WO2024030070A1 - 一种角度确定方法和装置 - Google Patents

一种角度确定方法和装置 Download PDF

Info

Publication number
WO2024030070A1
WO2024030070A1 PCT/SG2022/050546 SG2022050546W WO2024030070A1 WO 2024030070 A1 WO2024030070 A1 WO 2024030070A1 SG 2022050546 W SG2022050546 W SG 2022050546W WO 2024030070 A1 WO2024030070 A1 WO 2024030070A1
Authority
WO
WIPO (PCT)
Prior art keywords
tone signal
signal
angle
phase
receiving device
Prior art date
Application number
PCT/SG2022/050546
Other languages
English (en)
French (fr)
Inventor
王伟
张衡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/SG2022/050546 priority Critical patent/WO2024030070A1/zh
Publication of WO2024030070A1 publication Critical patent/WO2024030070A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/44Rotating or oscillating beam beacons defining directions in the plane of rotation or oscillation
    • G01S1/46Broad-beam systems producing at a receiver a substantially continuous sinusoidal envelope signal of the carrier wave of the beam, the phase angle of which is dependent upon the angle between the direction of the receiver from the beacon and a reference direction from the beacon, e.g. cardioid system
    • G01S1/48Broad-beam systems producing at a receiver a substantially continuous sinusoidal envelope signal of the carrier wave of the beam, the phase angle of which is dependent upon the angle between the direction of the receiver from the beacon and a reference direction from the beacon, e.g. cardioid system wherein the phase angle of the direction-dependent envelope signal is a multiple of the direction angle, e.g. for "fine" bearing indication TACAN
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present application relates to the field of communications, and more specifically, to an angle determination method and device.
  • GNSS global navigation satellite system
  • WiFi positioning technology based on received signal strength indicator (RS SI)
  • Bluetooth positioning technology based on beacons Indoor location information
  • RS SI received signal strength indicator
  • Bluetooth SIG supports the angle of arrival (Ao A) and angle of departure (AoD) Bluetooth protocols by utilizing the direction of the bluetooth low energy (BLE) signal. information to improve indoor positioning accuracy.
  • the present application provides an angle determination method and device, which can achieve fast and high-precision angle measurement.
  • the first aspect provides an angle determination method, which can be executed by a receiving device, or can also be executed by a chip or circuit used in the receiving device, which is not limited in this application.
  • the method includes: the receiving device receives the first multi-tone signal, the first multi-tone signal includes N1 frequency points, N1 is an integer greater than or equal to 2; the receiving device performs phase measurement on the first multi-tone signal, and acquires the first device The first phase values corresponding to the k antennas at N1 frequency points, k is an integer greater than or equal to 2; the receiving device determines the angle of the signal of the first device based on the obtained first phase value.
  • the first phase value can be regarded as a phase matrix with k columns and N1 rows, and the number of phase values in the phase matrix can be greater than or equal to 2 and less than or equal to k times N1.
  • the receiving device when the first device is a receiving device, the angle of the signal of the first device is the arrival angle of the receiving device; or, when the first device is a sending device, The angle of the signal of the first device is the departure angle of the sending device.
  • the receiving device includes a radio frequency local oscillator RF LO, and the receiving device performs down-conversion processing on the first radio frequency multi-tone signal to obtain the first baseband multi-tone signal, It includes: the receiving device mixes the first radio frequency multi-tone signal and the RF LO signal to obtain the first baseband multi-tone signal.
  • the first radio frequency multi-tone signal is the first multi-tone signal.
  • the radio frequency signal is down-converted to a low-frequency baseband signal, and then the phase of the baseband signal is measured to indirectly obtain the The phase of the RF signal.
  • the phase of RF LO during down-conversion processing will affect the phase value of the baseband signal.
  • the receiving device includes N1 digital LOs, the N1 digital LOs correspond to N1 frequency points, the receiving device performs phase measurement on the first multi-tone signal, and obtains
  • the first phase values corresponding to the k antennas of the first device at N1 frequency points include:
  • the i-th digital LO of the receiving device performs digital down-conversion processing on the first multi-tone signal, and converts the digital down-converted A multi-tone signal is subjected to IQ averaging processing, and the first phase value corresponding to the i-th frequency point of k antennas of the first device is obtained, where i is an integer greater than or equal to 1 and less than or equal to N1.
  • the receiving device obtains the average IQ of a certain frequency signal at a certain antenna through the IQ averaging method (the IQ of other frequency points is canceled out). Based on this average IQ, the frequency signal at that frequency can be calculated. The phase value of the antenna. Similarly, the phase value of the signal at this frequency point at another antenna can be obtained, and then the phase difference between the two antennas at this frequency point signal can be obtained, which is used to calculate the angle of arrival. It should be understood that the above process is applicable to the processing of signals at all other frequencies.
  • the receiving device determines the angle of the signal of the first device according to the obtained first phase value, including: the receiving device corresponds to the i-th frequency point according to the first antenna The difference between the phase value of and the corresponding phase value of the second antenna at the i-th frequency point determines the angle of the signal of the first device; where, the first antenna and the second antenna are any two of the k antennas that are not the same antenna, i is an integer greater than or equal to 1 and less than or equal to N1.
  • the frequency interval between any two adjacent frequency points among the N1 frequency points is the same.
  • the frequency interval between any two adjacent frequency points among the N1 frequency points of the first multi-tone signal may also be different, which is not specifically limited.
  • the RF LO and the plurality of digital LOs of the receiving device remain locked. That is to say, in this implementation, it is necessary to obtain the phase values corresponding to each antenna at different frequency points by switching antennas.
  • LO including RF LO and digital LO
  • the RF LO of the receiving device and multiple digital LOs remain in a rotating state, and the RF LO of the transmitting device keeps rotating.
  • the receiving device receives the second multi-tone signal, the second multi-tone signal includes N2 frequency points, and there are M frequency points between the N2 frequency points and the N1 frequency points.
  • N2 is an integer greater than or equal to 2
  • M is an integer greater than or equal to 1 and less than the minimum value of N1 and N2.
  • the receiving device performs phase measurement on the second multi-tone signal, and obtains the second phase values corresponding to the k antennas of the first device at N2 frequency points; receiving The device determines the angle of the signal of the first device based on the acquired second phase value; or, the receiving device determines the angle of the signal of the first device based on the acquired first phase value and the second phase value.
  • the receiving device determines the angle of the signal of the first device based on the acquired first phase value and the second phase value, including: the receiving device determines the angle of the signal of the first device based on the acquired first phase value.
  • the receiving device determines the phase compensation value based on the first phase value and the second phase value; the receiving device compensates the first phase value based on the phase compensation value; and the receiving device determines the angle of the signal of the first device based on the compensated first phase value and the second phase value.
  • the receiving device determines the angle of the signal of the first device according to the obtained first phase value and the second phase value, including: the receiving device determines the phase compensation value according to the obtained first phase value and the second phase value; receiving The device compensates the second phase value based on the phase compensation value; the receiving device determines the angle of the signal of the first device based on the compensated second phase value and the first phase value.
  • phase difference changes with the channel much larger than the 3% change in an ideal environment. That is, each path measured in a multipath environment will have a corresponding AoA/AoD, but the AoA/AoD corresponding to the line-of-sight (LOS) signal is the most accurate.
  • LOS line-of-sight
  • the initial phase of the RF LO in the two measurement processes can be any value, by using a common frequency point (or channel)
  • the difference in the RF LO initial phase between the two angle measurements can be calculated, and the RF LO initial phase value can be compensated. Therefore, effects such as errors on the angle measurement results of the signal can be avoided or reduced.
  • the time interval between the sending moments of the first multi-tone signal and the second multi-tone signal, and the reception of the first multi-tone signal and the second multi-tone signal The time interval between moments is the same.
  • the initial phases of the N1 digital LOs are the same when they are turned on, and the initial phases corresponding to the i-th digital LO are the same at the first moment and the second moment; where, The first time is the sending time of the first multi-tone signal, and the second time is the sending time of the second multi-tone signal; or, the first time is the receiving time of the first multi-tone signal, and the second time is the second multi-tone signal receiving time. The time when the audio signal is received.
  • the angle determination method may be executed by the sending device, or may be executed by a chip or circuit used in the sending device, which is not limited in this application. For convenience of description, the following description takes execution by the sending device as an example.
  • the method includes: the sending device generates a first multi-tone signal, the first multi-tone signal includes N1 frequency points, and N1 is an integer greater than or equal to 2; the sending device sends the first multi-tone signal, and the first multi-tone signal is used to determine The signal of the first device angle.
  • the sending device sends the first multi-tone signal
  • the first multi-tone signal is used to determine The signal of the first device angle.
  • the receiving device performs phase measurement on the multi-tone signal, and determines the angle of the signal of the first device based on the obtained measurement value.
  • using multi-tone signals to determine the angle can quickly obtain the phase value, improve measurement efficiency, and achieve rapid angle measurement.
  • the sending device when the first device is a receiving device, the angle of the signal of the first device is the arrival angle of the receiving device; or, when the first device is a sending device, The angle of the signal of the first device is the departure angle of the sending device.
  • the sending device includes N1 digital local oscillators LO, the N1 digital LO corresponds to N1 frequency points, and the sending device generates the first baseband multi-tone signal, It includes: The sending device adds the signals of N1 digital LOs to obtain the first baseband multi-tone signal.
  • the sending device further includes a radio frequency RF LO, and the sending device performs upconversion processing on the first baseband multi-tone signal to obtain the first radio frequency multi-tone signal, including: sending The device mixes the first baseband multi-tone signal and the RF LO signal to obtain the first radio frequency multi-tone signal.
  • the frequency interval between any two adjacent frequency points among the N1 frequency points is the same.
  • the sending device generates a second multi-tone signal, the second multi-tone signal includes N2 frequency points, and there are M frequency points between the N2 frequency points and the N1 frequency points.
  • N2 is an integer greater than or equal to 2
  • M is an integer greater than or equal to 1 and less than the minimum value of N1 and N2
  • the sending device sends the second multi-tone signal.
  • the time interval between the sending moments of the first multi-tone signal and the second multi-tone signal, and the reception of the first multi-tone signal and the second multi-tone signal is the same.
  • the initial phases of the N1 digital LOs are the same when they are turned on, and the initial phases corresponding to the i-th digital LO at the first moment and the second moment are the same, i is An integer greater than or equal to 1 and less than or equal to N1; wherein the first moment is the sending moment of the first multi-tone signal, and the second moment is the sending moment of the second multi-tone signal; or, the first moment is the sending moment of the first multi-tone signal
  • the second time is the receiving time of the second multi-tone signal, and the second time is the receiving time of the second multi-tone signal.
  • an angle determination device including: a transceiver unit, configured to receive a first multi-tone signal, where the first multi-tone signal includes N1 frequency points, where N1 is an integer greater than or equal to 2; a processing unit, used to Perform phase measurement on the first multi-tone signal, and obtain the first phase values corresponding to the k antennas of the first device at N1 frequency points; the processing unit is also configured to determine the first phase value of the first device based on the obtained first phase value.
  • the angle of the signal can perform the processing of receiving and sending in the aforementioned first aspect, and the processing unit can perform other processing in addition to receiving and transmitting in the aforementioned first aspect.
  • an angle determination device including: a processing unit, configured to generate a first multi-tone signal, where the first multi-tone signal includes N1 frequency points, where N1 is an integer greater than or equal to 2; and a sending unit, configured to Send the first multi-tone signal.
  • the transceiver unit can perform the processing of receiving and transmitting in the aforementioned second aspect, and the processing unit can perform other processing in addition to receiving and transmitting in the aforementioned second aspect.
  • an angle determination device is provided, including a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory.
  • an angle determination device including a processor and a communication interface.
  • the communication interface is used to receive data and/or information and transmit the received data and/or information to the processor.
  • the processor processes the data. and/or information, and the communication interface is also used to output data and/or information processed by the processor, so that the method in any possible implementation manner of the first aspect or the second aspect is executed.
  • a computer-readable storage medium is provided. Computer instructions are stored in the computer-readable storage medium. When the computer instructions are run on a computer, any possible implementation of the first aspect or the second aspect is achieved.
  • FIG. 1 is a structural diagram of an arrival angle positioning system applicable to the present application.
  • Figure 2 is a schematic diagram of an angle of arrival measurement applicable to this application.
  • Figure 3 is a structural diagram of a departure angle positioning system applicable to this application.
  • Figure 4 is a schematic flowchart of an angle determination method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of AoA angle measurement based on a traditional single tone signal provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of AoA angle measurement based on multi-tone signals provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of a baseband multi-tone signal provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of up-conversion processing of a baseband multi-tone signal provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of phase measurement of a baseband multi-tone signal provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of two-dimensional (frequency dimension - antenna dimension) energy provided by an embodiment of the present application.
  • FIG 11 is a schematic diagram of one-dimensional (antenna dimension) energy provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of splicing angle measurement values based on multi-tone signals provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of an angle determination device provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of another angle determination device provided by an embodiment of the present application. DETAILED DESCRIPTION OF THE INVENTION
  • WPAN wireless personal area network
  • the standards currently adopted by WPAN are the Institute of Electrical and Electronics Engineers (IEEE) 802.15 series.
  • WPAN can be used for communication between a small range of digital auxiliary devices such as phones, computers, and accessory devices.
  • Technologies supporting wireless personal area networks include bluetooth, zigBee, ultra wideband (UWB), infrared data association (IrDA) connection technology, home radio frequency (HomeRF), etc. .
  • WPAN is located at the bottom of the entire network architecture and is used for wireless connections between devices within a small range, that is, point-to-point short-distance connections, which can be regarded as short-distance connections. distance wireless communication network.
  • WPAN is divided into high rate (HR)-WPAN and low rate (LR)-WPAN.
  • HR-WPAN can be used to support various high-rate multimedia applications, including High-quality audio and video distribution, multi-megabyte music and image file transfer, etc.
  • LR-WPAN can be used for general business in daily life.
  • WPAN according to the communication capabilities of the device, it can be divided into full-function device (FFD) and reduced-fiinction device (RFD). Communication is possible between FFDs and between FFDs and RFDs. RFDs cannot communicate directly with each other and can only communicate with FFDs or forward data through an FFD.
  • the FFD associated with the RFD is called the coordinator of the RFD.
  • RFD equipment is mainly used for simple control applications, such as light switches, passive infrared sensors, etc.
  • the coordinator may also be called a personal area network (PAN) coordinator or a central control node.
  • PAN coordinator is the master control node of the entire network, and there is generally only one PAN coordinator in each ad hoc network, which has membership management, link information management, and packet forwarding functions.
  • the device for example, the sending device or the receiving device
  • the device in the embodiment of the present application may be a device that supports the 802.15 series, for example, supports 802.15.4a and 802.15.4z, as well as those currently under discussion or subsequent versions, etc.
  • a WPAN standard device for example, supports 802.15.4a and 802.15.4z, as well as those currently under discussion or subsequent versions, etc.
  • the above-mentioned devices may be communication servers, routers, switches, network bridges, computers or mobile phones, home smart devices, vehicle-mounted communication devices, etc.
  • the above-mentioned device may be a wireless communication chip, a wireless sensor or a wireless communication terminal.
  • the user terminals may include various handheld devices and vehicle-mounted devices with wireless communication functions.
  • the device can support the 802.15.4ab standard or the next generation standard of 802.15.4ab.
  • the device can also support multiple standards such as 802.15.4a, 802.15.4-2011, 802.15.4-2015 and 802.15.4z.
  • the device can also support multiple wireless local area networks (WLAN) standards of the 802.11 family such as 802.1 lax, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, 802.11be next generation.
