WO2020213036A1 - 路側通信装置および路車間通信方法 - Google Patents

路側通信装置および路車間通信方法 Download PDF

Info

Publication number
WO2020213036A1
WO2020213036A1 PCT/JP2019/016167 JP2019016167W WO2020213036A1 WO 2020213036 A1 WO2020213036 A1 WO 2020213036A1 JP 2019016167 W JP2019016167 W JP 2019016167W WO 2020213036 A1 WO2020213036 A1 WO 2020213036A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
unit
vehicle
angle
wave
Prior art date
Application number
PCT/JP2019/016167
Other languages
English (en)
French (fr)
Inventor
正資 大島
信弘 鈴木
喜秋 津田
隆文 横江
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019554949A priority Critical patent/JP6705609B1/ja
Priority to PCT/JP2019/016167 priority patent/WO2020213036A1/ja
Publication of WO2020213036A1 publication Critical patent/WO2020213036A1/ja
Priority to US17/497,696 priority patent/US11910282B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/043Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured

Definitions

  • the present invention relates to a roadside communication device and a road-to-vehicle communication method.
  • a road-to-vehicle communication system such as ETC (Electronic Toll Control System) (registered trademark)
  • ETC Electronic Toll Control System
  • various information is transmitted and received between an on-board unit mounted on a vehicle traveling on a road and a roadside communication device installed on the roadside.
  • the roadside communication device establishes communication with the vehicle-mounted device when the reception strength (Received Signal Strength Indicator; hereinafter, abbreviated as RSSI) of the radio wave transmitted from the vehicle-mounted device exceeds the reference value. Therefore, when the RSSI of the radio wave transmitted from the vehicle-mounted device that is not the communication target exceeds the reference value, the roadside communication device erroneously communicates with the vehicle-mounted device that is not the communication target. there is a possibility.
  • RSSI Received Signal Strength Indicator
  • Patent Document 1 describes an information processing device provided with an antenna for specifying an orientation for specifying an arrival angle of a radio wave in addition to a communication antenna used for communication with an in-vehicle device. There is.
  • This information processing device estimates the arrival angle of the radio wave received by the directional identification antenna, and is mounted on the vehicle in which the on-board unit that is the source of the radio wave is traveling in the target lane based on the estimated arrival angle. It is determined whether or not the device is an in-vehicle device.
  • Radio waves transmitted from the on-board unit may cause multipath reflection in surrounding vehicles or buildings.
  • the information processing device described in Patent Document 1 since it is not considered that the radio wave is received by the reflected wave, when the direct wave and the reflected wave of the radio wave transmitted from the vehicle-mounted device are received in a mixed state. , There was a problem that the arrival angle of radio waves could not be estimated accurately. If the arrival angle of radio waves cannot be estimated accurately, there is a possibility of erroneous communication with an in-vehicle device that is not the communication target.
  • the present invention solves the above problems, and an object of the present invention is to obtain a roadside communication device and a road-to-vehicle communication method capable of avoiding erroneous communication with an in-vehicle device that is not a communication target.
  • the roadside communication device is a roadside communication device connected to a first antenna used for communication with an in-vehicle device and a second antenna used for estimating an arrival angle of radio waves.
  • the communication processing unit that detects the reception intensity of the radio wave received from the in-vehicle device through the antenna, the direct wave arrival angle and reception intensity of the radio wave received from the in-vehicle device through the second antenna, the arrival angle of the reflected wave, and
  • the angle measuring unit that estimates the reception strength, the reception strength detected by the communication processing unit, the arrival angle and reception strength of the direct wave of the radio wave estimated by the angle measurement unit, and the arrival angle and reception strength of the reflected wave. Based on this, a determination unit for determining whether or not communication with the in-vehicle device is possible by the communication processing unit using the first antenna is provided.
  • the reception intensity detected from the radio wave received through the first antenna the arrival angle of the direct wave estimated from the radio wave received through the second antenna, the reception intensity, and the arrival angle of the reflected wave. Based on the radio wave reception strength and the radio wave reception strength, it is determined whether or not communication with the vehicle-mounted device is possible through the first antenna. As a result, even if the direct wave and the reflected wave of the radio wave transmitted from the vehicle-mounted device are received in a mixed state, erroneous communication with the vehicle-mounted device that is not the communication target can be avoided.
  • FIG. 4A is a diagram showing a modification 1 of the arrangement of the element antennas in the array antenna.
  • FIG. 4B is a diagram showing a modification 2 of the arrangement of the element antennas in the array antenna.
  • FIG. 4C is a diagram showing a configuration of a communication antenna and an angle measuring antenna in the array antenna. It is a flowchart which shows the road-to-vehicle communication method which concerns on Embodiment 1.
  • FIG. 4A is a diagram showing a modification 1 of the arrangement of the element antennas in the array antenna.
  • FIG. 4B is a diagram showing a modification 2 of the arrangement of the element antennas in the array antenna.
  • FIG. 4C is a diagram showing a configuration of a communication antenna and an angle measuring antenna in the array antenna. It is a flowchart which shows the road-to-vehicle communication method which concerns on Embodiment 1.
  • FIG. 4A is a diagram showing a modification 1 of the arrangement of the element antennas in the array antenna.
  • FIG. 6A is a block diagram showing a hardware configuration that realizes the function of the roadside communication device according to the first embodiment.
  • FIG. 6B is a block diagram showing a hardware configuration for executing software that realizes the functions of the roadside communication device according to the first embodiment.
  • It is a block diagram which shows the structure of the roadside communication apparatus which concerns on Embodiment 2.
  • It is a schematic diagram which shows the outline of the connection relation of the array antenna composed of four element antennas, a synthetic distribution part and a high resolution angle measuring part.
  • FIG. 1 is a block diagram showing a configuration of a roadside communication device 100 according to a first embodiment.
  • the roadside communication device 100 is provided on the roadside and communicates with an in-vehicle device mounted on the vehicle. Further, conventionally, it has been generally practiced to allow a radio wave absorber to absorb radio waves transmitted from an in-vehicle device that is not a communication target, but in the roadside communication device 100, a direct wave of radio waves transmitted from the in-vehicle device has arrived. The angle and reception intensity, the arrival angle of the reflected wave, and the reception intensity are used to determine whether or not communication with the on-board unit is possible. Therefore, the roadside communication device 100 can avoid erroneous communication with the vehicle-mounted device that is not the communication target without using a radio wave absorber for absorbing the radio wave transmitted from the vehicle-mounted device that is not the communication target.
  • the communication antenna 101 is the first antenna used for communication with the on-board unit, and is connected to the communication unit 103a and the demodulation unit 103b of the communication processing unit 102.
  • a radio wave including a communication control information channel and service information is transmitted to the vehicle-mounted device through the communication antenna 101, and a response signal of the vehicle-mounted device is received.
  • the communication control information channel is FCMC (Flame Control Message Channel)
  • the service information is BST (Beacon Service Table).
  • the response signals from the vehicle-mounted device include ACTC (Activation Channel) and VST (Vehicle Service Table).
  • the communication processing unit 102 detects the reception strength of the radio wave received from the vehicle-mounted device through the communication antenna 101. Further, the communication processing unit 102 communicates with the vehicle-mounted device using the communication antenna 101 when the communication determination unit 106 determines that communication with the vehicle-mounted device is possible.
  • the communication processing unit 102 has a communication unit 103a and a demodulation unit 103b.
  • the communication unit 103a modulates the transmission signal based on the FCMC information, frequency-converts the modulated transmission signal, and amplifies the frequency-converted transmission signal.
  • the transmitted signal subjected to these processes is output from the communication unit 103a to the communication antenna 101, and is transmitted to the vehicle-mounted device through the communication antenna 101.
  • the demodulation unit 103b demodulates the radio waves received from the vehicle-mounted device through the communication antenna 101, analyzes the demodulated radio waves, and detects the vehicle-mounted device ID and the reception strength of the radio waves.
  • the demodulation unit 103b outputs the detected vehicle-mounted device ID and the reception strength of the radio wave to the communication determination unit 106.
  • the on-board unit ID is information unique to the on-board unit assigned to identify the on-board unit that is the source of the radio wave.
  • the vehicle-mounted device ID is included in the ACTC transmitted from the vehicle-mounted device to the roadside communication device 100.
  • the reception strength of the radio wave is the RSSI of the radio wave received from the vehicle-mounted device.
  • the angle measuring antenna 104 is a second antenna used for estimating the arrival angle of the radio wave received from the on-board unit, and is connected to the high resolution angle measuring unit 105.
  • the angle measuring antenna 104 is an array antenna and includes a plurality of element antennas 107.
  • the high-resolution angle measuring unit 105 is an angle measuring unit that estimates the arrival angle and reception intensity of the direct wave and the arrival angle and reception intensity of the reflected wave of the radio wave received from the vehicle-mounted device through the angle measurement antenna 104. ..
  • the high-resolution angle measuring unit 105 demodulates the radio wave received from the vehicle-mounted device through the angle measuring antenna 104, and detects the vehicle-mounted device ID from the demodulated radio wave. Further, the high-resolution angle measuring unit 105 separates the demodulated radio wave into a direct wave and a reflected wave. Then, the high-resolution angle measuring unit 105 estimates the horizontal angle and the vertical angle of the direct wave, and also estimates the horizontal angle and the vertical angle of the reflected wave.
  • the horizontal angle and the vertical angle both indicate the arrival angle of the radio wave.
  • the high-resolution angle measuring unit 105 estimates the reception intensity of the direct wave and the reception intensity of the reflected wave.
  • the estimated value of the horizontal angle and the estimated value of the vertical angle of the radio wave will be appropriately referred to as “angle measurement value”.
  • the estimated value of the reception intensity of the radio wave is described as "the estimated value of the radio wave intensity”.
  • the high-resolution angle measuring unit 105 outputs the in-vehicle device ID, the measured value of the direct wave and the estimated value of the radio wave intensity, and the measured value of the reflected wave and the estimated value of the radio wave intensity to the communication determination unit 106.
  • the communication determination unit 106 is based on the reception intensity detected by the communication processing unit 102, the arrival angle and reception intensity of the direct wave of the radio wave estimated by the high resolution angle measurement unit 105, and the arrival angle and reception intensity of the reflected wave. This is a determination unit for determining whether or not communication with the vehicle-mounted device is possible by the communication processing unit 102 using the communication antenna 101. For example, the communication determination unit 106 measures the direct wave angle value or the reflected wave of the radio wave estimated by the high-resolution angle measurement unit 105 when the reception intensity of the radio wave detected by the demodulation unit 103b exceeds the threshold value. When any of the angular values indicates the arrival from the communication area, it is determined that communication with the in-vehicle device is possible.
  • FIG. 2 is a schematic diagram showing an outline of a road-to-vehicle communication system provided with a roadside communication device 100.
  • the road-to-vehicle communication system shown in FIG. 2 is a system provided at an ETC (registered trademark) tollhouse and includes a roadside communication device 100.
  • ETC registered trademark
  • the roadside communication device 100 can receive radio waves from the vehicle-mounted device existing in any of the areas 202 to 205.
