WO2017022743A1 - ポリエステルフィルム - Google Patents

ポリエステルフィルム Download PDF

Info

Publication number
WO2017022743A1
WO2017022743A1 PCT/JP2016/072609 JP2016072609W WO2017022743A1 WO 2017022743 A1 WO2017022743 A1 WO 2017022743A1 JP 2016072609 W JP2016072609 W JP 2016072609W WO 2017022743 A1 WO2017022743 A1 WO 2017022743A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
stretching
polyester film
heat
temperature
Prior art date
Application number
PCT/JP2016/072609
Other languages
English (en)
French (fr)
Inventor
飯田敏行
林大輔
村上奈穗
真鍋功
塩見篤史
坂本光隆
高田育
Original Assignee
日東電工株式会社
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社, 東レ株式会社 filed Critical 日東電工株式会社
Priority to CN201680041327.0A priority Critical patent/CN107849269A/zh
Priority to JP2016560832A priority patent/JPWO2017022743A1/ja
Priority to KR1020187001972A priority patent/KR20180037182A/ko
Publication of WO2017022743A1 publication Critical patent/WO2017022743A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a polyester film having special thermal characteristics.
  • Heat shrinkable films are widely used mainly for label packaging applications, but in recent years, they have heat resistance that does not cause heat shrinkage in the drying process during label printing, and heat shrink uniformly in a predetermined direction when heated at high temperatures.
  • heat shrinkable films There is a growing need for heat shrinkable films.
  • decoration application there is an increasing need for highly decorative film decoration on a complex-shaped member using film shrinkage.
  • a heat-shrinkable film as an optical release film for forming an optical layer such as a retardation forming layer.
  • polyester films having heat-shrinkability at low temperatures such as 80 ° C. and 90 ° C. are known (for example, see Patent Documents 1 and 2).
  • Patent Document 1 and Patent Document 2 have good heat shrinkability, but have insufficient heat resistance in the drying process during printing and coating, and for applications where the drying temperature needs to be increased. Application was difficult.
  • an object of the present invention is to eliminate the above-mentioned problems, and in the drying process after printing and coating, it has heat resistance that does not substantially undergo heat shrinkage and is uniform in a desired direction during high-temperature heating.
  • Another object of the present invention is to provide a heat-shrinkable polyester film.
  • the present invention employs the following means in order to solve such problems.
  • the main orientation axis direction of the film is the X direction, the direction orthogonal to the X direction is the Y direction, the 150 ° C. heat shrinkage rate in the X direction is SX150, the 150 ° C. heat shrinkage rate in the Y direction is SY150, and the 90 direction in the Y direction.
  • the heat shrinkage rate is low in the low temperature region, and uniform heat shrinkability can be exhibited in the high temperature region, so that the polyester film is suitable for packaging use, decoration use, optical use, etc. Can provide.
  • the polyester film which concerns on this invention is demonstrated in detail with embodiment.
  • the main orientation axis direction of the film is the X direction
  • the direction orthogonal to the X direction is the Y direction
  • the 150 ° C. heat shrinkage rate in the X direction is SX150
  • the 150 ° C. heat shrinkage rate in the Y direction is SY150
  • the 90 ° C. heat shrinkage in the Y direction is SY90
  • the main orientation axis direction of the film is an orientation in which molecules are most polarized in the plane of the film, and an orientation having the highest refractive index in the refractive index ellipsoid.
  • the above formula (I) indicates that the thermal contraction rate in the direction orthogonal to the main alignment axis direction is higher than the main alignment axis direction of the film in an environment of 150 ° C.
  • the heat shrinkage rate in the direction orthogonal to the main alignment axis direction is controlled to be high, and the heat shrinkage rate in the main alignment axis direction is controlled to be low. It was found that the heat shrinks uniformly in one direction.
  • the uniformity of heat shrinkage characteristics can be determined by observing the occurrence of wrinkles and the like when heat shrinkage, as will be described later. In order to achieve more uniform heat shrinkability in one direction, it is preferable to satisfy the formula (I ′), and it is most preferable to satisfy the formula (I ′′).
  • the above formula (II) indicates that the thermal shrinkage rate in the direction orthogonal to the main orientation axis direction at 150 ° C. is as high as 15% or more, and the polyester film of the present invention is used for packaging, decoration, and optical. Excellent heat resistance and high temperature heat shrinkability. Moreover, since the performance in each use improves by setting it as higher contractibility, it is more preferable to satisfy (II ') Formula, and it is most preferable to satisfy (II ") Formula. (SY150) ⁇ 20% (II ′) (SY150) ⁇ 25% (II ′′)
  • the above formula (III) indicates that the thermal shrinkage rate in the direction orthogonal to the main orientation axis direction at 90 ° C. is less than 15%, and in the drying process after application of various functional layers, the thermal shrinkage does not occur. Or, it has heat resistance with a small heat shrinkage rate. From the viewpoint of heat resistance during drying, the formula (III ′) is preferably satisfied, and the formula (III ′′) is most preferably satisfied. (SY90) ⁇ 10% (III ′) (SY90) ⁇ 5% (III ′′)
  • the method for achieving the formulas (I), (II), and (III) is not particularly limited.
  • the orientation crystallization in the X direction is enhanced by stretching, and the crystallization does not proceed in the Y direction. It is preferable to make the structure in which the orientation progresses, and to relax part of the amorphous part by heat treatment after stretching.
  • the heat shrinkage rate in the X direction tends to be low, and in the Y direction, the heat shrinkage rate can be controlled to a high level by allowing the orientation to advance to the extent that it does not crystallize.
  • by relaxing a part of the amorphous part by the heat treatment after stretching it becomes possible to satisfy the expressions (I), (II), and (III).
  • the X direction is preferably the film width direction and the Y direction is preferably the film longitudinal direction. That is, it is preferable to exhibit high shrinkability in the film longitudinal direction because a retardation layer or the like can be formed by roll-to-roll, particularly in optical applications.
  • the formulas (I), (II), and (III) can be achieved by adjusting the stretching method, stretching ratio, stretching, and heat treatment temperature during film formation. *
  • 80 mol% or more of the glycol units are preferably structural units derived from ethylene glycol, more preferably 85. Most preferably, it is at least 90 mol%.
  • 80 mol% or more of the dicarboxylic acid units are preferably structural units derived from terephthalic acid, more preferably 85 mol% or more, and most preferably 90 mol% or more.
  • Aliphatic dihydroxy compounds such as 5-pentanediol, 1,6-hexanediol, and neopentyl glycol; polyoxyalkylene glycols such as diethylene glycol, polyethylene glycol, polypropylene glycol, and polytetramethylene glycol; and 1,4-cyclohexanedimethanol Examples thereof include alicyclic dihydroxy compounds, aromatic dihydroxy compounds such as bisphenol A and bisphenol S, and derivatives thereof.
  • the dicarboxylic acid or derivative thereof that provides the polyester used in the present invention includes isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxyethanedicarboxylic acid.
  • Acids, aromatic dicarboxylic acids such as 5-sodiumsulfone dicarboxylic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid, fumaric acid and other aliphatic dicarboxylic acids, 1,4-cyclohexanedicarboxylic acid, etc.
  • Alicyclic dicarboxylic acids such as paraoxybenzoic acid, and derivatives thereof.
  • dicarboxylic acid derivatives include dimethyl terephthalate, diethyl terephthalate, 2-hydroxyethyl methyl terephthalate, dimethyl 2,6-naphthalenedicarboxylate, dimethyl isophthalate, dimethyl adipate, diethyl maleate, and dimethyl dimer.
  • An esterified product can be mentioned.
  • the polyester film of the present invention preferably satisfies the formula (IV) from the viewpoint of uniform heat shrinkability in one direction. (SX150) ⁇ 5% (IV)
  • the thermal shrinkage rate in the main alignment axis direction at 150 ° C. is less than 5%, and has the characteristic that heat shrinkage is difficult in the main alignment axis direction. That is, it has a characteristic of selectively shrinking in one direction such that it exhibits high heat shrinkability in the direction orthogonal to the main alignment axis direction but does not shrink in the main alignment axis direction. From the viewpoint of unidirectional shrinkage, it is preferable that the formula (IV ′) is satisfied, and it is most preferable that the formula (IV ′′) is satisfied. (SX150) ⁇ 4% (IV ′) (SX150) ⁇ 3% (IV ")
