WO2022113984A1 - 色変換粒子 - Google Patents

色変換粒子 Download PDF

Info

Publication number
WO2022113984A1
WO2022113984A1 PCT/JP2021/042935 JP2021042935W WO2022113984A1 WO 2022113984 A1 WO2022113984 A1 WO 2022113984A1 JP 2021042935 W JP2021042935 W JP 2021042935W WO 2022113984 A1 WO2022113984 A1 WO 2022113984A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
shell
color conversion
perovskite
ban
Prior art date
Application number
PCT/JP2021/042935
Other languages
English (en)
French (fr)
Inventor
拓也 加藤
徹 稲留
悠太 東野
雄介 小田
祥紀 木本
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020237020879A priority Critical patent/KR20230108328A/ko
Priority to JP2022565360A priority patent/JPWO2022113984A1/ja
Priority to CN202180079517.2A priority patent/CN116490590A/zh
Priority to US18/038,691 priority patent/US20240002720A1/en
Priority to EP21897956.5A priority patent/EP4253503A1/en
Publication of WO2022113984A1 publication Critical patent/WO2022113984A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/671Chalcogenides
    • C09K11/673Chalcogenides with alkaline earth metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Definitions

  • the present invention relates to color conversion particles.
  • color conversion using wavelength conversion which converts excitation light incident on an object from the outside into light of a longer wavelength and emits it
  • a fluorescent substance to which an activator is added may be used.
  • conventional phosphors have a limit in controllability of emission wavelength, emission peak width and peak number (color purity), and are used for applications such as display devices that require high color purity at a specific wavelength. There were many issues to be improved in the application.
  • Core-shell quantum dots that apply quantum effects have been attracting attention as a solution to the above problems, and core-shell quantum dots are being applied in various fields.
  • Core-shell quantum dots are minute semiconductor particles with a diameter of several nanometers, and have a structure in which the core that functions as a light emitting part is covered from the outside by a carrier confinement layer or a shell that functions as an absorption part. ..
  • MA is methylammonium
  • OA is octylammonium.
  • CdSe which is one of the materials for the above-mentioned core-shell quantum dots, contains Cd regulated by RoHS and is toxic. Therefore, InP has been developed as an alternative material to Cd (S, Se), but in P contains a rare metal, In, and has problems in terms of material durability and luminous efficiency. In addition, halide perovskite has high absorbance and luminous efficiency, but the durability of the material is not sufficient.
  • chalcogenide perovskite has a large light absorption coefficient and excellent durability. Further, since the chalcogenide perovskite has a steep profile at the absorption edge, excellent light emission performance can be expected.
  • Patent Document 1 discloses quantum dots using chalcogenide perovskite.
  • the quantum dots of chalcogenide perovskite are excellent in light absorption, they also have a large loss due to reabsorption of light emission. If the particle size is reduced in order to suppress such reabsorption loss, the absorbance will decrease. That is, there was a trade-off relationship between absorbance and reabsorption loss.
  • the present invention has been made in view of the above circumstances, and provides color conversion particles that realize high absorbance and high luminous efficiency while suppressing reabsorption loss of light emission.
  • the color conversion particles of one aspect of the present invention include a core and a shell that includes the core and absorbs excitation light, and receives the irradiated excitation light to generate light emission at the core or the interface between the core and the shell.
  • the core is composed of chalcogenide perovskite, and the core and shell have a band alignment that expresses Stokes shift.
  • color conversion particles of the present invention high absorbance and high luminous efficiency can be realized while suppressing the reabsorption loss of light emission.
  • FIG. 1A is a schematic diagram showing a configuration example of the color conversion particles of the present embodiment.
  • the color conversion particles 10 have an overall shape of nanometer-scale particles, absorb incident excitation light, and re-emit (emit) as light having different energies (wavelengths) to perform color conversion.
  • the color conversion particle 10 has a core 11 as a light emitting part and a shell 12 as an absorbent part.
  • the shell 12 contains one or more cores 11 therein. Then, a part or all of each core 11 is covered with the shell 12 from the outside to form the color conversion particles 10.
  • the core 11 and the shell 12 are provided separately, and chalcogenide perovskite is adopted as the material of the core 11.
  • the core 11 has high absorbance and high light emission performance with respect to the excitation light, and the durability of the color conversion particles 10 is also improved. This point will be described later.
  • the band alignment of the energy E c at the lower end of the conduction band and the energy E v at the upper end of the valence band has a relationship of expressing a Stokes shift.
  • the band alignment between the core 11 and the shell 12 will be described later.
  • the color conversion particles 10 can suppress the light generated in the core 11 from being reabsorbed by the shell 12.
  • the core 11 is a light emitting particle made of a semiconductor material that causes fluorescence of a target emission wavelength by excitation light.
  • the core 11 as a light emitting particle causes an electron level transition having energy corresponding to a target light emitting wavelength.
  • the core 11 is composed of chalcogenide perovskite.
  • the chalcogenide perovskite is a semiconductor composed of a perovskite crystal structure group containing a chalcogen element (S, Se, Te) in the X site, and includes a semiconductor in which a part of the X site is replaced with oxygen (O).
  • perovskite represents a group of substances having a cubic crystal structure having a BX 6 octahedron as a skeleton represented by the chemical formula ABX 3 , and can have a rectangular or orthorhombic crystal structure with lattice strain. .. Moreover, in the same ABX 3 composition, a plurality of stable crystal structures have been computationally shown. These crystal structures range from structures close to perovskite to very different structures. Further, as derivative structures, there are Ruddlesden-Popper type based on perovskite structure, Dion-Jacobson type layered perovskite, and double perovskite crystal structure in which different elements are alternately arranged at B sites. In the present specification, the above crystal structures are collectively referred to as "perovskite crystal structure group".
  • the perovskite crystal structure group specifically includes substances having the following crystal structures. Cubic perovskite, square perobskite, GdFeO type 3 orthorhombic, YScS type 3 orthorhombic, NH 4 CdCl type 3 orthorhombic, BaniO type 3 hexagon, FePS type 3 monoclinic, PbPS type 3 monoclinic , CeTmS type 3 monoclinic crystal, Ruddlesden-Popper type layered perovskite, Dion-Jacobson type layered perobskite, double perobskite
  • the crystal structure and electronic structure of the perobskite crystal structure group change depending on the composition and synthetic conditions, and the photoelectron properties and chemistry The characteristics change. Therefore, the composition and conditions are selected so as to have a crystal structure suitable for the purpose.
  • a substance having a cubic perovskite, a square perovskite, a GdFeO type 3 oblique perovskite, a Ruddlesden-Popper type layered perovskite, and a double perovskite structure has excellent photoelectron physical properties and chemical properties. Further, by adopting a Dion-Jacobson type layered perovskite structure, the chemical stability can be further improved.
  • chalcogenide perovskite are ABX 3 , A'2 An-1 B n X 3n + 1 , A''A''' B''2 X 7 , A''A 2 B''3 X 10 , A 2 BB'X 6 can be represented.
  • X represents a chalcogen element (S, Se, Te).
  • a and A' are elements of Group 2 (Ca, Sr, Ba)
  • A''' is an element of Group 1 (Li, Na, K, Rb, Cs)
  • A'''' is an element of Group 3 (C). Represents rare earth elements) and Bi.
  • B and B' represent the elements of Group 4 (Ti, Zr, Hf), and B'' represents the elements of Group 5 (V, Nb, Ta). Further, n is a positive integer. In addition, A and A', B and B'may be the same element. Further, A, A', A'', A''', B, B', B'', and X include a mixture of elements of each group in an arbitrary ratio.
  • the chalcogenite perovskite represented by the chemical formula ABX 3 contains the following substances.
  • X is selected from the dominant materials of the chalcogen elements (S, Se)
  • A is selected from the dominant materials of the Group 2 elements (Sr, Ba)
  • B is selected. It is selected from (Zr, Hf), which is the dominant material among the elements of Group 4.
  • the chalcogenite perovskite represented by the chemical formula A'2 An-1 B n X 3n + 1 contains the following substances.
  • X is selected from the dominant materials of the chalcogen elements (S, Se), A, A'is selected from the dominant materials of the Group 2 elements (Sr, Ba), and B is the fourth. It is selected from (Zr, Hf), which is the dominant material among the elements of the group.
  • chalcogenide perovskites are (Sr x Ba 1-x ) (Zry Hf 1-y ) (S z Se 1-z ) 3 or (Sr x'Ba 1-x' ) 2 (Sr x Ba 1-x ). ) N-1 (Zry Hf 1-y ) n (S z Se 1-z ) 3n + 1 can also be expressed (however, x, x', y, and z are values of 0 or more and 1 or less, respectively). ..
  • the dominant material in X, A, A', and B described above has a band gap suitable for light emitting devices such as light emitting devices, display devices, and lighting devices when applied to the color conversion particles 10. It is a material to have.
  • examples of the core material that emits red light include BaZrS 3 .
  • examples of the core material that emits green light include SrHfS 3 .
  • examples of the core material that emits blue light include BaZr (O, S) 3 .
  • chalcogenide perovskite it is possible to control the carrier concentration or crystal structure and adjust other physical and chemical properties by partially substituting the constituent elements with elements of the same family or different groups.
  • the elements of Group 1 are Group 1 and 2
  • the elements of Group 2 are Group 1, 2, and 3
  • the elements of Group 3 are Group 2, 3, and 4
  • the elements of Group 4 are Group 3.
  • the elements of groups 4 and 5 and the elements of group 16 can be replaced with groups 15, 16 and 17, respectively.
  • chalcogenide perovskite has a large light absorption coefficient and excellent light emission performance (luminous efficiency, half width).
  • the profile of the light absorption coefficient of chalcogenide perovskite rises sharply at the band edge. Therefore, the chalcogenide perovskite has a characteristic of high absorbance in the vicinity of the bandgap end. Therefore, the core 11 of the chalcogenide perovskite has high absorbance and can efficiently absorb the excitation light.
  • chalcogenide perovskite has high chemical stability and excellent durability against external environments such as atmosphere, moisture, heat, and light, and stimuli. Therefore, the core 11 of the chalcogenide perovskite has high durability and can suppress the deterioration of the core 11. Furthermore, chalcogenide perovskite is highly safe because it does not contain toxic elements, and it is also advantageous in that the raw material cost is low because it does not contain rare metals.
  • the emission wavelength of the luminescent particles corresponds to the bulk bandgap energy E g, bulk .
  • the energy (bandgap) E ex in the lowest excited state becomes larger than E g and bulk , and becomes dependent on the particle size. That is, when the particle size of the luminescent particles becomes smaller, the emission wavelength shifts to a shorter wavelength side than the bulk state, and the emission wavelength changes depending on the particle size. By utilizing this property, it is possible to control the emission wavelength of the luminescent particles.
  • E ex of the luminescent particles having a radius r is given by the following equation. Note that ⁇ indicates exciton reduced mass, E b and ex indicate exciton binding energy, and r B indicates exciton Bohr radius.
  • ⁇ , E b, ex , and r B are given by the following equations with ⁇ as the permittivity of the luminescent particles. Note that m * e is the effective mass of electrons, and m * h is the effective mass of holes.
  • the vertical axis of FIG. 2 indicates E ex / E g, bulk
  • the horizontal axis of FIG. 2 indicates r / r B.
  • the radius r of the luminescent particle becomes smaller and approaches r B
  • the value of E ex gradually increases from E g and bulk .
  • the value of E ex increases remarkably (quantum size effect).
  • luminescent particles having a particle size in a range in which the emission wavelength depends on the particle size based on r B determined by the above equation are referred to as "quantum dots”.
  • luminescent particles having a particle size in a range in which the emission wavelength is almost independent of the particle size are referred to as "non-quantum dots”.
  • the particle size in which the quantum size effect is exhibited in the luminescent particles is basically characterized by the relationship with the exciton Bohr radius r B , but in the manifestation of the quantum size effect, the dielectric constant of the substance and the electron positive are positive.
  • the effective mass of the pores is also involved, and the change in the value of E ex is continuous. Therefore, it is actually difficult to uniquely express the boundary between quantum dots and non-quantum dots by the particle size and other physical property values.
  • the effect-developing particle radius of a typical quantum size is about 7.5 nm. Therefore, in the example of BaZrS 3 , particles having a particle size of 15 nm or less are considered to be quantum dots, and particles having a particle size of more than 15 nm are considered to be non-quantum dots.
  • the core 11 of the present embodiment may be either the above-mentioned quantum dots or non-quantum dots.
  • the core 11 is a quantum dot
  • the emission wavelength (color) can be controlled by changing the particle size of the same substance.
  • the luminous efficiency of the core 11 is high and the peak is narrow.
  • strict particle size control is required to make the emission wavelengths (colors) uniform, and advanced manufacturing technology is required for the manufacture of quantum dots.
  • quantum dots have poor chemical stability due to their minute particles, and easily aggregate, re-growth, or decompose, so surface protection is required.
  • the electronic states of quantum dots are discrete, the density of states is small in both the valence band and the conduction band, and the light absorption coefficient is smaller than that in bulk.
  • the core 11 is a non-quantum dot, that is, when bulk emission is used without expressing the quantum size effect by using relatively large particles, the problems of stability and light absorption are alleviated.
  • the emission wavelength of the core 11 is determined by E g and bulk for non-quantum dots, it is necessary to change E g and bulk by changing the composition and crystal structure in order to adjust the emission wavelength.
  • the core 11 may be configured by selecting an appropriate one from quantum dots and non-quantum dots according to the situation and application. Further, since the dimensions that produce the quantum size effect differ depending on the material, the particle size of the core 11 is appropriately set according to the physical properties of the material and the like.
  • the particle size of the core 11 is small.
  • the ratio of light reabsorbed by the core 11 is calculated using the optical coefficient of BaZrS 3 shown in the document “Y. Nishigaki et al., Sol. RRL 1900555 (2020).”.
  • the particle size of BaZrS 3 is 200 nm, it absorbs 10% of red light having a wavelength of 630 nm generated by another BaZrS 3 core arranged in the vicinity. Therefore, the particle size of the core 11 is preferably 200 nm or less.
  • the particle size of the core 11 is 50 nm or less under the above conditions, the reabsorption of red light having a wavelength of 630 nm is 3%, and if the particle size of the core 11 is 25 nm or less, the reabsorption of red light having a wavelength of 630 nm is 2%. It can be suppressed as follows. Therefore, the particle size of the core 11 is preferably 50 nm or less, more preferably 25 nm or less.
  • the size of the particle size in which the core 11 can stably exist is preferably 1 nm or more. From the above, the particle size of the core 11 is preferably 1 nm or more and 200 nm or less.
  • the shell 12 is composed of a semiconductor material that absorbs a target excitation light wavelength and generates an excitation carrier.
  • Examples of the material of the shell 12 include II-VI group semiconductor, III-V group semiconductor, I-III-VI group semiconductor, I-II-IV-VI group semiconductor, IV-VI group semiconductor, halide perovskite semiconductor, and oxidation. Materials Perovskite, organic-inorganic perovskite, Si, carbon materials or mixed crystal compounds thereof can be used.
  • the light emitted at the core or the core-shell interface passes through the shell and is taken out to the outside. Therefore, the shell needs to transmit the emitted light. If the light emitted in the shell is absorbed, the luminous efficiency of the color conversion particles is reduced by that amount. Therefore, the bandgap of the shell is preferably greater than or equal to the energy of the emitted light.
  • chalcogenide perovskite can be used as the material for the shell 12.
  • a chalcogenide perovskite having an excellent light absorption coefficient the absorbance of the shell 12 can be increased.
  • the shell 12 of chalcogenide perovskite has reduced defects at the interface between the core 11 and the shell 12 and reduced non-luminous recombination from the viewpoint of compatibility with the constituent elements of the core and consistency between the crystal structure and the lattice constant. Therefore, higher luminous efficiency of the core 11 can be expected.
  • the chalcogenide perovskite applicable to the shell 12 is (Sr x Ba 1-x ) (Zry Hf 1-y ) (S z Se 1-z ) 3 or (Sr x'Ba 1 ) as in the case of the core 11.
  • -x' ) 2 (Sr x Ba 1-x ) n-1 (Zry Hf 1-y ) n (S z Se 1-z ) 3n + 1 can also be expressed (however, x, x', y and z are values of 0 or more and 1 or less, respectively).
  • These substances are superior materials in that they have a bandgap suitable for applications that emit visible light such as light emitting devices, display devices, and lighting devices when applied to the shell 12 of the color conversion particles 10.
  • the lower limit and the upper limit of the thickness of the shell 12 are defined from the following viewpoints.
  • the shell 12 which is the light absorbing part is required to have a thickness capable of sufficiently absorbing the excitation light.
  • the color conversion particles 10 it is usually assumed that a large number of color conversion particles 10 are contained in a film, a coating film, a resin, or the like and used as a color conversion material.
  • the shell 12 has a thickness having an excitation light absorption rate of at least 0.1% or more. Further, if each shell 12 has a thickness of at least 2 nm, sufficient absorbance can be realized as a whole color conversion material to which a large number of color conversion particles are applied.
  • the photoexcited carriers will recombine and be deactivated before reaching the core 11, resulting in a decrease in luminous efficiency.
  • the diffusion length of photoexcited carriers or excitons varies from material to material, but is approximately tens to hundreds of nm, except for very high quality single crystals.
