JPWO2018158876A1 - 到来角度特定装置、料金収受システム及び到来角度特定方法 - Google Patents

到来角度特定装置、料金収受システム及び到来角度特定方法 Download PDF

Info

Publication number
JPWO2018158876A1
JPWO2018158876A1 JP2019502357A JP2019502357A JPWO2018158876A1 JP WO2018158876 A1 JPWO2018158876 A1 JP WO2018158876A1 JP 2019502357 A JP2019502357 A JP 2019502357A JP 2019502357 A JP2019502357 A JP 2019502357A JP WO2018158876 A1 JPWO2018158876 A1 JP WO2018158876A1
Authority
JP
Japan
Prior art keywords
arrival angle
signal
received
frequency
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019502357A
Other languages
English (en)
Inventor
義人 小野
義人 小野
前田 孝士
孝士 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Original Assignee
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Machinery Systems Co Ltd filed Critical Mitsubishi Heavy Industries Machinery Systems Co Ltd
Publication of JPWO2018158876A1 publication Critical patent/JPWO2018158876A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q2240/00Transportation facility access, e.g. fares, tolls or parking

Abstract

複数のサブキャリアを有する受信信号を複数のアンテナ素子で受信して、当該受信信号の到来角度を特定する到来角度特定装置であって、前記複数のアンテナ素子の各々で受信した前記受信信号から、予め規定された特定のサブキャリア(パイロットキャリア)を抽出する信号処理部と、前記信号処理部の各々から抽出された前記特定のサブキャリアの位相差に基づいて前記到来角度を特定する角度特定部と、を備える。前記信号処理部は、前記アンテナ素子で受信した前記受信信号の周波数の、規定値からのずれを調整する周波数調整部と、周波数が調整された前記受信信号に対する帯域通過フィルタ処理により、前記特定のサブキャリアを抽出するフィルタ部と、を有する。