  • the tollhouse has a gate provided with the roadside communication device 100 and a booth 206 provided near the gate.
  • the on-board unit 200a mounted on the vehicle 200 existing in the area 203, which is the communication area, is the communication target.
  • the roadside communication device 100 uses the vehicle-mounted device 201a mounted on the vehicle 201 in addition to the direct wave D1 of the radio wave transmitted from the vehicle-mounted device 200a.
  • the direct wave D2 of the transmitted radio wave and the reflected wave R of the radio wave transmitted from the vehicle-mounted device 201a reflected at the booth 206 can be received. Therefore, when the RSSI of the direct wave D2 or the reflected wave R exceeds the threshold value, the roadside communication device 100 may erroneously communicate with the vehicle-mounted device 201a which is not the communication target.
  • the radio waves including ACTC transmitted from the on-board unit are basically transmitted in time division for each on-board unit, so that the radio waves do not interfere with each other.
  • the conventional roadside communication device estimates the arrival angle of the radio wave including the ACTC received from the vehicle-mounted device, and determines whether or not the vehicle-mounted device is in the area 203 based on the estimated arrival angle.
  • the conventional roadside communication device as shown in FIG. 2, when the direct wave D2 and the reflected wave R of the radio wave transmitted from the vehicle-mounted device 201a, which is not the communication target, are received in a mixed state, the arrival angle of the radio wave Cannot be estimated accurately.
  • the roadside communication device 100 separates the radio wave received through the angle measuring antenna 104 into the direct wave D2 and the reflected wave R, and estimates the arrival angle of the separated direct wave D2 and the reflected wave R. As a result, the roadside communication device 100 can accurately determine whether or not communication with the vehicle-mounted device is possible even if the radio wave transmitted from the vehicle-mounted device is received in a state where the direct wave and the reflected wave are mixed.
  • the high-resolution angle measuring unit 105 separates the radio wave received from the vehicle-mounted device through the angle measuring antenna 104 into a direct wave and a reflected wave to perform high-resolution angle measurement.
  • a high-resolution angle measuring method for example, there are MUSIC (MUSIC Signal Classification) or ESPRIT (Estimation Signal Parameters via Rotational Invasion Technology). These methods are described in detail in reference 1 below. (Reference 1) H. Krim, M.M. Viberg, “Two Decades of Array Signal Processing Research”, IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67-94, July 1996.
  • the direct wave and reflected wave of radio waves are generally highly correlated and are called coherent waves.
  • Methods for separating and measuring coherent waves include, for example, a spatial averaging method or a Forward / Backward (F / B) averaging method.
  • the spatial averaging method for example, the correlation between the direct wave and the reflected wave is suppressed by averaging the correlation matrix of the partial array that is a part of the array antenna and the correlation matrix of the array that is translated by translating this partial array. ..
  • the correlation between the direct wave and the reflected wave is suppressed by averaging the correlation matrix of the array antenna before inversion and the correlation matrix after inversion of the array antenna.
  • the high-resolution angle measuring unit 105 uses the F / B averaging method, which requires less calculation than the spatial averaging method, to directly wave and reflected wave of radio waves. Is separated and the horizontal and vertical angles of each are estimated.
  • FIG. 3 is a diagram showing the arrangement of the element antennas 107 in the array antenna, and shows the arrangement of the element antennas 107 in the angle measuring antenna 104.
  • the X-axis, the Y-axis, and the Z-axis represent a Cartesian coordinate system in a three-dimensional space, and the negative direction of the Y-axis is the traveling direction of the vehicle.
  • the plurality of element antennas 107 are all located on the XX plane.
  • the arrangement of the element antennas 107 of the array antenna needs to be point symmetric with respect to the array center 108 as shown in FIG. Further, the distance d between the element antennas 107 adjacent to each other is usually set to about half the wavelength of the transmitted radio wave.
  • FIG. 4A is a diagram showing a modification 1 of the arrangement of the element antenna 107 in the array antenna.
  • FIG. 4B is a diagram showing a modified example 2 of the arrangement of the element antenna 107 in the array antenna.
  • the array antennas shown in FIGS. 4A and 4B are both angle measuring antennas 104, and the six element antennas 107 are arranged point-symmetrically with respect to the center of the array.
  • the arrow toward the array center 108 is a vector indicating the radio wave transmitted from the on-board unit.
  • the high-resolution angle measuring unit 105 estimates the horizontal angle ⁇ and the vertical angle ⁇ of the radio wave received through the angle measuring antenna 104.
  • the horizontal angle ⁇ is the arrival angle of the radio wave on the horizontal plane with respect to the Y axis on the XY plane which is the horizontal plane.
  • the horizontal angle ⁇ is equal to the angle formed by the Y-axis and the straight line formed by projecting the vector indicating the radio wave on the XY plane.
  • the vertical angle ⁇ is the arrival angle of the radio wave with respect to the XY plane.
  • the vertical angle ⁇ is equal to the angle formed by the straight line formed by projecting the vector indicating the radio wave on the XY plane and the vector.
  • FIG. 4C is a diagram showing the configuration of the communication antenna 101 and the angle measurement antenna 104 in the array antenna.
  • the communication antenna 101 may be, for example, an array antenna composed of a plurality of element antennas 107.
  • the angle measuring antenna 104 can be composed of a part of the opening of the array antenna (for example, a partial array having four element antennas 107).
  • the communication antenna used for communication with the on-board unit is usually configured so that a beam is formed by synthesizing a large number of element antennas, and the formed beam can communicate with a partner in the communication area. Therefore, as shown in FIG. 4C, even if a part of the large number of element antennas 107 is used as the angle measuring antenna 104, the influence on the communication antenna 101 is minor. This means that the angle measurement function can be added by using the communication antenna provided in the existing roadside communication device.
  • the first embodiment is not limited to the communication antenna 101 and the angle measuring antenna 104 composed of one array antenna, but the array antenna constituting the communication antenna 101 and the angle measuring antenna 104.
  • the array antennas constituting the above may be provided separately.
  • FIG. 5 is a flowchart showing the road-to-vehicle communication method according to the first embodiment, and shows a series of processes by the roadside communication device 100.
  • the demodulation unit 103b demodulates the radio waves received from the vehicle-mounted device through the communication antenna 101 and detects the vehicle-mounted device ID and the radio wave reception intensity (step ST1). For example, the demodulation unit 103b amplifies the ACTC signal received through the communication antenna 101, passes it through a band limiting filter, and frequency-converts it into an intermediate frequency band signal (hereinafter, referred to as an IF signal).
  • an IF signal an intermediate frequency band signal
  • the demodulation unit 103b detects the on-board unit ID from the baseband signal, and detects the reception intensity of the radio wave using the baseband signal.
  • the high-resolution angle measuring unit 105 detects the on-board unit ID by demodulating and analyzing the radio wave received through the angle measuring antenna 104, and also estimates the arrival angle and the radio wave intensity of the direct wave and the reflected wave of the radio wave. Is estimated (step ST2). For example, the high-resolution angle measuring unit 105 amplifies the ACTC signal received from the vehicle-mounted device through the angle measuring antenna 104, passes the amplified ACTC signal through the band limiting filter, and IFs the ACTC signal that has passed through the band limiting filter. Frequency conversion to signal.
  • the high-resolution angle measuring unit 105 detects the on-board unit ID from the baseband signal.
  • the high-resolution angle measuring unit 105 performs high-resolution angle measuring processing on the ACTC signal to estimate the horizontal angle ⁇ and the vertical angle ⁇ .
  • the number of element antennas 107 constituting the angle measuring antenna 104 is four and the ESPRIT algorithm is adopted as the high resolution angle measuring method will be described.
  • the present invention is not limited to this case, and the angle measuring antenna 104 may be configured with five or more element antennas, and MUSIC or CAPON may be used as the high resolution angle measuring method instead of ESPRIT. May be good.
  • the 2D unitary ESPRIT method will be described.
  • the 2D unitary ESPRIT method it is possible to simultaneously estimate the horizontal angle ⁇ and the vertical angle ⁇ of radio waves by using unitary transformation, which is described in detail in Reference 2 below.
  • Reference 2 Reference 2 below.
  • High-resolution angle measuring unit 105 uses the digital data x m obtained from the received electric wave through the antenna element 107 of the angle measuring antenna 104 (n), calculates a correlation matrix R xx from the following formula (1) To do.
  • x (n) is represented by the following formula (2).
  • ( ⁇ ) T is the transpose of a vector or matrix
  • ( ⁇ ) H is the Hermitian transpose of a vector or matrix.
  • a high-resolution angle measuring unit 105 uses the unitary matrix Q 4, represented by the following formula (3), according to the following formula (4) is subjected to unitary transform to the correlation matrix R xx.
  • Re ⁇ is a function indicating that the real part in ⁇ is taken.
  • the high-resolution angle measuring unit 105 expands the real- numbered correlation matrix R yy into eigenvalues according to the following equation (5).
  • the matrix E is a matrix in which eigenvectors are arranged
  • the diagonal matrix ⁇ is a matrix in which eigenvalues are arranged in diagonal terms.
  • E T is the transpose of the matrix E.
  • a correlation matrix R yy estimate the wavenumber of the incoming signal from the distribution of eigenvalues obtained by eigenvalue expansion, it separates the eigenvectors in the signal subspace E S and the noise subspace E N.
  • the wave number of the incoming wave signal can be estimated from the number of detections of the incoming wave signal by the threshold value determination, and the threshold value is a value obtained by multiplying the minimum eigenvalue by a preset constant value, an average value of all eigenvalues, and the like.
  • a geometric mean value can be used.
  • the high-resolution angle measuring unit 105 calculates the transformation matrix ⁇ u regarding the sub-array extracted in the horizontal direction from the following equation (14) using the signal subspace of each sub-array calculated as described above, and describes the following. From equation (15), the transformation matrix ⁇ v for the vertically extracted subspace is calculated.
  • the transformation matrix ⁇ uv is calculated from the following equation (16) using the transformation matrices ⁇ u and ⁇ v .
  • the high-resolution angle measuring unit 105 estimates the phase rotation matrix ⁇ represented by the following equation (18) by expanding the transformation matrix ⁇ uv into eigenvalues according to the following equation (17).
  • the horizontal angle ⁇ l and the vertical angle ⁇ l of the direct wave of the radio wave received through the angle measuring antenna 104 are estimated.
  • the F / B averaging is applied as the preprocessing for the eigenvalue expansion of the correlation matrix, and the spatial averaging processing is not applied.
  • the unitary transformation is known to have the same correlation-suppressing effect as the F / B average, and two signal eigenvalues are generated.
  • the high-resolution angle measuring unit 105 uses a matrix ⁇ S in which signal eigenvalues are arranged diagonally and a noise eigenvalue ⁇ N having eigenvalues other than signals or their average values as elements, and the matrix S from the following equation (21). Calculate r .
  • the high-resolution angle measuring unit 105 calculates the estimated value of the radio wave intensity of the direct wave and the reflected wave of the radio wave by using the diagonal terms PS1 and PS2 of the matrix Sr.
  • the communication determination unit 106 uses the on-board unit ID and RSSI (radio wave reception intensity) detected from the radio waves received through the communication antenna 101 and the on-board unit detected from the radio waves received through the angle measuring antenna 104. Based on the ID, the arrival angle and reception intensity of the direct wave estimated from the radio wave, and the arrival angle and reception intensity of the reflected wave, it is determined whether or not communication with the vehicle-mounted device is possible (step ST3). For example, the communication determination unit 106 compares the reception intensity of the radio wave received through the communication antenna 101 with a preset reference value (hereinafter, referred to as a threshold value), and determines whether or not the reception intensity exceeds the threshold value. judge. If the reception strength of the radio wave does not exceed the threshold value, the communication determination unit 106 determines that communication with the vehicle-mounted device that is the source of the radio wave is impossible.