  • the particle size of the color conversion particles 10 becomes too large, the gaps between the particles become large when a large number of color conversion particles 10 are contained in a film, a coating film, a resin, or the like, and the density of the color conversion particles 10 decreases. .. In the above case, as a result, the absorbance of the wavelength conversion material using the color conversion particles 10 is lowered. Further, when an ink in which the color conversion particles 10 are dispersed in a solvent is applied, for example, by an inkjet method, if the particle size of the color conversion particles 10 is too large, the nozzles may be clogged. Also in other coating methods, the large particle size of the color conversion particles 10 can be a process problem.
  • the particle size of the color conversion particles 10 is preferably 1000 nm or less.
  • the thickness of the shell 12 which is the absorption part is preferably 500 nm or less. From the viewpoint of suppressing recombination of photoexcited carriers, if the shell 12 can sufficiently absorb the excitation light, the thickness of the shell 12 is preferably thinner, for example, the thickness of the shell 12 is preferably 50 nm or less, more preferably. Is 30 nm or less, more preferably 10 nm or less.
  • Stokes shift originally means that there is an energy difference between the energy state of photoexcited electrons and the electron state when emitting energy and emitting light in a single substance, and the maximum energy position of the absorption spectrum and the emission spectrum. Observed as a difference.
  • "apparent Stokes shift" that is, the energy difference between the absorption spectrum edge and the emission spectrum peak. Can be caused.
  • the apparent Stokes shift that occurs in nanoparticles with a heterostructure may be simply referred to as a Stokes shift.
  • FIGS. 4, 5, and 6 show examples of band alignment between the core 11 and the shell 12.
  • the upper part indicates the direction in which the energy increases
  • the central rectangle indicates the bandgap E g_core of the core 11
  • the rectangles on both sides indicate the bandgap E g_shell of the shell 12. ..
  • the upper side of the central rectangle shows the energy E c_core at the lower end of the conduction band of the core 11, and the bottom side of the central rectangle shows the energy E v_core at the upper end of the valence band of the core 11.
  • the upper sides of the rectangles on both sides indicate the energy E c_shell at the lower end of the conduction band of the shell 12, and the bottom sides of the rectangles on both sides indicate the energy E v_shell at the upper end of the valence band of the shell 12.
  • the curve drawn on the upper side of the rectangle shows the distribution of electrons
  • the curve drawn on the bottom side of the rectangle shows the distribution of holes.
  • the downward arrow in the figure indicates the energy difference in the light emission process
  • the upward arrow in the figure indicates the energy difference in the absorption (excitation) process.
  • Stokes shift occurs when the energy difference in the absorption process is larger than the energy difference in the light emission process.
  • the bandgap E g_shell of the shell 12 is larger than the bandgap E g_core of the core 11 (E g_shell > E g_core ).
  • the bandgap E g_shell of the shell 12 is smaller than the bandgap E g_core of the core 11 (E g_shell ⁇ E g_core ).
  • the magnitude relationship between E c_core and E c_shell and the magnitude relationship between E v_core and E v_shell are shown in FIGS. 4, 5, and 6, respectively.
  • the color conversion particles of the present embodiment have the band alignment of any one of FIGS. 4 (a)-(e), 5 (a), (e), 6 (a), and (c).
  • the energy E c_shell at the lower end of the conduction band of the shell 12 is higher than the energy E c_core at the lower end of the conduction band of the core 11, or the upper end of the valence band of the shell 12 is obtained.
  • Energy E v_shell satisfies at least one of the conditions that is lower than the energy E v_core at the upper end of the valence band of core 11 (that is, E c_shell > E c_core , E v_shell ⁇ E v_core , or E. c_shell > E c_core and E v_shell ⁇ E v_core ).
  • the energy E c_core at the lower end of the conduction band of the shell 12 is the energy E c_core at the lower end of the conduction band of the core 11 .
  • all the conditions that the energy E v_shell at the upper end of the valence band of the shell 12 is equal to or less than the energy E v_core at the upper end of the valence band of the core 11 are satisfied that is, when E g_shell > E g_core , E c_shell ⁇ E c_core and E v_shell ⁇ E v_core ).
  • Type I represented by FIG. 4 (c)
  • electrons and holes are confined in the core 11 and recombination (core emission) occurs in the core 11.
  • core emission core emission
  • holes and electrons are localized in the core 11, so that the wave functions overlap and the luminous efficiency is high. Therefore, as the band alignment between the core 11 and the shell 12, the Type I configuration is most preferable.
  • Examples of the material of the core 11 and the shell 12 of the Type I represented by FIG. 4C include a combination of the core 11 being BaZrS 3 and the shell 12 being SrZrS 3 .
  • the luminous efficiency is lower than that of Type I because one carrier of holes or electrons spreads in the shell.
  • the luminous efficiency is relatively high, which is preferable next to Type I.
  • the core 11 represented by FIG. 4 (b) and 4 (d) is BaHfS 3 and the shell 12 is CaZrS 3 . The combination of.
  • Type II since the light is emitted at the interface between the core 11 and the shell 12, the overlap of the wave functions is small and the luminous efficiency is lower than that of Type I.
  • interfacial recombination may be accompanied by non-emission recoupling via interfacial defects, it is considered that the luminous efficiency is low in this respect as well.
  • FIG. 4 Examples thereof include a combination of BaZrS 3 for the core 11 represented by (a) and CaZrS 3 for the shell 12.
  • the band gap E g_shell of the shell 12 is smaller than the band gap E g_core of the core 11 (E g_shell ⁇ E g_core ) and FIGS. 6 (a) and 6 (c).
  • the light reabsorbed by the shell 12 is less and the reabsorption loss is suppressed, so that the luminous efficiency of the color conversion particles 10 can be improved. can.
  • the color conversion particles 10 can take various states depending on the combination of the material of the core 11 and the material of the shell 12.
  • the material of the core 11 and the material of the shell 12 exemplified above are sulfides, but may be selenium or a solid solution, and various states can be realized by including these, and the core exhibiting excellent light emission characteristics. There are combinations of materials for 11 and shell 12.
  • the color conversion particles 10 are manufactured by performing a synthesis step of the shell 12 after the synthesis step of the core 11.
  • the core 11 which is a nano-emitting particle is produced by chalcogenide perovskite.
  • the precursor compound may be reacted in a solution to synthesize the core 11, or the precursor powder may be mixed and heated in an inert atmosphere or the atmosphere to synthesize the core 11.
  • the metal precursor powder may be mixed and heated in an atmosphere and reacted with the chalcogen precursor gas to synthesize the core 11.
  • a hot injection method for example, a heat-up method, a solvothermal method, a hydrothermal method, a CHM (composite-hydroxide-mediated) method, and a continuous flow process are used.
  • a synthetic method or the like can be applied.
  • a and B synthesize the core 11 of the chalcogenide perovskite ABX 3 composed of Group II and Group IV elements by applying the hot injection method will be described.
  • a first solution containing a precursor compound containing a Group II element, a precursor compound containing a Group IV element and a solvent, and a second solution containing a precursor compound containing a chalcogen element and a solvent are prepared. ..
  • the second solution is charged into the reaction vessel at a temperature in the range of 130 ° C. to 400 ° C. with respect to the above-mentioned first solution, and the reaction is held in the reaction vessel at the above-mentioned temperature for 1 second to 100 hours.
  • the core 11 of the target chalcogenide perovskite compound is synthesized.
  • the product is washed with an organic solvent or water, and then the desired product is recovered.
  • Examples of the precursor compound containing the above-mentioned Group II element include the following. Metal powders, metal alkoxides, metal carboxylates, metal nitrates, metal perchlorates, metal sulfates, metal acetylacetonates, metal halides, metal hydroxides, metals halides, and combinations thereof.
  • Examples of the precursor compound containing the above Group IV elements include the following. Metal powders, metal alkoxides, metal carboxylates, metal nitrates, metal perchlorates, metal sulfates, metal acetylacetonates, metal halides, metal hydroxides, metals halides, and combinations thereof.
  • Examples of the precursor compound containing the above chalcogen element include the following. Metal sulfides (including selenium or tellurium substituents); Carbon disulfide (including selenium or tellurium substitutions); Hydrogen chalcogenide such as hydrogen sulfide, hydrogen selenide, hydrogen telluride; Thiol compounds (including selenium or tellurium substitutions); Phosphine compounds such as trioctylphosphine sulfide (including selenium or tellurium substituents); Thiourea (including selenium or tellurium substitutions); Sulfur, selenium, tellurium, Alternatively, these compounds are dispersed in a solvent such as an amine, an acid, or a hydrocarbon, or a combination thereof.
  • a solvent such as an amine, an acid, or a hydrocarbon, or a combination thereof.
  • Examples of the above solvent include the following. Primary amines, secondary amines, tertiary amines with organic groups such as hydrocarbon groups; Aromatic hydrocarbons; Nitrogen-containing heterocyclic compounds, oxygen-containing heterocyclic compounds, sulfur-containing heterocyclic compounds, selenium-containing heterocyclic compounds, tellurium-containing heterocyclic compounds; Aliphatic hydrocarbons; Phosphine compounds having organic groups such as hydrocarbon groups; Phosphine oxide compounds having organic groups such as hydrocarbon groups; Alcohols, aldehydes, carboxylic acids or their sulfur substituents, selenium substituents, compounds having tellurium substituents, Commonly used organic solvents or water containing at least one of. Also, a combination of these solvents
  • Heating the above solution involves reacting a precursor of a chalcogen element to form hydrogen chalcogenide.
  • the reaction of the above solution also comprises synthesizing under an inert atmosphere. Further, the reaction of the above solution may be one in which the desired product is synthesized by a continuous flow process using a micro reaction vessel.
  • a solution containing a precursor compound containing a group II element, a precursor compound containing a group IV element, a precursor compound containing a chalcogen element, and a solvent is prepared. Then, the above solution is heated in the reaction vessel from a room temperature state to a temperature in the range of 130 ° C. to 400 ° C., and kept at the above-mentioned temperature in the reaction vessel for 0 to 100 hours for reaction. As a result, the core 11 of the target chalcogenide perovskite compound is synthesized. After completion of the reaction, the product is washed with an organic solvent or water, and then the desired product is recovered.
  • Heating the above solution comprises reacting a precursor of the chalcogen element to form hydrogen chalcogenide.
  • the reaction vessel may be pressurized during heating (solvothermal, hydrothermal).
  • the reaction of the above solution may be one in which the desired product is synthesized by a continuous flow process using a micro reaction vessel.
  • the core 11 of the chalcogenide perovskite is synthesized by applying the CHM method.
  • a precursor compound containing a group II element, a precursor compound containing a group IV element, a precursor compound containing a chalcogen element, sodium hydroxide and potassium hydroxide are placed in a reaction vessel at room temperature.
  • the temperature is raised to a temperature in the range of 130 ° C. to 400 ° C., and the reaction is carried out by holding the temperature in the reaction vessel at the above-mentioned temperature for 0 to 200 hours.
  • the core 11 of the target chalcogenide perovskite compound is synthesized.
  • the product is washed with an organic solvent or water, and then the desired product is recovered.
  • the above-mentioned precursor compound containing a group II element, a precursor compound containing a group IV element, and a precursor compound containing a chalcogen element are the same as in the case of the hot injection method.
  • the CHM method no solvent is used, or some water may be added.
  • a mixture of sodium hydroxide and potassium hydroxide in a ratio of 51.5: 48.5 and dissolved at 165 ° C. acts as a solvent.
  • the reaction vessel may be pressurized during heating. Further, the reaction of the above solution may be one in which the desired product is synthesized by a continuous flow process using a micro reaction vessel.
  • the core 11 of the chalcogenide perovskite is synthesized by applying the solid-phase synthesis method.
  • the precursor compound containing the Group II element, the precursor compound containing the Group IV element, and the precursor compound containing the chalcogen element are placed at room temperature in the reaction vessel as in the conventional solid phase synthesis method.
  • the temperature is raised from the state to a temperature in the range of 400 ° C. to 1300 ° C., and the reaction is carried out by holding the temperature in the reaction vessel at the above-mentioned temperature for 0 to 200 hours.
  • the core 11 of the target chalcogenide perovskite compound is synthesized.
  • precursor compound containing Group II element precursor compound containing Group IV element, and precursor compound containing chalcogen element are the same as in the case of the hot injection method.
  • the above synthesis includes synthesis under an inert atmosphere or an atmospheric atmosphere.
  • the shell 12 is synthesized on the surface of the core 11 obtained in the above step.
  • a color conversion particle 10 having a core-shell structure may be synthesized by depositing a shell material on the surface of the core 11 by a vapor phase growth method such as an ALD method or a CVD method.
  • the shell 12 may be generated by, for example, gas phase synthesis by barrel sputtering.
  • the one-pot synthesis method or the hot injection method may be applied.
  • the nanoluminous particles to be the core 11 and the precursor of the shell material are mixed in a solvent.
  • the color conversion particles 10 having a core-shell structure in which the surface of the core 11 is coated with the shell material are synthesized.
  • the one-pot synthesis method and the hot injection method can also be applied to form the shell 12 of the chalcogenide perovskite.
  • the color conversion particles 10 may have an outer shell 13 or a ligand 14 as a protective layer as an external structure.
  • the outer shell 13 is a protective layer that covers the semiconductor particles composed of the core 11 and the shell 12 from the outside.
  • the outer shell 13 is provided in order to further improve the durability of the color conversion particles 10 by suppressing deterioration of the semiconductor particles due to contact with oxygen and protecting the semiconductor particles from chemical interaction with the outside. Further, the outer shell 13 has a property of transmitting target excitation light and light emission of the core 11.
  • the outer shell 13 is formed by a known method using a chemically stable substance such as silica, glass, an oxide insulator, and a resin.
  • the outer shell 13 when the outer shell 13 is formed of a metal oxide, silicon oxide, zirconium oxide, titanium oxide, aluminum oxide and the like can be used as the material.
  • the outer shell 13 containing a metal oxide can be formed, for example, by a method of forming an inorganic oxide by a thermal curing reaction using a sol-gel method.
  • the outer shell 13 may be a layer containing a resin, a modified polysilazane, or the like.
  • Polysilazane is a polymer having a silicon-nitrogen bond, and is a ceramic precursor inorganic polymer containing SiO 2 , Si 3 N 4 , and both intermediate solid solutions SiO x N y , etc., which are composed of Si—N, Si—H, N—, etc. Is.
  • the outer shell 13 when the outer shell 13 is formed of a resin, it is preferably formed of a water-soluble resin such as a polyvinyl alcohol-based resin because of ease of production.
  • the outer shell 13 may have a multi-layer structure including both a layer of a metal oxide and a layer containing a resin, a modified polysilazane, or the like.
  • the ligand 14 is an organically modified molecule that surface-modifies the color-converting particles 10 and is provided so as to be bound to the outer surface of the color-converting particles 10 or to coat the color-converting particles 10.
  • the ligand 14 has a function of facilitating the isolation between the color-converting particles 10 to enhance the dispersibility and preventing regrowth or destruction due to contact between the color-converting particles 10.
  • the ligand 14 also has a function of suppressing surface defects of the shell 12 by capping the dangling bond and improving the luminous efficiency.
  • the modified organic molecule as the ligand 14 includes a nitrogen-containing functional group, a sulfur-containing functional group, an acidic group, an amide group, a phosphin group, a phosphin oxide group, a hydroxyl group, a linear alkyl group, a carboxyl group, a phosphon group, a sulfone group, and an amine group.
  • a structure having such a structure can be used.
  • modified organic molecules include sodium hexametaphosphate, sodium laurate, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate, triethanolamine lauryl sulfate, lauryl diethanolamide, dodecyltrimethylammonium chloride, trioctylphosphine, and trioctylphosphine. Oxide and the like can be mentioned.
  • the modified organic molecule as the ligand 14 it is preferable to use a compound having a hydrophilic group and a hydrophobic group in the molecule.
  • the color conversion particles 10 can be coated with the ligand 14 in both a chemical bond in which a hetero atom is coordinated and a bond by physical adsorption.
  • this type of modified organic molecule include amines, which are compounds having a non-polar hydrocarbon terminal as a hydrophobic group and an amino group as a hydrophilic group.
  • the hydrophilic group of the modified organic molecule is an amine, the amine can be strongly bonded to the metal element.
  • the modified organic molecule as the ligand 14 preferably has a heteroatom.
  • the modified organic molecule has a heteroatom, an electric polarity is generated between the heteroatom and the carbon atom, and the modified organic molecule can be firmly bonded to the surface on the outer surface of the color conversion particle.
  • the "heteroatom” means all atoms except hydrogen atom and carbon atom.
  • the shell 12 of the color conversion particles 10 does not necessarily have to cover the entire core 11, and a part of the core 11 may be exposed to the outside.
  • the color conversion particles 10 may have a structure in which a plurality of shells 12 are laminated and coated on the outside of one core 11.
  • a plurality of shells 12 are laminated and coated on the outside of one core 11.
  • different materials such as composition and crystal structure as the material of each shell 12, it is possible to adjust the absorption characteristic and the emission characteristic of the entire color conversion particles 10.
  • two layers of shells 12a and 12b are laminated on the core 11, but the shell 12 of the color conversion particles 10 may have three or more layers.
  • the color conversion particles 10 having the multi-layered shells 12a and 12b shown in FIG. 7B can be formed by heating a solution containing the semiconductor particles having the shells 12a formed on the core 11 and another shell precursor. ..
  • the color conversion particle 10 may have a structure in which a plurality of cores 11 are included in the shell 12, as shown in FIG. 7 (c).
  • a plurality of cores 11 are included in the shell 12
  • the effective thickness of the shell 12 in the color conversion particles 10 is increased, and the durability of the color conversion particles 10 can be improved.