  • the method for achieving the formula (IV) is not particularly limited, but it can be achieved by adjusting the stretching method, stretching ratio, stretching and heat treatment temperature during film formation.
  • the polyester film of the present invention preferably has a breaking elongation in the X direction of 100% or more from the viewpoint of high toughness. It is preferable that the elongation at break in the X direction is 100% or more because the toughness of the film is increased and film breakage during processing is easily suppressed.
  • the breaking elongation in the X direction is more preferably 120% or more, and most preferably 150% or more.
  • a method of setting the breaking elongation in the X direction to 100% or more a method of setting the drawing temperature in the X direction to 90 ° C. or more is preferably used. In the case of stretching a plurality of times in the X direction, the stretching temperature is preferably 90 ° C.
  • the stretching temperature in the X direction is 95 ° C. or higher.
  • the polyester film of the present invention preferably has a breaking elongation in the Y direction of 150% or higher and higher than the breaking elongation in the X direction in order to further increase toughness.
  • the breaking elongation in the Y direction of the polyester film of the present invention is more preferably 170% or more, and most preferably 200% or more.
  • the stretching temperature in the Y direction is set to 90 ° C. or higher.
  • the stretching temperature is preferably 90 ° C. or higher in the stretching process in the Y direction having the highest stretching temperature.
  • the stretching temperature in the Y direction is more preferably 105 ° C. or higher, and most preferably 120 ° C. or higher.
  • the polyester film of the present invention preferably has a dimensional change rate of ⁇ 0.1% or more and 0.1% or less in the Y direction at 23 ° C. and 100 hours from the viewpoint of temporal stability.
  • the dimensional change rate at 23 ° C. and 100 hours in the Y direction is more preferably ⁇ 0.08% or more and 0.08% or less, and most preferably ⁇ 0.05% or more and 0.05% or less.
  • the polyester film of the present invention has a dimensional change rate of ⁇ 0.3% or more and 0.3% or less in the Y direction at 50 ° C. for 100 hours from the viewpoint of temporal stability at high temperatures. preferable.
  • the dimensional change rate in the Y direction at 50 ° C. and 100 hours is more preferably ⁇ 0.25% to 0.25%, and most preferably ⁇ 0.2% to 0.2%.
  • a method of stretching in the longitudinal direction at least 1.1 times before stretching is mentioned.
  • the rigidity of the amorphous part in the longitudinal direction is increased, and stability over time can be improved even in a high temperature environment.
  • the heat treatment temperature after stretching is higher than 115 ° C., so that the rigid amorphous structure is stabilized. Therefore, this is a more preferable method from the viewpoint of stability over time.
  • the polyester film of the present invention has a film thickness of more than 20 ⁇ m and preferably 200 ⁇ m or less, more preferably 25 ⁇ m or more and 150 ⁇ m or less, and more preferably 30 ⁇ m or more and 120 ⁇ m, from the viewpoints of handling properties, heat resistance, and shrinkability. The following is most preferable. Further, from the viewpoint of toughness, the film thickness is very preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • a polyester resin used for a polyester film a polyethylene terephthalate resin is dried and pre-crystallized, then supplied to a single screw extruder and melt extruded. At this time, the resin temperature is preferably controlled to 265 to 295 ° C. Next, foreign matter is removed and the amount of extrusion is leveled through a filter and a gear pump, respectively, and discharged from a T-die onto a cooling drum in a sheet form.
  • an electrostatic application method in which a cooling drum and the resin are brought into close contact with each other by static electricity using an electrode applied with a high voltage
  • a casting method in which a water film is provided between the casting drum and the extruded polymer sheet, and the casting drum temperature is set to be equal to that of the polyester resin.
  • a method of applying an electrostatic force is preferably used from the viewpoint of productivity and flatness.
  • the stretching method, stretching ratio, stretching and heat treatment temperature are adjusted so that the unstretched sheet obtained as described above satisfies the formulas (I), (II), and (III).
  • a stretching method satisfying the formulas (I), (II), and (III) for example, the sheet obtained by the above casting method is successively applied in the film longitudinal direction-width direction-longitudinal direction and film width direction-longitudinal direction.
  • heat treatment at 101 ° C. or more and 160 ° C. or less, holding the film width direction end, stretching in the longitudinal direction and width direction, and stretching in the longitudinal direction of 5% section from the final point of all stretching steps
  • a method in which the heat treatment is performed at a temperature of 101 ° C. or higher and 160 ° C. or lower is preferably used.
  • the sheet when applied to applications in which high shrinkage in the Y direction is important, the sheet is stretched by successively biaxially stretching in the longitudinal direction-width direction-longitudinal direction and then 101 ° C. or more and 160 ° C. or less.
  • the first draw ratio in the longitudinal direction is not more than the draw ratio in the subsequent longitudinal direction.
  • the first longitudinal stretching ratio is 1.01 to 3 times
  • the subsequent longitudinal stretching ratio is 1.1 to 4 times
  • the first longitudinal stretching is It is preferable that the magnification is not more than the subsequent draw ratio in the longitudinal direction.
  • the sheet is stretched by sequentially biaxially stretching in the film width direction-longitudinal direction and then heat-treating at 101 ° C. or higher and 160 ° C. or lower.
  • the film is stretched 1.5 to 6 times in the width direction, and then 1.1 to 4 times in the longitudinal direction.
  • a cooling step of 100 ° C. or less, 101 ° C. to 160 ° C. It is preferable to have a heat treatment step of less than or equal to ° C.
  • the sheet stretching method is performed by holding the edge in the width direction of the film, stretching in the longitudinal direction and the width direction, and the stretching ratio in the longitudinal direction of the section of 5% from the final point of the entire stretching process, As described above, it is also preferable to adopt a method in which the total longitudinal stretching ratio is set lower than the total width stretching ratio, and heat treatment is performed at a temperature of 101 ° C. to 160 ° C. after stretching.
  • the stretching method in the case where it is applied to an application where high shrinkage in the Y direction, mechanical strength, and handling properties are both important, after the stretching method is sequentially biaxially stretched in the longitudinal direction-width direction-longitudinal direction.
  • the heat treatment is performed at 101 ° C. or more and 160 ° C. or less, and the first longitudinal stretch ratio is set higher than the subsequent longitudinal stretch ratio.
  • the first longitudinal stretching ratio is 1.1 to 4 times
  • the subsequent longitudinal stretching ratio is 1.01 to 3 times
  • the first longitudinal stretching is It is preferable to make the magnification higher than the subsequent stretching ratio in the longitudinal direction.
  • the film width direction end is grasped, the film longitudinal direction and the width direction are stretched, and the stretch ratio in the longitudinal direction of the section of 5% from the final point of the entire stretching process is stretched in the width direction.
  • the heat treatment is performed at a temperature not lower than 101 ° C. and not higher than 160 ° C. after the stretching, with the total longitudinal stretching ratio higher than the total width stretching ratio.
  • the preferable heat treatment temperature indicates the highest temperature among the heat treatment temperatures performed after biaxial stretching.
  • the heat treatment time can be any time within a range not deteriorating the characteristics, and is preferably 5 seconds to 60 seconds, more preferably 10 seconds to 40 seconds, and most preferably 15 seconds to 30 seconds. be able to.
