WO2018159424A1 - 熱可塑性樹脂フィルム及び熱可塑性樹脂フィルムの製造方法 - Google Patents

熱可塑性樹脂フィルム及び熱可塑性樹脂フィルムの製造方法 Download PDF

Info

Publication number
WO2018159424A1
WO2018159424A1 PCT/JP2018/006316 JP2018006316W WO2018159424A1 WO 2018159424 A1 WO2018159424 A1 WO 2018159424A1 JP 2018006316 W JP2018006316 W JP 2018006316W WO 2018159424 A1 WO2018159424 A1 WO 2018159424A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
film
stretching
resin film
ratio
Prior art date
Application number
PCT/JP2018/006316
Other languages
English (en)
French (fr)
Inventor
保弘 浜田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020197024101A priority Critical patent/KR102175657B1/ko
Priority to JP2019502915A priority patent/JP6797279B2/ja
Priority to CN201880013740.5A priority patent/CN110337357B/zh
Publication of WO2018159424A1 publication Critical patent/WO2018159424A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present disclosure relates to a thermoplastic resin film and a method for producing a thermoplastic resin film.
  • thermoplastic resin film is manufactured through processes such as heat treatment such as stretching and thermal relaxation after melt-extrusion of a thermoplastic resin to form a film.
  • heat treatment such as stretching and thermal relaxation after melt-extrusion of a thermoplastic resin to form a film.
  • a thermoplastic resin film has been imparted with various functions by applying or sticking a functional material on the film, and is widely used as a functional film.
  • Japanese Patent Application Laid-Open No. 2014-238612 by using a base film having a tensile modulus of elasticity of 140 MPa or more with the film transport direction as a tensile direction, A technique for suppressing defects is disclosed. Further, for example, Japanese Patent Application Laid-Open No. 2014-210433 discloses a polyester resin molded film in which the elastic modulus at 30 ° C. and 100 ° C. is in a specific range from the viewpoint of the shape stability and flexibility of the film. .
  • Patent Documents 1 and 2 disclose a technique for improving the generation of wrinkles by adjusting the elastic modulus in one direction of the film, for example, by merely adjusting the elastic modulus in the film conveying direction, A sufficient improvement effect cannot be expected in a film having such a property that a barrier is formed when an attempt is made to relieve the dimensional change in one direction due to thermal shrinkage or thermal expansion of the film by spreading it in the other direction. And the wrinkle which generate
  • a problem to be solved by an embodiment of the present disclosure is to provide a thermoplastic resin film in which generation of wavy wrinkles is suppressed.
  • Another problem to be solved by another embodiment of the present disclosure is that a thermoplastic resin film that is less likely to generate wavy wrinkles even when a thin thermoplastic resin film (preferably having a thickness of 200 ⁇ m or less) is heated and conveyed. It is in providing the manufacturing method of.
  • thermoplastic resin film has a difference between a maximum value Er max selected from Er 180 and a minimum value Er min of 0.7 or less.
  • thermoplastic resin film according to ⁇ 1> wherein the surface roughness Ra of at least one surface is 0.5 nm to 50 nm.
  • thermoplastic resin film according to ⁇ 1> or ⁇ 2> wherein the thickness is 200 ⁇ m or less.
  • thermoplastic resin film The method for producing a thermoplastic resin film according to any one of ⁇ 1> to ⁇ 4>, Melting and extruding the raw material resin, cooling and molding a thermoplastic resin sheet; A step of performing a first stretching in the longitudinal direction on the molded thermoplastic resin sheet to obtain a thermoplastic resin film; Preheated part for preheating thermoplastic resin film, stretched part for stretching preheated thermoplastic resin film in the film width direction perpendicular to the longitudinal direction of the thermoplastic resin film, thermoplastic resin subjected to tension The thermoplastic resin film is sequentially conveyed to a heat fixing part for heating and fixing the film, a heat relaxing part for relaxing the tension, and a cooling part for cooling the thermally relaxed thermoplastic resin film.
  • thermoplastic resin film that has been subjected to thermal relaxation is further strained in the film width direction, and ⁇ 1 with respect to the film width at the end of thermal relaxation in the thermal relaxation portion.
  • the step of performing the second stretching is the method for producing a thermoplastic resin film according to ⁇ 5>, wherein in the stretching portion, the thermoplastic resin film is stretched at a stretching speed of 8% / second to 45% / second. is there.
  • ⁇ 7> The thermoplastic resin film according to ⁇ 5> or ⁇ 6>, wherein the second stretching step includes stretching the thermoplastic resin film at a stretching portion at a stretching speed of 15% / sec to 40% / sec. It is a manufacturing method.
  • ⁇ 8> The thermoplastic resin according to any one of ⁇ 5> to ⁇ 7>, wherein the second stretching step includes stretching the thermoplastic resin film at a stretching temperature of 100 ° C. to 150 ° C. in the stretching portion.
  • thermoplastic resin film Any one of ⁇ 5> to ⁇ 9>, wherein an area ratio that is a product of a draw ratio in the first draw and a draw ratio in the second draw is 13.5 to 15.2 times It is a manufacturing method of the thermoplastic resin film as described in one.
  • the thermoplastic resin film is expanded within the range of 0.0% to 2.0% of the film width at the end of thermal relaxation in the thermal relaxation section in the cooling section.
  • the step of performing the first stretching is the heat according to any one of ⁇ 5> to ⁇ 11>, in which the first stretching is performed on the thermoplastic resin sheet at a stretching ratio of 2 to 5 times. It is a manufacturing method of a plastic resin film.
  • thermoplastic resin film in which generation of wavy wrinkles is suppressed is provided.
  • a method for producing a thermoplastic resin film in which a wavy wrinkle is hardly generated even when a thin thermoplastic resin film (preferably having a thickness of 200 ⁇ m or less) is heated and conveyed. Provided.
  • thermoplastic resin film of the present disclosure and the manufacturing method thereof will be described in detail.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • an upper limit value or a lower limit value described in a numerical range may be replaced with an upper limit value or a lower limit value in another numerical range.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
  • process is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term is used as long as the intended purpose of the process is achieved. include.
  • the ratio Er 30 at 30 ° C. of the elastic modulus E TD in the film width direction orthogonal to the film conveying direction to the elastic modulus E MD in the film conveying direction is 1.1 to 1. 8 and a ratio Er 30 at 30 ° C., ratio Er 90 at 90 ° C., ratio Er 120 at 120 ° C., ratio Er 150 at 150 ° C., and ratio Er 180 at 180 ° C.
  • the difference between the value Er max and the minimum value Er min is 0.7 or less.
  • Er 30, Er 90, Er 120, Er 150 and Er 180 is as follows.
  • Er 30 represents the ratio of the elastic modulus E TD in the film width direction to the elastic modulus E MD in the film transport direction when the film temperature is 30 ° C.
  • Er 90 represents the ratio of the elastic modulus E TD in the film width direction to the elastic modulus E MD in the film transport direction when the film temperature is 90 ° C.
  • Er 120 represents the ratio of the elastic modulus E TD in the film width direction to the elastic modulus E MD in the film transport direction when the film temperature is 120 ° C.
  • Er 150 represents the ratio of the elastic modulus E TD in the film width direction to the elastic modulus E MD in the film transport direction when the film temperature is 150 ° C.
  • Er 180 represents the ratio of the elastic modulus E TD in the film width direction to the elastic modulus E MD in the film transport direction when the film temperature is 180 ° C.
  • thermoplastic resin film is also simply referred to as “film”, and a film having a thickness of 200 ⁇ m or less is also referred to as “thin film”. From the viewpoint of the effect of the embodiment of the present invention, the thickness of the thin film is preferably 100 ⁇ m or less and more preferably 50 ⁇ m or less.
  • the film conveyance direction is also referred to as MD (Machine Direction) direction.
  • the MD direction of the film is also referred to as the longitudinal direction of the film.
  • the width direction of a film is a direction orthogonal to the longitudinal direction of a film.
  • the width direction of the film is also called a TD (Transverse Direction) direction in a film manufactured while conveying the film.
  • MD Machine Direction
  • TD Transverse Direction
  • the thermoplastic resin film may be made highly functional or composite by laminating a plurality of thermoplastic resin films or laminating a functional layer on the thermoplastic resin film.
  • the film In processing such a thermoplastic resin film, the film is usually stretched and heated while being conveyed by a roll or the like.
  • wrinkles (wrinkles) arranged in a concavo-convex shape tend to be generated so as to wave in the TD direction of the thermoplastic resin film.
  • the following factors can be considered for this phenomenon.
  • the elastic modulus in the TD direction is smaller than the elastic modulus in the MD direction. As described above, the thermoplastic film is conveyed by a roll or the like.
  • a compressive stress acts in the TD direction by the Poisson effect due to the stress acting in the MD direction such as the transport tension at this time.
  • the elastic modulus in the TD direction is smaller than the elastic modulus in the MD direction, the generated compressive stress in the TD direction disturbs the shape of the film in the TD direction, so that it is considered that twisting occurs in the TD direction of the film. That is, as shown in FIG. 2, when the polymer main chain (solid line in FIG. 2) is aligned along the MD direction and the molecular orientation in the MD direction is strong, the space between the main chains is a side chain (see FIG.
  • the TD direction of the film only connected by the broken line in 2) has a weaker shape retention force than the MD direction, and the anisotropy of the film strength is increased. Therefore, it is estimated that the film tends to be wrinkled in the TD direction as shown in FIG.
  • the molecular orientation in the TD direction is strong (the polymer main chain is aligned in the TD direction)
  • the molecular chain becomes a resistance to deformation, and the film is wrinkled in the TD direction. It will be difficult. That is, it is estimated that the ratio of the elastic modulus between the MD direction and the TD direction of the film can contribute to the generation of wrinkles.
  • the holding force at the end in the TD direction of the film by the transport roll is strong.
  • the film tends to expand at the widths z 1 and z 2 at the end in the TD direction as shown in FIG.
  • the holding force at both ends of the film 3 on the surface of the transport roll 4 is strong, the expanded film 3 does not move in the TD direction, and the stress ⁇ x corresponding to the expansion escapes in the film thickness direction. Therefore, it is considered that the film 3 is twisted in the TD direction and buckled as shown in FIG. As a result, it is estimated that wrinkles appear in the TD direction of the film. Since the roughness of the film surface also affects the holding force, it is estimated that it can contribute to the generation of wrinkles.
  • the film is cooled and solidified in the TD direction of the film while the wavy wrinkles are generated, so that the unevenness derived from the wavy wrinkles remaining in the film is referred to as streaky in this specification. burr).
  • the thermoplastic resin film has streak-like burrs, several harmful effects are likely to occur.
  • Detrimental effects include, for example, difficulty in uniformly applying a coating solution on a film, winding failure (winding misalignment, wrinkle, etc.) during film winding, and functional layers such as a laminate layer on the film. In the case of pasting, bubbles may enter between the film and the functional layer.
  • Thin thermoplastic resin films have been conventionally used for magnetic tapes, for example.
  • a coating solution using an organic solvent as a solvent is generally applied to a film, and the heating temperature to the film required to volatilize and remove the solvent is low (for example, 100 ° C. or less).
  • an aqueous solvent a solvent containing water
  • the film may be heated at a high temperature of about 150 ° C. to volatilize and remove the aqueous solvent.
  • a material that is cured by heating may be laminated on the film.
  • the film may be heated to 170 ° C. to 180 ° C.
  • streak burrs are caused by the film being deformed into a wrinkle shape due to thermal expansion due to heating of the film and the tension during film transportation, and the film being fixed in the deformed state.
  • the generation of streak burrs is a phenomenon that can occur anywhere in the heated process. Specifically, immediately after the molten resin is discharged onto the cooling roll in the film forming process, the film is stretched in the MD direction and then in the TD direction. This is a phenomenon that may occur after stretching, after annealing for removing the residual stress of the film, and after drying treatment after applying a coating solution on the film.
  • streak burrs may appear through subsequent annealing or drying.
  • wrinkle-like deformation is suppressed by suppressing the transport tension during film transport in each step in the manufacturing process.
  • suppressing the conveyance tension is in a trade-off relationship with maintaining good coating property or winding property, and a sufficient improvement effect cannot always be expected only by controlling the tension.
  • attempts are made to improve wrinkles and other failures by paying attention to the elastic modulus in one direction of the film surface.
  • the inhibitory effect on the occurrence of streak burrs is not sufficient.
  • thermoplastic resin film and the manufacturing method thereof of the present disclosure are in view of the above circumstances.
  • the streak caused by heating is caused by the film being deformed and waved in the TD direction by the thermal expansion due to the heating of the film and the tension applied to the film during conveyance, and is generated. Therefore, in the thermoplastic resin film of the present disclosure, the elastic modulus E TD in the TD direction is made higher than the elastic modulus E MD in the MD direction, and the temperature dependence of the elastic modulus E TD is kept small.
  • the ratio Er 30 of the elastic modulus E TD to the elastic modulus E MD at 30 ° C. is 1.1 to 1.8, the ratio Er 30 at 30 ° C., and the ratio Er 90 at 90 ° C.
  • the difference between the maximum value Er max and the minimum value Er min selected from the ratio Er 120 at 120 ° C., the ratio Er 150 at 150 ° C., and the ratio Er 180 at 180 ° C. is 0.7 or less. That is, when the polymer chain is aligned in the MD direction and the molecular orientation in the MD direction is strong, the anisotropy becomes stronger and the twist occurs in the TD direction, and the film is easily buckled and deformed. By arranging the chains in the TD direction and strengthening the molecular orientation in the TD direction, the molecular chain becomes resistant to deformation, and the film is less likely to buckle in the TD direction.
  • thermoplastic resin film In manufacturing a thermoplastic resin film, various heating temperatures can be considered during the heat treatment, and anisotropy of elastic modulus is observed in a wide temperature range of 30 ° C, 90 ° C, 120 ° C, 150 ° C, and 180 ° C. Since it is small, the buckling of the film in the TD direction is effectively suppressed. Thereby, generation
  • the ratio Er 30 of the elastic modulus E TD to the elastic modulus E MD at 30 ° C. is 1.1 to 1.8. If Er 30 is 1.1 or more, the molecular chain becomes a resistance to deformation and the film is prevented from buckling, so that the generation of streak burrs is suppressed. The higher the value of Er 30 , the higher the suppression effect on the streak burrs can be expected. Moreover, by making Er 30 1.8 or less, molecular orientation in the TD direction does not increase excessively, and film tearing can be suppressed. Er 30 is preferably 1.1 to 1.6 and more preferably 1.2 to 1.4 for the same reason as described above.
  • the elastic modulus E MD in the film transport direction and the elastic modulus E TD in the film width direction can be adjusted by the respective stretching ratios of MD stretching and TD stretching, the stretching speed, and the balance between MD and TD. Moreover, in the cooling part of a 2nd extending
  • the difference between the selected maximum value Er max and minimum value Er min is 0.7 or less.
  • the difference between the maximum value Er max and the minimum value Er min indicates that variation in the ratio of elastic moduli at each temperature is suppressed. Since the difference between the maximum value Er max and the minimum value Er min is 0.7 or less, molecular orientation is preferentially made in the TD direction at any film temperature, and the heating temperature during the heat treatment is wide.
  • the difference between the maximum value Er max and the minimum value Er min is preferably as small as possible. Specifically, it is preferably 0.6 or less, more preferably 0.5 or less, and even more preferably 0.4 or less.
  • the lower limit of the difference between the maximum value Er max and the minimum value Er min is, for example, 0.1.
  • Er 30 , Er 90 , Er 120 , Er 150 , and Er 180 are preferably in the following ranges from the viewpoint of suppressing the difference between the maximum value Er max and the minimum value Er min .
  • Er 90 is preferably 1.1 to 1.8, more preferably 1.2 to 1.6, and still more preferably 1.2 to 1.4.
  • Er 120 is preferably 1.1 to 1.8, more preferably 1.2 to 1.6, and still more preferably 1.2 to 1.5.
  • Er 150 is preferably 0.8 to 1.5, more preferably 0.9 to 1.3, and still more preferably 1.0 to 1.2.
  • Er 180 is preferably 0.8 to 1.5, more preferably 0.9 to 1.3, and still more preferably 1.0 to 1.2.
  • Adjustment of the elastic modulus ratio at each temperature is performed by adjusting the stretching ratio in the MD direction and the stretching ratio in the TD direction, or stretching in the process of stretching in the TD direction during film production (second stretching process described later). This can be done by adjusting the speed (stretching ratio / second).
  • Ratio of elastic modulus E TD in the film width direction perpendicular to the film conveying direction to elastic modulus E MD in the film conveying direction at each temperature of 30 ° C., 90 ° C., 120 ° C., 150 ° C. and 180 ° C. (Er; elasticity
  • the ratio E TD / elastic modulus E MD ) is a value obtained by the following method. First, a sample piece is punched out from a film to be measured (width 6 ⁇ length 115 mm (JIS K 6251, dumbbell shape No. 5)).
  • the obtained sample piece is pulled with Tensilon (manufactured by Toyo Seiki Co., Ltd., Strograph VE50) under the conditions of 50 mm between chucks and a tensile speed of 100 mm / min, and the elongation of the film relative to the load is measured. From the measured values, create a graph with the load on the horizontal axis and the elongation on the vertical axis, and calculate the elastic modulus from the tangent of the rising part of the load-elongation curve. This operation is performed 5 times, and an average value of three points excluding the maximum value and the minimum value is defined as the elastic modulus.
  • Temperature control A test piece of the same type and size for temperature measurement is installed near the test piece, a thermocouple is attached to the test piece for temperature measurement, and the temperature at the time of measurement is monitored. (The above “when the film temperature is 30 ° C.” refers to the case where the temperature of the test piece for temperature measurement is 30 ° C. The same applies to other temperatures.) Test start timing: Pulling is started after reaching a desired temperature.
  • the surface roughness (Ra) of at least one surface of the thermoplastic resin film of the present disclosure is preferably 0.5 nm to 50 nm.
  • Ra is 0.5 nm or more, for example, the slipperiness on the surface of the transport roll can be improved, and the effect of improving streak burrs is excellent.
  • Ra is 50 nm or less, there is no failure in the appearance, and it is suitable for optical applications.
  • the thermoplastic resin film expands in the TD direction during the heating step, but the holding force on the surface of the transport roll at the end in the TD direction of the film is strong, and the expanded film cannot move in the TD direction. Stress tries to escape in the thickness direction.
  • the occurrence of streak burrs in the film can be suppressed by adjusting the surface roughness (Ra) of the film to the above range.
  • Ra is expected to be more effective in reducing streak burrs as the value increases (that is, the surface becomes rougher).
  • Ra is preferably 0.8 nm to 30 nm, more preferably 1 nm to 20 nm, from the viewpoint of effectively reducing streak burrs while suppressing the influence on other properties.
  • Ra is adjusted to a desired Ra value by adjusting the stretching speed (stretching ratio / second) in the step of stretching in the TD direction during film production (second stretching step described later) or by adjusting the stretching temperature.
  • the stretching speed stretching ratio / second
  • Ra value can be increased (roughening the surface) by, for example, increasing the stretching speed when stretching in the TD direction or decreasing the stretching temperature when stretching in the TD direction. it can.
  • Ra is a value measured by the following method. That is, Using a contact shape measuring machine (Mitutoyo FORMRACER EXTREME CS-5000 CNC), in accordance with JIS B 0601: 2001, measurement is performed 12 times in any position in the MD and TD directions under the following conditions. The average of 10 points in the MD direction and 10 points in the TD direction from which the minimum value and the maximum value are removed is determined, and the average value of 20 points is defined as Ra. ⁇ Conditions> ⁇ Measurement needle tip diameter: 0.5 ⁇ m -Stylus load: 0.75mN ⁇ Measurement length: 0.8mm ⁇ Cutoff value: 0.08mm
  • the thickness of the thermoplastic resin film of the present disclosure is preferably in the range of 200 ⁇ m or less. In the case of a thin film having a thickness of 200 ⁇ m or less, wavy wrinkles in the TD direction are particularly likely to occur due to heat treatment. Therefore, when the thickness is 200 ⁇ m or less, the effect of the thermoplastic resin film of the present disclosure is further exhibited.
  • a thickness of a thermoplastic resin film the range of 100 micrometers or less is more preferable, the range of 80 micrometers or less is still more preferable, and the range of 50 micrometers or less is still more preferable.
  • As a lower limit of the thickness of a thermoplastic resin film it is 1 micrometer, for example.
  • the thickness of the thermoplastic resin film is measured at 50 mm intervals over the entire width in the TD direction of the film using a tactile film thickness measuring machine (Mitutoyo ID-C112X). This operation is performed 5 sets at 1 m intervals in the MD direction, and the average value of the measured values is defined as the thickness.
  • Examples of the raw material resin for forming the thermoplastic resin film of the present disclosure include polyester and cyclic olefin resin.
  • the polyester is preferably polyethylene terephthalate (PET) or polyethylene-2,6-naphthalate (PEN), more preferably PET.
  • the cyclic olefin resin is a polymer resin having a cyclic olefin structure, and examples of the polymer resin having a cyclic olefin structure include (1) a norbornene-based polymer, (2) a monocyclic cyclic olefin polymer, ( 3) Polymers of cyclic conjugated dienes, (4) vinyl alicyclic hydrocarbon polymers, and hydrides of (1) to (4).
  • polyester-polyester- Polyester is synthesized by copolymerizing a dicarboxylic acid component and a diol component.
  • the polyester can be obtained, for example, by subjecting the (A) dicarboxylic acid component and the (B) diol component to an esterification reaction and / or transesterification reaction by a well-known method and polycondensing the reaction product. At this time, a trifunctional or higher polyfunctional monomer may be further copolymerized.
  • polyester may contain terminal blockers, such as an oxazoline type compound, a carbodiimide compound, and an epoxy compound.
  • dicarboxylic acid component examples include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid Aliphatic dicarboxylic acids such as ethylmalonic acid, adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, cyclohexanedicarboxylic acid, decalin dicarboxylic acid, and the like, terephthalic acid, isophthalic acid, phthalic acid, 1,4- Naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 4,4′-diphenyl dicarboxylic acid, 4,4
  • diol component examples include fats such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol.
  • Diols cycloaliphatic dimethanol, spiroglycol, isosorbide and other alicyclic diols, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9'-bis (4-hydroxyphenyl)
  • Diol compounds such as aromatic diols such as fluorene.
  • the dicarboxylic acid component As a dicarboxylic acid component, the case where at least 1 sort of aromatic dicarboxylic acid is used is preferable. More preferably, the dicarboxylic acid component contains an aromatic dicarboxylic acid as a main component. A dicarboxylic acid component other than the aromatic dicarboxylic acid may be included. Examples of such a dicarboxylic acid component include ester derivatives such as aromatic dicarboxylic acids.
  • the “main component” means that the proportion of aromatic dicarboxylic acid in the dicarboxylic acid component is 80% by mass or more.
  • the aliphatic diol can contain ethylene glycol, and preferably contains ethylene glycol as a main component. The main component means that the proportion of ethylene glycol in the diol component is 80% by mass or more.
  • the amount of the diol component is preferably in the range of 1.015 mol to 1.50 mol, more preferably 1.02 mol to 1.30 mol, relative to 1 mol of the dicarboxylic acid component and, if necessary, its ester derivative. More preferably 1.025 mol to 1.10 mol.
  • the esterification reaction proceeds well.
  • the amount of the diol component is 1.50 mol or less, for example, diethylene glycol by-product due to dimerization of ethylene glycol is suppressed, and melting point, glass transition temperature, crystallinity, heat resistance, hydrolysis resistance, and weather resistance are suppressed. It is possible to maintain good characteristics such as properties.
  • the raw material resin preferably contains, as a copolymerization component, a polyfunctional monomer in which the total (a + b) of the number of carboxylic acid groups (a) and the number of hydroxyl groups (b) is 3 or more.
  • the raw material resin contains a polyfunctional monomer as a copolymerization component means that the raw material resin contains a structural unit derived from the polyfunctional monomer.
  • Examples of the structural unit derived from the polyfunctional monomer having the sum (a + b) of the number of carboxylic acid groups (a) and the number of hydroxyl groups (b) of 3 or more include the structural units derived from carboxylic acids shown below. .
  • Examples of carboxylic acids having 3 or more carboxylic acid groups (a) include trifunctional aromatic carboxylic acids such as trimesic acid, trimellitic acid, pyromellitic acid, and naphthalenetricarboxylic acid. Anthracentricarboxylic acid, and the like.
  • trifunctional aliphatic carboxylic acid examples include methanetricarboxylic acid, ethanetricarboxylic acid, propanetricarboxylic acid, and butanetricarboxylic acid.
  • examples thereof include benzenetetracarboxylic acid, benzophenonetetracarboxylic acid, naphthalenetetracarboxylic acid, anthracenetetracarboxylic acid, and perylenetetracarboxylic acid.
  • tetrafunctional aliphatic carboxylic acids include ethanetetracarboxylic acid, ethylenetetra Carboxylic acid, butane Examples thereof include tracarboxylic acid, cyclopentanetetracarboxylic acid, cyclohexanetetracarboxylic acid, adamantanetetracarboxylic acid, etc.
  • pentafunctional or higher functional aromatic carboxylic acids include benzenepentacarboxylic acid, benzenehexacarboxylic acid, and naphthalenepentacarboxylic acid.
  • Naphthalene hexacarboxylic acid Naphthalene hexacarboxylic acid, naphthalene heptacarboxylic acid, naphthalene octacarboxylic acid, anthracene pentacarboxylic acid, anthracene hexacarboxylic acid, anthracene heptacarboxylic acid, anthracene octacarboxylic acid, and the like.
  • ethanepentacarboxylic acid ethaneheptacarboxylic acid, butanepentacarboxylic acid, butaneheptacarboxylic acid, cyclopentanepentacarboxylic acid, cyclohexanepentacarboxylic acid Cyclohexanehexacarboxylic acid, adamantane penta carboxylic acid, and adamantane hexa acid.
  • carboxylic acids having 3 or more carboxylic acid groups (a) that is, polyfunctional monomers
  • the carboxylic acid having the number of carboxylic acid groups (a) of 3 or more includes oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid at the carboxy terminal of the carboxylic acid. Those obtained by adding a derivative thereof or a combination of a plurality of such oxyacids are also preferably used.
  • polyfunctional monomers having a hydroxyl number (b) of 3 or more include trifunctional aromatic compounds such as trihydroxybenzene, trihydroxynaphthalene, trihydroxyanthracene, trihydroxychalcone, trihydroxyflavone, and trihydroxycoumarin.
  • trifunctional aliphatic alcohol examples include glycerin, trimethylolpropane, and propanetriol.
  • examples of the tetrafunctional aliphatic alcohol include pentaerythritol.
  • a compound obtained by adding a diol to the hydroxyl terminal of the above-mentioned compound is also preferably used. These may be used individually by 1 type, or may use multiple types together as needed.
  • one molecule has both a hydroxyl group and a carboxylic acid group, and the total (a + b) of the number of carboxylic acid groups (a) and the number of hydroxyl groups (b) is 3
  • the oxyacids which are the above are also mentioned. Examples of oxyacids include hydroxyisophthalic acid, hydroxyterephthalic acid, dihydroxyterephthalic acid, and trihydroxyterephthalic acid.
  • oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid, and derivatives thereof, and a combination of a plurality of such oxyacids are added to the carboxy terminus of the polyfunctional monomer.
  • oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid, and derivatives thereof, and a combination of a plurality of such oxyacids are added to the carboxy terminus of the polyfunctional monomer.
  • oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid, and derivatives thereof, and a combination of a plurality of such oxyacids are added to the carboxy terminus of the polyfunctional monomer.
  • the content ratio of the structural unit derived from the polyfunctional monomer in the raw material resin is preferably 0.005 mol% to 2.5 mol% with respect to all the structural units in the raw material resin.
  • the content ratio of the structural unit derived from the polyfunctional monomer is more preferably 0.020 mol% to 1 mol%, and still more preferably 0.05 mol% to 0.5 mol%.
  • a conventionally known reaction catalyst can be used for the esterification reaction and / or transesterification reaction.
  • the reaction catalyst include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and phosphorus compounds.
  • an antimony compound, a germanium compound, or a titanium compound as a polymerization catalyst at an arbitrary stage before the polyester production method is completed.
  • a germanium compound is taken as an example, it is preferable to add the germanium compound powder as it is.
  • the intrinsic viscosity (IV; Intrinsic Viscosity) of the polyester film is 0.55 dL / g or more and 0.90 dL from the viewpoint of improving the weather resistance by increasing the hydrolysis resistance of the polyester film.
  • / G or less more preferably 0.60 dL / g or more and 0.80 dL / g or less, and still more preferably 0.62 dL / g or more and 0.78 dL / g or less.
  • the amount of terminal carboxy group [the amount of terminal COOH (also referred to as acid value), AV; Acid Value] of the polyester film is preferably 5 eq / ton or more and 35 eq / ton or less.
  • the amount of terminal COOH is more preferably 6 eq / ton to 30 eq / ton, and further preferably 7 eq / ton to 28 eq / ton.
  • “eq / ton” represents a molar equivalent per ton.
  • cyclic olefin resin examples include an addition (co) polymer cyclic polyolefin containing at least one repeating unit represented by the following general formula (II), and a repeating represented by the following general formula (I) if necessary.
  • An addition (co) polymer cyclic polyolefin further containing at least one or more units may be mentioned.
  • the ring-opening (co) polymer containing at least 1 type of cyclic repeating unit represented by the following general formula (III) is also mentioned suitably.
  • m represents an integer of 0 to 4
  • R 1 to R 6 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • X 1 to X 3 and Y 1 to Y 3 are each independently a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms substituted with a halogen atom, — (CH 2 ) n COOR 11 , — (CH 2 ) n OCOR 12 , — (CH 2 ) n NCO, — (CH 2 ) n NO 2 , — (CH 2 ) n CN, — (CH 2 ) n CONR 13 R 14 , — (CH 2 ) n NR 13 R 14 , — (CH 2 ) n OZ, or — (CH 2 ) n W.
  • X 1 and Y 1, X 2 and Y 2, or X 3 and Y 3 may constitute a bond to (-CO) 2 O or (-CO) 2 NR 15 with each other.
  • R 11 , R 12 , R 13 , R 14 , and R 15 represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms
  • Z represents a hydrocarbon group or a hydrocarbon group substituted with a halogen.
  • W represents SiR 16 p D 3-p
  • n represents an integer of 0 to 10.
  • D represents a halogen atom, —OCOR 16 or —OR 16
  • R 16 represents a hydrocarbon group having 1 to 10 carbon atoms
  • p represents an integer of 0 to 3.
  • the thickness direction retardation (Rth) of the optical film is increased, and the in-plane letter is increased.
  • the expression of the foundation (Re) can be increased.
  • a film having a high Re developability can increase the Re value by stretching in the film forming process.
  • Norbornene-based addition (co) polymers are disclosed in JP-A-10-7732, JP-T 2002-504184, US Patent Publication No. 2004 / 229157A1, International Publication No. 2004 / 070463A1, and the like.
  • the norbornene-based addition (co) polymer is obtained by addition polymerization of norbornene-based polycyclic unsaturated compounds.
  • the norbornene-based addition (co) polymer includes, as necessary, a norbornene-based polycyclic unsaturated compound, ethylene, propylene, butene; conjugated dienes such as butadiene and isoprene; non-conjugated dienes such as ethylidene norbornene; It may be obtained by addition polymerization of acrylonitrile, acrylic acid, methacrylic acid, maleic anhydride, acrylic acid ester, methacrylic acid ester, maleimide, vinyl acetate, vinyl chloride and other linear diene compounds.
  • Examples of norbornene addition (co) polymers on the market include, for example, Apel (trade name; glass transition temperature (Tg) different from Mitsui Chemicals, for example, APL8008T (Tg: 70 ° C.), APL6013T (Tg: 125 ° C), or APL6015T (Tg: 145 ° C), etc.), pellets such as TOPAS 8007, 6013, and 6015 from Polyplastics, and Appearan 3000 from Ferrania.
  • Apel trade name; glass transition temperature (Tg) different from Mitsui Chemicals
  • APL8008T Tg: 70 ° C.
  • APL6013T Tg: 125 ° C
  • APL6015T Tg: 145 ° C
  • Norbornene-based polymer hydrides are disclosed in JP-A-1-240517, JP-A-7-196636, JP-A-60-26024, JP-A-62-19801, JP-A-2003-159767, or JP-A-2004-2004.
  • the polycyclic unsaturated compound can be produced by addition polymerization or metathesis ring-opening polymerization and then hydrogenation.
  • R 5 to R 6 are preferably a hydrogen atom or —CH 3
  • X 3 and Y 3 are preferably a hydrogen atom, Cl, or —COOCH 3
  • other groups are It is selected appropriately.
  • norbornene-based resins on the market examples include Arton G or Arton F (trade name) of JSR Corporation, Zeoror ZF14, ZF16, Zeonex 250, or Zeonex 250 of Nippon Zeon Corporation. 280 (trade name).
  • thermoplastic resin film of the present disclosure may be produced by any method as long as the above-described ratio Er 30 and the difference between the maximum value Er max and the minimum value Er min satisfy a predetermined range.
  • the thermoplastic resin film of the present disclosure is most suitably produced by the following method for producing a thermoplastic resin film of the present disclosure.
  • the manufacturing method of the thermoplastic resin film of the present disclosure will be described in detail.
  • the method for producing a thermoplastic resin film of the present disclosure includes a step of melting and extruding a raw material resin, cooling to form a thermoplastic resin sheet (hereinafter, also referred to as a “molding step”), and a length relative to the thermoplastic resin sheet.
  • thermoplastic resin film by first stretching in the direction (MD) (hereinafter also referred to as “first stretching process”), a preheating portion for preheating the thermoplastic resin film, and preheated thermoplastic Stretching part that stretches the resin film by applying tension in the film width direction orthogonal to the longitudinal direction of the thermoplastic resin film, heat fixing part that heats and heat-sets the thermoplastic resin film to which tension is applied, and the above
  • the above-mentioned thermoplastic resin film is sequentially conveyed to a thermal relaxation part for relaxing the tension and a cooling part for cooling the thermoplastic resin film that has been subjected to thermal relaxation, and a second stretching process (hereinafter referred to as “second stretching”).
  • the stretch ratio in the second stretch is larger than the stretch ratio in the first stretch, and the area ratio that is the product of the stretch ratio in the first stretch and the stretch ratio in the second stretch is 12 .8 times to 15.5 times,
  • tension is further applied in the film width direction in the cooling section, and the expansion is performed in the range of ⁇ 1.5% to 3% with respect to the film width at the end of the heat relaxation in the heat relaxation section. Or reduce.
  • ⁇ 1.5% means “1.5% reduction”.
  • the first stretching is performed on the thermoplastic resin sheet in the MD direction, and then the second stretching is performed in the TD direction.
  • the stretch ratio in the second stretch is made larger than the stretch ratio in the second stretch, and the area ratio that is the product of the stretch ratio in the first stretch and the stretch ratio in the second stretch is 12.
  • tension is further applied in the film width direction in the cooling part after the tension is already applied in the film width direction in the stretching part.
  • the film is expanded or contracted in a range of ⁇ 1.5% to 3% with respect to the film width at the end of thermal relaxation at the thermal relaxation portion.
  • “ ⁇ 1.5%” means “1.5% reduction”.
  • the method for producing a thermoplastic resin film of the present disclosure includes at least a forming step, a first stretching step, and a second stretching step, and may further include another step. Moreover, 1st extending
  • the second stretching step conveys the thermoplastic resin film sequentially to the preheating part, the stretching part, the heat fixing part, the heat relaxation part, and the cooling part. It is done by doing. Below, each process in the manufacturing method of the thermoplastic resin film of this indication is explained in full detail.
  • the raw material resin is melt-extruded and cooled to form a thermoplastic resin sheet.
  • the molding of the thermoplastic resin sheet is performed by charging the raw material resin and cooling the thermoplastic resin melt-extruded into a sheet shape on a casting roll.
  • the method for melting and extruding the raw material resin and the raw material resin are not particularly limited, but the intrinsic viscosity can be set to a desired intrinsic viscosity by a catalyst used for synthesis of the raw material resin, a polymerization method, and the like. Details of the raw material resin are as described above.
  • the raw material resin is melt-extruded and then subjected to cooling to form a thermoplastic resin sheet.
  • the raw material resin is melt-extruded, for example, using an extruder equipped with one or two or more screws, heated to a temperature equal to or higher than the melting point of the raw material resin, rotating the screw, and melt-kneading.
  • the raw material resin is melted in an extruder and becomes a molten resin (also referred to as melt) by heating and kneading with a screw.