  • WLAN wireless local area networks
  • the above-mentioned device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU), and memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • This application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide according to the embodiment of the present application. It suffices to communicate by a method.
  • the execution subject of the method provided by the embodiment of this application may be FFD or RFD, or FFD Or the function module in RFD that can call the program and execute the program.
  • various aspects or features of the present application may be implemented as methods, apparatus, or articles of manufacture using standard programming and/or engineering techniques.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile disks (DVD) ), etc.), smart cards and flash memory devices (e.g. erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.). Additionally, the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the technical solution of this application can also be applied to wireless local area network systems such as Internet of Things (IoT) networks or Vehicle to X (V2X).
  • IoT Internet of Things
  • V2X Vehicle to X
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile tel ecommuni cati on system
  • WiMAX global interoperability for microwave access
  • 5G fifth generation
  • 6G sixth generation
  • the Bluetooth indoor positioning system can be applied to indoor navigation equipment, such as using a Bluetooth bracelet as a navigation terminal to effectively solve the problem that blind people cannot quickly, safely and conveniently reach the target place from the current location when moving indoors, especially in hospitals and hospitals. Activities and travel issues in public places such as subway stations and shopping malls.
  • the following uses Bluetooth BLE AoA/AoD as an example to illustrate the basic principles of AoA/AoD.
  • Figure 1 is a structural diagram of an AoA positioning system suitable for this application. As shown in Figure 1, it includes a sending device and a receiving device.
  • the transmitting device has one antenna
  • the receiving device has two or more antennas (for example, 4 antennas).
  • the sending device when performing Bluetooth BLE AoA angle measurement, sends a single tone signal, that is, a special Bluetooth signal whose baseband is a sine wave, which the Bluetooth protocol calls (constant tone extension, CTE). While receiving CTE 2n ⁇ d ⁇ sin. , and then the incident angle 0 can be calculated, that is, the orientation of the sending device relative to the receiving device.
  • Figure 3 is a structural diagram of an AoD positioning system suitable for this application. As shown in Figure 3, it includes a sending device and a receiving device. The receiving device has one antenna, and the transmitting device has two or more antennas (for example, 4 antennas).
  • the sending device when performing Bluetooth BLE AoD angle measurement, sends a segment of CTE signal while continuously switching between various antennas.
  • the receiving device determines the location corresponding to each part of the CTE signal. Transmit antennas and sample the baseband signal corresponding to each antenna.
  • a processor in the receiving device performs angle calculations based on the sampled baseband signals from each antenna.
  • Bluetooth BLE has 37 channels that can be used for AoA/AoD angle measurement, covering the 2.4GHz industrial scientific medical band (ISM) with a bandwidth of about 80M, and the interval between two adjacent channels is 2MHz. It should be pointed out that the frequency band that can be used for BLE AoA/AoD is 2.404 ⁇ 2.478GHz. For other Bluetooth BLE AoA/AoD content, you can refer to the existing Bluetooth 5.1 protocol. For the sake of brevity, I will not go into details here. Currently, low-power narrowband wireless technologies (such as Bluetooth and Zigbee) are increasingly used in daily life.
  • ISM industrial scientific medical band
  • Low-power narrowband wireless technology Compared with other wireless technologies such as 5G and WiFi, the advantages of low-power narrowband wireless technology are: (1) Very low power consumption, which means the device can be used for a longer time; (2) The design is relatively simple and the device cost is lower. Low. This makes low-power narrowband wireless technology not only widely used in consumer devices (such as mobile phones, wearables and smart homes, etc.), but also has broad application scenarios in the industrial internet of things (IIoT). Low-power narrowband wireless technology not only has the function of device connection, but also has the function of measuring the direction between devices (ie, measuring AoA/AoD), which can be used to achieve device positioning.
  • IIoT industrial internet of things
  • the more channels (or frequency points) used in BLE AoA/AoD angle measurement the greater the amount of AoA/AoD information, and the final angle estimate should be The more accurate it is.
  • multipath reflection phenomenon in the actual indoor environment, which causes different channels (or different frequency points) to have different frequency responses. Since the phase difference fluctuates with the channel, the BLE AoA/AoD obtained by actual angle measurement The phase difference between multiple antennas varies with the change of the channel (i.e. frequency point), that is, the phase difference changes with the channel much larger than the 3% change in an ideal environment.
  • each time The transmission of AoA/AoD signals can only be used to measure AoA/AoD information at one frequency point. If the entire ISM frequency band needs to be angularly measured, all 37 channels of BLE need to be angularly measured, which requires a longer angular measurement time overall, resulting in The power consumption of the device becomes larger, the capacity of the system becomes smaller, or the refresh rate of the AoA/AoD angle measurement of the device is low, and the angle measurement of fast-moving devices cannot be supported.
  • this application provides an angle determination method and device, using multi-tone signals as a reference for AoA/AoD measurement signal, and in two adjacent AoA/AoD measurements, the measured phase values are spliced using a shared frequency point.
  • the method disclosed in this application is more The audio signal can reduce the overall time to complete the AoA/AoD measurement of all frequency points and achieve fast and accurate AoA/AoD measurement.
  • AoA By using a single antenna to send packets with direction finding capabilities, low energy (LE) devices can make their directions available to peer devices.
  • the peer device consists of an RF switch and antenna array that switches the antennas and acquires IQ samples when partial packets are received. IQ samples can be used to calculate the phase difference of radio signals received by different elements of the antenna array, which can then be used to estimate the angle of arrival AoA.
  • AoD sends data packets with direction finding function by using multiple antennas, switching antennas when sending data packets, LE device Can make its direction available to peer devices.
  • the peer device includes a radio frequency switch and a single antenna. It receives the data packets sent by each antenna and obtains IQ samples. Based on the IQ of each antenna, it calculates the phase difference between the antennas, which can then be used to estimate the departure angle AoDo.
  • narrowband signal is relative to “ultrawideband signal”.
  • the bandwidth of an ultrawideband signal is generally at least 500Mhz.
  • a signal with a bandwidth smaller than the bandwidth of an ultrawideband signal is a narrowband signal.
  • narrowband signals include but are not limited to signals provided by the following wireless technologies: Bluetooth technology, ZigBee technology, technologies based on the 802.15.4 standard (such as Thread technology), WiFi technology (including various standards of 802.11), etc.
  • it can also include wireless technologies such as narrow band internet of things (NB-LoT) of cellular systems, long term evolution-machine to machine (LTE-M), LoRa and Sigfox, and Other wireless technologies that can provide narrowband signals in the future are not limited.
  • NB-LoT narrow band internet of things
  • LTE-M long term evolution-machine to machine
  • LoRa LoRa and Sigfox
  • LOS refers to the transmission of signals between the transmitting antenna and the receiving antenna at a distance where "each other can see each other". It can be understood that there are no obstacles that affect signal propagation between the two antennas, and the signal can be completely transmitted.
  • Up-conversion and down-conversion refers to shifting the frequency spectrum of the baseband signal to the required higher carrier frequency.
  • upconversion modulates a baseband signal onto a carrier, or converts a signal modulated on a low-frequency carrier to a high-frequency carrier.
  • the frequency conversion signal is mixed with the sinusoidal signal (local oscillator) generated by the local oscillator (LO) to change the frequency band of the signal.
  • the upper sideband signal after mixing is up-converted. That is, increasing the frequency; taking the lower sideband signal after mixing is down-conversion, that is, reducing the frequency.
  • the single-tone signal is a sine wave of one frequency, that is, the single-tone signal has only one spectrum line.
  • the multi-tone signal is generated by the superposition of multiple independent sinusoidal signal waveforms, that is, the multi-tone signal has multiple spectral lines.
  • a, b, and c can mean: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , b and c.
  • a, b and c can be single or multiple respectively.
  • “first”, “second” and various numerical numbers indicate distinctions made for convenience of description and are not used to limit the scope of the embodiments of this application. . For example, to distinguish different messages, etc., rather than describing a specific sequence or sequence. It is to be understood that objects so described are interchangeable where appropriate to enable description of aspects other than the embodiments of the present application.
  • the sending device includes N1 digital local oscillators LO and radio frequency RF LO, and the N1 digital LO corresponds to N1 frequency points.
  • the sending device adds the signals of the N1 digital LO to obtain The first baseband multi-tone signal.
  • the first baseband multi-tone signal and the RF LO signal are mixed, that is, the sending device performs up-conversion processing on the first baseband multi-tone signal to obtain the first radio frequency multi-tone signal.
  • the frequency interval between any two adjacent frequency points among the N1 frequency points is the same.
  • the frequency interval between any two adjacent frequency points is 1 MHz or 2 MHz, etc.
  • the first multi-tone signal includes a first frequency point, a second frequency point and a third frequency point.
  • the first frequency point is 0 MHz
  • the second frequency point is 1 MHz
  • the third frequency point is 2 MHz.
  • the first frequency point is 2 MHz.
  • the frequency interval between the first frequency point and the second frequency point, and the frequency interval between the second frequency point and the third frequency point are the same, which is 1 MHz.
  • any of the N1 frequency points of the first multi-tone signal The frequency interval between two adjacent frequency points may also be different, and there is no specific limitation on this.
  • the sending device sends the first multi-tone signal.
  • the receiving device receives the first multi-tone signal.
  • the sending device refers to the AoA/AoD sending device
  • the receiving device refers to the AoA/AoD receiving device.
  • the sending device and the receiving device may have multiple possible application scenarios.
  • the sending device mentioned in the following embodiments may be an initiating site, and the receiving device may be a responding site; or, the sending device may be a responding site, and the receiving device may be an initiating site.
  • the sending device may also be a positioning device, and the second device may be a mobile tag; or, the sending device may be a mobile tag, and the receiving device may be a positioning device.
  • the sending device continuously sends the first multi-tone signal through a single antenna
  • the receiving device receives the first multi-tone signal through k antennas.
  • the sending device continuously sends the first multi-tone signal through k antennas, and the receiving device receives the first multi-tone signal through a single antenna.
  • the receiving device receives a first radio frequency multi-tone signal through an antenna.
  • the first radio frequency multi-tone signal is obtained by upconversion processing based on the first baseband multi-tone signal.
  • the receiving device performs an upconversion process on the first radio frequency multi-tone signal.
  • the signal is subjected to down-conversion processing, and the first baseband multi-tone signal is obtained.
  • the N1 frequency points of the first radio frequency multi-tone signal are obtained by adding the frequency fc based on the N1 frequency points of the first baseband multi-tone signal, where fc is the frequency of the RF LO, so that the first frequency point after upconversion is
  • the baseband multi-tone signal that is, the frequency band of the first radio frequency multi-tone signal covers the entire BLE AoA frequency band, for example, 2.404 ⁇ 2.478GHz. It should be noted that in this implementation, the first radio frequency multi-tone signal is the first multi-tone signal.
  • the radio frequency signal is down-converted to a low-frequency baseband signal, and then the phase of the baseband signal is measured to indirectly obtain the The phase of the RF signal.
  • the phase of RF LO during down-conversion processing will affect the phase value of the baseband signal.
  • the RF LO has the same impact on the phase of k antennas, when calculating the phase difference between k antennas, RF LO The effect on phase can be canceled out.
  • the initial phases of the N1 digital LOs are the same when they are turned on, and the initial phases of the i-th digital LO are the same at the first moment and the second moment; where, the first moment is the first multiple
  • the first time is the sending time of the first multi-tone signal, and the second time is the sending time of the second multi-tone signal; or the first time is the receiving time of the first multi-tone signal, and the second time is the receiving time of the second multi-tone signal.
  • the initial phase of multiple digital LOs of the sending device is the same when turned on, and during each angle measurement process, the initial phase value of the same digital LO must also be the same;
  • multiple digital LOs of the receiving device must also have the same initial phase.
  • the initial phase of the LO is the same when it is turned on, and during each angle measurement process, the initial phase value of the same digital LO must also be the same to avoid introducing additional phase errors and improve the angle measurement accuracy.
  • the receiving equipment Multiple RF LOs and digital LOs remain locked. That is to say, in this implementation, it is necessary to obtain the phase values corresponding to each antenna at different frequency points by switching antennas.
  • the sending device sends the second signal; correspondingly, the receiving device receives the second multi-tone signal.
  • the second multi-tone signal includes N2 frequency points, between the N2 frequency points and N1 frequency points. There are M common frequency points, N2 is an integer greater than or equal to 2, and M is an integer greater than or equal to 1 and less than the minimum value of N1 and N2.
  • the second multi-tone signal includes the first frequency point, the second frequency point and the third frequency point.
  • the first frequency point is 1.5 MHz
  • the second frequency point is 2.5 MHz
  • the third frequency point is 2.5 MHz.
  • the frequency point is 3.5MHz
  • the three frequency points are different from each other.
  • the fourth frequency point of the first multi-tone signal is 1.5 MHz
  • the first multi-tone signal and the second multi-tone signal have a common frequency point, that is, 1.5 MHz.
  • the receiving device performs phase measurement on the first multi-tone signal.
  • the receiving device obtains the first phase values corresponding to the k antennas of the first device at N1 frequency points.
  • k is an integer greater than or equal to 2.
  • the first phase value can be regarded as a phase matrix with k columns and N1 rows, and the number of phase values in the phase matrix can be greater than or equal to 2 and less than or equal to k times N1. For example, if N1 is equal to 4 and k is equal to 2, then the first phase value represents a phase matrix with 2 columns and 4 rows, including phase values corresponding to the two antennas at 4 frequency points, that is, 8 phase values.
  • the receiving device includes N1 digital LOs, and the N1 digital LOs correspond to N1 frequency points one-to-one.
  • the receiving device performs phase measurement on the first multi-tone signal, and obtains k signals of the first device.
  • the first phase value corresponding to the antenna at N1 frequency points includes: The i-th digital LO of the receiving device performs digital down-conversion processing on the first multi-tone signal, and performs IQ on the digital down-converted first multi-tone signal.
  • the receiving device obtains the average IQ of a certain frequency signal at a certain antenna through the IQ averaging method (the IQ of other frequency points is canceled out). Based on this average IQ, the frequency signal at that frequency can be calculated. The phase value of the antenna. Similarly, the phase value of the signal at this frequency point at another antenna can be obtained, and then the phase difference between the two antennas at this frequency point signal can be obtained, which is used to calculate the angle of arrival. It should be understood that the above process is applicable to the processing of signals at all other frequencies.
  • the angle of the signal of the first device is the arrival angle of the receiving device.
  • the sending device sends the first multi-tone signal through a single antenna
  • the receiving device receives the first multi-tone signal through k antennas, and obtains the frequency of each antenna in the process of switching antennas.
  • the angle of the signal of the first device is the departure angle of the sending device.
  • the sending device sends the first multi-tone signal through multiple antennas
  • the receiving device receives the first multi-tone signal through a single antenna, and continues to send the first multi-tone signal when the sending device switches antennas.
  • the phase values corresponding to N1 frequency points of each antenna are obtained respectively, and the departure angle can be determined by comparing the difference in phase values corresponding to the two antennas of the transmitting device at the same frequency point.
  • the receiving device performs phase measurement on the second multi-tone signal, and obtains the second phase values corresponding to the k antennas of the first device at N2 frequency points; the receiving device performs phase measurement according to the obtained second phase value to determine the angle of the signal of the first device; or, the receiving device determines the angle of the signal of the first device based on the obtained first phase value and the second phase value. That is to say, by measuring the phase corresponding to the second multi-tone signal, the angle of the signal of the first device can be determined; or by combining the phase value of the first multi-tone signal and the phase value of the second multi-tone signal, it is also possible Determine the angle of the first device's signal.
  • the second phase value can be regarded as a phase matrix with k columns and N2 rows, and the number of phase values in the phase matrix can be greater than or equal to 2 and less than or equal to k times N2.
  • N2 equals 3 and k equals 2
  • the second phase value represents a phase matrix with 2 columns and 3 rows, including the phase values corresponding to the two antennas at three frequency points, that is, 6 phase value.
  • a certain antenna does not collect a phase value at a certain frequency point or the phase value error is large during the angle measurement process of the second multi-tone signal due to interference from other signals. This application does not elaborate on this. limited.
