、70nm以下、好ましくは60nm以下、より好ましくは50nm以下、特に好ましくは40nm以下である。半値幅の下限値は、例えば、10nm以上であってよい。例えばコアの組成がAg-In-Sの場合に対して、第13族元素であるInの少なくとも一部を同じく第13族元素であるGaとしたAg-In-Ga-Sの組成の場合、発光ピークが短波長側へシフトする。
 ここで、「発光の寿命」とは、後述する実施例のように、蛍光寿命測定装置と称される装置を用いて測定される発光の寿命をいう。具体的には、上記「主成分の発光寿命」は、次の手順に従って求められる。まず、半導体ナノ粒子に励起光を照射して発光させ、発光スペクトルのピーク付近の波長、例えば、ピークの波長±50nmの範囲内にある波長の光について、その減衰(残光)の経時変化を測定する。経時変化は、励起光の照射を止めた時点から測定する。得られる減衰曲線は一般に、発光、熱等の緩和過程に由来する複数の減衰曲線を足し合わせたものとなっている。そこで、本実施形態では、3つの成分(すなわち、3つの減衰曲線)が含まれると仮定して、発光強度をI(t)としたときに、減衰曲線が下記の式で表せるように、パラメータフィッティングを行う。パラメータフィッティングは、専用ソフトを使用して実施する。
 I(t) = Aexp(-t/τ) + Aexp(-t/τ) + Aexp(-t/τ
 上記の式中、各成分のτ、τ及びτは、発光強度が初期の1/e(36.8%)に減衰するのに要する時間であり、これが各成分の発光寿命に相当する。発光寿命の短い順にτ、τ及びτとする。また、A、A及びAは、各成分の寄与率である。例えば、Aexp(-t/τ)で表される曲線の積分値が最も大きいものを主成分としたときに、主成分の発光寿命τが200ns以下、100ns以下、又は80ns以下である。そのような発光は、バンド端発光であると推察される。なお、主成分の特定に際しては、Aexp(-t/τ)のtの値を0から無限大まで積分することによって得られるA×τを比較し、この値が最も大きいものを主成分とする。
 なお、発光の減衰曲線が3つ、4つ、又は5つの成分を含むものと仮定してパラメータフィッティングを行って得られる式がそれぞれ描く減衰曲線と、実際の減衰曲線とのずれは、それほど変わらない。そのため、本実施形態では、主成分の発光寿命を求めるにあたり、発光の減衰曲線に含まれる成分の数を3と仮定し、それによりパラメータフィッティングが煩雑となることを避けている。
 コアシェル型の半導体ナノ粒子の発光は、バンド端発光に加えて欠陥発光(例えば、ドナーアクセプター発光)を含むものであってもよいが、実質的にバンド端発光のみであることが好ましい。欠陥発光は一般に発光寿命が長く、またブロードなスペクトルを有し、バンド端発光よりも長波長側にそのピークを有する。ここで、実質的にバンド端発光のみであるとは、発光スペクトルにおけるバンド端発光成分の純度が40%以上であることをいい、50%以上が好ましく、60%以上がより好ましく、65%以上が更に好ましい。バンド端発光成分の純度の上限値は、例えば、100%以下、100%未満、又は95%以下であってよい 。「バンド端発光成分の純度」とは、発光スペクトルに対し、バンド端発光のピークと欠陥発光のピークの形状を正規分布と仮定したパラメータフィッティングを行って、バンド端発光のピークと欠陥発光のピークの2つに分離し、それらの面積をそれぞれa、aとした時、下記の式で表される。
  バンド端発光成分の純度(%) = a/(a+a)×100
 発光スペクトルがバンド端発光を全く含まない場合、すなわち欠陥発光のみを含む場合は0%、バンド端発光と欠陥発光のピーク面積が同じ場合は50%、バンド端発光のみを含む場合は100%となる。
 バンド端発光の量子収率は温度25℃において量子収率測定装置を用いて、励起光波長450nm、蛍光波長範囲470nm以上900nm以下の条件で計算された内部量子収率、あるいは励起光波長365nm、蛍光波長範囲450nm以上950nm以下の条件で計算された内部量子収率、あるいは励起光波長450nm、蛍光波長範囲500nm以上950nm以下の条件で計算された内部量子収率に上記バンド端の純度を乗じ、100で除した値として定義される。コアシェル型半導体ナノ粒子のバンド端発光の量子収率は、例えば10%以上であり、20%以上が好ましく、30%以上がより好ましい。
 コアシェル型半導体ナノ粒子が発するバンド端発光は、半導体ナノ粒子の粒径を変化させることによって、ピークの位置を変化させることができる。例えば、半導体ナノ粒子の粒径をより小さくすると、バンド端発光のピーク波長が短波長側にシフトする傾向にある。さらに、半導体ナノ粒子の粒径をより小さくすると、バンド端発光のスペクトルの半値幅がより小さくなる傾向にある。
 半導体ナノ粒子がバンド端発光に加えて欠陥発光を示す場合、バンド端発光の最大ピーク強度及び欠陥発光の最大ピーク強度より求められるバンド端発光の強度比は、例えば、0.75以上であってよく、好ましくは0.85以上であり、より好ましくは0.9以上であり、特に好ましくは0.93以上であり、上限値は、例えば、1以下、1未満、又は0.99以下であってよい 。なお、バンド端発光の強度比は、発光スペクトルに対し、バンド端発光のピークと欠陥発光のピークの形状をそれぞれ正規分布と仮定したパラメータフィッティングを行って、バンド端発光のピークと欠陥発光のピークの2つに分離し、それらの最大ピーク強度をそれぞれb、bとした時、下記の式で表される。
 バンド端発光の強度比 = b/(b+b
 バンド端発光の強度比は、発光スペクトルがバンド端発光を全く含まない場合、すなわち欠陥発光のみを含む場合は0、バンド端発光と欠陥発光の最大ピーク強度が同じ場合は0.5、バンド端発光のみを含む場合は1となる。 
 コアシェル型半導体ナノ粒子はまた、その吸収スペクトル又は励起スペクトル(蛍光励起スペクトルともいう)がエキシトンピークを示すものであることが好ましい。エキシトンピークは、励起子生成により得られるピークであり、これが吸収スペクトル又は励起スペクトルにおいて発現しているということは、粒径の分布が小さく、結晶欠陥の少ないバンド端発光に適した粒子であることを意味する。エキシトンピークが急峻になるほど、粒径がそろった結晶欠陥の少ない粒子が半導体ナノ粒子の集合体により多く含まれていることを意味する。したがって、発光の半値幅は狭くなり、発光効率が向上すると予想される。本実施形態の半導体ナノ粒子の吸収スペクトル又は励起スペクトルにおいて、エキシトンピークは、例えば、350nm以上1000nm以下、好ましくは450nm以上590nm以下の範囲内で観察される。エキシトンピークの有無を見るための励起スペクトルは、観測波長をピーク波長付近に設定して測定してよい。
半導体ナノ粒子の製造方法
 半導体ナノ粒子の製造方法は、銀(Ag)塩と、インジウム(In)塩と、ガリウム(Ga)及びイオウ(S)を含む化合物と、有機溶剤とを含む第1混合物を得る第1準備工程と、第1混合物を125℃以上300℃以下の範囲にある温度にて熱処理して、第1半導体ナノ粒子を得る第1熱処理工程とを含む。第1熱処理工程で得られる第1半導体ナノ粒子は、分散液の状態であってもよい。
 半導体ナノ粒子の組成に含まれるGa及びSの供給源として、Ga及びSを含む化合物を用いることで、製造される半導体ナノ粒子の組成の制御が容易になり、短波長の発光ピーク波長(例えば、545nm以下)でバンド端発光を示し、発光スペクトルにおける半値幅の狭い半導体ナノ粒子を容易に製造することができる。また、製造される半導体ナノ粒子の粒径制御が容易になり、粒度分布が狭く、発光スペクトルにおける半値幅の狭い半導体ナノ粒子を容易に製造することができる。
 第1準備工程では、Ag塩と、In塩と、Ga及びSを含む化合物と、有機溶剤とを混合して第1混合物を得る。製造方法で用いられるAg塩及びIn塩としては、有機酸塩及び無機酸塩が挙げられる。具体的に無機酸塩としては、硝酸塩、酢酸塩、硫酸塩、塩酸塩、及びスルホン酸塩が挙げられ、有機酸塩としては、酢酸塩、アセチルアセトナート塩等が挙げられる。中でも有機溶剤への溶解度が高い点から有機酸塩が好ましい。
 第1準備工程で用いるAg塩は、量子収率の点から、Ag及びSを含む化合物を含んでいてもよい。Ag及びSを含む化合物としては、含硫黄化合物のAg塩が挙げられる。含硫黄化合物のAg塩には、含硫黄化合物とAgイオンとの錯体が含まれる。含硫黄化合物としては、チオカルバミン酸、ジチオカルバミン酸、チオ炭酸、ジチオ炭酸(キサントゲン酸)、トリチオ炭酸、チオカルボン酸、ジチオカルボン酸及びそれらの誘導体等を挙げることができる。具体例としては、例えば、脂肪族チオカルバミン酸、脂肪族ジチオカルバミン酸、脂肪族チオ炭酸、脂肪族ジチオ炭酸、脂肪族トリチオ炭酸、脂肪族チオカルボン酸、脂肪族ジチオカルボン酸等が挙げられ、脂肪族チオカルバミン酸、脂肪族ジチオカルバミン酸には、ジアルキルチオカルバミン酸やジアルキルジチオカルバミン酸が含まれる。これらにおける脂肪族基としては、炭素数1以上12以下のアルキル基、アルケニル基等を挙げることができる。ジアルキルチオカルバミン酸、ジアルキルジチオカルバミン酸等におけるアルキル基は、例えば、炭素数1以上12以下であってよく、好ましくは炭素数1以上4以下であり、2つのアルキル基は、同一でも異なっていてもよい。
 Ga及びSを含む化合物としては、含硫黄化合物のGa塩が挙げられる。含硫黄化合物のGa塩には、含硫黄化合物とGaイオンとの錯体が含まれる。含硫黄化合物としては、チオカルバミン酸、ジチオカルバミン酸、チオ炭酸、ジチオ炭酸(キサントゲン酸)、トリチオ炭酸、チオカルボン酸、ジチオカルボン酸及びそれらの誘導体等を挙げることができる。具体例としては、例えば、脂肪族チオカルバミン酸、脂肪族ジチオカルバミン酸、脂肪族チオ炭酸、脂肪族ジチオ炭酸、脂肪族トリチオ炭酸、脂肪族チオカルボン酸、脂肪族ジチオカルボン酸等が挙げられ、脂肪族チオカルバミン酸、脂肪族ジチオカルバミン酸には、ジアルキルチオカルバミン酸やジアルキルジチオカルバミン酸が含まれる。これらにおける脂肪族基としては、炭素数1以上12以下のアルキル基、アルケニル基等を挙げることができる。ジアルキルチオカルバミン酸、ジアルキルジチオカルバミン酸等におけるアルキル基は、例えば、炭素数1以上12以下であってよく、好ましくは炭素数1以上4以下であり、2つのアルキル基は、同一でも異なっていてもよい。
 第1混合物におけるAg、In、Ga及びSの含有比は、目的とする組成に応じて適宜選択してもよい。その際、Ag、In、Ga及びSの含有比は化学量論比と整合しなくてもよい。例えば、InとGaの合計モル数に対するGaのモル数の比(Ga/(In+Ga))は0.2以上0.95以下、0.6以上0.9以下、又は0.8以上0.9以下であってよい。また例えば、AgとInとGaの合計モル数に対するAgのモル数の比(Ag/(Ag+In+Ga))は0.05以上0.55以下であってよい。また例えば、AgとInとGaの合計モル数に対するSのモル数の比(S/(Ag+In+Ga))は0.6以上1.6以下であってよい。
 有機溶剤としては、炭素数4以上20以下の炭化水素基を有するアミン、特に、炭素数4以上20以下のアルキルアミンもしくはアルケニルアミン、炭素数4以上20以下の炭化水素基を有するチオール、特に炭素数4以上20以下のアルキルチオールもしくはアルケニルチオール、炭素数4以上20以下の炭化水素基を有するホスフィン、特に炭素数4以上20以下のアルキルホスフィンもしくはアルケニルホスフィンである。炭素数4以上20以下の炭化水素基を有するカルボン酸、特に炭素数4以上20以下のアルキルカルボン酸もしくはアルケニルカルボン酸である。これらの有機溶剤は、最終的には、得られる半導体ナノ粒子を表面修飾するものとなり得る。これらの有機溶剤は2以上組み合わせて使用してよい。例えば、炭素数4以上20以下の炭化水素基を有するチオールから選択される少なくとも1種と、炭素数4以上20以下の炭化水素基を有するアミンから選択される少なくとも1種とを組み合わせた混合溶媒、炭素数4以上20以下の炭化水素基を有するアミンから選択される少なくとも1種と、炭素数4以上20以下の炭化水素基を有するカルボン酸から選択される少なくとも1種とを組み合わせた混合溶媒、炭素数4以上20以下のアルケニルアミンから選択される少なくとも1種と、炭素数4以上20以下のアルケニルカルボン酸から選択される少なくとも1種とを組み合わせた混合溶媒等を使用してよい。これらの有機溶剤はまた、他の有機溶剤と混合して用いてよい。また、有機溶剤は125℃以上で溶解するのであれば、常温で固体であってもよい。
 第1混合物は、アルカリ金属塩をさらに含んでいてもよい。アルカリ金属(以下、Mと記すことがある)としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)が挙げられ、イオン半径がAgに近い点でLiを含むことが好ましい。アルカリ金属塩としては、有機酸塩及び無機酸塩が挙げられる。具体的に無機酸塩としては、硝酸塩、酢酸塩、硫酸塩、塩酸塩、及びスルホン酸塩が挙げられ、有機酸塩としては、酢酸塩、アセチルアセトナート塩等が挙げられる。中でも有機溶剤への溶解度が高い点から有機酸塩が好ましい。
 第1混合物がアルカリ金属塩を含む場合、Agとアルカリ金属の総原子数に対するアルカリ金属の原子数の比(M/(Ag+M))は、例えば、1未満であってよく、好ましくは0.8以下、より好ましくは0.4以下、更に好ましくは0.2以下である。またその比は、例えば、0より大きくてよく、好ましくは0.05以上、より好ましくは0.1以上である。
 第1熱処理工程では、第1混合物を125℃以上300℃以下の範囲にある温度にて熱処理して、第1半導体ナノ粒子を得る。第1熱処理工程は、第1混合物を125℃以上300℃以下の範囲にある温度まで昇温する昇温工程と、125℃以上300℃以下の範囲にある温度にて第1混合物を所定時間熱処理する合成工程とを含んでいてよい。
 昇温工程で昇温する温度の範囲は、好ましくは125℃以上200℃以下、より好ましくは125℃以上175℃以下、さらに好ましくは130℃以上160℃以下、特に好ましくは135℃以上155℃以下である。昇温速度は、昇温中の最高温度が300℃を越えないように調整すれば、特に限定されないが、例えば1℃/分以上50℃/分以下である。
 合成工程で熱処理する温度は、好ましくは125℃以上200℃以下、より好ましくは125℃以上175℃以下、さらに好ましくは130℃以上160℃以下、特に好ましくは135℃以上155℃以下である。合成工程における熱処理の時間は、例えば、3秒以上であってよく、好ましくは1分以上、より好ましくは10分以上である。また熱処理の時間は、例えば、60分以下であってよい。合成工程における熱処理の時間は上述の温度範囲にて設定した温度に到達した時点(例えば150℃に設定した場合は150℃に到達した時間)を開始時間とし、降温のための操作を行った時点を終了時間とする。
 半導体ナノ粒子の製造方法における熱処理の雰囲気は、不活性雰囲気、特にアルゴン雰囲気又は窒素雰囲気が好ましい。不活性雰囲気とすることで、酸化物の副生及び得られた半導体ナノ粒子表面の酸化を、低減ないしは防止することができる。
 半導体ナノ粒子の製造方法は、上述の合成工程に続いて半導体ナノ粒子を含む分散液の温度を降温する冷却工程を有してよい。冷却工程は、降温のための操作を行った時点を開始とし、50℃以下まで冷却された時点を終了とする。
 冷却工程は、未反応のAg塩からの硫化銀の生成を抑制する点から、降温速度が50℃/分以上である期間を含むことが好ましい。特に降温のための操作を行った後、降温が開始した時点において50℃/分以上とすることが好ましい。
