WO2018158876A1 - 到来角度特定装置、料金収受システム及び到来角度特定方法 - Google Patents

到来角度特定装置、料金収受システム及び到来角度特定方法 Download PDF

Info

Publication number
WO2018158876A1
WO2018158876A1 PCT/JP2017/008089 JP2017008089W WO2018158876A1 WO 2018158876 A1 WO2018158876 A1 WO 2018158876A1 JP 2017008089 W JP2017008089 W JP 2017008089W WO 2018158876 A1 WO2018158876 A1 WO 2018158876A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
angle
signal processing
arrival
arrival angle
Prior art date
Application number
PCT/JP2017/008089
Other languages
English (en)
French (fr)
Inventor
義人 小野
前田 孝士
Original Assignee
三菱重工機械システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工機械システム株式会社 filed Critical 三菱重工機械システム株式会社
Priority to PCT/JP2017/008089 priority Critical patent/WO2018158876A1/ja
Priority to SG11201907659PA priority patent/SG11201907659PA/en
Priority to US16/488,018 priority patent/US11194006B2/en
Priority to KR1020197025299A priority patent/KR102266016B1/ko
Priority to GB1912163.1A priority patent/GB2573957B/en
Priority to JP2019502357A priority patent/JPWO2018158876A1/ja
Publication of WO2018158876A1 publication Critical patent/WO2018158876A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q2240/00Transportation facility access, e.g. fares, tolls or parking