  • the receiving device determines the angle of the signal of the first device based on the acquired first phase value and the second phase value, including: the receiving device determines the angle based on the acquired first phase value and the second phase value. phase compensation value; the receiving device compensates the first phase value based on the phase compensation value; the receiving device determines the angle of the signal of the first device based on the compensated first phase value and the second phase value.
  • the receiving device determines the angle of the signal of the first device according to the obtained first phase value and the second phase value, including: the receiving device determines the phase compensation value according to the obtained first phase value and the second phase value; receiving The device compensates the second phase value based on the phase compensation value; the receiving device determines the angle of the signal of the first device based on the compensated second phase value and the first phase value.
  • the first multi-tone signal is measured at -1.5
  • the second multi-tone signal is measured at -1.5 MHz
  • the phase value is measured.
  • compensation is performed based on the phase value, so that the final phase value measured at -1.5 MHz of the first multi-tone signal is the same, and the phase value measured at -1.5 MHz is the same, and then the phase values can be spliced to obtain a better phase value.
  • the spliced target phase matrix includes k antennas in 6 (N1+N2- phase value.
  • the initial phase of the RF LO in the two measurement processes can be any value, by using a common frequency point (or channel)
  • the difference in the initial phase of the RF LO between the two angle measurements can be calculated, and the initial phase value of the RF LO can be compensated. Therefore, effects such as errors on the angle measurement results of the signal can be avoided or reduced, and this implementation can improve angle measurement accuracy.
  • the time interval between the sending time of the first multi-tone signal and the second multi-tone signal, and the time interval between the receiving time of the first multi-tone signal and the second multi-tone signal are the same. .
  • the flight time Offset of the signal can be kept unchanged during the entire measurement process to avoid The difference, for example through averaging processing, can achieve an accurate measurement of the angle of the signal.
  • the angle of the signal of the first device is determined based on the obtained measurement values. Compared with the traditional phase measurement of single-tone signals, using multi-tone signals to determine the angle can quickly obtain the phase value, improve measurement efficiency, and achieve rapid angle measurement. It should be understood that although the bandwidth of a narrowband wireless device is narrower than that of other wireless devices, it generally has a bandwidth of several MHz.
  • the technical solution of this application utilizes the bandwidth of several MHz to perform AoA/AoD angle measurement through multi-tone signals, which can more quickly complete AoA/AoD angle measurement at multiple frequency points.
  • AoA angle measurement describes in detail the measurement of phase values by sending and receiving multi-tone signals to determine the angle of arrival in conjunction with Figures 5 to 12; and, based on the splicing of phase values of multi-tone signals, to achieve rapid and accurate identification and determination.
  • the angle of arrival corresponding to the LOS signal.
  • the technical solution proposed by the applicant is also applicable to the determination of the departure angle, and the specific implementation method is similar to the determination method of the arrival angle. For the sake of simplicity, the application does not elaborate on this too much.
  • FIG. 5 is a schematic diagram of AoA angle measurement based on a traditional single tone signal provided by an embodiment of the present application. As shown in Figure 5, the abscissa is time and the ordinate is frequency. Taking k antennas as an example, in AoA angle measurement based on single tone signals, the phase of an antenna at one frequency point can only be measured at one time. For example, at time tl, the receiving device can measure the phase (pi) corresponding to antenna 1 at frequency fl l; and then switch to antenna 2 for AoA angle measurement. At time t2, the receiving device can measure the phase (pi) of antenna 2 at frequency fl l. The corresponding phase q) 2; By analogy, switch to antenna k for measurement.
  • the receiving device can measure the phase corresponding to antenna k at frequency fl l (p ko . That is to say, during the AoA angle measurement process , after k-1 antenna switches, the receiving device can obtain all the phases of k antennas at the same frequency point fl l, that is, a phase array of size k.
  • Figure 6 is a multi-phase multi-phase array provided by an embodiment of the present application. Schematic diagram of AoA angle measurement of tone signals. As shown in Figure 6, the abscissa is time and the ordinate is frequency.
  • the receiving device can simultaneously measure the phase (pi ⁇ (p 4 ) of antenna 1 corresponding to the frequency fl l ⁇ f44; and then switch to the antenna 2 performs AoA angle measurement.
  • the receiving device can simultaneously measure that the corresponding phase of antenna 2 at frequencies fl l ⁇ f44 is q) 5 ⁇ 8;
  • the receiving equipment can simultaneously measure the phase corresponding to antenna k at frequency fl l ⁇ f44 as (p4k-3 ⁇ (p4ko). That is to say, during the AoA angle measurement process, after k-1 antenna switching, the receiving The device can obtain the phases of k antennas at multiple frequency points (such as fl l ⁇ f44), that is, a 4 x k phase matrix.
  • the frequency fl l shown in Figure 5 is the frequency of the radio frequency signal, that is, for the baseband signal
  • the frequency of the corresponding radio frequency signal after the fl frequency point is up-converted, such as 2.450GHz.
  • the frequency points fl l ⁇ f44 shown in Figure 6 are also the frequencies of the radio frequency signal, that is, the fl ⁇ f4 frequency points of the baseband signal
  • the frequency of the corresponding radio frequency signal after up-conversion processing is, for example, 2.450GHz ⁇ 2.480GHz. It should be noted that fl l shown in Figure 5 and fl l ⁇ f44 shown in Figure 6 are only examples to facilitate understanding of the solution.
  • this application does not specifically limit the number of frequency points and the specific values of the frequency points.
  • N times of AoA need to be performed using the traditional AoA method. Only angle measurement can achieve full coverage, and using the multi-tone AoA method (setting N tones) only requires one AoA angle measurement to achieve full coverage.
  • using the multi-tone AoA method can reduce the single-tone AoA angle measurement time to N minutes
  • the overall time of the single-tone AoA angle measurement shown in Figure 5 can be reduced to 25% o
  • the number N of tones in the multi-tone signal and the frequency between each tone are The interval is not specifically limited.
  • the embodiment of the present application may be explained by taking the same frequency interval between each tone as an example. For example, the frequency intervals between fl ⁇ f4 are the same.
  • Figure 7 is a schematic diagram of a baseband multi-tone signal provided by an embodiment of the present application.
  • the frequency points of each tone correspond to fl, f2, fi and f4o.
  • fl is -1.5MHz
  • f2 is -0.5MHz
  • f3 is +0.5MHz
  • f4 is +1.5MHzho.
  • the intervals between frequency points fl ⁇ f4 may be the same or different. This application does not specifically limit this.
  • the frequencies of the four tones corresponding to the four numbers LO are fl, f2, and the normalized sum f4.
  • the frequency of the digital LO corresponds to the frequency of the baseband multi-tone signal.
  • this application does not specifically limit the values of fl, f2, and the normalized sum f4.
  • fl is -1.5MHz
  • f2 is -0.5MHz
  • the normalized sum is +0.5MHz
  • f4 is +1.5MHz.
  • the frequency of RF LO is fc. Taking BLE AoA angle measurement as an example, fc can be the 2.404 ⁇ 2.478GHz frequency band.
  • the sending device When sending a multi-tone signal, the sending device first adds the signals of multiple digital LOs to form a baseband multi-tone signal (as shown in Figure 8), and then sends it to the RF LO through a digital to analog converter (DAC) , or perform up-conversion processing through an all digital phase lock loop (ADPLL), and finally transmit it through the antenna.
  • DAC digital to analog converter
  • ADPLL all digital phase lock loop
  • the frequencies fl ⁇ f4 of the four tones in the baseband multi-tone signal can be uniformly increased by 2.402 GHZ, so as to correspond to the frequency band of the Bluetooth channel 2.404 ⁇ 2.478 GHz.
  • the frequencies of the four tones of the baseband multi-tone signal shown in Figure 7 are uniformly shifted to the right by 2.402GHZo.
  • the receiving device When receiving the multi-tone signal, the receiving device first down-converts the signal through the RF LO to The baseband multi-tone signal is obtained, and then the baseband multi-tone signal is sent to four digital LOs for "digital down-conversion" processing, that is, the signals corresponding to the frequencies of the four digital LOs are converted into direct current (DC).
  • signal (understandable phase/ Quadrature, IQ) for averaging, the IQ accumulation periods used are:
  • the receiving device needs to switch antennas, and the angle measurement needs to be The phase value corresponding to the antenna.
  • the receiving equipment can use the above method to measure the phase of each tone.
  • the RF LO and digital LO of the receiving device need to keep rotating during the antenna switching process.
  • the RF LO and digital LO of the transmitting device also need to keep rotating, that is, to transmit multi-tone signals without interruption.
  • multi-tone signals are used as reference signals for AoA/AoD angle measurement, which can complete AoA/AoD angle measurement at all frequency points more quickly, which means that AoA/AoD requires lower power consumption.
  • the standby time of the device can be increased; higher system capacity can perform AoA/AoD angle measurements on more devices; faster angle refresh rates can position faster devices.
  • an angle measurement of the multi-tone signal AoA/AoD can obtain an N xk - If XT ⁇ PTX-i is the initial phase of the digital LO corresponding to the first tone in the transmitting device.
  • the signal of the RF LO of the receiving device is: 2edge ⁇ 7 + Error! Digit expected.
  • the signal of the digital LO corresponding to the 7th tone of the receiving device is: 2edge ⁇ + ⁇ /)hub_. Error ! Digit expected.
  • the abscissa is the flight time TOF (ns) of the multi-tone signal from the sending device to the receiving device, and the ordinate is the AoA angle.
  • the TOF of the peak on the right is about 20ns, and the corresponding AoA angle is about 60° o
  • the TOF of the peak on the left is about 10ns, and the corresponding AoA angle is about -10. .
  • the TOF on the left is smaller than the TOF on the right, so it can be determined that the peak on the left (pointed by the arrow) is the direct viewing diameter. If the information in the frequency dimension is not considered and only the information in the antenna dimension is considered, that is, in the single-tone AoA scenario, the one-dimensional energy diagram shown in Figure 11 below can be obtained.
  • Figure 11 is a schematic diagram of one-dimensional (antenna dimension) energy provided by an embodiment of the present application.
  • the abscissa is the AoA angle
  • the ordinate is the corresponding Bartlett spectrum. It can be seen that the energy of the two peaks on the left and right is equal, about 5.8 x104.
  • This implementation method cannot be used to determine which peak is the direct sight diameter, and further cannot determine which one (-10° and 60°) can be used as the final AoA estimate.
  • using the frequency dimension information to analyze the time of flight TOF can further assist in analyzing the direct sight diameter.
  • the analytical ability of this method depends on the size of the frequency dimension.
  • FIG. 12 is a splicing schematic diagram of AoA angle measurement values based on multi-tone signals provided by the embodiment of the present application. As shown in Figure 12, the abscissa is time, and the ordinate is frequency. In order to make / or in the entire angle measurement process remains unchanged, that is, "is the fixed time deviation Lffset between the starting point of the digital LO of the sending device and the receiving device in each AoA angle measurement.
  • the time interval is T
  • the time interval between the digital LO turning on moments of the receiving device in two adjacent AoA angle measurements is T, that is, the two time intervals need to be the same.
  • the sending device turns on the digital LO
  • the sending device The initial phases of each digital LO are the same (That is, the resistance j ⁇ PTX-i is the same for different H), and the same initial phase is used for each AoA angle measurement
  • the phase lock loop (PLL) of the RF circuit will be relocked, which will result in the initial phase of the RF LO (for example, (PTX -RF VTX- RF and W (RX-RF) are unknown arbitrary values.
  • this application needs to ensure that there is one or more common frequency points in any two adjacent AoA angle measurements.
  • a common frequency point fl or a common channel
  • the phase measurements of the same frequency point in the two AoA angle measurements i.e., The difference between them (VTX -RF - VRX -RF)
  • the AoA angle measurement values so that the two AoA angle measurement values can be spliced to form a larger phase matrix.
  • M the number of common frequency points between two adjacent AoA angle measurements
  • the spliced phase matrix is (2N-M) x ko.
  • the phase values of multiple AoA angle measurements can be spliced to obtain a phase matrix with a larger vertical axis.
  • N 4, in two adjacent AoA angle measurements at a common frequency point fl (i.e.
  • phase measurement values are respectively "center,” and “center”, using the difference between "center,” and “center” The difference is used to compensate one group of AoA angle measurement values and perform normalization processing, thereby completing the splicing of phase values at the common frequency point fl.
  • two AoA angle measurements can be made to obtain a phase value containing 7 xk Phase matrix.
  • two adjacent AoA/AoD angle measurements are carried out using a shared frequency point to realize the splicing of the phase values of the two angle measurements. A phase value matrix with more frequency points can be obtained, and then Better multipath signal analysis capabilities and improved angle estimation accuracy.
  • Figure 13 is an angle determination device provided by an embodiment of the application schematic block diagram.
  • the device 2000 can include a transceiver unit 2010 and a processing unit 2020.
  • the transceiver unit 2010 can communicate with the outside, and the processing unit 2020 is used for data processing.
  • the transceiver unit 1210 can also be called a communication interface or transceiver unit.
  • the device 2000 can implement steps or processes corresponding to those performed by the sending device in the above method embodiment, wherein the processing unit 2020 is used to perform the sending in the above method embodiment.
  • the transceiver unit 2010 is configured to perform operations related to the processing of the sending device in the above method embodiment.
  • the device 2000 can implement steps or processes corresponding to those performed by the receiving device in the above method embodiment, wherein the transceiver unit 2010 is used to perform the transceiver related tasks of the receiving device in the above method embodiment.
  • the processing unit 2020 is configured to perform operations related to processing of the receiving device in the above method embodiment. It should be understood that the device 2000 here is embodied in the form of a functional unit.
  • unit here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a dedicated processor, or a group of processors) for executing one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the device 2000 can be specifically the sending end in the above embodiment, and can be used to implement the above method.
  • Each process and/or step corresponding to the sending end in the example, or the device 2000 can be specifically a receiving end in the above embodiment, and can be used to execute each process and/or step corresponding to the receiving end in the above method embodiment, To avoid repetition, no further details will be given here.
  • the device 2000 of each of the above solutions has the function of realizing the corresponding steps performed by the sending end in the above method, or the device 2000 of each of the above solutions has the function of realizing the corresponding steps of the receiving end of the above method.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiving unit).
  • transceiver unit may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in Figure 13 can be the receiving end or the transmitting end in the previous embodiment, or it can be a chip or a chip system, such as a system on chip (SoC).
  • SoC system on chip
  • the transceiver unit may be an input-output circuit or a communication interface.
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip. No limitation is made here.
  • Figure 14 shows an angle determination device 3000o provided by an embodiment of the present application.
  • the device 3000 includes a processor 3010 and a transceiver 3020o.
  • the processor 3010 and the transceiver 3020 communicate with each other through an internal connection path.
  • the processing The transceiver 3010 is used to execute instructions to control the transceiver 3020 to send signals and/or receive signals.
  • the device 3000 may also include a memory 3030, which communicates with the processor 3010 and the transceiver 3020 through internal connection paths.
  • the memory 3030 is used to store instructions, and the processor 3010 can execute the instructions stored in the memory 3030.
  • the apparatus 3000 is configured to implement various processes and steps corresponding to the sending device in the above method embodiment.
  • the apparatus 3000 is configured to implement various processes and steps corresponding to the receiving device in the above method embodiment.
  • the device 3000 may be specifically the transmitting end or the receiving end in the above embodiment, or may be a chip or a chip system.
  • the transceiver 3020 may be the transceiver circuit of the chip, which is not limited here.
  • the device 3000 can be used to perform various steps and/or processes corresponding to the sending end or the receiving end in the above method embodiments.
  • the memory 3030 may include read-only memory and random access memory, and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the processor 3010 can be used to execute instructions stored in the memory, and when the processor 3010 executes the instructions stored in the memory, the processor 3010 is used to execute various steps of the above method embodiment corresponding to the sending end or the receiving end. and/or process. During the implementation process, each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor. The steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor. Software modules can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components.
  • the processor in the embodiment of the present application can implement or execute the various methods, steps and logical block diagrams disclosed in the embodiment of the present application.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • Software modules can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • DR RAM direct rambus RAM
  • the present application When the computer program code is run on a computer, it causes the computer to execute the above-described embodiment. Methods. According to the method provided by the embodiment of the present application, the present application also provides a computer-readable medium.
  • the computer-readable medium stores program code.
  • the program code When the program code is run on a computer, the computer is caused to execute the above-described embodiments. Methods.
  • Those of ordinary skill in the art will appreciate that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented with electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other various media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种角度确定方法和装置。该方法包括:接收设备接收第一多音信号,第一多音信号包括 N1 个频点,N1 是大于或等于 2 的整数;接收设备对第一多音信号进行相位测量,并获取第一设备的 k 个天线在 N1 个频点对应的第一相位值;接收设备根据获取的第一相位值确定第一设备的信号的角度。本申请所揭示的方法,能够实现快速且高精度的角度测量。