Description

本発明は、到来角度特定装置、料金収受システム及び到来角度特定方法に関する。
電子式料金収受システム(ETC:Electronic Toll Collection System(登録商標)、「自動料金収受システム」ともいう)は、高度交通システム(ITS:Intelligent Transport System)におけるアプリケーションとして既に活用されている。この電子式料金収受システムによれば、料金所に設置された路側アンテナ(狭域通信アンテナ)と、車両に搭載した車載器との間の狭域無線通信(DSRC:Dedicated Short Range Communications)を通じて有料道路の料金を収受できる。
現在の電子式料金収受システムでは、DSRC方式で路側アンテナ−車載器間の無線通信が行われているが、次世代の電子式料金収受システムでは、WAVE(IEEE802.11p)と呼ばれる無線通信の方式が採用されることが予定されている。DSRC方式は、単一の搬送波による通信であるが、WAVE方式は、複数の副搬送波(サブキャリア)を多重化したOFDM(orthogonal frequency-division multiplexing)方式である。
ところで、路側アンテナと車載器との間で無線通信を行う場合、路側アンテナが、正規の狭域無線通信を行うために規定された狭域通信領域の外に位置する車両と想定外の通信(誤通信)がなされ得る、という問題がある。例えば、料金所の天井などの構造物における電波の反射により、路側アンテナは、狭域通信領域内に存在する車両(正規に無線通信を行うべき車両)の後方を走行する別の車両の車載器と誤通信し得る。
このような課題に対して、AOA(Angle of arrival)アンテナの利用が検討されている。AOAアンテナを用いることで、車載器から発信された電波の到来角度を特定することができる。電子式料金収受システムは、電波の到来角度が正規の範囲内にある場合にのみ、無線通信による料金収受処理を実行する。
特許文献1には、OFDM方式に基づいて周波数分割多重化された通信信号(電波)の到来角度を算出する技術が記載されている。
特開2016−194454号公報
OFDM方式の通信信号の到来角度を特定する到来角度特定装置に対しては、省コスト化、処理高速化の観点から、信号処理の簡素化が求められている。
上記課題に鑑みて、本発明は、簡素な信号処理により、周波数分割多重化された電波の到来角度を特定可能な到来角度特定装置、料金収受システム及び到来角度特定方法を提供する。
本発明の第1の態様によれば、到来角度特定装置(1)は、複数のサブキャリアを有する受信信号を複数のアンテナ素子(10)で受信して、当該受信信号の到来角度を特定する到来角度特定装置であって、前記複数のアンテナ素子の各々で受信した前記受信信号から、予め規定された特定のサブキャリアを抽出する信号処理部(15)と、前記信号処理部の各々から抽出された前記特定のサブキャリアの位相差に基づいて前記到来角度を特定する角度特定部(19)と、を備える。前記信号処理部は、前記アンテナ素子で受信した前記受信信号の周波数の、規定値からのずれを調整する周波数調整部(156a、156b)と、周波数が調整された前記受信信号に対する帯域通過フィルタ処理により、前記特定のサブキャリアを抽出するフィルタ部(157a、157b)と、を有する。
このようにすることで、複数のサブキャリアを有してなる受信信号から直接的に(高速フーリエ変換を施すことなく)所望するサブキャリアのみを抽出することができる。そして、当該抽出したサブキャリアの位相差に基づいて電波の到来角度を特定することができる。
以上より、簡素な信号処理により、周波数分割多重化された電波の到来角度を特定できる。
また、本発明の第2の態様によれば、前記信号処理部は、前記アンテナ素子で受信した前記受信信号の振幅を所定の大きさに調整する振幅調整部(152)を更に有する。
このようにすることで、信号強度(振幅)が常に一定となるように自動調整されるので、アンプを通じた信号の歪みなどが低減され、サブキャリアを抽出する処理の安定化を図ることができる。
また、本発明の第3の態様によれば、前記特定のサブキャリアは、データ伝送のための位相変調がなされないパイロットキャリア(SCp)である。
このようにすることで、複数のアンテナ素子の各々で受信した受信信号(パイロットキャリア)どうしの位相の対比を簡便に行うことができる。
また、本発明の第4の態様によれば、前記信号処理部は、周波数が互いに異なる複数のパイロットキャリアを抽出する。
このようにすることで、マルチパスフェージングの影響を受けにくくなり、到来角度を特定する機能の信頼性を向上させることができる。
また、本発明の第5の態様によれば、料金収受システムは、第1から第4の何れかの態様に記載の到来角度特定装置を備える。
また、本発明の第6の態様によれば、到来角度特定方法は、複数のサブキャリアを有する受信信号を複数のアンテナ素子で受信して、当該受信信号の到来角度を特定する到来角度特定方法であって、前記複数のアンテナ素子の各々で受信した前記受信信号から、予め規定された特定のサブキャリアを抽出する信号処理ステップと、前記信号処理ステップの各々で抽出された前記特定のサブキャリアの位相差に基づいて前記到来角度を特定する角度特定ステップと、を有する。前記信号処理ステップは、前記アンテナ素子で受信した前記受信信号の周波数の、規定値からのずれを調整する周波数調整ステップと、周波数が調整された前記受信信号に対する帯域通過フィルタ処理により、前記特定のサブキャリアを抽出するフィルタリングステップと、を含む。
上述の到来角度特定装置、料金収受システム及び到来角度特定方法によれば、簡素な信号処理により、周波数分割多重化された電波の到来角度を特定できる。
第1の実施形態に係る料金収受システムの全体構成を示す図である。 第1の実施形態に係る到来角度特定装置の機能構成を示す図である。 第1の実施形態に係る信号処理部の機能構成を示す図である。 第1の実施形態に係る信号処理部の処理フローを示す図である。 第1の実施形態に係る信号処理部の処理を説明するための第1の図である。 第1の実施形態に係る信号処理部の処理を説明するための第2の図である。 第1の実施形態に係る信号処理部の処理を説明するための第3の図である。 第2の実施形態に係る信号処理部の処理を説明するための図である。
<第1の実施形態>
以下、図1〜図7を参照しながら、第1の実施形態に係る料金収受システム及び到来角度特定装置について詳細に説明する。
(料金収受システムの全体構成)
図1は、第1の実施形態に係る料金収受システムの全体構成を示す図である。
第1の実施形態に係る料金収受システム5は、例えば、高速道路の入口料金所、出口料金所(以下、料金所等と記載する。)に設置される電子式料金収受システムである。料金収受システム5は、料金所等を通過する車両と無線通信を行い、自動的に料金収受処理を行う。
図1に示すように、料金収受システム5は、料金所等の車線Lの路側に設けられている。料金収受システム5は、到来角度特定装置1と、料金収受用アンテナ2(路側アンテナ)と、を有してなる。
到来角度特定装置1は、料金収受処理のための無線通信時において、車両Aに搭載された車載器A1が発信した電波の到来角度を特定するための装置である。
料金収受用アンテナ2は、車両Aに搭載された車載器A1との間で無線通信を行い、料金収受処理を行うための路側アンテナである。
本実施形態に係る料金収受用アンテナ2と車載器A1との間で行われる無線通信では、WAVE(IEEE802.11p)方式と呼ばれる無線通信の方式が採用される。WAVE方式は、周波数分割多重化されてなる複数の副搬送波(サブキャリア)を利用して無線通信を行うOFDM(orthogonal frequency-division multiplexing)方式である。