  • a threshold value hereinafter, referred to as a threshold value
  • the communication determination unit 106 uses the on-board unit ID detected by the demodulation unit 103b from the radio wave whose reception intensity exceeds the threshold value and the on-board unit ID detected by the high-resolution angle measuring unit 105 from the radio wave whose reception intensity exceeds the threshold value. It is determined whether or not the IDs match. When the communication determination unit 106 determines that the on-board unit IDs are different from each other, the communication determination unit 106 determines that communication with both on-board units is impossible.
  • the demodulation unit 103b and the high resolution angle measuring unit 105 handle radio waves transmitted from the same on-board unit in synchronization, or even if the demodulation unit 103b and the high resolution angle measuring unit 105 are not synchronized, both are used. If it is clear that is handling radio waves transmitted from the same on-board unit, the determination of whether or not the on-board unit IDs match is omitted. That is, in the road-to-vehicle communication method according to the first embodiment, the detection of the vehicle-mounted device ID by the demodulation unit 103b and the detection of the vehicle-mounted device ID by the high-resolution angle measuring unit 105 can be omitted.
  • the communication determination unit 106 matches the on-board unit ID as described above on the condition that the number of times the reception intensity of the radio wave received from the on-board unit through the communication antenna 101 exceeds the threshold value exceeds the reference number of times. It may be determined whether or not to do so.
  • the communication determination unit 106 demodulates a number of on-board unit IDs exceeding the reference number among these on-board unit IDs. The process may proceed to the next process on the condition that it matches the on-board unit ID detected by 103b.
  • the high resolution angle measuring unit 105 detects the on-board unit ID from the radio waves received through each of the four element antennas 107. Therefore, four on-board unit IDs are output to the communication determination unit 106.
  • the communication determination unit 106 proceeds to the next process on the condition that the number of vehicle-mounted device IDs exceeding the reference number among the four vehicle-mounted device IDs matches the vehicle-mounted device ID detected by the demodulation unit 103b.
  • the communication determination unit 106 notifies the high-resolution angle measuring unit 105 of this determination result. .. Upon receiving this notification, the high-resolution angle measuring unit 105 separates the radio wave in which the vehicle-mounted device ID that matches the vehicle-mounted device ID detected by the demodulation unit 103b into a direct wave and a reflected wave for angle measurement.
  • the communication determination unit 106 accumulates the angle measurement values calculated by the high resolution angle measurement unit 105, and determines whether or not the number of the accumulated angle measurement values is L or more. Subsequently, when the number of accumulated angle measurement values becomes L or more, the communication determination unit 106 receives k or more measurement values from the communication area among the L or more accumulated angle measurement values. Is determined.
  • the communication determination unit 106 is the source of this radio wave if, among the L or more accumulated angle measurement values, the angle measurement values indicating arrival from within the communication area are less than k. Notifies the communication processing unit 102 that communication with the on-board unit is impossible (communication NG). On the other hand, when k or more measured values indicate arrival from within the communication area, the communication determination unit 106 indicates that communication with the in-vehicle device that is the source of the radio wave is possible (communication OK). Notify 102.
  • the communication processing unit 102 When the communication processing unit 102 receives a notification from the communication determination unit 106 that communication with the vehicle-mounted device is possible, the communication processing unit 102 communicates with the vehicle-mounted device using the communication antenna 101 (step ST4). For example, the communication unit 103a outputs a BST signal, which is a communication signal with the vehicle-mounted device, to the communication antenna 101. The communication antenna 101 transmits the BST signal toward the vehicle-mounted device.
  • the communication determination unit 106 notifies that the communication with the in-vehicle device is impossible, the communication processing unit 102 does not communicate with the in-vehicle device.
  • the reception intensity of the radio wave detected by the demodulation unit 103b exceeds the threshold value, and the angle measurement value of the direct wave or the reflected wave of the radio wave estimated by the high resolution angle measurement unit 105
  • the number of times the angle measurement value indicates arrival from within the communication area exceeds the reference number of times, it may be determined that communication with the on-board unit is possible.
  • the high-resolution angle measuring unit 105 of the two waves separated from the radio waves received from the in-vehicle device through the angle measuring antenna 104, the one with the larger radio wave intensity estimated value is used as the direct wave, and the one with the smaller radio wave intensity estimated value May be used as the reflected wave, and the angle measurement value of only the direct wave may be calculated.
  • the communication determination unit 106 may determine that communication with the vehicle-mounted device is possible when the measured angle value of the direct wave indicates arrival from within the communication area. Even in this way, it is possible to avoid erroneous communication with the in-vehicle device that is not the communication target.
  • the roadside communication device 100 includes a processing circuit for executing the processing of steps ST1 to ST4 shown in FIG.
  • the processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
  • CPU Central Processing Unit
  • FIG. 6A is a block diagram showing a hardware configuration that realizes the functions of the roadside communication device 100.
  • FIG. 6B is a block diagram showing a hardware configuration for executing software that realizes the functions of the roadside communication device 100.
  • the input / output interface 300 is an interface that relays signals exchanged between the roadside communication device 100 and the vehicle-mounted device via an antenna.
  • the processing circuit 301 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA. (Field-Programmable Gate Array) or a combination thereof is applicable.
  • the functions of the communication processing unit 102, the high resolution angle measuring unit 105, and the communication determination unit 106 may be realized by separate processing circuits, or these functions may be collectively realized by one processing circuit.
  • the functions of the communication processing unit 102, the high resolution angle measuring unit 105, and the communication determination unit 106 are realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is written as a program and stored in the memory 303.
  • the processor 302 realizes the functions of the communication processing unit 102, the high-resolution angle measuring unit 105, and the communication determination unit 106 by reading and executing the program stored in the memory 303. That is, the roadside communication device 100 includes a memory 303 for storing a program in which the processes of steps ST1 to ST4 shown in FIG. 5 are executed as a result when executed by the processor 302.
  • the memory 303 may be a computer-readable storage medium in which a program for causing the computer to function as the communication processing unit 102, the high-resolution angle measuring unit 105, and the communication determination unit 106 is stored.
  • the memory 303 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-volatile) semiconductor, or an EPROM (Electrically-EROM).
  • a RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Only Memory)
  • EEPROM Electrically-volatile semiconductor
  • EPROM Electrically-EROM
  • the functions of the communication processing unit 102, the high-resolution angle measuring unit 105, and the communication determination unit 106 may be realized by dedicated hardware and partly by software or firmware.
  • the high-resolution angle measuring unit 105 and the communication determination unit 106 realize their functions by the processor 302 reading and executing the program stored in the memory 303, and the communication processing unit 102 is used as dedicated hardware.
  • the function may be realized by the processing circuit of. In this way, the processing circuit can realize each of the above functions by hardware, software, firmware, or a combination thereof.
  • the reception strength of the vehicle-mounted device ID and the radio wave detected from the radio wave received through the communication antenna 101 and the radio wave received through the angle measuring antenna 104 Based on the on-board unit ID detected from the radio wave, the arrival angle and reception intensity of the direct wave estimated from the radio wave, and the arrival angle and reception intensity of the reflected wave, communication with the on-board unit using the communication antenna 101 is possible or not. Is determined. As a result, even if the direct wave and the reflected wave of the radio wave transmitted from the vehicle-mounted device are received in a mixed state, erroneous communication with the vehicle-mounted device that is not the communication target can be avoided.
  • FIG. 7 is a block diagram showing the configuration of the roadside communication device 100A according to the second embodiment, and the same components as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
  • the roadside communication device 100A is different from the roadside communication device 100 according to the first embodiment in that one array antenna is shared by the communication antenna and the angle measuring antenna.
  • the array antenna 109 is composed of a plurality of element antennas 107.
  • the high-frequency signal received through each of the plurality of element antennas 107 constituting the array antenna 109 is output to the composite distribution unit 110 and the high-resolution angle measurement unit 105.
  • the synthesis distribution unit 110 analog-synthesizes the high-frequency signals received through each of the plurality of element antennas 107, and transmits the transmission signal sent from the communication unit 103a to each of the plurality of element antennas 107 constituting the array antenna 109. Distribute and send to the in-vehicle device.
  • FIG. 8 is a schematic diagram showing an outline of the connection relationship between the array antenna 109 composed of the four element antennas 107, the combined distribution unit 110, and the high resolution angle measuring unit 105.
  • the composite distribution unit 110 synthesizes the high frequency signal received through the array antenna 109 and distributes the signal sent from the communication unit 103a to the array antenna 109.
  • the array antenna 109 has the beam width and gain of the aperture in which the four element antennas 107 are combined.
  • the high frequency signal received through the array antenna 109 is output to the high resolution angle measuring unit 105 without going through the composite distribution unit 110.
  • the array antenna 109 is composed of four element antennas 107, four signals are sent to the high resolution angle measuring unit 105, and direct waves and reflections of these signals are performed in the same manner as in the first embodiment. Wave angle measurement processing is performed.
  • the roadside communication device 100A includes a processing circuit for executing the processing from step ST1 to step ST4 shown in FIG.
  • the processing circuit may be the processing circuit 301 of the dedicated hardware shown in FIG. 6A, or the processor 302 shown in FIG. 6B that executes the program stored in the memory 303.
  • the array antenna 109 has the functions of both the communication antenna 101 and the angle measuring antenna 104 shown in the first embodiment. Since the functions of the communication antenna 101 and the angle measuring antenna 104 are realized by one array antenna 109, the scale of the roadside communication device 100A can be reduced. Further, since the communication processing unit 102A, the high resolution angle measuring unit 105, and the communication determination unit 106 operate in the same manner as in the first embodiment, the same effect as that of the first embodiment can be obtained.
  • the roadside communication device can avoid erroneous communication with a vehicle-mounted device that is not a communication target even if the direct wave and the reflected wave of the radio wave transmitted from the vehicle-mounted device are received in a mixed state.
  • it can be used for an ETC (registered trademark) road-to-vehicle communication system in which a plurality of traveling lanes are adjacent to each other.
  • 100, 100A roadside communication device 101 communication antenna, 102, 102A communication processing unit, 103a communication unit, 103b demodulation unit, 104 angle measurement antenna, 105 high resolution angle measurement unit, 106 communication judgment unit, 107 element antenna, 108 Array center, 109 array antenna, 110 composite distribution unit, 200,201 vehicle, 200a, 201a on-board unit, 202-205 area, 206 booth, 300 input / output interface, 301 processing circuit, 302 processor, 303 memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Traffic Control Systems (AREA)