Description

一种 角度确定方法和装置 技术领域 本 申请涉及通信领域, 并且更具体地, 涉及一种角度确定方法和装置。 背景技术 目前, 定位技术有着广泛的应用场景和巨大的商业价值。 其中, 全球导航卫星系统 (global navigation satellite system, GNSS) 可以提供高精度室外位置信息; 基于信号强度 指示 (received signal strength indicator, RS SI) 的 WiFi定位技术和基于信标 (beacon) 的 蓝牙定位技术可以提供室内位置信息。 当前, 蓝牙技术联盟 (Bluetooth SIG) 支持到达角 (angle of arrival, Ao A) 和离开角 (angle of departure, AoD) 的蓝牙协议, 通过利用低功 耗蓝牙 (bluetooth low energy, BLE) 信号的方向信息来提高室内定位精度。 然 而, 在实际室内环境中, 受多径反射的影响, 相位差随信道有所波动, 使得各个信 道计算出来的角度不完全一样。 另外, 受蓝牙协议的限制, 一次 AoA/AoD角度测量只能 测量一个频点的相位信息, 导致最终的角度测量精度不高, 而且测量时间过长。 因此, 如何实现快速且高精度的角度测量是亟待解决的问题。 发明内容 本 申请提供一种角度确定方法和装置, 能够实现快速且高精度的角度测量。 第一方面, 提供了一种角度确定方法, 该方法可以由接收设备执行, 或者, 也可以由 用于接收设备的芯片或电路执行, 本申请对此不作限定。 为了便于描述, 下面以由接收设 备执行为例进行说明。 该 方法包括:接收设备接收第一多音信号, 第一多音信号包括 N1个频点, N1是大于 或等于 2的整数; 接收设备对第一多音信号进行相位测量, 以及获取第一设备的 k个天线 在 N1个频点对应的第一相位值, k是大于或等于 2的整数; 接收设备根据获取的第一相 位值, 确定第一设备的信号的角度。 应理解 , 第一相位值可以看作是 k列 N1行的相位矩阵, 所述相位矩阵中的相位值的 数量可以大于或等于 2且小于或等于 k乘以 N1个。 当然, 可能存在因为其他信号的干扰 导致该第一多音信号在角度测量过程中,某一个天线在某一个频点未采集到相位值或者相 位值误差较大的情况, 本申请对此不作具体限定。 根据本 申请提供的方案, 通过接收多音信号, 并对多音信号进行相位测量, 基于获取 的测量值确定第一设备的信号的角度。 相比传统的单音信号的相位测量, 采用多音信号确 定角度能够快速获取相位值, 提高测量效率, 能够实现快速的角度测量。 结合 第一方面, 在第一方面的某些实现方式中, 当第一设备为接收设备时, 第一设备 的信号的角度为接收设备的到达角度; 或者, 当第一设备为发送设备时, 第一设备的信号 的角度为发送设备的离开角度。 结合 第一方面,在第一方面的某些实现方式中,接收设备包括射频本机振荡器 RF LO, 接收设备对第一射频多音信号进行下变频处理, 以获取第一基带多音信号, 包括: 接收设 备将第一射频多音信号与 RF LO的信号进行混频处理, 以得到第一基带多音信号。 需要说明的是, 在该实现方式中, 第一射频多音信号即为第一多音信号, 例如, 在确 定信号的到达角时, 需要测量的是两个天线之间射频信号的相位差, 考虑到射频信号频率 变化太快, 直接测量射频信号的相位很难实现, 因此在工程实现上, 通过将射频信号下变 频到频率低的基带信号,然后通过对基带信号进行相位测量,来间接获得射频信号的相位。 其中, 在进行下变频处理时的 RF LO的相位会影响基带信号的相位值, 但是由于 RF LO 对 k个天线的相位影响是一样的, 因此在计算 k个天线之间相位差时, RF LO对相位的影 响可以被抵消掉。 结合 第一方面, 在第一方面的某些实现方式中, 接收设备包括 N1个数字 LO, N1个 数字 LO与 N1个频点 — 对应, 接收设备对第一多音信号进行相位测量, 以及获取第一 设备的 k个天线在 N1个频点对应的第一相位值, 包括: 接收设备的第 i个数字 LO对第 一多音信号进行数字下变频处理, 并将经过数字下变频后的第一多音信号进行 IQ求平均 处理, 以及获取第一设备的 k个天线在第 i个频点对应的第一相位值, i为大于或等于 1且 小于或等于 N1的整数。 在该实现 方式中, 接收设备通过 IQ求平均的方法得到某个频点信号在某个天线的平 均 IQ (其它频点的 IQ被抵消) , 根据这个平均 IQ可以计算出该频点信号在该天线的相 位值。 类似的, 可以得到该频点信号在另一个天线的相位值, 继而可以得到这个频点信号 在两个天线之间的相位差, 用于计算到达角度。 应理解, 上述过程适用于其它所有频点信 号的处理。 结合 第一方面, 在第一方面的某些实现方式中, 接收设备根据获取的第一相位值, 确 定第一设备的信号的角度, 包括: 接收设备根据第一天线在第 i个频点对应的相位值, 以 及第二天线在第 i个频点对应的相位值之差, 确定第一设备的信号的角度; 其中, 第一天 线和第二天线是 k个天线中的任意两个不相同的天线, i为大于或等于 1且小于或等于 N1 的整数。 结合 第一方面, 在第一方面的某些实现方式中, N1 个频点中的任意相邻的两个频点 之间的频率间隔相同。 可选地 , 第一多音信号的 N1个频点中的任意相邻的两个频点之间的频率间隔也可以 不同, 本身其对此不作具体限定。 结合 第一方面, 在第一方面的某些实现方式中, 接收设备的 RF LO和多个数字 LO保 持不失锁状态。 也就是说 , 在该实现方式中, 需要通过切换天线分别获取各个天线在不同频点对应的 相位值。 为了避免 LO (包括 RF LO和数字 LO) 引入额外相位, 在天线切换的过程中, 例如在测量信号的到达角度时, 接收设备的 RF LO和多个数字 LO保持一直旋转的状态, 发送设备的多个数字 LO和 RF LO也要保持一直旋转的状态, 即不间断的发送多音信号。 结合 第一方面, 在第一方面的某些实现方式中, 接收设备接收第二多音信号, 第二多 音信号包括 N2个频点, N2个频点和 N1个频点之间具有 M个共同频点, N2是大于或等 于 2的整数, M是大于或等于 1且小于 N1和 N2的最小值的整数。 结合 第一方面, 在第一方面的某些实现方式中, 接收设备对第二多音信号进行相位测 量, 以及获取第一设备的 k个天线在 N2个频点对应的第二相位值; 接收设备根据获取的 第二相位值, 确定第一设备的信号的角度; 或者, 接收设备根据获取的第一相位值和第二 相位值, 确定第一设备的信号的角度。 结合 第一方面, 在第一方面的某些实现方式中, 接收设备根据获取的第一相位值和第 二相位值, 确定第一设备的信号的角度, 包括: 接收设备根据获取的第一相位值和第二相 位值确定相位补偿值; 接收设备基于相位补偿值对第一相位值进行补偿; 接收设备根据补 偿后的第一相位值和第二相位值确定第一设备的信号的角度。 可选地,接收设备根据获取的第一相位值和第二相位值,确定第一设备的信号的角度, 包括: 接收设备根据获取的第一相位值和第二相位值确定相位补偿值; 接收设备基于相位 补偿值对第二相位值进行补偿;接收设备根据补偿后的第二相位值和第一相位值确定第一 设备的信号的角度。 由于信号在实际测量中存在多径反射现象, 导致不同的频点 (或者不同的信道) 有不 同的频率响应。 比如, 相位差随信道的变化幅度远远大于理想环境里 3%的变化。 即在多 径环境中测量到的每条径都会有一个对应的 AoA/AoD, 然而直视径(line-of-sight, LOS) 信号对应的 AoA/AoD是最准确的。通过上述相位值拼接可以尽可能获得更大的频率带宽, 有利于解析多径信号的飞行时间, 进而可以确定 LOS, 以及对应的角度估计值, 该实现方 式能够提高角度测量精度。 需要说明的是, 在进行第一多音信号和第二多音信号对应的相位值拼接时, 两次测量 过程中的 RF LO的初始相位可以是任意值, 通过采用共用频点 (或信道) 的方法, 计算出 两次角度测量的 RF LO初始相位之差, 可以进行 RF LO初始相位值的补偿。 因此, 可以 避免或降低对信号的角度测量结果的误差等影响。 结合 第一方面, 在第一方面的某些实现方式中, 第一多音信号和第二多音信号的发送 时刻之间的时间间隔, 以及第一多音信号和第二多音信号的接收时刻之间的时间间隔相同。 基 于该实现方式, 能够实现在整个测量过程中,信号的飞行时间 Offset保持不变,避免 引入不必要的误差。 结合 第一方面, 在第一方面的某些实现方式中, N1 个数字 LO在开启时的初始相位 相同, 且第 i个数字 LO在第一时刻和第二时刻对应的初始相位相同; 其中, 第一时刻为 第一多音信号的发送时刻, 且第二时刻为第二多音信号的发送时刻; 或者, 第一时刻为第 一多音信号的接收时刻, 且第二时刻为第二多音信号的接收时刻。 基 于该实现方式, 保证发送设备的多个数字 LO在开启时初始相位相同, 且在每次角 度测量过程中, 同一个数字 LO的初始相位值也要相同; 类似地,接收设备的多个数字 LO 在开启时初始相位相同, 且在每次角度测量过程中, 同一个数字 LO的初始相位值也要相 同, 避免引入额外的相位误差, 能够提高角度测量精度, 第二方面, 提供了一种角度确定方法, 该方法可以由发送设备执行, 或者, 也可以由 用于发送设备的芯片或电路执行, 本申请对此不作限定。 为了便于描述, 下面以由发送设 备执行为例进行说明。 该 方法包括: 发送设备生成第一多音信号, 第一多音信号包括 N1个频点, N1是大于 或等于 2的整数; 发送设备发送第一多音信号, 第一多音信号用于确定第一设备的信号的 角度。 根据 本申请提供的方案,通过发送多音信号,使得接收设备对多音信号进行相位测量, 基于获取的测量值确定第一设备的信号的角度。 相比传统的单音信号的相位测量, 采用多 音信号确定角度能够快速获取相位值, 提高测量效率, 能够实现快速的角度测量。 结合第二方面, 在第二方面的某些实现方式中, 当第一设备为接收设备时, 第一设备 的信号的角度为接收设备的到达角度; 或者, 当第一设备为发送设备时, 第一设备的信号 的角度为发送设备的离开角度。 结合第二方面, 在第二方面的某些实现方式中, 发送设备包括 N1个数字本机振荡器 LO, N1个数字 LO与 N1个频点 — 对应, 发送设备生成第一基带多音信号, 包括: 发 送设备将 N1个数字 LO的信号相加, 以得到第一基带多音信号。 结合第二方面, 在第二方面的某些实现方式中, 发送设备还包括射频 RF LO, 发送设 备对第一基带多音信号进行上变频处理, 以得到第一射频多音信号, 包括: 发送设备将第 一基带多音信号与 RF LO的信号进行混频处理, 以得到第一射频多音信号。 结合第二方面, 在第二方面的某些实现方式中, N1 个频点中的任意相邻的两个频点 之间的频率间隔相同。 结合第二方面, 在第二方面的某些实现方式中, 发送设备生成第二多音信号, 第二多 音信号包括 N2个频点, N2个频点和 N1个频点之间具有 M个共同频点, N2是大于或等 于 2的整数, M是大于或等于 1且小于 N1和 N2的最小值的整数; 发送设备发送第二多 音信号。 结合第二方面, 在第二方面的某些实现方式中, 第一多音信号和第二多音信号的发送 时刻之间的时间间隔, 以及第一多音信号和第二多音信号的接收时刻之间的时间间隔相同。 结合第二方面, 在第二方面的某些实现方式中, N1 个数字 LO在开启时的初始相位 相同, 且第 i个数字 LO在第一时刻和第二时刻对应的初始相位相同, i为大于或等于 1且 小于或等于 N1的整数; 其中, 第一时刻为第一多音信号的发送时刻, 且第二时刻为第二 多音信号的发送时刻; 或者, 第一时刻为第一多音信号的接收时刻, 且第二时刻为第二多 音信号的接收时刻。 第三方面, 提供一种角度确定装置, 包括: 收发单元, 用于接收第一多音信号, 第一 多音信号包括 N1个频点, N1是大于或等于 2的整数; 处理单元, 用于对第一多音信号进 行相位测量, 以及获取第一设备的 k个天线在 N1个频点对应的第一相位值; 处理单元, 还用于根据获取的第一相位值, 确定第一设备的信号的角度。 该收发单元可以执行前述第一方面中的接收和发送的处理,处理单元可以执行前述第 一方面中除了接收和发送之外的其他处理。 第四方面, 提供一种角度确定装置, 包括: 处理单元, 用于生成第一多音信号, 第一多音信号包括 N1个频点, N1是大于或等于 2的整数 ; 发送单元, 用于发送第一多音信号。 该收发单元可以执行前述第二方面中的接收和发送的处理,处理单元可以执行前述第 二方面中除了接收和发送之外的其他处理。 第五方面, 提供一种角度确定装置, 包括处理器和存储器。 可选地, 还可以包括收发 器。 其中, 存储器用于存储计算机程序, 处理器用于调用并运行存储器中存储的计算机程 序, 并控制收发器收发信号, 以使角度测量装置执行如第一方面或第二方面的任一可能的 实现方式的方法。 第六方面, 提供一种角度确定装置, 包括处理器和通信接口, 通信接口用于接收数据 和 /或信息, 并将接收到的数据和 /或信息传输至处理器, 处理器处理所述数据和 /或信息, 以及,通信接口还用于输出经处理器处理之后的数据和 /或信息, 以使得如第一方面或第二 方面的的任一可能的实现方式中的方法被执行。 第七方面, 提供一种计算机可读存储介质, 所述计算机可读存储介质中存储有计算机 指令, 当计算机指令在计算机上运行时, 使得如第一方面或第二方面的任一可能的实现方 式中的方法被执行。 第八方面, 提供一种计算机程序产品, 所述计算机程序产品包括计算机程序代码, 当 所述计算机程序代码在计算机上运行时,使得如第一方面或第二方面的任一可能的实现方 式中的方法被执行。 第九方面, 提供一种通信系统, 包括上述发送设备和接收设备。 附图说明 图 1是适用本申请的一种到达角定位系统的结构图。 图 2是适用本申请的一种到达角度测量的示意图。 图 3是适用本申请的一种离开角定位系统的结构图。 图 4是本申请实施例提供的一种角度确定方法的流程示意图。 图 5是本申请实施例提供的一种基于传统单音信号的 AoA角度测量的示意图。 图 6是本申请实施例提供的一种基于多音信号的 AoA角度测量的示意图。 图 7是本申请实施例提供的一种基带多音信号的示意图。 图 8是本申请实施例提供的一种基带多音信号进行上变频处理的示意图。 图 9是本申请实施例提供的一种基带多音信号的相位测量的示意图。 图 10是本申请实施例提供的一种两维 (频率维度 -天线维度) 能量的示意图。 图 11是本申请实施例提供的一种一维 (天线维度) 能量的示意图。 图 12是本申请实施例提供的一种基于多音信号的角度测量值的拼接示意图。 图 13是本申请实施例提供的一种角度确定装置的结构示意图。 图 14是本申请实施例提供的另一种角度确定装置的结构示意图。 具体实施方式 下面将结合附图, 对本申请中的技术方案进行描述。 本申请的技术方案可以应用于无线个人局域网 (wireless personal area network, WPAN) , 目前 WPAN 采用的标准为电气和电子工程协会 (institute of electrical and electronics engineer, IEEE) 802.15系列。 WPAN可以用于电话、 计算机、 附属设备等小范围内的数字辅助设备 之间的通信。 支持无线个人局域网的技术包括蓝牙 (bluetooth) 、 紫蜂 (zigBee) 、 超宽带 (ultra wideband, UWB) 、 红外数据协会 (infrared data association, IrDA) 连接技术、 家 庭射频 (home radio frequency, HomeRF ) 等。 从网络构成上来看, WPAN位于整个网络 架构的底层, 用于小范围内的设备之间的无线连接, 即点到点的短距离连接, 可以视为短 距离无线通信网络。 根据不同的应用场景, WPAN又分为高速率 (high rate, HR) -WPAN 和低速率 (low rate, LR) -WPAN, 其中, HR-WP AN可用于支持各种高速率的多媒体应 用, 包括高质量声像配送、 多兆字节音乐和图像文档传送等。 LR-WPAN可用于日常生活 的一般业务。 在 WPAN中,根据设备所具有的通信能力,可以分为全功能设备( full-function device, FFD) 和精简功能设备 (reduced-fiinction device, RFD) 。 FFD之间以及 FFD与 RFD之间 都可以通信。 RFD之间不能直接通信, 只能与 FFD通信, 或者通过一个 FFD向外转发数 据。 这个与 RFD相关联的 FFD称为该 RFD的协调器 (coordinator) 。 RFD设备主要用于 简单的控制应用, 例如灯的开关、 被动式红外线传感器等, 传输的数据量较少, 对传输资 源和通信资源占用不多, RFD的成本较低。其中, 协调器也可以称为个人局域网 (personal area network, PAN)协调器或中心控制节点等。 PAN协调器为整个网络的主控节点, 并且 每个自组网中一般只有一个 PAN协调器, 具有成员身份管理、 链路信息管理、 分组转发 功能。 可选地, 本申请实施例中的设备 (例如, 发送设备或接收设备) 可以为支持 802.15系 列的设备, 例如, 支持 802.15.4a和 802.15.4z, 以及现在正在讨论中的或后续版本等多种 WPAN 制式的设备。 在 本申请实施例中, 上述设备可以是通信服务器、 路由器、 交换机、 网桥、 计算机或 者手机, 家居智能设备, 车载通信设备等。 在 本申请实施例中, 上述设备可以为无线通讯芯片、 无线传感器或无线通信终端。 例 如支持 Wi-Fi 通讯功能的用户终端、 用户装置, 接入装置, 订户站, 订户单元, 移动站, 用户代理, 用户装备, 其中, 用户终端可以包括各种具有无线通信功能的手持设备、 车载 设备、 可穿戴设备、 物联网 (internet of things, IoT) 设备、 计算设备或连接到无线调制解 调器的其它处理设备,以及各种形式的用户设备 (user equipment, UE),移动台 (mobile station, MS) , 终端 (terminal) , 终端设备 (terminal equipment) , 便携式通信设备, 手持机, 便 携式计算设备, 娱乐设备, 游戏设备或系统, 全球定位系统设备或被配置为经由无线介质 进行 网络通信的任何其他合 适的设备等。 此外, 设备可以支持 802.15.4ab 制式或者 802.15.4ab 的下一代制式。 