 冷却工程の雰囲気は、不活性雰囲気、特にアルゴン雰囲気又は窒素雰囲気が好ましい。不活性雰囲気とすることで、酸化物の副生及び得られた半導体ナノ粒子表面の酸化を、低減ないしは防止することができる。
 半導体ナノ粒子の製造方法は、半導体ナノ粒子を分散液から分離する分離工程を更に含んでいてもよく、必要に応じて、さらに精製工程を含んでいてよい。分離工程では、例えば、半導体ナノ粒子を含む分散液を遠心分離に付して、ナノ粒子を含む上澄み液を取り出してよい。精製工程では、例えば、分離工程で得られる上澄み液に、アルコール等の適当な有機溶剤を添加して遠心分離に付し、半導体ナノ粒子を沈殿物として取り出してよい。なお、上澄み液から有機溶剤を揮発させることによっても、半導体ナノ粒子を取り出すことができる。取り出した沈殿物は、例えば、真空脱気、もしくは自然乾燥、又は真空脱気と自然乾燥との組み合わせにより、乾燥させてよい。自然乾燥は、例えば、大気中に常温常圧にて放置することにより実施してよく、その場合、20時間以上、例えば、30時間程度放置してよい。また、取り出した沈殿物は、適当な有機溶剤に分散させてよい。
 コアとなる半導体ナノ粒子の製造方法では、アルコール等の有機溶剤の添加と遠心分離による精製工程を必要に応じて複数回実施してよい。精製に用いるアルコールとして、メタノール、エタノール、n-プロピルアルコール等の炭素数1から4の低級アルコールを用いてよい。沈殿物を有機溶剤に分散させる場合、有機溶剤として、クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン等のハロゲン系溶剤、トルエン、シクロヘキサン、ヘキサン、ペンタン、オクタン等の炭化水素系溶剤等を用いてよい。沈殿物を分散させる有機溶剤は、量子収率の観点より、ハロゲン系溶剤であってよい。
コアシェル型半導体ナノ粒子の製造方法
 コアシェル型半導体ナノ粒子の製造方法は、前述の半導体ナノ粒子の製造方法により得られる半導体ナノ粒子と、第13族元素を含む化合物と、第16族元素の単体又は第16族元素を含む化合物とを混合することにより第2混合物を得る第2準備工程と、前記第2混合物を熱処理してコアシェル型半導体ナノ粒子を得るシェル形成工程(以下、第2熱処理工程ともいう)とを含む。すなわち、コアシェル型半導体ナノ粒子の製造方法は、Ag塩と、In塩と、Ga及びSを含む化合物と、有機溶剤とを含む第1混合物を得る第1準備工程と、第1混合物を125℃以上300℃以下の範囲にある温度にて熱処理して、半導体ナノ粒子を得る熱処理工程と、得られる半導体ナノ粒子と、第13族元素を含む化合物と、第16族元素の単体又は第16族元素を含む化合物とを含む第2混合物を得る第2準備工程と、第2混合物を熱処理してコアシェル型半導体ナノ粒子を得るシェル形成工程とを含んでいてよい。コアシェル型半導体ナノ粒子の製造方法では、前述の半導体ナノ粒子の製造方法により得られる半導体ナノ粒子をコアとして、コアの表面上に実質的に第13族元素及び第16族元素からなっていてよいシェルを形成する。コアとなる半導体ナノ粒子は分散物の形態で用いてよい。
 半導体ナノ粒子が分散した液体においては、散乱光が生じないため、分散液は一般に透明(有色又は無色)のものとして得られる。半導体ナノ粒子を分散させる溶媒は、半導体ナノ粒子を作製するときと同様、任意の有機溶剤とすることができ、有機溶剤は、表面修飾剤、又は表面修飾剤を含む溶液とすることができる。例えば、有機溶剤は、半導体ナノ粒子の製造方法に関連して説明した表面修飾剤である、炭素数4以上20以下の炭化水素基を有する含窒素化合物から選ばれる少なくとも1つとすることができ、あるいは、炭素数4以上20以下の炭化水素基を有する含硫黄化合物から選ばれる少なくとも1つとすることができ、あるいは炭素数4以上20以下の炭化水素基を有する含窒素化合物から選ばれる少なくとも1つと炭素数4以上20以下の炭化水素基を有する含硫黄化合物から選ばれる少なくとも1つとの組み合わせでとすることができる。含窒素化合物としては、特に、特に純度の高いものが入手しやすい点と沸点が290℃を超える点とから、反応温度より高いことが好ましく、具体的な有機溶剤としては、オレイルアミン、n-テトラデシルアミン、ドデカンチオール、又はその組み合わせが挙げられる。
 半導体ナノ粒子を分散させる溶媒は、クロロホルム等のハロゲン系溶剤を含んでいてもよく、実質的にハロゲン系溶剤であってもよい。また、半導体ナノ粒子をハロゲン系溶剤に分散した後、含窒素化合物等の表面修飾剤を含む有機溶剤に溶媒交換して、半導体ナノ粒子の分散液を得てもよい。溶媒交換は、例えば、ハロゲン系溶剤を含む半導体ナノ粒子の分散液に表面修飾剤を添加した後、ハロゲン系溶剤の少なくとも一部を除去することで行うことができる。具体的には、例えば、ハロゲン系溶剤及び表面修飾剤を含む分散液を、減圧下に熱処理することでハロゲン系溶剤の少なくとも一部を除去して、表面修飾剤を含む半導体ナノ粒子の分散液を得ることができる。減圧下での熱処理における減圧条件及び熱処理温度は、ハロゲン系溶剤の少なくとも一部が除去され、表面修飾剤が残存する条件とすればよい。具体的に減圧条件は、例えば、1Pa以上2000Pa以下であってよく、好ましくは50Pa以上500Pa以下である。また、熱処理温度は、例えば20℃以上120℃以下であってよく、好ましくは50℃以上80℃以下である。
 半導体ナノ粒子の分散液は、分散液に占める粒子の濃度が、例えば、5.0×10-7モル/リットル以上5.0×10-5モル/リットル以下、特に1.0×10-6モル/リットル以上、1.0×10-5モル/リットル以下となるように調製してよい。分散液に占める粒子の割合が小さすぎると貧溶媒による凝集・沈澱プロセスによる生成物の回収が困難になり、大きすぎるとコアを構成する材料のオストワルド熟成、衝突による融合の割合が増加し、粒径分布が広くなる傾向にある。
 第13族元素を含む化合物は、第13族元素源となるものであり、例えば、第13族元素の有機塩、無機塩、有機金属化合物等である。第13族元素を含む化合物としては、硝酸塩、酢酸塩、硫酸塩、塩酸塩、スルホン酸塩、アセチルアセトナート錯体等が挙げられ、好ましくは酢酸塩等の有機塩、又は有機金属化合物である。有機塩及び有機金属化合物は有機溶媒への溶解度が高く、反応をより均一に進行させやすいことによる。第13族元素としては、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)及びタリウム(Tl)が挙げられ、これらからなる群から選択される少なくとも1種が好ましい。
 第16族元素の単体又は第16族元素を含む化合物は、第16族元素源となるものである。例えば、第16族元素として硫黄(S)をシェルの構成元素とする場合には、高純度硫黄のような硫黄単体を用いることができ、あるいは、n-ブタンチオール、イソブタンチオール、n-ペンタンチオール、n-ヘキサンチオール、オクタンチオール、デカンチオール、ドデカンチオール、ヘキサデカンチオール、オクタデカンチオール等のチオール、ジベンジルスルフィドのようなジスルフィド、チオ尿素、1,3-ジメチルチオ尿素等のアルキルチオ尿素、チオカルボニル化合物等の硫黄含有化合物を用いることができる。中でも1,3-ジメチルチオ尿素等のアルキルチオ尿素を第16族元素源(S源)として用いると、シェルが十分に形成されて、強いバンド端発光を与える半導体ナノ粒子が得られやすい。
 第16族元素として、酸素(O)をシェルの構成元素とする場合には、酸素源として具体的には、酸素原子を含む化合物、酸素原子を含むガス等を挙げることできる。酸素原子を含む化合物としては、水、アルコール、エーテル、カルボン酸、ケトン、N-オキシド化合物等を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。酸素原子を含むガスとしては、酸素ガス、オゾンガス等を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。酸素源はシェル形成用混合物である第2混合物に酸素原子を含む化合物を溶解又は分散させて添加してもよく、第2混合物に酸素原子を含むガスを吹き込んで添加してもよい。第16族元素として、セレン(Se)をシェルの構成元素とする場合には、セレン単体、又はセレン化ホスフィンオキシド、有機セレン化合物(ジベンジルジセレニド、ジフェニルジセレニド等)もしくは水素化物等の化合物を、第16族元素源として用いてよい。第16族元素として、テルル(Te)をシェルの構成元素とする場合には、テルル単体、テルル化ホスフィンオキシド、又は水素化物を、第16族元素源として用いてよい。
 第2混合物は、必要に応じてアルカリ金属塩をさらに含んでいてもよい。アルカリ金属塩の詳細は既述の通りである。第2混合物がアルカリ金属塩を含む場合、第2混合物におけるアルカリ金属の原子数と第13族元素の原子数の総和に対するアルカリ金属の原子数の比は、例えば、0.01以上1未満、又は0.1以上0.9以下であってよい。また、第2混合物におけるアルカリ金属の原子数と第13族元素の原子数の総和に対する第16族元素の原子数の比は、例えば、0.25以上0.75以下であってよい。
 シェル形成工程では、コアとなる半導体ナノ粒子を含む分散液を昇温して、そのピーク温度が200℃以上310℃以下となるようにし、ピーク温度に達してから、ピーク温度を保持した状態で、予め第13族元素源及び第16族元素源、並びに必要に応じてアルカリ金属塩を、有機溶媒に分散又は溶解させた混合液を少量ずつ加え、その後、降温させる方法で、シェル層を形成してよい(スローインジェクション法)。この場合、半導体ナノ粒子を含む分散液と混合液が混合されて第2混合物が得られた直後に熱処理が進行する。混合液は、0.1mL/時間以上10mL/時間以下、特に1mL/時間以上5mL/時間以下の速度で添加してよい。ピーク温度は、混合液の添加を終了した後も必要に応じて保持してよい。
 ピーク温度が前記温度以上であると、半導体ナノ粒子を修飾している表面修飾剤が十分に脱離し、又はシェル生成のための化学反応が十分に進行する等の理由により、半導体の層(シェル)の形成が十分に行われる傾向がある。ピーク温度が前記温度以下であると、半導体ナノ粒子に変質が生じることが抑制され、良好なバンド端発光が得られる傾向がある。ピーク温度を保持する時間は、混合液の添加が開始されてからトータルで1分間以上300分間以下、特に10分間以上120分間以下とすることができる。ピーク温度の保持時間は、ピーク温度との関係で選択され、ピーク温度がより低い場合には保持時間をより長くし、ピーク温度がより高い場合には保持時間をより短くすると、良好なシェル層が形成されやすい。昇温速度及び降温速度は特に限定されず、降温は、例えばピーク温度で所定時間保持した後、加熱源(例えば電気ヒーター)による加熱を停止して放冷することにより実施してよい。
 あるいは、シェル形成工程では、半導体ナノ粒子を含む分散液と、第13族元素源及び第16族元素源、並びに必要に応じてアルカリ金属塩とを混合して、第2混合物を得た後、第2混合物を熱処理することにより、シェルである半導体層をコアとなる半導体ナノ粒子の表面に形成してよい(ヒーティングアップ法)。具体的には、第2混合物を徐々に昇温して、そのピーク温度が200℃以上310℃以下となるようにし、ピーク温度で1分間以上300分間以下保持した後、徐々に降温させるやり方で加熱してよい。昇温速度は例えば1℃/分以上50℃/分以下としてよいが、シェルの無い状態で熱処理され続けることによって生じるコアの変質を最小限に留めるため200℃までは50℃/分以上100℃/分以下が好ましい。また、200℃以上にさらに昇温したい場合は、それ以降は1℃/分以上5℃/分以下とすることが好ましい。降温速度は、例えば1℃/分以上50℃/分以下としてよい。所定のピーク温度ピーク温度が前記範囲であることの有利な点は、スローインジェクション法で説明したとおりである。
 ヒーティングアップ法によれば、スローインジェクション法でシェルを形成する場合と比較して、より強いバンド端発光を与えるコアシェル型半導体ナノ粒子が得られる傾向にある。
 いずれの方法で第13族元素源及び第16族元素源の仕込み比は、第13族元素と第16族元素とからなる化合物半導体の化学量論組成比に対応させて仕込み比を決めてもよく、必ずしも化学量論組成比にしなくてもよい。例えば、第13族元素に対する第16族元素の仕込み比として0.75以上1.5以下とすることができる。
 また、分散液中に存在する半導体ナノ粒子に所望の厚さのシェルが形成されるように、仕込み量は、分散液に含まれる半導体ナノ粒子の量を考慮して選択する。例えば、半導体ナノ粒子の、粒子としての物質量10nmolに対して、第13族元素及び第16族元素から成る化学量論組成の化合物半導体が1μmol以上10mmol以下、特に5μmol以上1mmol以下生成されるように、第13族元素源及び第16族元素源の仕込み量を決定してよい。ただし、粒子としての物質量というのは、粒子1つを巨大な分子と見なしたときのモル量であり、分散液に含まれるナノ粒子の個数を、アボガドロ数(NA=6.022×1023)で除した値に等しい。
 コアシェル型半導体ナノ粒子の製造方法においては、第13族元素源として、酢酸インジウム又はガリウムアセチルアセトナートを用い、第16族元素源として、硫黄単体、チオ尿素、ジベンジルジスルフィド又はアルキルチオ尿素を用い、有機溶剤としてオレイルアミンとドデカンチオールの混合液、又は炭素数4以上20以下のアルキルアミンもしくはアルケニルアミンを用いて、硫化インジウム又は硫化ガリウムを含むシェルを形成することが好ましい。
 このようにして、シェルを形成してコアシェル構造を有するコアシェル型半導体ナノ粒子が形成される。得られたコアシェル型半導体ナノ粒子は、溶媒から分離してよく、必要に応じて、さらに精製及び乾燥してよい。分離、精製及び乾燥の方法は、先に半導体ナノ粒子に関連して説明したとおりであるから、ここではその詳細な説明を省略する。
 コアシェル型半導体ナノ粒子は、そのシェル表面が表面修飾剤で修飾されていてもよい。表面修飾剤の具体例としては、炭素数2以上20以下のアミノアルコール、イオン性表面修飾剤、ノニオン性表面修飾剤、炭素数4以上20以下の炭化水素基を有する含窒素化合物、炭素数4以上20以下の炭化水素基を有する含硫黄化合物、炭素数4以上20以下の炭化水素基を有する含酸素化合物及び炭素数4以上20以下の炭化水素基を有する含リン化合物を挙げることができる。表面修飾剤は、異なる2種以上のものを組み合わせて用いてよい。
 アミノアルコールは、アミノ基及びアルコール性水酸基を有し、炭素数2以上20以下炭化水素基を含む化合物であればよい。アミアルコールの炭素数は、好ましくは10以下、より好ましくは6以下である。アミノアルコールを構成する炭化水素基は、直鎖状、分岐鎖状又は環状のアルカン、アルケン、アルキン等の炭化水素に由来してよい。炭化水素に由来するとは、炭化水素から少なくとも2つの水素原子を取り除いて構成されることを意味する。アミノアルコールとして具体的には、アミノエタノール、アミノプロパノール、アミノブタノール、アミノペンタノール、アミノヘキサノール、アミノオクタノール等を挙げることができる。コアシェル型半導体ナノ粒子表面にアミノアルコールのアミノ基が結合し、その反対側である粒子最表面に水酸基が露出することでコアシェル型半導体ナノ粒子の極性に変化が生じ、アルコール系溶媒(例えば、メタノール、エタノール、プロパノール、ブタノール等)への分散性が向上する。