Abstract

通信用アンテナ(101)を通じて受信された電波から検出された受信強度と、測角用アンテナ(104)を通じて受信された電波から推定された直接波の到来角および受信強度と反射波の到来角および受信強度とに基づいて、通信処理部(102)による車載器との通信可否が判定される。

Description

路側通信装置および路車間通信方法
 本発明は、路側通信装置および路車間通信方法に関する。
 ETC(Electronic Toll Control system)(登録商標)といった路車間通信システムでは、道路を走行する車両に搭載された車載器と、路側に設置された路側通信装置との間で様々な情報が送受されている。路側通信装置は、車載器から送出された電波の受信強度(Received Signal Strength Indicator;以下、RSSIと略して記載する)が基準値を超えた場合、車載器との通信を確立している。このため、通信対象の車載器の周辺に存在する、通信対象ではない車載器から送信された電波のRSSIが基準値を超えることによって、路側通信装置は、通信対象ではない車載器と誤通信する可能性がある。
 この問題に対して、例えば、特許文献1には、車載器との通信に用いる通信用アンテナに加え、電波の到来角を特定するための方位特定用アンテナを備えた情報処理装置が記載されている。この情報処理装置は、方位特定用アンテナによって受信された電波の到来角を推定し、推定された到来角に基づいて電波の送信元の車載器が対象のレーンを走行している車両に搭載された車載器であるか否かを判定する。
特開2012-247958号公報
 車載器から送信された電波は、周辺の車両または建物においてマルチパス反射を起こすことがある。特許文献1に記載された情報処理装置では、電波が反射波で受信されることが考慮されていないため、車載器から送信された電波の直接波と反射波が混在した状態で受信された場合、電波の到来角を正確に推定できないという課題があった。電波の到来角を正確に推定できない場合、通信対象ではない車載器と誤通信する可能性がある。
 本発明は上記課題を解決するものであって、通信対象ではない車載器との誤通信を回避することができる路側通信装置および路車間通信方法を得ることを目的とする。
 本発明に係る路側通信装置は、車載器との通信に用いられる第1のアンテナと、電波の到来角の推定に用いられる第2のアンテナに接続される路側通信装置であって、第1のアンテナを通じて車載器から受信された電波の受信強度を検出する通信処理部と、第2のアンテナを通じて車載器から受信された電波の、直接波の到来角および受信強度と、反射波の到来角および受信強度とを推定する測角部と、通信処理部によって検出された受信強度と、測角部によって推定された電波の直接波の到来角および受信強度と反射波の到来角および受信強度とに基づいて、第1のアンテナを用いた通信処理部による車載器との通信可否を判定する判定部を備える。
 本発明によれば、第1のアンテナを通じて受信された電波から検出された受信強度と、第2のアンテナを通じて受信された電波から推定された直接波の到来角および受信強度と反射波の到来角および電波受信強度とに基づいて、第1のアンテナを通じた車載器との通信可否が判定される。これにより、車載器から送信された電波の直接波と反射波が混在した状態で受信されても、通信対象ではない車載器との誤通信を回避することができる。
実施の形態1に係る路側通信装置の構成を示すブロック図である。 図1の路側通信装置を備えた路車間通信システムの概要を示す概要図である。 アレーアンテナにおける素子アンテナの配列を示す図である。 図4Aは、アレーアンテナにおける素子アンテナの配列の変形例1を示す図である。図4Bは、アレーアンテナにおける素子アンテナの配列の変形例2を示す図である。図4Cは、アレーアンテナにおける通信用アンテナと測角用アンテナの構成を示す図である。 実施の形態1に係る路車間通信方法を示すフローチャートである。 図6Aは、実施の形態1に係る路側通信装置の機能を実現するハードウェア構成を示すブロック図である。図6Bは、実施の形態1に係る路側通信装置の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。 実施の形態2に係る路側通信装置の構成を示すブロック図である。 4つの素子アンテナから構成されたアレーアンテナ、合成分配部および高分解能測角部の接続関係の概要を示す概要図である。
実施の形態1.
 図1は、実施の形態1に係る路側通信装置100の構成を示すブロック図である。路側通信装置100は、路側に設けられて、車両に搭載された車載器との通信を行う。また、従来から、通信対象外の車載器から送信された電波を電波吸収体に吸収させることが一般に行われていたが、路側通信装置100は、車載器から送信された電波の直接波の到来角および受信強度と反射波の到来角および受信強度とを用いて、車載器との通信可否を判定する。従って、路側通信装置100は、通信対象外の車載器から送信された電波を吸収するための電波吸収体を用いることなく、通信対象外の車載器との誤通信を回避することができる。
 通信用アンテナ101は、車載器との通信に用いられる第1のアンテナであり、通信処理部102が有する通信部103aと復調部103bとに接続されている。例えば、通信用アンテナ101を通じて、通信制御情報チャンネルとサービス情報とを含む電波が車載器に送信され、車載器の応答信号が受信される。通信制御情報チャンネルは、FCMC(Frame Control Message Channel)であり、サービス情報は、BST(Beacon Service Table)である。また、車載器からの応答信号には、ACTC(Activation Channel)およびVST(Vehicle Service Table)がある。
 通信処理部102は、通信用アンテナ101を通じて車載器から受信された電波の受信強度を検出する。また、通信処理部102は、通信判定部106によって車載器との通信可と判定された場合に、通信用アンテナ101を用いた車載器との通信を行う。通信処理部102は、通信部103aと復調部103bとを有する。通信部103aは、FCMCの情報に基づいて、送信信号を変調し、変調された送信信号を周波数変換し、周波数変換された送信信号を増幅する。これらの処理が施された送信信号は、通信部103aから通信用アンテナ101に出力され、通信用アンテナ101を通じて車載器に向けて送信される。
 復調部103bは、通信用アンテナ101を通じて車載器から受信された電波を復調し、復調された電波を解析して、車載器IDおよび電波の受信強度を検出する。復調部103bは、検出した車載器IDおよび電波の受信強度を通信判定部106に出力する。車載器IDは、電波の送信元の車載器を識別するために付与された当該車載器に固有な情報である。例えば、車載器IDは、車載器から路側通信装置100に送信されるACTCに含まれる。また、電波の受信強度は、車載器から受信された電波のRSSIである。
 測角用アンテナ104は、車載器から受信された電波の到来角の推定に用いられる第2のアンテナであり、高分解能測角部105に接続されている。測角用アンテナ104は、アレーアンテナであり、複数の素子アンテナ107を備えている。
 高分解能測角部105は、測角用アンテナ104を通じて車載器から受信された電波の、直接波の到来角および受信強度と、反射波の到来角および受信強度とを推定する測角部である。高分解能測角部105は、測角用アンテナ104を通じて車載器から受信された電波を復調し、復調された電波から車載器IDを検出する。また、高分解能測角部105は、復調された電波を直接波と反射波とに分離する。そして、高分解能測角部105は、直接波の水平角および垂直角を推定するとともに、反射波の水平角および垂直角を推定する。なお、水平角と垂直角は、いずれも電波の到来角を示すものである。さらに、高分解能測角部105は、直接波の受信強度と反射波の受信強度を推定する。以下、電波の水平角の推定値および垂直角の推定値を、適宜「測角値」と記載する。また、電波の受信強度の推定値を「電波強度推定値」と記載する。高分解能測角部105は、車載器IDと、直接波の測角値および電波強度推定値と、反射波の測角値および電波強度推定値とを、通信判定部106に出力する。
 通信判定部106は、通信処理部102によって検出された受信強度と、高分解能測角部105によって推定された電波の直接波の到来角および受信強度と反射波の到来角および受信強度に基づいて、通信用アンテナ101を用いた通信処理部102による車載器との通信可否を判定する判定部である。例えば、通信判定部106は、復調部103bによって検出された電波の受信強度が閾値を超えており、かつ高分解能測角部105によって推定された電波の直接波の測角値または反射波の測角値のうち、いずれかの測角値が通信エリアからの到来を示している場合に、車載器との通信が可であると判定する。
 図2は、路側通信装置100を備えた路車間通信システムの概要を示す概要図である。図2に示す路車間通信システムは、ETC(登録商標)の料金所に設けられたシステムであり、路側通信装置100を備える。この料金所を通る2本のレーンのうち、一方のレーンを車両200が走行しており、車両200に続いて車両201が走行している。路側通信装置100は、エリア202~205のいずれかに存在する車載器からの電波を受信可能である。また、料金所には、路側通信装置100が設けられたゲートと、ゲート近傍に設けられたブース206がある。