  • different materials such as composition and crystal structure for each core 11, it is possible to adjust the absorption characteristic and the emission characteristic of the entire color conversion particles 10.
  • FIG. 7C a structure in which three cores 11 are included in the shell 12 is shown, but the number of cores 11 included in the shell 12 can be appropriately changed.
  • any one of the cores 11 may be partially exposed to the outside of the shell 12.
  • the color conversion particles 10 may have a structure in which the shell 12 includes a plurality of cores 11 and the shell 12 has a plurality of layers.
  • the outside of the shell 12a including the plurality of cores 11 may be further covered with the shell 12b.
  • a shell may be further laminated on the outside of the shell 12b in FIG. 7 (d).
  • a plurality of cores 11 each coated with the shell 12a may be coated with the shell 12b and integrated to form the color conversion particles 10.
  • the shell 12a may each include a plurality of cores 11.
  • the core 11 of the color conversion particles 10 may include an absorbent material 17 made of the same material as the shell 12.
  • the outside of the absorbent material 17 may be coated with the core 11.
  • the material of the absorbent material 17 may be, for example, a material that can be selected as the material of the shell 12, and the shell 12 covering the core 11 and the absorbent material 17 may not be made of the same material.
  • the excitation light transmitted through the outer shell 12 is absorbed by the absorbent material 17 (the same material of the shell 12) inside the core 11 and the excitation light is absorbed.
  • the absorption rate can be improved.
  • the luminous efficiency can be improved by effectively confining the photoexcited carriers in the narrow core 11 region sandwiched between the materials of the shell 12.
  • the band alignment between the absorbent material 17 and the core 11 is preferably Type I, and the band alignment between the core 11 and the shell 12 is also preferably Type I.
  • a combination of an absorbent material 17 of SrZrS 3 and a core 11 of BaZrS 3 can be mentioned, and further, a combination of a shell 12 of SrZrS 3 can be mentioned.
  • the combination of the absorbent material 17 as SrHfS 3 , the core 11 as BaHfS 3 , and the shell 12 as SrHfS 3 may be mentioned.
  • the band alignment of the absorbent material 17 and the core 11 may be a combination of materials that exhibit Stokes shift, and the absorbent material 17 may be a material other than chalcogenide perovskite.
  • the color conversion particles 10 may have a hollow structure having voids 16 inside.
  • one or more voids 16 may be formed in the core 11.
  • a gap 16 may be formed between the shell 12 and the outer shell 13.
  • the hollow structure color conversion particles 10 shown in FIGS. 8A and 8B can be manufactured, for example, as follows. First, organic substances such as fullerenes and carbon nanotubes and soluble salts are added at the same time at the time of synthesis to generate semiconductor particles containing the organic substances and salts. Then, the color conversion particles 10 having a hollow structure can be obtained by dissolving the organic substance or the salt with a solvent, or by incinerating the organic substance or the salt at a high temperature.
  • the core 11 or the shell 12 of the color conversion particles 10 may contain foreign substances such as insulators and other compositions that do not exhibit absorption and emission.
  • the foreign matter in the core 11 or the shell 12 for example, the luminous efficiency of the color conversion particles 10 can be improved by scattering light, and the shape of the color conversion particles 10 can be adjusted.
  • the core 11 or the shell 12 of the color conversion particles 10 has a composition, a crystal structure, a lattice constant, a density, a crystal orientation, a carrier concentration, a band gap, a defect density, a dielectric constant, and conduction. It may have a gradient structure in which physical properties such as degrees change continuously in the direction perpendicular to the interface (depth direction).
  • depth direction By continuously changing the physical or chemical properties of the core 11 or the shell 12 so as to form a gradient in the depth direction, the consistency of the lattice can be improved and the lattice defects can be reduced. As a result, non-emission recombination can be reduced and the luminous efficiency of the color conversion particles can be increased.
  • the gradient structure can be manufactured by the same method as in the case of manufacturing the multi-layered core 11 or shell 12, for example.
  • the shape of the color conversion particles to be synthesized is not particularly limited.
  • spherical, elongated, stellate, polyhedral, pyramidal, tetrapod, tetrapod, plaque, conical, irregularly shaped cores 11 and / or color-converting particles 10 can be synthesized. can.
  • the color conversion particles 10 of the present embodiment include a core 11 and a shell 12 that includes the core 11 and absorbs excitation light, and receives the irradiated excitation light at the core 11 or at the interface between the core 11 and the shell 12. Produces light emission.
  • the chalcogenide perovskite which is the material of the core 11, has a property of having a high light absorption coefficient and excellent durability.
  • the core 11 and the shell 12 have a band alignment that expresses a Stokes shift. In the present embodiment, the difference between the band end transition energy of the shell 12 and the core 11 is utilized to transport the photoexcited carriers to the core 11 in the shell 12, and the photoexcited carriers confined in the core 11 are recombined to emit light.
  • the portion responsible for absorption and the portion responsible for light emission are separated in the color conversion particles 10.
  • the color conversion particles 10 of the present embodiment have high absorbance and luminous efficiency as described above, a desired color conversion function can be realized with a smaller amount as compared with conventional quantum dots and the like.
  • a desired color conversion function can be realized with a smaller amount as compared with conventional quantum dots and the like.
  • the color conversion particles 10 of the present embodiment are applied to a color conversion layer of a display device, lighting or other devices, it is possible to reduce the thickness of the color conversion layer and improve the yield. ..
  • the color conversion layer by repeating the film forming process many times, the probability that a defect in the film forming process occurs increases, and as a result, the yield of the color conversion layer decreases. Conversely, if the color conversion layer can be thinned, the film forming process can be reduced, so that the effective defect rate of the color conversion layer can be reduced.
  • the band gap of the shell 12 when the band gap of the shell 12 is made larger than the band gap of the core 11, the light emitted by the core 11 is hardly absorbed by the shell 12 and is emitted to the outside, so that the reabsorption loss in the shell can be suppressed. That is, when the band gap of the shell 12 is larger than the band gap of the core 11, the shell 12 can be thickened to increase the absorbance without increasing the reabsorption loss, so that the light emission by the color conversion particles 10 can be obtained. The efficiency can be further improved.
  • the absorbance and durability of the shell 12 can be increased, and the luminous efficiency can be further improved by reducing defects at the core-shell interface.
  • the powder is in a state where the color conversion particles 10 are aggregated.
  • the color conversion particles 10 may be referred to as primary particles, and the particles in which the color conversion particles 10 are aggregated may be referred to as secondary particles.
  • the sizes of the primary particles and the secondary particles are not particularly limited, but the primary particles are preferably in the range of 5 nm to 1000 nm.
  • a ligand may be attached to the surface of the primary particles or the secondary particles.
  • another material may be added to the powder of the color-converting particles 10 as an additive.
  • the use of the powder of the color conversion particles 10 is not particularly limited.
  • a solution may be prepared by dispersing it in a solvent
  • a composite may be prepared by dispersing it in a resin or a solid medium
  • a sputtering target may be used as a sintered body
  • a source such as a vapor deposition source may be prepared as a powder. May be used as.
  • the solution is in a state where the color conversion particles 10 are dispersed in a solvent.
  • the sizes of the primary particles and the secondary particles are not particularly limited, but the primary particles are preferably in the range of 5 nm to 1000 nm.
  • “dispersed” means a state in which the color conversion particles 10 are suspended or suspended in a solvent, and a part of them may be settled. Further, a ligand may be attached to the surface of the primary particles or the secondary particles.
  • solvent of the solution one or a plurality of two or more kinds of solvents may be used.
  • the type of solvent include, but are not limited to, the following. Ethers such as water, methylformate, ethylformate, propylformate, pentylformate, methylacetate, ethylacetate, pentylacetate; ⁇ -butyrolactone, acetone, dimethylketone, diisobutylketone, cyclopentanone, cyclohexanone, methylcyclohexanone.
  • Etc . ethers such as diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetragenose, anisole, phenetol and the like.
  • Methanol ethanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2- Alcohols such as fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol mono Glycol ethers such as ethyl ether acetate and triethylene glycol dimethyl ether; organic solvents having amide groups such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, acetamide, N, N-dimethylacetamide; acetonitrile, isobutyro Organic solvent having a nitrile group such as n
  • the dispersibility of the color conversion particles 10 and the film-forming properties may be added to the above solution as an additive.
  • the use of the above solution is not particularly limited. For example, it may be used for film formation by a coating method, a spray method, a doctor blade method (other solution film forming method), a composite by a composite with a solid dispersion medium, or a device using them.
  • the thin film is a state in which the color conversion particles 10 are aggregated in a plane shape.
  • the sizes of the primary particles and the secondary particles are not particularly limited, but the primary particles are preferably in the range of 5 nm to 1000 nm.
  • a ligand may be attached to the surface of the primary particles or the secondary particles.
  • another material may be added to the thin film as an additive.
  • a thin film may be produced by using a vacuum process such as a coating method, a spray method, a doctor blade method, an inkjet method or other solution film forming method, or a sputtering method or a vacuum vapor deposition method.
  • the color conversion particles 10 may be coated or formed into a film by a method such as coating, and then the particle shape may not be maintained by firing or other treatment.
  • the sheet is in a state where the dispersion medium in which the color conversion particles 10 are dispersed is in a flat state.
  • the sizes of the primary particles and the secondary particles are not particularly limited, but the primary particles are preferably in the range of 5 nm to 1000 nm. Further, a ligand may be attached to the surface of the primary particles or the secondary particles.
  • polymers applicable as dispersion media for sheets include, but are not limited to, polyvinyl butyral: polyvinyl acetate, silicones and derivatives of silicones.
  • silicone derivatives include polyphenylmethylsiloxane, polyphenylalkylsiloxane, polydiphenylsiloxane, polydialkylsiloxane, fluorinated silicones and vinyl and hydride substituted silicones, ionomers, polyethylene, polyvinyl chloride, polyvinylidene chloride, and the like.
  • silicone derivatives include polyphenylmethylsiloxane, polyphenylalkylsiloxane, polydiphenylsiloxane, polydialkylsiloxane, fluorinated silicones and vinyl and hydride substituted silicones, ionomers, polyethylene, polyvinyl chloride, polyvinylidene chloride, and the like.
  • silicone derivatives include polyphenylmethylsiloxane, polyphenylalkylsiloxane, polydiphenylsiloxane, polydialkylsiloxane, fluorinated silicones and vinyl and hydr
  • a sheet may be produced by kneading and stretching a powder and a dispersion medium, or a sheet may be produced by mixing and applying an ink containing color conversion particles 10 and a dispersion medium or a precursor thereof. ..
  • the color conversion particles 10 or the above-mentioned powders, solutions, films, and sheets are expected to be applied to down-conversion such as ultraviolet light or blue light in various devices.
  • Examples of the type of device include a light emitting device such as an LED or an organic EL, a display device including the light emitting device, a lighting device including the light emitting device, an image sensor, a photoelectric conversion device, a bioluminescent sign, and the like.
  • the core material is BaZrS 3 and the shell material is SrZrS 3 . That is, the color-converting particles of the examples correspond to an example of the best combination of materials in which the core and shell are chalcogenide perovskite and exhibit Stokes shift. As described above, when the core and shell are chalcogenide perovskite, the interfacial defects of the core and shell are reduced, and high luminous efficiency can be expected.
  • FIG. 9 is a diagram showing shell / core / shell band alignment in the color conversion particles of the example.
  • the origin of energy on the vertical axis is the vacuum level.
  • For the physical property values of the core and shell refer to the document “Y. Nishigaki et al., Sol. RRL 1900555 (2020).” And the document “K. Hanzawa et al., J. Am. Chem. Soc. 141, 5343 ( 2019). ”, And decided comprehensively from other experimental result reports.
  • the band alignment between the shell and the core in the embodiment is Type I because the E c of the core is lower than the E c of the shell and the E v of the core is higher than the E v of the shell. Therefore, in the configuration of the embodiment, it is expected that the shell absorbs the excitation light, and the excited carriers move to the core and recombine to emit light from the core. Further, in the embodiment, since the bandgap E g of the shell is larger than the bandgap E g of the core, it is expected to suppress the reabsorption loss in the shell.
  • FIG. 10 is a diagram showing the results of simulations of the examples.
  • the horizontal axis of each figure of FIG. 10 indicates a one-dimensional position in the diameter direction in the color conversion particle.
  • the diameter of the core was set to 20 nm and the thickness of the shell was set to 50 nm.
  • the wavelength of the excitation light was set to 450 nm blue light, and the excitation light was set to be incident from one side (left side in the figure) at an illuminance of 100 mW / cm 2 .
  • FIG. 10 (a) shows the profile of E c of the color conversion particles
  • FIG. 10 (b) shows the profile of E v of the color conversion particles.
  • the energy on the vertical axis is based on the Fermi energy EF.
  • the E c in the core range (the value on the horizontal axis is in the range of 50 nm to 70 nm) is lower than the E c in the shell range.
  • the Ev of the core range is higher than the Ev of the shell range.
  • the profiles of FIGS. 10A and 10B are in good agreement with the band alignment shown in FIG.
  • FIG. 10 (c) shows the carrier concentration distribution of the color conversion particles.
  • the solid line in FIG. 10 (c) shows the profile of electrons, and the broken line in FIG. 10 (c) shows the profile of holes.
  • the carrier density in the core range (the value on the horizontal axis is in the range of 50 nm-70 nm) is higher than that in the shell range. Therefore, it can be seen from FIG. 10 (c) that the carriers excited by the light absorbed by the shell are effectively moved to the core and confined.
  • FIG. 10 (d) shows the carrier generation rate and the recombination rate.
  • the dashed line in FIG. 10 (d) shows the profile of the carrier generation rate, and the solid line in FIG. 10 (d) shows the profile of the carrier recombination rate.
  • the carrier generation rate is highest on the left side of the figure in which the excitation light is incident.
  • the carrier generation rate decreases sharply toward the right side of the figure. It can be seen that most of the carrier excitation by light absorption occurs within the range of 0 nm-50 nm shell.
  • the carrier recombination rate shows a high value over the range of the core (the value on the horizontal axis is in the range of 50 nm to 70 nm), and the value is almost zero in the range of the shell. That is, the light emission due to carrier recombination is mostly caused by the photoexcited carriers that have moved to the core. Therefore, the simulation results show that the transport of photoexcited carriers from the shell to the core and the confinement of the photoexcited carriers in the core are effectively occurring.
  • FIG. 11 is a diagram showing the light absorption coefficients of BaZrS 3 and SrZrS 3 and each profile of the PL emission spectrum of BaZrS 3 .
  • the horizontal axis of FIG. 11 indicates the wavelength.
  • the PL emission spectrum (solid line in FIG. 11) of BaZrS 3 which is the core material, shows a sharp emission peak with a half width of about 30 nm. This is because the absorption end of the chalcogenide perovskite (the rise of the light absorption coefficient near the band end) is very steep.
  • the alternate long and short dash line in FIG. 11 shows the profile of the light absorption coefficient of BaZrS 3
  • the broken line in FIG. 11 shows the profile of the light absorption coefficient of SrZrS 3 . Emissions can be reabsorbed in the region where the hem of the profile of these light absorption coefficients and the profile of the PL emission spectrum overlap.
  • the profile of the light absorption coefficient of SrZrS 3 hardly overlaps with the profile of the PL emission spectrum of BaZrS 3 . Therefore, it can be seen that when the SrZrS 3 shell is applied to the BaZrS 3 core, reabsorption in the shell hardly occurs.
  • the color conversion particles have a core-shell structure, and the absorbance of the excitation light is obtained by SrZrS 3 , which is a shell material having a bandgap larger than that of the core BaZrS 3 . Therefore, in the configuration of the embodiment, it is possible to increase the absorbance by thickening the shell without increasing the reabsorption loss.
  • FIG. 12 is a diagram showing the correspondence between the combination of core and shell materials in Examples and Comparative Examples, the type of band alignment, and the expression of Stokes shift.
  • the combination of materials in which Stokes shift is expressed (Yes) is an example, and the combination of materials in which Stokes shift is not expressed (No) is a comparative example.
  • the band alignment type is Flat in both cases, and Stokes shift does not occur in any of these cases.
  • the band alignment type is Inverse Type I, and Stokes shift does not occur in this combination.
  • the band alignment type is Type II, and all of these combinations cause Stokes shift.
  • the band alignment type is Type I. If the core material is BaZrS 3 and the shell material is SrHfS 3 or BaHfS 3 , the band alignment type is Type II. All of these combinations cause Stokes shift.
  • the band alignment type is Type II, and any combination of these causes a Stokes shift.
  • the band alignment type is Inverse Type I, and Stokes shift does not occur in this combination.
  • the band alignment type is Type II. If the core material is BaHfS 3 and the shell material is SrHfS 3 , the band alignment type is Type I. All of these combinations cause Stokes shift.
  • the band alignment type is Type I, so light emission is particularly high. Color conversion particles with excellent characteristics can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)