  • the polyester film of the present invention has a low heat shrinkage rate in a low temperature region and shows a uniform heat shrinkability in a high temperature region, it is preferably used as a packaging application. Since it has heat resistance that does not cause thermal shrinkage in the coating process and drying process of various functional layers such as printed layers, weathering layers, adhesive layers, adhesive layers, and vapor-deposited layers, for example, it is possible to handle aqueous solvent coating agents. It is. Furthermore, since it exhibits high heat shrinkability when heated at a high temperature, it is excellent in the ability to be attached to a container such as a bottle, and therefore is preferably used for various packaging applications mainly for labels.
  • the polyester film of the present invention can be preferably used for decorative purposes.
  • various functional layers such as printing layer, weathering layer, adhesive layer, adhesive layer, vapor-deposited layer, scratch-resistant layer, fingerprint-resistant layer, etc. Because it has excellent heat resistance in the coating process and drying process of various functional layers, and exhibits high heat shrinkability during high-temperature heating, it can be used for highly-designed decoration on complex-shaped members. Applicable.
  • the polyester film of the present invention is also preferably used for optical applications.
  • various functional layers such as a retardation forming layer
  • the polyester resin used for film formation was prepared as follows.
  • Polyethylene terephthalate resin (intrinsic viscosity 0.65) in which the terephthalic acid component is 100 mol% as the dicarboxylic acid component and the ethylene glycol component is 100 mol% as the glycol component.
  • Polyethylene terephthalate resin (inherent viscosity 0.7) having 90 mol% of terephthalic acid component as dicarboxylic acid component, 10 mol% of isophthalic acid component, and 100 mol% of ethylene glycol component as glycol component.
  • Polyethylene terephthalate particle master (intrinsic viscosity 0.65) containing polyester carbonate A with calcium carbonate particles having an average particle diameter of 1.2 ⁇ m at a particle concentration of 1% by mass.
  • Example 1 Polyester A and particle master were mixed at a mass ratio of 95: 5 and charged into an extruder, melted at 280 ° C., and discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a wire electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain an unstretched sheet. Next, the film was stretched 3 times in the longitudinal direction at a stretching temperature of 90 ° C., and then stretched 4 times in the width direction at a stretching temperature of 90 ° C. by a tenter type stretching machine. Thereafter, the film was stretched twice in the longitudinal direction at a stretching temperature of 120 ° C., and then heat treated at 110 ° C. in a tenter to obtain a polyester film having a film thickness of 35 ⁇ m. Various characteristics of the obtained film are shown in Tables 1 to 4 described later together with characteristics in Examples and Comparative Examples described later.
  • Example 2 A polyester film having a film thickness of 40 ⁇ m was obtained in the same manner as in Example 1 except that the stretching ratio in the first longitudinal direction was 2 times and the stretching ratio in the second longitudinal direction was 1.5 times.
  • Example 3 A polyester film having a film thickness of 35 ⁇ m was obtained in the same manner as in Example 1 except that the first draw ratio in the longitudinal direction was doubled.
  • Example 4 A polyester film having a film thickness of 35 ⁇ m was obtained in the same manner as in Example 1 except that the first draw ratio in the longitudinal direction was 1.5 times.
  • Example 5 A polyester film having a film thickness of 35 ⁇ m was obtained in the same manner as in Example 1 except that the first draw ratio in the longitudinal direction was 1.1 times and the heat treatment temperature was 125 ° C.
  • Example 6 A polyester film having a film thickness of 35 ⁇ m was obtained in the same manner as in Example 1 except that the first draw ratio in the longitudinal direction was 1.03 and the heat treatment temperature was 125 ° C.
  • Example 7 A polyester film having a film thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the first stretching ratio in the longitudinal direction was 1.1 times, the stretching temperature in the width direction was 97 ° C., and the heat treatment temperature was 125 ° C. .
  • Example 8 A polyester film having a film thickness of 50 ⁇ m was obtained in the same manner as in Example 4 except that the stretching temperature in the second longitudinal direction was 125 ° C. and the heat treatment temperature was 122 ° C.
  • Example 9 In the same manner as in Example 1, a polyester film having a film thickness of 28 ⁇ m was obtained.
  • Example 10 A polyester film having a film thickness of 20 ⁇ m was obtained in the same manner as in Example 7 except that the stretching temperature in the width direction was 92 ° C. and the heat treatment temperature was 125 ° C.
  • Example 11 A polyester film having a film thickness of 35 ⁇ m was obtained in the same manner as in Example 4 except that the raw material composition was polyester A, polyester B, and particle master in a mass ratio of 45: 50: 5.
  • Example 12 Polyester A and particle master were mixed at a mass ratio of 95: 5 and charged into an extruder, melted at 280 ° C., and discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a wire electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain an unstretched sheet. Next, the film was stretched 4 times in the width direction at a stretching temperature of 90 ° C. by a tenter type stretching machine. Thereafter, the film was stretched twice in the longitudinal direction at a stretching temperature of 120 ° C., and then heat treated at 125 ° C. in a tenter to obtain a polyester film having a film thickness of 40 ⁇ m.
  • Example 13 A polyester film having a film thickness of 45 ⁇ m was obtained in the same manner as in Example 12 except that the stretching temperature in the width direction was 95 ° C.
  • Example 14 A polyester film having a film thickness of 45 ⁇ m was obtained in the same manner as in Example 13 except that the draw ratio in the longitudinal direction was 1.5 times.
  • Example 15 Polyester A and particle master were mixed at a mass ratio of 95: 5 and charged into an extruder, melted at 280 ° C., and discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a wire electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain an unstretched sheet. Next, the end of the film in the width direction is held by a tenter type stretching machine, and the film is stretched twice in the longitudinal direction of the film and 4 times in the width direction (5% from the final point of the entire stretching process). The film was subjected to heat treatment at 125 ° C. after stretching to obtain a polyester film having a film thickness of 40 ⁇ m.
  • Example 16 A polyester film having a film thickness of 45 ⁇ m was obtained in the same manner as in Example 15 except that the total magnification in the film longitudinal direction was 3 times.
  • Polyester A and particle master were mixed at a mass ratio of 95: 5 and charged into an extruder, melted at 280 ° C., and discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a wire electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain an unstretched sheet.
  • the film was stretched 3 times in the longitudinal direction at a stretching temperature of 90 ° C., and then stretched 4 times in the width direction at a stretching temperature of 100 ° C. by a tenter type stretching machine. Thereafter, the film was stretched twice in the longitudinal direction at a stretching temperature of 90 ° C., and then heat treated at 95 ° C. in a tenter to obtain a polyester film having a film thickness of 35 ⁇ m.
  • Comparative Example 2 A polyester film having a film thickness of 35 ⁇ m was obtained in the same manner as in Example 1 except that the first draw ratio in the longitudinal direction was 3.2 times.
  • Comparative Example 3 A polyester film having a film thickness of 35 ⁇ m was obtained in the same manner as in Comparative Example 1 except that the heat treatment temperature after stretching in the second longitudinal direction was 165 ° C.
  • Example 4 A polyester film having a film thickness of 40 ⁇ m was obtained in the same manner as in Example 12 except that the heat treatment temperature after stretching was 95 ° C.
  • the polyester film of the present invention has heat resistance that does not cause heat shrinkage in the drying process after printing and coating, and exhibits heat shrinkability that can be uniformly heat shrunk during high-temperature heating. Can be applied to a wide range of heat-shrinkable films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