 例えば、路側通信装置100は、通信エリアであるエリア203内に存在する車両200に搭載された車載器200aが通信対象である。しかしながら、エリア203の後方にあるエリア205内に車両201が進入すると、路側通信装置100は、車載器200aから送信された電波の直接波D1の他に、車両201に搭載された車載器201aから送信された電波の直接波D2と、車載器201aから送信された電波がブース206で反射された反射波Rが受信可能となる。このため、直接波D2あるいは反射波RのRSSIが閾値を超えると、路側通信装置100は、通信対象ではない車載器201aと誤通信する可能性がある。
 例えば、車載器から送信されるACTCを含む電波は、基本的に車載器ごとに時分割で送信されるので、車載器同士で電波が混信することはない。従来の路側通信装置は、車載器から受信されたACTCを含む電波の到来角を推定し、推定された到来角に基づいて、車載器がエリア203内にあるか否かを判定する。しかしながら、従来の路側通信装置では、図2に示すように、通信対象ではない車載器201aから送信された電波の直接波D2と反射波Rが混在した状態で受信されると、電波の到来角を正確に推定できなくなる。
 そこで、路側通信装置100は、測角用アンテナ104を通じて受信された電波を直接波D2と反射波Rに分離し、分離された直接波D2と反射波Rの到来角を推定する。これにより、路側通信装置100は、車載器から送信された電波が直接波と反射波が混在した状態で受信されても、車載器との通信可否を正確に判定することができる。
 高分解能測角部105は、測角用アンテナ104を通じて車載器から受信された電波を直接波と反射波とに分離して高分解能測角を行う。高分解能測角方法としては、例えば、MUSIC(MUltiple SIgnal Classification)またはESPRIT(Estimation Signal Parameters via Rotational Invariance Technique)がある。これらの方法は、下記の参考文献1に詳しく記載されている。
(参考文献1)H. Krim, M. Viberg, “Two Decades of Array Signal Processing Research” ,IEEE Signal Processing Magazine, vol. 13, no.4, pp.67-94, July 1996.
 電波の直接波と反射波は一般に相関が高く、コヒーレント波と呼ばれる。コヒーレント波を分離して測角する方法には、例えば、空間平均法またはForward/Backward(F/B)平均法がある。空間平均法では、例えば、アレーアンテナの一部である部分アレーの相関行列と、この部分アレーを平行移動させたアレーの相関行列を平均することで、直接波と反射波の相関が抑圧される。また、F/B平均法では、反転させる前のアレーアンテナの相関行列と、このアレーアンテナを反転させた後の相関行列を平均することで、直接波と反射波の相関が抑圧される。
 なお、空間平均法による直接波と反射波の相関抑圧効果を向上させるためには、アレーアンテナを構成する素子アンテナ数が多いことが望ましい。しかしながら、素子アンテナ数を増加させると、装置規模が増大し、さらに、測角処理の演算量も増加する。そこで、直接波と反射波の2波入射モデルが想定される場合、高分解能測角部105は、空間平均法よりも演算量が少ないF/B平均法を用いて電波の直接波と反射波を分離し、それぞれの水平角と垂直角を推定する。
 図3は、アレーアンテナにおける素子アンテナ107の配列を示す図であって、測角用アンテナ104における素子アンテナ107の配列を示している。図3において、X軸、Y軸およびZ軸は、3次元空間内の直交座標系を表しており、Y軸の負の方向が車両の進行方向である。図3において、複数の素子アンテナ107は、いずれもX-Z面上に位置している。F/B平均法を適用するためには、アレーアンテナの素子アンテナ107の配列が、図3に示すようにアレー中心108に対して点対称である必要がある。また、互いに隣り合う素子アンテナ107同士の間隔dは、通常、送信電波の波長の半分程度に設定される。
 図4Aは、アレーアンテナにおける素子アンテナ107の配列の変形例1を示す図である。図4Bは、アレーアンテナにおける素子アンテナ107の配列の変形例2を示す図である。図4Aおよび図4Bに示すアレーアンテナは、いずれも測角用アンテナ104であり、6つの素子アンテナ107がアレー中心に対して点対称に配列されている。
 また、図3において、アレー中心108に向かう矢印は、車載器から送信された電波を示すベクトルである。高分解能測角部105は、測角用アンテナ104を通じて受信された電波の水平角θと垂直角φを推定する。水平角θは、水平面であるX-Y面上のY軸を基準とした当該水平面上の電波の到来角である。水平角θは、前述の電波を示すベクトルをX-Y面に正射影してできる直線とY軸とがなす角度と等しい。垂直角φは、X-Y面と基準とした電波の到来角である。垂直角φは、前述の電波を示すベクトルをX-Y面に正射影してできる直線と当該ベクトルとがなす角と等しい。
 図4Cは、アレーアンテナにおける通信用アンテナ101と測角用アンテナ104の構成を示す図である。図4Cに示すように、通信用アンテナ101は、例えば、複数の素子アンテナ107から構成されたアレーアンテナであってもよい。通信用アンテナ101がアレーアンテナである場合、測角用アンテナ104は、アレーアンテナの開口の一部(例えば、4つの素子アンテナ107を有する部分アレー)で構成することができる。
 車載器との通信に用いられる通信用アンテナは、通常、多数の素子アンテナを合成することでビームが形成され、形成されたビームによって通信エリアにある相手と通信できるように構成されている。このため、図4Cに示したように、多数の素子アンテナ107のうちの一部が測角用アンテナ104として利用されても、通信用アンテナ101への影響は軽微である。これは、既存の路側通信装置が備える通信用アンテナを利用して測角機能を追加できることを意味する。なお、実施の形態1は、1つのアレーアンテナから構成された通信用アンテナ101および測角用アンテナ104に限定されるものではなく、通信用アンテナ101を構成するアレーアンテナと、測角用アンテナ104を構成するアレーアンテナを別々に設けてもよい。
 次に、路側通信装置100を用いた路車間通信方法について説明する。
 図5は、実施の形態1に係る路車間通信方法を示すフローチャートであって、路側通信装置100による一連の処理を示している。復調部103bは、通信用アンテナ101を通じて車載器から受信された電波を復調して車載器IDおよび電波受信強度を検出する(ステップST1)。例えば、復調部103bは、通信用アンテナ101を通じて受信されたACTC信号を増幅し、帯域制限フィルタに通し、中間周波数帯の信号(以下、IF信号と記載する)に周波数変換する。続いて、復調部103bは、IF信号をA/D変換してデジタル信号に変換し、デジタル信号をベースバンド信号に変換して復調する。復調部103bは、ベースバンド信号から車載器IDを検出し、ベースバンド信号を用いて電波の受信強度を検出する。
 高分解能測角部105は、測角用アンテナ104を通じて受信された電波を復調して解析することで、車載器IDを検出するとともに、電波の直接波と反射波の到来角および電波強度推定値を推定する(ステップST2)。例えば、高分解能測角部105は、測角用アンテナ104を通じて車載器から受信されたACTC信号を増幅し、増幅されたACTC信号を帯域制限フィルタに通し、帯域制限フィルタを通過したACTC信号をIF信号に周波数変換する。続いて、高分解能測角部105は、IF信号をA/D変換してデジタル信号に変換し、デジタル信号をベースバンド信号に変換して復調する。高分解能測角部105は、ベースバンド信号から車載器IDを検出する。
 続いて、高分解能測角部105は、ACTC信号に高分解能測角処理を行って、水平角θと垂直角φを推定する。以下、測角用アンテナ104を構成する素子アンテナ107の数が4つであり、高分解能測角方法として、ESPRITアルゴリズムを採用した場合について説明する。なお、この場合に限定されるものではなく、5つ以上の素子アンテナで測角用アンテナ104を構成してもよく、高分解能測角方法には、ESPRITの代わりに、MUSICまたはCAPONを用いてもよい。
 また、F/B平均法の代わりに、2DユニタリESPRIT法について説明する。2DユニタリESPRIT法は、ユニタリ変換を用いて、電波の水平角θと垂直角φとを同時に推定することが可能であり、下記の参考文献2に詳しく記載されている。
(参考文献2)M. D. Zoltowski, M. Haardt and C. P. Mathews, “Closed-Form 2-D Angle Estimation with Rectangular Arrays in Element Space or Beamspace via Unitary ESPRIT” ,IEEE Trans., vol. SP-44, no.2, pp.316-328, Feb. 1996.
 高分解能測角部105は、測角用アンテナ104の各素子アンテナ107を通じて受信された電波から得られたデジタルデータx(n)を用いて、下記式(1)から相関行列Rxxを算出する。素子番号mは、素子アンテナ107ごとに割り当てられた通し番号であり、m=1,2,3,・・・,Mが順に素子アンテナ107に割り当てられる。また、サンプリングデータ番号nは、サンプリングされたデータごとに割り当てられた通し番号であり、n=1,2,・・・,Nが順にデータに割り当てられる。x(n)は、下記式(2)で表される。(・)は、ベクトルまたは行列の転置であり、(・)は、ベクトルまたは行列のエルミート転置である。

