WO2018155642A1 - 化合物、発光材料および発光素子 - Google Patents

化合物、発光材料および発光素子 Download PDF

Info

Publication number
WO2018155642A1
WO2018155642A1 PCT/JP2018/006764 JP2018006764W WO2018155642A1 WO 2018155642 A1 WO2018155642 A1 WO 2018155642A1 JP 2018006764 W JP2018006764 W JP 2018006764W WO 2018155642 A1 WO2018155642 A1 WO 2018155642A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
aromatic ring
value
hammett
Prior art date
Application number
PCT/JP2018/006764
Other languages
English (en)
French (fr)
Inventor
一 中野谷
大貴 野田
安達 千波矢
直人 能塚
善丈 鈴木
Original Assignee
国立大学法人九州大学
株式会社Kyulux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 株式会社Kyulux filed Critical 国立大学法人九州大学
Priority to JP2019501841A priority Critical patent/JP7222549B2/ja
Priority to KR1020197027489A priority patent/KR102507944B1/ko
Priority to CN201880013706.8A priority patent/CN110366548A/zh
Priority to US16/488,374 priority patent/US12120952B2/en
Priority to EP18757582.4A priority patent/EP3587399A4/en
Publication of WO2018155642A1 publication Critical patent/WO2018155642A1/ja
Priority to JP2023010763A priority patent/JP7486238B2/ja
Priority to JP2024071222A priority patent/JP2024109592A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a compound useful as a light emitting material and a light emitting element using the compound.
  • organic electroluminescence elements organic electroluminescence elements
  • various efforts have been made to increase the light emission efficiency by newly developing and combining electron transport materials, hole transport materials, light emitting materials, and the like constituting the organic electroluminescence element.
  • research on organic electroluminescence devices using delayed fluorescent materials can also be found.
  • the delayed fluorescent material is a compound that emits fluorescence when the excited triplet state returns to the ground state from the excited singlet state after crossing from the excited triplet state to the excited singlet state in the excited state.
  • the fluorescence by such a route is called delayed fluorescence because it is observed later than the fluorescence from the excited singlet state (normal fluorescence) directly generated from the ground state.
  • the occurrence probability of the excited singlet state and the excited triplet state is statistically 25%: 75%, and therefore, from the directly generated excited singlet state.
  • the delayed fluorescent material not only the excited singlet state but also the excited triplet state can be used for fluorescence emission through the path through the reverse intersystem crossing, which is higher than that of a normal delayed fluorescent material. Luminous efficiency can be obtained.
  • Patent Document 1 proposes a benzene derivative having a heteroaryl group such as a carbazolyl group or a diphenylamino group and at least two cyano groups, and an organic EL device using the benzene derivative as a light emitting layer. It has been confirmed that high luminous efficiency was obtained.
  • Non-Patent Document 1 discloses that a carbazolyl dicyanobenzene derivative represented by the following formula (hereinafter referred to as “4CzIPN”) is a thermally activated delayed fluorescent material, and an organic electroluminescence device using 4CzIPN. It has been reported that high internal EL quantum efficiency has been achieved.
  • Non-Patent Document 2 reports that high light emission efficiency and high durability have been realized by optimizing the structure of an organic electroluminescence element using 4CzIPN.
  • Patent Document 1 and Non-Patent Documents 1 and 2 report that 4CzIPN, which is a delayed fluorescent material, is useful as a material for a light-emitting element.
  • This compound has a structure in which a cyano group having an acceptor property and a carbazolyl group having a donor property are bonded to the core benzene ring, and the luminous efficiency is improved by controlling the spatial position of HOMO and LUMO by such a structure. It is.
  • the present inventors examined the light emission process of 4CzIPN it cannot be said that it is sufficiently optimal, and light emission can be achieved by further controlling the structure of the donor group bonded to the core benzene ring. It turns out that there is room for significant improvement in efficiency.
  • the present inventors conducted research for the purpose of finding and generalizing materials having higher luminous efficiency. And the general formula of the compound useful as a luminescent material was derived
  • the present inventors have a structure in which a donor group and an acceptor group are bonded to the aromatic ring of the core, and between the two donor groups. It was found that compounds having different substituent conditions (number of substituents, substitution position, and substituent structure) have superior light emission characteristics over 4CzIPN. Then, it has been clarified that by using such a compound as a light emitting material, a light emitting element with extremely high light emission efficiency can be provided.
  • the present invention has been proposed based on these findings, and specifically has the following configuration.
  • a compound represented by the following general formula (1) [In the general formula (1), L is an m + n-valent aromatic linking group, A is a group having a positive Hammett ⁇ p value or a phenyl group, and D is a group having a negative Hammett ⁇ p value (provided that a phenyl group) M is an integer of 1 or more, and n is an integer of 2 or more.
  • the plurality of A may be the same as or different from each other.
  • Two of the plurality of D are groups having a structure different from each other, although both include a common aromatic ring.
  • the aromatic ring is common, but at least the number of substituents substituted on the aromatic ring, the position substituted with the substituent on the aromatic ring, and the structure of the substituent substituted on the aromatic ring One condition is different from each other.
  • Each of two D's has a linking group bonded to L and two or more aromatic rings bonded to the linking group, and is bonded to the linking group and the linking group between the two D's.
  • the number of aromatic rings and the plurality of aromatic rings are the same, but at least one of the combinations of aromatic rings common between the two D's is substituted with the aromatic ring.
  • a 1 represents a group having a positive Hammett ⁇ p value.
  • R 1 to R 5 each independently represents a hydrogen atom, a group having a positive Hammett ⁇ p value or a group having a negative Hammett ⁇ p value, and at least two of R 1 to R 5 are groups having a negative Hammett ⁇ p value. (Excluding the phenyl group).
  • R 1 to R 6 When one or more of R 1 to R 6 is a Hammett ⁇ p value is a positive group, the Hammett ⁇ p value represented by A 1 is a positive group and the Hammett ⁇ p value of R 1 to R 6 is The positive groups may be the same or different from each other.
  • the two Hammetts having negative ⁇ p values each have a linking group bonded to the benzene ring of the general formula (10) and one aromatic ring bonded to the linking group, and the two Hammetts Among the groups having a negative ⁇ p value, the linking group and the aromatic ring bonded to the linking group are common, but the number of substituents substituted on the aromatic ring, the substituent of the aromatic ring And at least one condition of the structure of the substituent substituted on the aromatic ring is different from each other.
  • the two groups having negative Hammett ⁇ p values each have a linking group bonded to the benzene ring of the general formula (10) and two or more aromatic rings bonded to the linking group, Among the groups having negative ⁇ p values of the two Hammetts, the linking group, the number of aromatic rings bonded to the linking group, and the plurality of aromatic rings are the same.
  • the number of substituents substituted on the aromatic ring, the position substituted with the substituent of the aromatic ring, and the aromatic in at least one of the common aromatic ring combinations between negative groups At least one condition of the structure of the substituent substituted on the ring is different from each other.
  • R X11 to R X14 each independently represent a hydrogen atom, a group having a positive Hammett ⁇ p value or a group having a negative Hammett ⁇ p value, and at least two of R X11 to R X14 are groups having a negative Hammett ⁇ p value. (Excluding the phenyl group).
  • R X11 to R X14 is a Hammett's ⁇ p value is a positive group
  • Hammett's ⁇ p value represented by A X1 is a positive group
  • Hammett's ⁇ p value of R X11 to R X14 is positive
  • the groups may be the same or different from one another.
  • the two Hammetts having negative ⁇ p values each have a linking group bonded to the benzene ring of the general formula (10) and one aromatic ring bonded to the linking group, and the two Hammetts Among the groups having a negative ⁇ p value, the linking group and the aromatic ring bonded to the linking group are common, but the number of substituents substituted on the aromatic ring, the substituent of the aromatic ring And at least one condition of the structure of the substituent substituted on the aromatic ring is different from each other.
  • the two groups having negative Hammett ⁇ p values each have a linking group bonded to the benzene ring of the general formula (10) and two or more aromatic rings bonded to the linking group, Among the groups having negative ⁇ p values of the two Hammetts, the linking group, the number of aromatic rings bonded to the linking group, and the plurality of aromatic rings are the same.
  • the number of substituents substituted on the aromatic ring, the position substituted with the substituent of the aromatic ring, and the aromatic in at least one of the common aromatic ring combinations between negative groups At least one condition of the structure of the substituent substituted on the ring is different from each other.
  • a light-emitting material comprising the compound according to any one of [1] to [20].
  • [22] A light emitting device comprising the compound according to any one of [1] to [20].
  • General formula (1) including a step of reacting a compound represented by the following general formula (21) and a compound represented by the following general formula (22) with the compound represented by the following general formula (18) The manufacturing method of the compound represented by these.
  • L is an m + n-valent aromatic linking group
  • A is a Hammett's ⁇ p value is a positive group or a phenyl group
  • X is a halogen atom
  • m is an integer of 1 or more.
  • n is an integer of 2 or more.
  • the plurality of A may be the same as or different from each other.
  • D 1 is a group having a negative Hammett ⁇ p value (excluding a phenyl group).
  • D 2 is a group having a negative Hammett ⁇ p value (excluding a phenyl group) and having a structure different from that of D 1 .
  • L is an m + n-valent aromatic linking group
  • A is a group having a positive Hammett ⁇ p value or a phenyl group
  • D is a group having a negative Hammett ⁇ p value (provided that a phenyl group) M is an integer of 1 or more
  • n is an integer of 2 or more.
  • the plurality of A may be the same as or different from each other.
  • Two of the plurality of D are groups having a common aromatic ring, and are groups having structures different from each other.
  • a method for producing a compound represented by the general formula (1) comprising a step of reacting a compound represented by the following general formula (19) with a compound represented by the following general formula (22).
  • L is an m + n-valent aromatic linking group
  • A is a group having a positive Hammett ⁇ p value or a phenyl group
  • D 1 is a group having a negative Hammett ⁇ p value (however, phenyl Group is excluded)
  • m is an integer of 1 or more
  • n is an integer of 1 or more.
  • the plurality of A may be the same as or different from each other.
  • D 2 is a group having a negative Hammett ⁇ p value (excluding a phenyl group) and having a structure different from that of D 1 .
  • L is an m + n-valent aromatic linking group
  • A is a group having a positive Hammett ⁇ p value or a phenyl group
  • D is a group having a negative Hammett ⁇ p value (provided that a phenyl group) M is an integer of 1 or more
  • n is an integer of 2 or more.
  • the plurality of A may be the same as or different from each other.
  • Two of the plurality of D are groups having a common aromatic ring, and are groups having structures different from each other.
  • L is an m + n-valent aromatic linking group
  • A is a group having a positive Hammett ⁇ p value or a phenyl group
  • D 1 is a group having a negative Hammett ⁇ p value (however, phenyl Group is excluded)
  • m is an integer of 1 or more
  • n is an integer of 1 or more.
  • m is 2 or more
  • the plurality of A may be the same as or different from each other.