设备也可以支持 802.15.4a、 802.15.4-2011、 802.15.4-2015 及 802.15.4z等多种制式。设备还可以支持 802.1 lax, 802.11ac、 802.11n、 802.11g、 802.11b、 802.11a、 802.11be下一代等 802.11家族的多种无线局域网 (wireless local area networks, WLAN) 制式。 在 本申请实施例中, 上述设备包括硬件层、 运行在硬件层之上的操作系统层, 以及运 行在操作系统层上的应用层。 该硬件层包括中央处理器 (central processing unit, CPU) 、 内存管理单元 (memory management unit, MMU) 和内存 (也称为主存) 等硬件。 该操作 系统可以是任意一种或多种通过进程 (process) 实现业务处理的计算机操作系统, 例如, Linux操作系统、 Unix操作系统、 Android操作系统、 iOS操作系统或 windows操作系统 等。 该应用层包含浏览器、 通讯录、 文字处理软件、 即时通信软件等应用。 并且, 本申请 实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运 行记录有本申请实施例的提供的方法的代码的程序, 以根据本申请实施例提供的方法进行 通信即可,例如, 本申请实施例提供的方法的执行主体可以是 FFD或 RFD, 或者,是 FFD 或 RFD中能够调用程序并执行程序的功能模块。 另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和 /或工程技术 的制品。 本申请中使用的术语 “制品”涵盖可从任何计算机可读器件、 载体或介质访问的 计算机程序。 例如, 计算机可读介质可以包括, 但不限于: 磁存储器件 (例如, 硬盘、 软 盘或磁带等) , 光盘 (例如, 压缩盘 (compact disc, CD) 、 数字通用盘 (digital versatile di sc , DVD )等),智能卡和闪存器件 (例如,可擦写可编程只读存储器 ( erasable programmable read-only memory, EPROM) 、 卡、 棒或钥匙驱动器等) 。 另外, 本文描述的各种存储介 质可代表用于存储信息的一个或多个设备和 /或其它机器可读介质。术语“机器可读介质 ” 可包括但不限于, 无线信道和能够存储、 包含和 /或承载指令和 /或数据的各种其它介质。 本申请的技术方案还可以适用于物联网 ( internet of things , IoT)网络或车联网 (Vehicle to X, V2X) 等无线局域网系统中。 当然, 本申请实施例还可以适用于其他可能的通信系 统, 例如, 长期演进 (long term evolution, LTE) 系统、 LTE频分双工 (frequency division duplex, FDD) 系统、 LTE 时分双工 (time division duplex, TDD) 、 通用移动通信系统 (universal mobile tel ecommuni cati on system , UMTS ) 、 全球互联微波接入 (worldwide interoperability for microwave access, WiMAX) 通信系统、 第五代 (5th generation, 5G) 通信系统, 以及未来的第六代 (6th generation, 6G) 通信系统等。 应理解, AoA/AoD 已经应用在低功耗无线窄带技术里, 本申请所提供的技术方案适 用于蓝牙室内定位系统。 该蓝牙室内定位系统可以应用于室内导航设备, 例如将蓝牙手环 作为导航终端, 以有效的解决盲人在室内活动时无法快速、 安全、 便捷地从当前位置到达 目标场所的问题,尤其是医院、地铁站、商场等公共场所的活动出行问题。下面以蓝牙 BLE AoA/AoD 为例说明 AoA/AoD的基本原理。 图 1是适用于本申请的一种 AoA定位系统的结构图。 如图 1所示, 包括发送设备和 接收设备。 发送设备有一个天线, 接收设备有两个或者更多的天线 (例如, 4 个天线) 。 示例性的, 在进行蓝牙 BLE AoA角度测量时, 发送设备发送一段单音信号, 即基带 为正弦波的特殊蓝牙信号, 蓝牙协议称之为 ( constant tone extension, CTE) 。 在接收 CTE
Figure imgf000009_0001
2n・d・sin。, 继而可以计算出入射角 0饥 即发送设备相对于接收设备的方位。 图 3是适用于本申请的一种 AoD定位系统的结构图。 如图 3所示, 包括发送设备和 接收设备。 接收设备有一个天线, 发送设备有两个或者更多的天线 (例如, 4 个天线) 。 示例性的, 在进行蓝牙 BLE AoD角度测量时, 发送设备发送一段 CTE信号, 同时在 各个天线之间连续切换, 在接收 CTE单音信号的过程中, 接收设备判断 CTE信号每个部 分所对应的发射天线, 并采样每个天线所对应的基带信号。接收设备中的处理器根据采样 得到的每个天线的基带信号来进行角度计算。 应理解, 上述图 1和图 3所示的 AoA/AoD定位系统仅是举例说明, 本申请对此不作 具体限定。 该系统不限于包括更多的其它设备, 例如, 其他的接收设备。 还应理 解,蓝牙 BLE有 37个信道可以用于 AoA/AoD角度测量,覆盖 2.4GHz工业科 学医学频段 (industrial Scientific Medical band, ISM) 约 80M带宽, 相邻两个信道的间隔 为 2MHz。 需要指出的是, 可以用于 BLE AoA/AoD的频段是 2.404〜 2.478GHz。 其他蓝牙 BLE AoA/AoD的内容可以参考现有蓝牙 5.1协议, 为了简洁, 此处不过多赘述。 当前, 低功耗窄带无线技术 (例如 Bluetooth和 Zigbee等) 在日常生活中有着越来越 广泛的应用。相较于 5G和 WiFi等其它无线技术,低功耗窄带无线技术的优点在于: (1) 非常低的功耗, 意味着设备更长的使用时间; (2)设计相对更简单, 设备成本更低。 这使 得低功耗窄带无线技术不仅在消费者设备里广泛使 用 (例如手机, 穿戴和智能家居等) , 在工业物联网 (industrial internet of the things, IIoT) 里也有着广阔的应用场景。 低功耗窄 带无线技术不仅具有设备连接功能,还具有测量设备之间方向的功能(即测量 AoA/AoD) , 可以用于实现设备的定位。 其中, 蓝牙 AoA/AoD特性作为低功耗窄带无线技术里具有代 表性的 AoA/AoD协议, 使得蓝牙 AoA/AoD室内定位系统越来越普及。 应理 解, 在理想环境里 (如没有多径反射) , AoA天线之间的相位差随信道的变化不 大。 例如, 蓝牙 BLE最左边信道的信号波长和最右边信道的信号波长相差约 3%, 因此根 据上述相位差和入射角的公式 (p = 27i - d -sm 9可知, 最左边信道角度测量到的相位差和最 右边信道的相位差相差约 3%o而且, BLE AoA/AoD角度测量采用的信道(或频点)越多, AoA/AoD 的信息量就越大, 最后得到的角度估计值应该越准。然而, 实际室内环境里存在 多径反射现象, 导致不同的信道 (或者不同的频点) 有不同的频率响应。 由于相位差随信 道有波动, 使得实际角度测量得到的 BLE AoA/AoD的多个天线之间的相位差随信道 (即 频点) 的变化不同, 即相位差随信道的变化幅度远远大于理想环境里 3%的变化。 另外, 对于蓝牙 BLE AoA/AoD, 每次 AoA/AoD信号的发送只能用来测量一个频点的 AoA/AoD 信息。如果需要角度测量整个 ISM频段, 则需要角度测量 BLE的所有 37个信道, 整体需 要较长的角度测量时间, 进而导致设备功耗变大、 系统的容量变小、 或者设备 AoA/AoD 角度测量的刷新率低, 不能支持对于快速移动的设备的角度测量等。 综上所述, 相较于当前窄带无线技术的 AoA/AoD测量方案, 如何实现快速且准确的 AoA/AoD 角度测量是亟待解决的技术问题。 有鉴于此, 本申请提供了一种角度确定方法和装置, 采用多音信号作为 AoA/AoD测 量的参考信号, 且在相邻两次 AoA/AoD测量时, 采用共用频点的方式实现测量的相位值 的拼接。 本申请所揭示的方法, 相较于利用单音信号进行 AoA测量的传统方法, 多音信 号可以减少完成所有频点 AoA/AoD测量的整体时间,实现快速且准确的 AoA/AoD测量。 为便于理解本申请实施例, 对本申请中涉及到的术语或技术进行简单说明。
1、 AoA 通过使用单个天线发送具有测向功能的数据包, 低功耗 (low energy, LE) 设备可以 使其方向对对等设备可用。 该对等设备包括射频开关和天线阵列, 在接收部分数据包时切 换天线并获取 I Q样本。 IQ样本可以用来计算天线阵列不同元素接收到的无线电信号的相 位差, 进而可以用来估计到达角 AoA。
2、 AoD 通过使用多个天线发送具有测向功能的数据包, 在发送数据包时切换天线, LE 设备 可以使其方向对对等设备可用。 该对等设备包括射频开关和单个天线, 接收各个天线所发 送的数据包并获取 IQ样本, 根据各个天线的 IQ计算出天线之间的相位差, 进而可以用来 估计离开角 AoDo
3、 窄带信号 在本 申请中, “窄带信号”是相对于 “超宽带信号” 而言的, 超宽带信号的带宽一般 至少为 500Mhz, 带宽小于超宽带信号的带宽的信号即为窄带信号。 可选地 , 窄带信号包括但不限于如下无线技术提供的信号: 蓝牙技术、 紫蜂技术、 基 于 802.15.4标准的技术 (例如 Thread技术) 、 WiFi技术 (包括 802.11的各种标准) 等。 此外还可以包括蜂窝系统的窄带物联网 (narrow band internet of things, NB-LoT) 、 长期 演进 -机器对机器 (long term evolution -machine to machine, LTE-M) 、 LoRa和 Sigfox等无 线技术, 以及未来其它可以提供窄带信号的无线技术等, 不作限定。
4、 直视径 (line-of-sight, LOS)
LOS 是指发射天线和接收天线在 “能互相看见对方 ”的距离之间传输信号。 可以理解 为, 两个天线之间不存在任何影响信号传播的障碍物, 信号可以完全传输。
5、 上变频、 下变频 上 变频是指将基带信号的频谱频移到所需要的较高载波频率上。 或者说, 上变频是把 基带信号调制到一个载波上,或者把调制在低频载波上的信号变换到高频载波上。具体地, 将变频的信号与本机振荡器 (local oscillator, LO) 产生的正弦信号 (本振) 进行混频, 来 改变信号所处的频段, 取混频之后的上边带信号是上变频, 即提高频率; 取混频之后的下 边带信号是下变频, 即降低频率。
6、 单音信号、 多音信号 单音信号是一个频率 的正弦波, 即单音信号只有一根谱线。 多音信号是由多个独立的 正弦信号波形叠加而产生的, 即多音信号有多根谱线。 为了便于理解本申请实施例, 作出以下几点说明: 第一、在本申请中, 如果没有特殊说明以及逻辑冲突, 不同的实施例之间的术语和 /或 描述具有一致性、 且可以相互引用, 不同的实施例中的技术特征根据其内在的逻辑关系可 以组合形成新的实施例。 第二、在本申请中, “至少一个”是指一个或者多个, “多个 ”是指两个或两个以上。
“和 /或”, 描述关联对象的关联关系, 表示可以存在三种关系, 例如, A和 /或 B, 可以表 示: 单独存在 A, 同时存在 A和 B, 单独存在 B的情况, 其中 A, B可以是单数或者复 数。 在本申请的文字描述中, 字符 “/"一般表示前后关联对象是一种 “或"的关系。 “以 下至少一项(个) ”或其类似表达, 是指的这些项中的任意组合, 包括单项 (个) 或复数项 (个) 的任意组合。 例如, a、 b和 c中的至少一项 (个) , 可以表示: a, 或, b, 或, c, 或, a和 b, 或, a和 c, 或, b和 c, 或, a、 b和 c。 其中 a、 b和 c分别可以是单个, 也 可以是多个。 第三、 在本申请中, “第一”、 “第二” 以及各种数字编号 (例如, #1、 #2等) 指示 为了描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的消息等, 而不是用于描述特定的顺序或先后次序。应理解,这样描述的对象在适当情况下可以互换, 以便能够描述本申请的实施例以外的方案。
Figure imgf000012_0001
例如,第一频点为 -1.5 MHz,第二频点为 -0.5 MHz,第三频点为 0.5MHz,第四频点为 1.5MHz, 四个频点互不相同。 在 一种可能的实现方式中, 发送设备包括 N1个数字本机振荡器 LO和射频 RF LO, N1 个数字 LO与 N1个频点 — 对应, 发送设备将 N1个数字 LO的信号相加, 得到第一 基带多音信号。 将第一基带多音信号与 RF LO 的信号进行混频处理, 即发送设备对第一 基带多音信号进行上变频处理, 以得到第一射频多音信号。 在 一种可能的实现方式中, N1个频点中任意相邻的两个频点之间的频率间隔相同。 示例性的, 任意相邻的两个频点之间的频率间隔为 1 MHz或 2 MHz等。 例如, 第一 多音信号包括第一频点、 第二频点和第三频点, 第一频点为 0 MHz, 第二频点为 1 MHz, 第三频点为 2MHz, 则第一频点和第二频点之间的频率间隔, 以及第二频点与第三频点之 间的频率间隔相同, 即为 1 MHzo 可选地, 第一多音信号的 N1个频点中的任意相邻的两个频点之间的频率间隔也可以 不同, 本身其对此不作具体限定。
S4结合图 5至图, 20, 发送设备发送第一多音信号。 对应的, 接收设备接收第一多音信号。 示例性的, 发送设备是指 AoA/AoD发送设备, 接收设备是指 AoA/AoD接收设备。 可选地, 发送设备和接收设备可以有多种可能的应用场景。 示例性地, 以下实施例中 提及的发送设备可以为发起站点, 接收设备为响应站点; 或者, 发送设备为响应站点, 接 收设备为发起站点。 可选地, 发送设备也可以定位设备, 第二设备为移动标签; 或者, 发 送设备为移动标签, 接收设备为定位设备。 示例性的, 针对 AoA角度测量, 发送设备通过单天线不间断地发送第一多音信号, 接收设备通过 k个天线接收第一多音信号。 示例性的,针对 AoD角度测量,发送设备通过 k个天线不间断地发送第一多音信号, 接收设备通过单天线接收第一多音信号。 在 一种可能的实现方式中, 接收设备通过天线接收第一射频多音信号, 第一射频多音 信号是基于第一基带多音信号进行上变频处理得到的,接收设备对第一射频多音信号进行 下变频处理, 并获取第一基带多音信号。 示例性的, 第一射频多音信号的 N1个频点是基 于第一基带多音信号的 N1个频点增加 fc频率得到的, 该 fc是 RF LO的频率, 以使得上 变频后的第一基带多音信号, 即第一射频多音信号的频段覆盖整个 BLE AoA的频段, 例 如 2.404〜 2.478GHz。 需要说明的是, 在该实现方式中, 第一射频多音信号即为第一多音信号, 例如, 在确 定信号的到达角时, 需要测量的是两个天线之间射频信号的相位差, 考虑到射频信号频率 变化太快, 直接测量射频信号的相位很难实现, 因此在工程实现上, 通过将射频信号下变 频到频率低的基带信号,然后通过对基带信号进行相位测量,来间接获得射频信号的相位。 其中, 在进行下变频处理时的 RF LO的相位会影响基带信号的相位值, 但是由于 RF LO 对 k个天线的相位影响是一样的, 因此在计算 k个天线之间相位差时, RF LO对相位的影 响可以被抵消掉。 在 一种可能的实现方式中, N1个数字 LO在开启时的初始相位相同, 且第 i个数字 LO 在第一时刻和第二时刻对应的初始相位相同; 其中, 第一时刻为第一多音信号的发送 时刻, 且第二时刻为第二多音信号的发送时刻; 或者, 第一时刻为第一多音信号的接收时 刻, 且第二时刻为第二多音信号的接收时刻。 基于该实现方式, 保证发送设备的多个数字 LO在开启时初始相位相同, 且在每次角 度测量过程中, 同一个数字 LO的初始相位值也要相同; 类似地,接收设备的多个数字 LO 在开启时初始相位相同, 且在每次角度测量过程中, 同一个数字 LO的初始相位值也要相 同, 避免引入额外的相位误差, 能够提高角度测量精度, 需要说明的是, 接收设备的多个 RF LO和数字 LO保持不失锁状态。 也就是说, 在该实现方式中, 需要通过切换天线分别获取各个天线在不同频点对应的 相位值。 为了避免 LO (包括 RF LO和数字 LO) 引入额外相位, 在天线切换的过程中, 例如在测量信号的到达角度时, 接收设备的 RF LO和多个数字 LO保持一直旋转的状态, 发送设备的多个数字 LO和 RF LO也要保持一直旋转的状态, 即不间断的发送多音信号。 在 一种可能的实现方式中, 发送设备发送第二信号; 对应的, 接收设备接收第二多音 信号, 第二多音信号包括 N2个频点, N2个频点和 N1个频点之间具有 M个共同频点, N2 是大于或等于 2的整数, M是大于或等于 1且小于 N1和 N2的最小值的整数。 示例性的, N2=3, 即第二多音信号包括第一频点、 第二频点和第三频点, 例如, 第一 频点为 1.5 MHz, 第二频点为 2.5 MHz, 第三频点为 3.5MHz, 三个频点互不相同。 其中, 第一多音信号的第四频点为 1.5MHz,即第一多音信号和第二多音信号具有一个共同频点, 即 1.5MHz。
S430, 接收设备对第一多音信号进行相位测量。