Abstract

色変換粒子は、コアと、コアを包含し励起光を吸収するシェルと、を備え、照射された励起光を受けてコアまたはコアとシェルの界面で発光を生じさせる。コアは、カルコゲナイドペロブスカイトで構成され、コアおよびシェルは、ストークスシフトを発現させるバンドアライメントを有する。

Description

色変換粒子
 本発明は、色変換粒子に関する。
 従来から、照明や表示装置、太陽電池などにおいて、物体に外部から入射した励起光をより長波長の光に変換して放出する波長変換(ダウンコンバーション)を用いた色変換が広く活用されている。この種の色変換では、例えば、賦活剤を添加した蛍光体が用いられることがある。しかしながら、従来の蛍光体は、発光波長、発光ピーク幅およびピーク数(色純度)の制御性に限界があり、例えば、表示装置のように特定の波長において高い色純度を必要とする用途への適用では改善すべき課題が多かった。
 一方、近年においては、上記の課題を解決するものとして量子効果を応用したコアシェル型量子ドットが注目を集めており、様々な分野でコアシェル型量子ドットが応用されつつある。コアシェル型量子ドットは、直径が数ナノメートルサイズの微小な半導体粒子であり、発光部として機能するコアが、キャリア閉じ込め層や吸光部として機能するシェルによって外側から覆われた構造を有している。
 この種のコアシェル型量子ドットにおいて、コアの物質は、例えば、Cd(S,Se),InP,APbX3(A=Cs,MA;X=Cl,Br,I)から選択される。また、シェルの物質は、例えば、Zn(S,Se)や、A’2PbX4(A’=OA)などである。ここで、MAはメチルアンモニウム、OAはオクチルアンモニウムである。また、量子ドットの材料としては、CsPbBrに代表されるハライドペロブスカイトや、化学式ABX3(A=Ca,Sr,Ba;B=Ti,Zr,Hf;X=S,Se,Te)で構成されるカルコゲナイドペロブスカイトなども知られている。
 上記のコアシェル型量子ドットの材料の1つであるCdSeは、RoHSで規制されるCdを含み、毒性を有している。そのため、Cd(S,Se)の代替材料としてInPが開発されたが、InPはレアメタルのInを含むことに加え、材料の耐久性と発光効率の面で課題がある。また、ハライドペロブスカイトは、高い吸光度と発光効率を有するが、材料の耐久性が十分ではない。
 一方、カルコゲナイドペロブスカイトは、光吸収係数が大きく耐久性に優れる特性を有する。また、カルコゲナイドペロブスカイトは、吸収端のプロファイルが急峻であるため、優れた発光性能を期待することもできる。例えば、特許文献1には、カルコゲナイドペロブスカイトを用いた量子ドットが開示されている。
米国特許出願公開第2019/0225883号
 しかしながら、カルコゲナイドペロブスカイトの量子ドットは、光吸収性に優れる反面、発光の再吸収による損失も大きい。かかる再吸収損失を抑制するために粒子サイズを小さくすると吸光度が低下してしまう。つまり、吸光度と再吸収損失がトレードオフの関係にあった。
 本発明は、上記の状況に鑑みてなされたものであって、発光の再吸収損失を抑制しつつ、高い吸光度と高い発光効率を実現する色変換粒子を提供する。
 本発明の一態様の色変換粒子は、コアと、コアを包含し励起光を吸収するシェルと、を備え、照射された励起光を受けてコアまたはコアとシェルの界面で発光を生じさせる。コアは、カルコゲナイドペロブスカイトで構成され、コアおよびシェルは、ストークスシフトを発現させるバンドアライメントを有する。
 本発明の色変換粒子によれば、発光の再吸収損失を抑制しつつ、高い吸光度と高い発光効率を実現できる。
本実施形態の色変換粒子の構成例を示す模式図である。 励起エネルギーと粒子半径の関係の例を示すグラフである。 BaZrS3の物性値に基づく励起エネルギーと粒子半径の関係の例を示すグラフである。 コアおよびシェルのバンドアライメントの例を示す図である。 コアおよびシェルのバンドアライメントの例を示す図である。 コアおよびシェルのバンドアライメントの例を示す図である。 本実施形態の色変換粒子の変形例を示す図である。 本実施形態の色変換粒子の変形例を示す図である。 実施例におけるコアおよびシェルのバンドアライメントを示す図である。 実施例のシミュレーションの結果を示す図である。 BaZrS3およびSrZrS3の光吸収係数と、BaZrS3のPL発光スペクトルの各プロファイルを示す図である。 実施例および比較例におけるコアおよびシェルの材料の組み合わせと、バンドアライメントのタイプおよびストークスシフトの発現の対応関係を示す図である。
 以下、図面を参照しながら実施形態を説明する。
 実施形態では、その説明を分かり易くするため、本発明の主要部以外の構造または要素については、簡略化または省略して説明する。また、図面において、同じ要素には同じ符号を付す。なお、図面において、各要素の形状、寸法などは、模式的に示したもので、実際の形状や寸法などを示すものではない。
<色変換粒子の構造>
 図1(a)は、本実施形態の色変換粒子の構成例を示す模式図である。
 色変換粒子10は、全体形状がナノメートル規模の粒子状であり、入射した励起光を吸収し、エネルギー(波長)の異なる光として再放出(発光)することで色変換を行う。
 色変換粒子10は、発光部としてのコア11と、吸光部としてのシェル12を有する。シェル12は、その内部に1以上のコア11を包含する。そして、それぞれのコア11の一部あるいは全部が外側からシェル12に被覆されることで色変換粒子10が構成される。
 色変換粒子10では、コア11とシェル12を分離して設け、コア11の材料としてカルコゲナイドペロブスカイトを採用する。これにより、励起光に対するコア11の高い吸光度と高い発光性能を実現するとともに、色変換粒子10の耐久性も向上する。この点については後述する。
 また、コア11とシェル12において伝導帯の下端のエネルギーEcと価電子帯の上端のエネルギーEvのバンドアライメントは、ストークスシフトを発現させる関係となっている。コア11とシェル12のバンドアライメントについては後述する。
 さらに、コア11とシェル12のバンドギャップを調整することで、コア11で発光した光を透過させる特性をシェル12に付与できる。これにより、色変換粒子10ではコア11で発生した光がシェル12で再吸収されることを抑制できる。
<コア11>
 コア11は、励起光により目的とする発光波長の蛍光を生じさせる半導体材料で構成された発光粒子である。発光粒子としてのコア11は、目的とする発光波長に対応するエネルギーを持つ電子準位間遷移を生じさせる。
(コアの材料)
 コア11は、カルコゲナイドペロブスカイトで構成されている。
 カルコゲナイドペロブスカイトは、Xサイトにカルコゲン元素(S,Se,Te)を含むペロブスカイト結晶構造群からなる半導体であり、Xサイトの一部を酸素(O)で置換したものも含む。
 上記のペロブスカイトは、化学式ABX3で表されるBX6八面体を骨格とした立方晶の結晶構造を有する物質群を表し、格子歪みを伴うことで正方晶や斜方晶の結晶構造を取り得る。また、同様のABX3組成において、安定な複数の結晶構造が計算科学的に示されている。これらの結晶構造には、ペロブスカイトに近い構造からかなり異なる構造までが含まれる。さらに、派生構造として、ペロブスカイト構造を基本としたRuddlesden-Popper型や、Dion-Jacobson型の層状ペロブスカイト、Bサイトに交互に異なる元素が配置されたダブルペロブスカイトの結晶構造などが存在する。
 本明細書では、上記の結晶構造を包含して「ペロブスカイト結晶構造群」と総称する。
 ペロブスカイト結晶構造群には、具体的に以下の結晶構造を有する物質が含まれる。
 立方晶ペロブスカイト、正方晶ペロブスカイト、GdFeO3型斜方晶、YScS3型斜方晶、NH4CdCl3型斜方晶、BaNiO3型六方晶、FePS3型単斜晶、PbPS3型単斜晶、CeTmS3型単斜晶、Ruddlesden-Popper型層状ペロブスカイト、Dion-Jacobson型層状ペロブスカイト、ダブルペロブスカイト
 なお、ペロブスカイト結晶構造群は、組成や合成条件によって結晶構造と電子構造が変化し、光電子物性および化学特性が変化する。そのため、目的に適した結晶構造となるように組成や条件が選択される。
 例えば、立方晶ペロブスカイト、正方晶ペロブスカイト、GdFeO3型斜方晶ペロブスカイト、Ruddlesden-Popper型層状ペロブスカイト、ダブルペロブスカイト構造を有する物質は、光電子物性および化学的特性に優れた特性を有する。また、Dion-Jacobson型層状ペロブスカイト構造とすることで、さらに化学的安定性を向上させることができる。
 特に、ABX3(A=第2族、B=第4族)で表されるGdFeO3型斜方晶ペロブスカイトの結晶構造を有する物質は、高い光吸収係数をはじめとする優れた光電子物性を有することが知られている。
 また、カルコゲナイドペロブスカイトの化学式は、ABX3、A’2n-1n3n+1、A’’A’’’B’’27、A’’A2B’’310、A2BB’X6で表すことができる。
 上記の化学式において、Xはカルコゲン元素(S,Se,Te)を表す。A,A’は第2族の元素(Ca,Sr,Ba)、A’’は第1族の元素(Li,Na,K,Rb,Cs)、A’’’は第3族の元素(希土類元素)とBiを表す。B,B’は第4族の元素(Ti,Zr,Hf)、B’’は第5族の元素(V,Nb,Ta)を表す。また、nは正の整数とする。なお、AとA’、BとB’は同じ元素であってもよい。また、A、A’、A’’、A’’’、B、B’、B’’、Xは、それぞれの族の元素を任意の比で混合させたものを含む。
 一例として、化学式ABX3で表現されるカルコゲナイトペロブスカイトには、以下の物質が含まれる。以下の例では、Xはカルコゲン元素のうち優位な材料である(S,Se)から選択され、Aは第2族の元素のうち優位な材料である(Sr,Ba)から選択され、Bは第4族の元素のうち優位な材料である(Zr,Hf)から選択される。
 SrZrS3、SrZrSe3、SrHfS3、SrHfSe3、BaZrS3、BaZrSe3、BaHfS3、BaHfSe3
 また、一例として、化学式A’2n-1n3n+1で表現されるカルコゲナイトペロブスカイトには、以下の物質が含まれる。Xはカルコゲン元素のうち優位な材料である(S,Se)から選択され、A,A’は第2族の元素のうち優位な材料である(Sr,Ba)から選択され、Bは第4族の元素のうち優位な材料である(Zr,Hf)から選択される。
Sr2Ban-1Zrn3n+1、Sr2Ban-1ZrnSe3n+1、Srn+1Zrn3n+1、Srn+1ZrnSe3n+1、Ba2Srn-1Zrn3n+1、Ba2Srn-1ZrnSe3n+1、Ban+1Zrn3n+1、Ban+1ZrnSe3n+1、Sr2Ban-1Hfn3n+1、Sr2Ban-1HfnSe3n+1、Srn+1Hfn3n+1、Srn+1HfnSe3n+1、Ba2Srn-1Hfn3n+1、Ba2Srn-1HfnSe3n+1、Ban+1Hfn3n+1、Ban+1HfnSe3n+1
 これらのカルコゲナイドペロブスカイトは、(SrxBa1-x)(ZryHf1-y)(SzSe1-z3または(Srx’Ba1-x’2(SrxBa1-xn-1(ZryHf1-yn(SzSe1-z3n+1で表現することもできる(ただし、x、x’、y、zはそれぞれ0以上1以下の値)。
 なお、上述したX,A,A’,Bにおける優位な材料は、色変換粒子10に適用したときに、発光装置、表示装置、照明装置等の可視光を発光する用途に適したバンドギャップを有する材料である。
 ここで、赤色光を発光するコアの材料としては例えばBaZrS3が挙げられる。緑色光を発光するコアの材料としては例えばSrHfS3が挙げられる。青色光を発光するコアの材料としては例えばBaZr(O,S)3が挙げられる。
 カルコゲナイドペロブスカイトでは、構成元素に対して同族や異なる族の元素との部分置換によって、キャリア濃度または結晶構造の制御や、その他の物理、化学的性質の調整を行うことができる。例えば、第1族の元素は1,2族と、第2族の元素は1,2,3族と、第3族の元素は2,3,4族と、第4族の元素は3,4,5族と、第16族の元素は15,16,17族とにそれぞれ置換できる。
 カルコゲナイドペロブスカイトの特長としては、以下のものが挙げられる。
 カルコゲナイドペロブスカイトは、光吸収係数が大きく発光性能(発光効率、半値幅)に優れた特性を有する。また、カルコゲナイドペロブスカイトの光吸収係数のプロファイルは、バンド端で急峻に立ち上がる。そのため、カルコゲナイドペロブスカイトは、バンドギャップ端近傍での吸光度が高いという特性を有する。
 したがって、カルコゲナイドペロブスカイトのコア11は、吸光度が高く励起光を効率的に吸収できる。
 また、カルコゲナイドペロブスカイトは化学的安定性が高く、大気、水分、熱、光などの外部環境や刺激に対する耐久性に優れている。したがって、カルコゲナイドペロブスカイトのコア11は耐久性が高く、コア11の劣化を抑制しうる。
 さらに、カルコゲナイドペロブスカイトは、毒性元素を含まないので安全性が高く、希少金属を含まないので原料コストも低い点でも有利である。
(コアの大きさ)
 次に、前提として量子ドットを説明した後に、コアの大きさについて説明する。
 発光粒子に半導体を用いる場合、基本的には伝導帯に励起された電子が価電子帯の正孔とバンド間再結合する際に発する蛍光が発光に用いられる。そのため、発光粒子での発光波長はバルクのバンドギャップエネルギーEg,bulkに相当する。
 発光粒子の粒径が小さくなり電子の閉じ込めによる量子サイズ効果が顕著に表れるようになると、電子のエネルギー準位が離散的になる。この場合には、最低励起状態のエネルギー(バンドギャップ)EexはEg,bulkよりも大きくなり、かつ粒径に依存するようになる。つまり、発光粒子の粒径が小さくなると発光波長はバルク状態よりも短波長側にシフトし、かつ粒径によって発光波長が変化する。この性質を利用することで、発光粒子での発光波長を制御することが可能となる。
 具体的には、半径rの発光粒子のEexは、以下の式で与えられる。なお、μは励起子換算質量を示し、Eb,exは励起子束縛エネルギーを示し、rBは励起子ボーア半径を示す。
Figure JPOXMLDOC01-appb-M000001
 μ,Eb,ex,rBは、εを発光粒子の誘電率としてそれぞれ以下の式で与えられる。なお、m* eは電子の有効質量であり、m* hは正孔の有効質量である。
Figure JPOXMLDOC01-appb-M000002
 図2は、μ=0.1、ε=10としたときのEexのrへの依存性を示すグラフである。図2の縦軸はEex/Eg,bulkを示し、図2の横軸はr/rBを示す。発光粒子の半径rが小さくなりrBに近づくにつれEexの値はEg,bulkから徐々に増加する。そしてrがrB以下になるとEexの値は顕著に増大する(量子サイズ効果)。
 上記の量子サイズ効果の特性を利用し、上式より定まるrBに基づき発光波長が粒径に依存する範囲の粒径を有している発光粒子は「量子ドット」と称される。一方、発光波長が粒径にほぼ依存しなくなる範囲の粒径を有している発光粒子は「非量子ドット」と称される。
 なお、量子サイズ効果の発現する粒径はμおよびεのパラメータによって変化するが、典型的な半導体としてμ=0.1、ε=10を想定すると、r=3rB程度が量子サイズ効果の発現する粒径(半径)の境界となる。なお、図2では、当該境界を破線で示している。
 上記のように、発光粒子において量子サイズ効果の発現する粒径は基本的には励起子ボーア半径rBとの関係で特徴付けられるが、量子サイズ効果の発現には物質の誘電率や電子正孔の有効質量も関与し、Eexの値の変化も連続的である。そのため、量子ドットと非量子ドットの境界を粒径やその他の物性値で一義的に表現することは、実際には困難である。
 図3は、代表的なカルコゲナイドペロブスカイト材料であるBaZrS3の典型的な物性値(me *=0.3m0、mh *=0.5m0、ε=6ε0、Eg,bulk=1.93eV)を用いて計算したEexの粒子半径依存性を示すグラフである。上記のm0は電子の質量である。図3の縦軸は最低励起エネルギー(eV)を示し、図3の横軸は粒子半径(nm)を示す。
 図3に示すBaZrS3の例では、典型的な量子サイズの効果発現粒子半径は約7.5nmであると考えられる。したがって、BaZrS3の例では、粒径15nm以下の粒子は量子ドット、粒径15nmを超える粒子は非量子ドットと考えられる。
 本実施形態のコア11は、上記の量子ドットと非量子ドットのいずれであってもよい。
 コア11が量子ドットである場合、同一物質の粒径を変化させることで発光波長(色)を制御できる利点がある。また、量子ドットの場合、コア11の発光効率が高くピークも狭い。
 しかしながら、発光波長(色)を揃えるためには厳密な粒径制御が必要となり、量子ドットの製造には高度な製造技術が求められる。また、量子ドットは、粒子が微小なため化学的安定性に乏しく、容易に凝集、再成長や分解してしまうため表面の保護が必要となる。また、量子ドットは電子状態が離散的なため、価電子帯、伝導帯ともに状態密度が小さく、バルクと比較して光吸収係数が小さくなる。