Definitions

  • the present invention relates to an arrival angle specifying device, a toll collection system, and an arrival angle specifying method.
  • ETC Electronic Toll Collection System (registered trademark), also referred to as “automatic toll collection system”
  • ITS Intelligent Transport System
  • DSRC narrowband wireless communication
  • wireless communication between the roadside antenna and the vehicle-mounted device is performed by the DSRC method.
  • a wireless communication method called WAVE IEEE802.11p
  • WAVE IEEE802.11p
  • the DSRC scheme is a communication using a single carrier wave
  • the WAVE scheme is an OFDM (orthogonal frequency-division multiplexing) scheme in which a plurality of subcarriers are multiplexed.
  • the roadside antenna when performing wireless communication between the roadside antenna and the vehicle-mounted device, the roadside antenna communicates with a vehicle that is located outside the narrow communication area defined for performing regular narrowband wireless communication (unexpected communication ( There is a problem that miscommunication) can be made. For example, due to the reflection of radio waves in structures such as a toll's ceiling, the roadside antenna is mounted on an in-vehicle device of another vehicle that travels behind a vehicle (a vehicle that should normally perform wireless communication) existing in a narrow communication area. May miscommunication.
  • the electronic fee collection system performs fee collection processing by wireless communication only when the arrival angle of radio waves is within a normal range.
  • Patent Document 1 describes a technique for calculating the arrival angle of a communication signal (radio wave) that has been frequency division multiplexed based on the OFDM method.
  • An arrival angle identifying device that identifies the angle of arrival of an OFDM communication signal is required to simplify signal processing from the viewpoint of cost saving and processing speed.
  • the present invention provides an arrival angle specifying device, a toll collection system, and an arrival angle specifying method capable of specifying the arrival angle of a frequency division multiplexed radio wave by simple signal processing.
  • the arrival angle specifying device (1) receives a reception signal having a plurality of subcarriers by a plurality of antenna elements (10), and specifies the arrival angle of the reception signal.
  • An arrival angle specifying device which extracts a specific subcarrier defined in advance from the received signal received by each of the plurality of antenna elements, and extracts from each of the signal processing units And an angle specifying unit (19) for specifying the arrival angle based on the phase difference of the specified subcarrier.
  • the signal processing unit includes a frequency adjustment unit (156a, 156b) that adjusts a deviation of a frequency of the reception signal received by the antenna element from a specified value, and a band-pass filter process for the reception signal whose frequency is adjusted And a filter unit (157a, 157b) for extracting the specific subcarrier.
  • a frequency adjustment unit (156a, 156b) that adjusts a deviation of a frequency of the reception signal received by the antenna element from a specified value
  • a band-pass filter process for the reception signal whose frequency is adjusted
  • a filter unit 157a, 157b
  • the signal processing unit further includes an amplitude adjustment unit (152) for adjusting the amplitude of the reception signal received by the antenna element to a predetermined magnitude.
  • the specific subcarrier is a pilot carrier (SCp) that is not phase-modulated for data transmission.
  • SCp pilot carrier
  • the signal processing unit extracts a plurality of pilot carriers having different frequencies. By doing in this way, it becomes difficult to receive the influence of multipath fading, and the reliability of the function which specifies an arrival angle can be improved.
  • the toll collection system includes the arrival angle specifying device according to any one of the first to fourth aspects.
  • the arrival angle specifying method receives a reception signal having a plurality of subcarriers by a plurality of antenna elements and specifies the arrival angle of the reception signal.
  • An angle specifying step of specifying the angle of arrival based on the phase difference of The signal processing step includes: a frequency adjustment step of adjusting a deviation of a frequency of the reception signal received by the antenna element from a specified value; and a band-pass filter process for the reception signal with the frequency adjusted, Filtering step for extracting subcarriers.
  • the arrival angle of frequency division multiplexed radio waves can be specified by simple signal processing.
  • FIG. 1 is a diagram illustrating an overall configuration of a toll collection system according to the first embodiment.
  • the toll collection system 5 according to the first embodiment is an electronic toll collection system installed at, for example, an entrance toll gate and an exit toll gate (hereinafter referred to as a toll gate) on a highway.
  • the toll collection system 5 performs radio communication with a vehicle passing through a toll booth and automatically performs toll collection processing.
  • the toll collection system 5 is provided on the roadside of a lane L such as a toll gate.
  • the toll collection system 5 includes an arrival angle specifying device 1 and a toll collection antenna 2 (roadside antenna).
  • the arrival angle identifying device 1 is a device for identifying the arrival angle of a radio wave transmitted from the vehicle-mounted device A1 mounted on the vehicle A during wireless communication for toll collection processing.
  • the toll collection antenna 2 is a roadside antenna for performing toll collection processing by performing wireless communication with the vehicle-mounted device A1 mounted on the vehicle A.
  • the WAVE system is an OFDM (orthogonal frequency-division multiplexing) system that performs radio communication using a plurality of subcarriers that are frequency-division multiplexed.
  • a frequency band having a center frequency of 5900 MHz and a channel width of 10 MHz is assigned to a certain channel.
  • the allocated frequency band is further divided into 64 subcarriers with a subcarrier width of 0.156625 MHz.
  • 12 of the 64 are Null carriers (no contents), and the remaining 52 subcarriers are used.
  • 52 subcarriers 48 are called data carriers and are used to transmit data. That is, 48 data carriers are phase-modulated based on data to be transmitted and propagate in the atmosphere.
  • four of the 52 subcarriers are called pilot carriers, and are used to secure demodulation processing (synchronization) on the receiving side (toll collection antenna 2). Since the pilot carrier is not used for data transmission, it is not phase-modulated.
  • which subcarrier is used as a pilot carrier (or data carrier) out of 52 subcarriers is defined in advance.
  • the four pilot carriers are the seventh and 21st subcarriers counted from the center frequency (5900 MHz) to the lower frequency side, and the seventh and 21st subcarriers counted from the higher frequency side, respectively.
  • Etc. are defined in advance.
  • the arrival angle specifying device 1 receives an OFDM communication signal (a reception signal having a plurality of subcarriers) that is a radio wave transmitted from the vehicle-mounted device A1. Then, the arrival angle identification device 1 identifies the arrival angle of the received communication signal.
  • the toll collection system 5 determines that the arrival angle of the radio wave specified by the arrival angle specifying device 1 is within the correct range (when it is determined that the vehicle exists in a predetermined communication area), the on-vehicle device A charge collection process through the charge collection antenna 2 is executed for A1.
  • FIG. 2 is a diagram illustrating a functional configuration of the arrival angle identifying device according to the first embodiment.
  • the functional configuration of the arrival angle specifying device 1 will be described with reference to FIG.
  • a plurality of antenna elements 10, and a plurality of high-frequency amplifiers 11, mixers 12, variable amplifiers 13, A / D converters 14, and signal processing units 15 provided in association with each of the antenna elements 10. have.
  • the arrival angle specifying device 1 includes an angle specifying unit 19 connected to each of the plurality of signal processing units 15.
  • the plurality of antenna elements 10 receive radio waves (OFDM communication signals) transmitted from the vehicle-mounted device A1 at each installed location.
  • the high frequency amplifier 11 amplifies the received signal (OFDM communication signal) received by the antenna element 10.
  • the mixer 12 mixes the received signal amplified through the high-frequency amplifier 11 with an output signal from a local transmitter (not shown), and converts the received signal to an intermediate frequency.
  • the variable amplifier 13 adjusts the received signal converted to the intermediate frequency by the mixer 12 to a predetermined amplitude and outputs the signal.
  • the amplitude adjustment using the variable amplifier 13 will be described later.
  • the A / D converter 14 samples the received signal (analog signal) adjusted to a predetermined amplitude by the variable amplifier 13 and converts it into a digital signal.
  • the signal processing unit 15 is a digital signal processing circuit realized by, for example, an FPGA (field-programmable gate array).
  • the signal processing unit 15 extracts a specific subcarrier defined in advance from a reception signal (digital signal input through the A / D converter 14) received by each of the plurality of antenna elements 10.
  • the signal processing unit 15 extracts pilot carriers as “specific subcarriers”.
  • the signal processing unit 15 outputs a signal indicating the phase of the extracted pilot carrier (pilot carrier phase signal) to the angle specifying unit 19.
  • the angle specifying unit 19 specifies the phase difference of the received signals received by each antenna element 10 based on the pilot carrier phase signals output from the plurality of signal processing units 15. And the angle specific
  • FIG. 3 is a diagram illustrating a functional configuration of the signal processing unit according to the first embodiment. Next, the function of the signal processing unit 15 will be described in more detail with reference to FIG.
  • the signal processing unit 15 includes an RSSI detection unit 150, a harmonic elimination filter 151, an automatic amplitude control unit (AGC) 152, mixers 153a and 153b, and a local oscillator 154. And low-pass filters 155a and 155b, automatic frequency control units (AFC) 156a and 156b, pilot carrier extraction filters 157a and 157b, and a phase signal output unit 158.
  • RSSI detection unit 150 a harmonic elimination filter 151
  • AGC automatic amplitude control unit
  • AFC automatic frequency control units
  • the RSSI detection unit 150 determines whether or not the intensity of the received signal, that is, RSSI (Received Signal Strength Strength) Indication is equal to or greater than a predetermined value.
  • RSSI Receiveived Signal Strength Strength
  • the RSSI detector 150 detects the intensity of the received signal converted to the intermediate frequency by the mixer 12 (see FIG. 2).
  • the harmonic elimination filter 151 is a so-called low-pass filter and removes harmonic noise from the received signal.
  • the automatic amplitude controller 152 receives the received signal after removing the harmonic noise, and acquires the signal strength (amplitude) of the received signal. Then, the automatic amplitude control unit 152 outputs a variable amplifier control signal corresponding to the acquired signal strength to the variable amplifier 13 (FIG. 2). The automatic amplitude controller 152 feedback-controls the variable amplifier 13 so that the signal strength of the received signal becomes constant at a predetermined signal strength target value.
  • the mixers 153a and 153b, the local oscillator 154, and the low-pass filters 155a and 155b perform processing for extracting the I component and the Q component from the received signal. Specifically, the mixers 153a and 153b multiply the reception signal input via the harmonic elimination filter 151 by the reproduction signal from the local oscillator 154. Here, the mixer 153a multiplies the reproduction signal having the same phase as the reception signal to extract the I component of the reception signal. Further, the mixer 153b multiplies a reproduction signal whose phase is 90 ° different from that of the reception signal, thereby extracting the Q component of the reception signal.
  • the automatic frequency controllers 156a and 156b automatically adjust the frequency of the received signal (I component, Q component).
  • the center frequency of a certain channel is defined as, for example, 5900 MHz, but in practice, an error of about 20 ppm is allowed in accordance with the standard.
  • the center frequency of the radio wave (channel) transmitted from the vehicle-mounted device A1 has an error of about ⁇ 118 kHz (20 ppm of 5900 MHz) at the maximum. Therefore, the automatic frequency control units 156a and 156b measure the actual center frequency of the received signal and detect a frequency error between the measured center frequency and the specified center frequency (5900 MHz).
  • the automatic frequency controllers 156a and 156b adjust the frequency of the entire received signal by adding and subtracting so that the detected frequency error becomes zero. As a result, the frequency error that has occurred up to about 20 ppm is reduced for the entire received signal including all 52 subcarriers.
  • the pilot carrier extraction filters 157a and 157b are digital band pass filters that pass only the frequency components of subcarriers that are defined in advance as pilot carriers in the received signal.