フィルムの主配向軸方向をX方向、X方向と直交する方向をY方向とし、X方向の150℃熱収縮率をSX150、Y方向の150℃熱収縮率をSY150、Y方向の90℃熱収縮率をSY90として、式(SY150)>(SX150):(I)、(SY150)≧15%:(II)、(SY90)<15%:(III)を満足するポリエステルフィルム。低温領域では熱収縮率が低く、高温領域において、均一な熱収縮性を示すことができるため、包装用途、加飾用途、光学用途などに好適なポリエステルフィルムを提供できる。

Description

ポリエステルフィルム
 本発明は、特殊な熱特性を有するポリエステルフィルムに関するものである。
 熱収縮性フィルムは、ラベル包装用途を中心に広く使用されているが、近年、ラベル印刷時の乾燥工程では、熱収縮しない耐熱性を有し、高温加熱時に所定の一方向に均一に熱収縮可能な熱収縮性フィルムのニーズが高まっている。また、加飾用途として、フィルムの収縮を利用して複雑形状な部材に高意匠なフィルム加飾を行うニーズも高まってきている。さらに、位相差形成層などの光学層を形成する光学用離型フィルムとしても、熱収縮性フィルムの要望が高まっている。
 均一な熱収縮性を有する熱収縮フィルムとしては、80℃、90℃といった低温にて熱収縮性を有するポリエステルフィルムが知られている(例えば、特許文献1、2参照)。
特開2003-320630号公報 国際公開第2014/021120号
 特許文献1及び特許文献2に記載のフィルムは、熱収縮性は良好であるが、印刷、塗工時の乾燥工程における耐熱性が不十分であり、乾燥温度を高くする必要がある用途への適用は困難であった。
 そこで本発明の課題は、上記した問題点を解消することにあり、印刷、塗工後の乾燥工程においては、実質的に熱収縮しない耐熱性を有し、高温加熱時には所望の一方向に均一に熱収縮可能なポリエステルフィルムを提供することにある。
 本発明は、かかる課題を解決するために、次のような手段を採用するものである。
(1)フィルムの主配向軸方向をX方向、X方向と直交する方向をY方向とし、X方向の150℃熱収縮率をSX150、Y方向の150℃熱収縮率をSY150、Y方向の90℃熱収縮率をSY90として、下記式を満足することを特徴とするポリエステルフィルム。  
 (SY150)>(SX150) ・・・ (I)
 (SY150)≧15% ・・・ (II)
 (SY90)<15% ・・・(III)
(2)前記SX150が下記式を満足する、(1)に記載のポリエステルフィルム。
 (SX150)<5% ・・・ (IV)
(3)X方向の破断伸度が100%以上である、(1)または(2)に記載のポリエステルフィルム。
(4)Y方向の破断伸度が150%以上であり、かつX方向の破断伸度よりも高い、(1)~(3)のいずれかに記載のポリエステルフィルム。
(5)Y方向において、23℃、100時間での寸法変化率が、-0.1%以上0.1%以下である、(1)~(4)のいずれかに記載のポリエステルフィルム。
(6)Y方向において、50℃、100時間での寸法変化率が、-0.3%以上0.3%以下である、(1)~(5)のいずれかに記載のポリエステルフィルム。
 本発明に係るポリエステルフィルムによれば、低温領域では熱収縮率が低く、高温領域において、均一な熱収縮性を示すことができるため、包装用途、加飾用途、光学用途などに好適なポリエステルフィルムを提供できる。
 以下に、本発明に係るポリエステルフィルムについて、実施の形態とともに詳細に説明する。
 本発明のポリエステルフィルムは、フィルムの主配向軸方向をX方向、X方向と直交する方向をY方向とし、X方向の150℃熱収縮率をSX150、Y方向の150℃熱収縮率をSY150、Y方向の90℃熱収縮率をSY90として、下記式を満足することが必要である。  
 (SY150)>(SX150) ・・・ (I)
 (SY150)≧15% ・・・ (II)
 (SY90)<15% ・・・(III)
 ここで、フィルムの主配向軸方向とは、フィルム面内において、分子が最も分極している方位のことであり、屈折率楕円体においては最も屈折率が高い方位のことを指す。上記(I)式は、150℃の環境下において、フィルムの主配向軸方向よりも、主配向軸方向と直交する方向の熱収縮率が高いことを示す。本発明では、150℃といった高温環境下にて、主配向軸方向と直交する方向の熱収縮率を高く、主配向軸方向の熱収縮率を低く制御することで、熱収縮特性を利用する所望の一方向に均一に熱収縮することを見出した。熱収縮特性の均一性は、後述の如く、熱収縮させた際のシワ等の発生を観察することにより判断できる。より一方向の均一熱収縮性を達成するためには、(I’)式を満足することが好ましく、(I”)式を満足することが最も好ましい。
 (SY150)-10>(SX150) ・・・ (I’)
 (SY150)-15>(SX150) ・・・ (I”)
 また、上述の(II)式は、150℃における主配向軸方向と直交する方向の熱収縮率が15%以上と高いことを示し、本発明のポリエステルフィルムを包装用途、加飾用途、光学用途として優れた乾燥耐熱性と、高温熱収縮性を両立できる。また、より高い収縮性とすることで、各用途での性能が向上するため、(II’)式を満足することがより好ましく、(II”)式を満足することが最も好ましい。
 (SY150)≧20% ・・・ (II’)
 (SY150)≧25% ・・・ (II”)
 また、上述の(III)式は、90℃における主配向軸方向と直交する方向の熱収縮率が15%未満であることを示し、各種機能層塗工後の乾燥工程においては、熱収縮しないか、小さい熱収縮率となる耐熱性を有する。乾燥時の耐熱性の観点からは、(III’)式を満足することが好ましく、(III”)式を満足することが最も好ましい。
 (SY90)≦10% ・・・(III’)
 (SY90)≦5% ・・・(III”)
 本発明において、(I)、(II)、(III)式を達成する方法は特に限定されないが、例えば、延伸によって、X方向の配向結晶化を高め、Y方向については結晶化が進行しない程度に配向を進行させる構造とし、延伸後に熱処理によって非晶部の一部を緩和させることが好ましい。X方向の配向結晶化を高めることで、X方向の熱収縮率は低くなる傾向を示し、Y方向については結晶化しない程度に配向を進行させることで、熱収縮率を高く制御することが可能となり、さらに延伸後の熱処理によって非晶部の一部を緩和させることで、(I)、(II)、(III)式を満足することが可能となる。
 本発明において、X方向はフィルム幅方向、Y方向はフィルム長手方向であることが好ましい。つまり、フィルム長手方向に、高い収縮性を示すことで、特に光学用途において、ロールtoロールでの位相差層等の形成が可能となるため、好ましい。
 本発明において、(I)、(II)、(III)式は、製膜時の延伸方式、延伸倍率、延伸及び熱処理の温度を調整することにより達成することができる。 
 また、(I)、(II)、(III)式を満足するためのポリエステルフィルムの組成としては、グリコール単位の80モル%以上がエチレングリコール由来の構造単位であることが好ましく、さらに好ましくは85モル%以上であり、90モル%以上であれば最も好ましい。
 また、ジカルボン酸単位の80モル%以上がテレフタル酸由来の構造単位であることが好ましく、85モル%以上であればさらに好ましく、90モル%以上であれば最も好ましい。 
 本発明に用いるポリエステルを与える、グリコールあるいはその誘導体としては、エチレングリコール以外に、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールなどの脂肪族ジヒドロキシ化合物、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどのポリオキシアルキレングリコール、1,4-シクロヘキサンジメタノールなどの脂環族ジヒドロキシ化合物、ビスフェノールA、ビスフェノールSなどの芳香族ジヒドロキシ化合物、並びに、それらの誘導体が挙げられる。
 また、本発明に用いるポリエステルを与えるジカルボン酸あるいはその誘導体としては、テレフタル酸以外には、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシエタンジカルボン酸、5-ナトリウムスルホンジカルボン酸などの芳香族ジカルボン酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸、マレイン酸、フマル酸などの脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環族ジカルボン酸、パラオキシ安息香酸などのオキシカルボン酸、並びに、それらの誘導体を挙げることができる。ジカルボン酸の誘導体としてはたとえばテレフタル酸ジメチル、テレフタル酸ジエチル、テレフタル酸2-ヒドロキシエチルメチルエステル、2,6-ナフタレンジカルボン酸ジメチル、イソフタル酸ジメチル、アジピン酸ジメチル、マレイン酸ジエチル、ダイマー酸ジメチルなどのエステル化物を挙げることができる。