  • n is 2 or more
  • the plurality of D 1 may be the same as or different from each other.
  • X is a halogen atom
  • p is an integer of 1 or more and less than n.
  • the compound having the following structure is not included in the general formula (19).
  • the compound of the present invention has higher luminous efficiency and is useful as a luminescent material.
  • a light-emitting element using the compound of the present invention as a material can realize extremely high luminous efficiency.
  • FIG. 4 is a graph showing current density-voltage characteristics of organic electroluminescent elements using compounds 3 and 6 and comparative compound 1.
  • 6 is a graph showing current density-external quantum efficiency characteristics of organic electroluminescent elements using compounds 3 and 6 and comparative compound 1.
  • 3 is a graph showing the change in luminance with time of an organic electroluminescence element using compounds 3 and 6 and comparative compound 1.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all the hydrogen atoms in the molecule may be 1 H, or a part or all of the hydrogen atoms are 2 H. (Deuterium D) may be used.
  • the compound of the present invention is a compound represented by the following general formula (1).
  • L is an m + n-valent aromatic linking group. m and n respectively correspond to the number of A and the number of D bonded to the aromatic linking group.
  • the aromatic linking group represented by L consists of an aromatic ring, and among the positions substitutable with the substituent of the aromatic ring, A is replaced with a hydrogen atom at the m positions, and is bonded to a carbon atom. In position, D replaces a hydrogen atom and is bonded to a carbon atom. That is, the aromatic linking group represented by L consists of an aromatic ring excluding m + n hydrogen atoms.
  • the aromatic ring constituting the aromatic linking group represented by L may be an aromatic ring composed of a hydrocarbon (hereinafter referred to as “aromatic hydrocarbon ring”) or an aromatic ring containing a hetero atom (hereinafter referred to as “aromatic” Group heterocycle ").
  • a group that can be substituted with a substituent of an aromatic hydrocarbon ring is a methine group (—CH ⁇ ), and a group that can be substituted with a substituent of an aromatic heterocyclic ring is a methine group (—CH ⁇ ), an imino group ( -NH-) and the like.
  • the aromatic hydrocarbon ring constituting the aromatic linking group represented by L may be a single ring or a condensed ring formed by condensing two or more aromatic hydrocarbon rings, and the two aromatic hydrocarbon rings may be spiro. It may be a spiro ring linked by a bond or a linked ring in which two or more aromatic hydrocarbon rings are linked.
  • the aromatic hydrocarbon ring constituting the aromatic linking group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, still more preferably 6 to 14 carbon atoms, and 6 to 10 carbon atoms. Even more preferably.
  • Specific examples of the aromatic hydrocarbon ring constituting the aromatic linking group include a benzene ring, a naphthalene ring, a biphenyl ring, and a spirofluorene ring.
  • the aromatic heterocyclic ring constituting the aromatic linking group represented by L may be a single ring or a condensed ring in which one or more heterocyclic rings and an aromatic hydrocarbon ring or an aromatic heterocyclic ring are condensed.
  • a spiro ring in which one heterocyclic ring and one aromatic hydrocarbon ring or aromatic heterocyclic ring are connected by a spiro bond may be used, and one or more aromatic heterocyclic rings and an aromatic hydrocarbon ring or aromatic heterocyclic ring May be a linked ring in which
  • the aromatic heterocyclic ring preferably has 5 to 22 carbon atoms, more preferably 5 to 18 carbon atoms, still more preferably 5 to 14 carbon atoms, and even more preferably 5 to 10 carbon atoms.
  • the hetero atom which comprises an aromatic heterocyclic ring is a nitrogen atom.
  • the aromatic heterocycle include pyridine ring, pyridazine ring, pyrimidine ring, triazole ring, and benzotriazole ring.
  • a more preferable aromatic ring constituting the aromatic linking group represented by L is a benzene ring.
  • A is a group with a positive Hammett ⁇ p value
  • D is a group with a negative Hammett ⁇ p value.
  • the phenyl group is exceptionally included in A and not included in D.
  • “Hammett ⁇ p value” is L. P. Proposed by Hammett, it quantifies the effect of substituents on the reaction rate or equilibrium of para-substituted benzene derivatives.
  • M is bonded to the aromatic linking group represented by L.
  • m is an integer of 1 or more, and when m is 2 or more, the plurality of A may be the same or different from each other.
  • the upper limit of m is not particularly limited, but is preferably smaller than n.
  • the group having a positive Hammett ⁇ p value represented by A is not particularly limited, and examples thereof include a group containing a cyano group, a carbonyl group or a sulfonyl group, or a substituted or unsubstituted heteroaryl group.
  • the hetero atom contained in the heteroaryl group include a nitrogen atom, an oxygen atom, a sulfur atom, and a boron atom.
  • the heteroaryl group preferably contains at least one nitrogen atom as a ring member.
  • heteroaryl group a group consisting of a 5-membered or 6-membered ring containing a nitrogen atom as a ring member, or a structure in which a benzene ring is condensed to a 5-membered or 6-membered ring containing a nitrogen atom as a ring member
  • a group having a structure in which a benzene ring is condensed to these aromatic heterocycles a group consisting of a 5-membered or 6-membered ring containing a nitrogen atom as a ring member, or a structure in which a benzene ring is condensed to a 5-membered or 6-membered ring containing a nitrogen atom as
  • a monovalent group having a structure in which a benzene ring is condensed to a quinone ring or a pyrone ring and one hydrogen atom is removed from the benzene ring is also preferable as a group having a positive Hammett ⁇ p value.
  • the benzene ring condensed to the quinone ring or the pyrone ring may be substituted with a substituent.
  • Examples of the substituent when the benzene ring condensed to the quinone ring or the pyrone ring has a substituent, and the substituent when the heteroaryl group has a substituent include an alkyl group having 1 to 20 carbon atoms and a carbon number of 6 And an aryl group having ⁇ 40, a cyano group, a halogen atom, a heteroaryl group having 5 to 40 carbon atoms, and the like. Among these substituents, those that can be substituted by a substituent may be substituted.
  • A includes a phenyl group. When m is 2 or more, the number of cyano groups in the plurality of A can be, for example, 0 to 2, and the case of 1 is more preferable than the case of 2.
  • Hammett's ⁇ p value represented by A is positive
  • a group having a positive Hammett ⁇ p value represented by A should not be interpreted in a limited manner.
  • those having a ring structure are bonded to L by replacing the hydrogen atom and L of any one methine group (—CH ⁇ ) constituting the ring structure.
  • the left and right lines of CO of the carbonyl group (—CO—) and the left and right lines of SO 2 of the sulfonyl group (—SO 2 —) each represent a single bond (bond).
  • the carbonyl group (—CO—) and the sulfonyl group (—SO 2 —) are directly bonded to L at one single bond or to L through a linking group, and an atomic group is bonded to the other single bond.
  • the atomic group include a substituted or unsubstituted alkyl group, aryl group, heteroaryl group and the like.
  • the alkyl group preferably has 1 to 20 carbon atoms, and the aryl group preferably has 6 to 40 carbon atoms.
  • the carbon number of the heteroaryl group is preferably 5 to 40.
  • N D's are bonded to the aromatic linking group represented by L.
  • n is an integer of 2 or more, and two of the plurality of Ds are groups having different structures, although both contain a common aromatic ring.
  • the kind of the common aromatic ring is not particularly limited, and may be an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • a preferred aromatic ring includes a benzene ring, but is not limited thereto.
  • Two of the plurality of D are both preferably a group having a hetero atom, and more preferably a group containing a nitrogen atom.
  • Specific examples of the structure include a group represented by any one of the following general formulas (2) to (9).
  • Two of the plurality of D preferably satisfy the following condition (a) or (b).
  • Condition (a) The two Ds each have an aromatic ring containing an atom bonded to L, and the aromatic ring is common between the two Ds, but the number of substituents substituted on the aromatic ring. , At least one condition of the position substituted with the substituent on the aromatic ring and the structure of the substituent substituted on the aromatic ring are different from each other.
  • Each of the two D's has a linking group bonded to L and one or more aromatic rings bonded to the linking group, and the aromatic ring bonded to the linking group at both two D's is 1
  • the linking group and the aromatic ring bonded to the linking group are the same between the two D, but the number of substituents substituted on the aromatic ring, At least one condition of the substituted position and the structure of the substituent substituted on the aromatic ring is different from each other.
  • the linking group When there are two or more aromatic rings bonded to the linking group in both of two Ds, the linking group, the number of aromatic rings bonded to the linking group, and a plurality of fragrances between the two Ds
  • Each ring is common, but at least one of the common aromatic ring combinations between two D's is substituted with the number of substituents substituted on the aromatic ring, the substituent of the aromatic ring. And at least one condition of the structure of the substituent substituted on the aromatic ring is different from each other.
  • one of the two Ds satisfying the condition (a) or (b) is referred to as “one D” and the other is referred to as “the other D”.
  • Two Ds satisfying the condition (a) or (b) may be one set of a plurality of D, or two or more sets. Good.
  • the “aromatic ring containing an atom bonded to L” possessed by one D is referred to as “one aromatic ring”, and the “aromatic ring comprising an atom bound to L” possessed by the other D Is called “the other aromatic ring”.
  • the linking group and the aromatic ring bonded to the linking group are bonded between the two Ds.
  • the aromatic “At least one condition of the position of the substituent substituted on the aromatic ring and the structure of the substituent substituted on the aromatic ring is different from each other” means that in one D, L is via a trivalent linking group.
  • the benzene ring and the naphthalene ring are connected to L via a trivalent linking group.
  • a combination of common aromatic rings ie one of the The number of substituents substituted on the ring, the combination of one benzene ring and the other D benzene ring, or the combination of one D naphthalene ring and the other D naphthalene ring, or a combination of both.
  • at least one condition of the structure of the substituent substituted on the ring is different from each other.
  • the “aromatic ring linked to the linking group” of one D is referred to as “one The other aromatic ring is referred to as the “aromatic ring connected to the linking group”.
  • the aromatic ring in the conditions (a) and (b) may be an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and may be a single ring or a condensed ring.
  • the aromatic ring constitutes a linking ring
  • the aromatic ring closest to L is the aromatic ring in the conditions (a) and (b).
  • the common aromatic ring means that the structure is the same between one aromatic ring and the other aromatic ring except for the number of hydrogen atoms replaced by a substituent and the substituent conditions.
  • the linking group in the condition (b) may be a divalent linking group that links L and one aromatic ring, or a trivalent or higher linking group that links L and two or more aromatic rings. Also good. When two or more aromatic rings are bonded to the linking group, the aromatic rings bonded to the linking group may be the same as or different from each other.
  • Determination of the difference in substituent conditions in the aromatic ring can be performed as follows. First, in one D and another D, a common aromatic ring (a common aromatic ring among aromatic rings including an atom bonded to L, or an aromatic linked to L via a linking group) The number of substituents of a common aromatic ring among the rings is compared. When the number of substituents is different, it is determined that “the number of substituents substituted on the aromatic ring” among the above-mentioned substituent conditions is different.