S440, 接收设备获取第一设备的 k个天线在 N1个频点对应的第一相位值。 其中, k是大于或等于 2的整数。 应理解 , 第一相位值可以看作是 k列 N1行的相位矩阵, 所述相位矩阵中的相位值的 数量可以大于或等于 2且小于或等于 k乘以 N1个。 示例性的, N1等于 4, k等于 2, 则 第一相位值表示 2列 4行的相位矩阵, 包括两个天线分别在 4个频点对应的相位值, 即 8 个相位值。 当然, 可能存在因为其他信号的干扰导致该第一多音信号在角度测量过程中, 某一个天线在某一个频点未采集到相位值或者相位值误差较大的情况, 本申请对此不作具 体限定。 在一种可 能的实现方式中, 接收设备包括 N1个数字 LO, N1个数字 LO与 N1个频 点一一对应,接收设备对第一多音信号进行相位测量,以及获取第一设备的 k个天线在 N1 个频点对应的第一相位值, 包括: 接收设备的第 i个数字 LO对第一多音信号进行数字下 变频处理, 并将经过数字下变频后的第一多音信号进行 IQ求平均处理, 以及获取第一设 备的 k个天线在第 i个频点对应的第一相位值, i为大于或等于 1且小于或等于 N1 的整 数。 在该实现 方式中, 接收设备通过 IQ求平均的方法得到某个频点信号在某个天线的平 均 IQ (其它频点的 IQ被抵消) , 根据这个平均 IQ可以计算出该频点信号在该天线的相 位值。 类似的, 可以得到该频点信号在另一个天线的相位值, 继而可以得到这个频点信号 在两个天线之间的相位差, 用于计算到达角度。 应理解, 上述过程适用于其它所有频点信 号的处理。 在一种可 能的实现方式中, 当第一设备为接收设备时, 第一设备的信号的角度为接收 设备的到达角度。 示例性 的, 第一设备为接收设备, 则发送设备通过单天线发送第一多音信号, 接收设 备通过 k个天线接收第一多音信号, 并在切换天线的过程中分别获取每个天线在 N1个频 点对应的相位值, 通过比较两个天线在同一频点对应的相位值之差, 以及借助相位差与信 号的入射角公式: cp = 27t - d -sine即可确定到达角度, 即 0。 在 另一种可能的实现方式中, 当第一设备为发送设备时, 第一设备的信号的角度为发 送设备的离开角度。 示例性 的, 第一设备为发送设备, 则发送设备通过多天线发送第一多音信号, 接收设 备通过单天线接收第一多音信号,并在发送设备切换天线持续发送第一多音信号的过程中, 分别获取每个天线在 N1个频点对应的相位值, 通过比较发送设备的两个天线在同一频点 对应的相位值之差可确定离开角度。 在一种可 能的实现方式中, 接收设备对第二多音信号进行相位测量, 以及获取第一设 备的 k个天线在 N2个频点对应的第二相位值; 接收设备根据获取的第二相位值, 确定第 一设备的信号的角度; 或者, 接收设备根据获取的第一相位值和第二相位值, 确定第一设 备的信号的角度。 也就是说 , 通过对第二多音信号对应的相位测量, 可以确定第一设备的信号的角度; 或者, 通过结合第一多音信号的相位值与第二多音信号的相位值, 也可以确定第一设备的 信号的角度。 应理解 , 第二相位值可以看作是 k列 N2行的相位矩阵, 所述相位矩阵中的相位值的 数量可以大于或等于 2且小于或等于 k乘以 N2个。 示例性的, N2等于 3, k等于 2, 则 第二相位值表示 2列 3行的相位矩阵, 包括两个天线分别在 3个频点对应的相位值, 即 6 个相位值。 当然, 可能存在因为其他信号的干扰导致该第二多音信号在角度测量过程中, 某一个天线在某一个频点未采集到相位值或者相位值误差较大的情况, 本申请对此不作具 体限定。 在 一种可能的实现方式中, 接收设备根据获取的第一相位值和第二相位值, 确定第一 设备的信号的角度,包括:接收设备根据获取的第一相位值和第二相位值确定相位补偿值; 接收设备基于相位补偿值对第一相位值进行补偿;接收设备根据补偿后的第一相位值和第 二相位值确定第一设备的信号的角度。 可选地,接收设备根据获取的第一相位值和第二相位值,确定第一设备的信号的角度, 包括: 接收设备根据获取的第一相位值和第二相位值确定相位补偿值; 接收设备基于相位 补偿值对第二相位值进行补偿;接收设备根据补偿后的第二相位值和第一相位值确定第一 设备的信号的角度。 示例性的, Nl=4, 第一多音信号的四个频点分别为 -1.5 MHz、 -0.5 MHz、 0.5MHz和 1.5MHz; N2=3, 第二多音信号的三个频点分别为 1.5 MHz、 2.5 MHz和 3 共同频点为 1.5MHz, 例如在切换到某一天线时, 第一多音信号在 -1.5 值为代, 第二多音信号在 -1.5 MHz测量得到相位值为代, 则基于相位值 以对饥进行补偿, 使得最终第一多音信号在 -1.5 MHz测量得到相位值, 在 -1.5 MHz测量得到相位值相同, 进而可以实现相位值的拼接, 得到更 相位值。 例如, 经过拼接后的目标相位矩阵包括 k个天线在 6 (N1+N2-
Figure imgf000015_0001
相位值。 需要说明的是, 在进行第一多音信号和第二多音信号对应的相位值拼接时, 两次测量 过程中的 RF LO的初始相位可以是任意值, 通过采用共用频点 (或信道) 的方法, 计算出 两次角度测量的 RF LO初始相位之差, 可以进行 RF LO初始相位值的补偿。 因此, 可以 避免或降低对信号的角度测量结果的误差等影响, 该实现方式能够提高角度测量精度。 在 一种可能的实现方式中, 第一多音信号和第二多音信号的发送时刻之间的时间间隔, 以及第一多音信号和第二多音信号的接收时刻之间的时间间隔相同。 基于该实现方式, 能够实现在整个测量过程中,信号的飞行时间 Offset保持不变,避免
Figure imgf000015_0002
之差, 例如通过平均值处理可以实现信号的角度的准确度测量。 根据 本申请提供的方案, 通过接收多音信号, 并对多音信号进行相位测量, 基于获取 的测量值确定第一设备的信号的角度。 相比传统的单音信号的相位测量, 采用多音信号确 定角度能够快速获取相位值, 提高测量效率, 能够实现快速的角度测量。 应理 解, 窄带无线设备的带宽虽然比其他无线设备要窄, 但是一般会有若干 MHz的 带宽。 本申请技术方案利用该若干 MHz的带宽, 通过多音信号来进行 AoA/AoD 角度测 量, 可以更快速地完成多个频点的 AoA/AoD角度测量。 下面以 AoA角度测量为例, 结合 图 5至图 12具体说明通过收发多音信号进行相位值的测量, 进而确定到达角度; 以及, 基于多音信号的相位值拼接, 实现快速准确地识别和确定 LOS信号对应的到达角度。 需 要说明的是, 本身请技术方案同样适用于离开角度的确定, 具体实现方式与到达角度的确 定方式类似, 为了简洁, 本身申请不对此进行过多赘述。 图 5是本申请实施例提供的一种基于传统单音信号的 AoA角度测量的示意图。 如图 5所示, 横坐标是时间, 纵坐标是频率。 以 k个天线为例, 在基于单音信号的 AoA角度测 量中, 在一个时刻只能测量某个天线在一个频点的相位。例如, 在 tl时刻, 接收设备可以 测量得到天线 1在频率为 fl l对应的相位(pi; 然后切换至天线 2进行 AoA角度测量, 在 t2时刻, 接收设备可以测量得到天线 2在频率为 fl l对应的相位 q)2; 以此类推, 切换至天 线 k进行测量, 在 tk时刻, 接收设备可以测量得到天线 k在频率为 fl l对应的相位(pko 也就是说, 在 AoA角度测量过程中, 经过 k-1次天线切换后, 接收设备可以得到 k个天线 在同一个频点 fl l的所有相位, 即一个大小为 k的相位数组。 图 6是本申请实施例提供的一种基于多音信号的 AoA角度测量的示意图。 如图 6所 示, 横坐标是时间, 纵坐标是频率。 以 k个天线, N=4个音为例, 在基于多音信号 AoA角 度测量中, 在一个时刻可以同时测量某个天线在多个频点的相位。例如, 在 tl时刻, 接收 设备可以同时测量得到天线 1在频率为 fl l~f44对应的相位(pi~(p4 ; 然后切换至天线 2进 行 AoA角度测量, 在 t2时刻, 接收设备可以同时测量得到天线 2在频率为 fl l〜 f44对应 的相位为 q)5〜中8; 以此类推, 切换至天线 k进行 AoA角度测量, 在 tk时刻, 接收设备可 以同时测量得到天线 k在频率为 fl l~f44对应的相位为(p4k-3~(p4ko 也就是说, 在 AoA角度 测量过程中,经过 k-1次天线切换后,接收设备可以得到 k个天线在多个频点(如 fl l〜 f44) 的相位, 即一个 4 x k的相位矩阵。 应理 解, 图 5所示的频率 fl l是射频信号的频率, 即对基带信号的 fl频点进行上变频 处理之后对应的射频信号的频率, 例如 2.450GHz。 类似地, 图 6所示的频点 fl l〜 f44也是 射频信号的频率,即对基带信号的 fl~f4频点进行上变频处理之后对应的射频信号的频率, 例如 2.450GHz〜 2.480GHz。 需要说明的是, 上述图 5所示的 fl l 以及图 6所示的 fl l〜 f44仅是为便于理解方案的 示例, 本申请对频点的数量以及频点的具体数值不作具体限定。 基 于图 5和图 6所示的 AoA角度测量方法, 对于 N个相邻的频点, 采用传统 AoA方 法需要进行 N次 AoA角度测量才可以全面覆盖, 而采用多音 AoA方法(设置 N个音), 只需要一次 AoA角度测量即可以全面覆盖。 即, 采用多音 AoA方法能够将单音 AoA角 度测量时间减少到 N分之一, 例如对于图 6所示的 4个音, 可以把图 5所示的单音 AoA 角度测量的整体时间减少到 25% o 需要说明的是, 上述图 6所示的多音信号的个数 N=4仅是为便于理解技术方案的示 例, 本申请对于多音信号中音的个数 N, 以及各个音之间的频率间隔不作具体限定。 可选 地, 为了对整个频段进行均匀地 AoA角度测量, 本申请实施例可以以各个音之间采用相 同的频率间隔为例进行说明。 例如, fl〜 f4之间的频率间隔是相同的。 下面通过图 7至图 9对多音信号的收发, 以及相位测量的具体实现方式进行说明。 图 7是本申请实施例提供的一种基带多音信号的示意图。 如图 7所示, 假设 N=4个 音, 每个音的频点对应为 fl、 f2、 fi 和 f4o 例如, fl 为 -1.5MHz, f2 为 -0.5MHz, f3 为 +0.5MHz, f4为 +1.5MHzo 其中, 频点 fl〜 f4之间的间隔可以相同, 也可以不同, 本申请 对此不作具体限定。 可选地, 为了实现对整个频段进行均匀的 AoA测量, 本申请实施例 中 fl~f4之间的频率间隔可以设置为相同。 需要说明的是, 从 fl至 f4的频段不应超过设 备支持的带宽。 图 8是本申请实施例提供的一种多音信号进行上变频处理的示意图。如图 8所示, 包 括一个射频本机振荡器 (radio frequency LO, RF LO)和多个数字 LO (如图所示的 4个数 字 LO) 。 其中, 数字 LO可以采用存储了余弦波形的 lookup table来实现, 4个数字 LO 对应 N=4个音。 例如, 4个数字 LO对应的 4个音的频率依次为 fl、 f2、 归和 f4。 换句话 说, 数字 LO的频率与基带多音信号的频率一一对应。 其中, 本申请对 fl、 f2、 归和 f4的 取值不作具体限定, 例如 fl为 -1.5MHz, f2为 -0.5MHz, 归为 +0.5MHz, f4为 +1.5MHz。 RF LO的频率为 fc, 以 BLE AoA角度测量为例, fc可以是 2.404〜 2.478GHz频段。 在发送多音信号时, 发送设备首先将多个数字 LO的信号相加作为基带多音信号 (如 图 8所示) , 然后通过数模转换器 (digital to analog converter, DAC) 发给 RF LO, 或者 通过全数字锁相环 (all digital phase lock loop, ADPLL) 进行上变频处理, 最后通过天线 发射出去。示例性的,在上变频处理过程中, 可以将基带多音信号中的 4个音的频率 fl〜 f4 统一增加 2.402GHZ, 以使得对应蓝牙信道的频段 2.404〜 2.478GHz。 换句话说, 基于该实 现方式, 图 7所示的基带多音信号的 4个音的频率统一右移 2.402GHZo 在接收多音信号时, 接收设备首先通过 RF LO将信号进行下变频处理, 以得到基带 多音信号, 然后将该基带多音信号分别发送至 4个数字 LO进行 “数字下变频 ”处理, 即 分别将把 4个数字 LO的频率对应的信号转为直流 (direct current, DC) 信号 (可以理解
Figure imgf000017_0001
phase/ Quadrature , IQ) 求平均, 所用的 IQ累加周期分别为:
1 1 1 1 1
C 崩' 顼 M 和顼 的公倍数' 土 这样可以抵消其它三个信号对第三个 f3信号 f3信号的影响,使得最终的平均 IQ包 U-l3 含的相位就是第三个 f3信号归信号的相位。 类似的, 可以获得其它三个信号的相位。 需要说明的是, 在多音 AoA角度测量中, 接收设备需要切换天线, 并且角度测量每 个天线对应的相位值。在切到某个天线时, 接收设备可以采用上述方法角度测量各个音的 相位。 为了避免 LO (包括 RF LO和数字 LO) 引入额外相位, 在天线切换的过程中, 接 收设备的 RF LO和数字 LO需要保持一直旋转。 类似的, 发送设备的 RF LO和数字 LO也 需要保持一直旋转, 即不间断地发送多音信号。 根据本 申请技术方案, 采用多音信号来作为进行 AoA/AoD角度测量的参考信号, 能 够更快速地完成所有频点的 AoA/AoD角度测量, 这意味着 AoA/AoD需要的功耗更低, 对于电池供电的设备来说, 可以增加设备的待机时间; 更高的系统容量, 可以进行更多设 备的 AoA/AoD角度测量; 更快的角度刷新率, 可以对速度更快的设备进行定位。 基于上述 方法 400可知, 多音信号 AoA/AoD的一次角度测量可以获得一个 N x k的
Figure imgf000018_0001
- 如 XT <PTX-i是第,个音在发送设备里对应的数字 LO的初始相位。 接收设备 的 RF LO的信号为: 2刃 ^7 +歹心一时 Error! Digit expected., 接收设备的第 7 i个 音对应的数字 LO的信号为: 2刃^ + </)枢_. Error! Digit expected. o
Figure imgf000018_0002
到的相位差和 T T的关系满足: zfcpy = -2K (fr - fj ) • (T + Toffset ) Acpjj = -2n(fi-fj) ■ (T + Toffset)。
Figure imgf000019_0001
所示, 横坐标是多音信号从发送设备到接收设备的飞行时间 TOF(ns) , 纵坐标是 AoA角 度。 根据横坐标的 ToF的相对数值可以看出, 右侧的峰 (peak) 的 TOF约为 20ns, 对应 的 AoA角度约为 60° o 左侧的 peak的 TOF约为 10ns, 对应的 AoA角度约为 -10。。 很明 显, 左侧的 TOF小于右侧的 TOF, 因此可以确定左侧的 peak (箭头指向) 是直视径。 如果不考虑频率维度的信息而只有天线维度的信息时, 即在单音 AoA的场景下可以 得到下面图 11所示的一维能量图。 图 11是本申请实施例提供的一种一维 (天线维度) 能量的示意图。 如图 11所示, 横 坐标是 AoA角度, 纵坐标是对应的 Bartlett光谱。可以看到, 左右两个 peak的能量相等, 约为 5.8 x104, 该实现方式并不能用来判断哪个 peak才是直视径, 进而不能判断出哪个(- 10° 和 60° ) 可以作为最终的 AoA估计值。 综上所述,利用频率维度的信息来分析飞行时间 TOF,可以进一步辅助解析出直视径, 该方式的解析能力取决于频率维度的大小。 应理解, 频段越宽, TOF的解析能力越强, 即 解析出 TOF更接近的两个信号。 对于低功耗窄带无线技术来说, 由于带宽只有若干 MHz, 因此, 本申请提出了将多个 多音 AoA角度测量值进行拼接, 以提高频段的宽度, 即增加 N x k矩阵里的 N值, 进而 用于提高对多径信号 TOF的解析能力。 应理解, 拼接后的两个频点 fi和 fj之间的相位差 别依然 满足 上述 公式 刀% = -2兀(f, -乌) •。 + f met) -2n(fc + fi) -(T + Toffset) + <PTX-RF + (PTX-i'^PRX-RF'^PRX-i » 可以用于多径信号 TOF的解析。 图 12是本申请实施例提供的一种基于多音信号的 AoA角度测量值的拼接示意图。如 图 12所示, 横坐标是时间, 纵坐标是频率。 为了使得以/ 却 或在整个角度测量过程中保持不变, 即以”是发送设备与接收设备 在每次 AoA角度测量中的数字 LO起点之间的固定时间偏差 Lffset。 发送设备在相邻两次 AoA 角度测量中的数字 LO开启时刻之间的时间间隔为 T, 接收设备在相邻两次 AoA角 度测量中数字 LO开启时刻之间的时间间隔为 T, 即两个时间间隔需要相同。 另外, 在发送设备开启数字 LO的时候, 发送设备的各个数字 LO的初始相位都相同 (即, 阻 j <PTX-i对于不同的 H都相同) , 并且每次 AoA角度测量都采用相同的初始相位
Figure imgf000020_0001