 一方、コア11が非量子ドットである場合、つまり、比較的大きな粒子を用いて量子サイズ効果を発現させずにバルク発光を利用する場合には、安定性や光吸収の問題は軽減される。しかし、非量子ドットには、コア11の発光波長はEg,bulkで決まるため、発光波長を調整するためには組成や結晶構造を変えることでEg,bulkを変化させる必要が生じる。
 以上のように、量子ドット、非量子ドットのいずれにも一長一短があるため、コア11の構成としては、量子ドット、非量子ドットから状況や用途に応じて適切なものを選択すればよい。また、量子サイズ効果を生じる寸法は材料に応じて異なるので、コア11の粒径は材料の物性等に応じて適宜設定されることになる。
 一方で、コア11による再吸収を抑制するためには、コア11の粒径は小さい方が好ましい。文献“Y. Nishigaki et al., Sol. RRL 1900555 (2020).”に示されているBaZrS3の光学係数を用いて、コア11で再吸収される光の割合を算出する。例えば、BaZrS3において粒径が200nmの場合、近傍に配置された他のBaZrS3のコアで生じた波長630nmの赤色光を10%吸収する。したがって、コア11の粒径は200nm以下であることが好ましい。
 また、上記の条件でコア11の粒径を50nm以下とすると波長630nmの赤色光の再吸収は3%となり、コア11の粒径を25nm以下とすると波長630nmの赤色光の再吸収は2%以下に抑制できる。そのため、コア11の粒径は、50nm以下であることが好ましく、25nm以下であることがより好ましい。
 また、コア11が安定して存在し得る粒径のサイズとしては、1nm以上が好ましい。
 以上より、コア11の粒径は1nm以上200nm以下であることが好ましい。
<シェル12>
(シェルの材料)
 シェル12は、目的とする励起光波長を吸収し、励起キャリアを生成する半導体材料で構成される。
 シェル12の材料としては、例えば、II-VI族半導体、III-V族半導体、I-III-VI族半導体、I-II-IV-VI族半導体、IV-VI族半導体、ハライドペロブスカイト半導体、酸化物ペロブスカイト、有機-無機ペロブスカイト、Si、炭素材料またはそれらの混晶化合物などを用いることができる。
 色変換粒子において、コアあるいはコア・シェル界面で発光した光はシェルを通過して外部へ取り出される。そのため、シェルは発光した光を透過させる必要がある。もしもシェルにおいて発光した光の吸収が起こるとその分だけ色変換粒子での発光効率は低下する。したがって、シェルのバンドギャップは発光した光のエネルギー以上であることが好ましい。
 また、シェル12の材料にも、カルコゲナイドペロブスカイトを用いることができる。優れた光吸収係数を有するカルコゲナイドペロブスカイトを用いることで、シェル12の吸光度を高くすることができる。また、カルコゲナイドペロブスカイトのシェル12は、コアの構成元素との親和性や結晶構造と格子定数の整合性の観点から、コア11とシェル12の界面における欠陥が低減して非発光性再結合が低減するので、より高いコア11の発光効率を期待できる。
 一例として、シェル12の材料にカルコゲナイドペロブスカイトを適用する場合、以下に挙げる物質のうち、コア11の材料とは異なるものを選択することができる。
 SrZrS3、SrZrSe3、SrHfS3、SrHfSe3、BaZrS3、BaZrSe3、BaHfS3、BaHfSe3、Sr2Ban-1Zrn3n+1、Sr2Ban-1ZrnSe3n+1、Srn+1Zrn3n+1、Srn+1ZrnSe3n+1、Ba2Srn-1Zrn3n+1、Ba2Srn-1ZrnSe3n+1、Ban+1Zrn3n+1、Ban+1ZrnSe3n+1、Sr2Ban-1Hfn3n+1、Sr2Ban-1HfnSe3n+1、Srn+1Hfn3n+1、Srn+1HfnSe3n+1、Ba2Srn-1Hfn3n+1、Ba2Srn-1HfnSe3n+1、Ban+1Hfn3n+1、Ban+1HfnSe3n+1
 シェル12に適用しうるカルコゲナイドペロブスカイトは、コア11の場合と同様に、(SrxBa1-x)(ZryHf1-y)(SzSe1-z3または(Srx’Ba1-x’2(SrxBa1-xn-1(ZryHf1-yn(SzSe1-z3n+1で表現することもできる(ただし、x、x’、y、zはそれぞれ0以上1以下の値)。
 これらの物質は、色変換粒子10のシェル12に適用したときに、発光装置、表示装置、照明装置等の可視光を発光する用途に適したバンドギャップを有する点で優位となる材料である。
(シェルの厚さ)
 また、シェル12の厚さの下限と上限は、以下の観点から規定される。
 第1に、吸光部であるシェル12には、励起光を十分に吸収できる厚さを有することが求められる。
 色変換粒子10の用途としては、フィルムや塗布膜、樹脂などに色変換粒子10を多数含有させて色変換材料として用いることが通常想定される。この場合、シェル12は最低でも0.1%以上の励起光吸収率を有する厚さとすることが好ましい。また、個々のシェル12は最低でも2nmの厚みがあれば、多数の色変換粒子を適用した色変換材料全体としては十分な吸光度を実現できる。
 第2に、シェル12の厚さが厚すぎると、光励起キャリアがコア11に到達する前に再結合して失活してしまい、発光効率が低下してしまう。
 光励起キャリアあるいは励起子の拡散長は材料によって異なるが、非常に高品質な単結晶の場合を除いて、おおよそ数十nmから数百nmである。
 また、色変換粒子10の粒径が大きくなりすぎると、フィルムや塗布膜、樹脂などに色変換粒子10を多数含有させたときに粒子の間隙が大きくなって色変換粒子10の密度が低下する。上記の場合には、結果的に色変換粒子10を用いた波長変換材料の吸光度の低下を招く。
 さらに、色変換粒子10を溶媒に分散させたインクを例えばインクジェット法で塗布する場合、色変換粒子10の粒径が大きすぎるとノズルの目詰まりの原因となる。その他の塗布方式においても、色変換粒子10の大きな粒径はプロセス上の課題となり得る。
 以上のような理由により、色変換粒子10の粒径は1000nm以下であることが好ましい。このとき、吸光部であるシェル12の厚さは500nm以下であることが好ましい。
 光励起キャリアの再結合を抑制する観点からは、シェル12が励起光を十分吸収できればシェル12の厚さはより薄い方が好ましく、例えばシェル12の厚さは50nm以下であることが好ましく、より好ましくは30nm以下、さらに好ましくは10nm以下である。
<コア11とシェル12のバンドアライメント>
 上記のように、コア11とシェル12において伝導帯の下端のエネルギーEcと価電子帯の上端のエネルギーEvのバンドアライメントは、ストークスシフトを発現させる関係となっている。
 ストークスシフトは、本来、単一の物質において、光励起された電子のエネルギー状態とエネルギーを放出して発光する際の電子状態にエネルギー差があることを指し、吸収スペクトルと発光スペクトルの極大エネルギー位置の差として観察される。
 本実施形態の色変換粒子10のようなヘテロ構造のナノ粒子では、ヘテロ界面において適切なバンドアライメントを設計することで、「見かけ上のストークスシフト」、つまり吸収スペクトル端と発光スペクトルピークのエネルギー差を生じさせることができる。本明細書では、ヘテロ構造のナノ粒子で生じる見かけ上のストークスシフトを、単にストークスシフトと称することもある。
 図4、図5、図6は、コア11とシェル12のバンドアライメントの例を示す。
 図4、図5、図6の各図において、上方がエネルギーが増加する方向を示し、中央の矩形はコア11のバンドギャップEg_coreを示し、両側の矩形はシェル12のバンドギャップEg_shellを示す。中央の矩形の上辺はコア11の伝導帯の下端のエネルギーEc_coreを示し、中央の矩形の底辺はコア11の価電子帯の上端のエネルギーEv_coreを示す。両側の矩形の上辺はシェル12の伝導帯の下端のエネルギーEc_shellを示し、両側の矩形の底辺はシェル12の価電子帯の上端のエネルギーEv_shellを示す。
 また、図4、図5、図6の各図において、矩形の上辺側に描かれている曲線は電子の分布を示し、矩形の底辺側に描かれている曲線は正孔の分布を示す。また、図中下向きの矢印は発光過程のエネルギー差を示し、図中上向きの矢印は吸光(励起)過程のエネルギー差を示す。吸光過程のエネルギー差が発光過程のエネルギー差よりも大きい時にストークスシフトが発現する。
 図4(a)-(e)では、シェル12のバンドギャップEg_shellがいずれもコア11のバンドギャップEg_coreよりも大きい(Eg_shell>Eg_core)。一方、図5(a)-(e)では、シェル12のバンドギャップEg_shellがいずれもコア11のバンドギャップEg_coreよりも小さい(Eg_shell<Eg_core)。また、図6(a)-(c)では、シェル12のバンドギャップEg_shellがいずれもコア11のバンドギャップEg_coreに等しい(Eg_shell=Eg_core)。なお、Ec_coreとEc_shellの大小関係と、Ev_coreとEv_shellの大小関係については、図4、図5、図6の各図でそれぞれ表記する。
 ストークスシフトは、図4(a)-(e)、図5(a)、(e)、図6(a)、(c)に示すバンドアライメント(Type I、Quasi-Type IIおよびType II)において発現する。したがって、本実施形態の色変換粒子は、図4(a)-(e)、図5(a)、(e)、図6(a)、(c)のいずれかのバンドアライメントを有する。本実施形態の色変換粒子のバンドアライメントは、シェル12の伝導帯の下端のエネルギーEc_shellがコア11の伝導帯の下端のエネルギーEc_coreよりも高いか、あるいは、シェル12の価電子帯の上端のエネルギーEv_shellがコア11の価電子帯の上端のエネルギーEv_coreよりも低いかの少なくともいずれかの条件を満たす(つまり、Ec_shell>Ec_core、Ev_shell<Ev_coreのいずれか一方、あるいはEc_shell>Ec_coreおよびEv_shell<Ev_core)。
 図4(b)、(c)、(d)のバンドアライメント(Type IおよびQuasi-Type II)は、シェル12の伝導帯の下端のエネルギーEc_shellがコア11の伝導帯の下端のエネルギーEc_core以上で、シェル12の価電子帯の上端のエネルギーEv_shellがコア11の価電子帯の上端のエネルギーEv_core以下である条件をいずれも満たす(つまり、Eg_shell>Eg_coreのときに、Ec_shell≧Ec_coreかつEv_shell≦Ev_core)。
 図4(c)で表されるType Iの場合には、電子と正孔がコア11に閉じ込められてコア11内で再結合(コア発光)が起こる。Type Iではコア11に正孔と電子が局在するため、波動関数の重なりが大きく発光効率が高い。そのため、コア11とシェル12のバンドアライメントとしては、Type Iの構成が最も好ましい。図4(c)で表されるType Iのコア11とシェル12の材料としては、例えば、コア11がBaZrS3、シェル12がSrZrS3の組み合わせが挙げられる。
 図4(b)、(d)で表されるQuasi-Type II(ただしEg_shell>Eg_core)では正孔または電子の一方のキャリアがシェルに広がるため発光効率はType Iよりは低下する。しかし、図4(b)、(d)においては、それでも他方のキャリアがコアに局在するため、比較的発光効率が高く、Type Iに次いで好ましい。図4(b)、(d)で表されるQuasi-Type IIのコア11とシェル12の材料としては、例えば、図4(b)で表されるコア11がBaHfS3、シェル12がCaZrS3の組み合わせが挙げられる。
 また、図4(a)、(e)、図5(a)、(e)、図6(a)、(c)のバンドアライメント(Type II)では、コア11とシェル12に電子と正孔が分離するため、Type Iと比べてバンド間再結合による発光は起きにくくなる。しかし、Type IIではコア11とシェル12の界面において再結合(界面発光)する可能性があり、シェル12のEgよりも小さいエネルギー差となるのでストークスシフトが発現する。
 Type IIの場合、コア11とシェル12の界面での発光となるため、波動関数の重なりが小さくType Iと比べて発光効率は低い。また、界面再結合では界面欠陥を介した非発光再結合を伴うことがあるので、この点でも発光効率は低くなると考えられる。
 もっとも、Type IIのバンドアライメントにおいても幅広い発光波長を実現可能である点で有利であり、近赤外発光材料等への応用が期待される。図4(a)、(e)、図5(a)、(e)、図6(a)、(c)で表されるType IIのコア11とシェル12の材料としては、例えば、図4(a)で表されるコア11がBaZrS3、シェル12がCaZrS3の組み合わせが挙げられる。
 また、図4(a)-(e)に示すように、シェル12のバンドギャップEg_shellをコア11のバンドギャップEg_coreよりも大きくする(Eg_shell>Eg_core)と、コア11で発光した光がシェル12でほとんど吸収されずに外部に放出される。これにより、シェル12での再吸収損失が抑制され、色変換粒子10の発光効率をより向上させることができる。
 図6(a)、(c)では、シェル12のバンドギャップEg_shellがコア11のバンドギャップEg_coreに等しい(Eg_shell=Eg_core)。そのため、図6(a)、(c)の場合は、図4(a)-(e)の場合(Eg_shell>Eg_core)よりコア11で発光した光がシェル12で再吸収されやすく、再吸収損失が大きくなる。このため、色変換粒子10の発光効率は低くなる。なお、図5(a)、(e)のようにシェル12のバンドギャップEg_shellがコア11のバンドギャップEg_coreよりも小さい(Eg_shell<Eg_core)場合と図6(a)、(c)の場合を比べると、図6(a)、(c)の場合は、シェル12で再吸収される光が少なく再吸収損失が抑制されるため、色変換粒子10の発光効率を向上させることができる。
 なお、色変換粒子10は、コア11の材料とシェル12の材料の組み合わせにより様々な状態をとることができる。上記に例示したコア11の材料やシェル12の材料は硫化物であるが、セレン化物や固溶体であってもよく、これらも含めると様々な状態を実現可能であり、優れた発光特性を示すコア11とシェル12の材料の組み合わせが存在する。
<色変換粒子10の製造方法>
 次に、色変換粒子10の製造方法について説明する。色変換粒子10は、コア11の合成工程の後に、シェル12の合成工程を行うことで製造される。
(コア11の合成工程)
 コア11の合成工程では、ナノ発光粒子であるコア11をカルコゲナイドペロブスカイトで生成する。この工程では、溶液中で前駆体化合物を反応させてコア11を合成してもよく、不活性雰囲気もしくは大気中で前駆体粉末を混合・加熱してコア11を合成してもよく、不活性雰囲気中で金属前駆体粉末を混合・加熱し、カルコゲン前駆体気体と反応させてコア11を合成してもよい。
 溶液中で前駆体化合物を反応させてコア11を合成する場合には、例えば、ホットインジェクション法、ヒートアップ法、ソルボサーマル法、ハイドロサーマル法、CHM(composite-hydroxide-mediated)法、連続フロープロセス合成法などを適用することができる。
 一例として、ホットインジェクション法を適用してAとBがそれぞれII族とIV族元素からなるカルコゲナイドペロブスカイトABXのコア11を合成する場合について説明する。
 この場合には、II族元素を含む前駆体化合物とIV族元素を含む前駆体化合物と溶媒を含む第1の溶液と、カルコゲン元素を含む前駆体化合物と溶媒を含む第2の溶液を準備する。そして、上記の第1の溶液に対して第2の溶液を、130℃から400℃の範囲の温度で反応容器に投入し、反応容器内で前述の温度で1秒~100時間保持して反応させる。これにより、目的とするカルコゲナイドペロブスカイト化合物のコア11が合成される。反応終了後は有機溶媒もしくは水で洗浄したのち、目的物を回収する。
 上記のII族元素を含む前駆体化合物としては、以下のものが挙げられる。
 金属粉末、金属アルコキシド、金属カルボキシレート、金属硝酸塩、金属過塩素酸塩、金属硫酸塩、金属アセチルアセトナート、金属ハロゲン化物、金属水酸化物、ハロゲン化金属、およびその組み合わせ
 上記のIV族元素を含む前駆体化合物としては、以下のものが挙げられる。
 金属粉末、金属アルコキシド、金属カルボキシレート、金属硝酸塩、金属過塩素酸塩、金属硫酸塩、金属アセチルアセトナート、金属ハロゲン化物、金属水酸化物、ハロゲン化金属、およびその組み合わせ
 上記のカルコゲン元素を含む前駆体化合物としては、以下のものが挙げられる。
 金属硫化物(セレン置換体またはテルル置換体を含む);
 二硫化炭素(セレン置換体またはテルル置換体を含む);
 硫化水素、セレン化水素、テルル化水素等のカルコゲン化水素;
 チオール化合物(セレン置換体またはテルル置換体を含む);
 トリオクチルホスフィンスルフィド等のホスフィン化合物(セレン置換体またはテルル置換体を含む);