  • the position substituted with a substituent on the aromatic ring (substitution position) is compared, and if there is at least one different substitution position, among the above substituent conditions, “aromatic It is determined that the “position substituted with a ring substituent” is different.
  • the structure of the substituent substituted on the aromatic ring is compared.
  • the above substituent conditions Among them it is determined that “the structure of the substituent substituted on the aromatic ring” is different.
  • the “corresponding substitution position” of another D aromatic ring is a position common to the substitution position of one D aromatic ring and the structural formula of the aromatic ring.
  • the overlapping positions correspond to “corresponding substitution positions”.
  • the position where the position number of the aromatic ring attached according to the IUPAC nomenclature is common corresponds to the “corresponding substitution position”.
  • the structural formula of the aromatic ring has a line-symmetric structure, the positions overlapping when rotated by 180 ° C.
  • substitution substituted on the aromatic ring It is determined that the “group structure” is different. For example, for a substituent substituted at the 3-position of a carbazole ring, this corresponds to the case where it is different from both the substituent substituted at the 3-position of another carbazole ring and the substituent substituted at the 6-position. To do.
  • “Substituent structure is different” means, for example, the type of substituent, the type and number of atoms constituting the substituent, the presence or position of a saturated bond, the chain structure (straight chain structure, branched structure, This means that at least one condition of the branching position in the case of a branched structure) and a cyclic structure (number of ring members, aromatic or non-aromatic ring, presence or absence of condensed ring) are different. Further, when two substituents substituted on an aromatic ring are bonded to each other to form a ring structure, the two substituents can be regarded as “substituents” under the substituent conditions.
  • the aromatic ring when the aromatic ring is a naphthalene ring, the entire naphthalene ring may be viewed as an “aromatic ring”, or may be viewed as a benzene ring in which adjacent positions are substituted with a substituent.
  • the aromatic ring is common and the number of substituents is different from the unsubstituted benzene ring. In the present invention, it is determined that the condition (a) or (b) is satisfied even when the target aromatic rings are in such a relationship between two Ds.
  • the number of substituents substituted on the aromatic ring is preferably different between one aromatic ring and the other aromatic ring, and the other aromatic ring is substituted with at least one substituent. It is more preferable that the other aromatic ring is unsubstituted.
  • the two Ds satisfying the condition (a) or (b) preferably include a diarylamine structure (however, two aryl groups constituting the diarylamine structure may be bonded to each other).
  • the “diarylamine structure” in the present invention means a structure in which two aryl groups are bonded to a nitrogen atom, and the two aryl groups may be bonded to each other or may be substituted with a substituent.
  • the preferred range and specific examples of the substituent when the aryl group has a substituent the preferred range and specific examples of the substituent that can be taken by R 11 to R 19 in the general formula (2) can be referred to.
  • the aromatic hydrocarbon ring constituting the aryl group having a diarylamine structure may be a single ring or a condensed ring in which two or more aromatic hydrocarbon rings are condensed.
  • the number of carbon atoms of the aromatic hydrocarbon ring constituting the aryl group of the diarylamine structure is preferably 6 to 22, more preferably 6 to 18, still more preferably 6 to 14, Even more preferably, it is 10.
  • Specific examples of the aryl group having a diarylamine structure include a substituted or unsubstituted phenyl group and a substituted or unsubstituted naphthyl group.
  • the two aryl groups When two aryl groups having a diarylamine structure are bonded to each other, the two aryl groups may be bonded by a single bond or may be linked through a linking group.
  • the linking group for linking two aryl groups include an oxygen atom, a sulfur atom, a substituted or unsubstituted alkylene group, and a substituted or unsubstituted alkyl group as a substituent when the alkylene group has a substituent. And a substituted or unsubstituted aryl group.
  • the diarylamine structure in which two aryl groups are bonded to each other include a carbazole structure, a phenoxazine structure, a phenothiazine structure, and an acridine structure, and two D satisfying the condition (a) or (b) are More preferably, it contains a carbazole structure.
  • the diarylamine structure may be bonded to L through a single bond, or may be linked to L via a divalent linking group.
  • the divalent linking group is not particularly limited.
  • the nitrogen atom of the diarylamine structure is bonded to L or a divalent linking group by replacing the L or divalent linking group, or the nitrogen atom may be L or divalent.
  • the nitrogen atom of the diarylamine structure is bonded to L or a divalent linking group, and the nitrogen atom of the diarylamine structure is directly bonded to L (with a single bond). More preferably, they are bonded. That is, the diarylamine structure is preferably a diarylamino group (however, two aryl groups constituting the diarylamine structure may be bonded to each other), and is a diarylamino group bonded to L by a single bond. It is more preferable.
  • the diarylamine structure corresponds to the aromatic ring in condition (a).
  • two aryl groups having a diarylamine structure are bonded to each other, and one of the aryl groups or the nitrogen atom is connected to L with a divalent linking group, the divalent linking group is connected in the condition (b).
  • the entire diarylamine structure corresponds to the aromatic ring in condition (b).
  • one aryl group bonded to L with a single bond is a condition (a ).
  • the nitrogen atom bonded to L by a single bond is the linking group of the condition (b)
  • two aryl groups correspond to the aromatic ring of condition (b).
  • the divalent linking group becomes a linking group in the condition (b).
  • one aryl group bonded to the divalent linking group corresponds to the aromatic ring of the condition (b).
  • the divalent linking group and the nitrogen atom are the linking group in the condition (b)
  • two aryl groups correspond to the aromatic ring of condition (b).
  • the two Ds satisfying the condition (a) (“one D” and “the other D”) are preferably groups represented by the following general formula (2).
  • R 11 to R 19 each independently represent a hydrogen atom, a substituent, or a bonding position with L, and one of R 11 to R 19 is a bonding position with L. What is the bonding position with L is preferably R 19 .
  • the number of substituents is not particularly limited, and all of R 11 to R 19 except for the bonding position with L may be unsubstituted (hydrogen atom).
  • the plurality of substituents may be the same as or different from each other.
  • R 11 to R so as to satisfy the condition (a).
  • the number of substituents out of 19 , the position of what is a substituent, and at least one condition of the structure of the substituent are different from each other.
  • at least one of R 11 to R 18 is a substituent
  • one of R 11 to R 18 that corresponds to a substituent in one D is a hydrogen atom
  • at least one of R 13 and R 16 is a substituent
  • one of R 13 and R 16 is a substituent in one D. More preferably, the thing is a hydrogen atom.
  • both R 13 and R 16 are substituents, and it is even more preferable that both R 13 and R 16 are substituted or unsubstituted aryl groups.
  • all of R 11 to R 18 are hydrogen atoms.
  • group represented by General formula (2) is illustrated. However, the group represented by the general formula (2) that can be used in the present invention should not be limitedly interpreted by these specific examples. In the groups exemplified below, a single line extending from the benzene ring and not indicated as a linking group between other atoms represents a methyl group.
  • a hydrogen atom bonded to positions 1 to 9 of the carbazole ring is replaced with L, and bonded to L.
  • the bonding position of L in the carbazole ring is preferably the 9th position.
  • a combination of two D satisfying the condition (a) for example, a combination of two kinds of groups selected from these groups can be adopted.
  • Two Ds satisfying the condition (a) or (b) (“one D” and “the other D”) may be groups represented by any of the following general formulas (3) to (5): preferable.
  • R 21 to R 31 , R 41 to R 53 , and R 61 to R 73 each independently represent a hydrogen atom, a substituent, or a bonding position with L
  • R 21 to One of R 31 , one of R 41 to R 53 , and one of R 61 to R 73 are bonding positions with L, respectively.
  • the bonding position with L is preferably R 31 , R 53 , or R 73 .
  • R 31 , R 53 , and R 73 are bonding positions to L
  • the group represented by any one of the general formulas (3) to (5) is subject to the condition (b)
  • the nitrogen atom is the condition (
  • the benzene ring and naphthalene ring bonded to the nitrogen atom corresponding to the linking group in b) correspond to the aromatic ring in the condition (b).
  • the number of substituents in general formulas (3) to (5) is not particularly limited, and R 21 to R 31 , R 41 to R 53 , R 61 to R67, and R68 to R 72 are bonded to L. All except for may be unsubstituted (hydrogen atom).
  • substituents in each of the general formulas (3) to (5) when there are two or more substituents in each of the general formulas (3) to (5), these substituents may be the same or different from each other.
  • the group represented by any one of the general formulas (3) to (5) as one D and the group represented by any one of the general formulas (3) to (5) as the other D
  • the number of substituents and the substituents are The position of the thing and at least one condition of the structure of the substituent are different from each other.
  • specific examples of the group represented by any one of the general formulas (3) to (5) will be exemplified.
  • the group represented by any one of the general formulas (3) to (5) that can be used in the present invention should not be construed as being limited by these specific examples.
  • a single line extending from the benzene ring and not indicated as a linking group between other atoms represents a methyl group.
  • the groups exemplified below are bonded to L by replacing L with a hydrogen atom of any one methine group (—CH ⁇ ) constituting the ring structure, or a hydrogen atom bonded to a nitrogen atom.
  • the bonding position of L in these groups is preferably a nitrogen atom.
  • a combination of two Ds satisfying the condition (a) or (b) for example, a combination of two types of groups selected from these groups can be adopted.
  • two Ds (“one D” and “the other D”) satisfying the condition (a) or (b) are groups represented by the following general formula (6).
  • R 81 to R 95 each independently represent a hydrogen atom, a substituent, or a bonding position with L, and one of R 81 to R 95 is a bonding position with L. It is preferred that the bonding position of the L is R 83.
  • the bonding position of the L is R 83.
  • the benzene ring having the bonding position with L corresponds to the aromatic ring of the condition (a).
  • a benzene ring having a bonding position with L and a nitrogen atom can be seen corresponding to the linking group of the condition (b), and the remaining two benzene rings can be seen corresponding to the aromatic ring of the condition (b).
  • the number of substituents is not particularly limited, and all of R 81 to R 95 except for the bonding position with L may be unsubstituted (hydrogen atom).
  • the plurality of substituents may be the same as or different from each other.
  • the condition (a) or (b) is satisfied between the group represented by the general formula (6) as one D and the group represented by the general formula (6) as the other D.
  • R 81 to R 83 , R 86 to R 90 and R 91 to R 95 the number of substituents, the position of the substituent, and at least one condition of the structure of the substituent is Different from each other.
  • the two Ds satisfying the condition (a) (“one D” and “the other D”) are also preferably groups represented by the following general formula (7).
  • R 101 to R 109 each independently represent a hydrogen atom, a substituent, or a bonding position with L, and one of R 101 to R 109 is a bonding position with L. What is bonding position of the L is preferably R 109.
  • the number of substituents is not particularly limited, and all of R 101 to R 109 except for the bonding position with L may be unsubstituted (hydrogen atom).
  • the plurality of substituents may be the same as or different from each other.
  • R 101- The number of substituents in R 109 , the position of the substituent, and at least one condition of the structure of the substituent are different from each other.