 本発明のポリエステルフィルムは、一方向の均一熱収縮性の観点から、(IV)式を満足することが好ましい。
 (SX150)<5% ・・・ (IV)
 上記(IV)式を満足するということは、150℃における主配向軸方向の熱収縮率が5%未満であることを示し、主配向軸方向には熱収縮しにくい特性を有する。つまり、主配向軸方向と直交する方向には高い熱収縮性を示しつつ、主配向軸方向には熱収縮しないという一方向に選択的に収縮する特性を有する。一方向収縮性の観点より、(IV’)式を満足することが好ましく、(IV”)式を満足することが最も好ましい。
 (SX150)≦4% ・・・ (IV’)
 (SX150)≦3% ・・・ (IV”)
 本発明において、(IV)式を達成する方法は特に限定されないが、製膜時の延伸方式、延伸倍率、延伸及び熱処理の温度を調整することにより達成することができる。
 本発明のポリエステルフィルムは、高靱性の観点から、X方向の破断伸度が100%以上であることが好ましい。X方向の破断伸度を100%以上とすることで、フィルムの靱性が高まり、加工時のフィルム破れを抑制しやすくなるため好ましい。X方向の破断伸度は120%以上であればさらに好ましく、150%以上であれば最も好ましい。本発明のポリエステルフィルムにおいて、X方向の破断伸度を100%以上とする方法としては、X方向の延伸温度を90℃以上とする方法が好ましく用いられる。X方向に複数回延伸する場合は、最も延伸温度の高いX方向の延伸工程において延伸温度を90℃以上とすることが好ましい。X方向の延伸温度を90℃以上と高く設定することで、X方向の配向が進行せずに、破断伸度を高めることが可能となる。より好ましくは、X方向の延伸温度は95℃以上である。
 本発明のポリエステルフィルムは、さらに靱性を高めるために、Y方向の破断伸度が150%以上であり、かつX方向の破断伸度よりも高いことが好ましい。Y方向の破断伸度を150%以上とし、X方向の破断伸度よりも高く制御することで、フィルムの靱性がさらに高まり、加工時のフィルム破れを大幅に低減することができる。本発明のポリエステルフィルムのY方向の破断伸度は、170%以上であればさらに好ましく、200%以上であれば最も好ましい。本発明のポリエステルフィルムにおいて、Y方向の破断伸度を150%以上とし、かつX方向の破断伸度よりも高くする方法としては、Y方向に延伸温度を90℃以上とすることが好ましい。Y方向に複数回延伸する場合は、最も延伸温度の高いY方向の延伸工程において、延伸温度を90℃以上とすることが好ましい。Y方向の延伸温度は、105℃以上であればより好ましく、120℃以上であれば最も好ましい。
 本発明のポリエステルフィルムは、経時安定性の観点から、Y方向において、23℃、100時間での寸法変化率が、-0.1%以上0.1%以下であることが好ましい。23℃、100時間での寸法変化率を-0.1%以上0.1%以下と非常に低く抑えることで、経時でのフィルム変形を抑制することができる。Y方向における23℃、100時間での寸法変化率は、-0.08%以上0.08%以下であればより好ましく、-0.05%以上0.05%以下であれば最も好ましい。本発明のポリエステルフィルムのY方向における23℃、100時間での寸法変化率を-0.1%以上0.1%以下とする方法としては、例えば、Y方向が長手方向の場合、幅方向に延伸する前に少なくとも1.03倍以上、長手方向に延伸する方法が挙げられる。幅方向に延伸する前に少なくとも1.03倍以上、長手方向に延伸することで、長手方向の非晶部の一部が剛直となり、経時安定性を向上することができる。さらに、延伸後の熱処理温度は115℃よりも高温とすることで、剛直となった非晶構造が安定化するため、経時安定性の点からはより好ましい方法である。
 また、本発明のポリエステルフィルムは、高温での経時安定性の観点から、Y方向において、50℃、100時間での寸法変化率が、-0.3%以上0.3%以下であることが好ましい。50℃、100時間での寸法変化率を-0.3%以上0.3%以下と非常に低く抑えることで、高温環境下での経時でのフィルム変形を抑制することができる。Y方向における50℃、100時間での寸法変化率は、-0.25%以上0.25%以下であればより好ましく、-0.2%以上0.2%以下であれば最も好ましい。本発明のポリエステルフィルムのY方向における50℃、100時間での寸法変化率を-0.3%以上0.3%以下とする方法としては、例えば、Y方向が長手方向の場合、幅方向に延伸する前に少なくとも1.1倍以上、長手方向に延伸する方法が挙げられる。幅方向に延伸する前に少なくとも1.1倍以上、長手方向に延伸することで、長手方向の非晶部の剛直性が高まり、高温環境下においても経時安定性を向上することができる。さらに、延伸後の熱処理温度は115℃よりも高温とすることで、剛直となった非晶構造が安定化するため、経時安定性の点からはより好ましい方法である。
 また、本発明のポリエステルフィルムは、ハンドリング性、耐熱性、収縮性の観点より、フィルム厚みは20μmよりも厚く、200μm以下であることが好ましく、25μm以上150μm以下であればさらに好ましく、30μm以上120μm以下であれば最も好ましい。また、靱性の観点からは、フィルム厚みは30μm以上100μm以下であることが非常に好ましい。
 次に本発明のポリエステルフィルムの具体的な製造方法の例について記載するが、本発明はかかる例に限定して解釈されるものではない。
 まず、ポリエステルフィルムに用いられるポリエステル樹脂として、ポリエチレンテレフタレート樹脂を乾燥、予備結晶化させた後、単軸押出機に供給し、溶融押出する。この際、樹脂温度は265~295℃に制御することが好ましい。次いで、フィルターやギヤポンプを通じて、異物の除去、押出量の均整化を各々行い、Tダイより冷却ドラム上にシート状に吐出する。その際、高電圧を掛けた電極を使用して静電気で冷却ドラムと樹脂を密着させる静電印加法、キャスティングドラムと押出したポリマーシート間に水膜を設けるキャスト法、キャスティングドラム温度をポリエステル樹脂のガラス転移点~(ガラス転移点-20℃)にして押出したポリマーを粘着させる方法、もしくは、これらの方法を複数組み合わせた方法により、シート状ポリマーをキャスティングドラムに密着させ、冷却固化し、未延伸フィルムを得る。これらのキャスト法の中でも、ポリエステルを使用する場合は、生産性や平面性の観点から、静電印加する方法が好ましく使用される。
 上記のようにして得られた未延伸シートを、(I)、(II)、(III)式を満たすように延伸方式、延伸倍率、延伸及び熱処理の温度を調整する。(I)、(II)、(III)式を満たす延伸方法としては、例えば、上記キャスト法によって得られたシートを、フィルム長手方向-幅方向-長手方向、フィルム幅方向-長手方向に逐次二軸延伸した後に、101℃以上160℃以下で熱処理する方法、フィルム幅方向端部を把持して、長手方向と幅方向を延伸し、全延伸工程の最終点から5%の区間の長手方向延伸倍率を、幅方向延伸倍率以上とし、101℃以上160℃以下の熱処理を行う方法、などが好ましく用いられる。
 本発明において、特に、Y方向の高収縮性を重視する用途に適用する場合、シートの延伸方法としては、長手方向-幅方向-長手方向に逐次二軸延伸した後に、101℃以上160℃以下で熱処理する方法において、最初の長手方向の延伸倍率を、後の長手方向の延伸倍率以下とすることが好ましい。具体的には、最初の長手方向の延伸倍率を、1.01倍以上3倍以下とし、後の長手方向の延伸倍率を1.1倍以上4倍以下とし、かつ、最初の長手方向の延伸倍率を、後の長手方向の延伸倍率以下とすることが好ましい。また、シートの延伸方法を、フィルム幅方向-長手方向に逐次二軸延伸した後に、101℃以上160℃以下で熱処理する方法とすることも好ましい。この場合、幅方向に1.5倍以上6倍以下に延伸し、その後に長手方向に1.1倍以上4倍以下延伸し、長手方向延伸後に、100℃以下の冷却工程、101℃以上160℃以下の熱処理工程を有することが好ましい。さらに、シートの延伸方法を、フィルムの幅方向端部を把持して、長手方向と幅方向に延伸し、全延伸工程の最終点から5%の区間の長手方向延伸倍率を、幅方向延伸倍率以上とし、トータルの長手方向延伸倍率を、トータルの幅方向延伸倍率よりも低くし、延伸後に101℃以上160℃以下の熱処理を行う方法とすることも好ましい。