  • the pilot carrier extraction filters 157a and 157b are preferably FIR (finite impulse response) filters that do not cause phase delay.
  • the pilot carrier is defined in advance as, for example, the seventh (21st) subcarrier counted from the center frequency (5900 MHz) of the channel to the lower frequency side.
  • the pilot carrier extraction filters 157a and 157b are adjusted so as to have a filter characteristic in which only one pilot carrier defined as described above passes and other subcarriers are removed.
  • the phase signal output unit 158 inputs the I and Q signals of one pilot carrier extracted through the pilot carrier extraction filters 157a and 157b, and outputs a signal (pilot carrier phase signal) indicating the phase of the pilot carrier. To do.
  • FIG. 4 is a diagram illustrating a processing flow of the signal processing unit according to the first embodiment.
  • 5 to 7 are first to third diagrams for explaining the processing of the signal processing unit according to the first embodiment, respectively.
  • the processing flow of the signal processing unit 15 will be specifically described with reference to the processing flow shown in FIG. 4 and FIGS. 5 to 7.
  • the RSSI detection unit 150 of the signal processing unit 15 detects reception of a radio wave (reception signal) transmitted from the vehicle-mounted device A1 based on the RSSI detection result (step S01).
  • the automatic amplitude control unit 152 of the signal processing unit 15 controls the variable amplifier 13 (feedback control) so that the amplitude of the reception signal becomes a predetermined specified value. Perform (step S02).
  • the received signal received from the vehicle-mounted device A1 will be described with reference to FIG.
  • the horizontal axis indicates “frequency”, and the vertical axis indicates “signal strength” (amplitude).
  • the received signal is a frequency-division multiplexed signal, and 52 subcarriers SC are included in one channel.
  • 52 subcarriers SC are included in one channel.
  • Four specific subcarriers SC defined in advance among the 52 are pilot carriers SCp. Since pilot carrier SCp is not used for data transmission, phase modulation by data is not performed.
  • the subcarrier SC other than the pilot carrier SCp is the data carrier SCd. Since the data carrier SCd is used for data transmission, phase modulation by data is performed.
  • the center frequency of the received signal (channel) is 5900 MHz, but as described above, an error of about 20 ppm is actually allowed. Therefore, the frequency of each of the 52 subcarriers SC has an error of about ⁇ 118 kHz at the maximum.
  • the automatic frequency control units 156a and 156b of the signal processing unit 15 perform frequency adjustment processing on each of the I component and Q component of the received signal (step S03).
  • the frequency adjustment processing the frequency error that has occurred at the maximum about 20 ppm ( ⁇ 118 kHz) in each subcarrier is reduced.
  • the pilot carrier extraction filters 157a and 157b of the signal processing unit 15 accept the input of the received signal whose frequency has been adjusted, and extract only the frequency component of the pilot carrier (step S04).
  • FIG. 6 shows the filter characteristics of the pilot carrier extraction filters 157a and 157b.
  • FIG. 7 shows the state of the received signal after the filtering process (step S04) by the pilot carrier extraction filters 157a and 157b. As shown in FIG. 7, only the frequency components of a specific pilot carrier pass through the pilot carrier extraction filters 157a and 157b, and the frequency components of other subcarriers are removed.
  • the phase signal output unit 158 of the signal processing unit 15 specifies the phase of the pilot carrier based on the I and Q components of the pilot carrier extracted by the pilot carrier extraction filters 157a and 157b (step S05).
  • the signal processing unit 15 outputs a signal (pilot carrier phase signal) indicating the phase of the pilot carrier specified by the above processing flow.
  • the angle specifying unit 19 shown in FIG. The angle specifying unit 19 calculates the arrival angle of the received signal based on the calculated pilot carrier phase difference.
  • the arrival angle specifying apparatus 1 receives a reception signal (OFDM communication signal) having a plurality of subcarriers SC by a plurality of antenna elements 10 and arrives at the reception signal. Identify the angle.
  • the arrival angle specifying device 1 extracts a specific subcarrier SC defined in advance from the received signal received by each of the plurality of antenna elements 10 and the specification extracted from each of the signal processing units 15. And an angle specifying unit 19 that specifies the arrival angle based on the phase difference of the subcarriers (pilot carrier SCp).
  • the signal processing unit 15 includes automatic frequency control units 156a and 156b (frequency adjustment units) that adjust a deviation of the frequency of the reception signal received by the antenna element 10 from a specified value, and a band for the reception signal whose frequency is adjusted.
  • Pilot carrier extraction filters 157a and 157b filter units that extract specific subcarriers (pilot carriers SCp) by a pass filter (band pass filter) process.
  • the arrival angle specifying device 1 in order to obtain the arrival angle of the OFDM radio wave, it is common to perform fast Fourier transform (FFT) on the received signal. That is, in order to extract one specific subcarrier from the frequency-multiplexed received signal, it is necessary to perform fast Fourier transform processing on the received signal.
  • the arrival angle specifying device 1 has a configuration as described above, so that it is desired directly from a received signal having a plurality of subcarriers (without performing fast Fourier transform). Only subcarriers (pilot carriers) can be extracted. And the arrival angle of a radio wave can be specified based on the phase difference of the extracted subcarrier (pilot carrier).
  • the arrival angle of the frequency division multiplexed radio wave can be specified by simple signal processing.
  • a frequency error ( ⁇ 118 kHz) of 20 ppm at the maximum is recognized in the standard.
  • the arrival angle specifying device 1 is characterized in that the frequency error is reduced by the automatic frequency control units 156a and 156b before the received signal is passed through the pilot carrier extraction filters 157a and 157b. .
  • the 20 ppm frequency error in the received signal is also reduced, so that a desired subcarrier (pilot carrier) can be extracted with high accuracy through the pilot carrier extraction filters 157a and 157b.
  • the signal processing unit 15 further includes an automatic amplitude control unit 152 (amplitude adjustment unit) that adjusts the amplitude of the reception signal received by the antenna element 10 to a predetermined magnitude.
  • an automatic amplitude control unit 152 amplitude adjustment unit
  • the signal processing unit 15 further includes an automatic amplitude control unit 152 (amplitude adjustment unit) that adjusts the amplitude of the reception signal received by the antenna element 10 to a predetermined magnitude.
  • the “specific subcarrier” extracted by the signal processing unit 15 is a pilot carrier that is not subjected to phase modulation for data transmission.
  • the pilot carrier is not subjected to phase modulation based on data to be transmitted. Therefore, it is possible to easily compare the phases of received signals (pilot carriers) received by each of the plurality of antenna elements 10 (FIG. 2). That is, when an arrival angle is to be specified using a data carrier that is phase-modulated based on data, it is necessary to compare the phase within a range that does not include a phase shift due to phase modulation in the data carrier. . However, if a pilot carrier is used, it is not necessary to consider a phase shift due to phase modulation when comparing phases.
  • the signal processing unit 15 of the arrival angle identifying device 1 has been described as extracting only a single pilot carrier SCp (see FIG. 7) from the frequency division multiplexed received signal.
  • the signal processing unit 15 of the arrival angle identifying apparatus 1 according to the second embodiment extracts all of a plurality (four) of pilot carriers from the frequency division multiplexed received signal.
  • the overall configuration and functional configuration of the arrival angle specifying device 1 and the toll collection system 5 according to the second embodiment are the same as those in the first embodiment (FIGS. 1 to 3).
  • FIG. 8 is a diagram for explaining the processing of the signal processing unit according to the second embodiment.
  • the signal processing unit 15 according to the second embodiment extracts all four pilot carriers SCp1 to SCp4.
  • the signal processing unit 15 according to the present embodiment includes pilot carrier extraction filters 157a and 157b having bandpass filter characteristics that pass each of the pilot carriers SCp1 to SCp4.
  • Multipath fading that may occur in wireless communication between the vehicle-mounted device A1 and the arrival angle specifying device 1 will be described.
  • Multipath fading means that the presence of obstacles on the ground causes the radio waves transmitted from the vehicle-mounted device A1 to travel on different paths and interferes with each other at the reception point (arrival angle specifying device 1), so that the received signal This is a phenomenon in which the signal strength is increased or decreased.
  • the degree of signal strength is determined by the relationship between the frequency of radio waves and the path difference. That is, even if the same route is traced, the degree of influence of multipath fading is different when the frequency of radio waves is different. Since the four pilot carriers SCp1 to SCp4 have different frequencies, as shown in FIG. 8, the levels of signal strength due to multipath fading are also different.
  • the signal processing unit 15 refers to the I and Q components of each of the four pilot carriers extracted through the pilot carrier extraction filters 157a and 157b, and calculates the signal strength of each pilot carrier SCp1 to SCp4. Then, the signal processing unit 15 selects the pilot carrier having the highest signal strength (in the example illustrated in FIG. 8, the pilot carrier SCp2). Further, the signal processing unit 15 specifies a phase from the I component and Q component of the selected pilot carrier SCp2, and outputs a pilot carrier phase signal indicating the phase to the angle specifying unit 19 (FIG. 2).
  • the arrival angle specifying device 1 (signal processing unit 15) according to the second embodiment is characterized by extracting a plurality of pilot carriers having different frequencies. By doing in this way, even if multipath fading occurs, it is possible to select a subcarrier (pilot carrier) having a small influence among them and specify the arrival angle based on the selected subcarrier. Therefore, it becomes difficult to be affected by multipath fading, and the reliability of the function for specifying the arrival angle can be improved.
  • specification apparatus 1 which concerns on 2nd Embodiment was demonstrated in detail
  • specification apparatus 1 is not limited to the above-mentioned thing, and is in the range which does not deviate from a summary. It is possible to add various design changes and the like.
  • the arrival angle specifying device 1 selects a pilot carrier having the highest signal strength among the four pilot carriers SCp1 to SCp4, and based on the phase difference of the selected pilot carrier, the arrival angle Was to be specified.
  • other embodiments are not limited to this aspect.
  • the arrival angle specifying device 1 (signal processing unit 15) according to the modification of the second embodiment exceeds a predetermined signal strength threshold Ith (see FIG. 8) among the four pilot carriers SCp1 to SCp4. It may be an aspect of selecting a pilot carrier. In the case of the example shown in FIG. 8, the signal processing unit 15 selects two pilot carriers SCp2 and SCp4.
  • the signal processing unit 15 further outputs both the pilot carrier phase signal indicating the phase of the pilot carrier SCp2 and the pilot carrier phase signal indicating the phase of the pilot carrier SCp4 to the angle specifying unit 19. Then, the angle specifying unit 19 specifies the arrival angle based on the average value “( ⁇ 2 + ⁇ 4) / 2” between the phase difference ⁇ 2 of the pilot carrier SCp2 and the phase difference ⁇ 4 of the pilot carrier SCp4.
  • arrival angle specifying apparatus 1 (signal processing unit 15) according to yet another modified example is configured so that all of pilot carriers SCp1 to SCp4 are all based on the I component and Q component of four pilot carriers SCp1 to SCp4.
  • a pilot carrier phase signal indicating the phase may be output to the angle specifying unit 19.
  • the angle specifying unit 19 may specify the arrival angle based on the average value “( ⁇ 1 + ⁇ 2 + ⁇ 3 + ⁇ 4) / 4” of the phase differences ⁇ 1 to ⁇ 4 of the pilot carriers SCp1 to SCp4.
  • the arrival angle specifying apparatus 1 is based on the phase difference between “pilot carriers” (subcarriers that are not subjected to phase modulation) received by a plurality of antenna elements 10.
  • the present invention is not limited to this aspect. That is, the arrival angle specifying apparatus 1 according to another embodiment may specify the arrival angle based on the phase difference of the “data carrier” as the “specific subcarrier”.
  • the arrival angle identifying device 1 identifies the phase difference by comparing the points (phase change points) where the phase is switched by phase modulation among the received signals (data carriers) received by the plurality of antenna elements 10. May be.
  • toll collection system toll collection system, communication control method and program
  • erroneous communication can be suppressed with a simple configuration.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Radio Transmission System (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