  • melt extrusion of the raw material resin by replacing the inside of the extruder with nitrogen.
  • the extruder is preferably a twin-screw extruder because the kneading temperature can be kept low.
  • the melted molten resin (melt) is extruded from an extrusion die through a gear pump, a filter, and the like.
  • the extrusion die is also simply referred to as “die” (JIS B 8650: 2006, a) extrusion molding machine, see number 134).
  • the melt may be extruded in a single layer or in multiple layers.
  • the polyester raw material resin to which the end-capping agent has been added is melt-kneaded and reacted with the end-capping agent during melt-kneading in the molding step
  • the raw material resin is melt extruded.
  • the molten resin may be extruded from a die onto a casting roll to be formed into a sheet (that is, cast processing).
  • electrostatic casting method, air knife method, air chamber method, vacuum nozzle method, touch roll method, etc. are applied on the casting roll to bring the casting roll into close contact with the melt-extruded sheet.
  • touch roll method is a method of shaping the surface of a sheet by placing a touch roll on a casting roll.
  • the touch roll is preferably a roll having elasticity instead of a normal roll having high rigidity.
  • the temperature of the touch roll is preferably (Tg ⁇ 10 ° C.) and (Tg + 30 ° C.) or less, and (Tg ⁇ 7 ° C.) to (Tg + 20 ° C.), where Tg is the glass transition temperature of the melt-extruded sheet. (Tg ⁇ 5 ° C.) to (Tg + 10 ° C.) is more preferable.
  • the temperature of the casting roll is preferably in the same temperature range. Examples of touch rolls include touch rolls described in JP-A-11-314263 or JP-A-11-235747.
  • the thickness of the sheet-like molded body (thermoplastic resin sheet) obtained by the cast treatment is preferably 0.1 mm to 3 mm, more preferably 0.2 mm to 2 mm, and still more preferably 0.3 mm to 1.5 mm.
  • the thickness of the thermoplastic resin sheet is 3 mm or less, a cooling delay due to heat storage of the melt can be avoided.
  • the thickness of the thermoplastic resin sheet is 0.1 mm or more, the hydroxyl group and carboxy group in the thermoplastic resin sheet (preferably polyester sheet) are thermoplastic resin (preferably polyester) during the period from extrusion to cooling. It is suppressed that hydroxyl groups and carboxy groups that are diffused inside and cause hydrolysis are exposed to the resin surface.
  • the means for cooling the melt extruded from the extrusion die is not particularly limited, and may be any of applying cold air to the melt, bringing it into contact with a casting roll, spraying water, and the like.
  • the means for cooling the melt only one of the means may be implemented, or two or more means may be combined.
  • the means for cooling the melt is preferably at least one of cooling by cold air and cooling using a casting roll, from the viewpoint of preventing oligomer adhesion to the film surface during continuous operation.
  • it is particularly preferable that the melt extruded from the extruder is cooled with cold air, and the melt is brought into contact with a casting roll for cooling.
  • thermoplastic resin sheet cooled using a casting roll or the like is peeled off from a cooling member such as a casting roll using a peeling member such as a peeling roll.
  • first stretching step In the first stretching step in the production method of the present disclosure, the first stretching in the longitudinal direction (MD direction) (hereinafter, also referred to as “longitudinal stretching” as appropriate) with respect to the thermoplastic resin sheet molded in the above-described molding step. To obtain a thermoplastic resin film.
  • MD direction longitudinal direction
  • longitudinal stretching longitudinal stretching
  • the thermoplastic resin sheet is passed through a pair of nip rolls sandwiching the thermoplastic resin sheet, and the thermoplastic resin sheet is conveyed in the longitudinal direction of the thermoplastic resin sheet, while the thermoplastic resin sheet is conveyed in the conveyance direction.
  • This can be done by applying tension between two or more pairs of nip rolls arranged side by side. Specifically, for example, when a pair of nip rolls A is installed on the upstream side in the conveyance direction of the thermoplastic resin sheet and a pair of nip rolls B is installed on the downstream side, the nip roll B on the downstream side is conveyed when the thermoplastic resin sheet is conveyed.
  • thermoplastic resin sheet is stretched in the transport direction (MD direction).
  • MD direction transport direction
  • two or more pairs of nip rolls may be installed independently on each of the upstream side and the downstream side.
  • stretching of the thermoplastic resin sheet in a 1st extending process is adjusted smaller than the draw ratio in the 2nd extending
  • the larger the draw ratio by the first stretching the higher the elastic modulus at normal temperature, but it is easy to relax by heating, and the elastic modulus tends to be low when reheated by heat treatment or the like. Therefore, the draw ratio by the first stretching is made smaller than the draw ratio by the second stretch in the TD direction, in other words, the stretch ratio by the second stretch is made larger than the stretch ratio by the first stretch.
  • thermoplastic resin film in which the generation of streak burrs derived from wavy wrinkles is suppressed.
  • the stretching ratio of the thermoplastic resin sheet in the first stretching step is preferably 2 to 5 times, more preferably 2.5 to 4.0 times, and even more preferably 2.8 to 3.5 times.
  • the area ratio represented by the product of the draw ratio of the first stretch and the stretch ratio of the second stretch is the area of the thermoplastic resin sheet before the first stretch and the second stretch are performed. 12.8 times to 15.5 times.
  • the larger the area magnification the higher the elastic modulus at normal temperature. In this case, the elastic modulus is easily relaxed by heating, and the elastic modulus is likely to be lowered when reheated by heat treatment or the like.
  • the area magnification is 12.8 times or more, the molecular orientation in the film width direction becomes good, and thus the generation of streak burrs is effectively suppressed.
  • the area magnification is preferably 13.5 times to 15.2 times, more preferably 14.0 times to 15.0 times, for the same reason as described above.
  • the temperature during the first stretching of the thermoplastic resin film is preferably (Tg ⁇ 20 ° C.) to (Tg + 50 ° C.), more preferably (Tg ⁇ 10 ° C.), where Tg is the glass transition temperature of the thermoplastic resin film. (Tg + 40 ° C.), more preferably (Tg ° C.) to (Tg + 30 ° C.).
  • thermoplastic resin film when extending
  • thermoplastic resin film of this indication the 2nd extending process of extending a film in the TD direction is further included after the 1st extending process.
  • a thermoplastic resin film is made into the longitudinal direction (MD) of a thermoplastic resin film, and the film width direction (TD) orthogonal to the longitudinal direction of a thermoplastic resin film.
  • MD longitudinal direction
  • TD film width direction
  • the film width direction (TD) orthogonal to the longitudinal direction (MD) of a thermoplastic resin film intends the direction which makes a perpendicular
  • a direction in which the angle with respect to the longitudinal direction (MD) can be regarded as 90 ° from a mechanical error or the like is included.
  • the first stretching in addition to a sequential biaxial stretching method in which first stretching (longitudinal stretching) and second stretching (lateral stretching) described later are performed separately, the first stretching ( Any of the simultaneous biaxial stretching methods in which the longitudinal stretching) and the second stretching (transverse stretching) are performed simultaneously may be used.
  • the first stretching and the second stretching may be independently performed twice or more. Regardless of which of the longitudinal stretching and the lateral stretching is performed first, the generation of wavy wrinkles can be suppressed.
  • the biaxial stretching include longitudinal stretching ⁇ lateral stretching, and longitudinal stretching ⁇ transverse stretching ⁇ longitudinal stretching. , Longitudinal stretching ⁇ longitudinal stretching ⁇ lateral stretching, transverse stretching ⁇ longitudinal stretching, and the like.
  • the biaxial stretching mode from the viewpoint of ease of production, that is, production suitability, longitudinal stretching ⁇ lateral stretching is preferable as in the production method of the present disclosure.
  • thermoplastic resin film subjected to the first stretching in the first stretching step is preheated with a preheating unit that preheats the stretched thermoplastic resin film.
  • the thermoplastic resin film is stretched by stretching in the film width direction perpendicular to the longitudinal direction of the thermoplastic resin film, a heat fixing unit for heating and heat-fixing the strained thermoplastic resin film, And the thermal relaxation part that thermally relaxes the tension and the cooling part that cools the thermoplastic resin film that has been thermally relaxed are sequentially conveyed, and the cooling part further applies tension in the film width direction to relax the heat.
  • the film is expanded or contracted in the range of -1.5% to 3% with respect to the film width at the end of the thermal relaxation at the part.
  • second stretching hereinafter also referred to as “lateral stretching” as appropriate
  • ⁇ 1.5% means “1.5% reduction”.
  • the second stretching step is a step of performing the second stretching (lateral stretching) in the film width direction orthogonal to the longitudinal direction of the thermoplastic resin film after the first stretching (longitudinal stretching), specifically,
  • the second stretching (lateral stretching) can be performed by sequentially transporting the thermoplastic resin film in the following (a) to (e).
  • thermoplastic resin film after longitudinal stretching to a temperature at which it can be stretched;
  • B A stretched portion that stretches the preheated thermoplastic resin film by applying tension to the film width direction perpendicular to the longitudinal direction;
  • C a heat fixing part that crystallizes and heat fixes the thermoplastic resin film after being subjected to longitudinal stretching and transverse stretching;
  • D a heat relaxation portion that heats the heat-fixed thermoplastic resin film, thermally relaxes the tension of the thermoplastic resin film, and removes residual strain of the film; and
  • E Cooling the thermoplastic resin film after heat relaxation and simultaneously applying tension in the film width direction, ⁇ 1.5% to 3% with respect to the film width at the end of heat relaxation in the heat relaxation portion Cooling section that expands or contracts within the range of
  • thermoplastic resin film is expanded or contracted in a range of ⁇ 1.5% to 3% with respect to the film width at the end of thermal relaxation.
  • the expansion ratio or the reduction ratio of the thermoplastic resin film in the TD direction in the cooling section is ⁇ 1.5% or more with respect to the film width at the end of the thermal relaxation in the thermal relaxation section, the elastic modulus at TD It is easy to obtain an increase effect.
  • the expansion ratio or the reduction ratio in the TD direction of the thermoplastic resin film is 3% or less with respect to the film width at the end of the thermal relaxation in the thermal relaxation portion, it is effective for suppressing the breakage of the film.
  • the larger the area ratio and the second draw ratio the higher the elastic modulus at room temperature, but it is more easily relaxed by heat, and the elastic modulus is likely to decrease with heat treatment. Therefore, the manufacturing method of the present disclosure suppresses relaxation by forcibly re-stretching the film that has been crystallized through heat setting while suppressing an increase in the area ratio due to the first stretching and the second stretching.
  • the elastic modulus can be improved.
  • the expansion ratio or the reduction ratio of the thermoplastic resin film in the TD direction in the cooling part is 0 for the film width at the end of the thermal relaxation in the thermal relaxation part for the same reason as described above. 0.0% to 2.0% is more preferable, and 1.5% to 1.8% is still more preferable.
  • the “end point of thermal relaxation in the thermal relaxation portion” means the time when the thermoplastic resin film enters the cooling portion, that is, the speed at which the thermoplastic resin film shrinks in the width direction when the residual stress is relaxed. Refers to the point at which changes.
  • the specific means is not limited as long as the thermoplastic resin film is laterally stretched in the above configuration, but a lateral stretching device or biaxial capable of processing each step constituting the above configuration. It is preferable to use a stretching machine.
  • the biaxial stretching machine 100 includes a pair of annular rails 60a and 60b, and gripping members 2a to 2l attached to the respective annular rails and movable along the rails.
  • the annular rails 60a and 60b are arranged symmetrically with respect to the thermoplastic resin film 200.
  • the annular rails 60a and 60b are stretched in the film width direction by holding the thermoplastic resin film 200 with the holding members 2a to 2l and moving along the rail. It is possible.
  • the biaxial stretching machine 100 is an arrow which is a direction orthogonal to the direction (longitudinal direction) of the pre-heated portion 10 for pre-heating the thermoplastic resin film 200 and the pre-heated thermoplastic resin film 200 for the arrow MD of the thermoplastic resin film.
  • Stretching section 20 that stretches by applying tension in the TD direction (film width direction)
  • heat fixing section 30 that heats and heat-fixes the tensioned thermoplastic resin film
  • heat setting A thermal relaxation part 40 that thermally relaxes the tension of the thermoplastic resin film that is heat-set by heating the thermoplastic resin film
  • a cooling part 50 that cools the thermoplastic resin film that has been thermally relaxed via the thermal relaxation part. Consists of areas that contain.
  • Grip members 2a, 2b, 2e, 2f, 2i, and 2j that are movable along the annular rail 60a are attached to the annular rail 60a, and the annular rail 60b is movable along the annular rail 60b.
  • Gripping members 2c, 2d, 2g, 2h, 2k, and 2l are attached.
  • the gripping members 2a, 2b, 2e, 2f, 2i, and 2j grip one end in the TD direction of the thermoplastic resin film 200, and the gripping members 2c, 2d, 2g, 2h, 2k, and 2l The other end portion in the TD direction of the plastic resin film 200 is gripped.
  • the gripping members 2a to 2l are generally called chucks, clips, and the like.
  • the gripping members 2a, 2b, 2e, 2f, 2i, and 2j move counterclockwise along the annular rail 60a, and the gripping members 2c, 2d, 2g, 2h, 2k, and 2l move along the annular rail 60b. Move clockwise.
  • the gripping members 2a to 2d grip the end portion of the thermoplastic resin film 200 in the preheating portion 10 and move along the annular rail 60a or 60b while being gripped, and the extending portion 20 and the gripping members 2e to 2h are located. It proceeds through the thermal relaxation section 40 to the cooling section 50 where the gripping members 2i to 2l are located. Thereafter, the gripping members 2a and 2b and the gripping members 2c and 2d are separated from the end of the thermoplastic resin film 200 at the end on the downstream side in the MD direction of the cooling unit 50 in the transport direction, and then the annular rail 60a. Or it moves along 60b and returns to the preheating part 10.
  • thermoplastic resin film 200 moves in the direction of the arrow MD and sequentially preheats in the preheating unit 10, stretches in the stretching unit 20, heat fixing in the heat fixing unit 30, and heat relaxation in the heat relaxation unit 40. Then, cooling in the cooling unit 50 is performed, and transverse stretching is performed. The moving speed in each region such as the preheating portion of the gripping members 2a to 2l becomes the transport speed of the thermoplastic resin film 200.
  • the gripping members 2a to 2l can change the moving speed independently of each other.
  • the biaxial stretching machine 100 is capable of transverse stretching in which the thermoplastic resin film 200 is stretched in the TD direction in the stretching unit 20.
  • the resin film 200 can also be stretched in the MD direction. That is, simultaneous biaxial stretching can be performed using the biaxial stretching machine 100.
  • the biaxial stretching machine 100 has 2a to 2l.
  • a gripping member (not shown) is attached.
  • the gripping members 2a to 21 may be collectively referred to as “grip member 2”.
  • thermoplastic resin film after longitudinal stretching in the first stretching (longitudinal stretching) step is preheated to a temperature at which stretching is possible.
  • the thermoplastic resin film 200 is preheated in the preheating unit 10.
  • the thermoplastic resin film 200 is heated in advance before being stretched so that the thermoplastic resin film 200 can be easily stretched laterally.
  • the film surface temperature at the end point of the preheating part (hereinafter also referred to as “preheating temperature”) is (Tg ⁇ 10 ° C.) to (Tg + 60 ° C.) when the glass transition temperature of the thermoplastic resin film 200 is Tg. Is preferable, and (Tg ° C.) to (Tg + 50 ° C.) is more preferable.
  • the end point of the preheating portion refers to the time when the preheating of the thermoplastic resin film 200 is finished, that is, the position where the thermoplastic resin film 200 is separated from the region of the preheating portion 10.
  • thermoplastic resin film preheated in the preheating section is stretched (laterally stretched) by applying tension in the width direction (TD direction) perpendicular to the longitudinal direction (MD direction).
  • TD direction width direction
  • MD direction longitudinal direction
  • the preheated thermoplastic resin film 200 is tensioned at least in the direction of the arrow TD orthogonal to the longitudinal direction of the thermoplastic resin film 200, and the thermoplastic resin film 200 is stretched transversely.
  • the width of the thermoplastic resin film is extended from the width L0 to the width L1 to be wide.
  • Stretching (transverse stretching) in the direction (TD) perpendicular to the longitudinal direction (MD) of the thermoplastic resin film 200 is stretched in the direction of an angle perpendicular to the longitudinal direction (MD) of the thermoplastic resin film 200 (90 °).
  • it is not limited to only 90 °, but includes stretching in a direction (90 ° ⁇ 5 °) that can be regarded as perpendicular to the MD direction of the film.
  • the area ratio of the thermoplastic resin film 200 (the product of the stretch ratio of the first stretch and the stretch ratio of the second stretch) is 12.8 times the area of the thermoplastic resin film 200 before stretching. It is ⁇ 15.5 times. Details are as described above.
  • the film surface temperature during transverse stretching of the thermoplastic resin film 200 is preferably 100 ° C. to 150 ° C., more preferably 110 ° C. to 140 ° C., and 120 More preferably, the temperature is from °C to 130 °C. If the second stretching temperature is 100 ° C. or higher, the risk of breakage due to excessive yield stress is reduced. Further, by adjusting the second stretching temperature (film surface temperature), it is possible to adjust the surface roughness Ra to the above-described range, and the film hardly buckles to TD and heats a thin thermoplastic resin film. Even when transported, wavy wrinkles are less likely to occur. In addition, when the second stretching temperature is 150 ° C. or lower, crystallization of the film itself is suppressed, so that it is difficult to break.
  • the stretching speed at the time of transverse stretching of the thermoplastic resin film 200 is, for example, 5% / second or more, preferably 8% / second or more, more preferably 10% / second or more, and further preferably 15% / second or more.
  • the upper limit of the stretching speed at the time of transverse stretching of the thermoplastic resin film 200 is, for example, 50% / second or less, preferably 45% / second or less, more preferably 40% / second or less, and further preferably 30% or more. 20% / second or less is particularly preferable.
  • the range of the stretching speed at the time of transverse stretching of the thermoplastic resin film 200 can be appropriately set by arbitrarily combining the above upper limit value and lower limit value.
  • thermoplastic resin film 200 examples include 8% / second to 45% / second, 15% / second to 40% / second, and 10% / second to 30%. There are 10% / second to 20% / second.
  • the stretching rate the thermoplastic resin film is a length ⁇ d which is stretched in one second from the state of the length d 0 before stretching, passed through the length (i.e., pre-heating unit of the thermoplastic resin film before stretching is a representation of the length) divided by d 0 in percentage.
  • stretching speed is within the above range, stretching is performed at a relatively slow speed, so that stretching unevenness can be suppressed and the roughness of the film surface can be suppressed to a moderately low level.
  • the stretching speed is 8% / second or more
  • the stretching process does not become too long, and the crystallization of the film due to the long residence time is suppressed, so that it is difficult to break.
  • the stretching speed is 45% / second or less, it is effective for suppressing breakage of the film, and Ra can be suppressed from becoming too large.
  • the movement speeds of the gripping members 2a to 2l can be changed independently. Therefore, for example, the thermoplastic resin film 200 is increased by increasing the moving speed of the gripping member 2 on the downstream side in the extending portion 20MD direction of the extending portion 20 and the heat fixing portion 30 rather than the moving speed of the holding member 2 in the preheating portion 10. It is also possible to carry out longitudinal stretching in which the film is stretched in the transport direction (MD direction).
  • the longitudinal stretching of the thermoplastic resin film 200 in the second stretching step may be performed only by the stretching unit 20, or may be performed by the heat fixing unit 30, the heat relaxation unit 40, or the cooling unit 50 described later. Further, the longitudinal stretching of the thermoplastic resin film 200 in the second stretching step may be performed at a plurality of locations among the stretching portion 20, the heat fixing portion 30, the heat relaxation portion 40, and the cooling portion 50.
  • thermoplastic resin film that has already been subjected to longitudinal stretching and lateral stretching is heated and crystallized to be heat-set.
  • the heat setting means heating the thermoplastic resin film 200 while applying tension to the stretched portion 20 to crystallize the thermoplastic resin (for example, polyester).
  • the maximum reachable film surface temperature of the surface of the thermoplastic resin film 200 (in this specification, “heat setting temperature”, “also referred to as T heat setting ".) that it is preferably heated by controlling the film in the range of 160 ° C. ⁇ 240 ° C..
  • the heat setting temperature is 160 ° C. or higher, the thermoplastic resin (for example, polyester) is easily crystallized, and the thermoplastic resin (for example, polyester) molecules can be fixed in a stretched state. Hydrolyzability is improved.
  • the heat setting temperature is 240 ° C.
  • the heat setting temperature is 160 ° C. to 240 ° C.
  • the molecular crystals of the thermoplastic resin are oriented to improve the hydrolysis resistance of the thermoplastic resin film.
  • the heat setting temperature is preferably in the range of 170 ° C. to 230 ° C., more preferably in the range of 175 ° C. to 225 ° C.
  • the maximum film surface temperature is a value measured by bringing a thermocouple into contact with the surface of the thermoplastic resin film.
  • the variation of the maximum film surface temperature in the film width direction is 0.5 ° C. or higher and 10.0 ° C. or lower.
  • the variation in the maximum film surface temperature of the film is 0.5 ° C. or more, which is advantageous in terms of wrinkles during conveyance in the subsequent process, and the variation is 10.0 ° C. or less.
  • the variation in the maximum reached film surface temperature is more preferably 0.5 ° C. or more and 7.0 ° C. or less, further preferably 0.5 ° C. or more and 5.0 ° C. or less, for the same reason as described above. It is particularly preferably from 5 ° C. to 4.0 ° C.
  • the heating to the film at the time of heat setting may be performed only from one side of the film or from both sides.
  • the heating in the heat fixing unit is performed on the surface brought into contact with the casting roll in the film forming process. Curling can be eliminated by making the heating surface of the heat fixing unit into contact with the casting roll, that is, the cooling surface.
  • the heating is performed in a range where the surface temperature immediately after heating on the heating surface in the heat fixing part is higher than the surface temperature of the non-heating surface opposite to the heating surface in the range of 0.5 ° C to 5.0 ° C. It is preferable to be performed as follows.
  • the temperature of the heating surface during heat setting is higher than that of the opposite surface and the temperature difference between the front and back surfaces is 0.5 to 5.0 ° C., the curl of the film is more effectively eliminated.
  • the temperature difference between the heated surface and the non-heated surface on the opposite side is more preferably in the range of 0.7 to 3.0 ° C, and 0.8 ° C or higher and 2.0 ° C. The following is more preferable.
  • the method of heating the thermoplastic resin film may be a method of blowing hot air or a method of selectively radiantly heating with a heater.
  • the film surface temperature distribution in the TD direction can be controlled uniformly, and the quality (for example, thermal shrinkage) of the produced thermoplastic resin film is uniform. Can be made.
  • the radiant heating in the heat fixing unit 30 may be omitted, or the radiant heating in the heat fixing unit 30 may be performed in parallel.
  • the heater capable of radiant heating include an infrared heater, and a ceramic heater (ceramic heater) is particularly preferable.
  • the residence time in the heat setting part is preferably 5 seconds or more and 50 seconds or less.
  • the residence time is the time during which the state in which the film is heated in the heat fixing part is continued.
  • the residence time is 5 seconds or longer, the change in crystallinity with respect to the heating time is small, which is advantageous in that the unevenness of crystallinity in the width direction is relatively less likely to occur. This is advantageous in terms of productivity because it is not necessary to extremely reduce the line speed.
  • the residence time is preferably 8 seconds or longer and 40 seconds or shorter, and more preferably 10 seconds or longer and 30 seconds or shorter, for the same reason as described above.
  • thermosetting part In the heat relaxation part, the heat-fixed thermoplastic resin film is heated, the tension of the thermoplastic resin film is thermally relaxed, and the residual strain of the film is removed. By this thermal relaxation, the film shrinks in at least one of the longitudinal direction and the transverse direction.
  • Thermal relaxation is to heat the thermoplastic resin film that has been heat-set, and to relax the tension of the thermoplastic resin film. Heating of the thermoplastic resin film in the thermal relaxation part should be performed as follows. Is preferred. In the thermal relaxation part 40 shown in FIG. 1, the maximum reached film surface temperature of the surface of the thermoplastic resin film 200 is 5 ° C. higher than the maximum reached film surface temperature (T heat setting ) of the thermoplastic resin film 200 in the heat fixing part 30. The aspect which heats the thermoplastic resin film 200 so that it may become low temperature above is preferable.
  • the highest reached film surface temperature of the surface of the thermoplastic resin film 200 during thermal relaxation is also referred to as “thermal relaxation temperature (T thermal relaxation )”.
  • the thermal relaxation temperature (T thermal relaxation ) is heated at a temperature 5 ° C. lower than the thermal fixing temperature (T thermal fixing ) (T thermal relaxation ⁇ T thermal fixing ⁇ 5 ° C.) to release the tension.
  • T thermal fixing the thermal fixing temperature
  • T thermal relaxation ⁇ T thermal fixing ⁇ 5 ° C. the thermal relaxation temperature
  • T heat relaxation is equal to or less than “T heat setting— 5 ° C.”
  • T heat relaxation is 100 degreeC or more at the point from which dimensional stability becomes favorable.
  • the T heat relaxation is 100 ° C. or higher, and preferably than T heat setting is 15 °C or higher temperature region lower (100 ° C.
  • T heat relaxation ⁇ T heat--15 ° C.
  • 110 ° C. or higher and more preferably than T heat setting temperature is lower region 25 ° C. or higher (110 ° C. ⁇ T heat relaxation ⁇ T heat--25 ° C.), at 120 ° C. or higher, and lower 30 ° C. or higher than T heat set
  • a temperature range 120 ° C. ⁇ T thermal relaxation ⁇ T heat setting ⁇ 30 ° C. is particularly preferable.
  • the T heat relaxation is a value measured by bringing a thermocouple into contact with the surface of the thermoplastic resin film 200.
  • thermoplastic resin film after heat-relaxing in a heat relaxation part is cooled. Simultaneously with the cooling of the thermoplastic resin film, tension is applied in the film width direction, and the film is expanded or contracted in a range of ⁇ 1.5% to 3% with respect to the film width at the end of heat relaxation in the heat relaxation portion.
  • the thermoplastic resin film 200 that has passed through the thermal relaxation unit 40 is cooled.
  • the shape of the thermoplastic resin film 200 is fixed.
  • FIG. 1 shows a biaxially stretched thermoplastic resin film having a width L2.
  • the expansion of the film width in the cooling unit 50 may be performed using the same method as the stretching in the stretching unit 20 described above.
  • the film width in the cooling unit 50 may be reduced by using the same method as the thermal relaxation of the film tension in the thermal relaxation unit 40 described above.
  • thermoplastic resin film is separated from the region of the cooling unit.
  • the gripping member 2j shown in FIG. 1 is at point P and the gripping member 21 is at point Q
  • the end of the cooling unit 50 (the end in the MD direction) when the thermoplastic resin film 200 is separated is the point P. It is represented by a straight line connecting the point Q and the point Q.
  • the temperature of the surface (film surface) of the thermoplastic resin film (hereinafter also referred to as “cooling temperature”) at the outlet of the cooling part of the thermoplastic resin film 200 in the cooling part 50 is the glass transition temperature Tg of the thermoplastic resin film 200. Is preferably lower than Tg + 50 ° C. Specifically, the cooling temperature is preferably 25 ° C. to 110 ° C., more preferably 25 ° C. to 95 ° C., and further preferably 25 ° C. to 80 ° C. When the cooling temperature is in the above range, it is possible to prevent the film from shrinking unevenly after releasing the clip.
  • the cooling unit outlet refers to an end portion of the cooling unit 50 when the thermoplastic resin film 200 is separated from the cooling unit 50, and the holding member 2 that holds the thermoplastic resin film 200 (the holding member 2j in FIG. 1).
  • 2l refers to a position where the thermoplastic resin film 200 is separated, that is, a straight line portion connecting the P point and the Q point.
  • the average cooling rate when the temperature of the surface (film surface) of the thermoplastic resin film is cooled from 150 ° C. to 70 ° C. may be in the range of 2 ° C./second to 100 ° C./second. preferable.
  • an average cooling rate is calculated
  • the average cooling rate is more preferably 4 ° C./second to 80 ° C./second, and further preferably 5 ° C./second to 50 ° C./second.
  • thermoplastic resin film 200 As temperature control means for heating or cooling the thermoplastic resin film 200 in preheating, stretching, heat setting, thermal relaxation, and cooling in the second stretching step, hot or cold air is blown over the thermoplastic resin film 200. Or bringing the thermoplastic resin film 200 into contact with the surface of a metal plate capable of temperature control or passing the vicinity of the metal plate.
  • thermoplastic resin film 200 cooled in the cooling step cuts the gripped portions gripped by the clips at both ends in the TD direction, and is wound up in a roll shape.
  • the stretched thermoplastic resin film is preferably relaxed by the following method in order to further improve the hydrolysis resistance and dimensional stability of the thermoplastic resin film to be produced.
  • the both ends of the thermoplastic resin film 200 in the width direction (TD) are gripped by using at least two gripping members per one end.
  • one end of the thermoplastic resin film 200 in the width direction (TD) is held by the holding members 2a and 2b, and the other is held by the holding members 2c and 2d.
  • the thermoplastic resin film 200 is conveyed from the preheating unit 10 to the cooling unit 50 by moving the holding members 2a to 2d.
  • a gripping member 2a (2c) that grips one end portion of the thermoplastic resin film 200 in the width direction (TD direction) in the preheating unit 10
  • the other gripping member 2b (2d) adjacent to the gripping member 2a (2c) and the gripping member 2a (2c) that grips one end of the thermoplastic resin film 200 in the width direction in the cooling unit 50.
  • the conveyance speed of the thermoplastic resin film 200 is reduced by narrowing the distance between the two. With this method, the cooling unit 50 can perform relaxation in the MD direction.
  • the relaxation of the thermoplastic resin film 200 in the MD direction may be performed in at least a part of the heat fixing unit 30, the heat relaxation unit 40, and the cooling unit 50. As described above, the thermoplastic resin film 200 is relaxed in the MD direction by narrowing the gap between the gripping members 2a-2b and the gap between the gripping members 2c-2d more downstream than the upstream side in the MD direction. be able to.
  • the movement of the gripping members 2a to 2d when the gripping members 2a to 2d reach the heat fixing unit 30 or the heat relaxation unit 40 The speed of the thermoplastic resin film 200 may be reduced by decreasing the speed, and the distance between the gripping members 2a-2b and the distance between the gripping members 2c-2d may be narrower than the distance in the preheating unit 10.
  • polyester raw material resin 1 As shown below, by directly reacting terephthalic acid and ethylene glycol to distill off water, esterify, and then use a direct esterification method in which polycondensation is performed under reduced pressure, polyester (Ti catalyst) by a continuous polymerization apparatus. System PET) was obtained.
  • the acid value of the obtained oligomer was 600 equivalent / ton.
  • “equivalent / t” represents a molar equivalent per ton.
  • This reaction product was transferred to a second esterification reaction vessel, and reacted under stirring at a reaction vessel temperature of 250 ° C. and an average residence time of 1.2 hours to obtain an oligomer having an acid value of 200 equivalents / ton.
  • the inside of the second esterification reaction tank is partitioned into three zones, and an ethylene glycol solution of magnesium acetate is continuously supplied from the second zone so that the amount of Mg added is 75 ppm in terms of element, From the third zone, an ethylene glycol solution of trimethyl phosphate was continuously supplied so that the added amount of P was 65 ppm in terms of element.
  • the reaction product (polyethylene terephthalate (PET)) was obtained by reaction (polycondensation) under the following conditions.
  • polyester pellets cross section: major axis: about 4 mm, minor axis: about 2 mm, length: about 3 mm).
  • polyester raw resin 1 was dried to a moisture content of 20 ppm or less, and then charged into a hopper of a single-screw kneading extruder having a diameter of 50 mm.
  • Polyester raw resin 1 was melted at 300 ° C. and extruded from a die through a gear pump and a filter (pore diameter: 20 ⁇ m) under the following extrusion conditions.
  • the dimension of the die slit was adjusted so that the thickness of the polyester sheet was 0.4 mm.
  • the thickness of the polyester sheet was measured with an automatic thickness meter installed at the exit of the casting roll.
  • extrusion of the molten resin was performed under the condition that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%. Specifically, the back pressure in the barrel of the extruder is 1% higher than the average pressure in the barrel of the extruder, and the piping temperature of the extruder is 2% higher than the average temperature in the barrel of the extruder. Heated as temperature.
  • the molten resin was extruded onto a cooling casting roll and brought into close contact with the casting roll using an electrostatic application method.
  • the temperature of the casting roll was set to 25 ° C., and cold air of 25 ° C.
  • An unstretched polyester film (unstretched polyester film 1) having a thickness of 0.4 mm and a film width of 0.9 m was peeled from the casting roll by a peeling roll disposed opposite to the casting roll.
  • an unstretched polyester film 2 having a thickness of 2.8 mm (used in Example 12 below) and a thickness of 1.
  • a 2 mm unstretched polyester film 3 (used in the following Example 13) and a 0.9 mm thick unstretched polyester film 4 (used in the following Example 14) were peeled off.
  • the film width is 0.9 m in all cases.
  • the measurement of IV and AV was performed by the same method as described above.
  • the preheating temperature was 110 ° C., and heating was performed so that stretching was possible.
  • Extension part The preheated uniaxially stretched polyester film was stretched (laterally stretched) by applying tension to the film width direction (TD direction) perpendicular to the MD direction under the following conditions.
  • Stretching temperature Temperature (° C) shown in Table 1 below
  • Stretch ratio Magnification (times) shown in Table 1 below
  • Stretching stress 18 MPa
  • Stretching speed Stretching speed (% / second) shown in Table 1 below
  • stretching was adjusted, and the area ratio after 1st extending
  • stretching was adjusted to the magnification shown in following Table 1.
  • the area ratio is the product of the draw ratio during the first drawing and the draw ratio during the second drawing.
  • PET biaxially stretched polyester
  • the above PET film was used except that it was performed at 120 ° C., the stretching temperature of the stretched part: 140 ° C., the stretch ratio of 4.2 times, the stretch rate: 18% / second, and the expansion ratio of the cooling part of 1.5%.
  • the conditions were the same as those for the production.
  • Measurement field hot air heating furnace
  • Measurement temperature 30 ° C, 90 ° C, 120 ° C, 150 ° C, 180 ° C (The set temperature of the furnace was raised to the desired temperature in 1.5 minutes, and the temperature was set and the air volume was adjusted so that the temperature rise was kept within 2 ° C. even after 1 minute from the desired temperature.)
  • -Temperature control A test piece of the same type and size for temperature measurement was installed in the vicinity of the test piece, a thermocouple was attached to the test piece for temperature measurement, and the temperature at the time of measurement was monitored.
  • Test start timing Pulling was started after reaching the desired temperature.
  • the biaxially stretched polyester film or the biaxially stretched cyclic polyolefin film was passed through a heating and conveying apparatus, and the maximum temperature of the film was set to 90 ° C., 120 ° C., 150 ° C. or 180 ° C., and the heating and conveying treatment was performed at a conveying tension of 1 MPa. . Then, the biaxially stretched polyester film or the biaxially stretched cyclic polyolefin film that has been subjected to the heating and conveying treatment is placed on a flat surface, and the biaxially stretched polyester film or the cyclic polyolefin is reflected so that the light of the fluorescent lamp installed on the indoor ceiling is reflected.
  • the gripping member is a thermoplastic resin film Release point MD Film transport direction (longitudinal direction) TD film width direction L0, L1, L2 width length Z 1 of a thermoplastic resin film, Z 2 expansion width sigma x Stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