 一方、本発明において、Y方向の高収縮性と、機械強度、ハンドリング性の両立が重要な用途に適用する場合には、延伸方法を長手方向-幅方向-長手方向に逐次二軸延伸した後に、101℃以上160℃以下で熱処理する方法とし、最初の長手方向の延伸倍率を、後の長手方向の延伸倍率より高くすることが好ましい。具体的には、最初の長手方向の延伸倍率を、1.1倍以上4倍以下とし、後の長手方向の延伸倍率を1.01倍以上3倍以下とし、かつ、最初の長手方向の延伸倍率を、後の長手方向の延伸倍率より高くすることが好ましい。また、ほかの延伸方法として、フィルムの幅方向端部を把持して、フィルム長手方向と幅方向を延伸し、全延伸工程の最終点から5%の区間の長手方向延伸倍率を、幅方向延伸倍率以上とし、トータルの長手方向延伸倍率を、トータルの幅方向延伸倍率よりも高くし、延伸後に101℃以上160℃以下の熱処理を行う方法とすることも好ましい。ここで好ましい熱処理温度とは、二軸延伸後に行う熱処理温度の中で、最も高温となる温度を示す。また、熱処理時間は特性を悪化させない範囲において任意の時間とすることができ、好ましくは5秒以上60秒以下、より好ましくは10秒以上40秒以下、最も好ましくは15秒以上30秒以下で行うことができる。
 本発明のポリエステルフィルムは、低温領域では熱収縮率が低く、高温領域において、均一な熱収縮性を示すため、包装用途として好ましく用いられる。印刷層、耐候層、粘着層、接着層、蒸着層等などの各種機能層の塗工工程や乾燥工程においては熱収縮しない耐熱性を有するため、例えば、水系溶媒のコーティング剤への対応も可能である。さらに、高温加熱することで、高い熱収縮性を示すため、ボトル等の容器への装着性に優れるので、ラベル用を中心とした各種包装用途に好ましく用いられる。
 また、本発明のポリエステルフィルムは、加飾用途にも好ましく用いることが可能である。印刷層、耐候層、粘着層、接着層、蒸着層、耐傷層、耐指紋層等などの各種機能層塗工後の乾燥工程においては熱収縮しない耐熱性を有するため、例えば水系溶媒のコーティング剤への対応も可能であり、各種機能層の塗工工程や乾燥工程での耐熱性に優れ、高温加熱時には高い熱収縮性を示すことから、複雑形状の部材への高意匠な加飾への適用が可能である。
 また、本発明のポリエステルフィルムは、光学用途にも好ましく用いられる。位相差形成層等の各種機能層の塗工工程や乾燥工程での耐熱性に優れるほか、高温加熱時の収縮特性を利用して位相差層を形成することが可能である。
 以下、実施例に沿って本発明を説明するが、本発明はこれらの実施例によって制限されるものではない。なお、諸特性は以下の方法により測定した。
(1)フィルム厚み
 フィルムの全体厚みを測定する際は、ダイヤルゲージを用いて、フィルムから切り出した試料の任意の場所5ヶ所の厚みを測定し、平均値を求めた。
(2)主配向軸
 フィルムの任意の点において100mm×100mmの寸法でサンプルを切り出し、KSシステムズ社製(現王子計測機器社)のマイクロ波分子配向計MOA-2001A(周波数4GHz)を用い、ポリエステルフィルムの面内の主配向軸を求め、X方向とし、X方向と直交する方向をY方向とした。
(3)熱収縮率(90℃、150℃)
 フィルムのX方向およびY方向にについて測定を行った。長さ150mm(測定方向)×幅10mm(測定方向に直交する方向)の矩形に切り出しサンプルとした。サンプルに100mmの間隔(中央部から両端に50mmの位置)で標線を描き、3gの錘を吊して所定温度(90℃、150℃)に加熱した熱風オーブン内に30分間設置し加熱処理を行った。熱処理後の標線間距離を測定し、加熱前後の標線間距離の変化から下記式により熱収縮率を算出した。
熱収縮率(%)={(加熱処理前の標線間距離)-(加熱処理後の標線間距離)}/(加熱処理前の標線間距離)×100。
(4)破断伸度
 フィルムのX方向およびY方向について測定を行った。長さ150mm(測定方向)×幅10mm(測定方向に直交する方向)の矩形に切り出しサンプルとした。25℃、63%Rhの条件下で、引張試験機(オリエンテック社製テンシロンUCT-100)を用いてクロスヘッドスピード300mm/分、幅10mm、試料長50mmとしてフィルムのY方向、X方向について、引張試験を行い、破断したときの伸度を破断伸度とした。各測定はそれぞれ5回ずつ行い、その平均値を用いた。
(5)23℃、100時間、50℃、100時間の寸法変化率
 フィルムのY方向について測定を行った。長さ100mm(測定方向)×幅10mm(測定方向に直交する方向)の短形に切り出しサンプルとした。サンプルに、60gの錘を吊して所定の温度(23℃、50℃)の恒温層内設置し、100時間保持後のY方向の長さを測定し、下記式により寸法変化率を算出した。
寸法変化率(%)={(保持前のY方向長さ)-(100時間保持後のY方向長さ)}/(保持前のY方向長さ)×100。
(6)包装用途適性
(i)乾燥耐熱性
 フィルム表面に、スクリーン印刷を行った。印刷は、ミノグループ(株)製インキU-PET(517)、スクリーンSX270Tを用いて、スキージスピード300mm/sec、スキージ角度45°の条件で行い、次いで90℃条件下の熱風オーブン中で5分間乾燥して、印刷層積層フィルムを得た。得られた印刷層積層フィルムについての外観について、下記の基準で評価を行った。
 A:乾燥後もシワの発生は確認されず、良好な外観であった。
 B:乾燥後に若干のシワが確認されたが、良好な外観であった。
 C:乾燥後にシワが確認されたが、実用上問題ないレベルであった。
 D:乾燥後にシワが確認され、実用レベルではなかった。
A、B、Cが合格レベルである。
(ii)熱収縮性
 (i)で作成した印刷層積層フィルムについて、フィルム両端部を溶断シールで接着し、円筒状のラベルを作成した。該ラベルを円筒形のアルミボトルの胴部(底面直径150mm)に被せ、150℃雰囲気下のトンネルオーブンに、通過時間3秒で通過させて、ボトルに装着し、収縮外観を下記基準で評価した。
 A:シワ、ゆがみ、収縮不足が発生せず、意匠性に優れた外観であった。
 B:シワ、ゆがみ、収縮不足の少なくともいずれかが確認できるが、意匠性に優れた外観であった。
 C:シワ、ゆがみ、収縮不足の少なくともいずれかが確認できるが実用上問題なかった。
 D:シワ、ゆがみ、収縮不足の少なくともいずれかが確認でき、実用レベルではなかった。
A、B、Cが合格レベルである。
(7)加飾用途適性
(i)乾燥耐熱性
 フィルム表面に、アプリケーターを用いて、日本ケミカル社製892Lを塗工し、90℃で5分間乾燥を行い、接着層を形成した。接着層積層フィルムについての外観について、下記の基準で評価を行った。
 A:乾燥後もシワの発生は確認されず、良好な外観であった。
 B:乾燥後に若干のシワが確認されたが、良好な外観であった。
 C:乾燥後にシワが確認されたが、実用上問題ないレベルであった。
 D:乾燥後にシワが確認され、実用レベルではなかった。
A、B、Cが合格レベルである。
(ii)形状追従性
 (i)で作成した接着層積層フィルムについて、接着層積層フィルムを80℃に加熱したマグネシウム筐体(底面200mm×100mm×高さ30mmの直方体))に被せ、150℃雰囲気下のトンネルオーブンに通過時間10秒で通過させて、形状追従させ、収縮外観について下記の基準で評価した。
 A:高さ30mmまで追従できた。
 B:高さ25mm以上30mm未満まで追従できた。
 C:高さ20mm以上25mm未満まで追従できた。
 D:追従性が低く、高さ20mmまで追従できなかった。
A、B、Cが合格レベルである。
(8)光学用途適性
(i)ハンドリング性
 実施例及び比較例で得られた熱収縮性フィルムの端部を切り落としたフィルムロールについて、巻出張力を100N/mとして、巻取張力を100N/m、200N/m、250N/m、300N/mとして搬送し、ハンドリング性について、下記の基準で評価を行った。
 A:巻取張力300N/mにて、1000m巻取ができた。
 B:巻取張力250N/mでは1000m巻取ができたが、300N/mでは1000m巻取る前にフィルム破断が発生した。
 C:巻取張力200N/mでは1000m巻取ができたが、250N/mでは1000m巻取る前にフィルム破断が発生した。
 D:巻取張力100N/mでも1000m巻取る前にフィルム破断が発生した。
A、B、Cが合格レベルである。
(ii)乾燥耐熱性
 フィルム表面にポリカーボネート/トルエン分散体をダイコーターにて塗工・乾燥を行った(乾燥温度:90℃、乾燥時間:1分、巻出張力:200N/m、巻取張力:100N/m)。得られたポリカーボネート積層フィルムの外観について、下記の基準で評価を行った。
 A:乾燥後もシワの発生は確認されず、良好な外観であった。
 B:乾燥後に若干のシワが確認されたが、良好な外観であった。