需要说明的是, 每次开始一次新的 AoA角度测量时, RF 电路的锁相环 (phase lock loop, PLL) 会重锁, 这将导致 RF LO的初始相位 (例如, (PTX -RF VTX-RF和 W时一时甲 RX-RF) 是个不可知的任意值。 因此, 为了实现更好的相位值拼接, 本申请需要保证任意相邻两次 AoA 角度测量中有一个或者多个共用频点。例如, 图 13所示的第一次和第二次 AoA角度 测量中有一个共用频点 fl (或共有信道) 。 通过比较同一个频点在两次 AoA 角度测量中的相位测量值 (即, 它们之间的差值 VTX -RF - VRX -RF) , 可以得到发送设备 RF LO的初始相位, 以及接收设备 RF LO的初始相 位对于相位测量值的影响, 然后利用这个相位差值去补偿其中一组 AoA角度测量值, 使 得这两次 AoA角度测量值经过拼接可以组成一个更大的相位矩阵。 例如, 假设相邻两次 AoA 角度测量之间的公共频点个数为 M (M<N) , 那么拼接后的相位矩阵为 (2N-M) x ko 在该实现方式中, 可以拼接多次 AoA角度测量的相位值, 得到纵轴更大的相位矩阵。 示例性的, 如图 12所示, N=4, 在一个公共频点 fl (即 M=l) 的相邻两次 AoA角度 测量中, 对应得到的相位测量值分别是中,和中”, 利用 中,与中”之间的差值进行补偿其中 一组 AoA角度测量值,及进行归一化处理,进而实现在公共频点 fl处完成相位值的拼接。 此时, 可以两次 AoA角度测量获得包含 7 x k个相位值的相位矩阵。 根据本申请技术方案, 采用共用频点的方式进行相邻两次 AoA/AoD角度测量, 实现 两次角度测量的相位值的拼接。 能够得到频点更多的相位值矩阵, 继而获得更好的多径信 号的解析能力, 提高角度估计的精度。 上文结合图 1 至图 12, 详细描述了本申请的角度确定方法侧实施例, 下面将结合图 13和图 14, 详细描述本申请的装置侧实施例。 应理解, 装置实施例的描述与方法实施例 的描述相互对应, 因此, 未详细描述的部分可以参见前面方法实施例。 图 13是本申请实施例提供的角度确定装置的示意性框图。如图 13所示,该装置 2000 可以包括收发单元 2010和处理单元 2020。 收发单元 2010可以与外部进行通信, 处理单 元 2020用于进行数据处理。 收发单元 1210还可以称为通信接口或收发单元。 在一种可能的设计中, 该装置 2000可实现对应于上文方法实施例中的发送设备执行 的步骤或者流程, 其中, 处理单元 2020用于执行上文方法实施例中发送设备的处理相关 的操作, 收发单元 2010用于执行上文方法实施例中发送设备的收发相关的操作。 在另一种可能的设计中, 该装置 2000可实现对应于上文方法实施例中的接收设备执 行的步骤或者流程, 其中, 收发单元 2010用于执行上文方法实施例中接收设备的收发相 关的操作, 处理单元 2020用于执行上文方法实施例中接收设备的处理相关的操作。 应理解, 这里的装置 2000 以功能单元的形式体现。 这里的术语“单元” 可以指应用 特有集成电路 (application specific integrated circuit, ASIC) 、 电子电路、 用于执行一个或 多个软件或固件程序的处理器 (例如共享处理器、 专有处理器或组处理器等) 和存储器、 合并逻辑电路和 /或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人 员可以理解, 装置 2000可以具体为上述实施例中的发送端, 可以用于执行上述方法实施 例中与发送端对应的各个流程和 /或步骤, 或者, 装置 2000可以具体为上述实施例中的接 收端,可以用于执行上述方法实施例中与接收端对应的各个流程和 /或步骤,为避免重复, 在此不再赘述。 上述各个 方案的装置 2000具有实现上述方法中发送端所执行的相应步骤的功能, 或 者, 上述各个方案的装置 2000具有实现上述方法中接收端所执行的相应步骤的功能。 所 述功能可以通过硬件实现, 也可以通过硬件执行相应的软件实现。 所述硬件或软件包括一 个或多个与上述功能相对应的模块; 例如收发单元可以由收发机替代 (例如, 收发单元中 的发送单元可以由发送机替代, 收发单元中的接收单元可以由接收机替代) , 其它单元, 如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理 操作。 此外 , 上述收发单元还可以是收发电路 (例如可以包括接收电路和发送电路) , 处理 单元可以是处理电路。 在本申请的实施例, 图 13 中的装置可以是前述实施例中的接收端 或发送端, 也可以是芯片或者芯片系统, 例如: 片上系统(system on chip, SoC) 。 其中, 收发单元可以是输入输出电路、 通信接口。 处理单元为该芯片上集成的处理器或者微处理 器或者集成电路。 在此不做限定。 图 14示出了本申请实施例提供的角度确定装置 3000o 如图 14所示, 该装置 3000包 括处理器 3010和收发器 3020o 其中, 处理器 3010和收发器 3020通过内部连接通路互相 通信, 该处理器 3010用于执行指令, 以控制该收发器 3020发送信号和 /或接收信号。 可选地 , 该装置 3000还可以包括存储器 3030, 该存储器 3030与处理器 3010、 收发 器 3020通过内部连接通路互相通信。 该存储器 3030用于存储指令, 该处理器 3010可以 执行该存储器 3030中存储的指令。 在一种可 能的实现方式中, 装置 3000用于实现上述方法实施例中的发送设备对应的 各个流程和步骤。 在 另一种可能的实现方式中, 装置 3000用于实现上述方法实施例中的接收设备对应 的各个流程和步骤。 应理解 , 该装置 3000可以具体为上述实施例中的发送端或接收端, 也可以是芯片或 者芯片系统。对应的, 该收发器 3020可以是该芯片的收发电路, 在此不做限定。具体地, 该装置 3000可以用于执行上述方法实施例中与发送端或接收端对应的各个步骤和 /或流程。 可选地 , 该存储器 3030可以包括只读存储器和随机存取存储器, 并向处理器提供指 令和数据。 存储器的一部分还可以包括非易失性随机存取存储器。 例如, 存储器还可以存 储设备类型的信息。 该处理器 3010可以用于执行存储器中存储的指令, 并且当该处理器 3010执行存储器中存储的指令时, 该处理器 3010用于执行上述与发送端或接收端对应的 方法实施例的各个步骤和 /或流程。 在实现过程 中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件 形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行 完成, 或者用处理器中的硬件及软件模块组合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟 的存储介质中。 该存储介质位于存储器, 处理器读取存储器中的信息, 结合其硬件完成上 述方法的步骤。 为避免重复, 这里不再详细描述。 应 注意, 本申请实施例中的处理器可以是一种集成电路芯片, 具有信号的处理能力。 在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软 件形式的指令完成。 上述的处理器可以是通用处理器、 数字信号处理器、 专用集成电路、 现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。 本申请实施例中的处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑 框图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。 结合本申 请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理 器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器, 可编程只读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存 储介质位于存储器, 处理器读取存储器中的信息, 结合其硬件完成上述方法的步骤。 可以理解, 本申请实施例中的存储器可以是易失性存储器或非易失性存储器, 或可包 括易失性和非 易失性存储器两者。 其中, 非易失性存储器可以是只读存储器 (read-only memory, ROM) 、 可编程只读存储器 (programmable ROM, PROM) 、 可擦除可编程只 读存储器 (erasable PROM, EPROM)、 电可擦除可编程只读存储器 (electrically EPROM, EEPROM) 或闪存。易失性存储器可以是随机存取存储器 (random access memory, RAM) , 其用作外部高速缓存。 通过示例性但不是限制性说明, 许多形式的 RAM可用, 例如静态 随机存取存储器 (static RAM, SRAM)、动态随机存取存储器 (dynamic RAM, DRAM)、 同步动态随机存取存储器 ( synchronous DRAM, SDRAM) 、 双倍数据速率同步动态随机 存取存储器 (double data rate SDRAM, DDR SDRAM) 、 增强型同步动态随机存取存储器 (enhanced SDRAM, ESDRAM) 、 同步连接动态随机存取存储器 ( synchlink DRAM, SLDRAM) 和直接内存总线随机存取存储器 (direct rambus RAM, DR RAM) 。 应注意, 本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。 根据 本申请实施例提供的方法, 本申请还提供一种计算机程序产品, 该计算机程序产 品包括: 计算机程序代码, 当该计算机程序代码在计算机上运行时, 使得该计算机执行上 述所示实施例中的方法。 根据 本申请实施例提供的方法, 本申请还提供一种计算机可读介质, 该计算机可读介 质存储有程序代码, 当该程序代码在计算机上运行时, 使得该计算机执行上述所示实施例 中的方法。 本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来实现。 这些功能究竟以 硬件还是软件方式来执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可 以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。 所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述的系统、 装 置和单元的具体工作过程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。 在 本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和方法, 可以通 过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所述单元的 划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单元或组 件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间 接耦合或通信连接, 可以是电性, 机械或其它的形式。 所述作 为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络 单元上。 可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。 另外, 在本申请各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各 个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中。 所述功 能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解, 本申请的技术方案本质上或者说对现 有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机 软件产品存储在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计 算机, 服务器, 或者网络设备等) 执行本申请各个实施例所述方法的全部或部分步骤。 而 前述的存储介质包括: U盘、 移动硬盘、 只读存储器、 随机存取存储器、 磁碟或者光盘等 各种可以存储程序代码的介质。 以上所述, 仅为本申请的具体实施方式, 但本申请的保护范围并不局限于此, 任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖 在本申请的保护范围之内。 因此, 本申请的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1. 一种角度确定方法, 其特征在于, 包括: 接收设备接收 第一多音信号, 所述第一多音信号包括 N1个频点, N1是大于或等于 2 的整数; 所述接收设备对所述 第一多音信号进行相位测量; 所述接收设备获取 第一设备的 k个天线在所述 N1个频点对应的第一相位值, k是大 于或等于 2的整数; 所述接收设备根据获取 的第一相位值, 确定所述第一设备的信号的角度。
2. 如权利要求 1所述的方法, 其特征在于, 当所述第一设备为所述接收设备时,所述第一设备的信号的角度为所述接收设备的到 达角度; 或者, 当所述第一设备为发送设备时,所述第一设备的信号的角度为所述发送设备的离开角 度。
3. 如权利要求 1或 2所述的方法, 其特征在于, 所述接收设备包括 N1个数字本机振 荡器 LO, 所述 N1个数字 LO与所述 N1个频点一一对应, 所述接收设备对所述第一多音 信号进行相位测量, 以及所述接收设备获取第一设备的 k个天线在所述 N1个频点对应的 第一相位值, 包括: 所述接收设备 的第 i个数字 LO对所述第一多音信号进行数字下变频处理, 并将经过 数字下变频后的所述第一多音信号进行 IQ求平均处理, 以及获取所述第一设备的 k个天 线在第 i个频点对应的第一相位值, i为大于或等于 1且小于或等于 N1的整数。
4. 如权利要求 1至 3 中任一项所述的方法, 其特征在于, 所述接收设备根据获取的 第一相位值确定所述第一设备的信号的角度, 包括: 所述接收设备根据 第一天线在所述第 i个频点对应的相位值, 以及第二天线在所述第 i个频点对应的相位值之差, 确定所述第一设备的信号的角度; 其 中, 所述第一天线和所述第二天线是所述 k个天线中的任意两个天线, i为大于或 等于 1且小于或等于 N1的整数。
5. 如权利要求 1至 4中任一项所述的方法, 其特征在于, 所述 N1个频点中的任意相 邻的两个频点之间的频率间隔相同。
6. 如权利要求 1至 5中任一项所述的方法, 其特征在于, 所述方法还包括: 所述接收设备接收 第二多音信号, 所述第二多音信号包括 N2个频点, 所述 N2个频 点和所述 N1个频点之间具有 M个共 同频点, N2是大于或等于 2的整数, M是大于或等 于 1且小于 N1和 N2的最小值的整数。
7. 如权利要求 6所述的方法, 其特征在于, 所述方法还包括: 所述接收设备对所述 第二多音信号进行相位测量; 所述接收设备获取所述 第一设备的 k个天线在所述 N2个频点对应的第二相位值; 所述接收设备根据获取 的第二相位值, 确定所述第一设备的信号的角度; 或者, 所述接收设备根据获取 的所述第一相位值和所述第二相位值,确定所述第一设备的信
22 号的角度。
8. 如权利要求 7所述的方法, 其特征在于, 所述接收设备根据获取的所述第一相位 值和所述第二相位值, 确定所述第一设备的信号的角度, 包括: 所述接收设备根据获取 的所述第一相位值和所述第二相位值确定相位补偿值; 所述接收设备基于所述相位补偿值对所述 第一相位值进行补偿; 所述接 收设备根据补偿后的所述第一相位值和所述第二相位值确定所述 第一设备的 信号的角度; 或者, 所述接收设备基于所述相位补偿值对所述 第二相位值进行补偿; 所述接 收设备根据补偿后的所述第二相位值和所述第一相位值确定所述 第一设备的 信号的角度。
9. 如权利要求 6至 8中任一项所述的方法, 其特征在于, 所述第一多音信号和所述 第二多音信号的发送时刻之间的时间间隔, 以及所述第一多音信号和所述第二多音信号的 接收时刻之间的时间间隔相同。
10. 如权利要求 6至 9中任一项所述的方法, 其特征在于, 所述 N1个数字 LO在开 启时的初始相位相同,且所述第 i个数字 LO在第一时刻和第二时刻对应的初始相位相同, 所述第一时刻为所述第一多音信号的发送时刻,且所述第二时刻为所述第二多音信号的发 送时刻; 或者, 所述第一时刻为所述第一多音信号的接收时刻, 且所述第二时刻为所述第 二多音信号的接收时刻。
11. 一种角度确定方法, 其特征在于, 所述方法包括: 发送设备生成第一多音信号, 所述第一多音信号包括 N1个频点, N1是大于或等于 2 的整数; 所述 发送设备发送所述第一多音信号,所述第一多音信号用于确定第一设备的信号的 角度。
12. 如权利要求 11所述的方法, 其特征在于, 当所述第一设备为接收设备时,所述第一设备的信号的角度为所述接收设备的到达角 度; 或者, 当所述第一设备为所述发送设备时,所述第一设备的信号的角度为所述发送设备的离 开角度。
13. 如权利要求 11或 12所述的方法, 其特征在于, 所述 N1个频点中的任意相邻的 两个频点之间的频率间隔相同。
14. 如权利要求 11至 13中任一项所述的方法, 其特征在于, 所述方法还包括: 所述 发送设备生成第二多音信号, 所述第二多音信号包括 N2个频点, 所述 N2个频 点和所述 N1个频点之间具有 M个共同频点, N2是大于或等于 2的整数, M是大于或等 于 1且小于 N1和 N2的最小值的整数; 所述 发送设备发送所述第二多音信号。
15. 如权利要求 14所述的方法, 其特征在于, 所述第一多音信号和所述第二多音信 号的发送时刻之间的时间间隔, 以及所述第一多音信号和所述第二多音信号的接收时刻之 间的时间间隔相同。
16. 如权利要求 14或 15所述的方法, 其特征在于, 所述发送设备包括 N1个数字本 机振荡器 LO, 所述 N1个数字 LO与所述 N1个频点 —对应, 所述 N1个数字 LO在开 启时的初始相位相同,且所述第 i个数字 LO在第一时刻和第二时刻对应的初始相位相同, i为大于或等于 1且小于或等于 N1 的整数, 所述第一时刻为所述第一多音信号的发送时 刻, 且所述第二时刻为所述第二多音信号的发送时刻; 或者, 所述第一时刻为所述第一多 音信号的接收时刻, 且所述第二时刻为所述第二多音信号的接收时刻。
17. 一种角度确定装置, 其特征在于, 包括: 用于实现权利要求 1至 8中任一项所述的方法的单元; 或者, 用于实现权利要求 9至 16中任一项所述的方法的单元。
18. 一种角度确定装置, 其特征在于, 包括: 处理器, 所述处理器与存储器耦合; 所 述处理器, 用于执行所述存储器中存储的计算机程序, 以使得所述装置执行如权利要求 1 至 16中任一项所述的方法。
19.一种芯片,其特征在于, 包括:处理器, 用于从存储器中调用并运行计算机程序, 使得安装有所述芯片的通信装置执行如权利要求 1至 16中任一项所述的方法。
20. 一种计算机程序, 其特征在于, 所述计算机程序被所述装置执行时, 实现如权利 要求 1至 16中任一项所述的方法。
21. 一种计算机可读存储介质, 其特征在于, 包括: 所述计算机可读存储介质上存储 有计算机程序, 当所述计算机程序运行时, 使得所述计算机执行如权利要求 1至 16中任 一项所述的方法。
PCT/SG2022/050546 2022-08-01 2022-08-01 一种角度确定方法和装置 WO2024030070A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/SG2022/050546 WO2024030070A1 (zh) 2022-08-01 2022-08-01 一种角度确定方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SG2022/050546 WO2024030070A1 (zh) 2022-08-01 2022-08-01 一种角度确定方法和装置