フィルム搬送方向の弾性率EMDに対する、フィルム搬送方向と直交するフィルム幅方向の弾性率ETDの、30℃での比Er30が、1.1~1.8であり、かつ、弾性率EMDに対する弾性率ETDの、30℃での比Er30、90℃での比Er90、120℃での比Er120、150℃での比Er150、及び180℃での比Er180から選ばれる最大値Ermax及び最小値Erminの差が0.7以下である、熱可塑性樹脂フィルム、並びに熱可塑性樹脂フィルムの製造方法である。

Description

熱可塑性樹脂フィルム及び熱可塑性樹脂フィルムの製造方法
 本開示は、熱可塑性樹脂フィルム及び熱可塑性樹脂フィルムの製造方法に関する。
 熱可塑性樹脂フィルムは、熱可塑性樹脂を溶融押出して製膜した後、延伸、熱緩和等の熱処理などの工程を経て製造される。また、近年では、熱可塑性樹脂フィルムは、そのフィルムの上に機能性材料を塗布又は貼付することにより、種々の機能が付与され、機能性フィルムとして利用することが広く行われている。
 一方、薄膜の熱可塑性樹脂フィルムの場合、フィルムに機能性を付与する過程で加熱処理が施されると、加熱処理中に、フィルム搬送方向に伸びる筋状のシワ(皺)がフィルム幅方向に複数並ぶように発生することがある。このシワは、加熱処理後の冷却によって形状が固定化されるため、フィルムの品質又は塗布ムラ等の故障として外観上支障を来たす場合がある。
 上記に関連する技術として、例えば、特開2014-238612号公報には、フィルム搬送方向を引張方向とした引張弾性率を140MPa以上とした基材フィルムを用いることで、基材フィルムのシワ等の欠陥を抑制する技術が開示されている。
 また、例えば、特開2014-210433号公報には、フィルムの形状安定性及び柔軟性の観点から、30℃及び100℃での弾性率を特定の範囲としたポリエステル樹脂成形フィルムが開示されている。
 フィルムのシワ又は平坦性を改善する技術については、上記のように、従来から種々の検討がなされており、例えば各工程での搬送張力を下げること等も行われている。しかしながら、フィルム幅方向に波状に現れやすいシワは、フィルムの加熱処理に伴って熱収縮した際のフィルムの撚れやすさ、又はフィルムが熱膨張した際のフィルムの動きやすさ(例えば搬送ロール表面でのフィルムの滑り性等)などに起因して現れる。
 上記の特許文献1~2には、フィルムの一方向の弾性率を調整してシワ等の発生を改善する技術が開示されているものの、単に例えばフィルム搬送方向の弾性率を調整するのみでは、フィルムの熱収縮又は熱膨張による一方向の寸法変化を他方向へ波及させて緩和しようとする際に障壁ができるような性状のフィルムにおいては、充分な改善効果は期待できない。
 そして、フィルムに発生するシワは、フィルムの厚みが薄いほど、頻度は顕著になり、シワの大きさも大きくなる。
 本開示は、上記に鑑みなされたものである。
 本開示の一実施形態が解決しようとする課題は、波状のシワの発生が少なく抑えられた熱可塑性樹脂フィルムを提供することにある。
 本開示の他の一実施形態が解決しようとする課題は、薄手の(好ましくは厚みが200μm以下である)熱可塑性樹脂フィルムを加熱搬送した場合でも、波状のシワが発生しにくい熱可塑性樹脂フィルムの製造方法を提供することにある。
 上記の課題を達成するための具体的手段には、以下の態様が含まれる。
 <1> フィルム搬送方向の弾性率EMDの、フィルム搬送方向と直交するフィルム幅方向の弾性率ETDにおける、30℃での比Er30が、1.1~1.8であり、かつ、弾性率EMDに対する弾性率ETDの、上記30℃での比Er30、90℃での比Er90、120℃での比Er120、150℃での比Er150、及び180℃での比Er180から選ばれる最大値Ermax及び最小値Erminの差が0.7以下である、熱可塑性樹脂フィルムである。
 <2> 少なくとも一方の表面の表面粗さRaが、0.5nm~50nmである<1>に記載の熱可塑性樹脂フィルムである。
 <3> 厚みが200μm以下である<1>又は<2>に記載の熱可塑性樹脂フィルムである。
 <4> ポリエステルフィルム又は環状ポリオレフィンフィルムである<1>~<3>のいずれか1つに記載の熱可塑性樹脂フィルムである。
 <5> <1>~<4>のいずれか1つに記載の熱可塑性樹脂フィルムの製造方法であって、
 原料樹脂を溶融押出し、冷却して熱可塑性樹脂シートを成形する工程と、
 成形された熱可塑性樹脂シートに対して長手方向に第1の延伸を行って熱可塑性樹脂フィルムを得る工程と、
 熱可塑性樹脂フィルムを予熱する予熱部、予熱された熱可塑性樹脂フィルムを、熱可塑性樹脂フィルムの長手方向と直交するフィルム幅方向に緊張を与えて延伸する延伸部、緊張が与えられた熱可塑性樹脂フィルムを加熱して熱固定する熱固定部、及び、緊張を熱緩和する熱緩和部、並びに、熱緩和された熱可塑性樹脂フィルムを冷却する冷却部に熱可塑性樹脂フィルムを順次搬送し、第2の延伸を行う工程と、
 を含み、
 第1の延伸での延伸倍率と第2の延伸での延伸倍率との積である面積倍率が12.8倍~15.5倍であり、
 第2の延伸を行う工程は、冷却部において、熱緩和された上記熱可塑性樹脂フィルムに更にフィルム幅方向に緊張を与え、熱緩和部での熱緩和の終了時点のフィルム幅に対して-1.5%~3%の範囲で熱可塑性樹脂フィルムを拡張又は縮小する、熱可塑性樹脂フィルムの製造方法である。
 <6> 第2の延伸を行う工程は、延伸部において、延伸速度を8%/秒~45%/秒として熱可塑性樹脂フィルムを延伸する<5>に記載の熱可塑性樹脂フィルムの製造方法である。
 <7> 第2の延伸を行う工程は、延伸部において、延伸速度を15%/秒~40%/秒として熱可塑性樹脂フィルムを延伸する<5>又は<6>に記載の熱可塑性樹脂フィルムの製造方法である。
 <8> 第2の延伸を行う工程は、延伸部において、延伸温度を100℃~150℃として熱可塑性樹脂フィルムを延伸する<5>~<7>のいずれか1つに記載の熱可塑性樹脂フィルムの製造方法である。
 <9> 第2の延伸を行う工程は、延伸部において、延伸温度を110℃~140℃として熱可塑性樹脂フィルムを延伸する<5>~<8>のいずれか1つに記載の熱可塑性樹脂フィルムの製造方法である。
 <10> 第1の延伸での延伸倍率と第2の延伸での延伸倍率との積である面積倍率が13.5倍~15.2倍である<5>~<9>のいずれか1つに記載の熱可塑性樹脂フィルムの製造方法である。
 <11> 第2の延伸を行う工程は、冷却部において、熱緩和部での熱緩和の終了時点のフィルム幅に対して0.0%~2.0%の範囲で熱可塑性樹脂フィルムを拡張する<5>~<10>のいずれか1つに記載の熱可塑性樹脂フィルムの製造方法である。
 <12> 第1の延伸を行う工程は、熱可塑性樹脂シートに対して延伸倍率が2倍~5倍の第1の延伸を行う<5>~<11>のいずれか1つに記載の熱可塑性樹脂フィルムの製造方法である。
 本開示の一実施形態によれば、波状のシワの発生が少なく抑えられた熱可塑性樹脂フィルムが提供される。
 本開示の他の一実施形態によれば、薄手の(好ましくは厚みが200μm以下である)熱可塑性樹脂フィルムを加熱搬送した場合でも、波状のシワが発生しにくい熱可塑性樹脂フィルムの製造方法が提供される。
2軸延伸機の一例を示す平面図である。 フィルムの弾性率の異方性により撚れが生じる機構を説明するための概念図である。 搬送ロール上でフィルムに撚れが生じる機構を説明するための正面図である。 搬送ロール上でフィルムが撚れて座屈した状態を示す正面図である。
 以下、本開示の熱可塑性樹脂フィルム及びその製造方法について、詳細に説明する。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
<熱可塑性樹脂フィルム>
 本開示の熱可塑性樹脂フィルムは、フィルム搬送方向の弾性率EMDに対する、フィルム搬送方向と直交するフィルム幅方向の弾性率ETDの、30℃での比Er30が、1.1~1.8であり、かつ、30℃での比Er30、90℃での比Er90、120℃での比Er120、150℃での比Er150、及び180℃での比Er180から選ばれる最大値Ermax及び最小値Erminの差が0.7以下である。
 なお、Er30、Er90、Er120、Er150及びEr180は以下の通りである。
 Er30は、フィルム温度が30℃である場合の、フィルム搬送方向の弾性率EMDに対するフィルム幅方向の弾性率ETDの比を表す。
 Er90は、フィルム温度が90℃である場合の、フィルム搬送方向の弾性率EMDに対するフィルム幅方向の弾性率ETDの比を表す。
 Er120は、フィルム温度が120℃である場合の、フィルム搬送方向の弾性率EMDに対するフィルム幅方向の弾性率ETDの比を表す。
 Er150は、フィルム温度が150℃である場合の、フィルム搬送方向の弾性率EMDに対するフィルム幅方向の弾性率ETDの比を表す。
 Er180は、フィルム温度が180℃である場合の、フィルム搬送方向の弾性率EMDに対するフィルム幅方向の弾性率ETDの比を表す。
 「最大値Ermax及び最小値Erminの差」とは、Er30、Er90、Er120、Er150及びEr180から最大値Ermax及び最小値Erminを選択し、最大値Ermaxから最小値Erminを差し引いた値のことを指す。
 本開示において、熱可塑性樹脂フィルムを単に「フィルム」とも称し、厚みが200μm以下のフィルムを「薄手のフィルム」ともいう。本発明の実施形態による効果がより奏される観点からは、薄手のフィルムの厚みは、100μm以下が好ましく50μm以下がより好ましい。
 熱可塑性樹脂フィルムの製造方法は、後に詳述するが、薄手のフィルムは、通常、ロール等を用いて搬送し、延伸することにより得られる。ここで、フィルムの搬送方向をMD(Machine Direction)方向とも称する。また、フィルムのMD方向は、フィルムの長手方向とも称される。また、フィルムの幅方向とは、フィルムの長手方向に直交する方向である。フィルムの幅方向は、フィルムを搬送しながら製造されたフィルムにおいては、TD(Transverse Direction)方向とも呼ばれる。
 本明細書では、フィルムの搬送方向を「MD」又は「MD方向」と称し、フィルムの搬送方向と直交するフィルムの幅方向を「TD」又は「TD方向」と称する。
 熱可塑性樹脂フィルムは、複数の熱可塑性樹脂フィルムを積層したり、熱可塑性樹脂フィルム上に機能層を積層して、高機能化又は複合化することがある。このような熱可塑性樹脂フィルムの加工に当たっては、通常、ロール等により搬送されながら、フィルムの延伸及び加熱等がなされる。
 薄手の熱可塑性樹脂フィルムは、加熱搬送されると、熱可塑性樹脂フィルムのTD方向に波打つように凹凸状に並ぶシワ(皺)が生じる傾向にある。
 この現象には、以下のような要因が考えられる。
(1)MD方向の弾性率に比べてTD方向の弾性率が小さい。
 上述のように、熱可塑性フィルムは、ロール等により搬送される。この際の搬送張力等のMD方向に作用する応力によって、ポワソン効果でTD方向に圧縮応力が作用する。MD方向の弾性率に比べてTD方向の弾性率が小さい場合、発生したTD方向の圧縮応力はフィルムのTD方向の形状を乱すため、フィルムのTD方向に撚れが生じると考えられる。つまり、図2に示すように、MD方向に高分子主鎖(図2中の実線)が沿って並んで存在してMD方向の分子配向が強い場合には、主鎖間が側鎖(図2中の破線)で繋がっただけのフィルムのTD方向はMD方向に比べて形状保持力が弱く、フィルムの強さの異方性が強くなる。そのため、フィルムは、図2のように、TD方向にシワ状の変形が生じやすくなると推定される。これに対し、逆にTD方向への分子配向が強い(高分子主鎖がTD方向に並んでいる)場合には、分子鎖が変形の抵抗となり、フィルムはTD方向にシワ状の変形が生じにくくなると考えられる。
 即ち、フィルムのMD方向とTD方向との弾性率の比率が、シワの発生に寄与し得るものと推定される。
(2)搬送ロールによるフィルムのTD方向端部での保持力が強い。
 加熱工程中では、フィルムは、図3に示すようにTD方向の端部においてz及びzの幅で膨張する傾向がある。この際、搬送ロール4の表面におけるフィルム3のTD両端部での保持力が強いと、膨張したフィルム3はTD方向へ動けず、膨張分の応力σはフィルム厚み方向へ逃げる。そのため、フィルム3は、TD方向に撚れが生じ、図4に示すように座屈すると考えられる。結果、フィルムのTD方向にシワが現れると推定される。
 フィルムの表面の粗さも保持力に影響を及ぼすため、シワの発生に寄与し得るものと推定される。
 上記のように、フィルムのTD方向に波状のシワが生じたままフィルムが冷却して固化することで、フィルムに残った波状のシワに由来する凹凸を、本明細書では、筋状バリ(streaky burr)と称する。
 熱可塑性樹脂フィルムが筋状バリを有していると、幾つかの弊害が生じやすい。弊害としては、例えば、フィルム上に塗布液を塗布する場合に均一に塗布しにくくなること、フィルム巻取り時の巻き故障(巻ズレ・巻シワ等)、ラミネート層などの機能層をフィルム上に貼り付ける場合にフィルムと機能層との間に気泡が入ること、等が挙げられる。
 薄手の熱可塑性樹脂フィルムは、例えば、磁気テープなどに、従来から使用されている。従来は、一般に、フィルムに対し、有機溶剤を溶媒とする塗布液が適用されており、溶媒を揮発し除去するのに要するフィルムへの加熱温度が低かった(例えば100℃以下)。しかし、近年では、環境保護に向けて水系溶媒(水を含む溶媒)を用いる傾向があり、水系溶媒を揮発し除去するのに150℃程度の高温でフィルムを加熱することもある。また、加熱により硬化する素材(いわゆる硬膜剤)をフィルムに積層することもある。更に、フィルムが硬膜剤を含む場合は、フィルムが170℃~180℃に加熱される場合もある。
 上記のようにフィルムを加熱する場合には、フィルムにシワがより発生しやすく、従来に比べて筋状バリの発生が顕著に現れやすい状況にもある。
 上記の状況のもと、筋状バリの発生について検討を行った。
 筋状バリは、フィルムの加熱による熱膨張と、フィルム搬送時の張力と、によってフィルムがシワ状に変形し、変形した状態でフィルムが固定化されることで生じると考えられる。筋状バリの発生は、加熱される工程ではどこでも起こり得る現象であり、具体的には、製膜工程において溶融樹脂を冷却ロール上に吐出した直後、MD方向への延伸後、TD方向への延伸後、フィルムの残留応力を除去するためのアニール処理後、及びフィルム上に塗布液を塗布した後の乾燥処理後等に起こり得る現象である。また、製膜後のフィルムにおいて筋状バリがみられない場合でも、その後のアニール処理又は乾燥処理を経ることで筋状バリが現れる場合もある。
 従来より、製造プロセス内の各工程でのフィルム搬送時の搬送張力を抑えることによって、シワ状の変形を抑制することが知られている。しかしながら、搬送張力を抑えることは、良好な塗布性又は巻き取り性等を維持することとのトレードオフの関係になっており、張力の制御のみでは必ずしも充分な改善効果は期待できない。
 また、例えば、特開2014-238612号公報及び特開2014-210433号公報に記載のように、フィルム面の一方向の弾性率に着目してシワ等の故障を改善する試みがなされているが、筋状バリの発生に対する抑制効果は充分とはいえない。
 本開示の熱可塑性樹脂フィルム及びその製造方法は、上記の事情に鑑みたものである。
 加熱に起因して生じる筋状バリは、フィルムの加熱による熱膨張と、搬送時のフィルムに与える張力と、によってフィルムがTD方向に波打つように変形し、固定化されることにより生じる。そのため、本開示の熱可塑性樹脂フィルムでは、TD方向の弾性率ETDを、MD方向の弾性率EMDに対して高くし、かつ、弾性率ETDの温度依存性を小さく抑える。
 具体的には、弾性率EMDに対する弾性率ETDの30℃での比Er30を、1.1~1.8とし、かつ、30℃での比Er30、90℃での比Er90、120℃での比Er120、150℃での比Er150、及び180℃での比Er180から選ばれる最大値Ermax及び最小値Erminの差を0.7以下とする。
 つまり、高分子鎖がMD方向に並んでMD方向への分子配向が強い場合は、異方性がより強くなってTD方向に撚れが生じ、フィルムが座屈して変形しやすいが、高分子鎖をTD方向に並べてTD方向への分子配向を強めることで、分子鎖が変形に対する抵抗となり、TD方向におけるフィルムの座屈が生じにくくなる。そして、熱可塑性樹脂フィルムの製造に際しては、加熱処理時には多様な加熱温度が考えられるところ、30℃、90℃、120℃、150℃及び180℃の広範な温度領域において弾性率の異方性が小さいので、TD方向におけるフィルムの座屈が効果的に抑えられる。
 これにより、熱可塑性樹脂フィルムの波状のシワ(筋状バリ)の発生が抑制される。
 本開示の熱可塑性樹脂フィルムは、弾性率EMDに対する弾性率ETDの30℃での比Er30が1.1~1.8である。
 Er30が1.1以上であると、分子鎖が変形に対する抵抗となってフィルムが座屈するのを抑えるので、筋状バリの発生が抑制される。Er30は、値が大きいほど、筋状バリに対して高い抑制効果が期待できる。また、Er30を1.8以下にすることで、TD方向への分子配向が多くなり過ぎることがなく、フィルムの裂けを抑えることができる。
 Er30としては、上記と同様の理由から、1.1~1.6が好ましく、1.2~1.4がより好ましい。
 フィルム搬送方向の弾性率EMD及びフィルム幅方向の弾性率ETDは、MD延伸及びTD延伸のそれぞれの延伸倍率、延伸速度、並びに、MD及びTD間のバランスにより調整することができる。また、第2の延伸工程の冷却部において、延伸部で延伸されたフィルムに対して幅方向に更に緊張を与えて拡張する割合などの調節によっても調整することができる。
 本開示の熱可塑性樹脂フィルムでは、30℃での比Er30、90℃での比Er90、120℃での比Er120、150℃での比Er150、及び180℃での比Er180から選ばれる最大値Ermax及び最小値Erminの差が0.7以下とされている。
 最大値Ermax及び最小値Erminの差は、各温度での弾性率の比のバラツキが抑えられていることを示す。最大値Ermax及び最小値Erminの差が0.7以下であることで、いずれのフィルム温度であってもTD方向へ優先的に分子配向がなされており、加熱処理時の加熱温度が広範に亘るような製造プロセスでも、TD方向におけるフィルムの座屈が効果的に抑えられる。
 最大値Ermax及び最小値Erminの差は、値が小さいほど好ましく、具体的には、0.6以下が好ましく、0.5以下がより好ましく、0.4以下がより好ましい。
 また、最大値Ermax及び最小値Erminの差の下限としては、例えば、0.1である。
 Er30、Er90、Er120、Er150、及びEr180は、上記の最大値Ermax及び最小値Erminの差を小さく抑える観点より、それぞれ以下の範囲が好ましい。
 Er90としては、1.1~1.8が好ましく、1.2~1.6がより好ましく、1.2~1.4が更に好ましい。
 Er120としては、1.1~1.8が好ましく、1.2~1.6がより好ましく、1.2~1.5が更に好ましい。
 Er150としては、0.8~1.5が好ましく、0.9~1.3がより好ましく、1.0~1.2が更に好ましい。
 Er180としては、0.8~1.5が好ましく、0.9~1.3がより好ましく、1.0~1.2が更に好ましい。
 各温度における弾性率比の調整は、MD方向への延伸倍率及びTD方向への延伸倍率を調節すること、又はフィルム製造時にTD方向に延伸する工程(後述する第2の延伸工程)での延伸速度(延伸比率/秒)を調節すること等により行うことができる。
 30℃、90℃、120℃、150℃及び180℃の各温度における、フィルム搬送方向の弾性率EMDに対する、フィルム搬送方向と直交するフィルム幅方向の弾性率ETDの比(Er;=弾性率ETD/弾性率EMD)は、以下の方法で求められる値である。
 まず、被測定対象であるフィルムから試料片を打ち抜く(幅6×長さ115mm(JIS K 6251、ダンベル状5号形))。得られた試料片を下記条件下、テンシロン(東洋精機株式会社製、ストログラフVE50)でチャック間50mm、引張速度100mm/minの条件で引っ張って荷重に対するフィルムの伸びを測定する。測定値から荷重を横軸、伸びを縦軸としたグラフを作成し、荷重-伸び曲線の立ち上がり部の接線から弾性率を算出する。この操作を5回実施し、最大値及び最小値を除く3点の平均値を弾性率とする。そして、各温度について、フィルム搬送方向に引っ張る場合とフィルム幅方向に引っ張る場合のそれぞれについて実施する。
 ここで、フィルム搬送方向に引っ張った場合の弾性率をEMDとし、フィルム幅方向に引っ張った場合の弾性率をETDとして表記する。
<測定条件>
・測定場:熱風加熱炉
・測定温度:30℃、90℃、120℃、150℃、180℃
  (炉の設定温度は、1.5分で所望温度に上昇し、かつ、所望温度から1分経過しても温度上昇が2℃以内に収まるように温度設定と風量調整とを行う。)
・温度制御:試験片の近傍に温度測定用の同種同サイズの試験片を設置し、温度測定用の試験片に熱電対を貼り付け、測定時の温度を監視する。
  (上記「フィルム温度が30℃である場合」とは、温度測定用の試験片の温度が30℃である場合を指す。他の温度の場合も同様である。)
・試験開始タイミング:所望温度に到達した後に引っ張りを開始する。
 本開示の熱可塑性樹脂フィルムの少なくとも一方の表面の表面粗さ(Ra)は、0.5nm~50nmであることが好ましい。
 Raが0.5nm以上であると、例えば搬送ロールの表面での滑り性を高めることができ、筋状バリの改善効果に優れる。また、Raが50nm以下であると、外観に故障等を来たすことがなく、光学用途に適したものとなる。
 一般に、熱可塑性樹脂フィルムは、加熱工程中においてTD方向に膨張するが、フィルムのTD方向端部における搬送ロール表面での保持力が強く、膨張したフィルムがTD方向に移動できないため、膨張分の応力が厚み方向へ逃げようとする。結果、TD方向に波打つようにシワが発生し、筋状バリとなる。本開示の熱可塑性樹脂フィルムでは、フィルムの表面粗さ(Ra)を上記範囲に調整することで、フィルムの筋状バリの発生を抑制できる。
 Raは、値が大きいほど(即ち、表面が粗いほど)筋状バリの低減効果が期待できる。中でも、他の性状に及ぼす影響を抑えつつ筋状バリを効果的に低減する観点から、Raは、0.8nm~30nmが好ましく、1nm~20nmがより好ましい。
 Raは、フィルム製造時においてTD方向に延伸する工程(後述する第2の延伸工程)での延伸速度(延伸割合/秒)の調節又は延伸温度の調節により、所望とするRa値に調整することができる。具体的には、例えば、TD方向へ延伸する際の延伸速度を速くする方法又はTD方向へ延伸する際の延伸温度を下げる方法等により、Raの値を大きくする(表面を粗くする)ことができる。