 イオン性表面修飾剤としては、分子内にイオン性官能基を有する含窒素化合物、含硫黄化合物、含酸素化合物等が挙げられる。イオン性官能基はカチオン性、アニオン性のいずれであってもよく、少なくともカチオン性基を有することが好ましい。表面修飾剤の具体例及び表面修飾の方法は、例えばChemistry Letters,Vol.45,pp898-900,2016の記載を参照することができる。
 イオン性表面修飾剤は、例えば、3級又は4級アルキルアミノ基を有する含硫黄化合物であってよい。アルキルアミノ基のアルキル基の炭素数は、例えば1以上4以下であってよい。また、含硫黄化合物は、炭素数2以上20以下のアルキル又はアルケニルチオールであってよい。イオン性表面修飾剤として具体的には、ジメチルアミノエタンチオールのハロゲン化水素塩、トリメチルアンモニウムエタンチオールのハロゲン塩、ジメチルアミノブタンチオールのハロゲン化水素塩、トリメチルアンモニウムブタンチオールのハロゲン塩等が挙げられる。
 ノニオン性表面修飾剤としては、例えば、アルキレングリコール単位、アルキレングリコールモノアルキルエーテル単位等を含むノニオン性官能基を有する含窒素化合物、含硫黄化合物、含酸素化合物等が挙げられる。アルキレングリコール単位におけるアルキレン基の炭素数は、例えば、2以上8以下であってよく、好ましくは2以上4以下である。またアルキレングリコール単位の繰り返し数は、例えば1以上20以下であってよく、好ましくは2以上10以下である。ノニオン性表面修飾剤を構成する含窒素化合物はアミノ基を有していてよく、含硫黄化合物はチオール基を有していてよく、酸素化合物は水酸基を有していてよい。ノニオン性表面修飾剤の具体例としては、メトキシトリエチレンオキシエタンチオール、メトキシヘキサエチレンオキシエタンチオール等が挙げられる。
 炭素数4以上20以下の炭化水素基を有する含窒素化合物としてはアミン類、アミド類等が挙げられる。炭素数4以上20以下の炭化水素基を有する含硫黄化合物としてはチオール類が挙げられる。炭素数4以上20以下の炭化水素基を有する含酸素化合物としてはカルボン酸類、アルコール類、エーテル類、アルデヒド類、ケトン類などが挙げられる。炭素数4以上20以下の炭化水素基を有する含リン化合物としては、例えば、トリアルキルホスフィン、トリアリールホスフィン、トリアルキルホスフィンオキシド、トリアリールホスフィンオキシド等が挙げられる。
 コアシェル型半導体ナノ粒子のシェル表面を表面修飾する方法としては、コアシェル型半導体ナノ粒子を上述の炭素数2以上20以下のアミノアルコール、イオン性表面修飾剤、ノニオン性表面修飾剤、炭素数4以上20以下の炭化水素基を有する含窒素化合物、炭素数4以上20以下の炭化水素基を有する含硫黄化合物、炭素数4以上20以下の炭化水素基を有する含酸素化合物及び炭素数4以上20以下の炭化水素基を有する含リン化合物等の表面修飾剤(以下、特定表面修飾剤ともいう)と接触させる表面修飾工程を含んでいてよい。
 表面修飾工程では、例えば、コアシェル型半導体ナノ粒子と上述の特定表面修飾剤とを混合することで、コアシェル型半導体ナノ粒子を特定表面修飾剤と接触させてよい。表面修飾工程におけるコアシェル型半導体ナノ粒子に対する特定表面修飾剤の量比は、例えば、コアシェル型半導体ナノ粒子の1×10-8モルに対して、0.1mL以上であればよく、好ましくは0.5mL以上10mL以下である。接触の温度は、例えば、0℃以上100℃以下であってよく、好ましくは10℃以上80℃以下である。接触時間は、例えば、10秒以上10日以下であってよく、好ましくは1分以上1日以下である。接触の雰囲気は不活性雰囲気であってよく、特にアルゴン雰囲気又は窒素雰囲気が好ましい。
 半導体ナノ粒子の製造方法は以下の態様であってもよい。
半導体ナノ粒子の製造方法
 半導体ナノ粒子の製造方法は、銀(Ag)塩と、インジウム(In)塩と、ガリウム(Ga)-イオウ(S)結合を有する化合物と、ガリウムハロゲン化物と、有機溶剤とを含む第3混合物を第3熱処理して第3半導体ナノ粒子を得る第3工程を含む。半導体ナノ粒子の製造方法は、必要に応じて、第3工程に加えてその他の工程を更に含んでいてもよい。
第3工程
 第3工程は、Ag塩と、In塩と、Ga-S結合を有する化合物と、ガリウムハロゲン化物と、有機溶剤とを含む第3混合物を得る第3混合工程と、得られる第3混合物を第3熱処理して第3半導体ナノ粒子を得る第3熱処理工程とを含んでいてよい。
 第3半導体ナノ粒子の組成に含まれるGa及びSの供給源として、Ga-S結合を有する化合物を用いることで、製造される第3半導体ナノ粒子の組成の制御が容易になる。また、ガリウムハロゲン化物を用いることにより、製造される第3半導体ナノ粒子の粒径制御が容易になる。以上のことから、バンド端発光を示し、高いバンド端発光純度を示す半導体ナノ粒子をワンポットにより効率的に製造することができると考えられる。
 第3混合工程では、Ag塩と、In塩と、Ga-S結合を有する化合物と、ガリウムハロゲン化物と、有機溶剤とを混合することで第3混合物を調製する。第3混合工程における混合方法は、通常用いられる混合方法から適宜選択されてよい。
 第3混合物におけるAg塩及びIn塩は、有機酸塩又は無機酸塩のいずれであってもよい。具体的には、無機酸塩としては、硝酸塩、硫酸塩、塩酸塩、スルホン酸塩等を挙げることができる。また有機酸塩としては、ギ酸塩、酢酸塩、シュウ酸、アセチルアセトナート塩等を挙げることができる。Ag塩及びIn塩は、好ましくはこれらの塩からなる群から選択される少なくとも1種であってよく、有機溶剤への溶解度が高く、反応がより均一に進行することから、より好ましくは酢酸塩、アセチルアセトナート塩等の有機酸塩からなる群から選択される少なくとも1種であってよい。第3混合物は、Ag塩及びIn塩をそれぞれ1種単独で含んでいてもよく、それぞれ2種以上を組み合わせて含んでいてもよい。
 第3混合物におけるAg塩は、後述の第3熱処理工程において硫化銀の副生成を抑制できる点から、Ag-S結合を有する化合物を含んでいてもよい。Ag-S結合は、共有結合、イオン結合、配位結合等のいずれであってもよい。Ag-S結合を有する化合物としては、例えば含硫黄化合物のAg塩が挙げられ、Agの有機酸塩、無機酸塩、有機金属化合物等であってよい。含硫黄化合物としては、チオカルバミン酸、ジチオカルバミン酸、チオ炭酸エステル、ジチオ炭酸エステル(キサントゲン酸)、トリチオ炭酸エステル、チオカルボン酸、ジチオカルボン酸及びそれらの誘導体等を挙げることができる。中でも比較的低温で分解することからキサントゲン酸及びその誘導体からなる群から選択される少なくとも1種が好ましい。含硫黄化合物の具体例としては、例えば、脂肪族チオカルバミン酸、脂肪族ジチオカルバミン酸、脂肪族チオ炭酸エステル、脂肪族ジチオ炭酸エステル、脂肪族トリチオ炭酸エステル、脂肪族チオカルボン酸、脂肪族ジチオカルボン酸等が挙げられる。これらの含硫黄化合物における脂肪族基としては、炭素数1以上12以下のアルキル基、アルケニル基等を挙げることができる。脂肪族チオカルバミン酸にはジアルキルチオカルバミン酸等が含まれてよく、脂肪族ジチオカルバミン酸にはジアルキルジチオカルバミン酸等が含まれてよい。ジアルキルチオカルバミン酸及びジアルキルジチオカルバミン酸におけるアルキル基は、例えば、炭素数が1以上12以下であってよく、好ましくは炭素数が1以上4以下である。ジアルキルチオカルバミン酸及びジアルキルジチオカルバミン酸における2つのアルキル基は、同一でも異なっていてもよい。Ag-S結合を有する化合物の具体例としては、ジメチルジチオカルバミン酸銀、ジエチルジチオカルバミン酸銀(Ag(DDTC))、エチルキサントゲン酸銀(Ag(EX))等を挙げることができる。
 第3混合物におけるIn塩は、In-S結合を有する化合物を含んでいてもよい。In-S結合は、共有結合、イオン結合、配位結合等のいずれであってもよい。In-S結合を有する化合物としては、例えば含硫黄化合物のIn塩が挙げられ、Inの有機酸塩、無機酸塩、有機金属化合物等であってよい。含硫黄化合物として具体的には、チオカルバミン酸、ジチオカルバミン酸、チオ炭酸エステル、ジチオ炭酸エステル(キサントゲン酸)、トリチオ炭酸エステル、チオカルボン酸、ジチオカルボン酸及びそれらの誘導体等を挙げることができる。中でも比較的低温で分解することからキサントゲン酸及びその誘導体からなる群から選択される少なくとも1種が好ましい。含硫黄化合物の具体例は上記と同様である。In-S結合を有する化合物の具体例としては、トリスジメチルジチオカルバミン酸インジウム、トリスジエチルジチオカルバミン酸インジウム(In(DDTC))、クロロビスジエチルジチオカルバミン酸インジウム、エチルキサントゲン酸インジウム(In(EX))等を挙げることができる。
 第3混合物におけるGa-S結合を有する化合物のGa-S結合は、共有結合、イオン結合、配位結合等のいずれであってもよい。Ga-S結合を有する化合物としては、例えば含硫黄化合物のGa塩が挙げられ、Gaの有機酸塩、無機酸塩、有機金属化合物等であってよい。含硫黄化合物として具体的には、チオカルバミン酸、ジチオカルバミン酸、チオ炭酸エステル、ジチオ炭酸エステル(キサントゲン酸)、トリチオ炭酸エステル、チオカルボン酸、ジチオカルボン酸及びそれらの誘導体等を挙げることができる。中でも比較的低温で分解することからキサントゲン酸及びその誘導体からなる群から選択される少なくとも1種が好ましい。含硫黄化合物の具体例は、上記と同様である。Ga-S結合を有する化合物の具体例としては、トリスジメチルジチオカルバミン酸ガリウム、トリスジエチルジチオカルバミン酸ガリウム(Ga(DDTC))、クロロビスジエチルジチオカルバミン酸ガリウム、エチルキサントゲン酸ガリウム(Ga(EX))等を挙げることができる。第3混合物は、Ga-S結合を有する化合物を1種単独で含んでいてもよく、2種以上を組み合わせて含んでいてもよい。
 第3混合物におけるガリウムハロゲン化物としては、フッ化ガリウム、塩化ガリウム、臭化ガリウム、ヨウ化ガリウム等が挙げられ、これらからなる群から選択される少なくとも1種を含んでいてよい。また、ガリウムハロゲン化物は、少なくとも塩化ガリウムを含んでいてよい。ガリウムハロゲン化物は1種単独でも、2種以上を組み合わせて用いてもよい。
 第3混合物における有機溶剤としては、例えば、炭素数4から20の炭化水素基を有するアミン、例えば炭素数4から20のアルキルアミンもしくはアルケニルアミン、炭素数4から20の炭化水素基を有するチオール、例えば炭素数4から20のアルキルチオールもしくはアルケニルチオール、炭素数4から20の炭化水素基を有するホスフィン、例えば炭素数4から20のアルキルホスフィンもしくはアルケニルホスフィン等を挙げることができ、これらからなる群から選択される少なくとも1種を含むことが好ましい。これらの有機溶剤は、例えば、最終的には、得られる第3半導体ナノ粒子を表面修飾してもよい。有機溶剤は2種以上を組み合わせて使用してよく、例えば炭素数4から20の炭化水素基を有するチオールから選択される少なくとも1種と、炭素数4から20の炭化水素基を有するアミンから選択される少なくとも1種とを組み合わせた混合溶剤を使用してよい。これらの有機溶剤は他の有機溶剤と混合して用いてもよい。有機溶剤が前記チオールと前記アミンとを含む場合、アミンに対するチオールの含有体積比(チオール/アミン)は、例えば、0より大きく1以下であり、好ましくは0.007以上0.2以下である。
 第3混合物におけるAg、In、Ga及びSの含有比は、目的とする組成に応じて適宜選択してもよい。その際、Ag、In、Ga及びSの含有比は化学量論比と整合しなくてもよい。例えば、InとGaの合計モル数に対するGaのモル数の比(Ga/(In+Ga))は0.2以上0.95以下、0.4以上0.9以下、又は0.6以上0.9以下であってよい。また例えば、AgとInとGaの合計モル数に対するAgのモル数の比(Ag/(Ag+In+Ga))は0.05以上0.55以下であってよい。また例えば、AgとInとGaの合計モル数に対するSのモル数の比(S/(Ag+In+Ga))は0.6以上1.6以下であってよい。
 第3混合物は、アルカリ金属塩をさらに含んでいてもよい。アルカリ金属(M)としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)が挙げられ、イオン半径がAgに近い点でLiを含むことが好ましい。アルカリ金属塩としては、有機酸塩及び無機酸塩が挙げられる。具体的に無機酸塩としては、硝酸塩、硫酸塩、塩酸塩、スルホン酸塩等が挙げられ、有機酸塩としては、酢酸塩、アセチルアセトナート塩等が挙げられる。中でも有機溶剤への溶解度が高い点から有機酸塩が好ましい。
 第3混合物がアルカリ金属塩を含む場合、Agとアルカリ金属の総原子数に対するアルカリ金属の原子数の比(M/(Ag+M))は、例えば、1未満であってよく、好ましくは0.8以下、より好ましくは0.4以下、更に好ましくは0.2以下である。またその比は、例えば、0より大きくてよく、好ましくは0.05以上、より好ましくは0.1以上である。
 第3混合物におけるAg塩に対するガリウムハロゲン化物の含有量のモル比は、例えば、0.01以上1以下であってよく、内部量子収率の点から、好ましくは0.12以上0.45以下であってよい。
 第3混合物におけるAg塩の濃度は、例えば、0.01ミリモル/リットル以上500ミリモル/リットル以下であってよく、内部量子収率の点から、好ましくは0.05ミリモル/リットル以上100ミリモル/リットル以下であってよく、より好ましくは0.1ミリモル/リットル以上10ミリモル/リットル以下であってよい。
 第3熱処理工程では、第3混合物を第3熱処理して第3半導体ナノ粒子を得る。第3熱処理の温度は、例えば、200℃以上320℃以下であってよい。また、第3熱処理工程は、第3混合物を200℃以上320℃以下の範囲にある温度まで昇温する昇温工程と、200℃以上320℃以下の範囲にある温度にて第3混合物を所定時間熱処理する合成工程とを含んでいてよい。
 第3熱処理工程の昇温工程における昇温する温度の範囲は、200℃以上320℃以下であってよく、好ましくは230℃以上290℃以下であってよい。昇温速度は、昇温中の最高温度が目的とする温度を越えないように調整すればよく、例えば1℃/分以上50℃/分以下である。
 第3熱処理工程の合成工程における熱処理の温度は、200℃以上320℃以下であってよく、好ましくは230℃以上290℃以下であってよい。合成工程における熱処理の時間は、例えば、3秒以上であってよく、好ましくは1分以上、10分以上、30分以上、60分以上、又は90分以上であってよい。また熱処理の時間は、例えば、300分以下であってよく、好ましくは180分以下、又は150分以下であってよい。合成工程における熱処理の時間は上述の温度範囲にて設定した温度に到達した時点(例えば250℃に設定した場合は250℃に到達した時間)を開始時間とし、降温のための操作を行った時点を終了時間とする。合成工程によって第3半導体ナノ粒子を含む分散液を得ることができる。
 第3熱処理工程の雰囲気は、不活性ガス雰囲気、特にアルゴン雰囲気又は窒素雰囲気が好ましい。不活性ガス雰囲気とすることで、酸化物の副生及び得られる第3半導体ナノ粒子表面の酸化を、低減ないしは防止することができる。
 半導体ナノ粒子の製造方法は、上述の合成工程に続いて、得られる第3半導体ナノ粒子を含む分散液の温度を降温する冷却工程をさらに有してよい。冷却工程は、降温のための操作を行った時点を開始とし、50℃以下まで冷却された時点を終了とする。
 冷却工程は、未反応のAg塩からの硫化銀の生成を抑制する点から、降温速度が50℃/分以上である期間を含んでいてよい。特に降温のための操作を行った後、降温が開始した時点において50℃/分以上としてよい。