複数のサブキャリアを有する受信信号を複数のアンテナ素子で受信して、当該受信信号の到来角度を特定する到来角度特定装置であって、前記複数のアンテナ素子の各々で受信した前記受信信号から、予め規定された特定のサブキャリア(パイロットキャリア)を抽出する信号処理部と、前記信号処理部の各々から抽出された前記特定のサブキャリアの位相差に基づいて前記到来角度を特定する角度特定部と、を備える。前記信号処理部は、前記アンテナ素子で受信した前記受信信号の周波数の、規定値からのずれを調整する周波数調整部と、周波数が調整された前記受信信号に対する帯域通過フィルタ処理により、前記特定のサブキャリアを抽出するフィルタ部と、を有する。

Description

到来角度特定装置、料金収受システム及び到来角度特定方法
 本発明は、到来角度特定装置、料金収受システム及び到来角度特定方法に関する。
 電子式料金収受システム(ETC:Electronic Toll Collection System(登録商標)、「自動料金収受システム」ともいう)は、高度交通システム(ITS:Intelligent Transport System)におけるアプリケーションとして既に活用されている。この電子式料金収受システムによれば、料金所に設置された路側アンテナ(狭域通信アンテナ)と、車両に搭載した車載器との間の狭域無線通信(DSRC:Dedicated Short Range Communications)を通じて有料道路の料金を収受できる。
 現在の電子式料金収受システムでは、DSRC方式で路側アンテナ-車載器間の無線通信が行われているが、次世代の電子式料金収受システムでは、WAVE(IEEE802.11p)と呼ばれる無線通信の方式が採用されることが予定されている。DSRC方式は、単一の搬送波による通信であるが、WAVE方式は、複数の副搬送波(サブキャリア)を多重化したOFDM(orthogonal frequency-division multiplexing)方式である。
 ところで、路側アンテナと車載器との間で無線通信を行う場合、路側アンテナが、正規の狭域無線通信を行うために規定された狭域通信領域の外に位置する車両と想定外の通信(誤通信)がなされ得る、という問題がある。例えば、料金所の天井などの構造物における電波の反射により、路側アンテナは、狭域通信領域内に存在する車両(正規に無線通信を行うべき車両)の後方を走行する別の車両の車載器と誤通信し得る。
 このような課題に対して、AOA(Angle of arrival)アンテナの利用が検討されている。AOAアンテナを用いることで、車載器から発信された電波の到来角度を特定することができる。電子式料金収受システムは、電波の到来角度が正規の範囲内にある場合にのみ、無線通信による料金収受処理を実行する。
 特許文献1には、OFDM方式に基づいて周波数分割多重化された通信信号(電波)の到来角度を算出する技術が記載されている。
特開2016-194454号公報
 OFDM方式の通信信号の到来角度を特定する到来角度特定装置に対しては、省コスト化、処理高速化の観点から、信号処理の簡素化が求められている。
 上記課題に鑑みて、本発明は、簡素な信号処理により、周波数分割多重化された電波の到来角度を特定可能な到来角度特定装置、料金収受システム及び到来角度特定方法を提供する。
 本発明の第1の態様によれば、到来角度特定装置(1)は、複数のサブキャリアを有する受信信号を複数のアンテナ素子(10)で受信して、当該受信信号の到来角度を特定する到来角度特定装置であって、前記複数のアンテナ素子の各々で受信した前記受信信号から、予め規定された特定のサブキャリアを抽出する信号処理部(15)と、前記信号処理部の各々から抽出された前記特定のサブキャリアの位相差に基づいて前記到来角度を特定する角度特定部(19)と、を備える。前記信号処理部は、前記アンテナ素子で受信した前記受信信号の周波数の、規定値からのずれを調整する周波数調整部(156a、156b)と、周波数が調整された前記受信信号に対する帯域通過フィルタ処理により、前記特定のサブキャリアを抽出するフィルタ部(157a、157b)と、を有する。
 このようにすることで、複数のサブキャリアを有してなる受信信号から直接的に(高速フーリエ変換を施すことなく)所望するサブキャリアのみを抽出することができる。そして、当該抽出したサブキャリアの位相差に基づいて電波の到来角度を特定することができる。
 以上より、簡素な信号処理により、周波数分割多重化された電波の到来角度を特定できる。
 また、本発明の第2の態様によれば、前記信号処理部は、前記アンテナ素子で受信した前記受信信号の振幅を所定の大きさに調整する振幅調整部(152)を更に有する。
 このようにすることで、信号強度(振幅)が常に一定となるように自動調整されるので、アンプを通じた信号の歪みなどが低減され、サブキャリアを抽出する処理の安定化を図ることができる。
 また、本発明の第3の態様によれば、前記特定のサブキャリアは、データ伝送のための位相変調がなされないパイロットキャリア(SCp)である。
 このようにすることで、複数のアンテナ素子の各々で受信した受信信号(パイロットキャリア)どうしの位相の対比を簡便に行うことができる。
 また、本発明の第4の態様によれば、前記信号処理部は、周波数が互いに異なる複数のパイロットキャリアを抽出する。
 このようにすることで、マルチパスフェージングの影響を受けにくくなり、到来角度を特定する機能の信頼性を向上させることができる。
 また、本発明の第5の態様によれば、料金収受システムは、第1から第4の何れかの態様に記載の到来角度特定装置を備える。
 また、本発明の第6の態様によれば、到来角度特定方法は、複数のサブキャリアを有する受信信号を複数のアンテナ素子で受信して、当該受信信号の到来角度を特定する到来角度特定方法であって、前記複数のアンテナ素子の各々で受信した前記受信信号から、予め規定された特定のサブキャリアを抽出する信号処理ステップと、前記信号処理ステップの各々で抽出された前記特定のサブキャリアの位相差に基づいて前記到来角度を特定する角度特定ステップと、を有する。前記信号処理ステップは、前記アンテナ素子で受信した前記受信信号の周波数の、規定値からのずれを調整する周波数調整ステップと、周波数が調整された前記受信信号に対する帯域通過フィルタ処理により、前記特定のサブキャリアを抽出するフィルタリングステップと、を含む。
 上述の到来角度特定装置、料金収受システム及び到来角度特定方法によれば、簡素な信号処理により、周波数分割多重化された電波の到来角度を特定できる。
第1の実施形態に係る料金収受システムの全体構成を示す図である。 第1の実施形態に係る到来角度特定装置の機能構成を示す図である。 第1の実施形態に係る信号処理部の機能構成を示す図である。 第1の実施形態に係る信号処理部の処理フローを示す図である。 第1の実施形態に係る信号処理部の処理を説明するための第1の図である。 第1の実施形態に係る信号処理部の処理を説明するための第2の図である。 第1の実施形態に係る信号処理部の処理を説明するための第3の図である。 第2の実施形態に係る信号処理部の処理を説明するための図である。
<第1の実施形態>
 以下、図1~図7を参照しながら、第1の実施形態に係る料金収受システム及び到来角度特定装置について詳細に説明する。
(料金収受システムの全体構成)
 図1は、第1の実施形態に係る料金収受システムの全体構成を示す図である。
 第1の実施形態に係る料金収受システム5は、例えば、高速道路の入口料金所、出口料金所(以下、料金所等と記載する。)に設置される電子式料金収受システムである。料金収受システム5は、料金所等を通過する車両と無線通信を行い、自動的に料金収受処理を行う。
 図1に示すように、料金収受システム5は、料金所等の車線Lの路側に設けられている。料金収受システム5は、到来角度特定装置1と、料金収受用アンテナ2(路側アンテナ)と、を有してなる。
 到来角度特定装置1は、料金収受処理のための無線通信時において、車両Aに搭載された車載器A1が発信した電波の到来角度を特定するための装置である。
 料金収受用アンテナ2は、車両Aに搭載された車載器A1との間で無線通信を行い、料金収受処理を行うための路側アンテナである。
 本実施形態に係る料金収受用アンテナ2と車載器A1との間で行われる無線通信では、WAVE(IEEE802.11p)方式と呼ばれる無線通信の方式が採用される。WAVE方式は、周波数分割多重化されてなる複数の副搬送波(サブキャリア)を利用して無線通信を行うOFDM(orthogonal frequency-division multiplexing)方式である。
 WAVE方式では、例えば、ある1つのチャネルについて、中心周波数5900MHz、チャネル幅10MHzの周波数帯域が割り当てられる。そして、当該割り当てられた周波数帯域が、更に、サブキャリア幅0.15625MHzずつ、64本のサブキャリアに分割される。本実施形態においては、この64本のうちの12本はNullキャリア(中身無し)とされ、残りの52本のサブキャリアが利用される。
 52本のサブキャリアのうち48本はデータキャリアと呼ばれ、データを伝送するために用いられる。すなわち、48本のデータキャリアは、伝送すべきデータに基づいて位相変調されて大気中を伝搬する。
 また、52本のサブキャリアのうち4本はパイロットキャリアと呼ばれ、受信側(料金収受用アンテナ2)における復調処理(同期)を担保するために用いられる。パイロットキャリアは、データの伝送には用いられないため、位相変調されることはない。
 なお、WAVE方式においては、52本のサブキャリアのうちいずれのサブキャリアをパイロットキャリア(或いはデータキャリア)として利用するかが予め規定されている。例えば、4本のパイロットキャリアは、それぞれ、中心周波数(5900MHz)から周波数の低い側に数えて7番目と21番目のサブキャリア、及び、周波数の高い側に数えて7番目と21番目のサブキャリア、などと予め規定されている。
 図1において、車両Aが車線Lのうちの所定の通信可能領域に進入すると、料金収受用アンテナ2と車両Aの車載器A1との間で無線通信が開始される。その際、到来角度特定装置1は、車載器A1から発信される電波であるOFDM方式の通信信号(複数のサブキャリアを有する受信信号)を受信する。そして、到来角度特定装置1は、受信した当該通信信号の到来角度を特定する。料金収受システム5は、到来角度特定装置1によって特定された電波の到来角度が正しい範囲内にあると判断した場合(予め定められた通信領域内に車両が存在すると判断した場合)に、車載器A1に対し、料金収受用アンテナ2を通じた料金収受処理を実行する。