 Raは、以下の方法により測定される値である。即ち、
 接触形状測定機(Mitutoyo FORMTRACER EXTREME CS-5000 CNC)を用い、JIS B 0601:2001に準拠して、下記の条件にて、MD方向及びTD方向について任意の位置にて各12回計測し、Raの最小値及び最大値を除去したMD方向10点及びTD方向10点の平均を求め、20点の平均値をRaとする。
<条件>
・測定針先端径:0.5μm
・触針荷重:0.75mN
・測定長:0.8mm
・カットオフ値:0.08mm
 本開示の熱可塑性樹脂フィルムの厚みとしては、200μm以下の範囲が好ましい。
 厚みが200μm以下の薄厚のフィルムである場合に、特に加熱処理に起因するTD方向の波状のシワが発生しやすい。したがって、厚みが200μm以下である場合に本開示の熱可塑性樹脂フィルムによる効果がより奏される。
 熱可塑性樹脂フィルムの厚みとしては、100μm以下の範囲がより好ましく、80μm以下の範囲が更に好ましく、50μm以下の範囲が更に好ましい。
 熱可塑性樹脂フィルムの厚みの下限値としては、例えば、1μmである。
 熱可塑性樹脂フィルムの厚みの測定は、触式膜厚測定機(Mitutoyo ID-C112X)を用い、フィルムのTD方向の全幅にわたり50mm間隔で測定する。この操作をMD方向に1m間隔で5セット行い、測定された値の平均値を厚みとする。
 本開示の熱可塑性樹脂フィルムを製膜するための原料樹脂としては、ポリエステル、環状オレフィン樹脂などが挙げられる。
 ポリエステルとしては、ポリエチレンテレフタレート(Polyethylene terephthalate;PET)、ポリエチレン-2,6-ナフタレート(Polyethylene naphthalate;PEN)が好ましく、PETがより好ましい。
 環状オレフィン樹脂は、環状オレフィン構造を有する重合体樹脂であり、環状オレフィン構造を有する重合体樹脂の例としては、(1)ノルボルネン系重合体、(2)単環の環状オレフィンの重合体、(3)環状共役ジエンの重合体、(4)ビニル脂環式炭化水素重合体、及び(1)~(4)の水素化物などが挙げられる。
-ポリエステル-
 ポリエステルは、ジカルボン酸成分とジオール成分とを共重合させて合成されるものである。ポリエステルは、例えば(A)ジカルボン酸成分と(B)ジオール成分とを周知の方法でエステル化反応及び/又はエステル交換反応させ、反応生成物を重縮合させることにより得ることができる。この際、更に3官能以上の多官能モノマーを共重合させてもよい。また、ポリエステルは、オキサゾリン系化合物、カルボジイミド化合物、及びエポキシ化合物等の末端封止剤を含有するものでもよい。
 なお、末端封止剤及び反応触媒等の例示や好ましい態様、並びに重縮合等の詳細については、特開2014-189002号公報の段落0051~0064、段落0121~0124、及び段落0087~0111の記載を参照することができる。
 (A)ジカルボン酸成分としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、イソソルビド、シクロヘキサンジカルボン酸、デカリンジカルボン酸、などの脂環族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルインダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸等の芳香族ジカルボン酸などのジカルボン酸もしくはそのエステル誘導体が挙げられる。
 (B)ジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール等の脂肪族ジオール類、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール類、ビスフェノールA、1,3―ベンゼンジメタノール,1,4-ベンゼンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレン、などの芳香族ジオール類等のジオール化合物が挙げられる。
 (A)ジカルボン酸成分としては、芳香族ジカルボン酸の少なくとも1種が用いられる場合が好ましい。より好ましくは、ジカルボン酸成分のうち、芳香族ジカルボン酸を主成分として含有する。芳香族ジカルボン酸以外のジカルボン酸成分を含んでもよい。このようなジカルボン酸成分としては、芳香族ジカルボン酸などのエステル誘導体等である。
 なお、「主成分」とは、ジカルボン酸成分に占める芳香族ジカルボン酸の割合が80質量%以上であることをいう。
 (B)ジオール成分としては、脂肪族ジオールの少なくとも1種が用いられる場合が好ましい。脂肪族ジオールとして、エチレングリコールを含むことができ、好ましくはエチレングリコールを主成分として含有する。
 なお、主成分とは、ジオール成分に占めるエチレングリコールの割合が80質量%以上であることをいう。
 ジオール成分の量は、ジカルボン酸成分及び必要に応じそのエステル誘導体の1モルに対して、1.015モル~1.50モルの範囲が好ましく、より好ましくは1.02モル~1.30モルであり、更に好ましくは1.025モル~1.10モルである。ジオール成分の量が1.015以上であると、エステル化反応が良好に進行する。また、ジオール成分の量が1.50モル以下であると、例えばエチレングリコールの2量化によるジエチレングリコールの副生が抑えられ、融点、ガラス転移温度、結晶性、耐熱性、耐加水分解性、及び耐候性などの特性を良好に保つことができる。
 原料樹脂は、カルボン酸基の数(a)と水酸基の数(b)との合計(a+b)が3以上である多官能モノマーを共重合成分として含むことが好ましい。「原料樹脂が多官能モノマーを共重合成分として含む」とは、原料樹脂が多官能モノマーに由来の構成単位を含むことを意味する。
 カルボン酸基の数(a)と水酸基の数(b)との合計(a+b)が3以上である多官能モノマーに由来の構成単位としては、以下に示すカルボン酸に由来の構成単位が挙げられる。
 カルボン酸基の数(a)が3以上のカルボン酸(即ち多官能モノマー)の例として、3官能の芳香族カルボン酸としては、例えば、トリメシン酸、トリメリット酸、ピロメリット酸、ナフタレントリカルボン酸、アントラセントリカルボン酸等が挙げられ、3官能の脂肪族カルボン酸としては、例えば、メタントリカルボン酸、エタントリカルボン酸、プロパントリカルボン酸、ブタントリカルボン酸等が挙げられ、4官能の芳香族カルボン酸としては、例えば、ベンゼンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ナフタレンテトラカルボン酸、アントラセンテトラカルボン酸、ペリレンテトラカルボン酸等が挙げられ、4官能の脂肪族カルボン酸として、例えば、エタンテトラカルボン酸、エチレンテトラカルボン酸、ブタンテトラカルボン酸、シクロペンタンテトラカルボン酸、シクロヘキサンテトラカルボン酸、アダマンタンテトラカルボン酸等が挙げられ、5官能以上の芳香族カルボン酸として、例えば、ベンゼンペンタカルボン酸、ベンゼンヘキサカルボン酸、ナフタレンペンタカルボン酸、ナフタレンヘキサカルボン酸、ナフタレンヘプタカルボン酸、ナフタレンオクタカルボン酸、アントラセンペンタカルボン酸、アントラセンヘキサカルボン酸、アントラセンヘプタカルボン酸、アントラセンオクタカルボン酸等が挙げられ、5官能以上の脂肪族カルボン酸として、例えば、エタンペンタカルボン酸、エタンヘプタカルボン酸、ブタンペンタカルボン酸、ブタンヘプタカルボン酸、シクロペンタンペンタカルボン酸、シクロヘキサンペンタカルボン酸、シクロヘキサンヘキサカルボン酸、アダマンタンペンタカルボン酸、アダマンタンヘキサカルボン酸等が挙げられる。
 これらのエステル誘導体や酸無水物等が、カルボン酸基の数(a)が3以上のカルボン酸(即ち多官能モノマー)の例として挙げられるが、これらに限定されるものではない。
 また、カルボン酸基の数(a)が3以上のカルボン酸(即ち多官能モノマー)としては、上述のカルボン酸のカルボキシ末端に、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸類及びその誘導体、そのオキシ酸類が複数個連なったもの等を付加させたものも好適に用いられる。
 水酸基数(b)が3以上の多官能モノマーの例として、3官能の芳香族化合物としては、例えば、トリヒドロキシベンゼン、トリヒドロキシナフタレン、トリヒドロキシアントラセン、トリヒドロキシカルコン、トリヒドロキシフラボン、トリヒドロキシクマリンが挙げられ、3官能の脂肪族アルコールとしては、例えば、グリセリン、トリメチロールプロパン、プロパントリオールが挙げられ、4官能の脂肪族アルコールとしては、例えば、ペンタエリスリトール等が挙げられる。また、水酸基数(b)が3以上の多官能モノマーとしては、上述の化合物の水酸基末端にジオール類を付加させた化合物も好ましく用いられる。
 これらは、1種単独で用いても、必要に応じて、複数種を併用してもよい。
 また、上記以外の他の多官能モノマーとして、一分子中に水酸基とカルボン酸基の両方を有し、カルボン酸基の数(a)と水酸基の数(b)との合計(a+b)が3以上であるオキシ酸類も挙げられる。オキシ酸類の例としては、ヒドロキシイソフタル酸、ヒドロキシテレフタル酸、ジヒドロキシテレフタル酸、トリヒドロキシテレフタル酸などを挙げることができる。また、他の多官能モノマーとしては、多官能モノマーのカルボキシ末端に、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸類及びその誘導体、そのオキシ酸類が複数個連なったもの等を付加させたものも好適に用いられる。
 多官能モノマーに由来の構成単位の原料樹脂中における含有比率は、原料樹脂中の全構成単位に対して、0.005モル%~2.5モル%が好ましい。多官能モノマーに由来の構成単位の含有比率は、より好ましくは0.020モル%~1モル%であり、更に好ましくは0.05モル%~0.5モル%である。
 原料樹脂中に3官能以上の多官能モノマーに由来の構成単位が存在することで、ポリエステルフィルムを成形した場合において、重縮合に用いられなかった官能基がポリエステルフィルム上に塗布形成される塗布層中の成分と水素結合、共有結合することで、塗布層とポリエステルフィルムとの密着性がより良好に保たれ、剥離の発生を効果的に防ぐことができる。また、3官能以上の多官能モノマーに由来の構成単位からポリエステル分子鎖を枝分かれされた構造が得られ、ポリエステル分子間の絡み合いを促すことができる。
 エステル化反応及び/又はエステル交換反応には、従来から公知の反応触媒を用いることができる。該反応触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、リン化合物などを挙げることができる。通常、ポリエステルの製造方法が完結する以前の任意の段階において、重合触媒として、アンチモン化合物、ゲルマニウム化合物、チタン化合物を添加することが好ましい。このような方法としては、例えば、ゲルマニウム化合物を例にとると、ゲルマニウム化合物粉体をそのまま添加することが好ましい。
 熱可塑性樹脂フィルムがポリエステルフィルムの場合、ポリエステルフィルムの固有粘度(IV;Intrinsic Viscosity)は、ポリエステルフィルムの耐加水分解性を高めて耐候性を向上させる観点から、0.55dL/g以上0.90dL/g以下であることが好ましく、0.60dL/g以上0.80dL/g以下であることがより好ましく、0.62dL/g以上0.78dL/g以下であることが更に好ましい。
 固有粘度(IV)は、溶液粘度ηと溶媒粘度ηの比η(=η/η;相対粘度)から1を引いた比粘度(ηsp=η-1)を濃度で割った値を濃度がゼロの状態に外挿した値である。IVは、ウベローデ型粘度計を用い、ポリエステルを1,1,2,2-テトラクロルエタン/フェノール(=2/3[質量比])混合溶媒に溶解させ、25℃の溶液粘度から求められる。
 熱可塑性樹脂フィルムがポリエステルフィルムの場合、ポリエステルフィルムの末端カルボキシ基の量〔末端COOH量(酸価ともいう)、AV;Acid Value〕は、5eq/トン以上35eq/トン以下が好ましい。末端COOH量は、6eq/トン以上30eq/トン以下がより好ましく、7eq/トン以上28eq/トン以下が更に好ましい。
 なお、本明細書中において、「eq/トン」は1トンあたりのモル当量を表す。
 AVは、ポリエステルをベンジルアルコール/クロロホルム(=2/3;体積比)の混合溶液に完全溶解させ、指示薬としてフェノールレッドを用い、基準液(0.025N KOH-メタノール混合溶液)で滴定し、その適定量から算出される値である。
-環状オレフィン樹脂-
 環状オレフィン樹脂の例としては、下記一般式(II)で表される繰り返し単位を少なくとも1種以上含む付加(共)重合体環状ポリオレフィン及び必要に応じて下記一般式(I)で表される繰り返し単位の少なくとも1種以上を更に含む付加(共)重合体環状ポリオレフィンが挙げられる。また、環状オレフィン樹脂の例としては、下記一般式(III)で表される環状繰り返し単位を少なくとも1種含む開環(共)重合体も好適に挙げられる。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)、(II)、及び(III)において、mは0~4の整数を表し、R~Rはそれぞれ独立に水素原子又は炭素数1~10の炭化水素基を表し、X~X及びY~Yはそれぞれ独立に水素原子、炭素数1~10の炭化水素基、ハロゲン原子、ハロゲン原子で置換された炭素数1~10の炭化水素基、-(CHCOOR11、-(CHOCOR12、-(CHNCO、-(CHNO、-(CHCN、-(CHCONR1314、-(CHNR1314、-(CHOZ、又は-(CHWを表す。なお、XとY、XとY、又はXとYは、互いに結合して(-CO)Oあるいは(-CO)NR15を構成してもよい。ここで、R11、R12、R13、R14、及びR15は水素原子又は炭素数1~20の炭化水素基を表し、Zは炭化水素基又はハロゲンで置換された炭化水素基を表し、WはSiR16 3-pを表し、nは0~10の整数を表す。また、Dはハロゲン原子、-OCOR16又は-OR16を表し、R16は炭素数1~10の炭化水素基を表し、pは0~3の整数を表す。
 X~X及びY~Yの全部又は一部の置換基に分極性の大きい官能基を導入することにより、光学フィルムの厚さ方向レターデーション(Rth)を大きくし、面内レターデーション(Re)の発現性を大きくすることができる。Re発現性の大きなフィルムは、製膜過程で延伸することによりRe値を大きくすることができる。
 ノルボルネン系付加(共)重合体は、特開平10-7732号公報、特表2002-504184号公報、米国特許公開第2004/229157A1号、国際公開第2004/070463A1号等に開示されている。ノルボルネン系付加(共)重合体は、ノルボルネン系多環状不飽和化合物同士を付加重合することによって得られる。また、ノルボルネン系付加(共)重合体は、必要に応じて、ノルボルネン系多環状不飽和化合物と、エチレン、プロピレン、ブテン;ブタジエン、イソプレンのような共役ジエン;エチリデンノルボルネンのような非共役ジエン;アクリロニトリル、アクリル酸、メタアクリル酸、無水マレイン酸、アクリル酸エステル、メタクリル酸エステル、マレイミド、酢酸ビニル、塩化ビニルなどの線状ジエン化合物と、を付加重合することで得てもよい。
 上市されているノルボルネン系付加(共)重合体としては、例えば、三井化学株式会社のアペル(商品名;ガラス転移温度(Tg)の異なる、例えば、APL8008T(Tg:70℃)、APL6013T(Tg:125℃)、又はAPL6015T(Tg:145℃)など)、ポリプラスチック株式会社のTOPAS8007、同6013、及び同6015等のペレット、並びにFerrania社のAppear3000などが挙げられる。
 ノルボルネン系重合体水素化物は、特開平1-240517号、特開平7-196736号、特開昭60-26024号、特開昭62-19801号、特開2003-159767号、又は特開2004-309979号等の各公報に開示されているように、多環状不飽和化合物を付加重合又はメタセシス開環重合した後、水素添加することにより製造することができる。
 ノルボルネン系重合体において、一般式(III)中、R~Rは水素原子又は-CHが好ましく、X及びYは水素原子、Cl、又は-COOCHが好ましく、その他の基は適宜選択される。
 上市されているノルボルネン系樹脂の例としては、JSR株式会社のアートン(Arton)G又はアートンF(商品名)、日本ゼオン株式会社のゼオノア(Zeonor)ZF14、ZF16、ゼオネックス(Zeonex)250、又はゼオネックス280(商品名)などが挙げられる。
<熱可塑性樹脂フィルムの製造方法>
 本開示の熱可塑性樹脂フィルムは、既述の比Er30及び最大値Ermax及び最小値Erminの差が予め定められた範囲を満たす限り、いずれの方法により作製されてもよい。本開示の熱可塑性樹脂フィルムは、以下に示す本開示の熱可塑性樹脂フィルムの製造方法により最も好適に作製される。
 以下、本開示の熱可塑性樹脂フィルムの製造方法について詳細に説明する。
 本開示の熱可塑性樹脂フィルムの製造方法は、原料樹脂を溶融押出し、冷却して熱可塑性樹脂シートを成形する工程(以下、「成形工程」ともいう。)と、熱可塑性樹脂シートに対して長手方向(MD)に第1の延伸を行って熱可塑性樹脂フィルムを得る工程(以下、「第1の延伸工程」ともいう。)と、熱可塑性樹脂フィルムを予熱する予熱部、予熱された熱可塑性樹脂フィルムを、熱可塑性樹脂フィルムの長手方向と直交するフィルム幅方向に緊張を与えて延伸する延伸部、緊張が与えられた熱可塑性樹脂フィルムを加熱して熱固定する熱固定部、及び、上記緊張を熱緩和する熱緩和部、並びに、熱緩和された熱可塑性樹脂フィルムを冷却する冷却部に上記の熱可塑性樹脂フィルムを順次搬送し、第2の延伸を行う工程(以下、「第2の延伸工程」ともいう。)と、を含み、
 第1の延伸での延伸倍率に対して第2の延伸での延伸倍率が大きく、かつ、第1の延伸での延伸倍率と第2の延伸での延伸倍率との積である面積倍率が12.8倍~15.5倍であり、
 第2の延伸を行う工程は、冷却部において、更にフィルム幅方向に緊張を与え、熱緩和部での熱緩和の終了時点のフィルム幅に対して-1.5%~3%の範囲で拡張又は縮小する。なお、例えば「-1.5%」は、「1.5%の縮小」を意味する。
 本開示の熱可塑性樹脂フィルムの製造方法では、熱可塑性樹脂シートにMD方向に第1の延伸を行い、その後さらにTD方向に第2の延伸を行って2軸延伸フィルムを作製するにあたり、第1の延伸での延伸倍率に対して第2の延伸での延伸倍率を大きくし、かつ、第1の延伸での延伸倍率と第2の延伸での延伸倍率との積である面積倍率を12.8倍~15.5倍とすることに加え、第2の延伸を行う工程において、延伸部で既にフィルム幅方向に緊張を与えて延伸した後の冷却部にて、さらにフィルム幅方向に緊張を与え、熱緩部での熱緩和の終了時点のフィルム幅に対して-1.5%~3%の範囲で拡張又は縮小する。上記と同様、例えば「-1.5%」は、「1.5%の縮小」を意味する。
 これにより、波状のシワ(筋状バリ)の発生が抑制された熱可塑性樹脂フィルムが得られる。
 本開示の熱可塑性樹脂フィルムの製造方法は、上記の通り、成形工程と、第1の延伸工程と、第2の延伸工程と、を少なくとも含み、さらに他の工程を含んでいてもよい。また、第1の延伸は、フィルムの長手方向(MD方向)への延伸を意味し、第2の延伸は、フィルムの幅方向(TD方向)への延伸を意味する。
 本開示の熱可塑性樹脂フィルムの製造方法において、第2の延伸工程は、予熱部と、延伸部と、熱固定部と、熱緩和部と、冷却部と、に順次、熱可塑性樹脂フィルムを搬送することで行われる。
 以下に、本開示の熱可塑性樹脂フィルムの製造方法における各工程について詳述する。
-成形工程-
 本開示の製造方法における成形工程では、原料樹脂を溶融押出し、冷却して熱可塑性樹脂シートを成形する。
 熱可塑性樹脂シートの成形は、原料樹脂を投入してシート状に溶融押出しされた熱可塑性樹脂をキャスティングロール上で冷却することにより行われる。
 原料樹脂を溶融押出する方法及び原料樹脂は、特に制限されないが、原料樹脂の合成に用いる触媒、及び重合方法等により固有粘度を所望の固有粘度とすることができる。
 原料樹脂の詳細については既述の通りである。
(溶融押出)
 成形工程では、原料樹脂を溶融押出し、その後冷却に供されて熱可塑性樹脂シートを成形する。
 原料樹脂の溶融押出は、例えば、1本又は2本以上のスクリュを備えた押出機を用い、原料樹脂の融点以上の温度に加熱し、スクリュを回転させて溶融混練しながら行われる。原料樹脂は、加熱及びスクリュによる混練により、押出機内で溶融して溶融樹脂(メルトともいう)となる。また、押出機内での熱分解(例えばポリエステルの加水分解)を抑制する観点から、押出機内を窒素置換して、原料樹脂の溶融押出しを行うことが好ましい。押出機は、混練温度が低く抑えられる点で2軸押出機が好ましい。
 溶融された溶融樹脂(メルト)は、ギアポンプ、濾過器等を通して、押出ダイから押出される。押出ダイは、単に「ダイ」ともいう〔JIS B 8650:2006、a)押出成形機、番号134参照〕。
 メルトは、単層で押出されてもよいし、多層で押出されてもよい。
 原料樹脂にポリエステルを用い、さらに原料樹脂に末端封止剤を含める場合、成形工程では、末端封止剤が添加されたポリエステル原料樹脂が溶融混練され、溶融混練時に末端封止剤と反応したポリエステル原料樹脂を溶融押出する。
 原料樹脂を溶融押出して冷却する場合、ダイから溶融樹脂(メルト)をキャスティングロール上に押出すことで、シート状に成形(即ちキャスト処理)してもよい。
 ダイからメルトを押し出す際、キャスティングロール上で静電印加法、エアーナイフ法、エアーチャンバー法、バキュームノズル法、タッチロール法等の方法を適用して、キャスティングロールと溶融押出されたシートとの密着を上げることが好ましい。中でも、例えば環状オレフィン構造を有する重合体樹脂を原料樹脂として用いる場合、タッチロール法によりキャスティングロールとシートとの密着を高めることが好ましい。タッチロール法は、キャスティングロール上にタッチロールを載置してシートの表面を整形する方法である。タッチロールは、剛性の高い通常のロールではなく、弾性を有するロールが好ましい。
 タッチロールの温度としては、溶融押出されたシートのガラス転移温度をTgとすると、(Tg-10℃)を超え(Tg+30℃)以下が好ましく、(Tg-7℃)~(Tg+20℃)がより好ましく、(Tg-5℃)~(Tg+10℃)が更に好ましい。キャスティングロールの温度も同様の温度域が好ましい。
 タッチロールの例としては、特開平11-314263号公報又は特開平11-235747号公報に記載のタッチロールが挙げられる。