 冷却工程の雰囲気は、不活性ガス雰囲気、特にアルゴン雰囲気又は窒素雰囲気が好ましい。不活性ガス雰囲気とすることで、酸化物の副生及び得られる第3半導体ナノ粒子表面の酸化を、低減ないしは防止することができる。
 半導体ナノ粒子の製造方法は、第3半導体ナノ粒子を分散液から分離する分離工程を更に含んでいてもよく、必要に応じて、さらに精製工程を含んでいてよい。分離工程では、例えば、第3半導体ナノ粒子を含む分散液を遠心分離に付して、第3半導体ナノ粒子を含む上澄み液を取り出してよい。精製工程では、例えば、分離工程で得られる上澄み液に、アルコール等の適当な有機溶剤を添加して遠心分離に付し、第3半導体ナノ粒子を沈殿物として取り出してよい。なお、上澄み液から有機溶剤を揮発させることによっても、第3半導体ナノ粒子を取り出すことができる。取り出した沈殿物は、例えば、真空脱気、もしくは自然乾燥、又は真空脱気と自然乾燥との組み合わせにより、乾燥させてよい。自然乾燥は、例えば、大気中に常温常圧にて放置することにより実施してよく、その場合、20時間以上、例えば、30時間程度放置してよい。また、取り出した沈殿物は、適当な有機溶剤に分散させてよい。
 半導体ナノ粒子の製造方法では、アルコール等の有機溶剤の添加と遠心分離による精製工程を必要に応じて複数回実施してよい。精製に用いるアルコールとしては、メタノール、エタノール、n-プロピルアルコール等の炭素数1から4の低級アルコールを用いてよい。沈殿物を有機溶剤に分散させる場合、有機溶剤として、クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン等のハロゲン系溶剤、トルエン、シクロヘキサン、ヘキサン、ペンタン、オクタン等の炭化水素系溶剤等を用いてよい。沈殿物を分散させる有機溶剤は、内部量子収率の観点より、ハロゲン系溶剤であってよい。
 以上で得られる第3半導体ナノ粒子は、分散液の状態であってもよく、乾燥された粉体であってもよい。第3半導体ナノ粒子は、バンド端発光を示し、高いバンド端発光純度を示すことができる。半導体ナノ粒子の製造方法で得られる半導体ナノ粒子は、第3半導体ナノ粒子であってもよいし、後述する第4工程後に得られる第4半導体ナノ粒子であってもよい。
 半導体ナノ粒子の製造方法は、第3半導体ナノ粒子と、ガリウムハロゲン化物とを含む第4混合物を第4熱処理して第4半導体ナノ粒子を得る第4工程を更に含んでいてもよい。
第4工程
 第4工程は、上述の第3工程で得られる第3半導体ナノ粒子と、ガリウムハロゲン化物を含む第4混合物を得る第4混合工程と、得られる第4混合物を第4熱処理して第4半導体ナノ粒子を得る第4熱処理工程とを含んでいてよい。
 第3半導体ナノ粒子とガリウムハロゲン化物とを含む第4混合物を第4熱処理することにより、バンド端発光純度及び内部量子収率が、より向上する第4半導体ナノ粒子を製造することができる。これは例えば以下のように考えることができる。
 第3半導体ナノ粒子の表面に存在するGaとSを含む半導体(例えば、GaS;xは例えば0.8以上1.5以下)のGa欠陥(例えば、Gaが不足している部分)に、ガリウムハロゲン化物のGa部分が反応してGa欠陥を埋めて、さらに反応系中に存在するS原子と反応することで、Ga欠陥近傍のGa及びSの濃度が上昇し、Ga欠陥が補償されることでバンド端発光純度及び内部量子収率が向上すると考えることができる。また、第3半導体ナノ粒子の表面に存在するGaとSを含む半導体表面のS原子に、ガリウムハロゲン化物のGa原子が配位し、さらに配位したガリウムハロゲン化物のハロゲン原子と、反応系中に存在するS成分とが反応し、表面近傍のGa及びSの濃度が上昇し、残存する表面欠陥を減少させることでバンド端発光純度及び内部量子収率が向上すると考えることもできる。さらに、第3半導体ナノ粒子の原料としてGa-S結合を有する化合物(例えば、エチルキサントゲン酸ガリウム:Ga(EX))を用いる場合、得られた第3半導体ナノ粒子には、部分的にキサントゲン酸が残っており、それら部分的に残ったキサントゲン酸の箇所にガリウムハロゲン化物が作用することでGaSへの転化が促進され、表面近傍のGa及びSの濃度が上昇し、残存する表面欠陥を減少させることでバンド端発光純度及び内部量子収率が向上すると考えることもできる。
 第4混合工程では、第3半導体ナノ粒子と、ガリウムハロゲン化物とを混合して第4混合物を得る。第4混合物は、有機溶剤をさらに含んでいてもよい。第4混合物が含む有機溶剤は、上述の第3工程で例示した有機溶剤と同様である。第4混合物が有機溶剤を含む場合、第3半導体ナノ粒子の濃度が、例えば、5.0×10-7モル/リットル以上5.0×10-5モル/リットル以下、特に1.0×10-6モル/リットル以上、1.0×10-5モル/リットル以下となるように第4混合物が調製されてよい。ここで第3半導体ナノ粒子の濃度は、粒子としての物質量に基づいて設定される。粒子としての物質量というのは、粒子1つを巨大な分子と見なしたときのモル量であり、分散液に含まれるナノ粒子の個数を、アボガドロ数(NA=6.022×1023)で除した値に等しい。
 第4混合物におけるガリウムハロゲン化物としては、フッ化ガリウム、塩化ガリウム、臭化ガリウム、ヨウ化ガリウム等が挙げられ、これらからなる群から選択される少なくとも1種を含んでいてよい。また、ガリウムハロゲン化物は、少なくとも塩化ガリウムを含んでいてよい。ガリウムハロゲン化物は1種単独でも、2種以上を組み合わせて用いてもよい。
 第4混合物における第3半導体ナノ粒子に対するガリウムハロゲン化物の含有量のモル比は、例えば、0.01以上50以下であってよく、好ましくは0.1以上10以下である。
 第4熱処理工程では、第4混合物を第4熱処理して第4半導体ナノ粒子を得る。第4熱処理の温度は、例えば、200℃以上320℃以下であってよい。第4熱処理工程は、第4混合物を200℃以上320℃以下の範囲にある温度まで昇温する昇温工程と、200℃以上320℃以下の範囲にある温度にて第4混合物を所定時間熱処理する修飾工程とを含んでいてよい。
 また、第4熱処理工程は、昇温工程の前に、60℃以上100℃以下の温度で第4混合物を熱処理する予備熱処理工程を更に含んでいてもよい。予備熱処理工程における熱処理の温度は、例えば70℃以上90℃以下であってよい。予備熱処理工程における熱処理の時間は、例えば1分以上30分以下であってよく、好ましくは5分以上20分以下であってよい。
 第4熱処理工程の昇温工程で昇温する温度の範囲は、200℃以上320℃以下であってよく、好ましくは230℃以上290℃以下であってよい。昇温速度は、昇温中の最高温度が目的とする温度を越えないように調整すればよく、例えば1℃/分以上50℃/分以下である。
 第4熱処理工程の修飾工程における熱処理の温度は、200℃以上320℃以下であってよく、好ましくは230℃以上290℃以下であってよい。修飾工程における熱処理の時間は、例えば、3秒以上であってよく、好ましくは1分以上、10分以上、30分以上、60分以上、又は90分以上であってよい。また熱処理の時間は、例えば、300分以下であってよく、好ましくは180分以下、又は150分以下であってよい。修飾工程における熱処理の時間は上述の温度範囲にて設定した温度に到達した時点(例えば250℃に設定した場合は250℃に到達した時間)を開始時間とし、降温のための操作を行った時点を終了時間とする。
 第4熱処理工程の雰囲気は、不活性ガス雰囲気、特にアルゴン雰囲気又は窒素雰囲気が好ましい。不活性ガス雰囲気とすることで、酸化物の副生及び得られる第4半導体ナノ粒子表面の酸化を、低減ないしは防止することができる。
 半導体ナノ粒子の製造方法は、上述の修飾工程に続いて、得られる第4半導体ナノ粒子を含む分散液の温度を降温する冷却工程をさらに有してよい。冷却工程は、降温のための操作を行った時点を開始とし、50℃以下まで冷却された時点を終了とする。
 冷却工程は、降温速度が50℃/分以上である期間を含んでいてよい。特に降温のための操作を行った後、降温が開始した時点において50℃/分以上としてよい。
 冷却工程の雰囲気は、不活性ガス雰囲気、特にアルゴン雰囲気又は窒素雰囲気が好ましい。不活性ガス雰囲気とすることで、酸化物の副生及び得られる第4半導体ナノ粒子表面の酸化を、低減ないしは防止することができる。
 半導体ナノ粒子の製造方法は、第4半導体ナノ粒子を分散液から分離する分離工程を更に含んでいてもよく、必要に応じて、さらに精製工程を含んでいてよい。分離工程、精製工程は、先に第3半導体ナノ粒子に関連して説明したとおりであるから、ここではその詳細な説明を省略する。
 半導体ナノ粒子の製造方法は、表面修飾工程をさらに含んでいてもよい。表面修飾工程は、得られる第4半導体ナノ粒子と表面修飾剤とを接触させることを含んでいてよい。
 表面修飾工程では、例えば、第4半導体ナノ粒子と表面修飾剤とを混合することで第4半導体ナノ粒子を表面修飾剤と接触させてよい。表面修飾工程における第2半導体ナノ粒子に対する表面修飾剤の量比は、例えば、第4半導体ナノ粒子の1×10-8モルに対して、1×10-8モル以上であればよく、好ましくは2×10-8モル以上5×10-8モル以下である。接触の温度は、例えば、0℃以上300℃以下であってよく、好ましくは10℃以上300℃以下である。接触の時間は、例えば、10秒以上10日以下であってよく、好ましくは1分以上1日以下である。接触の雰囲気は不活性ガス雰囲気であってよく、特にアルゴン雰囲気又は窒素雰囲気が好ましい。
 表面修飾工程に用いる表面修飾剤の具体例としては、炭素数2以上20以下のアミノアルコール、イオン性表面修飾剤、ノニオン性表面修飾剤、炭素数4以上20以下の炭化水素基を有する含窒素化合物、炭素数4以上20以下の炭化水素基を有する含硫黄化合物、炭素数4以上20以下の炭化水素基を有する含酸素化合物、炭素数4以上20以下の炭化水素基を有する含リン化合物、第2族元素、第12族元素又は第13族元素のハロゲン化物等を挙げることができる。表面修飾剤は、1種単独でも、異なる2種以上のものを組み合わせて用いてよい。なお、これらの表面修飾剤の詳細については既述の通りである。
発光材料
 発光材料は、上述のコアシェル型半導体ナノ粒子と、コアシェル型半導体ナノ粒子を包埋する金属化合物とを含んでいてよい。コアシェル型半導体ナノ粒子を包埋する金属化合物は、Zn及びGaの少なくとも一方と、S及びOの少なくとも一方とを含んでいてよい。
 発光材料が、特定の構成を有するコアシェル型半導体ナノ粒子と、これを包埋する特定の金属化合物とから構成されることで、発光材料の耐久性が向上し、環境中の水、酸素等に起因する発光材料の発光特性の劣化が抑制される。金属化合物は、例えば、コアシェル型半導体ナノ粒子を包埋するマトリックスとして機能すると考えられる。
 コアシェル型半導体ナノ粒子は、少なくとも粒子の一部が金属化合物内に包埋されて発光材料を構成する。発光材料では、複数の粒子が凝集状態で金属化合物内に包埋されていてもよく、個々の粒子が独立して金属化合物内に包埋されていてもよい。
 ここで発光材料の構成例を、図面を参照して説明する。図12は発光材料1の一例を模式的に示す概略図である。発光材料1は、コアシェル型半導体ナノ粒子2と、それを包埋する金属化合物3から構成される。図12ではコアシェル型半導体ナノ粒子2が、単独粒子又は凝集粒子としてマトリックスとなる金属化合物3に包埋されている。また一部のコアシェル型半導体ナノ粒子2は金属化合物3の表面から部分的に露出していてよい。図12では説明の簡略化のために、コアシェル型半導体ナノ粒子2を球形状としているが、コアシェル型半導体ナノ粒子の形状は球形状に限られない。また図12では、金属化合物3を立方体形状として描いているが、金属化合物3の形状は立方体形状には限られない。
 発光材料におけるコアシェル型半導体ナノ粒子の含有率は、発光材料の全質量に対して、例えば、0.01質量%以上10質量%以下であってよく、好ましくは0.1質量%以上5質量%以下である。
 発光材料を構成する金属化合物は、Zn及びGaの少なくとも一方と、S及びOの少なくとも一方とを含み、コアシェル型半導体ナノ粒子を包埋する。金属化合物は、実質的に、Zn及びGaの少なくとも一方と、S及びOの少なくとも一方とからなる化合物であってよい。ここで「実質的に」とは、金属化合物に含まれるすべての元素の原子数の合計を100%としたときに、Zn、Ga、S及びO以外の元素の原子数の割合が、例えば10%以下、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であることを示す。金属化合物中に含まれる元素の割合は、例えば、Zn、Ga及びSについてはICP発光分析により、Oについては燃焼法による元素分析にて確認することができる。金属化合物は、金属硫化物、金属酸硫化物及び金属酸化物からなる群から選択される少なくとも1種を含んでもよい。金属化合物が金属硫化物、金属酸硫化物及び金属酸化物からなる群から選択される少なくとも1種を含むことは、例えばSEM-EPMAにより確認することができる。
 金属硫化物はZn及びGaの少なくとも一方と、Sとを含んでいてよい。金属硫化物が、実質的にZnとSとから形成されている場合は、ZnSで表される組成を有していてよい。ここで「実質的に」とは、金属硫化物に含まれるすべての元素の原子数の合計を100%としたときに、Zn及びS以外の元素の原子数の割合が、例えば5%以下、好ましくは3%以下、より好ましくは1%以下であることを示す。また、金属硫化物が、実質的にGaとSとから形成されている場合、Gaで表される組成を有していてよい。ここで「実質的に」とは、金属硫化物に含まれるすべての元素の原子数の合計を100%としたときに、Ga及びS以外の元素の原子数の割合が、例えば5%以下、好ましくは3%以下、より好ましくは1%以下であることを示す。
 金属酸硫化物はZn及びGaの少なくとも一方と、S及びOとを含んでいてよい。金属酸硫化物が、例えば実質的にZn、S及びOとから形成されている場合、ZnO(1-x)(0<X<1)で表される組成を有していてよい。ここで「実質的に」とは、金属酸硫化物に含まれるすべての元素の原子数の合計を100%としたときに、Zn、S及びO以外の元素の原子数の割合が、例えば5%以下、好ましくは3%以下、より好ましくは1%以下であることを示す。また、金属酸硫化物が、実質的にGa、S及びOとから形成されている場合、Ga(3-x)(0<X<3)で表される組成を有していてよい。ここで「実質的に」とは、金属酸硫化物に含まれるすべての元素の原子数の合計を100%としたときに、Ga、S及びO以外の元素の原子数の割合が、例えば5%以下、好ましくは3%以下、より好ましくは1%以下であることを示す。
 金属酸化物はZn及びGaの少なくとも一方と、Oとを含んでいてよい。金属酸化物が、例えば実質的にZnとOとから形成されている場合、ZnOで表される組成を有していてよい。ここで「実質的に」とは、金属酸化物に含まれるすべての元素の原子数の合計を100%としたときに、Zn及びO以外の元素の原子数の割合が、例えば5%以下、好ましくは3%以下、より好ましくは1%以下であることを示す。また、金属酸化物が、実質的にGaとOとから形成されている場合、Gaで表される組成を有していてよい。ここで「実質的に」とは、金属酸化物に含まれるすべての元素の原子数の合計を100%としたときに、Ga及びO以外の元素の原子数の割合が、例えば5%以下、好ましくは3%以下、より好ましくは1%以下であることを示す。