(到来角度特定装置の機能構成)
 図2は、第1の実施形態に係る到来角度特定装置の機能構成を示す図である。
 図2を参照しながら、到来角度特定装置1の機能構成について説明する。
 図2に示すように、複数のアンテナ素子10と、アンテナ素子10の各々に関連して設けられた複数の高周波アンプ11、ミキサ12、可変アンプ13、A/D変換器14及び信号処理部15を有している。また、到来角度特定装置1は、複数の信号処理部15の各々と接続された角度特定部19を有している。
 複数のアンテナ素子10は、設置された各々の場所で車載器A1から発信された電波(OFDM方式の通信信号)を受信する。
 高周波アンプ11は、アンテナ素子10で受信した受信信号(OFDM方式の通信信号)を増幅する。
 ミキサ12は、高周波アンプ11を通じて増幅された受信信号に対し、図示しない局部発信器からの出力信号と混合して、受信信号を中間周波数に変換する。
 可変アンプ13は、ミキサ12によって中間周波数に変換された受信信号を所定の振幅に調整して出力する。可変アンプ13を用いた振幅の調整については後述する。
 A/D変換器14は、可変アンプ13によって所定の振幅に調整された受信信号(アナログ信号)をサンプリングしてデジタル信号に変換する。
 信号処理部15は、例えば、FPGA(field-programmable gate array)等によって実現されたデジタル信号処理回路である。信号処理部15は、複数のアンテナ素子10の各々で受信した受信信号(A/D変換器14を通じて入力されたデジタル信号)から、予め規定された特定のサブキャリアを抽出する。本実施形態においては、信号処理部15は、「特定のサブキャリア」として、パイロットキャリアを抽出する。
 更に、信号処理部15は、抽出したパイロットキャリアの位相を示す信号(パイロットキャリア位相信号)を角度特定部19に出力する。
 角度特定部19は、複数の信号処理部15から出力されたパイロットキャリア位相信号に基づいて、各アンテナ素子10で受信した受信信号の位相差を特定する。そして、角度特定部19は、特定した位相差に基づいて、受信信号(車載器A1から発信された電波)の到来角度を特定する。受信信号の位相差から当該受信信号の到来角度を特定する処理は、一般に良く知られている技術であるため、詳細な説明を省略する。
(信号処理部の機能構成)
 図3は、第1の実施形態に係る信号処理部の機能構成を示す図である。
 次に、図3を参照しながら、信号処理部15の機能についてより詳細に説明する。
 図3に示すように、信号処理部15は、RSSI検出部150と、高調波削除フィルタ151と、自動振幅制御部(AGC:Automatic gain control)152と、ミキサ153a、153bと、局部発信器154と、ローパスフィルタ155a、155bと、自動周波数制御部(AFC:Automatic frequency control)156a、156bと、パイロットキャリア抽出フィルタ157a、157bと、位相信号出力部158と、を有してなる。
 RSSI検出部150は、受信信号の強度、即ち、RSSI(Received Signal Strength Indication)が所定値以上か否かを判定する。本実施形態においては、RSSI検出部150は、ミキサ12によって中間周波数に変換された受信信号の強度を検出する(図2参照)。
 高調波削除フィルタ151は、いわゆるローパスフィルタであって、受信信号の高調波ノイズを除去する。
 自動振幅制御部152は、高調波ノイズ除去後の受信信号を受け付けて、当該受信信号の信号強度(振幅)を取得する。そして、自動振幅制御部152は、取得した信号強度に応じた可変アンプ制御信号を可変アンプ13(図2)に向けて出力する。自動振幅制御部152は、受信信号の信号強度が所定の信号強度目標値で一定となるように、可変アンプ13をフィードバック制御する。
 ミキサ153a、153b、局部発信器154、及び、ローパスフィルタ155a、155bは、受信信号からI成分とQ成分とを抽出する処理を行う。具体的には、ミキサ153a、153bは、高調波削除フィルタ151を介して入力された受信信号に対し、局部発信器154からの再生信号を乗算する。ここで、ミキサ153aでは、受信信号と同相の再生信号が乗算されることで、当該受信信号のI成分が抽出される。また、ミキサ153bでは、受信信号と位相が90°異なる再生信号が乗算されることで、当該受信信号のQ成分が抽出される。
 自動周波数制御部156a、156bは、受信信号(I成分、Q成分)の周波数を自動的に調整する。
 ここで、あるチャネルの中心周波数は、例えば、5900MHzと規定されることを説明したが、規格上、実際には、20ppm程度の誤差が許容されている。そうすると、車載器A1が発信した電波(チャネル)の中心周波数は、最大で±118kHz程度(5900MHzの20ppm)の誤差を有していることが想定される。そこで、自動周波数制御部156a、156bは、受信信号の実際の中心周波数を計測するとともに、当該計測した中心周波数と規定中心周波数(5900MHz)との周波数誤差を検出する。そして、自動周波数制御部156a、156bは、検出した周波数誤差がゼロとなるように、受信信号全体の周波数を加減算して調整する。これにより、52本全てのサブキャリアを含む受信信号全体について、最大で20ppm程度生じていた周波数誤差が低減される。
 パイロットキャリア抽出フィルタ157a、157bは、受信信号のうち、パイロットキャリアとして予め規定されているサブキャリアの周波数成分のみを通過させるデジタルバンドパスフィルタである。パイロットキャリア抽出フィルタ157a、157bは、位相遅延を生じさせないFIR(finite impulse response)フィルタなどであることが好ましい。
 上述したように、パイロットキャリアは、例えば、チャネルの中心周波数(5900MHz)から周波数の低い側に数えて7番目(21番目)のサブキャリア等として予め規定される。パイロットキャリア抽出フィルタ157a、157bは、上記のように規定された一のパイロットキャリアのみが通過し、それ以外のサブキャリアが除去されるフィルタ特性となるように調整されている。
 位相信号出力部158は、パイロットキャリア抽出フィルタ157a、157bを通じて抽出された一のパイロットキャリアのI信号とQ信号とを入力して、当該パイロットキャリアの位相を示す信号(パイロットキャリア位相信号)を出力する。
(信号処理部の処理フロー)
 図4は、第1の実施形態に係る信号処理部の処理フローを示す図である。
 図5~図7は、それぞれ、第1の実施形態に係る信号処理部の処理を説明するための第1~第3の図である。
 次に、図4に示す処理フロー及び図5~図7を参照しながら、信号処理部15の処理の流れについて具体的に説明する。
 まず、信号処理部15のRSSI検出部150は、RSSI検出結果にもとづいて、車載器A1から発信された電波(受信信号)の受信を検出する(ステップS01)。
 車載器A1からの電波の受信を検出すると、信号処理部15の自動振幅制御部152は、受信信号の振幅が予め規定された規定値となるように、可変アンプ13の制御(フィードバック制御)を行う(ステップS02)。
 ここで、車載器A1から受信した受信信号について、図5を参照しながら説明する。図5に示すグラフは、横軸が「周波数」を示しており、縦軸が「信号強度」(振幅)を示している。
 図5に示すように、受信信号は、周波数分割多重化された信号であって、一つのチャネルに52本のサブキャリアSCが含まれている。52本のうち予め規定された特定の4本のサブキャリアSCは、パイロットキャリアSCpである。パイロットキャリアSCpは、データ伝送用として用いられないため、データによる位相変調がなされない。また、52本のうちパイロットキャリアSCp以外のサブキャリアSCは、データキャリアSCdである。データキャリアSCdは、データ伝送用として用いられるため、データによる位相変調がなされる。
 なお、図5に示す例において、受信信号(チャネル)の中心周波数は5900MHzとされているが、上述したように、実際には20ppm程度の誤差が許容されている。したがって、52本の各サブキャリアSCの周波数は、最大で±118kHz程度の誤差を有している。
 次に、信号処理部15の自動周波数制御部156a、156bは、受信信号のI成分、Q成分の各々に対し周波数調整処理を行う(ステップS03)。この周波数調整処理により、各サブキャリアに最大で20ppm(±118kHz)程度生じていた周波数誤差が低減される。
 次に、信号処理部15のパイロットキャリア抽出フィルタ157a、157bは、周波数調整がなされた受信信号の入力を受け付けて、パイロットキャリアの周波数成分のみを抽出する(ステップS04)。
 ここで、図6は、パイロットキャリア抽出フィルタ157a、157bのフィルタ特性を示している。図6に示すように、パイロットキャリア抽出フィルタ157a、157bは、中心周波数5900MHzから+1MHz離れたパイロットキャリア(通過帯域幅=0.15625MHz)のみを通過させるようなフィルタ特性となっている。
 また、図7は、パイロットキャリア抽出フィルタ157a、157bによるフィルタリング処理(ステップS04)後の受信信号の状態を示している。図7に示すように、特定のパイロットキャリアの周波数成分のみがパイロットキャリア抽出フィルタ157a、157bを通過し、他のサブキャリアの周波数成分は除去されている。
 次に、信号処理部15の位相信号出力部158は、パイロットキャリア抽出フィルタ157a、157bによって抽出されたパイロットキャリアのI成分及びQ成分に基づいて当該パイロットキャリアの位相を特定する(ステップS05)。信号処理部15は、以上の処理フローによって特定したパイロットキャリアの位相を示す信号(パイロットキャリア位相信号)を出力する。
 図2に示す角度特定部19は、信号処理部15の各々から受け付けたパイロットキャリア位相信号に基づいて、アンテナ素子10(図2)の各々が受信したパイロットキャリアどうしの位相差を演算する。角度特定部19は、演算したパイロットキャリアの位相差に基づいて受信信号の到来角度を演算する。
(作用、効果)
 以上の通り、第1の実施形態に係る到来角度特定装置1は、複数のサブキャリアSCを有する受信信号(OFDM方式の通信信号)を複数のアンテナ素子10で受信して、当該受信信号の到来角度を特定する。