 キャスト処理により得られたシート状の成形体(熱可塑性樹脂シート)の厚みは、0.1mm~3mmが好ましく、0.2mm~2mmがより好ましく、0.3mm~1.5mmがさらに好ましい。
 熱可塑性樹脂シートの厚みが3mm以下であると、メルトの蓄熱による冷却遅延を回避することができる。また、熱可塑性樹脂シートの厚みが0.1mm以上であると、押出しから冷却までの間に、熱可塑性樹脂シート(好ましくはポリエステルシート)中の水酸基及びカルボキシ基が熱可塑性樹脂(好ましくはポリエステル)内部に拡散され、加水分解発生の要因となる水酸基及びカルボキシ基が樹脂表面に露出することが抑制される。
 押出ダイから押出されたメルトを冷却する手段は、特に制限されず、メルトに冷風を当てること、キャスティングロールに接触させること、水を霧吹きすること等のいずれでもよい。メルトを冷却する手段は、いずれか1つの手段のみを実施してもよいし、2つ以上の手段を組み合わせて実施してもよい。
 メルトを冷却する手段は、連続運転時のフィルム表面へのオリゴマー付着防止の観点から、冷風による冷却及びキャスティングロールを用いた冷却の少なくとも一方が好ましい。さらには、押出機から押出されたメルトを冷風で冷却し、かつ、メルトをキャスティングロールに接触させて冷却することが特に好ましい。
 また、キャスティングロール等を用いて冷却された熱可塑性樹脂シートは、剥ぎ取りロール等の剥ぎ取り部材を用いて、キャスティングロール等の冷却部材から剥ぎ取られる。
-第1の延伸工程-
 本開示の製造方法における第1の延伸工程では、上記の成形工程で成形された熱可塑性樹脂シートに対して、長手方向(MD方向)に第1の延伸(以下、適宜「縦延伸」ともいう。)を行って熱可塑性樹脂フィルムを得る。
 第1の延伸は、例えば、熱可塑性樹脂シートを挟む1対のニップロールに熱可塑性樹脂シートを通して、熱可塑性樹脂シートの長手方向に熱可塑性樹脂シートを搬送しながら、熱可塑性樹脂シートの搬送方向に並べた2対以上のニップロール間で緊張を与えることによって行うことができる。具体的には、例えば、熱可塑性樹脂シートの搬送方向上流側に1対のニップロールA、下流側に1対のニップロールBを設置した場合、熱可塑性樹脂シートを搬送する際に下流側のニップロールBの回転速度を、上流側のニップロールAの回転速度より速くすることで、熱可塑性樹脂シートが搬送方向(MD方向)に延伸される。なお、上流側及び下流側のそれぞれに、各々独立に、2対以上のニップロールを設置してもよい。また、熱可塑性樹脂シートの第1の延伸は、ニップロールを備えた延伸装置を用いて行ってもよい。
 第1の延伸工程における熱可塑性樹脂シートの第1の延伸時における延伸倍率は、後述する第2の延伸工程における第2の延伸での延伸倍率より小さく調整されることが好ましい。第1の延伸による延伸倍率が大きいほど常温での弾性率は高くなるが、加熱により緩和しやすく、加熱処理等により再加熱された際に弾性率が低くなりやすい。そのため、第1の延伸による延伸倍率を、TD方向への第2の延伸による延伸倍率より小さくすること、換言すると第1の延伸による延伸倍率に対して第2の延伸による延伸倍率を大きくすることにより、波状のシワから派生する筋状バリの発生が抑制された熱可塑性樹脂フィルムを得やすい。
 第1の延伸工程における熱可塑性樹脂シートの延伸倍率としては、2倍~5倍が好ましく、2.5倍~4.0倍がより好ましく、2.8倍~3.5倍がさらに好ましい。
 また、第1の延伸の延伸倍率及び第2の延伸の延伸倍率の積で表される面積倍率としては、第1の延伸及び第2の延伸が施される前の熱可塑性樹脂シートの面積の12.8倍~15.5倍とされる。
 面積倍率が大きいほど常温での弾性率は高くなるが、この場合の弾性率は加熱により緩和されやすく、加熱処理等により再加熱された際に弾性率が低くなりやすい。本開示において、面積倍率が12.8倍以上であると、フィルム幅方向における分子配向が良好になるため、筋状バリの発生が効果的に抑制される。また、面積倍率が15.5倍以下であると、加熱処理に供された際に分子配向が緩和されにくい状態を維持しやすい。
 面積倍率は、上記と同様の理由から、13.5倍~15.2倍が好ましく、14.0倍~15.0倍がより好ましい。
 熱可塑性樹脂フィルムの第1の延伸時の温度は、熱可塑性樹脂フィルムのガラス転移温度をTgとすると、(Tg-20℃)~(Tg+50℃)が好ましく、より好ましくは(Tg-10℃)~(Tg+40℃)であり、さらに好ましくは(Tg℃)~(Tg+30℃)である。
 なお、熱可塑性樹脂フィルムを加熱する手段としては、ニップロール等のロールを用いて延伸する場合は、ロール内部にヒーターや温溶媒を流すことのできる配管を設けることで、ロールに接する熱可塑性樹脂フィルムを加熱することができる。また、ロールを用いない場合においても、熱可塑性樹脂フィルムに温風を吹きかけたり、ヒーター等の熱源に接触させ、又は熱源の近傍を通過させることにより、熱可塑性樹脂フィルムを加熱することができる。
 本開示の熱可塑性樹脂フィルムの製造方法では、第1の延伸工程の後に、さらにTD方向にフィルムを延伸する第2の延伸工程を含む。これにより、本開示の熱可塑性樹脂フィルムの製造方法では、熱可塑性樹脂フィルムを、熱可塑性樹脂フィルムの長手方向(MD)と、熱可塑性樹脂フィルムの長手方向と直交するフィルム幅方向(TD)と、の少なくとも2軸に延伸することになる。MD方向及びTD方向への延伸は、それぞれ少なくとも1回ずつ行えばよい。
 なお、「熱可塑性樹脂フィルムの長手方向(MD)と直交するフィルム幅方向(TD)」とは、熱可塑性樹脂フィルムの長手方向(MD)と垂直(90°)をなす方向を意図するものであるが、機械的な誤差などから実質的に長手方向(MD)に対する角度が90°とみなせる方向(例えば、MD方向に対し90°±5°の方向)が含まれる。
 本開示において、2軸延伸する方法としては、第1の延伸(縦延伸)と後述の第2の延伸(横延伸)とを分離して行う逐次2軸延伸方法のほか、第1の延伸(縦延伸)と第2の延伸(横延伸)とを同時に行う同時2軸延伸方法のいずれであってもよい。第1の延伸と第2の延伸とは、各々独立に2回以上行ってもよい。縦延伸及び横延伸はいずれを先に行っても、波状のシワの発生を抑制することができ、2軸延伸の態様としては、例えば、縦延伸→横延伸、縦延伸→横延伸→縦延伸、縦延伸→縦延伸→横延伸、横延伸→縦延伸などの延伸態様が挙げられる。中でも、2軸延伸の態様としては、製造のし易さ、即ち、製造適性等の点からは、本開示の製造方法のように、縦延伸→横延伸が好ましい。
-第2の延伸工程-
 本開示の製造方法における第2の延伸工程では、上記の第1の延伸工程で第1の延伸が施された熱可塑性樹脂フィルムを、延伸された熱可塑性樹脂フィルムを予熱する予熱部、予熱された熱可塑性樹脂フィルムを、熱可塑性樹脂フィルムの長手方向と直交するフィルム幅方向に緊張を与えて延伸する延伸部、緊張が与えられた熱可塑性樹脂フィルムを加熱して熱固定する熱固定部、及び、上記緊張を熱緩和する熱緩和部、並びに、熱緩和された熱可塑性樹脂フィルムを冷却する冷却部に順次搬送し、かつ、上記冷却部において、更にフィルム幅方向に緊張を与え、熱緩和部での熱緩和の終了時点のフィルム幅に対して-1.5%~3%の範囲で拡張又は縮小する。これにより、第2の延伸(以下、適宜「横延伸」ともいう。)が施される。ここで、例えば「-1.5%」は、「1.5%の縮小」を意味する。
 第2の延伸工程は、第1の延伸(縦延伸)後の熱可塑性樹脂フィルムを長手方向に直交するフィルム幅方向に第2の延伸(横延伸)を行う工程であり、具体的には、第2の延伸(横延伸)を、以下の(a)~(e)に順次、熱可塑性樹脂フィルムを搬送して行うことができる。
(a)縦延伸後の熱可塑性樹脂フィルムを延伸可能な温度に予熱する予熱部、
(b)予熱された熱可塑性樹脂フィルムを、長手方向と直交するフィルム幅方向に緊張を与えて延伸する延伸部、
(c)縦延伸及び横延伸を行った後の熱可塑性樹脂フィルムを加熱することで結晶化させて熱固定する熱固定部、
(d)熱固定された熱可塑性樹脂フィルムを加熱し、熱可塑性樹脂フィルムの緊張を熱緩和してフィルムの残留歪みを除去する熱緩和部、並びに、
(e)熱緩和後の熱可塑性樹脂フィルムを冷却し、かつ、同時にフィルム幅方向に緊張を与え、熱緩和部での熱緩和の終了時点のフィルム幅に対して-1.5%~3%の範囲で拡張又は縮小する冷却部
 本開示の製造方法の第2の延伸工程における(e)冷却部では、(b)延伸部でのフィルム幅方向(TD)への延伸後に更にフィルム幅方向に緊張を与え、熱緩和部での熱緩和の終了時点のフィルム幅に対して-1.5%~3%の範囲で熱可塑性樹脂フィルムを拡張又は縮小する。
 冷却部において、熱可塑性樹脂フィルムのTD方向への拡張比率又は縮小比率が、熱緩和部での熱緩和の終了時点のフィルム幅に対して-1.5%以上であると、TDにおける弾性率の上昇効果が得られやすい。また、熱可塑性樹脂フィルムのTD方向への拡張比率又は縮小比率が、熱緩和部での熱緩和の終了時点のフィルム幅に対して3%以下であると、フィルムの破断抑制に有効である。
 面積倍率及び第2の延伸の際の延伸倍率が大きいほど常温下での弾性率は高められるが、熱により緩和されやすく、加熱処理に伴う弾性率の低下が生じやすい。そのため、本開示の製造方法では、第1の延伸及び第2の延伸による面積倍率の上昇を抑えつつ、熱固定を経て結晶化が進んだフィルムを強制的に再延伸することにより、緩和を抑制しつつ弾性率を向上させることが可能になる。
 上記のうち、冷却部における、熱可塑性樹脂フィルムのTD方向への拡張比率又は縮小比率としては、上記と同様の理由から、熱緩和部での熱緩和の終了時点のフィルム幅に対して、0.0%~2.0%がより好ましく、1.5%~1.8%が更に好ましい。
 本開示において、「熱緩和部での熱緩和の終了時点」とは、熱可塑性樹脂フィルムが冷却部に侵入する時点、すなわち残留応力を緩和させる際に熱可塑性樹脂フィルムが幅方向に縮小する速度が変化する時点を指す。
 第2の延伸工程では、上記構成で熱可塑性樹脂フィルムが横延伸される態様であればその具体的な手段は制限されないが、上記構成をなす各工程の処理が可能な横延伸装置又は2軸延伸機を用いて行うことが好ましい。
-2軸延伸機-
 図1に示すように、2軸延伸機100は、1対の環状レール60a及び60bと、各環状レールに取り付けられ、レールに沿って移動可能な把持部材2a~2lとを備えている。環状レール60a及び60bは、熱可塑性樹脂フィルム200を挟んで互いに対称配置されており、把持部材2a~2lで熱可塑性樹脂フィルム200を把持し、レールに沿って移動させることによりフィルム幅方向に延伸可能なようになっている。
 2軸延伸機100は、熱可塑性樹脂フィルム200を予熱する予熱部10と、予熱された熱可塑性樹脂フィルム200を、熱可塑性樹脂フィルムの矢印MDの方向(長手方向)と直交する方向である矢印TDの方向(フィルム幅方向)に緊張を与えて延伸する延伸部20と、緊張が与えられた熱可塑性樹脂フィルムに緊張を与えたまま加熱して熱固定するする熱固定部30と、熱固定した熱可塑性樹脂フィルムを加熱して熱固定した熱可塑性樹脂フィルムの緊張を熱緩和する熱緩和部40と、熱緩和部を経て熱緩和された熱可塑性樹脂フィルムを冷却する冷却部50と、を含む領域で構成されている。
 環状レール60aには、環状レール60aに沿って移動可能な把持部材2a、2b、2e、2f、2i、及び2jが取り付けられており、また環状レール60bには、環状レール60bに沿って移動可能な把持部材2c、2d、2g、2h、2k、及び2lが取り付けられている。把持部材2a、2b、2e、2f、2i、及び2jは、熱可塑性樹脂フィルム200のTD方向の一方の端部を把持し、把持部材2c、2d、2g、2h、2k、及び2lは、熱可塑性樹脂フィルム200のTD方向の他方の端部を把持する。把持部材2a~2lは、一般にチャック、クリップ等と称される。
 把持部材2a、2b、2e、2f、2i、及び2jは、環状レール60aに沿って反時計回りに移動し、把持部材2c、2d、2g、2h、2k、及び2lは、環状レール60bに沿って時計回りに移動する。
 把持部材2a~2dは、予熱部10において熱可塑性樹脂フィルム200の端部を把持し、把持したまま環状レール60a又は60bに沿って移動し、延伸部20や、把持部材2e~2hが位置する熱緩和部40を経て、把持部材2i~2lが位置する冷却部50まで進行する。その後、把持部材2a及び2bと、把持部材2c及び2dとは、搬送方向順に、冷却部50のMD方向下流側の端部で熱可塑性樹脂フィルム200の端部を離した後、さらに環状レール60a又は60bに沿って移動し、予熱部10に戻る。この際、熱可塑性樹脂フィルム200は、矢印MD方向に移動して順次、予熱部10での予熱、延伸部20での延伸、熱固定部30での熱固定、熱緩和部40での熱緩和、冷却部50での冷却が行われ、横延伸される。把持部材2a~2lの予熱部等の各領域での移動速度が、熱可塑性樹脂フィルム200の搬送速度となる。
 把持部材2a~2lは、各々独立に、移動速度を変化することができる。
 2軸延伸機100は、延伸部20において、熱可塑性樹脂フィルム200をTD方向に延伸する横延伸を可能とするものであるが、把持部材2a~2lの移動速度を変化させることにより、熱可塑性樹脂フィルム200をMD方向にも延伸することができる。すなわち、2軸延伸機100を用いて同時2軸延伸を行うことも可能である。
 熱可塑性樹脂フィルム200のTD方向の端部を把持する把持部材は、図1では2a~2lのみを図示したが、熱可塑性樹脂フィルム200を支えるため、2軸延伸機100は、2a~2lのほかに図示しない把持部材が取り付けられている。なお、以下において、把持部材2a~2lを「把持部材2」と総称することがある。
(a.予熱部)
 予熱部では、第1の延伸(縦延伸)工程で縦延伸した後の熱可塑性樹脂フィルムを延伸可能な温度に予熱する。
 図1に示すように、予熱部10において熱可塑性樹脂フィルム200を予熱する。予熱部10では、熱可塑性樹脂フィルム200を延伸する前に予め加熱し、熱可塑性樹脂フィルム200の横延伸を容易に行なえるようにする。
 予熱部終了点における膜面温度(以下、「予熱温度」ともいう。)は、熱可塑性樹脂フィルム200のガラス転移温度をTgとするとき、(Tg-10℃)~(Tg+60℃)であることが好ましく、(Tg℃)~(Tg+50℃)であることがより好ましい。
 なお、予熱部終了点は、熱可塑性樹脂フィルム200の予熱を終了する時点、すなわち予熱部10の領域から熱可塑性樹脂フィルム200が離れる位置をいう。
(b.延伸部)
 延伸部では、予熱部で予熱された熱可塑性樹脂フィルムを長手方向(MD方向)と直交する幅方向(TD方向)に緊張を与えて延伸(横延伸)する。
 具体的には、例えば図1に示す延伸部20において、予熱された熱可塑性樹脂フィルム200を、少なくとも熱可塑性樹脂フィルム200の長手方向と直交する矢印TDの方向に緊張を与え、熱可塑性樹脂フィルム200を横延伸する。例えば図1に示すように、熱可塑性樹脂フィルムの幅長を、幅L0から幅L1に引き伸ばして広幅にする。
 熱可塑性樹脂フィルム200の長手方向(MD)と直交する方向(TD)への延伸(横延伸)は、熱可塑性樹脂フィルム200の長手方向(MD)と垂直(90°)の角度の方向に延伸することを意図するものであるが、機械誤差を考慮し、90°のみに限られず、フィルムのMD方向と垂直とみなせる角度(90°±5°)の方向に延伸することも含まれる。
 延伸部20において、熱可塑性樹脂フィルム200の面積倍率(第1の延伸の延伸倍率と第2の延伸の延伸倍率との積)は、延伸前の熱可塑性樹脂フィルム200の面積の12.8倍~15.5倍である。詳細については、既述の通りである。
 また、熱可塑性樹脂フィルム200の横延伸時の膜面温度(以下、「第2の延伸温度」ともいう。)としては、100℃~150℃が好ましく、110℃~140℃がより好ましく、120℃~130℃が更に好ましい。
 第2の延伸温度が100℃以上であると、降伏応力が大きくなり過ぎることによる破断のおそれが低くなる。また、第2の延伸温度(膜面温度)の調節により、表面粗さRaを既述の範囲に調整することが可能であり、フィルムがTDに座屈しにくく、薄手の熱可塑性樹脂フィルムを加熱搬送した場合でも波状のシワが発生しにくくなる。
 また、第2の延伸温度が150℃以下であると、フィルム自体の結晶化が抑えられるので、破断し難くなる。
 熱可塑性樹脂フィルム200の横延伸時の延伸速度としては、例えば、5%/秒以上であり、8%/秒以上が好ましく、10%/秒以上がより好ましく、15%/秒以上が更に好ましい。
 熱可塑性樹脂フィルム200の横延伸時の延伸速度の上限としては、例えば、50%/秒以下であり、45%/秒以下が好ましく、40%/秒以下がより好ましく、30%以上が更に好ましく、20%/秒以下が特に好ましい。
 ここで、熱可塑性樹脂フィルム200の横延伸時の延伸速度の範囲は、上記の上限値及び下限値のそれぞれを任意で組み合わせて、適宜、設定することができる。熱可塑性樹脂フィルム200の横延伸時の延伸速度の範囲としては、例えば、8%/秒~45%/秒があり、15%/秒~40%/秒があり、10%/秒~30%/秒があり、10%/秒~20%/秒がある。
 なお、延伸速度とは、熱可塑性樹脂フィルムが延伸前の長さdの状態から1秒間に延伸された長さΔdを、延伸前の熱可塑性樹脂フィルムの長さ(すなわち予熱部を経た時点の長さ)dで除した値を百分率で表したものである。
 延伸速度が上記の範囲内であることで、比較的ゆっくりとした速さで延伸されるので、延伸ムラが抑えられ、フィルム表面の粗度を適度に低く抑えることができる。
 また、延伸速度が8%/秒以上であると、延伸工程が長くなり過ぎることがなく、滞留時間が長くなることに起因したフィルムの結晶化が抑えられるので、破断し難くなる。更に、延伸速度が45%/秒以下であると、フィルムの破断抑制に有効、Raが大きくなり過ぎないように抑えることができる。
 既述のように、把持部材2a~2lは、各々独立に移動速度を変化させることができる。したがって、例えば、予熱部10における把持部材2の移動速度よりも、延伸部20、熱固定部30等の延伸部20MD方向下流側における把持部材2の移動速度を速めることで、熱可塑性樹脂フィルム200を搬送方向(MD方向)に延伸する縦延伸を併せて行うことも可能である。
 第2の延伸工程での熱可塑性樹脂フィルム200の縦延伸は、延伸部20のみで行ってもよいし、後述する熱固定部30、熱緩和部40、又は冷却部50で行ってもよい。また、第2の延伸工程での熱可塑性樹脂フィルム200の縦延伸は、延伸部20、熱固定部30、熱緩和部40、及び冷却部50のうち、複数の箇所で行ってもよい。
(c.熱固定部)
 熱固定部では、既に縦延伸及び横延伸が施された後の熱可塑性樹脂フィルムを加熱し結晶化させて熱固定する。
 熱固定とは、延伸部20において熱可塑性樹脂フィルム200に緊張を与えたまま加熱し、熱可塑性樹脂(例えばポリエステル)を結晶化させることをいう。
 図1に示す熱固定部30では、緊張が与えられた熱可塑性樹脂フィルム200に対し、熱可塑性樹脂フィルム200の表面の最高到達膜面温度(本明細書中において、「熱固定温度」、「T熱固定」ともいう。)を160℃~240℃の範囲に制御してフィルムを加熱することが好ましい。
 熱固定温度が160℃以上であると、熱可塑性樹脂(例えばポリエステル)が結晶化し易く、熱可塑性樹脂(例えばポリエステル)の分子を伸びた状態で固定化することができ、熱可塑性樹脂フィルムの耐加水分解性が高められる。また、熱固定温度が240℃以下であると、熱可塑性樹脂(例えばポリエステル)の分子同士が絡み合った部分で滑りが生じにくく、分子が縮みにくいため、熱可塑性樹脂フィルムの耐加水分解性の低下が抑制され。換言すれば、熱固定温度が160℃~240℃となるように加熱することで、熱可塑性樹脂(例えばポリエステル)の分子の結晶を配向させて、熱可塑性樹脂フィルムの耐加水分解性を高めることができる。
 熱固定温度は、上記同様の理由から、170℃~230℃の範囲が好ましく、175℃~225℃の範囲がより好ましい。
 なお、最高到達膜面温度(熱固定温度)は、熱可塑性樹脂フィルムの表面に熱電対を接触させて測定される値である。
 さらに、熱固定温度を160℃~240℃に制御するとき、フィルム幅方向における最高到達膜面温度のバラツキを0.5℃以上10.0℃以下とすることが好ましい。フィルム幅方向において、フィルムの最高到達膜面温度のバラツキが、0.5℃以上であることで、後工程での搬送時シワの点で有利であり、また、バラツキを10.0℃以下に抑えることで、幅方向における結晶化度のバラツキが抑制される。これにより、フィルム幅方向での弛み差が軽減し、製造過程でのフィルム面への傷の発生が防止され、耐加水分解性が高められる。
 上記の中では、最高到達膜面温度のバラツキは、上記と同様の理由から、0.5℃以上7.0℃以下がより好ましく、0.5℃以上5.0℃以下が更に好ましく、0.5℃以上4.0℃以下が特に好ましい。
 また、熱固定時のフィルムへの加熱は、フィルムの一方の側からのみ行ってもよいし、両側から行うようにしてもよい。例えば、フィルム成形工程で溶融押出後にキャスティングロール上で冷却されたときには、成形された熱可塑性樹脂フィルムは一方の面とその反対側の面とで冷やされ方が異なっているため、フィルムがカールしやすくなっている。そのため、本熱固定部での加熱を、フィルム成形工程でキャスティングロールと接触させた面に対して行うようにすることが好ましい。熱固定部での加熱面をキャスティングロールと接触させた面、すなわち冷却面とすることで、カールを解消することができる。
 この場合、加熱は、熱固定部での加熱面における加熱直後の表面温度が、加熱面と反対側の非加熱面の表面温度に比べて0.5℃以上5.0℃以下の範囲で高くなるように行なわれることが好ましい。熱固定時の加熱面の温度がその反対側の面より高く、その表裏間の温度差が0.5~5.0℃であることで、フィルムのカールがより効果的に解消される。カールの解消効果の観点からは、加熱面とその反対側の非加熱面との間の温度差は、0.7~3.0℃の範囲がより好ましく、0.8℃以上2.0℃以下が更に好ましい。
 また、熱固定部30及び熱緩和部40の少なくとも一方において、熱可塑性樹脂フィルムの加熱方法は、熱風を吹き付ける方法でもよいし、ヒーターにより選択的に輻射加熱する方法してもよい。熱可塑性樹脂フィルムに対し、選択的に輻射加熱を行うことにより、TD方向の膜面温度分布を均一に制御することができ、作製される熱可塑性樹脂フィルムの品質(例えば熱収縮率)を均一なものにすることができる。
 熱緩和部40においてフィルムを選択的に輻射加熱する場合、熱固定部30での輻射加熱を省略してもよいし、熱固定部30での輻射加熱を並行して行ってもよい。
 輻射加熱が可能なヒーターとしては、例えば、赤外線ヒーターが挙げられ、特にセラミック製のヒーター(セラミックスヒーター)が好ましい。