WAVE方式では、例えば、ある1つのチャネルについて、中心周波数5900MHz、チャネル幅10MHzの周波数帯域が割り当てられる。そして、当該割り当てられた周波数帯域が、更に、サブキャリア幅0.15625MHzずつ、64本のサブキャリアに分割される。本実施形態においては、この64本のうちの12本はNullキャリア(中身無し)とされ、残りの52本のサブキャリアが利用される。
52本のサブキャリアのうち48本はデータキャリアと呼ばれ、データを伝送するために用いられる。すなわち、48本のデータキャリアは、伝送すべきデータに基づいて位相変調されて大気中を伝搬する。
また、52本のサブキャリアのうち4本はパイロットキャリアと呼ばれ、受信側(料金収受用アンテナ2)における復調処理(同期)を担保するために用いられる。パイロットキャリアは、データの伝送には用いられないため、位相変調されることはない。
なお、WAVE方式においては、52本のサブキャリアのうちいずれのサブキャリアをパイロットキャリア(或いはデータキャリア)として利用するかが予め規定されている。例えば、4本のパイロットキャリアは、それぞれ、中心周波数(5900MHz)から周波数の低い側に数えて7番目と21番目のサブキャリア、及び、周波数の高い側に数えて7番目と21番目のサブキャリア、などと予め規定されている。
図1において、車両Aが車線Lのうちの所定の通信可能領域に進入すると、料金収受用アンテナ2と車両Aの車載器A1との間で無線通信が開始される。その際、到来角度特定装置1は、車載器A1から発信される電波であるOFDM方式の通信信号(複数のサブキャリアを有する受信信号)を受信する。そして、到来角度特定装置1は、受信した当該通信信号の到来角度を特定する。料金収受システム5は、到来角度特定装置1によって特定された電波の到来角度が正しい範囲内にあると判断した場合(予め定められた通信領域内に車両が存在すると判断した場合)に、車載器A1に対し、料金収受用アンテナ2を通じた料金収受処理を実行する。
(到来角度特定装置の機能構成)
図2は、第1の実施形態に係る到来角度特定装置の機能構成を示す図である。
図2を参照しながら、到来角度特定装置1の機能構成について説明する。
図2に示すように、複数のアンテナ素子10と、アンテナ素子10の各々に関連して設けられた複数の高周波アンプ11、ミキサ12、可変アンプ13、A/D変換器14及び信号処理部15を有している。また、到来角度特定装置1は、複数の信号処理部15の各々と接続された角度特定部19を有している。
複数のアンテナ素子10は、設置された各々の場所で車載器A1から発信された電波(OFDM方式の通信信号)を受信する。
高周波アンプ11は、アンテナ素子10で受信した受信信号(OFDM方式の通信信号)を増幅する。
ミキサ12は、高周波アンプ11を通じて増幅された受信信号に対し、図示しない局部発信器からの出力信号と混合して、受信信号を中間周波数に変換する。
可変アンプ13は、ミキサ12によって中間周波数に変換された受信信号を所定の振幅に調整して出力する。可変アンプ13を用いた振幅の調整については後述する。
A/D変換器14は、可変アンプ13によって所定の振幅に調整された受信信号(アナログ信号)をサンプリングしてデジタル信号に変換する。
信号処理部15は、例えば、FPGA(field-programmable gate array)等によって実現されたデジタル信号処理回路である。信号処理部15は、複数のアンテナ素子10の各々で受信した受信信号(A/D変換器14を通じて入力されたデジタル信号)から、予め規定された特定のサブキャリアを抽出する。本実施形態においては、信号処理部15は、「特定のサブキャリア」として、パイロットキャリアを抽出する。
更に、信号処理部15は、抽出したパイロットキャリアの位相を示す信号(パイロットキャリア位相信号)を角度特定部19に出力する。
角度特定部19は、複数の信号処理部15から出力されたパイロットキャリア位相信号に基づいて、各アンテナ素子10で受信した受信信号の位相差を特定する。そして、角度特定部19は、特定した位相差に基づいて、受信信号(車載器A1から発信された電波)の到来角度を特定する。受信信号の位相差から当該受信信号の到来角度を特定する処理は、一般に良く知られている技術であるため、詳細な説明を省略する。
(信号処理部の機能構成)
図3は、第1の実施形態に係る信号処理部の機能構成を示す図である。
次に、図3を参照しながら、信号処理部15の機能についてより詳細に説明する。
図3に示すように、信号処理部15は、RSSI検出部150と、高調波削除フィルタ151と、自動振幅制御部(AGC:Automatic gain control)152と、ミキサ153a、153bと、局部発信器154と、ローパスフィルタ155a、155bと、自動周波数制御部(AFC:Automatic frequency control)156a、156bと、パイロットキャリア抽出フィルタ157a、157bと、位相信号出力部158と、を有してなる。
RSSI検出部150は、受信信号の強度、即ち、RSSI(Received Signal Strength Indication)が所定値以上か否かを判定する。本実施形態においては、RSSI検出部150は、ミキサ12によって中間周波数に変換された受信信号の強度を検出する(図2参照)。
高調波削除フィルタ151は、いわゆるローパスフィルタであって、受信信号の高調波ノイズを除去する。
自動振幅制御部152は、高調波ノイズ除去後の受信信号を受け付けて、当該受信信号の信号強度(振幅)を取得する。そして、自動振幅制御部152は、取得した信号強度に応じた可変アンプ制御信号を可変アンプ13(図2)に向けて出力する。自動振幅制御部152は、受信信号の信号強度が所定の信号強度目標値で一定となるように、可変アンプ13をフィードバック制御する。
ミキサ153a、153b、局部発信器154、及び、ローパスフィルタ155a、155bは、受信信号からI成分とQ成分とを抽出する処理を行う。具体的には、ミキサ153a、153bは、高調波削除フィルタ151を介して入力された受信信号に対し、局部発信器154からの再生信号を乗算する。ここで、ミキサ153aでは、受信信号と同相の再生信号が乗算されることで、当該受信信号のI成分が抽出される。また、ミキサ153bでは、受信信号と位相が90°異なる再生信号が乗算されることで、当該受信信号のQ成分が抽出される。
自動周波数制御部156a、156bは、受信信号(I成分、Q成分)の周波数を自動的に調整する。
ここで、あるチャネルの中心周波数は、例えば、5900MHzと規定されることを説明したが、規格上、実際には、20ppm程度の誤差が許容されている。そうすると、車載器A1が発信した電波(チャネル)の中心周波数は、最大で±118kHz程度(5900MHzの20ppm)の誤差を有していることが想定される。そこで、自動周波数制御部156a、156bは、受信信号の実際の中心周波数を計測するとともに、当該計測した中心周波数と規定中心周波数(5900MHz)との周波数誤差を検出する。そして、自動周波数制御部156a、156bは、検出した周波数誤差がゼロとなるように、受信信号全体の周波数を加減算して調整する。これにより、52本全てのサブキャリアを含む受信信号全体について、最大で20ppm程度生じていた周波数誤差が低減される。