 C:乾燥後にシワが確認されたが、実用上問題ないレベルであった。
 D:乾燥後にシワが確認され、実用レベルではなかった。
 A、B、Cが合格レベルである。
(iii)靱性
 (ii)で作成したポリカーボネート積層フィルムについて、150℃のオーブン中でY方向に収縮させながら、X方向に微延伸して位相差層を形成した。その際、靱性について、下記の基準で評価を行った。
 A:X方向に1.2倍以上延伸できた。
 B:X方向に1.1倍以上1.2倍未満延伸できた。
 C:X方向に1.05倍以上1.1倍未満延伸できた。
 D:X方向に1.05倍延伸ができなかった。
所定の倍率まで延伸してもフィルムが破断しない場合に、延伸できたと評価した。
A、B、Cが合格レベルである。
(iv)熱収縮性
 (iii)と同様にして、150℃のオーブン中でY方向に収縮させたフィルムの熱収縮性について、下記の基準で評価した。
 A:Y方向の熱収縮率が25%以上であり、収縮後のフィルム外観にシワがみられなかった。
 B:Y方向の熱収縮率が20%以上25%未満であり、収縮後のフィルム外観にシワがみられなかった。
 C:Y方向の熱収縮率が15%以上20%未満であり、収縮後のフィルム外観にシワがみられなかった。
 D:Y方向の熱収縮率が15%未満であるか、もしくはフィルム外観にシワがみられた。
A、B、Cが合格レベルである。
(v)経時安定性-I
 実施例及び、比較例で得られた熱収縮性フィルムを巻出張力を100N/m、巻取張力100N/mで1000m巻き取り、23℃条件下で100時間保管後のロール外観について、下記の基準で評価を行った。
 A:シワの発生は確認されず、良好な外観であった。
 B:若干のシワが確認されたが、良好な外観であった。
 C:シワが確認されたが、実用上問題ないレベルであった。
 D:シワが確認され、実用レベルではなかった。
 A、B、Cが合格レベルである。
(vi)経時安定性-II
 (v)と同様にして得られたフィルムロールについて、50℃条件下で100時間保管後のロール外観について、下記の基準で評価を行った。
 A:シワの発生は確認されず、良好な外観であった。
 B:若干のシワが確認されたが、良好な外観であった。
 C:シワが確認されたが、実用上問題ないレベルであった。
 D:シワが確認され、実用レベルではなかった。
 A、B、Cが合格レベルである。
(ポリエステルの製造)
 製膜に供したポリエステル樹脂は以下のように準備した。
(ポリエステルA)
 ジカルボン酸成分としてテレフタル酸成分が100モル%、グリコール成分としてエチレングリコール成分が100モル%であるポリエチレンテレフタレート樹脂(固有粘度0.65)。
(ポリエステルB)
 ジカルボン酸成分としてテレフタル酸成分が90モル%、イソフタル酸成分が10モル%、グリコール成分としてエチレングリコール成分が100モル%であるイソフタル酸共重合ポリエチレンテレフタレート樹脂(固有粘度0.7)。
(粒子マスター)
 ポリエステルA中に平均粒子径1.2μmの炭酸カルシウム粒子を粒子濃度1質量%で含有したポリエチレンテレフタレート粒子マスター(固有粘度0.65)。
(実施例1)
 ポリエステルAと粒子マスターを質量比95:5で混合して押出機に投入した後、280℃で溶融させて、Tダイより25℃に温度制御した冷却ドラム上にシート状に吐出した。その際、直径0.1mmのワイヤー状電極を使用して静電印加し、冷却ドラムに密着させ未延伸シートを得た。次いで、延伸温度90℃で長手方向に3倍延伸し、次いでテンター式延伸機にて延伸温度90℃で幅方向に4倍延伸した。その後、再度、長手方向に延伸温度120℃で2倍延伸した後、テンター内にて、110℃にて熱処理を行い、フィルム厚み35μmのポリエステルフィルムを得た。得られたフィルムの諸特性を、後述の実施例、比較例における諸特性とともに、後述の表1~4に示す。
(実施例2)
 1回目の長手方向の延伸倍率を2倍とし、2回目の長手方向の延伸倍率を1.5倍とした以外は、実施例1と同様にしてフィルム厚み40μmのポリエステルフィルムを得た。
(実施例3)
 1回目の長手方向の延伸倍率を2倍とした以外は、実施例1と同様にしてフィルム厚み35μmのポリエステルフィルムを得た。
(実施例4)
 1回目の長手方向の延伸倍率を1.5倍とした以外は、実施例1と同様にしてフィルム厚み35μmのポリエステルフィルムを得た。
(実施例5)
 1回目の長手方向の延伸倍率を1.1倍とし、熱処理温度を125℃とした以外は、実施例1と同様にしてフィルム厚み35μmのポリエステルフィルムを得た。
(実施例6)
 1回目の長手方向の延伸倍率を1.03倍とし、熱処理温度を125℃とした以外は、実施例1と同様にしてフィルム厚み35μmのポリエステルフィルムを得た。
(実施例7)
 1回目の長手方向の延伸倍率を1.1倍として、幅方向の延伸温度を97℃とし、熱処理温度を125℃とした以外は実施例1と同様にしてフィルム厚み50μmのポリエステルフィルムを得た。
(実施例8)
 2回目の長手方向の延伸温度を125℃し、熱処理温度を122℃とした以外は、実施例4と同様にして、フィルム厚み50μmのポリエステルフィルムを得た。
(実施例9)
 実施例1と同様にして、フィルム厚み28μmのポリエステルフィルムを得た。
(実施例10)
 幅方向の延伸温度を92℃とし、熱処理温度を125℃とした以外は実施例7と同様にして、フィルム厚み20μmのポリエステルフィルムを得た。
(実施例11)
 原料組成をポリエステルAとポリエステルBと粒子マスターを質量比45:50:5とした以外は実施例4と同様にしてフィルム厚み35μmのポリエステルフィルムを得た。
(実施例12)
 ポリエステルAと粒子マスターを質量比95:5で混合して押出機に投入した後、280℃で溶融させて、Tダイより25℃に温度制御した冷却ドラム上にシート状に吐出した。その際、直径0.1mmのワイヤー状電極を使用して静電印加し、冷却ドラムに密着させ未延伸シートを得た。次いで、テンター式延伸機にて延伸温度90℃で幅方向に4倍延伸した。その後、長手方向に延伸温度120℃で2倍延伸した後、テンター内にて、125℃にて熱処理を行い、フィルム厚み40μmのポリエステルフィルムを得た。
(実施例13)
 幅方向の延伸温度を95℃とした以外は実施例12と同様にしてフィルム厚み45μmのポリエステルフィルムを得た。
(実施例14)
 長手方向の延伸倍率を1.5倍とした以外は実施例13と同様にしてフィルム厚み45μmのポリエステルフィルムを得た。
(実施例15)
 ポリエステルAと粒子マスターを質量比95:5で混合して押出機に投入した後、280℃で溶融させて、Tダイより25℃に温度制御した冷却ドラム上にシート状に吐出した。その際、直径0.1mmのワイヤー状電極を使用して静電印加し、冷却ドラムに密着させ未延伸シートを得た。次いで、テンター式延伸機にて、フィルムの幅方向端部を把持して、フィルム長手方向にトータル倍率2倍、幅方向にトータル倍率4倍延伸し(全延伸工程の最終点から5%の区間の長手方向延伸倍率を1.1倍、幅方向延伸倍率1倍)、延伸後に125℃で熱処理を行い、フィルム厚み40μmのポリエステルフィルムを得た。
(実施例16)
 フィルム長手方向のトータル倍率を3倍とした以外は実施例15と同様にして、フィルム厚み45μmのポリエステルフィルムを得た。
(比較例1)
 ポリエステルAと粒子マスターを質量比95:5で混合して押出機に投入した後、280℃で溶融させて、Tダイより25℃に温度制御した冷却ドラム上にシート状に吐出した。その際、直径0.1mmのワイヤー状電極を使用して静電印加し、冷却ドラムに密着させ未延伸シートを得た。次いで、延伸温度90℃で長手方向に3倍延伸し、次いでテンター式延伸機にて延伸温度100℃で幅方向に4倍延伸した。その後、再度、長手方向に延伸温度90℃で2倍延伸した後、テンター内にて、95℃にて熱処理を行い、フィルム厚み35μmのポリエステルフィルムを得た。
(比較例2)
 1回目の長手方向の延伸倍率を3.2倍とした以外は実施例1と同様にしてフィルム厚み35μmのポリエステルフィルムを得た。
(比較例3)
 2回目の長手方向に延伸後の熱処理温度を165℃とした以外は比較例1と同様にしてフィルム厚み35μmのポリエステルフィルムを得た。
(比較例4)
 延伸後の熱処理温度を95℃とした以外は、実施例12と同様にしてフィルム厚み40μmのポリエステルフィルムを得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明のポリエステルフィルムは、印刷、塗工後の乾燥工程においては、熱収縮しない耐熱性を有し、高温加熱時に均一に熱収縮可能な熱収縮性を示すため、例えば、各種インキ、塗膜への対応が可能であり、熱収縮性フィルムとして幅広く適用が可能である。