 熱固定部においてフィルムを加熱する場合、熱固定部での滞留時間を5秒以上50秒以下とすることが好ましい。滞留時間とは、フィルムが熱固定部内で加熱されている状態が継続している時間である。滞留時間は、5秒以上であると、加熱時間に対する結晶化度変化が小さくなるため幅方向の結晶化度ムラが比較的生じにくくなる点で有利であり、また50秒以下であると、テンターのライン速度を極端に小さくする必要がないため生産性の点で有利である。
 中でも、滞留時間は、上記同様の理由から、8秒以上40秒以下が好ましく、10秒以上30秒以下がより好ましい。
(d.熱緩和部)
 熱緩和部では、熱固定された熱可塑性樹脂フィルムを加熱し、熱可塑性樹脂フィルムの緊張を熱緩和してフィルムの残留歪みを除去する。この熱緩和により、フィルムは縦方向及び横方向の少なくとも一方を収縮させる。
 熱緩和は、熱固定された熱可塑性樹脂フィルムを加熱し、熱可塑性樹脂フィルムの緊張を熱緩和するものであり、熱緩和部での熱可塑性樹脂フィルムへの加熱は、次のように行うことが好ましい。
 図1に示す熱緩和部40において、熱可塑性樹脂フィルム200の表面の最高到達膜面温度が、熱固定部30における熱可塑性樹脂フィルム200の最高到達膜面温度(T熱固定)よりも5℃以上低い温度となるように、熱可塑性樹脂フィルム200を加熱する態様が好ましい。
 以下、熱緩和時における熱可塑性樹脂フィルム200の表面の最高到達膜面温度を「熱緩和温度(T熱緩和)」ともいう。
 熱緩和部40において、熱緩和温度(T熱緩和)を、熱固定温度(T熱固定)よりも5℃以上低い温度(T熱緩和≦T熱固定-5℃)で加熱して緊張を解く(延伸張力を小さくする)ことで、熱可塑性樹脂フィルムの寸法安定性をより向上させることができる。
 T熱緩和が「T熱固定-5℃」以下であると、熱可塑性樹脂フィルムの耐加水分解性により優れる。また、T熱緩和は、寸法安定性が良好になる点で、100℃以上であることが好ましい。
 更には、T熱緩和は、100℃以上で、かつT熱固定よりも15℃以上低い温度領域(100℃≦T熱緩和≦T熱固定-15℃)であることが好ましく、110℃以上で、かつT熱固定よりも25℃以上低い温度領域(110℃≦T熱緩和≦T熱固定-25℃)であることがより好ましく、120℃以上で、かつT熱固定よりも30℃以上低い温度領域(120℃≦T熱緩和≦T熱固定-30℃)であることが特に好ましい。
 なお、T熱緩和は、熱可塑性樹脂フィルム200の表面に熱電対を接触させることで測定される値である。
(e.冷却部)
 冷却部では、熱緩和部で熱緩和した後の熱可塑性樹脂フィルムを冷却する。また、熱可塑性樹脂フィルムの冷却と同時にフィルム幅方向に緊張を与え、熱緩和部での熱緩和の終了時点のフィルム幅に対して-1.5%~3%の範囲で拡張又は縮小する。
 図1に示すように、冷却部50では、熱緩和部40を経た熱可塑性樹脂フィルム200が冷却される。熱固定部30や熱緩和部40で加熱された熱可塑性樹脂フィルム200を冷却することにより、熱可塑性樹脂フィルム200の形状が固定化される。図1には、幅長L2の2軸延伸熱可塑性樹脂フィルムが示されている。
 ここで、冷却部50におけるフィルム幅の拡張には、既述の延伸部20における延伸と同様の方法が用いられればよい。
 また、冷却部50におけるフィルム幅の縮小には、既述の熱緩和部40におけるフィルムの緊張の熱緩和と同様の方法が用いられればよい。
 熱可塑性樹脂フィルムを把持する把持部材が熱可塑性樹脂フィルムから離れることで、熱可塑性樹脂フィルムは冷却部の領域から離れる。例えば図1に示す把持部材2jがP点において、また把持部材2lがQ点において、それぞれ、熱可塑性樹脂フィルム200を離す際の、冷却部50の端部(MD方向の端部)はP点とQ点とを結んだ直線で表される。
 冷却部50における熱可塑性樹脂フィルム200の冷却部出口における熱可塑性樹脂フィルムの表面(膜面)の温度(以下、「冷却温度」ともいう。)は、熱可塑性樹脂フィルム200のガラス転移温度Tgとしたとき、Tg+50℃よりも低いことが好ましい。具体的には、冷却温度は、25℃~110℃であることが好ましく、より好ましくは25℃~95℃、さらに好ましくは25℃~80℃である。冷却温度が上記範囲であることで、クリップ把持を解いた後にフィルムが不均一に縮むことを防止することができる。
 ここで、冷却部出口とは、熱可塑性樹脂フィルム200が冷却部50から離れる際の冷却部50の端部をいい、熱可塑性樹脂フィルム200を把持する把持部材2(図1では、把持部材2j及び2l)が、熱可塑性樹脂フィルム200を離すときの位置、即ちP点とQ点とを結んだ直線部をいう。
 さらに、冷却部50では、熱可塑性樹脂フィルムの表面(膜面)の温度を150℃から70℃まで冷却するときの平均冷却速度を、2℃/秒~100℃/秒の範囲とすることが好ましい。
 ここで、平均冷却速度は、冷却ゾーンでのフィルムの膜温を放射温度計により実測することで求められる。すなわち、膜温が150℃になる地点と膜温が70℃になる地点の距離Zmと、フィルムの搬送速度Sm/秒から、150から70℃までの冷却時間(Z÷S)秒を求める。そこから更に(150-70)÷(Z÷S)を計算することにより、平均冷却速度が求められる。
 平均冷却速度を2℃/秒以上とすることで、延伸装置での熱可塑性樹脂フィルムの冷却不足が抑制され、熱可塑性樹脂フィルムの粘着性が低くなる。そのため、冷却部出口から熱可塑性樹脂フィルムが離れた後の工程で、熱可塑性樹脂フィルムが、フィルム搬送用のロールに粘着する等の故障が生じにくくなる。また、平均冷却速度を100℃/秒以下とすることで、熱可塑性樹脂フィルムの急冷が防止され、フィルム面内に残留応力ムラが生じにくく、熱収縮率のムラが抑制され、筋状バリが生じ難くなる。
 平均冷却速度は、4℃/秒~80℃/秒がより好ましく、5℃/秒~50℃/秒が更に好ましい。
 第2の延伸工程における予熱、延伸、熱固定、熱緩和、及び冷却において、熱可塑性樹脂フィルム200を加熱し、又は冷却する温度制御手段としては、熱可塑性樹脂フィルム200に温風や冷風を吹きかけたり、熱可塑性樹脂フィルム200を、温度制御可能な金属板の表面に接触させ、又は金属板の近傍を通過させることが挙げられる
(フィルムの回収)
 冷却工程で冷却された熱可塑性樹脂フィルム200は、TD方向両端のクリップで把持された把持部分をカットし、ロール状に巻き取られる。
 第2の延伸工程においては、製造される熱可塑性樹脂フィルムの耐加水分解性及び寸法安定性を、より高めるために、次の手法により、延伸した熱可塑性樹脂フィルムの緩和を行うことが好ましい。
 本開示では、第1の延伸(縦延伸)工程の後に第2の延伸工程を行った後、冷却部50でMD方向の緩和を行うことが好ましい。すなわち、
 予熱部10において熱可塑性樹脂フィルム200の幅方向(TD)の両端部を、片端部につき、少なくとも2つの把持部材を用いて把持する。例えば、熱可塑性樹脂フィルム200の幅方向(TD)の片端部の一方を把持部材2a及び2bで把持し、他方を把持部材2c及び2dで把持する。次いで、把持部材2a~2dを移動させることにより、予熱部10から冷却部50まで熱可塑性樹脂フィルム200を搬送する。
 かかる搬送において、予熱部10における熱可塑性樹脂フィルム200の幅方向(TD方向)の片端部を把持する把持部材2a(2c)と、把持部材2a(2c)に隣接する他の把持部材2b(2d)との間隔よりも、冷却部50における熱可塑性樹脂フィルム200の幅方向の片端部を把持する把持部材2a(2c)と、把持部材2a(2c)に隣接する他の把持部材2b(2d)との間隔を狭めることで、熱可塑性樹脂フィルム200の搬送速度を小さくする。かかる手法によって、冷却部50でMD方向の緩和を行うことができる。
 熱可塑性樹脂フィルム200のMD方向の緩和は、熱固定部30、熱緩和部40、及び冷却部50の少なくとも一部において行ってもよい。
 上記のように、把持部材2a-2b間の間隔、及び把持部材2c-2d間の間隔を、MD方向上流側よりも下流側で狭めることで、熱可塑性樹脂フィルム200のMD方向の緩和を行うことができる。したがって、MD方向の熱緩和を熱固定部30又は熱緩和部40で行う場合は、把持部材2a~2dが熱固定部30又は熱緩和部40に到達したときに、把持部材2a~2dの移動速度を遅くして、熱可塑性樹脂フィルム200の搬送速度を小さくし、把持部材2a-2b間の間隔、及び把持部材2c-2d間の間隔を、予熱部10における間隔よりも狭めればよい。
 以下、本発明の実施形態を実施例により更に具体的に説明する。但し、本発明の実施形態は、その主旨を越えない限り、以下の実施例に限定されるものではない。
<ポリエステル原料樹脂1の合成>
 以下に示すように、テレフタル酸及びエチレングリコールを直接反応させて水を留去し、エステル化した後、減圧下で重縮合を行う直接エステル化法を用いて、連続重合装置によりポリエステル(Ti触媒系PET)を得た。
(1)エステル化反応
 第一エステル化反応槽に、高純度テレフタル酸4.7トンとエチレングリコール1.8トンを90分かけて混合してスラリー形成させ、3800kg/hの流量で連続的に第一エステル化反応槽に供給した。更にクエン酸がTi金属に配位したクエン酸キレートチタン錯体(VERTEC AC-420、ジョンソン・マッセイ社製)のエチレングリコール溶液を連続的に供給し、反応槽内温度250℃、攪拌下、平均滞留時間約4.3時間で反応を行なった。この際、クエン酸キレートチタン錯体は、Ti添加量が元素換算値で9ppmとなるように連続的に添加した。このとき、得られたオリゴマーの酸価は600当量/トンであった。なお、本明細書中において、「当量/t」は1トンあたりのモル当量を表す。
 この反応物を第二エステル化反応槽に移送し、攪拌下、反応槽内温度250℃で、平均滞留時間で1.2時間反応させ、酸価が200当量/トンのオリゴマーを得た。第二エステル化反応槽は内部が3ゾーンに仕切られており、第2ゾーンから酢酸マグネシウムのエチレングリコール溶液を、Mg添加量が元素換算値で75ppmになるように連続的に供給し、続いて第3ゾーンから、リン酸トリメチルのエチレングリコール溶液を、P添加量が元素換算値で65ppmになるように連続的に供給した。
(2)重縮合反応
 上記で得られたエステル化反応生成物を連続的に第一重縮合反応槽に供給し、攪拌下、反応温度270℃、反応槽内圧力20torr(2.67×10-3MPa)で、平均滞留時間約1.8時間で重縮合させた。
 更に、第二重縮合反応槽に移送し、この反応槽において攪拌下、反応槽内温度276℃、反応槽内圧力5torr(6.67×10-4MPa)で滞留時間約1.2時間の条件で反応(重縮合)させた。
 次いで、更に第三重縮合反応槽に移送し、この反応槽では、反応槽内温度278℃、反応槽内圧力1.5torr(2.0×10-4MPa)で、滞留時間1.5時間の条件で反応(重縮合)させ、反応物(ポリエチレンテレフタレート(PET))を得た。
 次に、得られた反応物を、冷水にストランド状に吐出し、直ちにカッティングしてポリエステルのペレット<断面:長径約4mm、短径約2mm、長さ:約3mm>を作製した。
 得られたポリエステルについて、高分解能型高周波誘導結合プラズマ-質量分析(HR-ICP-MS;SIIナノテクノロジー社製AttoM)を用いて以下に示すように測定した結果、Ti=9ppm、Mg=75ppm、P=60ppmであった。Pは当初の添加量に対して僅かに減少しているが、重合過程において揮発したものと推定される。
 得られたポリマーは、IV=0.67、末端カルボキシ基の量(AV)=23当量/トン、融点=257℃、溶液ヘイズ=0.3%であった。IV及びAVの測定は、以下に示す方法により行った。
~IV及びAVの測定~
 ポリエステル原料樹脂の固有粘度(IV)は、ポリエステル原料樹脂を、1,1,2,2-テトラクロルエタン/フェノール(=2/3[質量比])混合溶媒に溶解し、該混合溶媒中の25℃での溶液粘度から求めた。
 ポリエステル原料樹脂の末端COOH量(AV)は、未延伸ポリエステルフィルム1~4をベンジルアルコール/クロロホルム(=2/3;体積比)の混合溶液に完全溶解させ、指示薬としてフェノールレッドを用い、基準液(0.025N KOH-メタノール混合溶液)で滴定し、その適定量から算出した。
 以上のようにして、ポリエステル原料樹脂1を合成した。
(実施例1~15、及び、比較例1~4)
<未延伸ポリエステルフィルムの作製>
 ポリエステル原料樹脂1を、含水率20ppm以下に乾燥させた後、直径50mmの1軸混練押出機のホッパーに投入した。ポリエステル原料樹脂1は、300℃に溶融し、下記押出条件により、ギアポンプ、濾過器(孔径20μm)を介し、ダイから押出した。なお、ポリエステルシートの厚さが0.4mmとなるように、ダイのスリットの寸法を調整した。ポリエステルシートの厚さは、キャスティングロールの出口に設置した自動厚み計により測定した。
 この際、溶融樹脂の押出は、圧力変動を1%とし、溶融樹脂の温度分布を2%とする条件にて行った。具体的には、押出機のバレルにおける背圧を、押出機のバレル内平均圧力に対して1%高い圧力とし、押出機の配管温度を、押出機のバレル内平均温度に対して2%高い温度として加熱した。ダイから押出すにあたり、溶融樹脂を冷却用のキャスティングロール上に押出し、静電印加法を用いてキャスティングロールに密着させた。溶融樹脂の冷却は、キャスティングロールの温度を25℃に設定し、かつ、キャスティングロールに対面して設置された冷風発生装置から25℃の冷風を吹き出して溶融樹脂にあてた。キャスティングロールに対向配置された剥ぎ取りロールによって、キャスティングロールから厚さ0.4mm、フィルム幅0.9mの未延伸ポリエステルフィルム(未延伸ポリエステルフィルム1)を剥離した。
 また、ダイのスリットの寸法及び溶融樹脂の吐出量を調整したこと以外は、上記と同様にして、厚さ2.8mmの未延伸ポリエステルフィルム2(下記実施例12で使用)、厚さ1.2mmの未延伸ポリエステルフィルム3(下記実施例13で使用)、厚さ0.9mmの未延伸ポリエステルフィルム4(下記実施例14で使用)を剥離した。
 なお、フィルム幅は、いずれも0.9mである。
 得られた未延伸ポリエステルフィルム1~4は、いずれも固有粘度IV=0.64dL/g、末端カルボキシ基の量(AV)=25当量/トン、ガラス転移温度(Tg)=72℃であった。
 IV及びAVの測定は、上記と同様の方法で行った。
<2軸延伸ポリエステルフィルムの作製>
 得られた未延伸ポリエステルフィルム1~4に対し、以下の各工程を経ることにより逐次2軸延伸を施し、厚み31μm及びフィルム幅(TDの全長)2.5mの2軸延伸ポリエステルフィルムを作製した。
-第1の延伸工程-
 未延伸ポリエステルフィルム1~4を周速の異なる2対のニップロールの間に通し、下記条件でMD方向(搬送方向)に第1の延伸(縦延伸)を行った。
 <条件>
  予熱温度:80℃
  延伸温度:90℃
  延伸倍率:下記表1に示す倍率(倍)
  延伸応力:12MPa
-第2の延伸工程-
 縦延伸したポリエステルフィルム(一軸延伸ポリエステルフィルム)に対し、図1に示す構造のテンター(2軸延伸機)を用いて下記の方法、条件にて第2の延伸(横延伸)を行った。
(予熱部)
 予熱温度を110℃とし、延伸可能なように加熱した。
(延伸部)
 予熱された一軸延伸ポリエステルフィルムを、MD方向と直交するフィルム幅方向(TD方向)に下記条件にて緊張を与え、延伸(横延伸)した。
 <条件>
  延伸温度:下記表1に示す温度(℃)
  延伸倍率:下記表1に示す倍率(倍)
  延伸応力:18MPa
  延伸速度:下記表1に示す延伸速度(%/秒)
 なお、上記の第1の延伸及び第2の延伸を行う際の延伸倍率を調整して、第1の延伸及び第2の延伸後の面積倍率を下記表1に示す倍率に調整した。
 面積倍率は、第1の延伸時の延伸倍率と第2の延伸時の延伸倍率の積である。
(熱固定部)
 次いで、ポリエステルフィルムの最高到達膜面温度(熱固定温度)を下記範囲に制御して加熱し、結晶化させた。
 ・最高到達膜面温度(熱固定温度T熱固定):220〔℃〕
(熱緩和部)
 熱固定後のポリエステルフィルムを下記温度に加熱し、フィルムの緊張を熱緩和した。
<条件>
 ・熱緩和温度(T熱緩和):190℃
 ・熱緩和率:TD方向(TD熱緩和率;ΔL)=5%
(冷却部)
 次に、熱緩和後のポリエステルフィルムを65℃の冷却温度にて冷却した。それと同時に、ポリエステルフィルムをフィルム幅方向(TD方向)に下記条件にて緊張を与え、僅かな拡張又は縮小処理を施した。
<条件>
  拡張又は縮小の倍率:下記表1に示す値(%)
  拡張又は縮小速度:0.1%/秒
 なお、倍率は、上記の熱緩和部での熱緩和の終了時点のフィルム幅に対する拡張割合又は縮小割合を示す。なお、表1中のマイナスの値は「縮小」を表す。
-フィルムの回収-
 冷却終了後、ポリエステルフィルムの両端を20cmずつトリミングした。その後、両端に幅10mmで押出し加工(ナーリング)を行なった後、張力25kg/mで巻き取った。
 以上のようにして、厚さ31μmの2軸延伸ポリエステル(PET)フィルムを作製した。
<2軸延伸環状ポリオレフィンフィルムの作製>
 上記のPETフィルムの作製において、ポリエステル原料樹脂1を、ARTON(登録商標;比重ρ:1.08g/cm、ガラス転移温度(Tg):138℃、JSR株式会社製)に代えたこと以外は、上記の2軸延伸ポリエステル(PET)フィルムの作製と同様にして、2軸延伸環状ポリオレフィンフィルム(COP)を作製した。
 なお、第1の延伸及び第2の延伸は以下のようにして行った。
 即ち、第1の延伸(縦延伸)を、予熱温度:120℃、延伸温度:140℃、延伸倍率3.5倍にて行い、第2の延伸(横延伸)を、予熱部の予熱温度:120℃、延伸部の延伸温度:140℃、延伸倍率4.2倍、延伸速度:18%/秒、冷却部の拡張の倍率1.5%にて行ったこと以外は、上記のPETフィルムの作製と同様の条件とした。
<測定及び評価>
 上記のようにして得られた2軸延伸ポリエステルフィルム及び2軸延伸環状ポリオレフィンフィルムに対し、以下の測定及び評価を行った。測定及び評価の結果は下記表1に示す。
-1.弾性率比E30、90、120、150及びE180
 2軸延伸ポリエステルフィルム又は2軸延伸環状ポリオレフィンフィルムから、最細部の幅長6mm×全長115mm(JIS K 6251、ダンベル状5号形)の試料片を打ち抜いた。得られた試料片を下記条件下、テンシロン(東洋精機株式会社製、ストログラフVE50)でチャック間50mm、引張速度100mm/minの条件で引っ張って荷重に対するフィルムの伸びを測定した。次いで、測定値から荷重を横軸、伸びを縦軸としたグラフを作成し、荷重-伸び曲線の立ち上がり部の接線から弾性率を算出した。この操作を5回実施し、最大値及び最小値を除く3点の平均値を弾性率とした。
 各温度について、フィルム搬送方向に引っ張る場合とフィルム幅方向に引っ張る場合のそれぞれについて実施し、フィルム搬送方向に引っ張った場合の弾性率をETDとし、フィルム幅方向に引っ張った場合の弾性率をETDとした。
<測定条件>
・測定場:熱風加熱炉
・測定温度:30℃、90℃、120℃、150℃、180℃
  (炉の設定温度は、1.5分で所望温度に上昇し、かつ、所望温度から1分経過しても温度上昇が2℃以内に収まるように温度設定と風量調整とを行った。)
・温度制御:試験片の近傍に温度測定用の同種同サイズの試験片を設置し、温度測定用の試験片に熱電対を貼り付け、測定時の温度を監視した。
・試験開始タイミング:所望温度に到達した後に引っ張りを開始した。
-2.表面粗さRa-
 接触形状測定機(Mitutoyo FORMTRACER EXTREME CS-5000 CNC)を用い、下記の条件にて、2軸延伸ポリエステルフィルム又は2軸延伸環状ポリオレフィンフィルムのMD方向及びTD方向の任意の位置において各12回計測し、Raの最小値及び最大値を除去したMD方向10点及びTD方向10点の平均を求め、20点の平均値をRaとした。
<条件>
・測定針先端径:0.5μm
・触針荷重:0.75mN
・測定長:0.8mm
・カットオフ値:0.08mm
-3.フィルムの厚み-
 触式膜厚測定機(Mitutoyo ID-C112X)を用い、2軸延伸ポリエステルフィルム又は2軸延伸環状ポリオレフィンフィルムのTD方向の全幅にわたり50mm間隔で測定した。この操作をMD方向に1m間隔で5セット行い、測定された値の平均値を厚みとした。
-4.筋状バリ-
 2軸延伸ポリエステルフィルム又は2軸延伸環状ポリオレフィンフィルムを加熱搬送装置に通し、フィルムの最高温度を90℃、120℃、150℃又は180℃として1分間、搬送張力1MPaにて加熱搬送処理を行った。その後、加熱搬送処理を終了した2軸延伸ポリエステルフィルム又は2軸延伸環状ポリオレフィンフィルムを平面上に置き、室内の天井に設置された蛍光灯の光が反射するように2軸延伸ポリエステルフィルム又は環状ポリオレフィンフィルムを斜めから観察し、光が反射して2軸延伸ポリエステルフィルム又は2軸延伸環状ポリオレフィンフィルムに映った蛍光灯の反射像のうねり具合を以下の評価基準にしたがって評価した。
 <評価基準>
AA:反射像のうねりが全くなく、筋状バリの発生は認められない。
A :部分的に微かに筋状バリがみられたが、反射像のうねりは弱く実用上支障ない。
B :反射像が全面的に微かにうねって見えるが、実用上支障を来たす程度ではない。
C :筋状バリの発生が著しく、反射像のうねりが全面的に強く実用上支障を来たす。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、30℃での弾性率比Er30及び30℃~180℃の至る温度域での弾性率比Erが適切に調整された実施例では、厚みが200μm以下のフィルムでも筋状バリの発生が抑制されており、厚みが100μmを下回る薄手のフィルムにおいても筋状バリの抑制効果が顕著に現れた。
 これに対し、弾性率比又は弾性率比のバラツキ(最大値Ermax及び最小値Erminの差)が所望とする範囲から外れた比較例1~4では、TD方向におけるシワの発生が抑えられず、筋状バリの発生が顕著にみられた。
2a~2l 把持部材
3 フィルム
4 搬送ロール
10 予熱部
20 延伸部
30 熱固定部
40 熱緩和部
50 冷却部
60a,60b 環状レール
100 2軸延伸機
200 ポリエステルフィルム
P,Q 把持部材が熱可塑性樹脂フィルムを離す点
MD フィルム搬送方向(長手方向)
TD フィルム幅方向
L0,L1,L2 熱可塑性樹脂フィルムの幅長
,Z 膨張幅
σ 応力
 2017年2月28日に出願された日本特許出願2017-037662の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許、特許出願、および技術規格は、個々の文献、特許、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (12)