  • two Ds (“one D” and “the other D”) satisfying the condition (a) are groups represented by the following general formula (8).
  • R 111 to R 119 each independently represent a hydrogen atom, a substituent, or a bonding position with L, and one of R 111 to R 119 is a bonding position with L. What is bonding position of the L is preferably R 119.
  • the number of substituents is not particularly limited, and all of R 111 to R 119 except for the bonding position with L may be unsubstituted (hydrogen atom).
  • the plurality of substituents may be the same as or different from each other.
  • R 111 to The number of substituents in R 119 , the position of the substituent, and at least one condition of the structure of the substituent are different from each other.
  • the two Ds satisfying the condition (a) (“one D” and “the other D”) are also preferably groups represented by the following general formula (9).
  • R 121 to R 131 each independently represent a hydrogen atom, a substituent, or a bonding position with L, and one of R 121 to R 131 is a bonding position with L. What is the bonding position with L is preferably R 131 .
  • the number of substituents is not particularly limited, and all of R 121 to R 131 except for the bonding position with L may be unsubstituted (hydrogen atom). When two or more of R 121 to R 131 are substituents, the plurality of substituents may be the same as or different from each other.
  • R 121 to The number of substituents in R 131 , the position of the substituent, and at least one condition of the structure of the substituent are different from each other.
  • R 131 can take include, for example, a hydroxy group, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, and 1 to 20 alkyl-substituted amino groups, acyl groups having 2 to 20 carbon atoms, aryl groups having 6 to 40 carbon atoms, heteroaryl groups having 3 to 40 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, and 2 to 10 carbon atoms Alkynyl group, C2-C10 alkoxycarbonyl group, charcoal An alkylsulfonyl group having 1 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, an amide group, an alkylamide group having 2 to 10 carbon atoms, a trialkylsilyl group having 3 to 20 carbon atoms, and
  • substituents of these specific examples may be substituted with, for example, the substituents of these specific examples. More preferred substituents are substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted aryl groups having 6 to 40 carbon atoms, and substituted groups having 1 to 20 carbon atoms. Or it is an unsubstituted diarylamino group, a substituted or unsubstituted carbazolyl group.
  • the remaining groups other than those satisfying the condition (a) or (b) in D may be groups having a negative Hammett ⁇ p value, and are not particularly limited. It is preferable that two aryl groups constituting the amine structure may be bonded to each other), and a diarylamino group (however, two aryl groups constituting the diarylamino group may be bonded to each other) More preferably, it is a group represented by the general formulas (2) to (9).
  • the diarylamine structures, diarylamino groups, and general formulas (2) to (9) in two Ds satisfying the condition (a) or (b) are used. Reference can be made to the description and preferred ranges and specific examples of the groups to be used. However, in these references, the description relating to the condition (a) or (b) is not included in the content to be referred to.
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (10).
  • a 1 represents a group having a positive Hammett ⁇ p value.
  • R 1 to R 5 each independently represents a hydrogen atom, a group having a positive Hammett ⁇ p value or a group having a negative Hammett ⁇ p value, and at least two of R 1 to R 5 are groups having a negative Hammett ⁇ p value. (Excluding the phenyl group).
  • R 1 to R 6 is a Hammett ⁇ p value is a positive group
  • the Hammett ⁇ p value represented by A 1 is a positive group and the Hammett ⁇ p value of R 1 to R 6 is positive
  • the groups may be the same or different from one another.
  • Two of the groups having a negative Hammett ⁇ p value among R 1 to R 5 preferably satisfy the following condition (a) or condition (b).
  • Condition (a) Both groups having negative ⁇ p values have an aromatic ring containing an atom bonded to L, and the two hammets have negative ⁇ p values and the aromatic ring is in common. However, the number of substituents substituted on the aromatic ring, the position substituted with the substituent of the aromatic ring, and at least one condition of the structure of the substituent substituted on the aromatic ring are different from each other.
  • Condition (b) The two Hammetts having negative ⁇ p values each have a linking group bonded to L and one or more aromatic rings bonded to the linking group, and the two hammets have negative ⁇ p values.
  • the aromatic ring bonded to the linking group and the linking group is common between the two Hammett negative ⁇ p values.
  • the number of substituents substituted on the aromatic ring, the position substituted with the substituent of the aromatic ring, and at least one condition of the structure of the substituent substituted on the aromatic ring are different from each other.
  • the two Hammett ⁇ p values are bonded to the linking group or linking group between the negative groups with negative ⁇ p values.
  • the number of aromatic rings and the plurality of aromatic rings are common to each other, but at least one of the common aromatic ring combinations between the groups having two negative Hammett ⁇ p values,
  • the number of substituents substituted on the ring, the position substituted with the substituent of the aromatic ring, and at least one condition of the structure of the substituent substituted on the aromatic ring are different from each other.
  • a Hammett ⁇ p value represented by R 1 to R 5 is a positive group
  • a Hammett ⁇ p value represented by R 1 to R 5 is a negative group
  • a Hammett ⁇ p value among R 1 to R 5 is
  • Hammett ⁇ p value represented by A in the general formula (1) is a positive group
  • D represents Reference can be made to the explanation of the group with a negative Hammett ⁇ p value, two of a plurality of D, the preferred range, specific examples, and conditions (a) and (b).
  • the number of Hammett's ⁇ p values that are positive groups is preferably 0 to 3, more preferably 0 to 2, and even more preferably 0 or 1. Most preferably, it is zero.
  • the number of R 1 to R 5 having a negative Hammett ⁇ p value is preferably 2 to 5, more preferably 3 to 5, and even more preferably 4 or 5. 5 is most preferred.
  • one or two combinations of two groups satisfying the condition (a) or the condition (b) may be used.
  • fill conditions (a) or conditions (b) is a combination of what exists in the point-symmetrical position of the benzene ring in General formula (1). That is, it is preferable that one or both of the combination of R 1 and R 4 and the combination of R 2 and R 5 satisfy the condition (a) or the condition (b).
  • the compound represented by the general formula (1) is also preferably a compound represented by the following general formula (11).
  • a X1 represents a group having a positive Hammett ⁇ p value.
  • R X11 to R X14 each independently represent a hydrogen atom, a group having a positive Hammett ⁇ p value or a group having a negative Hammett ⁇ p value, and at least two of R X11 to R X14 are groups having a negative Hammett ⁇ p value. (Excluding the phenyl group).
  • R X11 to R X14 When one or more of R X11 to R X14 is a Hammett's ⁇ p value is a positive group, Hammett's ⁇ p value represented by A X1 is a positive group and Hammett's ⁇ p value of R X11 to R X14 is positive
  • the groups may be the same or different from one another. Two of the groups having a negative Hammett ⁇ p value among R X11 to R X14 preferably satisfy the above condition (a) or condition (b).
  • a Hammett ⁇ p value represented by R X11 to R X14 is a positive group
  • a Hammett ⁇ p value represented by R X11 to R X14 is a negative group
  • a Hammett ⁇ p value among R X11 to R X14 is
  • Hammett ⁇ p value among R X11 to R X14 is
  • two negative groups and preferred ranges, specific examples, and conditions (a) and (b) Hammett ⁇ p value represented by A in the general formula (1) is a positive group
  • D represents Reference can be made to the explanation of the group with a negative Hammett ⁇ p value, two of a plurality of D, the preferred range, specific examples, and conditions (a) and (b).
  • the number of R X11 to R X14 having a positive Hammett ⁇ p value is preferably 0 to 2, more preferably 0 or 1, and most preferably 0.
  • the number of R X11 to R X14 having a negative Hammett ⁇ p value is preferably 2 to 4, more preferably 3 or 4, and still more preferably 4.
  • the combination of two groups that satisfy the condition (a) or the condition (b) may be one or two.
  • the molecular weight of the compound represented by the general formula (1) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (1) is intended to be formed by vapor deposition. Preferably, it is preferably 1200 or less, more preferably 1000 or less, and even more preferably 800 or less.
  • the lower limit of the molecular weight is the molecular weight of the minimum compound represented by the general formula (1).
  • the compound represented by the general formula (1) may be formed by a coating method regardless of the molecular weight. If a coating method is used, a film can be formed even with a compound having a relatively large molecular weight.
  • a compound containing a plurality of structures represented by the general formula (1) in the molecule as a light emitting material.
  • a polymer obtained by previously polymerizing a polymerizable group in the structure represented by the general formula (1) and polymerizing the polymerizable group as a light emitting material.
  • a monomer containing a polymerizable functional group in any one of L, A, and D in the general formula (1) and polymerizing this alone or copolymerizing with other monomers, It is conceivable to obtain a polymer having a repeating unit and use the polymer as a light emitting material.
  • Alternatively, it is also possible to obtain a dimer or trimer by coupling compounds having a structure represented by the general formula (1) and use them as a light emitting material.
  • Examples of the polymer having a repeating unit containing a structure represented by the general formula (1) include a polymer containing a structure represented by the following general formula (12) or (13).
  • Q represents a group including the structure represented by the general formula (1)
  • L 1 and L 2 represent a linking group.
  • the linking group preferably has 0 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 2 to 10 carbon atoms. And preferably has a structure represented by - linking group -X 11 -L 11.
  • X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
  • L 11 represents a linking group, and is preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted group A phenylene group is more preferable.
  • R 201 , R 202 , R 203 and R 204 each independently represent a substituent.
  • it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms.
  • An unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, and a chlorine atom and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms and an unsubstituted alkoxy group having 1 to 3 carbon atoms.
  • the linking group represented by L 1 and L 2 can be bonded to any one of L, A and D in the structure of the general formula (1) constituting Q. Two or more linking groups may be linked to one Q to form a crosslinked structure or a network structure.
  • repeating unit examples include structures represented by the following general formulas (14) to (17).
  • a hydroxy group is introduced into any of L, A, and D in the structure of the general formula (1), and this is used as a linker. It can be synthesized by reacting the following compound to introduce a polymerizable group and polymerizing the polymerizable group.
  • the polymer containing the structure represented by the general formula (1) in the molecule may be a polymer composed only of repeating units having the structure represented by the general formula (1), or other structures may be used. It may be a polymer containing repeating units.
  • the repeating unit having a structure represented by the general formula (1) contained in the polymer may be a single type or two or more types. Examples of the repeating unit not having the structure represented by the general formula (1) include those derived from monomers used in ordinary copolymerization. Examples thereof include a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene and styrene.
  • the compound represented by the general formula (1) can be synthesized by combining known reactions. For example, it can be synthesized by further introducing D into an aromatic compound into which A has already been introduced. D can be introduced by, for example, an aromatic nucleophilic substitution reaction. A scheme that generalizes such a reaction is given below as an example.
  • X in the general formulas (18) and (19) represents a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, preferably a fluorine atom, a chlorine atom, and a bromine atom, more preferably a fluorine atom and a chlorine atom, and still more preferably a fluorine atom.