 チオウレア(セレン置換体またはテルル置換体を含む);
 硫黄、セレン、テルル、
または、これらの化合物をアミン、酸、炭化水素等の溶媒に分散させたもの、およびその組み合わせ
 上記の溶媒としては、以下のものが挙げられる。
 炭化水素基等の有機基を有する一級アミン、二級アミン、三級アミン;
 芳香族炭化水素;
 窒素含有複素環化合物、酸素含有複素環化合物、硫黄含有複素環化合物、セレン含有複素環化合物、テルル含有複素環化合物;
 脂肪族炭化水素;
 炭化水素基等の有機基を有するホスフィン化合物;
 炭化水素基等の有機基を有するホスフィンオキシド化合物;
 アルコール、アルデヒド、カルボン酸またはそれらの硫黄置換体基、セレン置換体基、テルル置換体基を有する化合物、
 の少なくともいずれかを含む一般的に使用される有機溶媒または、水。また、これら溶媒の組み合わせ
 上記の溶液の加熱は、カルコゲン元素の前駆体を反応させ、カルコゲン化水素を形成することを含む。また、上記の溶液の反応は、不活性雰囲気下で合成することを含む。さらに、上記の溶液の反応は、マイクロ反応容器を使用して連続フロープロセスで目的物を合成するものであってもよい。
 また、一例として、ヒートアップ法を適用してカルコゲナイドペロブスカイトのコア11を合成する場合について説明する。
 この場合には、II族元素を含む前駆体化合物と、IV族元素を含む前駆体化合物と、カルコゲン元素を含む前駆体化合物と溶媒を含む溶液を準備する。そして、上記の溶液を、反応容器内で室温の状態から130℃から400℃の範囲の温度まで昇温させ、反応容器内で前述の温度で0時間~100時間保持し反応させる。これにより、目的とするカルコゲナイドペロブスカイト化合物のコア11が合成される。反応終了後は有機溶媒もしくは水で洗浄したのち、目的物を回収する。
 上記のII族元素を含む前駆体化合物、IV族元素を含む前駆体化合物、カルコゲン元素を含む前駆体化合物および溶媒については、ホットインジェクション法の場合と同様である。
 上記の溶液の加熱は、カルコゲン元素の前駆体を反応させ、カルコゲン化水素を形成することを含む。また、加熱の間、反応容器を加圧する場合もある(ソルボサーマル、ハイドロサーマル)。さらに、上記の溶液の反応は、マイクロ反応容器を使用して連続フロープロセスで目的物を合成するものであってもよい。
 また、一例として、CHM法を適用してカルコゲナイドペロブスカイトのコア11を合成する場合について説明する。
 この場合には、II族元素を含む前駆体化合物と、IV族元素を含む前駆体化合物と、カルコゲン元素を含む前駆体化合物と、水酸化ナトリウムおよび水酸化カリウムを、反応容器内で室温の状態から130℃から400℃の範囲の温度まで昇温させ、反応容器内で前述の温度で0時間~200時間保持し反応させる。これにより、目的とするカルコゲナイドペロブスカイト化合物のコア11が合成される。反応終了後は有機溶媒もしくは水で洗浄したのち、目的物を回収する。
 上記のII族元素を含む前駆体化合物、IV族元素を含む前駆体化合物、カルコゲン元素を含む前駆体化合物については、ホットインジェクション法の場合と同様である。
 CHM法では、溶媒は使用しないか、もしくは多少の水を添加する場合もある。CHM法においては、水酸化ナトリウム及び水酸化カリウムを51.5:48.5の比率で混ぜ合わせたものを165℃で溶解させたものが溶媒として働く。また、加熱の間、反応容器を加圧する場合もある。さらに、上記の溶液の反応は、マイクロ反応容器を使用して連続フロープロセスで目的物を合成するものであってもよい。
 また、一例として、固相合成法を適用してカルコゲナイドペロブスカイトのコア11を合成する場合について説明する。
 この場合には、従来の固相合成法と同様に、II族元素を含む前駆体化合物と、IV族元素を含む前駆体化合物と、カルコゲン元素を含む前駆体化合物を、反応容器内で室温の状態から400℃から1300℃の範囲の温度まで昇温させ、反応容器内で前述の温度で0時間~200時間保持し反応させる。これにより、目的とするカルコゲナイドペロブスカイト化合物のコア11が合成される。
 上記のII族元素を含む前駆体化合物、IV族元素を含む前駆体化合物、カルコゲン元素を含む前駆体化合物については、ホットインジェクション法の場合と同様である。また、上記の合成は、不活性雰囲気下または大気雰囲気下での合成を含む。
(シェル12の合成工程)
 シェル12の合成工程では、上記の工程で得られたコア11の表面に、シェル12を合成する。例えば、ALD法やCVD法などの気相成長法により、コア11の表面にシェル材料を蒸着させてコアシェル構造を有する色変換粒子10を合成してもよい。なお、シェルの合成方法として、シェル12は、例えばバレルスパッタによる気相合成によって生成されてもよい。
 また、シェル12の合成において、ワンポット合成法やホットインジェクション法を適用してもよい。この場合には、コア11となるナノ発光粒子とシェル材料の前駆体を溶媒中で混合する。これにより、コア11の表面がシェル材料で被覆されたコアシェル構造を有する色変換粒子10が合成される。なお、ワンポット合成法やホットインジェクション法は、カルコゲナイドペロブスカイトのシェル12を形成する場合にも適用することができる。
<色変換粒子10の外部構造>
 また、図1(b)に示すように、色変換粒子10は、外部構造として、保護層としてのアウターシェル13やリガンド14を有していてもよい。
(アウターシェル13)
 アウターシェル13は、コア11およびシェル12からなる半導体粒子を外側から覆う保護層である。アウターシェル13は、酸素の接触による半導体粒子の劣化を抑制するとともに、外部との化学的相互作用から半導体粒子を保護することで、色変換粒子10の耐久性をより向上させるために設けられる。また、アウターシェル13は、目的となる励起光やコア11の発光を透過させる性質を備えている。
 アウターシェル13は、シリカ、ガラス、酸化物絶縁体、樹脂などの化学的に安定な物質を用いて、公知の手法で形成される。
 例えば、アウターシェル13を金属酸化物で形成する場合、酸化ケイ素、酸化ジルコニウム、酸化チタン及び酸化アルミニウムなどを材料に使用することができる。金属酸化物を含有するアウターシェル13は、例えば、ゾル-ゲル法を用いた熱硬化反応で無機酸化物を形成する方法により形成することができる。
 また、アウターシェル13は、樹脂またはポリシラザン改質体などを含む層であってもよい。ポリシラザンは、ケイ素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO2、Si34及び両方の中間固溶体SiOxy等を含むセラミック前駆体無機ポリマーである。また、アウターシェル13を樹脂で形成する場合、製造の容易さからポリビニルアルコール系樹脂などの水溶性樹脂で形成することが好ましい。
 なお、アウターシェル13は、金属酸化物の層と、樹脂またはポリシラザン改質体などを含む層をいずれも備えた多層構造であってもよい。
(リガンド14)
 リガンド14は、色変換粒子10を表面修飾する有機修飾分子であり、色変換粒子10の外表面に結合されるか、または色変換粒子10を被覆するように設けられる。
 リガンド14は、色変換粒子10同士を隔離されやすくして分散性を高めるとともに、色変換粒子10同士の接触による再成長や破壊などを防ぐ機能を担う。また、リガンド14は、タングリングボンドのキャッピングによってシェル12の表面欠陥を抑制し、発光効率を向上させる機能も担う。
 リガンド14としての修飾有機分子は、窒素含有官能基、硫黄含有官能基、酸性基、アミド基、ホスフィン基、ホスフィンオキシド基、水酸基、直鎖アルキル基、カルボキシル基、ホスホン基、スルホン基、アミン基等を有する構造のものを用いることができる。このような修飾有機分子としては、たとえばヘキサメタリン酸ナトリウム、ラウリン酸ナトリウム、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸トリエタノールアミン、ラウリルジエタノールアミド、ドデシルトリメチルアンモニウムクロリド、トリオクチルホスフィン、トリオクチルホスフィンオキシドなどを挙げることができる。
 また、リガンド14としての修飾有機分子は、分子中に親水基および疎水基を持つ化合物を用いることが好ましい。これにより、ヘテロ原子が配位結合するような化学結合と、物理吸着による結合との双方で色変換粒子10をリガンド14で被覆できる。この種の修飾有機分子としては、疎水基としての非極性炭化水素末端と、親水基としてのアミノ基とを持つ化合物であるアミンが挙げられる。修飾有機分子の親水基がアミンである場合、該アミンが金属元素と強固に結合することができる。
 また、リガンド14としての修飾有機分子は、ヘテロ原子を有することが好ましい。修飾有機分子がヘテロ原子を有することにより、ヘテロ原子-炭素原子間での電気的極性が生じ、色変換粒子の外表面に修飾有機分子を表面に強固に結合させることができる。ここで、「ヘテロ原子」とは、水素原子と炭素原子を除く全ての原子のことを意味する。
<色変換粒子の変形例>
 次に、図7、図8を参照して、色変換粒子10の変形例について説明する。なお、図7、図8に示す色変換粒子10の模式図では、特に断りのない限りコア11およびシェル12のみを示す。しかし、これらの色変換粒子10は、それぞれ図1(b)の例と同様に、アウターシェル13およびリガンド14を有していてもよい。
 例えば、図7(a)に示すように、色変換粒子10のシェル12は、必ずしもコア11の全体を被覆していなくてもよく、コア11の一部が外側に露出していてもよい。
 例えば、色変換粒子10は、図7(b)に示すように、1つのコア11の外側に複数のシェル12を積層して被覆した構造であってもよい。各々のシェル12の材料として組成や結晶構造等の異なる材料を用いることで、色変換粒子10全体での吸光特性や発光特性を調整することができる。図7(b)の例では、2層のシェル12a,12bがコア11に積層されている例を示すが、色変換粒子10のシェル12は3層以上でもよい。
 図7(b)に示す多層のシェル12a、12bを有する色変換粒子10は、コア11にシェル12aを形成した半導体粒子と別のシェル前駆体を含む溶液を加熱することで形成することができる。
 例えば、色変換粒子10は、図7(c)に示すように、シェル12内に複数のコア11が含まれる構造であってもよい。シェル12内に複数のコア11を含めると、色変換粒子10における実効的なシェル12の厚さが増加し、色変換粒子10の耐久性を向上させることができる。また、各々のコア11に組成や結晶構造等の異なる材料を用いることで、色変換粒子10全体での吸光特性や発光特性を調整することができる。
 図7(c)の例では、シェル12内に3つのコア11が含まれる構造を示すが、シェル12に含まれるコア11の数は適宜変更することができる。また、複数のコア11を有する色変換粒子10において、コア11のいずれかがシェル12の外側に部分的に露出していてもよい。
 また、色変換粒子10は、シェル12内に複数のコア11を含み、かつシェル12が複数の層を有する構造であってもよい。例えば、図7(d)に示すように、複数のコア11を含むシェル12aの外側をシェル12bでさらに被覆してもよい。なお、図7(d)のシェル12bの外側にさらにシェルが積層されていてもよい。
 例えば、図7(e)に示すように、それぞれシェル12aで被覆された複数のコア11を、シェル12bで被覆して一体化して色変換粒子10を形成してもよい。なお、図7(e)の例において、シェル12aがそれぞれ複数のコア11を含むものでもよい。
 また、色変換粒子10のコア11は、シェル12と同種の材料で構成された吸光材17を内包していてもよい。例えば、図7(f)に示すように、吸光材17の外側がコア11で被覆される構成であってもよい。なお、吸光材17の材料は、例えばシェル12の材料として選択可能な材料であればよく、コア11を覆うシェル12と吸光材17が同一の材料で構成されていなくてもよい。
 上記のように吸光材17を内部に有する積層コアの構造においては、外側のシェル12を透過した励起光をコア11の内部にある吸光材17(シェル12の同種材料)で吸収し、励起光吸収率を向上させることができる。また、吸光材17を内部に有する積層コアの構造においては、シェル12の材料で挟まれた狭いコア11の領域に光励起キャリアが効果的に閉じ込められることで、発光効率を向上させることができる。
 また、吸光材17とコア11のバンドアライメントは、Type Iであることが好ましく、さらに、コア11とシェル12のバンドアライメントもType Iであることが好ましい。例えば、吸光材17がSrZrS3、コア11がBaZrS3の組み合わせが挙げられ、さらに、シェル12がSrZrS3であるものを組み合わせることが挙げられる。別の例としては、吸光材17がSrHfS3、コア11がBaHfS3の組み合わせが挙げられ、さらに、シェル12がSrHfS3であるものを組み合わせることが挙げられる。なお、吸光材17とコア11のバンドアライメントがストークスシフトを発現する材料の組合せであればよく、吸光材17はカルコゲナイドペロブスカイト以外の材料であってもよい。
 また、色変換粒子10は、内部に空隙16を有する中空構造であってもよい。例えば、図8(a)に示すように、コア11内に1以上の空隙16が形成されていてもよい。あるいは、図8(b)に示すように、シェル12の外側にアウターシェル13を有する色変換粒子10において、シェル12とアウターシェル13との間に空隙16を形成してもよい。吸光および発光を発現しない空隙16を色変換粒子10の内部に形成することで、色変換粒子10の光学特性や形状を調整することができる。
 図8(a)、(b)に示す中空構造の色変換粒子10は、例えば以下のようにして製造することができる。まず、フラーレンやカーボンナノチューブなどの有機物や可溶性の塩を合成時に同時に加えることで、有機物や塩を含有した半導体粒子を生成する。その後、溶媒を用いて有機物または塩を溶解するか、あるいは有機物または塩を高温で灰化させることで中空構造の色変換粒子10を得ることができる。
 また、色変換粒子10のコア11またはシェル12には、絶縁体その他の組成物などの吸光および発光を発現しない異物が含まれていてもよい。当該異物をコア11またはシェル12に含めることで、例えば光の散乱により色変換粒子10の発光効率を向上させることや、色変換粒子10の形状を調整することができる。
 また、色変換粒子10のコア11またはシェル12は、図8(c)に示すように、組成、結晶構造、格子定数、密度、結晶方位、キャリア濃度、バンドギャップ、欠陥密度、誘電率、伝導度のような物理的性質が界面に対して垂直方向(深さ方向)に連続的に変化する勾配構造を有していてもよい。コア11またはシェル12の物理的性質や化学的性質が深さ方向において勾配状をなすように連続的に変化することで格子の整合性が高まり、格子欠陥を減少させることができる。これにより、非発光再結合が低減し、色変換粒子の発光効率を高めることができる。
 なお、上記の勾配構造は、例えば多層のコア11やシェル12を製造する場合と同様の手法で製造することができる。
 さらに、本発明において、合成される色変換粒子の形状は特に限定されない。例えば、球状、長尺状、星状、多面体状、ピラミッド状、テトラポッド状、四面体状、小板状、円錐状、不規則形状のコア11および/または色変換粒子10は合成することができる。
 以下、本実施形態の色変換粒子10の作用効果を述べる。
 本実施形態の色変換粒子10は、コア11と、コア11を包含し励起光を吸収するシェル12と、を備え、照射された励起光を受けてコア11またはコア11とシェル12の界面で発光を生じさせる。コア11の材料であるカルコゲナイドペロブスカイトは、光吸収係数が高く耐久性に優れる特性を有する。また、コア11およびシェル12は、ストークスシフトを発現させるバンドアライメントを有している。本実施形態ではシェル12とコア11のバンド端遷移エネルギーとの差を活用して、シェル12で光励起キャリアをコア11に輸送し、コア11へ閉じ込められた光励起キャリアを再結合して発光させる。
 本実施形態では、カルコゲナイドペロブスカイトのコア11の外側にシェル12を形成することで色変換粒子10では吸収を担う部分と発光を担う部分が分離される。これにより、ストークスシフトを大きく取ることが可能となり、コア11を大きくすることなく、シェル12で吸光度を稼ぐことができる。したがって、コア11による発光の再吸収損失を抑制しつつ、高い吸光度と高い発光効率を実現することができる。
 また、本実施形態の色変換粒子10は、上記のように高い吸光度と発光効率を有するため、従来の量子ドット等と比べてより少ない量で所望の色変換機能を実現できる。換言すれば、例えば本実施形態の色変換粒子10を表示装置や照明ほかの装置の色変換層などに適用する場合には、色変換層の薄膜化や歩留まりの向上を図ることが可能である。色変換層の形成においては、何度も製膜プロセスを繰り返すことで製膜プロセス上の不具合が発生する確率が高くなり、結果的に色変換層の歩留まりが低下する。逆にいうと、色変換層を薄膜化できると製膜プロセスを少なくすることができるので、色変換層の実効的な不良率を低減できる。