  1.  フィルム搬送方向の弾性率EMDに対する、フィルム搬送方向と直交するフィルム幅方向の弾性率ETDの、30℃での比Er30が、1.1~1.8であり、かつ、
     前記弾性率EMDに対する前記弾性率ETDの、前記30℃での比Er30、90℃での比Er90、120℃での比Er120、150℃での比Er150、及び180℃での比Er180から選ばれる最大値Ermax及び最小値Erminの差が0.7以下である、熱可塑性樹脂フィルム。
  2.  少なくとも一方の表面の表面粗さRaが、0.5nm~50nmである請求項1に記載の熱可塑性樹脂フィルム。
  3.  厚みが200μm以下である請求項1又は請求項2に記載の熱可塑性樹脂フィルム。
  4.  ポリエステルフィルム又は環状ポリオレフィンフィルムである請求項1~請求項3のいずれか1項に記載の熱可塑性樹脂フィルム。
  5.  請求項1~請求項4のいずれか1項に記載の熱可塑性樹脂フィルムの製造方法であって、
     原料樹脂を溶融押出し、冷却して熱可塑性樹脂シートを成形する工程と、
     前記熱可塑性樹脂シートに対して長手方向に第1の延伸を行って熱可塑性樹脂フィルムを得る工程と、
     前記熱可塑性樹脂フィルムを予熱する予熱部、予熱された熱可塑性樹脂フィルムを、熱可塑性樹脂フィルムの長手方向と直交するフィルム幅方向に緊張を与えて延伸する延伸部、緊張が与えられた熱可塑性樹脂フィルムを加熱して熱固定する熱固定部、及び、前記緊張を熱緩和する熱緩和部、並びに、熱緩和された前記熱可塑性樹脂フィルムを冷却する冷却部に前記熱可塑性樹脂フィルムを順次搬送し、第2の延伸を行う工程と、
     を含み、
     前記第1の延伸での延伸倍率と前記第2の延伸での延伸倍率との積である面積倍率が12.8倍~15.5倍であり、
     前記第2の延伸を行う工程は、前記冷却部において、熱緩和された前記熱可塑性樹脂フィルムに更にフィルム幅方向に緊張を与え、前記熱緩和部での前記熱緩和の終了時点のフィルム幅に対して-1.5%~3%の範囲で前記熱可塑性樹脂フィルムを拡張又は縮小する、熱可塑性樹脂フィルムの製造方法。
  6.  前記第2の延伸を行う工程は、前記延伸部において、延伸速度を8%/秒~45%/秒として前記熱可塑性樹脂フィルムを延伸する請求項5に記載の熱可塑性樹脂フィルムの製造方法。
  7.  前記第2の延伸を行う工程は、前記延伸部において、延伸速度を15%/秒~40%/秒として前記熱可塑性樹脂フィルムを延伸する請求項5又は請求項6に記載の熱可塑性樹脂フィルムの製造方法。
  8.  前記第2の延伸を行う工程は、前記延伸部において、延伸温度を100℃~150℃として前記熱可塑性樹脂フィルムを延伸する請求項5~請求項7のいずれか1項に記載の熱可塑性樹脂フィルムの製造方法。
  9.  前記第2の延伸を行う工程は、前記延伸部において、延伸温度を110℃~140℃として前記熱可塑性樹脂フィルムを延伸する請求項5~請求項8のいずれか1項に記載の熱可塑性樹脂フィルムの製造方法。
  10.  前記第1の延伸での延伸倍率と前記第2の延伸での延伸倍率との積である面積倍率が13.5倍~15.2倍である請求項5~請求項9のいずれか1項に記載の熱可塑性樹脂フィルムの製造方法。
  11.  前記第2の延伸を行う工程は、前記冷却部において、前記熱緩和部での前記熱緩和の終了時点のフィルム幅に対して0.0%~2.0%の範囲で前記熱可塑性樹脂フィルムを拡張する請求項5~請求項10のいずれか1項に記載の熱可塑性樹脂フィルムの製造方法。
  12.  前記第1の延伸を行う工程は、前記熱可塑性樹脂シートに対して延伸倍率が2倍~5倍の第1の延伸を行う請求項5~請求項11のいずれか1項に記載の熱可塑性樹脂フィルムの製造方法。
PCT/JP2018/006316 2017-02-28 2018-02-21 熱可塑性樹脂フィルム及び熱可塑性樹脂フィルムの製造方法 WO2018159424A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197024101A KR102175657B1 (ko) 2017-02-28 2018-02-21 열가소성 수지 필름 및 열가소성 수지 필름의 제조 방법
JP2019502915A JP6797279B2 (ja) 2017-02-28 2018-02-21 熱可塑性樹脂フィルム及び熱可塑性樹脂フィルムの製造方法
CN201880013740.5A CN110337357B (zh) 2017-02-28 2018-02-21 热塑性树脂薄膜及热塑性树脂薄膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-037662 2017-02-28
JP2017037662 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159424A1 true WO2018159424A1 (ja) 2018-09-07