 コアシェル型半導体ナノ粒子を包埋する金属化合物は後述するように、溶液反応で生成する化合物であってよい。金属化合物は、例えば、100℃以下の低温で、金属の有機酸塩又は無機酸塩と、含硫黄化合物及び含酸素化合物の少なくとも一方とを水、アルコール等の存在下で反応させて得られる加溶媒分解生成物であってよい。金属化合物は、結晶質体であっても非晶質体であってもよい。金属化合物、の結晶状態は、例えば、X線回折法により確認することができる。
発光材料の製造方法
 発光材料の製造方法は、上述のコアシェル型半導体ナノ粒子を準備する準備工程と、コアシェル型半導体ナノ粒子と、Zn及びGaの少なくとも一方を含む化合物と、S及びOの少なくとも一方を含む化合物と、溶媒とを含む発光材料の混合物を得る混合工程と、発光材料の混合物から、Zn及びGaの少なくとも一方とS及びOの少なくとも一方とを含み、コアシェル型半導体ナノ粒子を包埋する金属化合物を得る合成工程とを含む。
 コアシェル型半導体ナノ粒子の存在下で、Zn及びGaの少なくとも一方を含む化合物と、S及びOの少なくとも一方を含む化合物とを溶媒を介して反応させることで、Zn及びGaの少なくとも一方を金属として含む金属化合物が析出する。金属化合物は、コアシェル型半導体ナノ粒子を包埋して析出するため、溶液反応によって効率よく発光材料を製造することができる。
混合工程
 発光材料の製造方法における混合工程では、コアシェル型半導体ナノ粒子と、Zn及びGaの少なくとも一方を含む化合物と、S及びOの少なくとも一方を含む化合物と、溶媒とを混合して発光材料の混合物を得る。混合工程に用いられるコアシェル型半導体ナノ粒子は分散液の形態であってよい。
 Zn及びGaの少なくとも一方を含む化合物としては、Zn及びGaの少なくとも一方を含む有機酸塩及び無機酸塩が挙げられる。具体的に無機酸塩としては、硝酸塩、硫酸塩、塩酸塩、スルホン酸塩、炭酸塩等が挙げられる。また、有機酸塩としては、酢酸塩、アセチルアセトナート塩等が挙げられる。中でも有機溶液への溶解度が高い点から有機酸塩が好ましい。Sを含む化合物としては、既述の含硫黄化合物に加えて、チオアセトアミド等のチオアミド類が挙げられる。Oを含む化合物としては、水、アルコール、アミノアルコール等を挙げることができる。
 溶媒としては、水、炭素数1以上8以下のアルコール、炭素数2以上8以下のアルキレングリコール、グリセリン等のその他ポリオール等が挙げられる。アルコールの具体例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ヘキサノール、オクタノール、2-エチルヘキサノール等が挙げられる。溶媒は、水とアルコールの混合溶媒であってもよいが、実質的にアルコールであることがコアシェル型半導体ナノ粒子の劣化を抑制できるので好ましい。実質的にとは、アルコール以外の成分の含有量が、例えば5重量%以下であり、好ましくは1重量%以下であり、より好ましくは0.5重量%以下であることを示す。
 発光材料の混合物におけるコアシェル型半導体ナノ粒子の含有量は、ナノ粒子としての物質量(粒子数)を基準とする濃度として、例えば、10ナノモル/リットル以上10マイクロモル/リットル以下であってよく、好ましくは100ナノモル/リットル以上1マイクロモル/リットル以下である。発光材料の混合物におけるZn及びGaの少なくとも一方を含む化合物の含有量は、例えば、1ミリモル/リットル以上1モル/リットル以下であってよく、好ましくは10ミリモル/リットル以上200ミリモル/リットル以下である。発光材料の混合物におけるS及びOの少なくとも一方を含む化合物の含有量は、例えば、1ミリモル/リットル以上1モル/リットル以下であってよく、好ましくは10ミリモル/リットル以上200ミリモル/リットル以下である。
 発光材料の混合物におけるZn及びGaの少なくとも一方を含む化合物の含有量に対するS及びOの少なくとも一方を含む化合物の含有量のモル比は、例えば、0.1以上10以下であってよく、好ましくは0.5以上2以下であってよい。
 混合工程では、例えば、Zn及びGaの少なくとも一方を含む化合物を含む溶液とコアシェル型半導体ナノ粒子の分散液との混合物に、S及びOの少なくとも一方を含む化合物を添加して発光材料の混合物を得ることができる。また、S及びOの少なくとも一方を含む化合物を含む溶液とコアシェル型半導体ナノ粒子の分散液との混合物に、Zn及びGaの少なくとも一方を含む化合物を添加して発光材料の混合物を得てもよい。混合の温度は、例えば、0℃以上100℃以下であってよく、好ましくは10℃以上80℃以下である。混合の雰囲気は、例えば、不活性雰囲気であってよく、アルコールのみを溶媒として用いる場合、好ましくは脱水雰囲気であることがより好ましい。
 発光材料の製造方法は、上述のコアシェル型半導体ナノ粒子を特定表面修飾剤と接触させる表面修飾工程を含んでいてよい。表面修飾工程後のコアシェル型半導体ナノ粒子を用いることで発光材料の混合物におけるコアシェル型半導体ナノ粒子の分散性がより向上し、より優れた耐久性を示す発光材料を得ることができる。 
発光材料の合成工程
 発光材料の合成工程では、発光材料の混合物から、Zn及びGaの少なくとも一方と、S及びOの少なくとも一方とを含み、コアシェル型半導体ナノ粒子を包埋する金属化合物を得る。発光材料の混合物からは、加溶媒分解を伴う合成反応(いわゆる、ゾル-ゲル法)により、金属化合物がコアシェル型半導体ナノ粒子を包埋しつつ析出する。
 発光材料の合成工程では、例えば、室温(例えば25℃)で金属化合物を析出させてよく、熱処理を行って金属化合物を析出させてもよい。熱処理の温度は、例えば、100℃未満であってよく、好ましくは80℃以下、より好ましくは60℃以下である。また、熱処理の温度は、0℃以上であってよく、好ましくは30℃以上である。合成工程に要する時間は、例えば、1分以上であってよく、好ましくは10分以上である。また、合成工程に要する時間は、例えば、10日以下であってよく、好ましくは3日以下である。合成工程の雰囲気は、不活性雰囲気、特にアルゴン雰囲気又は窒素雰囲気が好ましい。不活性雰囲気とすることで、発光特性がより良好な発光材料を得ることができる。また、アルコールのみを溶媒として用いる場合は、脱水雰囲気であってもよい。
 発光材料の合成工程におけるコアシェル型半導体ナノ粒子の金属化合物への包埋率は、例えば、10%以上であってよく、好ましくは80%以上である。包埋率は、析出した金属化合物に含まれるコアシェル型半導体ナノ粒子の量を、発光材料の混合物に添加したコアシェル型半導体ナノ粒子の量で除して求められる。
 発光材料の製造方法は、合成工程で生成する金属化合物を溶媒から分離する分離工程を更に含んでいてもよく、必要に応じて、さらに精製工程を含んでいてよい。分離工程では、例えば、発光材料を含む反応液を遠心分離に付して、発光材料を析出物として回収してよい。また、濾過等の固液分離手段によって発光材料の析出物を回収してもよい。精製工程では、例えば、分離工程で得られる析出物をアルコール等の有機溶剤で洗浄してよく、洗浄した析出物を乾燥処理してもよい。
発光デバイス
 発光デバイスは、光変換部材及び紫外域から可視光域の範囲に発光ピーク波長を有する光源を備え、光変換部材に上記において説明したコアシェル型半導体ナノ粒子及び発光材料の少なくとも一方を含むものである。この発光デバイスによれば、例えば、光源からの発光の一部を、コアシェル型半導体ナノ粒子や発光材料が吸収してより長波長の光が発せられる。そして、コアシェル型半導体ナノ粒子や発光材料からの光と光源からの発光の残部とが混合され、その混合光を発光デバイスの発光として利用できる。以下コアシェル型の半導体ナノ粒子の例として説明するが、コアシェル型半導体ナノ粒子の代わりに発光材料を用いてもよく、又コアシェル型半導体ナノ粒子と発光材料を併用してもよい。
 具体的には、光源としてはとして短波長領域である380nm以上485nm以下の範囲に発光ピーク波長を有するものを使用する。光源の発光ピーク波長は、好ましくは420nm以上485nm以下であり、より好ましくは440nm以上480nm以下である。これにより、前記発光材料を効率よく励起し、可視光を有効活用することができる。また当該波長範囲の光源を用いることにより、発光強度が高い発光デバイスを提供することができる。 
 コアシェル型半導体ナノ粒子は、他の半導体量子ドットと組み合わせて用いてよく、あるいは他の量子ドットではない蛍光体(例えば、有機蛍光体又は無機蛍光体)と組み合わせて用いてよい。他の半導体量子ドットは、例えば、背景技術の欄で説明した二元系の半導体量子ドットである。量子ドットではない蛍光体として、アルミニウムガーネット系等のガーネット系蛍光体を用いることができる。ガーネット蛍光体としては、セリウムで賦活されたイットリウム・アルミニウム・ガーネット系蛍光体、セリウムで賦活されたルテチウム・アルミニウム・ガーネット系蛍光体が挙げられる。他にユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム系蛍光体、ユウロピウムで賦活されたシリケート系蛍光体、β-SiAlON系蛍光体、CASN系又はSCASN系等の窒化物系蛍光体、LnSi11系又はLnSiAlON系等の希土類窒化物系蛍光体、BaSi:Eu系又はBaSi12:Eu系等の酸窒化物系蛍光体、CaS系、SrGa系、ZnS系等の硫化物系蛍光体、クロロシリケート系蛍光体、SrLiAl:Eu蛍光体、SrMgSiN:Eu蛍光体、マンガンで賦活されたフッ化物錯体蛍光体としてのKSiF:Mn蛍光体などを用いることができる。
 発光デバイスにおいて、コアシェル型半導体ナノ粒子を含む光変換部材は、例えばシート又は板状部材であってよく、あるいは三次元的な形状を有する部材であってよい。三次元的な形状を有する部材の例は、表面実装型の発光ダイオードにおいて、パッケージに形成された凹部の底面に光源が配置されているときに、発光素子を封止するために凹部に樹脂が充填されて形成された封止部材である。
 又は、光変換部材の別の例は、平面基板上に光源が配置されている場合にあっては、前記光源の上面及び側面を略均一な厚みで取り囲むように形成された樹脂部材である。あるいはまた、光変換部材のさらに別の例は、光源の周囲にその上端が光源と同一平面を構成するように反射材を含む樹脂部材が充填されている場合にあっては、前記光源及び前記反射材を含む樹脂部材の上部に、所定の厚さで平板状に形成された樹脂部材である。
 光変換部材は光源に接してよく、あるいは光源から離れて設けられていてよい。具体的には、光変換部材は、光源から離れて配置される、ペレット状部材、シート部材、板状部材又は棒状部材であってよく、あるいは光源に接して設けられる部材、例えば、封止部材、コーティング部材(モールド部材とは別に設けられる発光素子を覆う部材)又はモールド部材(例えば、レンズ形状を有する部材を含む)であってよい。
 また、発光デバイスにおいて、異なる波長の発光を示す2種類以上のコアシェル型半導体ナノ粒子を用いる場合には、1つの光変換部材内で前記2種類以上のコアシェル型半導体ナノ粒子が混合されていてもよいし、あるいは1種類の量子ドットのみを含む光変換部材を2つ以上組み合わせて用いてもよい。この場合、2種類以上の光変換部材は積層構造を成してもよいし、平面上にドット状ないしストライプ状のパターンとして配置されていてもよい。
 光源には半導体発光素子を用いることが好ましい。半導体発光素子としてはLEDチップが挙げられる。LEDチップは、GaN、GaAs、InGaN、AlInGaP、GaP、SiC及びZnO等から成る群より選択される1種又は2種以上から成る半導体層を備えたものであってよい。青紫色光、青色光、又は紫外線を発光する半導体発光素子は、例えば、組成がInAlGa1-X-YN(0≦X、0≦Y、X+Y<1)で表わされるGaN系化合物を半導体層として備えたものである。
 本実施形態の発光デバイスは、光源として液晶表示装置に組み込まれることが好ましい。コアシェル型半導体ナノ粒子によるバンド端発光は発光寿命の短いものであるため、これを用いた発光デバイスは、比較的速い応答速度が要求される液晶表示装置の光源に適している。また、本実施形態のコアシェル型半導体ナノ粒子は、バンド端発光として半値幅の小さい発光ピークを示し得る。したがって、発光デバイスは以下の態様であってよい。(1)青色半導体発光素子によりピーク波長が420nm以上490nm以下の範囲内にある青色光を得るようにし、コアシェル型半導体ナノ粒子により、ピーク波長が510nm以上550nm以下、好ましくは530nm以上540nm以下の範囲内にある緑色光、及びピーク波長が600nm以上680nm以下、好ましくは630nm以上650nm以下の範囲内にある赤色光を得るようにする態様;又は、
(2)発光デバイスにおいて、半導体発光素子によりピーク波長400nm以下の紫外光を得るようにし、コアシェル型半導体ナノ粒子によりピーク波長430nm以上470nm以下、好ましくは440nm以上460nm以下の範囲内にある青色光、ピーク波長が510nm以上550nm以下、好ましくは530nm以上540nm以下の緑色光、及びピーク波長が600nm以上680nm以下、好ましくは630nm以上650nm以下の範囲内にある赤色光を得るようにする態様であってよい。発光デバイスがこれらの態様であることによって、濃いカラーフィルターを用いることなく、色再現性の良い液晶表示装置が得られる。発光デバイスは、例えば、直下型のバックライトとして、又はエッジ型のバックライトとして用いられる。
 あるいは、コアシェル構造の半導体ナノ粒子を含む、樹脂もしくはガラス等からなるシート、板状部材、又はロッドが、発光デバイスとは独立した光変換部材として液晶表示装置に組み込まれていてよい。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
半導体ナノ粒子の合成
 反応容器中にて、酢酸銀(AgOAc)0.2mmolと、酢酸インジウム(In(OAc))0.1mmolと、ジエチルジチオカルバミン酸ガリウム(Ga(DDTC))0.4mmolとを、蒸留精製したオレイルアミン(OLA)10mLと混合して第1混合物を得た。第1混合物を80℃まで加熱し、真空脱気を行った後アルゴン雰囲気に置換した。続いて150℃まで加熱し、液温を150℃のまま30分間保持した。続いて室温まで放冷し、遠心分離によって粗大粒子を除去した後、上澄みにメタノールを加えてコアとなる半導体ナノ粒子を沈殿させ、遠心分離によって回収した。回収した固体をオレイルアミン2mLに分散させた。
 また、得られた半導体ナノ粒子の形状を、透過型電子顕微鏡(TEM、(株)日立ハイテクノロジーズ製、商品名H-7650)を用いて観察するとともに、その平均粒径を8万倍から20万倍のTEM像から測定した。ここでは、TEMグリッドとして、商品名ハイレゾカーボンHRC-C10 STEM Cu100Pグリッド(応研商事(株)を用いた。得られた粒子の形状は、球状もしくは多角形状と考えられる。平均粒径は、3か所以上のTEM像を選択し、これらに含まれているナノ粒子のうち、計測可能なものをすべて、すなわち、画像の端において粒子の像が切れているようなものを除くすべての粒子について、粒径を測定し、その算術平均を求める方法で求めた。実施例及び後述する比較例の両方において、3以上のTEM像を用いて、合計100点以上のナノ粒子の粒径を測定した。コアとなる半導体ナノ粒子の平均粒径は4.4nm、標準偏差は0.8nmであった。