パイロットキャリア抽出フィルタ157a、157bは、受信信号のうち、パイロットキャリアとして予め規定されているサブキャリアの周波数成分のみを通過させるデジタルバンドパスフィルタである。パイロットキャリア抽出フィルタ157a、157bは、位相遅延を生じさせないFIR(finite impulse response)フィルタなどであることが好ましい。
上述したように、パイロットキャリアは、例えば、チャネルの中心周波数(5900MHz)から周波数の低い側に数えて7番目(21番目)のサブキャリア等として予め規定される。パイロットキャリア抽出フィルタ157a、157bは、上記のように規定された一のパイロットキャリアのみが通過し、それ以外のサブキャリアが除去されるフィルタ特性となるように調整されている。
位相信号出力部158は、パイロットキャリア抽出フィルタ157a、157bを通じて抽出された一のパイロットキャリアのI信号とQ信号とを入力して、当該パイロットキャリアの位相を示す信号(パイロットキャリア位相信号)を出力する。
(信号処理部の処理フロー)
図4は、第1の実施形態に係る信号処理部の処理フローを示す図である。
図5〜図7は、それぞれ、第1の実施形態に係る信号処理部の処理を説明するための第1〜第3の図である。
次に、図4に示す処理フロー及び図5〜図7を参照しながら、信号処理部15の処理の流れについて具体的に説明する。
まず、信号処理部15のRSSI検出部150は、RSSI検出結果にもとづいて、車載器A1から発信された電波(受信信号)の受信を検出する(ステップS01)。
車載器A1からの電波の受信を検出すると、信号処理部15の自動振幅制御部152は、受信信号の振幅が予め規定された規定値となるように、可変アンプ13の制御(フィードバック制御)を行う(ステップS02)。
ここで、車載器A1から受信した受信信号について、図5を参照しながら説明する。図5に示すグラフは、横軸が「周波数」を示しており、縦軸が「信号強度」(振幅)を示している。
図5に示すように、受信信号は、周波数分割多重化された信号であって、一つのチャネルに52本のサブキャリアSCが含まれている。52本のうち予め規定された特定の4本のサブキャリアSCは、パイロットキャリアSCpである。パイロットキャリアSCpは、データ伝送用として用いられないため、データによる位相変調がなされない。また、52本のうちパイロットキャリアSCp以外のサブキャリアSCは、データキャリアSCdである。データキャリアSCdは、データ伝送用として用いられるため、データによる位相変調がなされる。
なお、図5に示す例において、受信信号(チャネル)の中心周波数は5900MHzとされているが、上述したように、実際には20ppm程度の誤差が許容されている。したがって、52本の各サブキャリアSCの周波数は、最大で±118kHz程度の誤差を有している。
次に、信号処理部15の自動周波数制御部156a、156bは、受信信号のI成分、Q成分の各々に対し周波数調整処理を行う(ステップS03)。この周波数調整処理により、各サブキャリアに最大で20ppm(±118kHz)程度生じていた周波数誤差が低減される。
次に、信号処理部15のパイロットキャリア抽出フィルタ157a、157bは、周波数調整がなされた受信信号の入力を受け付けて、パイロットキャリアの周波数成分のみを抽出する(ステップS04)。
ここで、図6は、パイロットキャリア抽出フィルタ157a、157bのフィルタ特性を示している。図6に示すように、パイロットキャリア抽出フィルタ157a、157bは、中心周波数5900MHzから+1MHz離れたパイロットキャリア(通過帯域幅=0.15625MHz)のみを通過させるようなフィルタ特性となっている。
また、図7は、パイロットキャリア抽出フィルタ157a、157bによるフィルタリング処理(ステップS04)後の受信信号の状態を示している。図7に示すように、特定のパイロットキャリアの周波数成分のみがパイロットキャリア抽出フィルタ157a、157bを通過し、他のサブキャリアの周波数成分は除去されている。
次に、信号処理部15の位相信号出力部158は、パイロットキャリア抽出フィルタ157a、157bによって抽出されたパイロットキャリアのI成分及びQ成分に基づいて当該パイロットキャリアの位相を特定する(ステップS05)。信号処理部15は、以上の処理フローによって特定したパイロットキャリアの位相を示す信号(パイロットキャリア位相信号)を出力する。
図2に示す角度特定部19は、信号処理部15の各々から受け付けたパイロットキャリア位相信号に基づいて、アンテナ素子10(図2)の各々が受信したパイロットキャリアどうしの位相差を演算する。角度特定部19は、演算したパイロットキャリアの位相差に基づいて受信信号の到来角度を演算する。
(作用、効果)
以上の通り、第1の実施形態に係る到来角度特定装置1は、複数のサブキャリアSCを有する受信信号(OFDM方式の通信信号)を複数のアンテナ素子10で受信して、当該受信信号の到来角度を特定する。
到来角度特定装置1は、複数のアンテナ素子10の各々で受信した受信信号から、予め規定された特定のサブキャリアSCを抽出する信号処理部15と、信号処理部15の各々から抽出された特定のサブキャリア(パイロットキャリアSCp)の位相差に基づいて到来角度を特定する角度特定部19と、を備えている。
更に信号処理部15は、アンテナ素子10で受信した受信信号の周波数の、規定値からのずれを調整する自動周波数制御部156a、156b(周波数調整部)と、周波数が調整された受信信号に対する帯域通過フィルタ(バンドパスフィルタ)処理により、特定のサブキャリア(パイロットキャリアSCp)を抽出するパイロットキャリア抽出フィルタ157a、157b(フィルタ部)と、を有している。
ここで、従来技術においては、OFDM方式の電波の到来角度を求めるために、受信信号に対し高速フーリエ変換(FFT:Fast Fourier Transform)を行うことが一般的であった。即ち、周波数多重化された受信信号から特定の一のサブキャリアを抽出するために、受信信号に対し高速フーリエ変換処理を施す必要があった。
しかし、本実施形態に係る到来角度特定装置1は、上記のような構成を有することで、複数のサブキャリアを有してなる受信信号から直接的に(高速フーリエ変換を施すことなく)所望するサブキャリア(パイロットキャリア)のみを抽出することができる。そして、当該抽出したサブキャリア(パイロットキャリア)の位相差に基づいて電波の到来角度を特定することができる。
以上より、第1の実施形態に係る到来角度特定装置1によれば、簡素な信号処理により、周波数分割多重化された電波の到来角度を特定できる。
なお、WAVE方式では、上述したように、最大で規格上20ppmの周波数誤差(±118kHz)が認められている。この20ppm(±118kHz)との誤差は、中心周波数(5900MHz)のスケールから考慮すると十分に小さく感じられるものの、単一のサブキャリア(周波数帯域幅=156.25kHz)に着目した場合には、極めて大きいものとなる。つまり、パイロットキャリア抽出フィルタ157a、157bの通過帯域を、所望する一のサブキャリア(パイロットキャリア)に相当する周波数帯域に合わせ込んだとしても、通過帯域幅156.25kHzに対して、±118kHzの周波数誤差が生じ得る状況においては、当該フィルタを介して所望するサブキャリアのみを正しく抽出することが困難である。
そこで、第1の実施形態に係る到来角度特定装置1は、受信信号をパイロットキャリア抽出フィルタ157a、157bに通過させる前に、自動周波数制御部156a、156bによって周波数誤差を低減することを特徴としている。
このようにすることで、受信信号における20ppmの周波数誤差も低減されるので、パイロットキャリア抽出フィルタ157a、157bを通じて所望するサブキャリア(パイロットキャリア)を精度良く抽出することができる。