  • D 1 in the general formulas (19), (20) and HD 1 and D 2 in the general formulas (20) and HD 2 are each independently a group having a negative Hammett ⁇ p value (provided that the phenyl group is Except). However, the structures of D 1 and D 2 are different from each other. p is an integer of 1 or more and less than n. When a plurality of A are present in the molecule, the plurality of A may be the same as or different from each other. When a plurality of X are present in the molecule, the plurality of X may be the same as or different from each other. In the above (Scheme 1), a halogen-substituted aromatic compound in which A has already been introduced is used as a starting material.
  • the compound represented by the general formula (19) can be obtained.
  • the general formula (19) it is possible to control the introduction position of the D 1 in the p-values and the aromatic ring of 19).
  • the remaining halogen atom bonded to the aromatic ring is substituted with D 2 by reacting the obtained compound of the general formula (19) with HD 2 .
  • the compound represented by the general formula (20) can be obtained.
  • the compound represented by the general formula (20) is a compound represented by the general formula (1).
  • Scheme 1 which is intended to synthesize a compound represented by the general formula (1) by a two-step reaction of reacting H-D 2 after reacting the H-D 1, the H-D 1 after reacting by reacting the H-D 2, it is possible to further synthesize the compound represented by the general formula (1) in 3-step reaction of reacting the H-D 3.
  • D 3 is a group having a structure different from D 1 and D 2 and having a negative Hammett ⁇ p value. According to this three-stage reaction, a compound of the general formula (1) having three types of D 1 , D 2 and D 3 can be obtained. Further, by performing the multi-step reaction was further application of this concept, it is also possible to obtain a compound of the general formula (1) with a w species D of the D 1, D 2, D 3 ⁇ ⁇ ⁇ D w.
  • (Scheme 1) is a reaction in which HD 1 is reacted and then HD 2 is reacted.
  • the general formula (In addition to 18) HD 1 and HD 2 can be present in the reaction mixture to obtain the compound represented by the general formula (20) at once.
  • a compound having a desired p can be obtained by controlling the reaction conditions, the abundance ratio of HD 1 and HD 2 , the halogen atom species, the purification conditions, and the like.
  • Scheme 2 by keeping the presence of H-D 1, H-D 2 ⁇ H-D w in the reaction mixture, D 1, D 2, D 3 ⁇ D w of w It is also possible to obtain compounds of the general formula (1) having the seed D.
  • the target compound in (Scheme 1) or (Scheme 2) can be synthesized by applying the following aromatic nucleophilic substitution reaction. Moreover, it is also possible to synthesize according to the method described in S. Tanimoto, et al., Chem. Lett., 45, 770 (2016). For specific reaction conditions and synthesis procedures, the description of synthesis examples described later can be referred to.
  • the compound represented by the general formula (19) is useful as a synthetic intermediate of the compound represented by the general formula (20) [compound represented by the general formula (1)].
  • the explanation and preferred ranges of A, L, m, and n in the general formula (19) can be referred to.
  • P in the general formula (19) is an integer which is 1 or more and less than n, preferably in the range of 1 to 3, and more preferably 1 or 2.
  • D 1 in the general formula (19) the description and preferred range of D in the general formula (1) can be referred to, and preferably a group containing a hetero atom, more preferably an aromatic ring in the hetero atom.
  • Specific examples of the compound of the general formula (19) include compounds in which the group represented by the general formula (2b) in the table of the specific compound examples of the general formula (1) is substituted with a halogen atom. That is, each compound obtained by substituting a fluorine atom for the group represented by the general formula (2b) of the compound numbers 1 to 912 given as specific compound examples of the general formula (1) is referred to as compound numbers 1001 to 1912 in this specification. Specifically disclosed. Further, the compounds represented by the general formula (2b) of the compound numbers 1 to 912 listed as specific compound examples of the general formula (1) are substituted with chlorine atoms as compound numbers 2001 to 2912. Specifically disclosed.
  • each compound obtained by substituting a group represented by the general formula (2b) of the compound numbers 1 to 912 of the compound numbers 1 to 912 with a bromine atom as specific compound examples of the general formula (1) as compound numbers 3001 to 3912 is referred to Specifically disclosed.
  • compounds obtained by substituting iodine groups for the groups represented by general formula (2b) of compound numbers 1 to 912 listed as specific compound examples of general formula (1) are referred to herein as compound numbers 4001 to 4912. Specifically disclosed.
  • compound numbers 1001 to 4912 those in which the general formula (2b) does not exist in the corresponding compound numbers 1 to 912 are omitted.
  • the compound represented by the general formula (1) of the present invention is useful as a material for a light emitting device, and can be suitably used as a light emitting material for an organic light emitting device. For this reason, the compound represented by General formula (1) of this invention can be effectively used as a luminescent material for the light emitting layer of an organic light emitting element.
  • the compound represented by the general formula (1) includes a delayed fluorescent material (delayed phosphor) that emits delayed fluorescence. That is, the present invention relates to a delayed phosphor having a structure represented by the general formula (1), an invention using a compound represented by the general formula (1) as a delayed phosphor, and a general formula (1).
  • An invention of a method for emitting delayed fluorescence using the represented compound is also provided.
  • An organic light emitting device using such a compound as a light emitting material emits delayed fluorescence and has a feature of high luminous efficiency. The principle will be described below by taking an organic electroluminescence element as an example.
  • the organic electroluminescence element carriers are injected into the light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light.
  • 25% of the generated excitons are excited to the excited singlet state, and the remaining 75% are excited to the excited triplet state. Therefore, the use efficiency of energy is higher when phosphorescence, which is light emission from an excited triplet state, is used.
  • the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and in general, the quantum yield of phosphorescence is often not high.
  • delayed fluorescent materials after energy transition to an excited triplet state due to intersystem crossing, etc., are then crossed back to an excited singlet state due to triplet-triplet annihilation or absorption of thermal energy, and emit fluorescence.
  • a thermally activated delayed fluorescent material by absorption of thermal energy is particularly useful.
  • excitons in the excited singlet state emit fluorescence as usual.
  • excitons in the excited triplet state absorb heat generated by the device and cross between the excited singlets to emit fluorescence.
  • the light is emitted from the excited singlet, the light is emitted at the same wavelength as the fluorescence, but the light lifetime (luminescence lifetime) generated by the reverse intersystem crossing from the excited triplet state to the excited singlet state is normal. Since the fluorescence becomes longer than the fluorescence and phosphorescence, it is observed as fluorescence delayed from these. This can be defined as delayed fluorescence. If such a heat-activated exciton transfer mechanism is used, the ratio of the compound in an excited singlet state, which normally generated only 25%, is increased to 25% or more by absorbing thermal energy after carrier injection. It can be raised.
  • the heat of the device will sufficiently cause intersystem crossing from the excited triplet state to the excited singlet state and emit delayed fluorescence. Efficiency can be improved dramatically.
  • the compound represented by the general formula (1) that emits delayed fluorescence has an extremely high rate constant k RISC of the crossing between the reverse terms from the triplet excited state to the singlet excited state. It is presumed that the accumulation of triplet excitons during the process is effectively suppressed. Thereby, in the light emitting element using the compound represented by the general formula (1), exciton annihilation and device deterioration due to accumulation of triplet excitons can be suppressed, and higher luminous efficiency and excellent durability can be achieved. Obtainable. In addition, the suppression of exciton annihilation can greatly contribute to the realization of an organic laser.
  • the compound represented by the general formula (1) of the present invention as a light-emitting material of a light-emitting layer, excellent organic light-emitting devices such as an organic photoluminescence device (organic PL device) and an organic electroluminescence device (organic EL device) Can be provided.
  • the compound represented by the general formula (1) of the present invention may have a function of assisting light emission of another light emitting material included in the light emitting layer as a so-called assist dopant. That is, the compound represented by the general formula (1) of the present invention contained in the light emitting layer includes the lowest excitation singlet energy level of the host material contained in the light emitting layer and the lowest excitation of other light emitting materials contained in the light emitting layer.
  • the organic photoluminescence element has a structure in which at least a light emitting layer is formed on a substrate.
  • the organic electroluminescence element has a structure in which an organic layer is formed at least between an anode, a cathode, and an anode and a cathode.
  • the organic layer includes at least a light emitting layer, and may consist of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer. Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
  • the hole transport layer may be a hole injection / transport layer having a hole injection function
  • the electron transport layer may be an electron injection / transport layer having an electron injection function.
  • FIG. 1 A specific example of the structure of an organic electroluminescence element is shown in FIG.
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is a light emitting layer
  • 6 is an electron transport layer
  • 7 is a cathode.
  • each member and each layer of an organic electroluminescent element are demonstrated.
  • substrate and a light emitting layer corresponds also to the board
  • the organic electroluminescence device of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements.
  • a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer. , Preferably including a luminescent material and a host material.
  • a luminescent material the 1 type (s) or 2 or more types chosen from the compound group of this invention represented by General formula (1) can be used.
  • a host material in addition to the light emitting material in the light emitting layer.
  • the host material an organic compound having at least one of excited singlet energy and excited triplet energy higher than that of the light emitting material of the present invention can be used.
  • singlet excitons and triplet excitons generated in the light emitting material of the present invention can be confined in the molecules of the light emitting material of the present invention, and the light emission efficiency can be sufficiently extracted.
  • high luminous efficiency can be obtained, so that host materials that can achieve high luminous efficiency are particularly limited. And can be used in the present invention.
  • the organic light emitting device or organic electroluminescent device of the present invention light emission is generated from the light emitting material of the present invention contained in the light emitting layer. This emission includes both fluorescence and delayed fluorescence. However, light emission from the host material may be partly or partly emitted.
  • the amount of the compound of the present invention, which is a light emitting material is preferably 0.1% by weight or more, more preferably 1% by weight or more, and 50% or more. It is preferably no greater than wt%, more preferably no greater than 20 wt%, and even more preferably no greater than 10 wt%.
  • the host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer.
  • the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer.
  • a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer.
  • the blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer.
  • the term “electron blocking layer” or “exciton blocking layer” as used herein is used in the sense of including a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
  • the material for the hole blocking layer the material for the electron transport layer described later can be used as necessary.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
  • an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided.
  • the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the compound represented by the general formula (1) may be used not only for the light emitting layer but also for layers other than the light emitting layer.
  • the compound represented by General formula (1) used for a light emitting layer and the compound represented by General formula (1) used for layers other than a light emitting layer may be same or different.
  • the compound represented by the general formula (1) may be used for the injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transporting layer, electron transporting layer, and the like. .
  • the method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
  • preferable materials that can be used for the organic electroluminescence element are shown below.
  • the material that can be used in the present invention is not limited to the following exemplary compounds. Moreover, even if it is a compound illustrated as a material which has a specific function, it can also be diverted as a material which has another function.
  • the organic electroluminescent device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
  • phosphorescence is hardly observable at room temperature in ordinary organic compounds such as the compounds of the present invention because the excited triplet energy is unstable and converted to heat, etc., and has a short lifetime and immediately deactivates.