 到来角度特定装置1は、複数のアンテナ素子10の各々で受信した受信信号から、予め規定された特定のサブキャリアSCを抽出する信号処理部15と、信号処理部15の各々から抽出された特定のサブキャリア(パイロットキャリアSCp)の位相差に基づいて到来角度を特定する角度特定部19と、を備えている。
 更に信号処理部15は、アンテナ素子10で受信した受信信号の周波数の、規定値からのずれを調整する自動周波数制御部156a、156b(周波数調整部)と、周波数が調整された受信信号に対する帯域通過フィルタ(バンドパスフィルタ)処理により、特定のサブキャリア(パイロットキャリアSCp)を抽出するパイロットキャリア抽出フィルタ157a、157b(フィルタ部)と、を有している。
 ここで、従来技術においては、OFDM方式の電波の到来角度を求めるために、受信信号に対し高速フーリエ変換(FFT:Fast Fourier Transform)を行うことが一般的であった。即ち、周波数多重化された受信信号から特定の一のサブキャリアを抽出するために、受信信号に対し高速フーリエ変換処理を施す必要があった。
 しかし、本実施形態に係る到来角度特定装置1は、上記のような構成を有することで、複数のサブキャリアを有してなる受信信号から直接的に(高速フーリエ変換を施すことなく)所望するサブキャリア(パイロットキャリア)のみを抽出することができる。そして、当該抽出したサブキャリア(パイロットキャリア)の位相差に基づいて電波の到来角度を特定することができる。
 以上より、第1の実施形態に係る到来角度特定装置1によれば、簡素な信号処理により、周波数分割多重化された電波の到来角度を特定できる。
 なお、WAVE方式では、上述したように、最大で規格上20ppmの周波数誤差(±118kHz)が認められている。この20ppm(±118kHz)との誤差は、中心周波数(5900MHz)のスケールから考慮すると十分に小さく感じられるものの、単一のサブキャリア(周波数帯域幅=156.25kHz)に着目した場合には、極めて大きいものとなる。つまり、パイロットキャリア抽出フィルタ157a、157bの通過帯域を、所望する一のサブキャリア(パイロットキャリア)に相当する周波数帯域に合わせ込んだとしても、通過帯域幅156.25kHzに対して、±118kHzの周波数誤差が生じ得る状況においては、当該フィルタを介して所望するサブキャリアのみを正しく抽出することが困難である。
 そこで、第1の実施形態に係る到来角度特定装置1は、受信信号をパイロットキャリア抽出フィルタ157a、157bに通過させる前に、自動周波数制御部156a、156bによって周波数誤差を低減することを特徴としている。
 このようにすることで、受信信号における20ppmの周波数誤差も低減されるので、パイロットキャリア抽出フィルタ157a、157bを通じて所望するサブキャリア(パイロットキャリア)を精度良く抽出することができる。
 また、信号処理部15は、アンテナ素子10で受信した受信信号の振幅を所定の大きさに調整する自動振幅制御部152(振幅調整部)を更に有している。
 このようにすることで、信号強度(振幅)が常に一定となるように自動調整されるので、アンプによる信号の歪みなどが低減され、サブキャリアを抽出する処理の安定化を図ることができる。
 また、本実施形態においては、信号処理部15が抽出する「特定のサブキャリア」とは、データ伝送のための位相変調がなされないパイロットキャリアとしている。
 上述した通り、パイロットキャリアは伝送すべきデータに基づく位相変調がなされない。したがって、複数のアンテナ素子10(図2)の各々で受信した受信信号(パイロットキャリア)どうしの位相の対比を簡便に行うことができる。
 つまり、データに基づいて位相変調がなされるデータキャリアを用いて到来角度を特定しようとする場合には、データキャリアのうち位相変調による位相のずれを含まない範囲内で位相を対比する必要がある。しかし、パイロットキャリアを用いることにすれば、位相の対比に際し、位相変調による位相のずれを考慮する必要がない。
<第2の実施形態>
 次に、図8を参照しながら、第2の実施形態に係る料金収受システム及び到来角度特定装置について詳細に説明する。
 第1の実施形態においては、到来角度特定装置1の信号処理部15は、周波数分割多重化された受信信号から単一のパイロットキャリアSCp(図7参照)のみを抽出するものとして説明した。
 第2の実施形態に係る到来角度特定装置1の信号処理部15は、周波数分割多重化された受信信号から複数(4本)のパイロットキャリア全てを抽出する。
 なお、第2の実施形態に係る到来角度特定装置1及び料金収受システム5の全体構成、機能構成については第1の実施形態(図1~図3)と同様である。
(信号処理部の処理)
 図8は、第2の実施形態に係る信号処理部の処理を説明するための図である。
 図8に示すように、第2の実施形態に係る信号処理部15は、4本のパイロットキャリアSCp1~SCp4の全てを抽出する。
 具体的には、本実施形態に係る信号処理部15は、パイロットキャリアSCp1~SCp4の各々を通過させるバンドパスフィルタ特性を有するパイロットキャリア抽出フィルタ157a、157bを備えている。
 ここで、車載器A1と到来角度特定装置1との間の無線通信で起こり得るマルチパスフェージングについて説明する。マルチパスフェージングとは、地上の障害物等の存在により、車載器A1から発信される電波が異なる複数の行路を進行し、受信地点(到来角度特定装置1)で互いに干渉することで受信信号の信号強度に強弱が生じる現象である。信号強度の強弱の度合いは、電波の周波数と行路差との関係によって定まる。つまり、同じ行路を辿ったとしても電波の周波数が異なる場合は、マルチパスフェージングの影響の度合いは異なる。
 4本のパイロットキャリアSCp1~SCp4はそれぞれ周波数が異なるため、図8に示すように、マルチパスフェージングによる信号強度の強弱の度合いもそれぞれ異なっている。
 信号処理部15は、パイロットキャリア抽出フィルタ157a、157bを通じて抽出した4本のパイロットキャリアの各々のI成分及びQ成分を参照し、各パイロットキャリアSCp1~SCp4の信号強度を演算する。そして、信号処理部15は、最も信号強度が高いパイロットキャリア(図8に示す例では、パイロットキャリアSCp2)を選択する。更に、信号処理部15は、選択したパイロットキャリアSCp2のI成分及びQ成分から位相を特定し、当該位相を示すパイロットキャリア位相信号を角度特定部19(図2)に向けて出力する。
 以上のように、第2の実施形態に係る到来角度特定装置1(信号処理部15)は、周波数が互いに異なる複数のパイロットキャリアを抽出することを特徴とする。
 このようにすることで、マルチパスフェージングが生じたとしても、その中でも影響が小さいサブキャリア(パイロットキャリア)を選択し、当該選択したサブキャリアに基づいて到来角度を特定することができる。したがって、マルチパスフェージングの影響を受けにくくなり、到来角度を特定する機能の信頼性を向上させることができる。
 以上、第2の実施形態に係る到来角度特定装置1について詳細に説明したが、到来角度特定装置1の具体的な態様は、上述のものに限定されることはなく、要旨を逸脱しない範囲内において種々の設計変更等を加えることは可能である。
 例えば、第2の実施形態に係る到来角度特定装置1は、4本のパイロットキャリアSCp1~SCp4のうち最も信号強度が高いパイロットキャリアを選択し、当該選択したパイロットキャリアの位相差に基づいて到来角度を特定するものとした。しかし、他の実施形態においてはこの態様に限定されない。
 第2の実施形態の変形例に係る到来角度特定装置1(信号処理部15)は、4本のパイロットキャリアSCp1~SCp4のうち、予め規定された信号強度閾値Ith(図8参照)を上回ったパイロットキャリアを選択する態様であってもよい。図8に示す例の場合、信号処理部15は、パイロットキャリアSCp2とパイロットキャリアSCp4の2つを選択する。
 この場合、更に、信号処理部15は、パイロットキャリアSCp2の位相を示すパイロットキャリア位相信号と、パイロットキャリアSCp4の位相を示すパイロットキャリア位相信号との両方を角度特定部19に出力する。そして、角度特定部19は、パイロットキャリアSCp2の位相差θ2と、パイロットキャリアSCp4の位相差θ4との平均値「(θ2+θ4)/2」に基づいて、到来角度を特定する。
 また、さらに別の変形例に係る到来角度特定装置1(信号処理部15)は、4本のパイロットキャリアSCp1~SCp4の各々のI成分及びQ成分に基づいて、各パイロットキャリアSCp1~SCp4の全ての位相を示すパイロットキャリア位相信号を角度特定部19に出力してもよい。この場合、角度特定部19は、パイロットキャリアSCp1~SCp4の各々の位相差θ1~θ4の平均値「(θ1+θ2+θ3+θ4)/4」に基づいて、到来角度を特定してもよい。
 第1の実施形態、第2の実施形態に係る到来角度特定装置1は、いずれも、複数のアンテナ素子10で受信した「パイロットキャリア」(位相変調がなされないサブキャリア)どうしの位相差に基づいて到来角度を特定するものとして説明したが、他の実施形態においてはこの態様に限定されない。
 即ち、他の実施形態に係る到来角度特定装置1は、「特定のサブキャリア」として、「データキャリア」の位相差に基づいて到来角度を特定してもよい。この場合、到来角度特定装置1は、複数のアンテナ素子10で受信した受信信号(データキャリア)のうち、位相変調により位相が切り替わった点(位相変化点)どうしを対比することで位相差を特定してもよい。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものとする。
 上述の通信制御装置、料金収受システム、通信制御方法及びプログラムによれば、簡素な構成で誤通信を抑制できる。
1 到来角度特定装置
10 アンテナ素子
11 高周波アンプ
12 ミキサ
13 可変アンプ
14 A/D変換器
15 信号処理部
150 RSSI検出部
151 高調波削除フィルタ
152 自動振幅制御部(振幅調整部)
153a、153b ミキサ
154 局部発信器
155a、155b ローパスフィルタ
156a、156b 自動周波数制御部(周波数調整部)
157a、157b パイロットキャリア抽出フィルタ(フィルタ部)
158 位相信号出力部
19 角度特定部
2 料金収受用アンテナ
5 料金収受システム