 また、シェル12のバンドギャップをコア11のバンドギャップよりも大きくすると、コア11で発光した光がシェル12でほとんど吸収されずに外部に放出されるので、シェルでの再吸収損失も抑制できる。すなわち、シェル12のバンドギャップがコア11のバンドギャップより大きい場合には、再吸収損失を増加させずにシェル12を厚くして吸光度を稼ぐことが可能になるので、色変換粒子10での発光効率をより向上させることができる。
 さらに、シェル12をカルコゲナイドペロブスカイトとすると、シェル12の吸光度および耐久度を高めることができ、かつコアシェル界面での欠陥低減によって発光効率をより向上させることができる。
<色変換粒子10の製品形態および用途例>
 次に、色変換粒子10の製品形態および用途例について説明する。色変換粒子10の製品形態としては、粉末、溶液、薄膜、シートなどが挙げられる。また、色変換粒子10の用途例としては、各種のデバイスへの適用が想定される。
(粉末)
 粉末は、色変換粒子10が凝集した状態にあるものである。以降においては、色変換粒子10を一次粒子、色変換粒子10が凝集した状態にあるものを二次粒子と呼ぶこともある。一次粒子および二次粒子のサイズは特に限定されないが、一次粒子は5nm-1000nmの範囲であることが好ましい。また、一次粒子や二次粒子の表面にはリガンドが付与されていてもよい。発光特性、色変換粒子の分散性や製膜性といった特性を改善するために、色変換粒子10の粉末には添加材として他の材料が添加されてもよい。
 また、色変換粒子10の粉末の用途は特に限定されない。例えば、溶媒に分散させて溶液を作製してもよく、樹脂や固体媒質に分散させてコンポジットを作製してもよく、焼結体としてスパッタリングターゲットとしてもよく、粉末のままで蒸着源などのソースとして用いてもよい。
(溶液)
 溶液は、色変換粒子10が溶媒に分散した状態にあるものである。一次粒子および二次粒子のサイズは特に限定されないが、一次粒子は5nm-1000nmの範囲であることが好ましい。また、「分散した」とは、色変換粒子10が溶媒に浮遊あるいは懸濁している状態のことをいい、一部は沈降していてもよい。また、一次粒子や二次粒子の表面にはリガンドが付与されていてもよい。
 溶液の溶媒には、1または2種類以上の複数の溶媒が用いられていてもよい。溶媒の種類としては、例えば以下のものが挙げられるが、これに限定されるものではない。
 水、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等のエステル;γ-ブチロラクトン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン;ジエチルエーテル、メチル-tert-ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、4-メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等のエーテル;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2-フルオロエタノール、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール等のアルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等のグリコールエーテル;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等のアミド基を有する有機溶媒;アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等のニトリル基を有する有機溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート基を有する有機溶媒;塩化メチレン、クロロホルム等のハロゲン化した炭化水素基を有する有機溶媒;n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素基を有する有機溶媒;ジメチルスルホキシド等
 また、発光特性、色変換粒子10の分散性や製膜性といった特性を改善するために、上記の溶液には、添加材として酸、塩基またはバインダー材料などが添加されてもよい。
 また、上記の溶液の用途は特に限定されない。例えば、塗布法やスプレー法、ドクターブレード法(その他溶液製膜法)による製膜や、固体分散媒との複合によるコンポジットの作製、またはそれらを用いたデバイスの作製に用いられてもよい。
(薄膜)
 薄膜は、色変換粒子10が面状に凝集した状態であるものである。一次粒子および二次粒子のサイズは特に限定されないが、一次粒子は5nm-1000nmの範囲であることが好ましい。また、一次粒子や二次粒子の表面にはリガンドが付与されていてもよい。発光特性、色変換粒子10の分散性といった特性を改善するために、上記の薄膜には添加材として他の材料が添加されてもよい。
 上記の薄膜の製法は特に限定されない。例えば、塗布法やスプレー法、ドクターブレード法、インクジェット法その他溶液製膜による製膜、またはスパッタ法や真空蒸着法等の真空プロセスを用いて薄膜が作製されていてもよい。また、色変換粒子10を塗布その他の方法で製膜し、その後焼成その他の処理によって粒子形状を保っていない状態となってもよい。
(シート)
 シートは、色変換粒子10が分散した分散媒が平面状になった状態のものである。一次粒子および二次粒子のサイズは特に限定されないが、一次粒子は5nm-1000nmの範囲であることが好ましい。また、一次粒子や二次粒子の表面にはリガンドが付与されていてもよい。
 シートの分散媒として用いる材料は、この種の目的に使用されうる当業者に周知のポリマーを任意に適用できる。適切な実施形態では、この種のポリマーはほぼ半透明かほぼ透明である。
 例えば、シートの分散媒として適用できるポリマー類には、ポリビニルブチラール:ポリビニルアセテート、シリコーンおよびシリコーンの誘導体があるが、これらに限定されない。また、シリコーンの誘導体には、ポリフェニルメチルシロキサン、ポリフェニルアルキルシロキサン、ポリジフェニルシロキサン、ポリジアルキルシロキサン、フッ素化シリコーン類およびビニルおよびハイドライド置換シリコーン類、アイオノマー、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリプロピレン、ポリエステル、ポリカーボネート、ポリスチレン、ポリアクリロニトリル、エチレン酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-メタクリル酸共重合体フィルム、ナイロン等があるが、これらに限定されない。
 発光特性、色変換粒子10の分散性といった特性を改善するために、上記のシートには添加材として、シリカ微粒子や、上記の溶液で説明した溶媒などの他の材料が添加されてもよい。
 上記のシートの製法は特に限定されない。例えば、粉末と分散媒を混錬し延伸することでシートを製造してもよく、色変換粒子10を含むインクと分散媒またはその前駆体を混合し塗布することでシートが製造されてもよい。
(デバイス)
 色変換粒子10、または上記の粉末、溶液、フィルム、シートの用途として、各種のデバイスにおける紫外光または青色光などのダウンコンバージョンへの適用が想定される。デバイスの種類としては、例えば、LEDや有機ELなどの発光装置、当該発光装置を含む表示装置、当該発光装置を含む照明装置、イメージセンサ、光電変換装置、生体発光標識などが挙げられる。
<実施例>
 以下、本発明の色変換粒子の実施例について説明する。
 実施例の色変換粒子は、コアの材料がBaZrS3であり、シェルの材料がSrZrS3である。つまり、実施例の色変換粒子は、コアおよびシェルがカルコゲナイドペロブスカイトであり、ストークスシフトを発現する最良の材料の組み合わせの一例に相当する。上記のように、コアおよびシェルがカルコゲナイドペロブスカイトの場合には、コアおよびシェルの界面欠陥が低減されるとともに、高い発光効率を期待できる。
 図9は、実施例の色変換粒子におけるシェル/コア/シェルのバンドアライメントを示す図である。縦軸のエネルギーの原点は真空準位としている。コアおよびシェルの物性値については、文献“Y. Nishigaki et al., Sol. RRL 1900555 (2020).”や、文献“K. Hanzawa et al., J. Am. Chem. Soc. 141, 5343 (2019). ”を参考にし、他の実験結果報告から総合して決定した。
 図9に示すように、実施例におけるシェルとコアのバンドアライメントは、コアのEcがシェルのEcより低く、コアのEvがシェルのEvより高いので、Type Iとなる。そのため、実施例の構成では、シェルで励起光を吸収し、励起されたキャリアがコアへ移動して再結合することでコア発光することが期待される。また、実施例では、シェルのバンドギャップEgがコアのバンドギャップEgよりも大きいので、シェルでの再吸収損失の抑制も期待される。
 実施例では、色変換粒子の吸光および発光に関し、ソフトウエア(SCAPS-1D)を用いて一次元のシミュレーションを行った。図10は、実施例のシミュレーションの結果を示す図である。図10の各図の横軸は、色変換粒子における直径方向の一次元の位置をそれぞれ示している。
 シミュレーションでは、コアの直径は20nm、シェルの厚さを50nmに設定した。また、励起光の波長は450nmの青色光に設定し、照度100mW/cm2で片側(図の左側)から励起光が入射する設定とした。
 図10(a)は色変換粒子のEcのプロファイルを示し、図10(b)は色変換粒子のEvのプロファイルを示す。縦軸のエネルギーはフェルミエネルギーEを基準としている。
 図10(a)において、コアの範囲(横軸の値が50nm-70nmの範囲)のEcは、シェルの範囲のEcよりも低い。また、図10(b)において、コアの範囲のEvは、シェルの範囲のEvよりも高い。そして、図10(a)、(b)のプロファイルは、図9に示すバンドアライメントとよく一致している。
 図10(c)は、色変換粒子のキャリア濃度分布を示す。図10(c)の実線は、電子のプロファイルを示し、図10(c)の破線は正孔のプロファイルを示す。
 図10(c)において、コアの範囲(横軸の値が50nm-70nmの範囲)のキャリア密度はシェルの範囲よりも高い。そのため、図10(c)から、シェルで吸収した光によって励起されたキャリアが効果的にコアに移動して閉じ込められていることが分かる。
 図10(d)は、キャリアの生成レートと再結合レートを示す。図10(d)の破線は、キャリアの生成レートのプロファイルを示し、図10(d)の実線は、キャリアの再結合レートのプロファイルを示す。
 図10(d)に示すように、キャリアの生成レートは、励起光が入射する図中左側が最も高い。また、カルコゲナイドペロブスカイトの光吸収係数が非常に大きいため、キャリアの生成レートは、図中右側に進むにつれて急激に低下してゆく。光吸収によるキャリア励起は、0nm-50nmのシェルの範囲内でそのほとんどが起きていることが分かる。
 一方、キャリアの再結合レートは、コアの範囲(横軸の値が50nm-70nmの範囲)にわたって高い値を示し、シェルの範囲では値がほぼゼロである。つまり、キャリアの再結合による発光は、ほとんどコアに移動した光励起キャリアによって起きている。
 したがって、シミュレーションの結果から、シェルからコアへの光励起キャリアの輸送と、コアへの光励起キャリアの閉じ込めが効果的に起こっていることが分かる。
 また、上記の“Y. Nishigaki et al., Sol. RRL 1900555 (2020).”に示されているBaZrS3およびSrZrS3の光学係数に基づき、BaZrS3およびSrZrS3の光吸収係数と、BaZrS3のPL(Photoluminescence)発光ピークをそれぞれ計算した。
 図11は、BaZrS3およびSrZrS3の光吸収係数と、BaZrS3のPL発光スペクトルの各プロファイルを示す図である。図11の横軸は波長を示している。
 コアの材料であるBaZrS3のPL発光スペクトル(図11中実線)は、半値幅が約30nmの鋭い発光ピークを示す。これは、カルコゲナイドペロブスカイトの吸収端(バンド端付近の光吸収係数の立ち上がり)が非常に急峻であることに起因する。
 また、図11の一点鎖線はBaZrS3の光吸収係数のプロファイルを示し、図11の破線はSrZrS3の光吸収係数のプロファイルを示す。これら光吸収係数のプロファイルの裾部分とPL発光スペクトルのプロファイルが重なる領域では、発光が再吸収されうる。
 つまり、コアの材料であるBaZrS3のみで色変換を行うと、発光が再吸収されうることが分かる。したがって、BaZrS3のコアの場合、吸光度を稼ぐために粒径を大きくすると再吸収も大きくなるので、吸光度の大きさと再吸収の損失がトレードオフの関係にある。
 一方で、SrZrS3の光吸収係数のプロファイルは、BaZrS3のPL発光スペクトルのプロファイルと裾部分がほとんど重ならない。したがって、BaZrS3のコアに対してSrZrS3のシェルを適用した場合には、シェルでの再吸収がほとんど起きないことが分かる。
 実施例では、色変換粒子をコアシェル構造とし、コアのBaZrS3よりもバンドギャップの大きいシェル材料であるSrZrS3で励起光の吸光度を稼いでいる。そのため、実施例の構成では、再吸収損失を増加させることなくシェルを厚くして吸光度を稼ぐことが可能になる。
 図12は、実施例および比較例におけるコアおよびシェルの材料の組み合わせと、バンドアライメントのタイプおよびストークスシフトの発現の対応関係を示す図である。図12では、SrZrS3、BaZrS3、SrHfS3、BaHfS3の4種の材料をコアとシェルの材料に適用した場合の16の組み合わせ(4×4=16)に対して、バンドアライメントのタイプとストークスシフトの発現の有無をそれぞれ紐づけて示している。
 図12において、ストークスシフトの発現した材料の組み合わせ(Yes)が実施例であり、ストークスシフトの発現しない材料の組み合わせ(No)が比較例である。ここで、図12においてコアとシェルが同一の材料である場合、いずれもバンドアライメントのタイプがFlatになり、これらの場合にはいずれもストークスシフトは発現しない。
 図12においてコアの材料がSrZrS3であり、シェルの材料がBaZrS3である場合、バンドアライメントのタイプはInverse Type Iとなり、この組み合わせではストークスシフトは発現しない。一方、コアの材料がSrZrS3であり、シェルの材料がSrHfS3またはBaHfS3である場合、バンドアライメントのタイプはいずれもType IIとなり、これらの組み合わせではいずれもストークスシフトが発現する。
 図12においてコアの材料がBaZrS3であり、シェルの材料がSrZrS3である場合、バンドアライメントのタイプはType Iとなる。また、コアの材料がBaZrS3であり、シェルの材料がSrHfS3またはBaHfS3である場合、バンドアライメントのタイプはいずれもType IIとなる。これらの組み合わせではいずれもストークスシフトが発現する。
 図12においてコアの材料がSrHfS3であり、シェルの材料がSrZrS3またはBaZrS3である場合、バンドアライメントのタイプはいずれもType IIとなり、これらの組み合わせではいずれもストークスシフトが発現する。一方、コアの材料がSrHfS3であり、シェルの材料がBaHfS3である場合、バンドアライメントのタイプはInverse Type Iとなり、この組み合わせではストークスシフトは発現しない。
 図12においてコアの材料がBaHfS3であり、シェルの材料がSrZrS3またはBaZrS3である場合、バンドアライメントのタイプはいずれもType IIとなる。また、コアの材料がBaHfS3であり、シェルの材料がSrHfS3である場合、バンドアライメントのタイプはType Iとなる。これらの組み合わせではいずれもストークスシフトが発現する。
 なお、コアの材料がBaZrS3、シェルの材料がSrZrS3の場合と、コアの材料がBaHfS3、シェルの材料がSrHfS3の場合、いずれもバンドアライメントのタイプがType Iであるため、特に発光特性に優れた色変換粒子を得ることができる。
 以上のように、本発明の実施形態を説明したが、実施形態は、一例として提示したものであり、本発明の範囲を限定することを意図しない。実施形態は、上記以外の様々な形態で実施することが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置換、変更など、を行える。実施形態およびその変形は、本発明の範囲および要旨に含まれると共に、特許請求の範囲に記載された発明およびその均等物についても、本発明の範囲および要旨に含まれる。
 また、本出願は、2020年11月25日に出願した日本国特許出願2020-195173号に基づく優先権を主張するものであり、日本国特許出願2020-195173号の全内容を本出願に援用する。
10…色変換粒子
11…コア
12、12a、12b…シェル
13…アウターシェル
14…リガンド
16…空隙