また、信号処理部15は、アンテナ素子10で受信した受信信号の振幅を所定の大きさに調整する自動振幅制御部152(振幅調整部)を更に有している。
このようにすることで、信号強度(振幅)が常に一定となるように自動調整されるので、アンプによる信号の歪みなどが低減され、サブキャリアを抽出する処理の安定化を図ることができる。
また、本実施形態においては、信号処理部15が抽出する「特定のサブキャリア」とは、データ伝送のための位相変調がなされないパイロットキャリアとしている。
上述した通り、パイロットキャリアは伝送すべきデータに基づく位相変調がなされない。したがって、複数のアンテナ素子10(図2)の各々で受信した受信信号(パイロットキャリア)どうしの位相の対比を簡便に行うことができる。
つまり、データに基づいて位相変調がなされるデータキャリアを用いて到来角度を特定しようとする場合には、データキャリアのうち位相変調による位相のずれを含まない範囲内で位相を対比する必要がある。しかし、パイロットキャリアを用いることにすれば、位相の対比に際し、位相変調による位相のずれを考慮する必要がない。
<第2の実施形態>
次に、図8を参照しながら、第2の実施形態に係る料金収受システム及び到来角度特定装置について詳細に説明する。
第1の実施形態においては、到来角度特定装置1の信号処理部15は、周波数分割多重化された受信信号から単一のパイロットキャリアSCp(図7参照)のみを抽出するものとして説明した。
第2の実施形態に係る到来角度特定装置1の信号処理部15は、周波数分割多重化された受信信号から複数(4本)のパイロットキャリア全てを抽出する。
なお、第2の実施形態に係る到来角度特定装置1及び料金収受システム5の全体構成、機能構成については第1の実施形態(図1〜図3)と同様である。
(信号処理部の処理)
図8は、第2の実施形態に係る信号処理部の処理を説明するための図である。
図8に示すように、第2の実施形態に係る信号処理部15は、4本のパイロットキャリアSCp1〜SCp4の全てを抽出する。
具体的には、本実施形態に係る信号処理部15は、パイロットキャリアSCp1〜SCp4の各々を通過させるバンドパスフィルタ特性を有するパイロットキャリア抽出フィルタ157a、157bを備えている。
ここで、車載器A1と到来角度特定装置1との間の無線通信で起こり得るマルチパスフェージングについて説明する。マルチパスフェージングとは、地上の障害物等の存在により、車載器A1から発信される電波が異なる複数の行路を進行し、受信地点(到来角度特定装置1)で互いに干渉することで受信信号の信号強度に強弱が生じる現象である。信号強度の強弱の度合いは、電波の周波数と行路差との関係によって定まる。つまり、同じ行路を辿ったとしても電波の周波数が異なる場合は、マルチパスフェージングの影響の度合いは異なる。
4本のパイロットキャリアSCp1〜SCp4はそれぞれ周波数が異なるため、図8に示すように、マルチパスフェージングによる信号強度の強弱の度合いもそれぞれ異なっている。
信号処理部15は、パイロットキャリア抽出フィルタ157a、157bを通じて抽出した4本のパイロットキャリアの各々のI成分及びQ成分を参照し、各パイロットキャリアSCp1〜SCp4の信号強度を演算する。そして、信号処理部15は、最も信号強度が高いパイロットキャリア(図8に示す例では、パイロットキャリアSCp2)を選択する。更に、信号処理部15は、選択したパイロットキャリアSCp2のI成分及びQ成分から位相を特定し、当該位相を示すパイロットキャリア位相信号を角度特定部19(図2)に向けて出力する。
以上のように、第2の実施形態に係る到来角度特定装置1(信号処理部15)は、周波数が互いに異なる複数のパイロットキャリアを抽出することを特徴とする。
このようにすることで、マルチパスフェージングが生じたとしても、その中でも影響が小さいサブキャリア(パイロットキャリア)を選択し、当該選択したサブキャリアに基づいて到来角度を特定することができる。したがって、マルチパスフェージングの影響を受けにくくなり、到来角度を特定する機能の信頼性を向上させることができる。
以上、第2の実施形態に係る到来角度特定装置1について詳細に説明したが、到来角度特定装置1の具体的な態様は、上述のものに限定されることはなく、要旨を逸脱しない範囲内において種々の設計変更等を加えることは可能である。
例えば、第2の実施形態に係る到来角度特定装置1は、4本のパイロットキャリアSCp1〜SCp4のうち最も信号強度が高いパイロットキャリアを選択し、当該選択したパイロットキャリアの位相差に基づいて到来角度を特定するものとした。しかし、他の実施形態においてはこの態様に限定されない。
第2の実施形態の変形例に係る到来角度特定装置1(信号処理部15)は、4本のパイロットキャリアSCp1〜SCp4のうち、予め規定された信号強度閾値Ith(図8参照)を上回ったパイロットキャリアを選択する態様であってもよい。図8に示す例の場合、信号処理部15は、パイロットキャリアSCp2とパイロットキャリアSCp4の2つを選択する。
この場合、更に、信号処理部15は、パイロットキャリアSCp2の位相を示すパイロットキャリア位相信号と、パイロットキャリアSCp4の位相を示すパイロットキャリア位相信号との両方を角度特定部19に出力する。そして、角度特定部19は、パイロットキャリアSCp2の位相差θ2と、パイロットキャリアSCp4の位相差θ4との平均値「(θ2+θ4)/2」に基づいて、到来角度を特定する。
また、さらに別の変形例に係る到来角度特定装置1(信号処理部15)は、4本のパイロットキャリアSCp1〜SCp4の各々のI成分及びQ成分に基づいて、各パイロットキャリアSCp1〜SCp4の全ての位相を示すパイロットキャリア位相信号を角度特定部19に出力してもよい。この場合、角度特定部19は、パイロットキャリアSCp1〜SCp4の各々の位相差θ1〜θ4の平均値「(θ1+θ2+θ3+θ4)/4」に基づいて、到来角度を特定してもよい。
第1の実施形態、第2の実施形態に係る到来角度特定装置1は、いずれも、複数のアンテナ素子10で受信した「パイロットキャリア」(位相変調がなされないサブキャリア)どうしの位相差に基づいて到来角度を特定するものとして説明したが、他の実施形態においてはこの態様に限定されない。
即ち、他の実施形態に係る到来角度特定装置1は、「特定のサブキャリア」として、「データキャリア」の位相差に基づいて到来角度を特定してもよい。この場合、到来角度特定装置1は、複数のアンテナ素子10で受信した受信信号(データキャリア)のうち、位相変調により位相が切り替わった点(位相変化点)どうしを対比することで位相差を特定してもよい。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものとする。
上述の通信制御装置、料金収受システム、通信制御方法及びプログラムによれば、簡素な構成で誤通信を抑制できる。
1 到来角度特定装置
10 アンテナ素子
11 高周波アンプ
12 ミキサ
13 可変アンプ
14 A/D変換器
15 信号処理部
150 RSSI検出部
151 高調波削除フィルタ
152 自動振幅制御部(振幅調整部)
153a、153b ミキサ
154 局部発信器
155a、155b ローパスフィルタ
156a、156b 自動周波数制御部(周波数調整部)
157a、157b パイロットキャリア抽出フィルタ(フィルタ部)
158 位相信号出力部
19 角度特定部
2 料金収受用アンテナ
5 料金収受システム
上述の到来角度特定装置、料金収受システム及び到来角度特定方法によれば、簡素な信号処理により、周波数分割多重化された電波の到来角度を特定できる。