  • the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
  • the organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. According to the present invention, an organic light emitting device with greatly improved light emission efficiency can be obtained by containing the compound represented by the general formula (1) in the light emitting layer.
  • the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention.
  • organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
  • a compound represented by the following general formula (1) [In General Formula (1), L is an m + n-valent aromatic linking group, A is a group having a positive Hammett ⁇ p value, D is a group having a negative Hammett ⁇ p value, and m is 1 or more. And n is an integer of 2 or more. When m is 2 or more, the plurality of A may be the same as or different from each other. Two of the plurality of D satisfy the following condition (a) or the following condition (b). Condition (a) Two Ds each have an aromatic ring containing an atom bonded to L, and the aromatic ring is common between the two Ds, but the substituent of the substituent substituted on the aromatic ring.
  • Each D has a linking group bonded to L and one aromatic ring bonded to the linking group, and is bonded to the linking group and the linking group between the two Ds.
  • the aromatic ring is common, at least one of the number of substituents substituted on the aromatic ring, the position substituted with the substituent of the aromatic ring, and the structure of the substituent substituted on the aromatic ring Two conditions are different from each other.
  • Each of two D's has a linking group bonded to L and two or more aromatic rings bonded to the linking group, and is bonded to the linking group and the linking group between the two D's.
  • the number of aromatic rings and the plurality of aromatic rings are the same, but at least one of the combinations of aromatic rings common between the two D's is substituted with the aromatic ring.
  • the number of substituents, the position substituted with the substituent of the aromatic ring, and at least one condition of the structure of the substituent substituted on the aromatic ring are different from each other.
  • R 11 to R 19 each independently represent a hydrogen atom, a substituent, or a bonding position with L, and one of R 11 to R 19 is a bonding position with L. . ]
  • at least one of R 11 to R 18 in the general formula (2) is a substituent
  • the other two of the plurality of D are the general The compound according to [7] or [8], wherein among R 11 to R 18 in the formula (2), one corresponding to a substituent of two of the plurality of D is a hydrogen atom .
  • one of two of the plurality of D is at least one of R 13 and R 16 in the general formula (2) is a substituent.
  • R 1 to R 5 each independently represents a hydrogen atom, a group having a positive Hammett ⁇ p value or a group having a negative Hammett ⁇ p value, and at least two of R 1 to R 5 are groups having a negative Hammett ⁇ p value. It is.
  • R 1 to R 6 is a Hammett ⁇ p value is a positive group
  • the Hammett ⁇ p value represented by A 1 is a positive group
  • the Hammett ⁇ p value of R 1 to R 6 is The positive groups may be the same or different from each other.
  • Two of the groups having a negative Hammett ⁇ p value among R 1 to R 5 satisfy the following condition (a) or condition (b).
  • the groups having negative ⁇ p values of the two Hammetts each have an aromatic ring containing an atom bonded to the benzene ring of the general formula (10), and the groups having negative ⁇ p values of the two Hammetts
  • the aromatic ring is common, but the number of substituents substituted on the aromatic ring, the position substituted with the aromatic ring substituent, and the structure of the substituent substituted on the aromatic ring At least one condition is different from each other.
  • the two Hammetts having negative ⁇ p values each have a linking group bonded to the benzene ring of the general formula (10) and one aromatic ring bonded to the linking group, and the two Hammetts Among the groups having a negative ⁇ p value, the linking group and the aromatic ring bonded to the linking group are common, but the number of substituents substituted on the aromatic ring, the substituent of the aromatic ring And at least one condition of the structure of the substituent substituted on the aromatic ring is different from each other.
  • the two groups having negative Hammett ⁇ p values each have a linking group bonded to the benzene ring of the general formula (10) and two or more aromatic rings bonded to the linking group, Among the groups having negative ⁇ p values of the two Hammetts, the linking group, the number of aromatic rings bonded to the linking group, and the plurality of aromatic rings are the same.
  • the number of substituents substituted on the aromatic ring, the position substituted with the substituent of the aromatic ring, and the aromatic in at least one of the common aromatic ring combinations between negative groups At least one condition of the structure of the substituent substituted on the ring is different from each other.
  • Radiation rate constant k r from excited singlet state of compound used in Examples was determined from the lifetime of the prompt component (ordinary fluorescent component) and delayed component, and the emission quantum yield before and after argon bubbling. .
  • the difference ⁇ E ST between the lowest excited singlet energy level (E S1 ) and the lowest excited triplet energy level (E T1 ) of the compound used in the example is the lowest excited singlet energy level (E S1 ) and the lowest excited level.
  • Lowest excited singlet energy level (E S1 ) A toluene solution (concentration 10 ⁇ 5 mol / L) of the compound to be measured was prepared and used as a sample. The fluorescence spectrum of this sample was measured at room temperature (300K). In the fluorescence spectrum, the vertical axis represents light emission and the horizontal axis represents wavelength. A tangent line was drawn with respect to the short-wave rise of the emission spectrum, and the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained.
  • E S1 [eV] 1239.85 / ⁇ edge
  • the emission spectrum was measured with a detector (Hamamatsu Photonics Corporation, PMA-50) using an LED light source (Thorlabs, M340L4) as an excitation light source.
  • E T1 Lowest excited triplet energy level
  • the same sample used in the measurement of the lowest excitation singlet energy level (E S1 ) is cooled to 77 [K] with liquid nitrogen, the excitation light (340 nm) is irradiated to the phosphorescence measurement sample, and the detector is Was used to measure phosphorescence.
  • tangents at each point on the curve are considered toward the long wavelength side.
  • the slope of this tangent line increases as the curve rises (that is, as the vertical axis increases).
  • the tangent drawn at the point where the value of the slope takes the maximum value was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and has the maximum slope value closest to the maximum value on the shortest wavelength side.
  • the tangent drawn at the point where the value was taken was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • 9H-carbazole (4.78 g, 28.59 mmol) was added to a tetrahydrofuran solution (120 mL) of sodium hydride (60% mineral oil dispersion, 0.90 g, 22.51 mmol), and the mixture was stirred for 1 hour.
  • the mixture was cooled to ⁇ 50 ° C., 2,3,5,6-tetrafluorobenzonitrile (2.50 g, 14.28 mmol) was added, the cooling bath was removed, and the mixture was stirred for 110 hours while gradually returning to room temperature.
  • compound e (0.34 g) was added to a 1-methyl-2-pyrrolidone solution (9 mL) of 3,6-diphenylcarbazole (0.57 g, 1.81 mmol) and potassium carbonate (0.38 g, 2.75 mmol). , 0.724 mmol) was added, and the mixture was stirred at 100 ° C. for 24 hours. This mixture was returned to room temperature, quenched by adding water, extracted with ethyl acetate, the organic layer was washed with saturated brine, and dried over anhydrous magnesium sulfate.
  • the obtained solid was purified by a sublimation method to obtain a red solid compound f (yield: 0.8 g, yield: 36%).
  • Into a 100 mL three-necked flask was placed 0.696 g (2.18 mmol) of 3,6-diphenyl-9H-carbazole, 0.647 g (3.63 mmol) of potassium carbonate, and 0.4 g (0.726 mmol) of compound f. was replaced with nitrogen. After adding 10 mL of dehydrated 1-methyl-2-pyrrolidone to this mixture, the mixture was heated and stirred at 100 ° C. for 12 hours under a nitrogen atmosphere. After stirring, the mixture was allowed to return to room temperature, and water was added and suction filtered.
  • reaction mixture was quenched by adding to ice water, extracted with ethyl acetate, the organic layer was washed with saturated brine, and dried over anhydrous magnesium sulfate. This was concentrated under reduced pressure, and the resulting mixture was reprecipitated with ethyl acetate / methanol to obtain an orange solid compound g (0.989 g, 2.10 mmol, yield 49.4%).
  • compound g (0.50 g) was added to a 1-methyl-2-pyrrolidone solution (13 mL) of 3,6-diphenylcarbazole (0.849 g, 2.66 mmol) and potassium carbonate (0.55 g, 3.99 mmol). 1.06 mmol), and the mixture was stirred at 100 ° C. for 48 hours. This mixture was returned to room temperature, quenched by adding water, extracted with ethyl acetate, the organic layer was washed with saturated brine, and dried over anhydrous magnesium sulfate.
  • the desiccant was filtered and the filtrate was concentrated by distillation under reduced pressure to obtain a crude product.
  • compound h (0.50 g) was added to a 1-methyl-2-pyrrolidone solution (10 mL) of 3,6-diphenylcarbazole (0.35 g, 1.08 mmol) and potassium carbonate (0.20 g, 1.44 mmol). , 0.72 mmol), and stirred at 100 ° C. for 48 hours. This mixture was returned to room temperature, quenched by adding water, and the resulting precipitate was washed with methanol. This was reprecipitated with chloroform / methanol to obtain yellow solid compound 3 (0.56 g, 0.564 mmol, yield 77.6%).
  • Example 1 Preparation of Organic Photoluminescence Element Using Compound 1 A toluene solution of compound 1 (concentration 10 ⁇ 5 mol / L) was prepared. Further, a thin film of Compound 1 was formed to a thickness of 50 nm on a quartz substrate by a vacuum vapor deposition method under a vacuum degree of 5 ⁇ 10 ⁇ 4 Pa or less to obtain an organic photoluminescence device.
  • Example 6 Preparation of organic photoluminescence device using compounds 2 to 6
  • a toluene solution of compounds 2 to 6 was prepared in the same manner as in Example 1 except that compounds 2 to 6 were used instead of compound 1.
  • a thin film of compounds 2 to 6 was formed to obtain an organic photoluminescence device.
  • Comparative Examples 1 to 3 Preparation of Organic Photoluminescence Device Using Comparative Compounds 1 to 3 Compounds 2 to 6 were prepared in the same manner as in Example 1 except that the following Comparative Compounds 1 to 3 were used instead of Compound 1. And a thin film of Comparative Compounds 1 to 3 was formed to obtain an organic photoluminescence device.
  • Examples 14 and 15 Preparation and Evaluation of Organic Photoluminescence Device Using Compounds 108 and 313 and Host Material Examples 7 to 13 except that Compound 108 or Compound 313 is used as the light emitting material and mCBP is used as the host material.
  • an organic photoluminescence device was prepared and evaluated. Delayed fluorescence lifetime of device using the compound 108 8.9ms, ⁇ E ST is 0.15 eV, delayed fluorescence lifetime of the device using the compound 313 4.0 ms, Delta] E ST was 0.11 eV.
  • organic electroluminescent element Preparation and evaluation of organic electroluminescent element using compound 3 On glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 50 nm was formed Further, each thin film was laminated at a vacuum degree of 2 ⁇ 10 ⁇ 5 Pa by a vacuum deposition method. First, HATCN was evaporated on ITO to a thickness of 60 nm to form a hole injection layer, and TrisPCz was evaporated to a thickness of 30 nm on it to form a hole transport layer. Subsequently, mCBP was deposited to a thickness of 5 nm to form an electron blocking layer.