Family

ID=63370451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006316 WO2018159424A1 (ja) 2017-02-28 2018-02-21 熱可塑性樹脂フィルム及び熱可塑性樹脂フィルムの製造方法

Country Status (4)

Country Link
JP (1) JP6797279B2 (ja)
KR (1) KR102175657B1 (ja)
CN (1) CN110337357B (ja)
WO (1) WO2018159424A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112088080A (zh) * 2018-12-27 2020-12-15 株式会社Huvis 聚对苯二甲酸乙二醇酯发泡片制造装置及制造方法
JP2021511977A (ja) * 2018-12-27 2021-05-13 ヒューヴィス コーポレーションHuvis Corporation Pet発泡シートの製造装置および製造方法
JPWO2021261412A1 (ja) * 2020-06-24 2021-12-30
WO2022153785A1 (ja) * 2021-01-15 2022-07-21 コニカミノルタ株式会社 フィルムロール及びフィルムロールの製造方法
WO2023281972A1 (ja) * 2021-07-08 2023-01-12 富士フイルム株式会社 剥離フィルム、剥離フィルムの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102286198B1 (ko) * 2020-08-06 2021-08-06 에스케이이노베이션 주식회사 폴리이미드계 필름 및 이를 포함하는 플렉서블 디스플레이 패널

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154360A (ja) * 2009-12-28 2011-08-11 Fujifilm Corp 光学フィルム及びその製造方法
JP2014189002A (ja) * 2013-03-28 2014-10-06 Fujifilm Corp ポリエステルフィルム及びその製造方法
JP2014219429A (ja) * 2013-03-08 2014-11-20 富士フイルム株式会社 光学フィルム、偏光板及び液晶表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654394A (en) * 1994-04-08 1997-08-05 Toray Industries, Inc. Thermoplastic resin film
SG76565A1 (en) * 1997-10-14 2000-11-21 Toray Industries Biaxially oriented polyester films and their production methods
JP5691185B2 (ja) 2010-02-10 2015-04-01 株式会社ニコン レンズアレイ、波面センサ及び波面収差測定装置
EP2623294A4 (en) * 2010-09-27 2015-12-16 Toray Industries BIAXIALLY ORIENTED POLYESTER FILM AND LINEAR MAGNETIC RECORDING MEDIUM
JP5512759B2 (ja) 2011-09-16 2014-06-04 富士フイルム株式会社 2軸延伸熱可塑性樹脂フィルムの製造方法
CN104870352B (zh) * 2012-12-13 2017-03-22 柯尼卡美能达株式会社 光学膜的卷体、其制造方法、偏振片及显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154360A (ja) * 2009-12-28 2011-08-11 Fujifilm Corp 光学フィルム及びその製造方法
JP2014219429A (ja) * 2013-03-08 2014-11-20 富士フイルム株式会社 光学フィルム、偏光板及び液晶表示装置
JP2014189002A (ja) * 2013-03-28 2014-10-06 Fujifilm Corp ポリエステルフィルム及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112088080A (zh) * 2018-12-27 2020-12-15 株式会社Huvis 聚对苯二甲酸乙二醇酯发泡片制造装置及制造方法
JP2021511977A (ja) * 2018-12-27 2021-05-13 ヒューヴィス コーポレーションHuvis Corporation Pet発泡シートの製造装置および製造方法
CN112088080B (zh) * 2018-12-27 2022-08-23 株式会社Huvis 聚对苯二甲酸乙二醇酯发泡片制造装置及制造方法
JP7271527B2 (ja) 2018-12-27 2023-05-11 ヒューヴィス コーポレーション Pet発泡シートの製造装置および製造方法
JPWO2021261412A1 (ja) * 2020-06-24 2021-12-30
WO2021261412A1 (ja) * 2020-06-24 2021-12-30 富士フイルム株式会社 ポリエステルフィルムの製造方法、ポリエステルフィルム、積層フィルム
JP7428798B2 (ja) 2020-06-24 2024-02-06 富士フイルム株式会社 ポリエステルフィルムの製造方法、ポリエステルフィルム、積層フィルム
WO2022153785A1 (ja) * 2021-01-15 2022-07-21 コニカミノルタ株式会社 フィルムロール及びフィルムロールの製造方法
WO2023281972A1 (ja) * 2021-07-08 2023-01-12 富士フイルム株式会社 剥離フィルム、剥離フィルムの製造方法

Also Published As

Publication number Publication date
CN110337357A (zh) 2019-10-15
KR102175657B1 (ko) 2020-11-06
JP6797279B2 (ja) 2020-12-09
JPWO2018159424A1 (ja) 2019-11-07
KR20190103417A (ko) 2019-09-04
CN110337357B (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2018159424A1 (ja) 熱可塑性樹脂フィルム及び熱可塑性樹脂フィルムの製造方法
JP5883074B2 (ja) ヒートセット型光学フィルム
KR20130031242A (ko) 열수축성 폴리에스테르계 필름, 그의 포장체, 및 열수축성 폴리에스테르계 필름의 제조방법
WO2016010134A1 (ja) 一軸配向ポリエステルフィルム、ハードコートフィルム、タッチパネル用センサーフィルム、飛散防止フィルム、反射防止フィルム、タッチパネルおよび一軸配向ポリエステルフィルムの製造方法
JP5408250B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP2015021119A (ja) 二軸延伸ポリエステルフィルム及びその製造方法
TWI592284B (zh) 聚酯膜及其製造方法
JP2007185898A (ja) 二軸延伸ポリエステルフィルムおよびその製造方法
JP4232004B2 (ja) 二軸配向ポリエステルフィルム
CN107921698B (zh) 热收缩性聚酯系薄膜和包装体
WO2014157109A1 (ja) ポリエステルフィルム及びその製造方法
JPH09300518A (ja) 積層フィルムおよびその製造方法
JP2021161151A (ja) 二軸延伸フィルム
JP6374214B2 (ja) 塗布層付積層フィルム
JP5886026B2 (ja) 積層フィルム
JP5642244B2 (ja) 成形同時転写用二軸延伸ポリエステルフィルム
JP2011016899A (ja) 耐熱テープ用ポリエステルフィルム
JP6641768B2 (ja) 熱収縮性フィルムの製造方法
JP2024006176A (ja) ポリエステルフィルムロール
JPH06335966A (ja) 圧延ポリエステルシート、その熱成形物及びその製造方法
CN113905958A (zh) 将纵(长度)方向作为主收缩方向的热收缩性聚酯系薄膜
TW202017966A (zh) 非晶性膜所用共聚聚酯原料、熱收縮性聚酯系膜、熱收縮性標籤、以及包裝體
WO2017022743A1 (ja) ポリエステルフィルム
JP2005335308A (ja) 二軸延伸ポリエステルフィルム
JP2009286937A (ja) 共重合ポリエチレン−2,6−ナフタレンジカルボキシレートおよび二軸配向フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502915

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024101

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761593

Country of ref document: EP

Kind code of ref document: A1