Figure JPOXMLDOC01-appb-I000001
 次に、高分解能測角部105は、下記式(3)で表されるユニタリ行列Qを用いて、下記式(4)に従い、相関行列Rxxに対してユニタリ変換を施す。下記式(4)において、Re{ }は、{ }内の実部を取ることを示す関数である。相関行列Rxxに対してユニタリ変換を施すことで、F/B平均と同様の効果が生じ、かつ、相関行列Rxxを実数化することができる。これにより、これに続く信号処理の演算量が低減される。

Figure JPOXMLDOC01-appb-I000002
 次に、高分解能測角部105は、実数化された相関行列Ryyを、下記式(5)に従い固有値展開する。下記式(5)において、行列Eは、固有ベクトルを並べた行列であり、対角行列Λは、対角項に固有値が並んだ行列である。Eは、行列Eの転置行列である。

Figure JPOXMLDOC01-appb-I000003
 高分解能測角部105は、相関行列Ryyを固有値展開して得られた固有値の分布から到来信号の波数を推定し、固有ベクトルを信号部分空間Eと雑音部分空間Eとに分離する。例えば、閾値判定による到来波信号の検出回数から、到来波信号の波数を推定することができ、閾値には、最小固有値に予め設定された一定値を乗算した値、全ての固有値の平均値、または、相乗平均値を用いることができる。
 ユニタリESPRIT法では、アレーアンテナから2つのサブアレー#1および#2が取り出され、サブアレー#1とサブアレー#2との間の位相回転行列Φを推定することにより、電波の到来角が算出される。位相回転行列Φを推定するために、サブアレー#1の信号部分空間Eとサブアレー#2の信号部分空間Eとを関係付ける変換行列Ψが算出される。
 2DユニタリESPRIT法では、水平角θと垂直角φとを同時に推定するため、下記式(6)および(7)に示すような、水平方向に抽出されたサブアレーの信号部分空間の関係式が利用される。下記式(6)は、固有ベクトルの信号部分空間Eを用いて、水平方向に抽出されたサブアレー#1の信号部分空間EXuを算出する関係式であり、Ku1は下記式(8)で表される。また、下記式(7)は、固有ベクトルの信号部分空間Eを用いて、水平方向に抽出されたサブアレー#2の信号部分空間EYuを算出する関係式であり、Ku2は下記式(9)で表される。

Figure JPOXMLDOC01-appb-I000004
 さらに、2DユニタリESPRIT法では、水平角θと垂直角φとを同時に推定するため、下記式(10)および(11)に示すような、垂直方向に抽出されたサブアレーの信号部分空間の関係式が利用される。下記式(10)は、固有ベクトルの信号部分空間Eを用いて、垂直方向に抽出されたサブアレー#1の信号部分空間EXvを算出する関係式であり、Kv1は下記式(12)で表される。また、下記式(11)は、固有ベクトルの信号部分空間Eを用いて、垂直方向に抽出されたサブアレー#2の信号部分空間EYvを算出する関係式であり、Kv2は下記式(13)で表される。

Figure JPOXMLDOC01-appb-I000005
 高分解能測角部105は、前述のようにして算出された各サブアレーの信号部分空間を用いて、下記式(14)から、水平方向に抽出されたサブアレーに関する変換行列Ψを算出し、下記式(15)から、垂直方向に抽出されたサブアレーに関する変換行列Ψを算出する。

Figure JPOXMLDOC01-appb-I000006
 次に、水平方向の角度値と垂直方向の角度値とのペアリングの手間を省くために、変換行列ΨとΨを用いた下記式(16)から変換行列Ψuvが算出される。

Figure JPOXMLDOC01-appb-I000007
 続いて、高分解能測角部105は、下記式(17)に従って、変換行列Ψuvを固有値展開することで、下記式(18)に示す位相回転行列Φを推定する。

Figure JPOXMLDOC01-appb-I000008
 上記式(18)に示す固有値を用いて、下記式(19)から垂直方向の角度φが推定され、下記式(20)から水平方向の角度θが推定される。なお、l=1,2である。

Figure JPOXMLDOC01-appb-I000009
 このようにして、測角用アンテナ104を通じて受信された電波の直接波の水平角θと垂直角φが推定される。実施の形態1では、相関行列の固有値展開の前処理として、F/B平均のみを適用し、空間平均処理は適用していない。この場合、相関抑圧可能な入射波数は最大2波となり、l=1,2に対応している。つまり、2つの角度が算出されるが、これらの角度のいずれが直接波に対応するどうかは通常不明である。従って、実施の形態1では、以下の二つの方法のいずれかを適用する。一つは、直接波と反射波との区別を行わずに、全ての測角値のうち、いずれかが通信エリアに含まれるか否かを判定する。もう一つは、推定した受信電力の大きさに基づいて直接波と反射波を判断して、直接波が通信エリア内に含まれるか否かを判定する。
 ユニタリ変換は、F/B平均と同様の相関抑圧効果があることが知られており、信号固有値は、2つ発生する。高分解能測角部105は、信号固有値を対角項に並べた行列Λと、信号以外の固有値またはその平均値を要素とする雑音固有値σを用いて、下記式(21)から行列Sを算出する。行列Sを算出すると、高分解能測角部105は、行列Sの対角項であるPS1およびPS2を用いて、電波の直接波と反射波の電波強度推定値を算出する。