  • ITO indium tin oxide
  • Compound 3 and mCBP were co-evaporated from different vapor deposition sources to form a light-emitting layer having a thickness of 30 nm.
  • the concentration of Compound 3 was 20% by weight.
  • DTRZ is deposited to a thickness of 10 nm to form a hole blocking layer, and then BpyTP2 and Liq (weight ratio 7: 3) are co-deposited from different deposition sources to a thickness of 30 nm.
  • the electron transport layer was formed by vapor deposition. Further, Liq was formed to a thickness of 2 nm, and then aluminum (Al) was formed to a thickness of 100 nm to form a cathode.
  • Example 17 Production and evaluation of organic electroluminescence device using compound 6 An organic electroluminescence device of compound 8 was produced in the same manner as in Example 16 except that compound 6 was used instead of compound 3.
  • Comparative Example 4 Production and Evaluation of Organic Electroluminescence Device Using Comparative Compound 1 An organic electroluminescence device of Comparative Example 4 was produced in the same manner as in Example 16 except that Comparative Compound 1 was used instead of Compound 3. did.
  • the fluorescence spectra of the organic electroluminescence devices manufactured in Examples 16 and 17 and Comparative Example 4 are shown in FIG. 6, the current density-voltage characteristics are shown in FIG. 7, the current density-external quantum efficiency characteristics are shown in FIG. FIG. 9 shows the change over time.
  • the organic electroluminescent elements of Example 16 and Example 17 achieved high external quantum efficiencies of 19.4% and 17.3%, respectively. These external quantum efficiencies are higher than the external quantum efficiencies (16.0%) of the organic electroluminescence device of Comparative Example 4 using a light emitting material having Hammett ⁇ p values that are all the same negative groups. Met.
  • the organic electroluminescent elements of Example 16 and Example 17 clearly had a longer life than the organic electroluminescent element of Comparative Example 4.
  • the light-emitting material and the host material described in Table 11 were co-evaporated from different vapor deposition sources to form a light-emitting layer having a thickness of 30 nm.
  • the concentration of the light emitting material was 20% by weight.
  • SF3-TRZ is vapor-deposited to a thickness of 10 nm to form a hole blocking layer
  • SF3-TRZ and Liq are co-deposited from different vapor-deposition sources, and 30 nm
  • the electron transport layer was formed by vapor deposition to a thickness of 5 nm.
  • Liq was formed to a thickness of 20 nm, and then aluminum (Al) was formed to a thickness of 100 nm to form a cathode.
  • Al aluminum
  • Table 11 shows the results of measuring the maximum emission wavelength of the fluorescence spectrum of each of these organic electroluminescence elements and the external quantum efficiency at 1000 cd / m 2 . All had high external quantum efficiency.
  • Example 26 Preparation and evaluation of organic electroluminescence device using compound 108 An organic electroluminescence device was prepared in the same manner as in Examples 18 to 25 except that compound 108 was used as the light emitting material and mCBP was used as the host material. Created. The maximum emission wavelength was 576 nm.
  • the compound of the present invention has higher luminous efficiency and is useful as a luminescent material.
  • a light-emitting element with extremely high light emission efficiency can be provided. For this reason, this invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

一般式:(A)m-L-(D)nで表される化合物を用いれば、発光効率が高い発光素子を提供できる。Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基であり、Dはハメットのσp値が負の基であり、mは1以上の整数であり、nは2以上の整数である。複数のDのうちの2つは、特定の芳香環における置換基条件が互いに異なる。

Description

化合物、発光材料および発光素子
 本発明は、発光材料として有用な化合物とそれを用いた発光素子に関する。
 有機エレクトロルミネッセンス素子(有機EL素子)などの発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、ホール輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、遅延蛍光材料を利用した有機エレクトロルミネッセンス素子に関する研究も見受けられる。
 遅延蛍光材料は、励起状態において、励起三重項状態から励起一重項状態への逆項間交差を生じた後、その励起一重項状態から基底状態へ戻る際に蛍光を放射する化合物である。こうした経路による蛍光は、基底状態から直接生じた励起一重項状態からの蛍光(通常の蛍光)よりも遅れて観測されるため、遅延蛍光と称されている。ここで、例えば、発光性化合物をキャリアの注入により励起した場合、励起一重項状態と励起三重項状態の発生確率は統計的に25%:75%であるため、直接生じた励起一重項状態からの蛍光のみでは、発光効率の向上に限界がある。一方、遅延蛍光材料では、励起一重項状態のみならず、励起三重項状態も上記の逆項間交差を介した経路により蛍光発光に利用することができるため、通常の遅延蛍光材料に比べて高い発光効率が得られることになる。
 こうした遅延蛍光材料として、特許文献1には、カルバゾリル基等のヘテロアリール基またはジフェニルアミノ基と少なくとも2つのシアノ基を有するベンゼン誘導体が提案され、そのベンゼン誘導体を発光層に用いた有機EL素子で高い発光効率が得られたことが確認されている。
 また、非特許文献1には、下記式で表されるカルバゾリルジシアノベンゼン誘導体(以下、「4CzIPN」という)が熱活性型遅延蛍光材料であること、また、4CzIPNを用いた有機エレクトロルミネッセンス素子で、高い内部EL量子効率を達成したことが報告されている。さらに、非特許文献2には、4CzIPNを用いた有機エレクトロルミネッセンス素子の構造を最適化することにより、高い発光効率と高い耐久性を実現したことが報告されている。
Figure JPOXMLDOC01-appb-C000014
特開2014-43541号公報
H. Uoyama, et al., Nature 492, 234 (2012) H. Nakanotani, et al., Scientific Reports, 3, 2127 (2013)
 上記のように、特許文献1および非特許文献1、2には、遅延蛍光材料である4CzIPNが発光素子用の材料として有用であることが報告されている。この化合物は、アクセプター性を有するシアノ基とドナー性を有するカルバゾリル基がコアのベンゼン環に結合した構造を有し、こうした構造によりHOMOとLUMOの空間的位置を制御して発光効率を高めたものである。しかしながら、本発明者らが4CzIPNの発光プロセスについて検討を行ったところ、十分に最適なものであるとは言えず、コアのベンゼン環に結合するドナー性基の構造をさらに制御することで、発光効率が大きく改善する余地があることが判明した。
 このような状況下において本発明者らは、より発光効率が高い材料を見出して一般化することを目的として研究を重ねた。そして、発光材料として有用な化合物の一般式を導きだし、より発光効率が高い発光素子の構成を一般化することを目的として鋭意検討を進めた。
 上記の目的を達成するために鋭意検討を進めた結果、本発明者らは、コアの芳香環にドナー性基とアクセプター性基が結合した構造を有し、且つ、2つのドナー性基の間で置換基条件(置換基の数、置換位置および置換基の構造)が異なる化合物が、4CzIPNを凌ぐ優れた発光特性を有することを見出した。そして、こうした化合物を発光材料として用いることにより、発光効率が極めて高い発光素子を提供しうることを明らかにした。本発明は、こうした知見に基づいて提案されたものであり、具体的に、以下の構成を有する。
[1] 下記一般式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000015
[一般式(1)において、Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基またはフェニル基であり、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、mは1以上の整数であり、nは2以上の整数である。mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。複数のDのうちの2つは、ともに共通する芳香環を含んでいるが、互いに異なる構造を有する基である。]
[2] 前記複数のDのうちの2つがいずれもヘテロ原子を含む基である、[1]に記載の化合物。
[3] 前記複数のDのうちの2つがいずれもヘテロ原子に2つ以上の芳香環が結合した構造を含む基である、[2]に記載の化合物。
[4] 前記複数のDのうちの2つがジアリールアミン構造(ただし、ジアリールアミン構造を構成する2つのアリール基は互いに結合していてもよい)を含む、[3]に記載の化合物。
[5] 前記ジアリールアミン構造がカルバゾール構造である、[4]に記載の化合物。
[6] 前記mが1である、[1]~[5]のいずれか1項に記載の化合物。
[7] 前記mが2以上である、[1]~[5]のいずれか1項に記載の化合物。
[8] 前記複数のDのうちの2つが下記条件(a)または下記条件(b)を満たす、[1]~[7]のいずれか1項に記載の化合物。
 条件(a)
 2つのDがいずれもLに結合する原子を含む芳香環を有しており、前記2つのDの間で、その芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
 条件(b)
 2つのDがいずれもLに結合する連結基と該連結基に結合している1つの芳香環を有しており、前記2つのDの間で、前記連結基および前記連結基に結合している芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。2つのDがいずれもLに結合する連結基と該連結基に結合している2つ以上の芳香環を有しており、前記2つのDの間で、前記連結基、前記連結基に結合している芳香環の数、および、複数の芳香環はそれぞれ共通しているが、前記2つのDの間の、互いに共通する芳香環の組み合わせの少なくとも1つにおいて、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。]
[9] 前記複数のDのうちの2つが前記条件(a)を満たす、[8]に記載の化合物。
[10] 前記複数のDのうちの2つが下記一般式(2)で表される基である、[1]~[9]のいずれか1項に記載の化合物。
Figure JPOXMLDOC01-appb-C000016
[一般式(2)において、R11~R19は各々独立に水素原子、置換基、またはLとの結合位置を表し、R11~R19のうちの1つはLとの結合位置である。]
[11] 前記一般式(2)のR19がLとの結合位置である、[10]に記載の化合物。
[12] 前記複数のDのうちの2つの一方は、前記一般式(2)のR11~R18の少なくとも1つが置換基であり、前記複数のDのうちの2つの他方は、前記一般式(2)のR11~R18のうち、前記複数のDのうちの2つの一方で置換基であるものに対応するものが水素原子である、[10]または[11]に記載の化合物。
[13] 前記複数のDのうちの2つの一方は、前記一般式(2)のR13およびR16の少なくとも一方が置換基である、[10]~[12]のいずれか1項に記載の化合物。
[14] 前記置換基が、置換もしくは無置換のアルキル基または置換もしくは無置換のアリール基である、[12]または[13]に記載の化合物。