Claims (6)

  1.  複数のサブキャリアを有する受信信号を複数のアンテナ素子で受信して、当該受信信号の到来角度を特定する到来角度特定装置であって、
     前記複数のアンテナ素子の各々で受信した前記受信信号から、予め規定された特定のサブキャリアを抽出する信号処理部と、
     前記信号処理部の各々から抽出された前記特定のサブキャリアの位相差に基づいて前記到来角度を特定する角度特定部と、を備え、
     前記信号処理部は、
     前記アンテナ素子で受信した前記受信信号の周波数の、規定値からのずれを調整する周波数調整部と、
     周波数が調整された前記受信信号に対する帯域通過フィルタ処理により、前記特定のサブキャリアを抽出するフィルタ部と、
     を有する到来角度特定装置。
  2.  前記信号処理部は、
     前記アンテナ素子で受信した前記受信信号の振幅を所定の大きさに調整する振幅調整部を更に有する
     請求項1に記載の到来角度特定装置。
  3.  前記特定のサブキャリアは、データ伝送のための位相変調がなされないパイロットキャリアである
     請求項1又は請求項2に記載の到来角度特定装置。
  4.  前記信号処理部は、
     周波数が互いに異なる複数のパイロットキャリアを抽出する
     請求項3に記載の到来角度特定装置。
  5.  請求項1から請求項4の何れか一項に記載の到来角度特定装置を備える
     料金収受システム。
  6.  複数のサブキャリアを有する受信信号を複数のアンテナ素子で受信して、当該受信信号の到来角度を特定する到来角度特定方法であって、
     前記複数のアンテナ素子の各々で受信した前記受信信号から、予め規定された特定のサブキャリアを抽出する信号処理ステップと、
     前記信号処理ステップの各々で抽出された前記特定のサブキャリアの位相差に基づいて前記到来角度を特定する角度特定ステップと、を有し、
     前記信号処理ステップは、
     前記アンテナ素子で受信した前記受信信号の周波数の、規定値からのずれを調整する周波数調整ステップと、
     周波数が調整された前記受信信号に対する帯域通過フィルタ処理により、前記特定のサブキャリアを抽出するフィルタリングステップと、
     を含む到来角度特定方法。
PCT/JP2017/008089 2017-03-01 2017-03-01 到来角度特定装置、料金収受システム及び到来角度特定方法 WO2018158876A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2017/008089 WO2018158876A1 (ja) 2017-03-01 2017-03-01 到来角度特定装置、料金収受システム及び到来角度特定方法
SG11201907659PA SG11201907659PA (en) 2017-03-01 2017-03-01 Angle-of-arrival identification device, toll collection system, and angle-of-arrival identification method
US16/488,018 US11194006B2 (en) 2017-03-01 2017-03-01 Angle-of-arrival identification device, toll collection system, and angle-of-arrival identification method
KR1020197025299A KR102266016B1 (ko) 2017-03-01 2017-03-01 도래 각도 특정 장치, 요금 수수 시스템 및 도래 각도 특정 방법
GB1912163.1A GB2573957B (en) 2017-03-01 2017-03-01 Angle-of-arrival identification device, toll collection system, and angle-of-arrival identification method
JP2019502357A JPWO2018158876A1 (ja) 2017-03-01 2017-03-01 到来角度特定装置、料金収受システム及び到来角度特定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008089 WO2018158876A1 (ja) 2017-03-01 2017-03-01 到来角度特定装置、料金収受システム及び到来角度特定方法