 続いて得られた半導体ナノ粒子に含まれるインジウムの物質量をICP発光分光(島津製作所、ICPS-7510)測定により求めた。銀を基準として生成した粒子の物質量を算出したところ82μmolであった。平均粒径が4.4nmである場合の半導体ナノ粒子の体積は、球状とした場合に45nm3と算出される。また、正方晶かつインジウム:ガリウム比が1:1である硫化銀インジウムガリウム結晶の単位格子体積は0.36nm3(格子定数0.578nm、0.578nm、1.07nm)と算出されることから、半導体ナノ粒子の体積を単位格子体積にて除することにより半導体ナノ粒子1個の中に124個の単位格子が含まれていることが算出された。次に正方晶であり、インジウム:ガリウム比が1:1である場合の硫化銀インジウムガリウム結晶の1個の単位格子には4個の銀原子が含まれているため、ナノ粒子1個あたりには496個の銀原子が含まれていることが算出された。インジウムの物質量をナノ粒子1個あたりのインジウム原子数で除することにより半導体ナノ粒子のナノ粒子としての物質量は、165nmolであると算出された。
コアシェル型半導体ナノ粒子の合成
 ガリウムアセチルアセトナート(Ga(acac))0.1mmol、1,3-ジメチルチオ尿素0.1mmolを量り取り、蒸留精製したオレイルアミン8mLに加え、次いで上記で合成した半導体ナノ粒子のオレイルアミン分散液をコア粒子の分散液として、ナノ粒子濃度で30nmol相当分加えて第2混合物を得た。得られた第2混合物を60℃程度で脱気してアルゴン雰囲気に置換した後、230℃に達するまで急速昇温し(昇温速度約60℃/分)、230℃以降は2℃/分の速度でさらに280℃まで昇温し、280℃にて30分間熱処理した。続いて室温まで放冷し、メタノールを加えてコアシェル型半導体粒子を沈殿させ、洗浄を行った後、得られたコアシェル型半導体ナノ粒子をクロロホルムに分散させた。
表面修飾工程
 得られたコアシェル型半導体ナノ粒子のクロロホルム分散液のうちの一部を分取し、これと等量のトリブチルホスフィン(TBP)を添加・混合後、室温で24時間静置し、TBP修飾されたコアシェル型半導体ナノ粒子の分散液を得た。
吸収、発光スペクトル及び量子収率の測定
 半導体ナノ粒子と、コアシェル型半導体ナノ粒子及びTBP修飾されたコアシェル型半導体ナノ粒子の吸収、発光スペクトルを測定した。その結果を表1に示す。図なお、吸収スペクトルは、紫外可視近赤外分光光度計(日本分光製、商品名V-670)を用いて、波長範囲を350nmから850nmとして測定した。発光スペクトルは、分光蛍光光度計(日本分光製、商品名FP-8600)を用いて、コア粒子については励起光波長450nm、観測波長460nmから1010nmの範囲に設定し、コア/シェル粒子については励起光波長365nm、観測波長380nmから1010nmに設定して測定を行った。量子収率については、蛍光スペクトル測定装置PMA-12(浜松ホトニクス社製)に積分球を取り付けた装置を用いて、室温(25℃)で、励起波長450nmで行い、350nmから1100nmの波長範囲で測定し、470nmから900nmの波長範囲より計算した。
 図1に示すように、コアシェル型半導体ナノ粒子の吸収スペクトルにおいては500nm付近にわずかながらショルダーが見られ、580nm付近以降はほぼ吸収がないことを確認できたことから、400nmから580nm付近にエキシトンピークがあることが推測される。また、図2に示すようにコアシェル型半導体ナノ粒子の発光スペクトルにおいては516nm付近に半値幅が43nmであるバンド端発光が観察され、バンド端発光の量子収率は38%であり、バンド端発光成分の純度は59%であった。また、TBP修飾されたコアシェル型半導体ナノ粒子の発光スペクトルにおいては516nm付近に半値幅が約43nmであるバンド端発光が観察され、バンド端発光の量子収率は68%であり、バンド端発光成分の純度は74%であった。
(実施例2)
半導体ナノ粒子の合成
 反応容器中にて、酢酸銀(AgOAc)0.2mmolと、酢酸インジウム(In(OAc))0.1mmolと ジエチルジチオカルバミン酸ガリウム(Ga(DDTC))0.4mmolを、蒸留精製したオレイルアミン(OLA)6.5mLとオレイン酸(OA)3.2mLと混合して第1混合物を得たこと以外は、実施例1と同様にして半導体ナノ粒子、コアシェル型半導体ナノ粒子及びTBP修飾されたコアシェル型半導体ナノ粒子を得た。実施例1と同じ条件にて測定した各測定結果を表1に示す。また、図1には、コアシェル型半導体ナノ粒子における実施例1のコアシェル型半導体ナノ粒子の最大吸光度で規格化した相対吸光度の吸光スペクトルを示し、図2には、コアシェル型半導体ナノ粒子における実施例1のコアシェル型半導体ナノ粒子の最大発光強度で規格化した相対発光強度の発光スペクトルを示す。
(実施例3)
 半導体ナノ粒子の合成におけるオレイルアミン(OLA)の量を3.3mLとし、オレイン酸(OA)の量を6.3mLとしたこと以外は、実施例2と同様にして半導体ナノ粒子、コアシェル型半導体ナノ粒子及びTBP修飾されたコアシェル型半導体ナノ粒子を得た。実施例1と同じ条件にて測定した各測定結果を表1に示す。また、図1には、コアシェル型半導体ナノ粒子における実施例1のコアシェル型半導体ナノ粒子の最大吸光度で規格化した相対吸光度の吸光スペクトルを示し、図2には、コアシェル型半導体ナノ粒子における実施例1のコアシェル型半導体ナノ粒子の最大発光強度で規格化した相対発光強度の発光スペクトルを示す。
(実施例4)
 半導体ナノ粒子の合成における酢酸インジウムの量を0.067mmolとしたこと以外は、実施例1と同様にして半導体ナノ粒子、コアシェル型半導体ナノ粒子及びTBP修飾されたコアシェル型半導体ナノ粒子を得た。実施例1と同じ条件にて測定した各測定結果を表1に示す。また、コアシェル型半導体ナノ粒子における吸収スペクトルを図3に、コアシェル型半導体ナノ粒子における発光スペクトルを図4に示す。
(実施例5)
 半導体ナノ粒子の合成におけるオレイルアミン(OLA)の量を6.5mLとし、オレイン酸(OA)の量を3.2mLとしたこと以外は、実施例4と同様にして半導体ナノ粒子、コアシェル型半導体ナノ粒子及びTBP修飾されたコアシェル型半導体ナノ粒子を得た。実施例1と同じ条件にて測定した各測定結果を表1に示す。また、図3には、コアシェル型半導体ナノ粒子における実施例4のコアシェル型半導体ナノ粒子の最大吸光度で規格化した相対吸光度の吸光スペクトルを示し、図4には、コアシェル型半導体ナノ粒子における実施例4のコアシェル型半導体ナノ粒子の最大発光強度で規格化した相対発光強度の発光スペクトルを示す。
(実施例6)
 半導体ナノ粒子の合成におけるオレイルアミン(OLA)の量を3.3mLとし、オレイン酸(OA)の量を6.3mLとしたこと以外は、実施例4と同様にして半導体ナノ粒子、コアシェル型半導体ナノ粒子及びTBP修飾されたコアシェル型半導体ナノ粒子を得た。実施例1と同じ条件にて測定した各測定結果を表1に示す。また、図3には、コアシェル型半導体ナノ粒子における実施例4のコアシェル型半導体ナノ粒子の最大吸光度で規格化した相対吸光度の吸光スペクトルを示し、図4には、コアシェル型半導体ナノ粒子における実施例4のコアシェル型半導体ナノ粒子の最大発光強度で規格化した相対発光強度の発光スペクトルを示す。
(実施例7)
半導体ナノ粒子の合成
 反応容器中にて、酢酸銀(AgOAc)0.2mmolと、酢酸インジウム(In(OAc))0.132mmolとジエチルジチオカルバミン酸ガリウム(Ga(DDTC))0.266mmolを、脱水したオレイルアミン(OLA)8mLと混合して第1混合物を得た。第1混合物を真空脱気した後、窒素雰囲気に置換した。続いて150℃まで10℃/分の速度で昇温し、150℃到達後30分間保持した。続いて室温まで放冷し、遠心分離によって粗大粒子を除去した後、上澄みにメタノール6mLを加えて粒径が大きく量子収率が低い粒子を沈殿させ遠心分離により除去した。さらに上澄みにメタノール3mLを加えてコアとなる半導体ナノ粒子を沈殿させ、遠心分離によって回収した。回収した固体をメタノール4mLで洗浄後、クロロホルム5mLに分散させた。
コアシェル型半導体ナノ粒子の合成
 反応容器中に上記で合成した半導体ナノ粒子のクロロホルム分散液4mLをコア粒子の分散液として測り取り、真空乾燥してクロロホルムを除去した。次にガリウムアセチルアセトナート(Ga(acac))0.1mmol、1,3-ジメチルチオ尿素0.1mmolと、脱水したオレイルアミン7mLを加えて第2混合物を得た。得られた第2混合物を真空脱気し窒素雰囲気に置換した後、260℃に達するまで急速昇温し(昇温速度約50℃/分)、260℃到達後2時間保持した。続いて100℃程度まで放冷し、反応容器を真空脱気して揮発性の硫黄化合物などの副生成物を除去しながら60℃程度まで放冷を続けた。得られた反応溶液を遠心分離して粗大粒子を除去し、メタノール9mLを加えてコアシェル型半導体粒子を沈殿させて遠心分離により回収し、メタノール10mLで洗浄を行った後、得られたコアシェル型半導体ナノ粒子をクロロホルム3mLに分散させた。
表面修飾工程
 得られたコアシェル型半導体ナノ粒子のクロロホルム分散液のうちの一部を分取し、これと等量のトリオクチルホスフィン(TOP)を添加し、室温で約22時間撹拌してTOP修飾されたコアシェル型半導体ナノ粒子の分散液を得た。
吸収、発光スペクトル及び量子収率の測定
 半導体ナノ粒子と、コアシェル型半導体ナノ粒子及びTOP修飾されたコアシェル型半導体ナノ粒子の吸収、発光スペクトルを測定した。その結果を表1に示す。また、吸収スペクトルを図5に、発光スペクトルを図6に示す。なお、吸収スペクトルは、紫外可視近赤外分光光度計(日立ハイテクサイエンス製、商品名U-3310)を用いて、波長範囲を350nmから750nmとして測定した。発光スペクトル及び量子収率は、量子効率測定システム(大塚電子製、商品名QE-2100)を用いて、室温(25℃)で、励起光波長365nmで行い、300nmから950nmの波長範囲で測定し、量子効率は450nmから950nmの波長範囲より計算した。また、吸収スペクトル及び発光スペクトルを測定した各サンプルは、吸収スペクトルを測定した際の450nmにおける吸光度がおよそ0.15となるように粒子濃度の調整を行ったものを用いた。
 図5に示すように、コアシェル型半導体ナノ粒子及びTOP修飾されたコアシェル型半導体ナノ粒子の吸収スペクトルにおいては430nm付近にわずかながらショルダーが見られ、550nm付近以降ほぼ吸収がないことを確認できたことから、400nmから550nm付近にエキシトンピークがあることが推測される。また、図6に示すようにコアシェル型半導体ナノ粒子の発光スペクトルにおいては、539nm付近に半値幅が37nmであるバンド端発光が観察され、バンド端発光の量子収率は42%であり、バンド端発光成分の純度は87%であった。また、図6に示すようにTOP修飾されたコアシェル型半導体ナノ粒子の発光スペクトルにおいては540nm付近に半値幅が約37nmであるバンド端発光が観察され、バンド端発光の量子収率は55%であり、バンド端発光成分の純度は87%であった。
(実施例8)
 半導体ナノ粒子の合成
 反応容器中にて、酢酸銀(AgOAc)1mmolと、酢酸インジウム(In(OAc))0.65mmolとジエチルジチオカルバミン酸ガリウム(Ga(DDTC))1.3mmolを、脱水したオレイルアミン(OLA)33mLと混合して第1混合物を得た。第1混合物を真空脱気した後、窒素雰囲気に置換した。続いて140℃まで10℃/分の速度で昇温し、140℃到達後30分間保持した。続いて室温まで放冷し、遠心分離によって粗大粒子を除去した後、上澄みにメタノール6mLを加えて粒径が大きく量子収率が低い粒子を沈殿させ遠心分離により除去した。さらに上澄みにメタノール3mLを加えてコアとなる半導体ナノ粒子を沈殿させ、遠心分離によって回収した。回収した固体をメタノール4mLで洗浄後、クロロホルム5mLに分散させた。
コアシェル型半導体ナノ粒子の合成
 反応容器中に上記で合成した半導体ナノ粒子のクロロホルム分散液4mLをコア粒子の分散液として測り取り、真空乾燥してクロロホルムを除去した。次にガリウムアセチルアセトナート(Ga(acac))0.1mmol、1,3-ジメチルチオ尿素0.1mmolと、脱水したオレイルアミン7mLを加えて第2混合物を得た。得られた第2混合物を真空脱気し窒素雰囲気に置換した後、260℃に達するまで急速昇温し(昇温速度約50℃/分)、260℃到達後2時間保持した。続いて100℃程度まで放冷し、反応容器を真空脱気して揮発性の硫黄化合物などの副生成物を除去しながら60℃程度まで放冷を続けた。得られた反応溶液を遠心分離して粗大粒子を除去し、メタノール9mLを加えてコアシェル型半導体粒子を沈殿させて遠心分離により回収し、メタノール10mLで洗浄を行った後、得られたコアシェル型半導体ナノ粒子をクロロホルム3mLに分散させた。
発光スペクトル及び量子収率の測定
 半導体ナノ粒子と、コアシェル型半導体ナノ粒子の発光スペクトルを測定した。その結果を表1に示す。発光スペクトル及び量子収率は、量子効率測定システム(大塚電子製、商品名QE-2100)を用いて、室温(25℃)で、励起光波長450nmで行い、300nmから950nmの波長範囲で測定し、量子効率は500nmから950nmの波長範囲より計算した。各測定結果を表1及び図7に示す。なお、発光スペクトルを測定したサンプルは、吸収スペクトルを測定した際の450nmにおける吸光度がおよそ0.15となるように粒子濃度の調整を行ったものを用いた。
(実施例9)
 半導体ナノ粒子の合成における第1混合物の加熱温度を150℃としたこと以外は、実施例8と同様にして半導体ナノ粒子及びコアシェル型半導体ナノ粒子を得た。実施例8と同じ条件にて測定した各測定結果を表1及び図7に示す。なお、発光スペクトルを測定したサンプルは、吸収スペクトルを測定した際の450nmにおける吸光度がおよそ0.15となるように粒子濃度の調整を行ったものを用いた。 
(実施例10)
 半導体ナノ粒子の合成における第1混合物の加熱温度を180℃としたこと以外は、実施例8と同様にして半導体ナノ粒子及びコアシェル型半導体ナノ粒子を得た。実施例8と同じ条件にて測定した各測定結果を表1及び図7に示す。なお、発光スペクトルを測定したサンプルは、吸収スペクトルを測定した際の450nmにおける吸光度がおよそ0.15となるように粒子濃度の調整を行ったものを用いた。 
(実施例11)
 半導体ナノ粒子の合成における第1混合物の加熱温度を200℃としたこと以外は、実施例8と同様にして半導体ナノ粒子及びコアシェル型半導体ナノ粒子を得た。実施例8と同じ条件にて測定した各測定結果を表1及び図7に示す。なお、発光スペクトルを測定したサンプルは、吸収スペクトルを測定した際の450nmにおける吸光度がおよそ0.15となるように粒子濃度の調整を行ったものを用いた。 
(比較例1)
半導体ナノ粒子の合成
 反応容器に酢酸銀(AgOAc)0.4mmol、インジウムアセチルアセトナート(In(acac))0.16mmol、ガリウムアセチルアセトナート(Ga(acac))0.24mmol、脱水したオレイルアミン(OLA)8mL、ドデカンチオール(1.25mmol,0.3mL)を測り取り、反応容器を脱気して窒素雰囲気に置換した後およそ50℃まで昇温し、いったんフタを開けてチオ尿素の結晶(0.8mmol,60.8mg)を加えて第1混合物を得た。続いて、ごく短時間の脱気を行い、10℃/分の昇温速度にて150°Cに達するまで昇温した。実測で150℃に到達した後60秒間熱処理を続けた。続いて反応容器を50℃の水に浸漬して急冷して合成反応を停止した。急冷初期では平均して約40℃/分の速度で降温した。遠心分離によって粗大粒子を除去した後、上澄みにメタノール9mLを加えてコアとなる半導体ナノ粒子を沈殿させ、遠心分離によって回収した。回収した固体をヘキサン5mLに分散した。