Figure JPOXMLDOC01-appb-I000010
 次に、通信判定部106が、通信用アンテナ101を通じて受信された電波から検出された車載器IDおよびRSSI(電波受信強度)と、測角用アンテナ104を通じて受信された電波から検出された車載器ID、並びに当該電波から推定された直接波の到来角および受信強度と反射波の到来角および受信強度とに基づいて、車載器との通信可否を判定する(ステップST3)。例えば、通信判定部106は、通信用アンテナ101を通じて受信された電波の受信強度を、予め設定された基準値(以下、閾値と記載する)と比較し、受信強度が閾値を超えるか否かを判定する。電波の受信強度が閾値を超えない場合、通信判定部106は、この電波の送信元の車載器との通信は不可であると判定する。
 復調部103bと高分解能測角部105が非同期で動作している場合、受信強度が閾値を超えた電波があっても、復調部103bと高分解能測角部105とで同一の車載器から送信された電波を扱っているかどうかを確認する必要がある。そこで、通信判定部106は、復調部103bによって受信強度が閾値を超えた電波から検出された車載器IDと、高分解能測角部105によって受信強度が閾値を超えた電波から検出された車載器IDが一致するか否かを判定する。通信判定部106は、車載器IDが互いに異なると判定した場合、両方の車載器との通信が不可であると判定する。
 ただし、復調部103bおよび高分解能測角部105が同期して同一の車載器から送信された電波を扱う場合、あるいは、復調部103bと高分解能測角部105が同期していなくても、両者が同一の車載器から送信された電波を扱っていることが明らかな場合は、車載器IDが一致するか否かの判定は省略される。すなわち、実施の形態1に係る路車間通信方法では、復調部103bによる車載器IDの検出と、高分解能測角部105による車載器IDの検出とを省略することができる。
 また、通信判定部106は、通信用アンテナ101を通じて車載器から受信された電波の受信強度が閾値を超えた回数が基準回数を超えたことを移行条件として、前述したような車載器IDが一致するか否かの判定を行ってもよい。
 さらに、通信判定部106は、測角用アンテナ104を通じて受信された電波から複数の車載器IDが検出された場合、これらの車載器IDのうち、基準数を超える数の車載器IDが復調部103bによって検出された車載器IDと一致したことを移行条件として、次の処理に移行してもよい。
 例えば、測角用アンテナ104が4つの素子アンテナ107から構成されている場合、高分解能測角部105は、4つの素子アンテナ107のそれぞれを通じて受信された電波から車載器IDを検出する。このため、通信判定部106には、4つの車載器IDが出力される。通信判定部106は、4つの車載器IDのうち、基準数を超える数の車載器IDが復調部103bによって検出された車載器IDと一致したことを移行条件として、次の処理に移行する。
 復調部103bによって検出された車載器IDと、高分解能測角部105によって検出された車載器IDとが一致する場合、通信判定部106は、この判定結果を高分解能測角部105に通知する。高分解能測角部105は、この通知を受けると、復調部103bによって検出された車載器IDと一致した車載器IDが検出された電波を直接波と反射波に分離して測角を行う。
 通信判定部106は、高分解能測角部105によって算出された測角値を蓄積し、蓄積された測角値の数がL以上になったか否かを判定する。続いて、蓄積された測角値の数がL以上になった場合、通信判定部106は、L個以上蓄積された測角値のうち、k個以上の測定値が通信エリア内からの到来を示しているか否かを判定する。
 高分解能測角部105による測角では、直接波と反射波の角度、振幅および位相関係によって直接波と反射波の相関抑圧が不十分になる可能性があり、相関抑圧が不十分であると、測角値がばらつくことが予想される。このため、通信判定部106は、前述したように、L個以上蓄積された測角値のうち、通信エリア内からの到来を示す測角値がk個未満であれば、この電波の送信元の車載器との通信は不可であること(通信NG)を通信処理部102に通知する。一方、k個以上の測定値が通信エリア内からの到来を示している場合、通信判定部106は、電波の送信元の車載器との通信が可であること(通信OK)を通信処理部102に通知する。
 通信処理部102は、通信判定部106から車載器との通信が可である通知を受けた場合、通信用アンテナ101を用いた車載器との通信を行う(ステップST4)。例えば、通信部103aが、車載器との通信信号であるBST信号を通信用アンテナ101に出力する。通信用アンテナ101は、BST信号を車載器に向けて送信する。一方、通信判定部106から車載器との通信が不可である通知を受けた場合、通信処理部102は、この車載器との通信を行わない。
 なお、通信判定部106は、復調部103bによって検出された電波の受信強度が閾値を超え、かつ高分解能測角部105によって推定された電波の直接波と反射波の測角値のうち、いずれかの測角値が通信エリア内からの到来を示した回数が基準回数を超えた場合に、車載器との通信が可であると判定してもよい。
 また、高分解能測角部105は、測角用アンテナ104を通じて車載器から受信された電波を分離した2波のうち、電波強度推定値が大きい方を直接波とし、電波強度推定値が小さい方を反射波として、直接波のみの測角値を算出してもよい。このとき、通信判定部106が、直接波の測角値が通信エリア内からの到来を示す場合に、車載器との通信が可であると判定してもよい。このようにしても、通信対象外の車載器との誤通信を回避することができる。
 次に、路側通信装置100の機能を実現するハードウェア構成について説明する。
 路側通信装置100における通信処理部102、高分解能測角部105および通信判定部106の機能は、処理回路により実現される。すなわち、路側通信装置100は、図5に示したステップST1からステップST4の処理を実行するための処理回路を備える。処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。
 図6Aは、路側通信装置100の機能を実現するハードウェア構成を示すブロック図である。図6Bは、路側通信装置100の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。図6Aおよび図6Bにおいて、入出力インタフェース300は、アンテナを介して路側通信装置100と車載器との間でやり取りされる信号を中継するインタフェースである。
 上記処理回路が図6Aに示す専用のハードウェアである場合、処理回路301は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)またはこれらを組み合わせたものが該当する。なお、通信処理部102、高分解能測角部105および通信判定部106の機能を別々の処理回路で実現してもよいし、これらの機能をまとめて1つの処理回路で実現してもよい。
 上記処理回路が図6Bに示すプロセッサ302である場合、通信処理部102、高分解能測角部105および通信判定部106の機能は、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせによって実現される。ソフトウェアまたはファームウェアは、プログラムとして記述されてメモリ303に記憶される。
 プロセッサ302は、メモリ303に記憶されたプログラムを読み出して実行することによって、通信処理部102、高分解能測角部105および通信判定部106の機能を実現する。すなわち、路側通信装置100は、プロセッサ302により実行されるときに、図5に示したステップST1からステップST4の処理が結果的に実行されるプログラムを記憶するためのメモリ303を備える。これらのプログラムは、通信処理部102、高分解能測角部105および通信判定部106の手順または方法をコンピュータに実行させるものである。メモリ303は、コンピュータを、通信処理部102、高分解能測角部105および通信判定部106として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。
 メモリ303には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。
 なお、通信処理部102、高分解能測角部105および通信判定部106の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現してもよい。例えば、高分解能測角部105および通信判定部106については、プロセッサ302がメモリ303に記憶されたプログラムを読み出して実行することによってその機能を実現し、通信処理部102については専用のハードウェアとしての処理回路でその機能を実現してもよい。このように、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせによって、上記機能のそれぞれを実現することができる。
 以上のように、実施の形態1に係る路側通信装置100において、通信用アンテナ101を通じて受信された電波から検出された車載器IDおよび電波の受信強度と、測角用アンテナ104を通じて受信された電波から検出された車載器ID、並びに当該電波から推定された直接波の到来角および受信強度と反射波の到来角および受信強度とに基づいて、通信用アンテナ101を用いた車載器との通信可否が判定される。これにより、車載器から送信された電波の直接波と反射波が混在した状態で受信されても、通信対象外の車載器との誤通信を回避することができる。
実施の形態2.
 図7は、実施の形態2に係る路側通信装置100Aの構成を示すブロック図であり、図1と同一の構成要素には同一の符号を付して説明を省略する。路側通信装置100Aは、通信用アンテナと測角用アンテナで1つのアレーアンテナを共用する点で、実施の形態1に係る路側通信装置100とは異なる。
 アレーアンテナ109は、複数の素子アンテナ107から構成されている。アレーアンテナ109を構成する複数の素子アンテナ107のそれぞれを通じて受信された高周波信号は、合成分配部110と高分解能測角部105とに出力される。合成分配部110は、複数の素子アンテナ107のそれぞれを通じて受信された高周波信号をアナログ合成し、通信部103aから送られてきた送信信号を、アレーアンテナ109を構成する複数の素子アンテナ107のそれぞれに分配して車載器に向けて送信させる。
 図8は、4つの素子アンテナ107から構成されたアレーアンテナ109、合成分配部110および高分解能測角部105の接続関係の概要を示す概要図である。アレーアンテナ109を通信用アンテナとして機能させる場合、合成分配部110は、アレーアンテナ109を通じて受信された高周波信号を合成し、通信部103aから送られてきた信号をアレーアンテナ109に分配する。アレーアンテナ109は、4つの素子アンテナ107が合成された開口のビーム幅と利得を有する。
 アレーアンテナ109を測角用アンテナとして機能させる場合、アレーアンテナ109を通じて受信された高周波信号は、合成分配部110を介さずに、高分解能測角部105に出力される。例えば、アレーアンテナ109が4つの素子アンテナ107で構成されている場合、高分解能測角部105には4つの信号が送られ、実施の形態1と同様にして、これらの信号の直接波と反射波の測角処理が行われる。
 なお、路側通信装置100Aにおける、通信処理部102A、高分解能測角部105および通信判定部106の機能は、処理回路によって実現される。すなわち、路側通信装置100Aは、図5に示したステップST1からステップST4までの処理を実行するための処理回路を備えている。処理回路は、図6Aに示した専用のハードウェアの処理回路301であってもよいし、図6Bに示した、メモリ303に記憶されたプログラムを実行するプロセッサ302であってもよい。
 以上のように、実施の形態2に係る路側通信装置100Aにおいて、アレーアンテナ109が、実施の形態1で示した通信用アンテナ101と測角用アンテナ104の両方の機能を有している。通信用アンテナ101と測角用アンテナ104の機能が1つのアレーアンテナ109によって実現されるので、路側通信装置100Aの装置規模を縮小することができる。さらに、通信処理部102A、高分解能測角部105および通信判定部106が実施の形態1と同様に動作するので、実施の形態1と同様の効果が得られる。
 なお、本発明は上記実施の形態に限定されるものではなく、本発明の範囲内において、実施の形態のそれぞれの自由な組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。
 本発明に係る路側通信装置は、車載器から送出された電波の直接波と反射波が混在した状態で受信されても、通信対象ではない車載器との誤通信を回避することができるので、例えば、複数の走行レーンが隣接しているETC(登録商標)の路車間通信システムに利用可能である。
100,100A 路側通信装置、101 通信用アンテナ、102,102A 通信処理部、103a 通信部、103b 復調部、104 測角用アンテナ、105 高分解能測角部、106 通信判定部、107 素子アンテナ、108 アレー中心、109 アレーアンテナ、110 合成分配部、200,201 車両、200a,201a 車載器、202~205 エリア、206 ブース、300 入出力インタフェース、301 処理回路、302 プロセッサ、303 メモリ。

Claims (9)