Publications (1)

Publication Number Publication Date
WO2018158876A1 true WO2018158876A1 (ja) 2018-09-07

Family

ID=63370405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008089 WO2018158876A1 (ja) 2017-03-01 2017-03-01 到来角度特定装置、料金収受システム及び到来角度特定方法

Country Status (6)

Country Link
US (1) US11194006B2 (ja)
JP (1) JPWO2018158876A1 (ja)
KR (1) KR102266016B1 (ja)
GB (1) GB2573957B (ja)
SG (1) SG11201907659PA (ja)
WO (1) WO2018158876A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819980B1 (ja) * 2020-06-23 2021-01-27 株式会社ネクスコ・エンジニアリング新潟 路側マーカーによる測位システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102082067B1 (ko) * 2016-03-31 2020-02-26 미츠비시 쥬고 기카이 시스템 가부시키가이샤 요금 수수 설비, 차재기, 요금 수수 시스템, 요금 수수 방법 및 프로그램
WO2020213036A1 (ja) * 2019-04-15 2020-10-22 三菱電機株式会社 路側通信装置および路車間通信方法
WO2024030070A1 (zh) * 2022-08-01 2024-02-08 华为技术有限公司 一种角度确定方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257595A (ja) * 2004-03-15 2005-09-22 Mitsubishi Electric Corp 追尾システム
JP2007281991A (ja) * 2006-04-10 2007-10-25 Nippon Hoso Kyokai <Nhk> 電波伝搬解析装置
WO2008136200A1 (ja) * 2007-04-27 2008-11-13 Panasonic Corporation 信号判定装置及び信号判定方法
EP2941069A2 (en) * 2014-03-14 2015-11-04 Broadcom Corporation Locationing determination using pilots signals in a wireless local area network (WLAN)
JP2016194454A (ja) * 2015-03-31 2016-11-17 三菱重工メカトロシステムズ株式会社 電波到来角度検出装置、車両検出システム、電波到来角度検出方法及び車両誤検出防止方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273821A (ja) 1994-03-29 1995-10-20 Sony Corp 復調装置
JP3361995B2 (ja) 1998-07-03 2003-01-07 株式会社東芝 搬送波再生回路並びに搬送波再生方法
JP4292667B2 (ja) 2000-01-24 2009-07-08 ソニー株式会社 受信装置およびその方法
JP2001339454A (ja) 2000-05-25 2001-12-07 Sony Corp 位相誤差検出装置およびその方法と受信装置
JP2002094585A (ja) 2000-09-12 2002-03-29 Sony Corp 受信装置、フィルタ回路制御装置およびそれらの方法
JP2002094586A (ja) 2000-09-12 2002-03-29 Sony Corp フィルタ回路およびその方法と受信装置およびその方法
JP4563620B2 (ja) 2001-07-18 2010-10-13 日本無線株式会社 伝送路特性測定装置
JP2008047999A (ja) 2006-08-11 2008-02-28 Sony Corp 情報処理装置および情報処理方法、プログラム、並びに、記録媒体
US9013352B2 (en) * 2011-04-25 2015-04-21 Saudi Arabian Oil Company Method, system, and machine to track and anticipate the movement of fluid spills when moving with water flow

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257595A (ja) * 2004-03-15 2005-09-22 Mitsubishi Electric Corp 追尾システム
JP2007281991A (ja) * 2006-04-10 2007-10-25 Nippon Hoso Kyokai <Nhk> 電波伝搬解析装置
WO2008136200A1 (ja) * 2007-04-27 2008-11-13 Panasonic Corporation 信号判定装置及び信号判定方法
EP2941069A2 (en) * 2014-03-14 2015-11-04 Broadcom Corporation Locationing determination using pilots signals in a wireless local area network (WLAN)
JP2016194454A (ja) * 2015-03-31 2016-11-17 三菱重工メカトロシステムズ株式会社 電波到来角度検出装置、車両検出システム、電波到来角度検出方法及び車両誤検出防止方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6819980B1 (ja) * 2020-06-23 2021-01-27 株式会社ネクスコ・エンジニアリング新潟 路側マーカーによる測位システム
JP2022003449A (ja) * 2020-06-23 2022-01-11 株式会社ネクスコ・エンジニアリング新潟 路側マーカーによる測位システム

Also Published As

Publication number Publication date
KR20190109518A (ko) 2019-09-25
GB2573957A (en) 2019-11-20
JPWO2018158876A1 (ja) 2019-12-26
GB2573957A8 (en) 2020-06-03
GB201912163D0 (en) 2019-10-09
US20200174093A1 (en) 2020-06-04
KR102266016B1 (ko) 2021-06-16
US11194006B2 (en) 2021-12-07
SG11201907659PA (en) 2019-09-27
GB2573957B (en) 2022-07-13

Similar Documents

Publication Publication Date Title
WO2018158876A1 (ja) 到来角度特定装置、料金収受システム及び到来角度特定方法
US10557914B2 (en) Radio wave arrival angle detection device, vehicle detection system, radio wave arrival angle detection method, and vehicle erroneous detection prevention method
CN101578761B (zh) 用于检测幅度调制信号的同时的双重发射的方法和装置
US8199765B2 (en) Interference-detecting wireless communication method and apparatus
EP3316614A1 (en) Dynamic frequency selection with discrimination
JP6437848B2 (ja) 受信解析装置
JP4681493B2 (ja) 狭域通信用車載器
US11172546B2 (en) Wireless device adapted to perform wireless communication
JP2008172496A (ja) Dsrc車載器
CN113517937A (zh) 一种测试方法及系统
EP2230769B1 (en) systems and methods for receiving and processing multiple carrier communications and navigation signals
CN102300115A (zh) 模拟、数字电视信号的快速识别方法、装置及通信接收端
JP5646372B2 (ja) 受信装置及び信号判定プログラム
JP2021136677A (ja) 受信装置、狭帯域通信システム基地局
JP6702051B2 (ja) 無線測位装置
JP6947593B2 (ja) 列車制御システム
CN111726133A (zh) 射频信号的处理方法及设备、存储介质、电子装置
JPH09113594A (ja) ビーコン受信機
JP2728970B2 (ja) 路車間通信システムおよびその移動局における車載装置
JP2018207145A (ja) 無線装置
JP2018207146A (ja) 無線装置
CN104467886A (zh) Dsrc用多信道接收器
JP2000067373A (ja) 路車間受信装置
JP2013153249A (ja) 受信機、受信方法、受信用プロセッサ及びコンピュータプログラム
JP2014039144A (ja) 受信電力測定装置及び無線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502357

Country of ref document: JP

Kind code of ref document: A

Ref document number: 201912163

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170301

ENP Entry into the national phase

Ref document number: 20197025299

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898788

Country of ref document: EP

Kind code of ref document: A1