 

Claims (27)

  1.  コアと、
     前記コアを包含し励起光を吸収するシェルと、を備え、
     照射された前記励起光を受けて前記コアまたは前記コアと前記シェルの界面で発光を生じ、
     前記コアは、カルコゲナイドペロブスカイトで構成され、
     前記コアおよび前記シェルは、ストークスシフトを発現させるバンドアライメントを有する
    色変換粒子。
  2.  前記カルコゲナイドペロブスカイトは、立方晶ペロブスカイト、正方晶ペロブスカイト、GdFeO3型斜方晶ペロブスカイト、Ruddlesden-Popper型層状ペロブスカイト、Dion-Jacobson型層状ペロブスカイト、またはダブルペロブスカイトの結晶構造のうちのいずれかの結晶構造を有する
    請求項1に記載の色変換粒子。
  3.  前記カルコゲナイドペロブスカイトの化学式は、ABX3またはA’2n-1n3n+1(A,A’は第2族の元素、Bは第4族の元素、Xはカルコゲン元素、ただし、nは1以上の整数)である
    請求項1または請求項2に記載の色変換粒子。
  4.  前記A、前記A’、前記B、前記Xは、それぞれの族の元素を任意の比で混合させたものを含む
    請求項3に記載の色変換粒子。
  5.  前記カルコゲナイドペロブスカイトは、SrZrS3、SrZrSe3、SrHfS3、SrHfSe3、BaZrS3、BaZrSe3、BaHfS3、BaHfSe3、Sr2Ban-1Zrn3n+1、Sr2Ban-1ZrnSe3n+1、Srn+1Zrn3n+1、Srn+1ZrnSe3n+1、Ba2Srn-1Zrn3n+1、Ba2Srn-1ZrnSe3n+1、Ban+1Zrn3n+1、Ban+1ZrnSe3n+1、Sr2Ban-1Hfn3n+1、Sr2Ban-1HfnSe3n+1、Srn+1Hfn3n+1、Srn+1HfnSe3n+1、Ba2Srn-1Hfn3n+1、Ba2Srn-1HfnSe3n+1、Ban+1Hfn3n+1、Ban+1HfnSe3n+1(ただし、nは1以上の整数)、のいずれかから選択される請求項1から請求項4のいずれか一項に記載の色変換粒子。
  6.  前記カルコゲナイドペロブスカイトは、(SrxBa1-x)(ZryHf1-y)(SzSe1-z3または(Srx’Ba1-x’2(SrxBa1-xn-1(ZryHf1-yn(SzSe1-z3n+1である(ただし、x、x’、y、zはそれぞれ0以上1以下の値)
    請求項1から請求項4のいずれか一項に記載の色変換粒子。
  7.  前記バンドアライメントは、前記シェルの伝導帯の下端のエネルギーEc_shellが前記コアの伝導帯の下端のエネルギーEc_coreよりも高いか、あるいは、前記シェルの価電子帯の上端のエネルギーEv_shellが前記コアの価電子帯の上端のエネルギーEv_coreよりも低いかの少なくともいずれかの条件を満たす
    請求項1から請求項6のいずれか一項に記載の色変換粒子。
  8.  前記シェルのバンドギャップは、前記コアのバンドギャップより大きい
    請求項7に記載の色変換粒子。
  9.  前記バンドアライメントは、前記シェルの伝導帯の下端のエネルギーEc_shellが前記コアの伝導帯の下端のエネルギーEc_coreより高く、かつ、前記シェルの価電子帯の上端のエネルギーEv_shellが前記コアの価電子帯の上端のエネルギーEv_coreより低い条件を満たす
    請求項8に記載の色変換粒子。
  10.  前記コアの粒径は、1nm以上200nm以下である
    請求項1から請求項9のいずれか一項に記載の色変換粒子。
  11.  前記コアの粒径は、1nm以上50nm以下である
    請求項10に記載の色変換粒子。
  12.  前記コアの粒径は、1nm以上25nm以下である
    請求項11に記載の色変換粒子。
  13.  前記シェルは、複数の層を有する
    請求項1から請求項12のいずれか一項に記載の色変換粒子。
  14.  前記シェルは、複数の前記コアを含む
    請求項1から請求項13のいずれか一項に記載の色変換粒子。
  15.  前記コアは、吸光材を内包する
    請求項1から請求項14のいずれか一項に記載の色変換粒子。
  16.  前記シェルまたは前記コアの少なくとも一方は、異物または空隙を含む
    請求項1から請求項15のいずれか一項に記載の色変換粒子。
  17.  前記シェルまたは前記コアの少なくとも一方は、物理的性質が深さ方向に勾配状に変化する構造を有する
    請求項1から請求項16のいずれか一項に記載の色変換粒子。
  18.  前記シェルは、前記コアとは異なるカルコゲナイドペロブスカイトで構成される
    請求項1から請求項17のいずれか一項に記載の色変換粒子。
  19.  前記コアとは異なるカルコゲナイドペロブスカイトは、SrZrS3、SrZrSe3、SrHfS3、SrHfSe3、BaZrS3、BaZrSe3、BaHfS3、BaHfSe3、Sr2Ban-1Zrn3n+1、Sr2Ban-1ZrnSe3n+1、Srn+1Zrn3n+1、Srn+1ZrnSe3n+1、Ba2Srn-1Zrn3n+1、Ba2Srn-1ZrnSe3n+1、Ban+1Zrn3n+1、Ban+1ZrnSe3n+1、Sr2Ban-1Hfn3n+1、Sr2Ban-1HfnSe3n+1、Srn+1Hfn3n+1、Srn+1HfnSe3n+1、Ba2Srn-1Hfn3n+1、Ba2Srn-1HfnSe3n+1、Ban+1Hfn3n+1、Ban+1HfnSe3n+1(ただし、nは1以上の整数)、のいずれかから選択される請求項18に記載の色変換粒子。
  20.  前記コアとは異なるカルコゲナイドペロブスカイトは、(SrxBa1-x)(ZryHf1-y)(SzSe1-z3または(Srx’Ba1-x’2(SrxBa1-xn-1(ZryHf1-yn(SzSe1-z3n+1である(ただし、x、x’、y、zはそれぞれ0以上1以下の値)
    請求項18に記載の色変換粒子。
  21.  前記コアは、BaZrS3であり、
     前記シェルは、SrZrS3である
    請求項19に記載の色変換粒子。
  22.  前記コアは、BaHfS3であり、
     前記シェルは、SrHfS3である
    請求項19に記載の色変換粒子。
  23.  請求項1から請求項22のいずれか一項に記載の色変換粒子を含む粉末。
  24.  請求項1から請求項22のいずれか一項に記載の色変換粒子を含む溶液。
  25.  請求項1から請求項22のいずれか一項に記載の色変換粒子を含む薄膜。
  26.  請求項1から請求項22のいずれか一項に記載の色変換粒子を含むシート。
  27.  請求項1から請求項22のいずれか一項に記載の色変換粒子を含むデバイス。

     
PCT/JP2021/042935 2020-11-25 2021-11-24 色変換粒子 WO2022113984A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237020879A KR20230108328A (ko) 2020-11-25 2021-11-24 색 변환 입자
JP2022565360A JPWO2022113984A1 (ja) 2020-11-25 2021-11-24
CN202180079517.2A CN116490590A (zh) 2020-11-25 2021-11-24 色转换粒子
US18/038,691 US20240002720A1 (en) 2020-11-25 2021-11-24 Color conversion particle
EP21897956.5A EP4253503A1 (en) 2020-11-25 2021-11-24 Color-conversion particle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-195173 2020-11-25
JP2020195173 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022113984A1 true WO2022113984A1 (ja) 2022-06-02

Family

ID=81755558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042935 WO2022113984A1 (ja) 2020-11-25 2021-11-24 色変換粒子

Country Status (7)

Country Link
US (1) US20240002720A1 (ja)
EP (1) EP4253503A1 (ja)
JP (1) JPWO2022113984A1 (ja)
KR (1) KR20230108328A (ja)
CN (1) CN116490590A (ja)
TW (1) TW202231835A (ja)
WO (1) WO2022113984A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085112A1 (ja) * 2022-10-20 2024-04-25 出光興産株式会社 色変換粒子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190225883A1 (en) 2018-01-23 2019-07-25 Samsung Electronics Co., Ltd. Semiconductor nanocrystal particles and production methods thereof
WO2019160093A1 (ja) * 2018-02-15 2019-08-22 国立大学法人大阪大学 コアシェル型半導体ナノ粒子、その製造方法および発光デバイス
CN110511741A (zh) * 2019-08-05 2019-11-29 苏州星烁纳米科技有限公司 钙钛矿量子点及其制备方法
JP2020500134A (ja) * 2016-09-29 2020-01-09 ナノコ テクノロジーズ リミテッド アニオン交換防止のためのハライドペロブスカイトナノ粒子のシェル形成
JP2020152904A (ja) * 2019-03-12 2020-09-24 国立大学法人東海国立大学機構 半導体ナノ粒子及びその製造方法、並びに発光デバイス
JP2020195173A (ja) 2019-05-24 2020-12-03 中国電力株式会社 電柱防護標識板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010000783A1 (de) * 2009-01-12 2010-09-16 Denso Corporation, Kariya-City Piezokeramik, kristallorientierte Keramik, mehrlagiges Piezoelement sowie Verfahren zu dessen Herstellung
CN107108461B (zh) * 2014-11-06 2020-04-28 浦项工科大学校产学协力团 钙钛矿纳米结晶粒子及利用该粒子的光电元件
JP2017059657A (ja) * 2015-09-16 2017-03-23 株式会社東芝 光電変換素子および太陽電池
US11180693B2 (en) * 2017-02-09 2021-11-23 King Abdullah University Of Science And Technology Light converting luminescent composite material
CN111349429B (zh) * 2018-12-24 2023-11-14 苏州星烁纳米科技有限公司 钙钛矿量子点及其制备方法
JP7198688B2 (ja) * 2019-03-04 2023-01-11 シャープ株式会社 ハイブリッド粒子、光電変換素子、感光体及び画像形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500134A (ja) * 2016-09-29 2020-01-09 ナノコ テクノロジーズ リミテッド アニオン交換防止のためのハライドペロブスカイトナノ粒子のシェル形成
US20190225883A1 (en) 2018-01-23 2019-07-25 Samsung Electronics Co., Ltd. Semiconductor nanocrystal particles and production methods thereof
WO2019160093A1 (ja) * 2018-02-15 2019-08-22 国立大学法人大阪大学 コアシェル型半導体ナノ粒子、その製造方法および発光デバイス
JP2020152904A (ja) * 2019-03-12 2020-09-24 国立大学法人東海国立大学機構 半導体ナノ粒子及びその製造方法、並びに発光デバイス
JP2020195173A (ja) 2019-05-24 2020-12-03 中国電力株式会社 電柱防護標識板
CN110511741A (zh) * 2019-08-05 2019-11-29 苏州星烁纳米科技有限公司 钙钛矿量子点及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HANZAWA KOTA, IIMURA SOSHI, HIRAMATSU HIDENORI, HOSONO HIDEO: "Material Design of Green-Light-Emitting Semiconductors: Perovskite-Type Sulfide SrHfS 3", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 141, no. 13, 3 April 2019 (2019-04-03), pages 5343 - 5349, XP055932686, ISSN: 0002-7863, DOI: 10.1021/jacs.8b13622 *
K.HANZAWA ET AL.: "141", J. AM. CHEM. SOC., 2019, pages 5343
Y. NISHIGAKI ET AL., SOL. RRL, 2020, pages 1900555

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085112A1 (ja) * 2022-10-20 2024-04-25 出光興産株式会社 色変換粒子

Also Published As

Publication number Publication date
TW202231835A (zh) 2022-08-16
KR20230108328A (ko) 2023-07-18
JPWO2022113984A1 (ja) 2022-06-02
EP4253503A1 (en) 2023-10-04
US20240002720A1 (en) 2024-01-04
CN116490590A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN111500288B (zh) 钙钛矿纳米发光晶体的制造方法
JP4936338B2 (ja) 半導体ナノ粒子蛍光体
KR101484462B1 (ko) 양자 점들을 가진 광원
WO2014208456A1 (ja) 光学材料、光学フィルム及び発光デバイス
US9508892B2 (en) Group I-III-VI material nano-crystalline core and group I-III-VI material nano-crystalline shell pairing
US9187692B2 (en) Nano-crystalline core and nano-crystalline shell pairing having group I-III-VI material nano-crystalline core
EP2243811A1 (en) Core-shell quantum dot fluorescent fine particle
EP3555228A1 (en) Semiconducting light emitting nanoparticle
JP6652053B2 (ja) 半導体ナノ粒子集積体およびその製造方法
JP7278371B2 (ja) 量子ドット、波長変換材料、バックライトユニット、画像表示装置及び量子ドットの製造方法
US20200255733A1 (en) Fused Encapsulation of Quantum Dots
WO2022113984A1 (ja) 色変換粒子
US9376616B2 (en) Nanoparticle phosphor and method for manufacturing the same, semiconductor nanoparticle phosphor and light emitting element containing semiconductor nanoparticle phosphor, wavelength converter and light emitting device
WO2022113967A1 (ja) 色変換粒子
KR20180097201A (ko) 금속산화막이 껍질로 형성된 연속적 결정성장 구조의 양자점 합성 방법 및 이에 의해 제조된 양자점
KR101877469B1 (ko) 나노 입자 복합체 및 이의 제조방법
KR102017950B1 (ko) 복수의 색상 화소 패턴을 갖는 납 할로겐화물 페로브스카이트 양자점 시트의 제조방법
JP7273992B2 (ja) 量子ドット、波長変換材料、バックライトユニット、画像表示装置及び量子ドットの製造方法
US9410079B2 (en) Phosphor nanoparticle and optical device including phosphor nanoparticle
KR101203173B1 (ko) 양자점 및 그 제조 방법
Wang et al. In-situ growth and spectrum characterization of ZnSe nanocrystals in silica gel-glasses
WO2024085112A1 (ja) 色変換粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565360

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18038691

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180079517.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237020879

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021897956

Country of ref document: EP

Effective date: 20230626