  1.  車載器との通信に用いられる第1のアンテナと、電波の到来角の推定に用いられる第2のアンテナに接続される路側通信装置であって、
     前記第1のアンテナを通じて車載器から受信された電波の受信強度を検出する通信処理部と、
     前記第2のアンテナを通じて車載器から受信された電波の、直接波の到来角および受信強度と、反射波の到来角および受信強度とを推定する測角部と、
     前記通信処理部によって検出された受信強度と、前記測角部によって推定された電波の直接波の到来角および受信強度と反射波の到来角および受信強度に基づいて、前記第1のアンテナを用いた前記通信処理部による車載器との通信可否を判定する判定部と、
     を備えたことを特徴とする路側通信装置。
  2.  前記判定部は、前記通信処理部によって検出された受信強度が基準値を超え、かつ前記測角部によって推定された電波の直接波または反射波の到来角のいずれかが通信エリア内からの到来を示す場合、車載器との通信が可であると判定すること
     を特徴とする請求項1記載の路側通信装置。
  3.  前記判定部は、前記通信処理部によって検出された受信強度が基準値を超え、かつ前記測角部によって推定された電波の直接波または反射波の受信強度のうち、値が大きい方の到来角が通信エリア内からの到来を示す場合、車載器との通信が可であると判定すること
     を特徴とする請求項1記載の路側通信装置。
  4.  前記判定部は、前記通信処理部によって検出された受信強度が基準値を超え、かつ前記測角部によって推定された電波の直接波または反射波のいずれかの到来角が通信エリア内からの到来を示した回数が基準回数を超えた場合、車載器との通信が可であると判定すること
     を特徴とする請求項1記載の路側通信装置。
  5.  前記測角部は、前記第2のアンテナを通じて車載器から受信された電波に高分解能測角処理を行って直接波と反射波とに分離し、分離された直接波および反射波についての水平角と垂直角を推定すること
     を特徴とする請求項1記載の路側通信装置。
  6.  アレーアンテナに接続される路側通信装置であって、
     前記アレーアンテナを構成する複数の素子アンテナを通じて受信された電波を合成し、送信信号を複数の前記素子アンテナに分配する合成分配部を有し、複数の前記素子アンテナを通じて車載器から受信され前記合成分配部によって合成された電波の受信強度を検出する通信処理部と、
     複数の前記素子アンテナを通じて車載器から受信された電波の、直接波の到来角および受信強度と、反射波の到来角および受信強度とを推定する測角部と、
     前記通信処理部によって検出された受信強度と、前記測角部によって推定された電波の直接波の到来角および受信強度と反射波の到来角および受信強度に基づいて、前記アレーアンテナを用いた前記通信処理部による車載器との通信可否を判定する判定部と、
     を備えたことを特徴とする路側通信装置。
  7.  前記通信処理部は、受信された電波から車載器識別情報を検出し、
     前記測角部は、受信された電波から車載器識別情報を検出し、
     前記判定部は、前記通信処理部によって検出された車載器識別情報および受信強度と、前記測角部によって検出された車載器識別情報、推定された直接波の到来角および受信強度の推定値と反射波の到来角および受信強度とに基づいて、前記通信処理部による車載器との通信可否を判定すること
     を特徴とする請求項1または請求項6記載の路側通信装置。
  8.  車載器との通信に用いられる第1のアンテナと、電波の到来角の推定に用いられる第2のアンテナに接続される路側通信装置の路車間通信方法であって、
     通信処理部が、前記第1のアンテナを通じて車載器から受信された電波の受信強度を検出するステップと、
     測角部が、前記第2のアンテナを通じて車載器から受信された電波の、直接波の到来角および受信強度と、反射波の到来角および受信強度とを推定するステップと、
     判定部が、前記通信処理部によって検出された受信強度と、前記測角部によって推定された電波の直接波の到来角および受信強度と反射波の到来角および受信強度に基づいて、前記第1のアンテナを用いた前記通信処理部による車載器との通信可否を判定するステップと、
     を備え、
     前記通信処理部は、前記判定部の判定結果に応じて、前記第1のアンテナを通じて車載器との通信を行うこと
     を特徴とする路車間通信方法。
  9.  前記通信処理部は、受信された電波から車載器識別情報を検出し、
     前記測角部は、受信された電波から車載器識別情報を検出し、
     前記判定部は、前記通信処理部によって検出された車載器識別情報および受信強度と、前記測角部によって検出された車載器識別情報、推定された直接波の到来角および受信強度の推定値と反射波の到来角および受信強度とに基づいて、前記通信処理部による車載器との通信可否を判定すること
     を特徴とする請求項8記載の路車間通信方法。
PCT/JP2019/016167 2019-04-15 2019-04-15 路側通信装置および路車間通信方法 WO2020213036A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019554949A JP6705609B1 (ja) 2019-04-15 2019-04-15 路側通信装置および路車間通信方法
PCT/JP2019/016167 WO2020213036A1 (ja) 2019-04-15 2019-04-15 路側通信装置および路車間通信方法
US17/497,696 US11910282B2 (en) 2019-04-15 2021-10-08 Roadside communication device and road-to-vehicle communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016167 WO2020213036A1 (ja) 2019-04-15 2019-04-15 路側通信装置および路車間通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/497,696 Continuation US11910282B2 (en) 2019-04-15 2021-10-08 Roadside communication device and road-to-vehicle communication method

Publications (1)

Publication Number Publication Date
WO2020213036A1 true WO2020213036A1 (ja) 2020-10-22

Family

ID=70858219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016167 WO2020213036A1 (ja) 2019-04-15 2019-04-15 路側通信装置および路車間通信方法

Country Status (3)

Country Link
US (1) US11910282B2 (ja)
JP (1) JP6705609B1 (ja)
WO (1) WO2020213036A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508312A (zh) * 2020-10-16 2021-10-15 华为技术有限公司 通信方法和装置
US11563277B1 (en) * 2022-05-31 2023-01-24 Prince Mohammad Bin Fahd University FPGA hardware implementation of a novel and computationally efficient DOA estimation method for coherent signals

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003030699A (ja) * 2001-07-13 2003-01-31 Hitachi Ltd 通信領域自動補正システム
JP2007243316A (ja) * 2006-03-06 2007-09-20 Hitachi Ltd スポット通信領域制御システム
JP2009151714A (ja) * 2007-12-21 2009-07-09 Kenwood Corp 車載器、情報の出力方法および情報提供システム
JP2012247958A (ja) * 2011-05-27 2012-12-13 Mitsubishi Electric Corp 情報処理装置及びetcシステム
JP2013074412A (ja) * 2011-09-27 2013-04-22 Oki Electric Ind Co Ltd 路車間通信システム、路側通信制御装置及び路側通信制御プログラム
JP2016061686A (ja) * 2014-09-18 2016-04-25 株式会社日本自動車部品総合研究所 到来方向推定装置、位置推定装置、位置推定システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10416274B2 (en) * 2016-07-29 2019-09-17 Cohda Wireless Passive radar location of objects
WO2018158876A1 (ja) * 2017-03-01 2018-09-07 三菱重工機械システム株式会社 到来角度特定装置、料金収受システム及び到来角度特定方法
JP7241296B2 (ja) * 2018-03-08 2023-03-17 パナソニックIpマネジメント株式会社 通信装置、位置推定方法、位置推定プログラム、および通信システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003030699A (ja) * 2001-07-13 2003-01-31 Hitachi Ltd 通信領域自動補正システム
JP2007243316A (ja) * 2006-03-06 2007-09-20 Hitachi Ltd スポット通信領域制御システム
JP2009151714A (ja) * 2007-12-21 2009-07-09 Kenwood Corp 車載器、情報の出力方法および情報提供システム
JP2012247958A (ja) * 2011-05-27 2012-12-13 Mitsubishi Electric Corp 情報処理装置及びetcシステム
JP2013074412A (ja) * 2011-09-27 2013-04-22 Oki Electric Ind Co Ltd 路車間通信システム、路側通信制御装置及び路側通信制御プログラム
JP2016061686A (ja) * 2014-09-18 2016-04-25 株式会社日本自動車部品総合研究所 到来方向推定装置、位置推定装置、位置推定システム

Also Published As

Publication number Publication date
JP6705609B1 (ja) 2020-06-03
JPWO2020213036A1 (ja) 2021-05-06
US20220030401A1 (en) 2022-01-27
US11910282B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
US20050285788A1 (en) Technique for direction-of-arrival estimation without eigendecomposition and its application to beamforming at base station
US20110140966A1 (en) Method of multi-transmitter and multi-path aoa-tdoa location comprising a sub-method for synchronizing and equalizing the receiving stations
US11910282B2 (en) Roadside communication device and road-to-vehicle communication method
CN106486769B (zh) 用于线性相控阵天线的空间插值方法和设备
JP2020186973A (ja) 信号処理装置、レーダ装置、および、信号処理方法
CN112782728A (zh) 一种基于惯性辅助的天线阵欺骗干扰信号检测方法
US11754658B2 (en) Radio station for client localization in multipath indoor environment
Miranda et al. Enhanced direction of arrival estimation via received signal strength of directional antennas
JP2021118469A (ja) 電波監視装置および電波監視方法
JP2010181182A (ja) 車載レーダ装置、及びターゲット認識方法
US11754671B2 (en) Incoming wave count estimation apparatus and incoming wave count incoming direction estimation apparatus
JP2020186972A (ja) 信号処理装置、レーダ装置、および、信号処理方法
US7015857B1 (en) Calibrating an antenna by determining polarization
JP3608001B2 (ja) パッシブレーダ装置
JP3946101B2 (ja) 空間特性を用いた多重波の到来方向推定方法及びこれを用いた受信ビーム形成装置
JP2009204501A (ja) 波数推定装置
Imai et al. Estimation of the incoming wave characteristics by MUSIC method using virtual array antenna
Fabrizio et al. Single site geolocation method for a linear array
JPH10134213A (ja) 自動料金収受システム
TWI808874B (zh) 用於交通工具的雷達系統及偵測方法
WO2024014276A1 (ja) 通信装置、情報処理方法、及びプログラム
JP2001281326A (ja) レーダ信号処理回路
JP4869558B2 (ja) 信号到来方向推定方法
US11108457B2 (en) Spatial energy rank detector and high-speed alarm
US20240036183A1 (en) Radar method and radar system for a phase-coherent analysis

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019554949

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925480

Country of ref document: EP

Kind code of ref document: A1