Claims (6)

  1. 複数のサブキャリアを有する受信信号を複数のアンテナ素子で受信して、当該受信信号の到来角度を特定する到来角度特定装置であって、
    前記複数のアンテナ素子の各々で受信した前記受信信号から、予め規定された特定のサブキャリアを抽出する信号処理部と、
    前記信号処理部の各々から抽出された前記特定のサブキャリアの位相差に基づいて前記到来角度を特定する角度特定部と、を備え、
    前記信号処理部は、
    前記アンテナ素子で受信した前記受信信号の周波数の、規定値からのずれを調整する周波数調整部と、
    周波数が調整された前記受信信号に対する帯域通過フィルタ処理により、前記特定のサブキャリアを抽出するフィルタ部と、
    を有する到来角度特定装置。
  2. 前記信号処理部は、
    前記アンテナ素子で受信した前記受信信号の振幅を所定の大きさに調整する振幅調整部を更に有する
    請求項1に記載の到来角度特定装置。
  3. 前記特定のサブキャリアは、データ伝送のための位相変調がなされないパイロットキャリアである
    請求項1又は請求項2に記載の到来角度特定装置。
  4. 前記信号処理部は、
    周波数が互いに異なる複数のパイロットキャリアを抽出する
    請求項3に記載の到来角度特定装置。
  5. 請求項1から請求項4の何れか一項に記載の到来角度特定装置を備える
    料金収受システム。
  6. 複数のサブキャリアを有する受信信号を複数のアンテナ素子で受信して、当該受信信号の到来角度を特定する到来角度特定方法であって、
    前記複数のアンテナ素子の各々で受信した前記受信信号から、予め規定された特定のサブキャリアを抽出する信号処理ステップと、
    前記信号処理ステップの各々で抽出された前記特定のサブキャリアの位相差に基づいて前記到来角度を特定する角度特定ステップと、を有し、
    前記信号処理ステップは、
    前記アンテナ素子で受信した前記受信信号の周波数の、規定値からのずれを調整する周波数調整ステップと、
    周波数が調整された前記受信信号に対する帯域通過フィルタ処理により、前記特定のサブキャリアを抽出するフィルタリングステップと、
    を含む到来角度特定方法。
JP2019502357A 2017-03-01 2017-03-01 到来角度特定装置、料金収受システム及び到来角度特定方法 Pending JPWO2018158876A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008089 WO2018158876A1 (ja) 2017-03-01 2017-03-01 到来角度特定装置、料金収受システム及び到来角度特定方法