Claims (6)

  1.  フィルムの主配向軸方向をX方向、X方向と直交する方向をY方向とし、X方向の150℃熱収縮率をSX150、Y方向の150℃熱収縮率をSY150、Y方向の90℃熱収縮率をSY90として、下記式を満足することを特徴とするポリエステルフィルム。  
     (SY150)>(SX150) ・・・ (I)
     (SY150)≧15% ・・・ (II)
     (SY90)<15% ・・・(III)
  2.   前記SX150が下記式を満足する、請求項1に記載のポリエステルフィルム。
     (SX150)<5% ・・・ (IV)
  3.  X方向の破断伸度が100%以上である、請求項1または2に記載のポリエステルフィルム。
  4.  Y方向の破断伸度が150%以上であり、かつX方向の破断伸度よりも高い、請求項1~3のいずれかに記載のポリエステルフィルム。
  5.  Y方向において、23℃、100時間での寸法変化率が、-0.1%以上0.1%以下である、請求項1~4のいずれかに記載のポリエステルフィルム。
  6.  Y方向において、50℃、100時間での寸法変化率が、-0.3%以上0.3%以下である、請求項1~5のいずれかに記載のポリエステルフィルム。
PCT/JP2016/072609 2015-08-06 2016-08-02 ポリエステルフィルム WO2017022743A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680041327.0A CN107849269A (zh) 2015-08-06 2016-08-02 聚酯膜
JP2016560832A JPWO2017022743A1 (ja) 2015-08-06 2016-08-02 ポリエステルフィルム
KR1020187001972A KR20180037182A (ko) 2015-08-06 2016-08-02 폴리에스테르 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015155887 2015-08-06
JP2015-155887 2015-08-06

Publications (1)

Publication Number Publication Date
WO2017022743A1 true WO2017022743A1 (ja) 2017-02-09

Family

ID=57943604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072609 WO2017022743A1 (ja) 2015-08-06 2016-08-02 ポリエステルフィルム

Country Status (5)

Country Link
JP (1) JPWO2017022743A1 (ja)
KR (1) KR20180037182A (ja)
CN (1) CN107849269A (ja)
TW (1) TW201716477A (ja)
WO (1) WO2017022743A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075333A1 (ja) * 2007-12-13 2009-06-18 Toyo Boseki Kabushiki Kaisha 熱収縮性ポリエステル系フィルム、およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560740B2 (ja) * 2007-09-25 2010-10-13 東洋紡績株式会社 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム及び包装体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075333A1 (ja) * 2007-12-13 2009-06-18 Toyo Boseki Kabushiki Kaisha 熱収縮性ポリエステル系フィルム、およびその製造方法

Also Published As

Publication number Publication date
CN107849269A (zh) 2018-03-27
TW201716477A (zh) 2017-05-16
JPWO2017022743A1 (ja) 2018-05-24
KR20180037182A (ko) 2018-04-11

Similar Documents

Publication Publication Date Title
JP7254730B2 (ja) 非晶性のフィルム用共重合ポリエステル原料、熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
JP6627218B2 (ja) 二軸配向ポリエステルフィルム
JP6459533B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
TWI793292B (zh) 熱收縮性聚酯系膜
TWI720006B (zh) 聚酯薄膜
JP2007185898A (ja) 二軸延伸ポリエステルフィルムおよびその製造方法
JP6641767B2 (ja) 熱収縮性フィルムの製造方法。
JP2023178331A (ja) 熱収縮性ポリエステルフィルム、熱収縮性ラベル、及び包装体
JP6274298B2 (ja) 蒸着ポリエステルフィルム
JP2018001422A (ja) 積層フィルム、積層体及び包装体
JP6361159B2 (ja) 二軸配向ポリエステルフィルム
WO2017022743A1 (ja) ポリエステルフィルム
TWI842727B (zh) 熱收縮性聚酯系膜、熱收縮性標籤、以及包裝體
JP6641768B2 (ja) 熱収縮性フィルムの製造方法
JP2021130728A (ja) ポリエステルフィルム
JP2019051727A (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP2017030320A (ja) 熱収縮性フィルムの製造方法。
JP2017035883A (ja) 熱収縮性フィルムの製造方法
JP2017030318A (ja) 熱収縮性フィルムの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016560832

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187001972

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16833022

Country of ref document: EP

Kind code of ref document: A1