コアシェル型半導体ナノ粒子の合成
 反応容器中に上記で合成した半導体ナノ粒子のヘキサン分散液3.3mLをコア粒子の分散液として測り取り、ガリウムアセチルアセトナート(Ga(acac))0.2mmol、1,3-ジメチルチオ尿素0.3mmolと、テトラデシルアミン36.5mmolを加えて第2混合物を得た。得られた第2混合物を真空脱気しヘキサンを揮発除去しながら50℃に昇温してテトラデシルアミンを融解させた。次に窒素雰囲気に置換した後、270℃に達するまで昇温し(昇温速度10℃/分)、270℃到達後1時間保持した。続いて100℃程度まで放冷し、反応容器を真空脱気して揮発性の硫黄化合物などの副生成物を除去しながら60℃程度まで放冷を続けた。得られた反応溶液にヘキサン3mLを加えた後遠心分離し粗大粒子を除去した。次にメタノール8mLを加えて遠心分離し粒径が大きく量子収率が低い粒子を沈殿除去した後、上澄みにさらにメタノール12mLを加えてコアシェル型半導体粒子を沈殿させて遠心分離により回収し、メタノール10mLで洗浄を行った後、得られたコアシェル型半導体ナノ粒子をヘキサン3mLに分散させた。
表面修飾工程
 得られたコアシェル型半導体ナノ粒子のクロロホルム分散液のうちの一部を分取し、これと等量のトリオクチルホスフィン(TOP)を添加し、室温で約22時間撹拌してTOP修飾されたコアシェル型半導体ナノ粒子の分散液を得た。
吸収、発光スペクトル及び量子収率の測定
 半導体ナノ粒子と、コアシェル型半導体ナノ粒子及びTOP修飾されたコアシェル型半導体ナノ粒子の吸収、発光スペクトルを測定した。その結果を表2に示す。また、吸収スペクトルを図8に、発光スペクトルを図9に示す。なお、吸収スペクトルは、紫外可視近赤外分光光度計(日立ハイテクサイエンス製、商品名U-2900)を用いて、波長範囲を350nmから750nmとして測定した。発光スペクトル及び量子収率は、量子効率測定システム(大塚電子製、商品名QE-2100)を用いて、室温(25℃)で、励起光波長450nmで行い、300nmから950nmの波長範囲で測定し、量子効率は500nmから950nmの波長範囲より計算した。また、吸収スペクトル及び発光スペクトルを測定した各サンプルは、吸収スペクトルを測定した際の450nmにおける吸光度がおよそ0.15となるように粒子濃度の調整を行ったものを用いた。
(比較例2)
 酢酸インジウム(In(OAc))の量を0.12mmolとし、ガリウムアセチルアセトナート(Ga(acac))の量を0.28mmolとしたこと以外は、比較例1と同様にしてコアシェル型半導体ナノ粒子を得た。比較例1と同じ条件にて測定した各測定結果を表2に示す。また、吸収スペクトルを図10に、発光スペクトルを図11に示す。なお、吸収スペクトル及び発光スペクトルを測定した各サンプルは、吸収スペクトルを測定した際の450nmにおける吸光度がおよそ0.15となるように粒子濃度の調整を行ったものを用いた。
(比較例3)
半導体ナノ粒子の合成
 酢酸インジウム(In(OAc))の量を0.1mmolとし、ガリウムアセチルアセトナート(Ga(acac))の量を0.3mmolとしたこと以外は、比較例1と同様にしてコアシェル型半導体ナノ粒子を得た。得られたコアシェル型半導体ナノ粒子についてそのまま吸収スペクトル及び発光スペクトルを測定した。測定結果を表2に示す。また、吸収スペクトルを図10に、発光スペクトルを図11に示す。なお、吸収スペクトルは、紫外可視近赤外分光光度計(日立ハイテクサイエンス製、商品名U-2900)を用いて、波長範囲を350nmから750nmとして測定した。発光スペクトル及び量子収率は、量子効率測定システム(大塚電子製、商品名QE-2100)を用いて、室温(25℃)で、励起光波長450nmで行い、300nmから950nmの波長範囲で測定し、量子効率は500nmから950nmの波長範囲より計算した。 
(比較例4)
半導体ナノ粒子の合成
 酢酸インジウム(In(OAc))の量を0.08mmolとし、ガリウムアセチルアセトナート(Ga(acac))の量を0.32mmolとしたこと以外は、比較例1と同様にしてコアシェル型半導体ナノ粒子を得た。比較例1と同じ条件にて測定した各測定結果を表2に示す。また、吸収スペクトルを図10に、発光スペクトルを図11に示す。なお、吸収スペクトル及び発光スペクトルを測定した各サンプルは、吸収スペクトルを測定した際の450nmにおける吸光度がおよそ0.15となるように粒子濃度の調整を行ったものを用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1より、実施例1から11において、Ga及びSを含む化合物を用いて半導体ナノ粒子を製造した場合、それら半導体ナノ粒子を用いて得られたコアシェル型半導体ナノ粒子はバンド端発光を示し、発光ピーク波長が540nm以下となることを確認できた。
 実施例1と実施例4の比較より、第1混合物に含まれるInとGaの総原子数に対するGaの原子数の比を大きくすることによりコアシェル型半導体ナノ粒子の発光ピーク波長が短くなることを確認した。
 実施例1と実施例2の比較より、第1混合物中の有機溶剤が不飽和脂肪酸を含む場合、コアシェル型半導体ナノ粒子の発光ピーク波長がシフトすることを確認した。
 表1より、実施例8から11において、第1混合物の熱処理温度を変更したところ、実熱処理温度が150℃にてコアシェル型半導体ナノ粒子の量子収率が高くなることを確認した。
 表2より、比較例1から2において、Gaを含む化合物とSを含む化合物とを用いて半導体ナノ粒子を製造した場合、それら半導体ナノ粒子を用いて得られたコアシェル型半導体ナノ粒子はバンド端発光を示したが、発光ピーク波長は540nmより長かった。また、比較例3及び比較例4において、比較例2と比べて第1混合物に含まれるInとGaの総原子数に対するGaの原子数の比を大きくしたところ、得られた半導体ナノ粒子は発光しなかった。
(実施例12)
半導体ナノ粒子の合成
 反応容器中にて、酢酸銀(AgOAc)0.5mmolと、酢酸インジウム(In(OAc))0.33mmolとエチルキサントゲン酸ガリウム(Ga(EX))0.65mmolを、脱水したオレイルアミン(OLA)16mLと混合して第1混合物を得た。第1混合物を真空脱気した後、窒素雰囲気に置換した。続いて150℃まで10℃/分の速度で昇温し、150℃到達後30分間保持した。続いて室温まで放冷し、遠心分離によって粗大粒子を除去した後、上澄みにメタノール6mLを加えて粒径が大きく量子収率が低い粒子を沈殿させ遠心分離により除去した。さらに上澄みにメタノール3mLを加えてコアとなる半導体ナノ粒子を沈殿させ、遠心分離によって回収した。回収した固体をメタノール4mLで洗浄後、クロロホルム5mLに分散させた。
コアシェル型半導体ナノ粒子の合成
 上記で合成した半導体ナノ粒子のクロロホルム分散液をコア粒子の分散液として、ナノ粒子濃度で23nmol相当分となるように反応容器に測り取り、真空乾燥してクロロホルムを除去した。次にガリウムアセチルアセトナート(Ga(acac))0.15mmol、1,3-ジメチルチオ尿素0.15mmolと、脱水したオレイルアミン11mLを加えて第2混合物を得た。得られた第2混合物を真空脱気し窒素雰囲気に置換した後、260℃に達するまで急速昇温し(昇温速度約50℃/分)、260℃到達後2時間保持した。続いて100℃程度まで放冷し、反応容器を真空脱気して揮発性の硫黄化合物などの副生成物を除去しながら60℃程度まで放冷を続けた。得られた反応溶液を遠心分離して粗大粒子を除去し、メタノール9mLを加えてコアシェル型半導体粒子を沈殿させて遠心分離により回収し、メタノール10mLで洗浄を行った後、得られたコアシェル型半導体ナノ粒子をクロロホルム3mLに分散させた。
発光スペクトル及び量子収率の測定
 コアシェル型半導体ナノ粒子の発光スペクトルを測定した。その結果を表3に示す。発光スペクトル及び量子収率は、量子効率測定システム(大塚電子製、商品名QE-2100)を用いて、室温(25℃)で、励起光波長365nmで行い、300nmから950nmの波長範囲で測定し、量子効率は450nmから950nmの波長範囲より計算した。また、図13には、コアシェル型半導体ナノ粒子における発光スペクトルを示す。
 図13に示すようにコアシェル型半導体ナノ粒子の発光スペクトルにおいては、538nm付近に半値幅が39nmであるバンド端発光が観察され、バンド端発光の量子収率は25%であり、バンド端発光成分の純度は85%であった。
(実施例13)
半導体ナノ粒子の合成
 反応容器中にて、エチルキサントゲン酸銀(Ag(EX))0.5mmolと、酢酸インジウム(In(OAc))0.5mmolとエチルキサントゲン酸ガリウム(Ga(EX))0.85mmolを、脱水したオレイルアミン(OLA)16mLと混合して第1混合物を得た。第1混合物を真空脱気した後、窒素雰囲気に置換した。続いて150℃まで10℃/分の速度で昇温し、150℃到達後30分間保持した。続いて室温まで放冷し、遠心分離によって粗大粒子を除去した後、上澄みにメタノール6mLを加えて粒径が大きく量子収率が低い粒子を沈殿させ遠心分離により除去した。さらに上澄みにメタノール3mLを加えてコアとなる半導体ナノ粒子を沈殿させ、遠心分離によって回収した。回収した固体をメタノール4mLで洗浄後、クロロホルム5mLに分散させた。
コアシェル型半導体ナノ粒子の合成
 上記で合成した半導体ナノ粒子のクロロホルム分散液をコア粒子の分散液として、ナノ粒子濃度で23nmol相当分となるように反応容器に測り取り、真空乾燥してクロロホルムを除去した。次にガリウムアセチルアセトナート(Ga(acac))0.15mmol、1,3-ジメチルチオ尿素0.15mmolと、脱水したオレイルアミン11mLを加えて第2混合物を得た。得られた第2混合物を真空脱気し窒素雰囲気に置換した後、260℃に達するまで急速昇温し(昇温速度約50℃/分)、260℃到達後2時間保持した。続いて100℃程度まで放冷し、反応容器を真空脱気して揮発性の硫黄化合物などの副生成物を除去しながら60℃程度まで放冷を続けた。得られた反応溶液を遠心分離して粗大粒子を除去し、メタノール9mLを加えてコアシェル型半導体粒子を沈殿させて遠心分離により回収し、メタノール10mLで洗浄を行った後、得られたコアシェル型半導体ナノ粒子をクロロホルム3mLに分散させた。
発光スペクトル及び量子収率の測定
 コアシェル型半導体ナノ粒子の発光スペクトルを測定した。その結果を表3に示す。発光スペクトル及び量子収率は、量子効率測定システム(大塚電子製、商品名QE-2100)を用いて、室温(25℃)で、励起光波長365nmで行い、300nmから950nmの波長範囲で測定し、量子効率は450nmから950nmの波長範囲より計算した。また、図13には、コアシェル型半導体ナノ粒子における実施例12のコアシェル型半導体ナノ粒子の最大発光強度で規格化した相対発光強度の発光スペクトルを示す。
 図13に示すようにコアシェル型半導体ナノ粒子の発光スペクトルにおいては、533nm付近に半値幅が38nmであるバンド端発光が観察され、バンド端発光の量子収率は34%であり、バンド端発光成分の純度は88%であった。
Figure JPOXMLDOC01-appb-T000003
 表3より、実施例12及び13において、Ga及びSを含む化合物を用いて半導体ナノ粒子を製造した場合、それら半導体ナノ粒子を用いて得られたコアシェル型半導体ナノ粒子はバンド端発光を示し、発光ピーク波長が540nm以下となることを確認できた。また、実施例14においては、Ag及びSを含む化合物を用いて半導体ナノ粒子を製造した場合、それら半導体ナノ粒子を用いて得られたコアシェル型半導体ナノ粒子の量子収率が高くなることを確認できた。
(実施例14)
第3工程
 0.1mmolのエチルキサントゲン酸銀(Ag(EX))、0.12mmolの酢酸インジウム(In(OAc))、0.2mmolのエチルキサントゲン酸ガリウム(Ga(EX))、0.020mmolの塩化ガリウムを、20mLのオレイルアミン(OLA)と混合して第3混合物を得た。第3混合物を、窒素雰囲気下で、撹拌しながら、260℃で120分の加熱処理を実施した。得られた懸濁液を放冷した後、遠心分離(半径146mm、3800rpm、5分間)に付し、沈殿物を取り除いて、第3半導体ナノ粒子の分散液を得た。
発光スペクトルの測定
 上記で得られた第1半導体ナノ粒子の発光スペクトルを測定し、バンド端発光ピーク波長、半値幅、バンド端発光純度、バンド端発光の内部量子収率を算出した。なお、発光スペクトルは、量子効率測定システム(大塚電子製、商品名QE-2100)を用いて、室温(25℃)で、励起光波長365nmで行い、300nmから950nmの波長範囲で測定し、内部量子収率は450nmから950nmの波長範囲より計算した。その結果を表4及び図14に示す。
(比較例5)
半導体ナノ粒子の合成
 反応容器に酢酸銀(AgOAc)0.4mmol、インジウムアセチルアセトナート(In(acac))0.16mmol、ガリウムアセチルアセトナート(Ga(acac))0.24mmol、脱水したオレイルアミン(OLA)8mL、ドデカンチオール(DDT)(1.25mmol,0.3mL)を測り取り、反応容器を脱気して窒素雰囲気に置換した後およそ50℃まで昇温し、いったんフタを開けてチオ尿素の結晶(0.8mmol,60.8mg)を加えて混合物を得た。続いて、ごく短時間の脱気を行い、10℃/分の昇温速度にて150°Cに達するまで昇温した。実測で150℃に到達した後60秒間熱処理を続けた。続いて反応容器を50℃の水に浸漬して急冷して合成反応を停止した。急冷初期では平均して約40℃/分の速度で降温した。遠心分離によって粗大粒子を除去した後、上澄みにメタノール9mLを加えて半導体ナノ粒子を沈殿させ、遠心分離によって回収した。回収した固体をヘキサン5mLに分散した。
 反応容器中に上記で合成した半導体ナノ粒子のヘキサン分散液3.3mLを半導体粒子の分散液として測り取り、ガリウムアセチルアセトナート(Ga(acac))0.2mmol、1,3-ジメチルチオ尿素0.3mmolと、テトラデシルアミン36.5mmolを加えて混合物を得た。得られた混合物を真空脱気しヘキサンを揮発除去しながら50℃に昇温してテトラデシルアミンを融解させた。次に窒素雰囲気に置換した後、270℃に達するまで昇温し(昇温速度10℃/分)、270℃到達後1時間保持した。続いて100℃程度まで放冷し、反応容器を真空脱気して揮発性の硫黄化合物などの副生成物を除去しながら60℃程度まで放冷を続けた。得られた反応溶液にヘキサン3mLを加えた後、遠心分離して粗大粒子を除去した。次にメタノール8mLを加えて遠心分離して粒径が大きい粒子を沈殿除去した後、上澄みにさらにメタノール12mLを加えて半導体ナノ粒子を沈殿させて遠心分離により回収し、メタノール10mLで洗浄を行った後、得られた半導体ナノ粒子をヘキサン3mLに分散させた。得られた半導体ナノ粒子について実施例14と同様に行った発光スペクトルの測定結果を表4に示す。また、図14には、実施例14の半導体ナノ粒子の最大発光強度で規格化した相対発光強度の発光スペクトルを示す。
(実施例15)
第3工程
 0.1mmolのエチルキサントゲン酸銀(Ag(EX))、0.12mmolの酢酸インジウム(In(OAc))、0.2mmolのエチルキサントゲン酸ガリウム(Ga(EX))、0.010mmolの塩化ガリウムを、20mLのオレイルアミンと混合して第3混合物を得た。第3混合物を、窒素雰囲気下で、撹拌しながら、260℃で120分の熱処理を実施した。得られた懸濁液を放冷した後、遠心分離(半径146mm、3800rpm、5分間)に付し、沈殿物を取り除いて、第3半導体ナノ粒子の分散液を得た。