Publications (1)

Publication Number Publication Date
JPWO2018158876A1 true JPWO2018158876A1 (ja) 2019-12-26

Family

ID=63370405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019502357A Pending JPWO2018158876A1 (ja) 2017-03-01 2017-03-01 到来角度特定装置、料金収受システム及び到来角度特定方法

Country Status (6)

Country Link
US (1) US11194006B2 (ja)
JP (1) JPWO2018158876A1 (ja)
KR (1) KR102266016B1 (ja)
GB (1) GB2573957B (ja)
SG (1) SG11201907659PA (ja)
WO (1) WO2018158876A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6704988B2 (ja) * 2016-03-31 2020-06-03 三菱重工機械システム株式会社 料金収受設備、料金収受システム、及び料金収受方法
JP6705609B1 (ja) * 2019-04-15 2020-06-03 三菱電機株式会社 路側通信装置および路車間通信方法
JP6819980B1 (ja) * 2020-06-23 2021-01-27 株式会社ネクスコ・エンジニアリング新潟 路側マーカーによる測位システム
WO2024030070A1 (zh) * 2022-08-01 2024-02-08 华为技术有限公司 一种角度确定方法和装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273821A (ja) * 1994-03-29 1995-10-20 Sony Corp 復調装置
JP2000022772A (ja) * 1998-07-03 2000-01-21 Toshiba Corp 搬送波再生回路並びに搬送波再生方法
JP2001211218A (ja) * 2000-01-24 2001-08-03 Sony Corp 受信装置およびその方法
JP2001339454A (ja) * 2000-05-25 2001-12-07 Sony Corp 位相誤差検出装置およびその方法と受信装置
JP2002094585A (ja) * 2000-09-12 2002-03-29 Sony Corp 受信装置、フィルタ回路制御装置およびそれらの方法
JP2002094586A (ja) * 2000-09-12 2002-03-29 Sony Corp フィルタ回路およびその方法と受信装置およびその方法
JP2003032221A (ja) * 2001-07-18 2003-01-31 Japan Radio Co Ltd 伝送路特性測定装置
JP2005257595A (ja) * 2004-03-15 2005-09-22 Mitsubishi Electric Corp 追尾システム
JP2007281991A (ja) * 2006-04-10 2007-10-25 Nippon Hoso Kyokai <Nhk> 電波伝搬解析装置
WO2008136200A1 (ja) * 2007-04-27 2008-11-13 Panasonic Corporation 信号判定装置及び信号判定方法
EP2941069A2 (en) * 2014-03-14 2015-11-04 Broadcom Corporation Locationing determination using pilots signals in a wireless local area network (WLAN)
JP2016194454A (ja) * 2015-03-31 2016-11-17 三菱重工メカトロシステムズ株式会社 電波到来角度検出装置、車両検出システム、電波到来角度検出方法及び車両誤検出防止方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047999A (ja) 2006-08-11 2008-02-28 Sony Corp 情報処理装置および情報処理方法、プログラム、並びに、記録媒体
US9013352B2 (en) * 2011-04-25 2015-04-21 Saudi Arabian Oil Company Method, system, and machine to track and anticipate the movement of fluid spills when moving with water flow