Publications (1)

Publication Number Publication Date
WO2024030070A1 true WO2024030070A1 (zh) 2024-02-08

Family

ID=89849691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SG2022/050546 WO2024030070A1 (zh) 2022-08-01 2022-08-01 一种角度确定方法和装置

Country Status (1)

Country Link
WO (1) WO2024030070A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060262013A1 (en) * 2005-05-18 2006-11-23 Shiroma Grant S Full-duplex dual-frequency self-steering array using phase detection & phase shifting
CN102017450A (zh) * 2007-10-30 2011-04-13 拉姆伯斯公司 用于确定通信系统中到达角度的技术
US20180038935A1 (en) * 2015-03-31 2018-02-08 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Radio wave arrival angle detection device, vehicle detection system, radio wave arrival angle detection method, and vehicle erroneous detection prevention method
CN109952801A (zh) * 2016-09-20 2019-06-28 迪耀科定位科技有限公司 识别多天线发射机的离开角
US20200166598A1 (en) * 2018-11-27 2020-05-28 safectory GmbH Method, device, arrangement and software for determining the angle of arrival (aoa) for locating objects
US20200174093A1 (en) * 2017-03-01 2020-06-04 Mitsubishi Heavy Industries Machinery Systems, Ltd. Angle-of-arrival identification device, toll collection system, and angle-of-arrival identification method
CN111416635A (zh) * 2020-03-19 2020-07-14 上海感悟通信科技有限公司 一种测角方法和测角设备
CN113454928A (zh) * 2019-02-20 2021-09-28 株式会社电装 用于确定针对通信的到达角的系统和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060262013A1 (en) * 2005-05-18 2006-11-23 Shiroma Grant S Full-duplex dual-frequency self-steering array using phase detection & phase shifting
CN102017450A (zh) * 2007-10-30 2011-04-13 拉姆伯斯公司 用于确定通信系统中到达角度的技术
US20180038935A1 (en) * 2015-03-31 2018-02-08 Mitsubishi Heavy Industries Mechatronics Systems, Ltd. Radio wave arrival angle detection device, vehicle detection system, radio wave arrival angle detection method, and vehicle erroneous detection prevention method
CN109952801A (zh) * 2016-09-20 2019-06-28 迪耀科定位科技有限公司 识别多天线发射机的离开角
US20200174093A1 (en) * 2017-03-01 2020-06-04 Mitsubishi Heavy Industries Machinery Systems, Ltd. Angle-of-arrival identification device, toll collection system, and angle-of-arrival identification method
US20200166598A1 (en) * 2018-11-27 2020-05-28 safectory GmbH Method, device, arrangement and software for determining the angle of arrival (aoa) for locating objects
CN113454928A (zh) * 2019-02-20 2021-09-28 株式会社电装 用于确定针对通信的到达角的系统和方法
CN111416635A (zh) * 2020-03-19 2020-07-14 上海感悟通信科技有限公司 一种测角方法和测角设备

Similar Documents

Publication Publication Date Title
CN109479282B (zh) 多用户资源分配的装置、系统和方法
CN108271187B (zh) 执行飞行时间(ToF)测量的装置、系统和方法
CN109891958B (zh) 用于测距测量的装置、系统和方法
TWI569658B (zh) 選擇無線通訊頻道的設備、系統與方法
US9907042B2 (en) Apparatus, system and method of determining a time synchronization function (TSF) based on fine time measurement (FTM) messages
US9906916B2 (en) Apparatus, system and method of performing a fine time measurement (FTM) procedure with a responder station
US11109356B2 (en) Apparatus, system and method of trigger-based ranging measurement
US20140369330A1 (en) Assisted Device Discovery
JP2009545272A (ja) プラットフォーム用チャネル回避システムに複数のワイヤレス通信装置を提供する方法および機器
WO2014092788A1 (en) Apparatus, system and method of estimating a location of a mobile device
TWI610586B (zh) 單側往返時間(rtt)測量之裝置、系統與方法
US11743682B2 (en) Indoor map generation using radio frequency sensing
US20240049319A1 (en) Apparatus, system and method of concurrent multiple band (cmb) network access
Mubashar et al. Comparative performance analysis of short-range wireless protocols for wireless personal area network
CN105557042B (zh) 估计移动设备的位置的装置、系统和方法
US11558071B2 (en) Wireless ranging using physical and virtual responders
WO2024030070A1 (zh) 一种角度确定方法和装置
TW201707480A (zh) 蜂巢式輔助的精細時序量測之設備、系統及方法
EP3275282B1 (en) Apparatus, product and method of communication between wireless networks having different coordinate domains
US20220043138A1 (en) Apparatus, system and method of collaborative time of arrival (ctoa) measurement
CN111033295B (zh) 协作到达时间(CToA)测量的装置、系统和方法
US20240106486A1 (en) Interference-resistant wireless localization and ranging
WO2023179430A1 (zh) 通信方法、装置和系统
WO2023198098A1 (zh) 传输信令的方法和装置
US20240072962A1 (en) Localization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954137

Country of ref document: EP

Kind code of ref document: A1