第4工程
 上記で得られた10mlの第3半導体ナノ粒子をナノ粒子濃度で0.02mmol相当含む分散液と0.07mmolの塩化ガリウム(GaCl)とを混合して第4混合物を得た。第4混合物を攪拌しながら減圧し、80℃まで昇温、減圧したまま80℃で10分間熱処理した。その後、窒素雰囲気下で260℃まで昇温し、120分間の熱処理を実施した。熱処理後、得られた懸濁液を放冷し、第4半導体ナノ粒子の分散液を得た。得られた第4半導体ナノ粒子について実施例1と同様に測定した発光スペクトルの測定結果を表4及び図15に示す。
(実施例16)
 第3工程の第3混合物における塩化ガリウムの量を0.020mmolに変更したこと以外は実施例15と同様に行い、第4半導体ナノ粒子の分散液を得た。得られた第4半導体ナノ粒子について実施例14と同様に測定した発光スペクトルの測定結果を表4に示す。また、図15には、実施例15の半導体ナノ粒子の最大発光強度で規格化した相対発光強度の発光スペクトルを示す。
(実施例17)
 第3工程の第3混合物における塩化ガリウムの量を0.015mmolに変更したこと以外は実施例15と同様に行い、第4半導体ナノ粒子の分散液を得た。得られた第4半導体ナノ粒子について実施例14と同様に測定した発光スペクトルの測定結果を表4に示す。また、図15には、実施例15の半導体ナノ粒子の最大発光強度で規格化した相対発光強度の発光スペクトルを示す。
(実施例18)
 第3工程の第3混合物における塩化ガリウムの量を0.050mmolに変更したこと以外は実施例15と同様に行い、第4半導体ナノ粒子の分散液を得た。得られた第4半導体ナノ粒子について実施例14と同様に測定した発光スペクトルの測定結果を表4に示す。また、図15には、実施例15の半導体ナノ粒子の最大発光強度で規格化した相対発光強度の発光スペクトルを示す。
(実施例19)
 第3工程において、0.04mmolのエチルキサントゲン酸銀(Ag(EX))、0.048mmolの酢酸インジウム(In(OAc))、0.08mmolのエチルキサントゲン酸ガリウム(Ga(EX))、0.008mmolの塩化ガリウムを、20mLのオレイルアミンと混合して第3混合物を得たこと以外は、実施例15と同様に行い、第4半導体ナノ粒子の分散液を得た。得られた第4半導体ナノ粒子について実施例14と同様に測定した発光スペクトルの測定結果を表4及び図16に示す。
(実施例20)
 第3工程の第3混合物における塩化ガリウムの量を0.016mmolに変更したこと以外は実施例19と同様に行い、第4半導体ナノ粒子の分散液を得た。得られた第4半導体ナノ粒子について実施例14と同様に測定した発光スペクトルの測定結果を表4に示す。また、図16には、実施例19の半導体ナノ粒子の最大発光強度で規格化した相対発光強度の発光スペクトルを示す。
(実施例21)
 第3工程において、0.06mmolのエチルキサントゲン酸銀(Ag(EX))、0.072mmolの酢酸インジウム(In(OAc))、0.12mmolのエチルキサントゲン酸ガリウム(Ga(EX))、0.012mmolの塩化ガリウムを、20mLのオレイルアミンと混合して第3混合物を得たこと以外は、実施例15と同様に行い、第4半導体ナノ粒子の分散液を得た。得られた第4半導体ナノ粒子について実施例14と同様に測定した発光スペクトルの測定結果を表4に示す。また、図16には、実施例19の半導体ナノ粒子の最大発光強度で規格化した相対発光強度の発光スペクトルを示す。
(実施例22)
 第3工程において、0.14mmolのエチルキサントゲン酸銀(Ag(EX))、0.168mmolの酢酸インジウム(In(OAc))、0.28mmolのエチルキサントゲン酸ガリウム(Ga(EX))、0.028mmolの塩化ガリウムを、20mLのオレイルアミンと混合して第3混合物を得たこと以外は、実施例15と同様に行い、第4半導体ナノ粒子の分散液を得た。得られた第4半導体ナノ粒子について実施例19と同様に測定した発光スペクトルの測定結果を表4に示す。また、図16には、実施例19の半導体ナノ粒子の最大発光強度で規格化した相対発光強度の発光スペクトルを示す。
Figure JPOXMLDOC01-appb-T000004
 表4より、実施例14においてはワンポット合成によって480nmから560nmの範囲に発光ピーク波長を有するバンド端発光を示し、高いバンド端発光純度を示す半導体ナノ粒子が得られていることから、比較例5と比べて効率的な製造方法であることを確認できた。
 表4より、実施例15から22においては、実施例14と比べて、高いバンド端発光純度及び内部量子収率を示す半導体ナノ粒子が得られた。
 日本国特許出願2020-040094号(出願日:2020年3月9日)の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
1 発光材料
2 コアシェル型半導体ナノ粒子
3 金属化合物

Claims (9)

  1.  Ag塩と、In塩と、Ga及びSを含む化合物と、有機溶剤とを含む第1混合物を得ることと、
     前記第1混合物を125℃以上300℃以下の範囲にある温度にて熱処理して、第1半導体ナノ粒子を得ることと、を含む半導体ナノ粒子の製造方法。
  2.  前記熱処理の温度が175℃以下である請求項1に記載の半導体ナノ粒子の製造方法。
  3.  前記第1混合物は、前記第1混合物に含まれるInとGaの総原子数に対するGaの原子数の比が、0.1以上0.95以下である請求項1又は2に記載の半導体ナノ粒子の製造方法。
  4.  前記有機溶剤は、不飽和脂肪酸を含む請求項1から3のいずれか1項に記載の半導体ナノ粒子の製造方法。
  5.  前記Ga及びSを含む化合物は、含硫黄化合物のGa塩を含む請求項1から4のいずれか1項に記載の半導体ナノ粒子の製造方法。
  6.  前記第1混合物は、更にアルカリ金属塩を含む請求項1から5のいずれか1項に記載の半導体ナノ粒子の製造方法。
  7.  前記Ag塩は、Ag及びSを含む化合物を含む請求項1から6のいずれか1項に記載の半導体ナノ粒子の製造方法。
  8.  請求項1から7のいずれか1項に記載の方法で得られる第1半導体ナノ粒子と、第13族元素を含む化合物と、第16族元素の単体又は第16族元素を含む化合物とを含む第2混合物を準備することと、
     前記第2混合物を熱処理して、表第2半導体ナノ粒子を得ることと、を含む半導体ナノ粒子の製造方法。
  9.  前記第2混合物は、更にアルカリ金属塩を含む請求項8に記載の半導体ナノ粒子の製造方法。
PCT/JP2021/009071 2020-03-09 2021-03-08 半導体ナノ粒子の製造方法 WO2021182417A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022507191A JPWO2021182417A1 (ja) 2020-03-09 2021-03-08
US17/905,900 US20230151271A1 (en) 2020-03-09 2021-03-08 Method of producing semiconductor nanoparticles
CN202180019484.2A CN115244154B (zh) 2020-03-09 2021-03-08 半导体纳米粒子的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020040094 2020-03-09
JP2020-040094 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021182417A1 true WO2021182417A1 (ja) 2021-09-16

Family

ID=77671458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009071 WO2021182417A1 (ja) 2020-03-09 2021-03-08 半導体ナノ粒子の製造方法

Country Status (4)

Country Link
US (1) US20230151271A1 (ja)
JP (1) JPWO2021182417A1 (ja)
CN (1) CN115244154B (ja)
WO (1) WO2021182417A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191032A1 (ja) * 2021-03-08 2022-09-15 国立大学法人東海国立大学機構 半導体ナノ粒子の製造方法、半導体ナノ粒子及び発光デバイス
EP4245825A1 (en) * 2022-03-18 2023-09-20 Samsung Electronics Co., Ltd. Semiconductor nanoparticle, color conversion panel including the same, and electronic device including the same
EP4333589A1 (en) * 2022-08-29 2024-03-06 Samsung Electronics Co., Ltd. Display panel and electronic apparatus including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160094A1 (ja) * 2018-02-15 2019-08-22 国立大学法人大阪大学 半導体ナノ粒子、その製造方法および発光デバイス
WO2019160093A1 (ja) * 2018-02-15 2019-08-22 国立大学法人大阪大学 コアシェル型半導体ナノ粒子、その製造方法および発光デバイス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6805505B2 (ja) * 2015-03-05 2020-12-23 日亜化学工業株式会社 発光装置
WO2017126164A1 (ja) * 2016-01-19 2017-07-27 株式会社村田製作所 発光体、発光体の製造方法、及び生体物質標識剤
EP4235825A3 (en) * 2017-02-28 2023-10-25 National University Corporation Tokai National Higher Education and Research System Semiconductor nanoparticle, method for producing same, and light-emitting device
JP7070826B2 (ja) * 2017-02-28 2022-05-18 国立大学法人東海国立大学機構 半導体ナノ粒子およびその製造方法ならびに発光デバイス
JP7005470B2 (ja) * 2018-05-10 2022-02-10 国立大学法人東海国立大学機構 半導体ナノ粒子、その製造方法及び発光デバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160094A1 (ja) * 2018-02-15 2019-08-22 国立大学法人大阪大学 半導体ナノ粒子、その製造方法および発光デバイス
WO2019160093A1 (ja) * 2018-02-15 2019-08-22 国立大学法人大阪大学 コアシェル型半導体ナノ粒子、その製造方法および発光デバイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191032A1 (ja) * 2021-03-08 2022-09-15 国立大学法人東海国立大学機構 半導体ナノ粒子の製造方法、半導体ナノ粒子及び発光デバイス
EP4245825A1 (en) * 2022-03-18 2023-09-20 Samsung Electronics Co., Ltd. Semiconductor nanoparticle, color conversion panel including the same, and electronic device including the same
EP4333589A1 (en) * 2022-08-29 2024-03-06 Samsung Electronics Co., Ltd. Display panel and electronic apparatus including the same

Also Published As

Publication number Publication date
CN115244154B (zh) 2023-12-19
CN115244154A (zh) 2022-10-25
JPWO2021182417A1 (ja) 2021-09-16
US20230151271A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
JP7070826B2 (ja) 半導体ナノ粒子およびその製造方法ならびに発光デバイス
JP6464215B2 (ja) 半導体ナノ粒子およびその製造方法
US11788003B2 (en) Semiconductor nanoparticles and method of producing semiconductor nanoparticles
JP2023145429A (ja) 半導体ナノ粒子およびその製造方法ならびに発光デバイス
US12074253B2 (en) Semiconductor nanoparticles, production method thereof, and light-emitting device
WO2021182417A1 (ja) 半導体ナノ粒子の製造方法
JP7307046B2 (ja) コアシェル型半導体ナノ粒子、その製造方法および発光デバイス
US20220089452A1 (en) Semiconductor nanoparticles and method for producing same
JP7456591B2 (ja) 半導体ナノ粒子及びその製造方法、並びに発光デバイス
JP2022048169A (ja) 半導体ナノ粒子、その製造方法及び発光デバイス
JP7005470B2 (ja) 半導体ナノ粒子、その製造方法及び発光デバイス
WO2021182412A1 (ja) 発光材料及びその製造方法
WO2022191032A1 (ja) 半導体ナノ粒子の製造方法、半導体ナノ粒子及び発光デバイス
WO2022215376A1 (ja) 半導体ナノ粒子の製造方法
WO2023013361A1 (ja) 半導体ナノ粒子の製造方法、半導体ナノ粒子及び発光デバイス
JP7316618B2 (ja) 半導体ナノ粒子の製造方法及び発光デバイス
JP7362077B2 (ja) 半導体ナノ粒子の製造方法及び発光デバイス
WO2021039727A1 (ja) 半導体ナノ粒子及びその製造方法並びに発光デバイス
JP2024083223A (ja) 半導体ナノ粒子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768248

Country of ref document: EP

Kind code of ref document: A1