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273821A (ja) * 1994-03-29 1995-10-20 Sony Corp 復調装置
JP2000022772A (ja) * 1998-07-03 2000-01-21 Toshiba Corp 搬送波再生回路並びに搬送波再生方法
JP2001211218A (ja) * 2000-01-24 2001-08-03 Sony Corp 受信装置およびその方法
JP2001339454A (ja) * 2000-05-25 2001-12-07 Sony Corp 位相誤差検出装置およびその方法と受信装置
JP2002094585A (ja) * 2000-09-12 2002-03-29 Sony Corp 受信装置、フィルタ回路制御装置およびそれらの方法
JP2002094586A (ja) * 2000-09-12 2002-03-29 Sony Corp フィルタ回路およびその方法と受信装置およびその方法
JP2003032221A (ja) * 2001-07-18 2003-01-31 Japan Radio Co Ltd 伝送路特性測定装置
JP2005257595A (ja) * 2004-03-15 2005-09-22 Mitsubishi Electric Corp 追尾システム
JP2007281991A (ja) * 2006-04-10 2007-10-25 Nippon Hoso Kyokai <Nhk> 電波伝搬解析装置
WO2008136200A1 (ja) * 2007-04-27 2008-11-13 Panasonic Corporation 信号判定装置及び信号判定方法
EP2941069A2 (en) * 2014-03-14 2015-11-04 Broadcom Corporation Locationing determination using pilots signals in a wireless local area network (WLAN)
JP2016194454A (ja) * 2015-03-31 2016-11-17 三菱重工メカトロシステムズ株式会社 電波到来角度検出装置、車両検出システム、電波到来角度検出方法及び車両誤検出防止方法

Also Published As

Publication number Publication date
SG11201907659PA (en) 2019-09-27
GB201912163D0 (en) 2019-10-09
GB2573957B (en) 2022-07-13
US11194006B2 (en) 2021-12-07
WO2018158876A1 (ja) 2018-09-07
KR20190109518A (ko) 2019-09-25
GB2573957A (en) 2019-11-20
KR102266016B1 (ko) 2021-06-16
US20200174093A1 (en) 2020-06-04
GB2573957A8 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
US10557914B2 (en) Radio wave arrival angle detection device, vehicle detection system, radio wave arrival angle detection method, and vehicle erroneous detection prevention method
KR102266016B1 (ko) 도래 각도 특정 장치, 요금 수수 시스템 및 도래 각도 특정 방법
US8199765B2 (en) Interference-detecting wireless communication method and apparatus
JP6437848B2 (ja) 受信解析装置
JP2008172496A (ja) Dsrc車載器
US11172546B2 (en) Wireless device adapted to perform wireless communication
JP4681493B2 (ja) 狭域通信用車載器
EP2230769B1 (en) systems and methods for receiving and processing multiple carrier communications and navigation signals
JP6702051B2 (ja) 無線測位装置
US6567646B1 (en) Method and apparatus in a radio communication system
JP2653852B2 (ja) 車両位置検出・走行方向判別システム
JP2021136677A (ja) 受信装置、狭帯域通信システム基地局
JP6947593B2 (ja) 列車制御システム
JP2012191413A (ja) 受信装置及び信号判定プログラム
JP2011101234A (ja) 信号検出器、信号検出方法、受信用プロセッサ及び受信機
JP3205232B2 (ja) ビーコン受信機
US7983669B2 (en) Method for verifying plotting results
CN109661798B (zh) 调幅无线电信号的自适应滤波方法以及相关无线电接收器和机动车辆
CN111726133A (zh) 射频信号的处理方法及设备、存储介质、电子装置
JP2728970B2 (ja) 路車間通信システムおよびその移動局における車載装置
JPH0413983A (ja) 路上ビーコン位置検出装置
JPS629865B2 (ja)
JPH0219034A (ja) ダイバーシチ受信法
JP2018207145A (ja) 無線装置
CN104467886A (zh) Dsrc用多信道接收器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210420