[15] 前記一般式(1)で表される化合物が、下記一般式(10)で表される化合物である、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000017
[一般式(10)において、Aはハメットのσp値が正の基を表す。R~Rは各々独立に水素原子、ハメットのσp値が正の基またはハメットのσp値が負の基を表し、R~Rの少なくとも2つはハメットのσp値が負の基(ただしフェニル基は除く)である。R~Rのうちの1つ以上がハメットのσp値が正の基であるとき、Aが表すハメットのσp値が正の基およびR~Rのうちのハメットのσp値が正の基は互いに同一であっても異なっていてもよい。]
[16] 前記R~Rのうちのハメットのσp値が負の基の2つは、下記条件(a)または条件(b)を満たす、[15]に記載の化合物。
 条件(a)
 2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する原子を含む芳香環を有しており、前記2つのハメットのσp値が負の基の間で、その芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
 条件(b)
 2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する連結基と該連結基に結合している1つの芳香環を有しており、前記2つのハメットのσp値が負の基の間で、前記連結基および前記連結基に結合している芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する連結基と該連結基に結合している2つ以上の芳香環を有しており、前記2つのハメットのσp値が負の基の間で、前記連結基、前記連結基に結合している芳香環の数、および、複数の芳香環はそれぞれ共通しているが、前記2つのハメットのσp値が負の基の間の、互いに共通する芳香環の組み合わせの少なくとも1つにおいて、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。]
[17] 前記一般式(10)のRとRの組み合わせ、および、RとRの組み合わせの少なくとも一方が前記条件(a)または(b)を満たす、[16]に記載の化合物。
[18] 前記一般式(10)のR~Rがハメットのσp値が負の基(ただしフェニル基は除く)である、[15]~[17]のいずれか1項に記載の化合物。
[19] 前記一般式(1)で表される化合物が、下記一般式(11)で表される化合物である、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000018
[一般式(11)において、AX1はハメットのσp値が正の基を表す。RX11~RX14は各々独立に水素原子、ハメットのσp値が正の基またはハメットのσp値が負の基を表し、RX11~RX14の少なくとも2つはハメットのσp値が負の基(ただしフェニル基は除く)である。RX11~RX14の1つ以上がハメットのσp値が正の基であるとき、AX1が表すハメットのσp値が正の基およびRX11~RX14のうちのハメットのσp値が正の基は互いに同一であっても異なっていてもよい。]
[20] 前記RX11~RX14のうちのハメットのσp値が負の基の2つは、下記条件(a)または条件(b)を満たす、[19]に記載の化合物。
 条件(a)
 2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する原子を含む芳香環を有しており、前記2つのハメットのσp値が負の基の間で、その芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
 条件(b)
 2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する連結基と該連結基に結合している1つの芳香環を有しており、前記2つのハメットのσp値が負の基の間で、前記連結基および前記連結基に結合している芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する連結基と該連結基に結合している2つ以上の芳香環を有しており、前記2つのハメットのσp値が負の基の間で、前記連結基、前記連結基に結合している芳香環の数、および、複数の芳香環はそれぞれ共通しているが、前記2つのハメットのσp値が負の基の間の、互いに共通する芳香環の組み合わせの少なくとも1つにおいて、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
[21] [1]~[20]のいずれか1項に記載の化合物からなる発光材料。
[22] [1]~[20]のいずれか1項に記載の化合物を含むことを特徴とする発光素子。
[23] 下記一般式(18)で表される化合物に下記一般式(21)で表される化合物と下記一般式(22)で表される化合物を反応させる工程を含む、一般式(1)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000019
[一般式(18)において、Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基またはフェニル基であり、Xはハロゲン原子であり、mは1以上の整数であり、nは2以上の整数である。mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。複数のXは互いに同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000020
[一般式(21)において、Dはハメットのσp値が負の基(ただしフェニル基は除く)である。]
Figure JPOXMLDOC01-appb-C000021
 [一般式(22)において、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、Dとは異なる構造を有する基である。]
Figure JPOXMLDOC01-appb-C000022
[一般式(1)において、Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基またはフェニル基であり、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、mは1以上の整数であり、nは2以上の整数である。mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。複数のDのうちの2つは、ともに共通する芳香環を含む基であり、互いに異なる構造を有する基である。]
[24] 下記一般式(19)で表される化合物に下記一般式(22)で表される化合物を反応させる工程を含む、一般式(1)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000023
[一般式(19)において、Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基またはフェニル基であり、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、mは1以上の整数であり、nは1以上の整数である。mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。nが2以上であるとき、複数のDは互いに同一であっても異なっていてもよい。Xはハロゲン原子であり、pは1以上でn未満の整数である。]
Figure JPOXMLDOC01-appb-C000024
[一般式(22)において、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、Dとは異なる構造を有する基である。]
Figure JPOXMLDOC01-appb-C000025
[一般式(1)において、Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基またはフェニル基であり、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、mは1以上の整数であり、nは2以上の整数である。mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。複数のDのうちの2つは、ともに共通する芳香環を含む基であり、互いに異なる構造を有する基である。]
[25] 下記一般式(19)で表される化合物。
Figure JPOXMLDOC01-appb-C000026
[一般式(19)において、Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基またはフェニル基であり、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、mは1以上の整数であり、nは1以上の整数である。mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。nが2以上であるとき、複数のDは互いに同一であっても異なっていてもよい。Xはハロゲン原子であり、pは1以上でn未満の整数である。ただし、下記の構造を有する化合物は一般式(19)には含まれない。]
Figure JPOXMLDOC01-appb-C000027
[26] 前記ハロゲン原子がフッ素原子である、[25]に記載の化合物。
[27] 前記Dの少なくとも1つがジアリールアミノ基(ただし、ジアリールアミノ基を構成する2つのアリール基は互いに結合していてもよい)である、[25]または[26]に記載の化合物。
[28] 前記Aの少なくとも1つがシアノ基である、[25]~[27]のいずれか1項に記載の化合物。
 本発明の化合物は、より高い発光効率を有し、発光材料として有用である。本発明の化合物を材料に用いた発光素子は、極めて高い発光効率を実現しうる。
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。 化合物1~4および6を用いた有機フォトルミネッセンス素子の吸収スペクトルである。 化合物1~4および6を用いた有機フォトルミネッセンス素子の蛍光スペクトルである。 化合物1~4および6を用いた有機フォトルミネッセンス素子の発光の過渡減衰曲線である。 化合物1~4および6を用いた有機フォトルミネッセンス素子の燐光スペクトルである。 化合物3、6および比較化合物1を用いた有機エレクトロミネッセンス素子の蛍光スペクトルである。 化合物3、6および比較化合物1を用いた有機エレクトロミネッセンス素子の電流密度-電圧特性を示すグラフである。 化合物3、6および比較化合物1を用いた有機エレクトロミネッセンス素子の電流密度-外部量子効率特性を示すグラフである。 化合物3、6、比較化合物1を用いた有機エレクトロミネッセンス素子の輝度の時間変化を示すグラフである。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべてHであってもよいし、一部または全部がH(デューテリウムD)であってもよい。
[一般式(1)で表される化合物]
 本発明の化合物は、下記一般式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000028
 一般式(1)において、Lはm+n価の芳香族連結基である。m、nはそれぞれ、芳香族連結基に結合するAの数、Dの数に相当する。Lが表す芳香族連結基は芳香環からなり、その芳香環の置換基で置換可能な位置のうち、m個の位置においてAが水素原子と置き換わって炭素原子に結合しており、n個の位置においてDが水素原子と置き換わって炭素原子に結合している。すなわち、Lが表す芳香族連結基はm+n個の水素原子を除いた芳香環からなる。芳香環の置換基で置換可能な位置のうち、AまたはDで置換されているのは、その全てであっても一部であってもよいが、芳香環の置換可能な位置の全てがAまたはDで置換されていることが好ましい。
 Lが表す芳香族連結基を構成する芳香環は、炭化水素からなる芳香環(以下、「芳香族炭化水素環」という)であってもよいし、複素原子を含む芳香環(以下、「芳香族複素環」という)であってもよい。芳香族炭化水素環の置換基で置換可能な基はメチン基(-CH=)であり、芳香族複素環の置換基で置換可能な基としては、メチン基(-CH=)、イミノ基(-NH-)等を挙げることができる。
 Lが表す芳香族連結基を構成する芳香族炭化水素環は、単環であっても、2以上の芳香族炭化水素環が縮合した縮合環であっても、2つの芳香炭化水素環がスピロ結合で繋がったスピロ環であっても、2以上の芳香族炭化水素環が連結した連結環であってもよい。2以上の芳香族炭化水素環が連結している場合は、直鎖状に連結したものであってもよいし、分枝状に連結したものであってもよい。芳香族連結基を構成する芳香族炭化水素環の炭素数は、6~22であることが好ましく、6~18であることがより好ましく、6~14であることがさらに好ましく、6~10であることがさらにより好ましい。芳香族連結基を構成する芳香族炭化水素環の具体例として、ベンゼン環、ナフタレン環、ビフェニル環、スピロフルオレン環を挙げることができる。
 また、Lが表す芳香族連結基を構成する芳香族複素環は、単環であっても、1以上の複素環と芳香族炭化水素環または芳香族複素環が縮合した縮合環であっても、1つの複素環と1つの芳香族炭化水素環または芳香族複素環がスピロ結合で繋がったスピロ環であってもよく、1以上の芳香族複素環と芳香族炭化水素環または芳香族複素環が連結した連結環であってもよい。芳香族複素環の炭素数は5~22であることが好ましく、5~18であることがより好ましく、5~14であることがさらに好ましく、5~10であることがさらにより好ましい。芳香族複素環を構成する複素原子は窒素原子であることが好ましい。芳香族複素環の具体例として、ピリジン環、ピリダジン環、ピリミジン環、トリアゾール環、ベンゾトリアゾール環を挙げることができる。
 Lが表す芳香族連結基を構成する芳香環のより好ましいものはベンゼン環である。
 Aはハメットのσp値が正の基、Dはハメットのσp値が負の基である。ただし、フェニル基は例外的にAに含めることとし、Dには含まれない。
 ここで、「ハメットのσp値」は、L.P.ハメットにより提唱されたものであり、パラ置換ベンゼン誘導体の反応速度または平衡に及ぼす置換基の影響を定量化したものである。具体的には、パラ置換ベンゼン誘導体における置換基と反応速度定数または平衡定数の間に成立する下記式:
     log(k/k0) = ρσp
または
     log(K/K0) = ρσp
における置換基に特有な定数(σp)である。上式において、kは置換基を持たないベンゼン誘導体の速度定数、k0は置換基で置換されたベンゼン誘導体の速度定数、Kは置換基を持たないベンゼン誘導体の平衡定数、K0は置換基で置換されたベンゼン誘導体の平衡定数、ρは反応の種類と条件によって決まる反応定数を表す。本発明における「ハメットのσp値」に関する説明と各置換基の数値については、Hansch,C.et.al.,Chem.Rev.,91,165-195(1991)のσp値に関する記載を参照することができる。ハメットのσp値が負の基は電子供与性(ドナー性)を示し、ハメットのσp値が正の基は電子求引性(アクセプター性)を示す傾向がある。
 Lが表す芳香族連結基には、m個のAが結合している。mは1以上の整数であり、mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。mの上限は特に制限されないが、nよりも小さいことが好ましい。
 Aが表すハメットのσp値が正の基は特に限定されないが、シアノ基、カルボニル基もしくはスルホニル基を含む基、または置換もしくは無置換のヘテロアリール基等を挙げることができる。ヘテロアリール基が含むヘテロ原子として、窒素原子、酸素原子、硫黄原子、硼素原子を挙げることができ、ヘテロアリール基は、少なくとも1つの窒素原子を環員として含むことが好ましい。そのようなヘテロアリール基として、窒素原子を環員として含む5員環または6員環からなる基、または窒素原子を環員として含む5員環または6員環にベンゼン環が縮環した構造を有する基を挙げることができ、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環から水素原子を1つ除いた1価の基、または、これらの芳香族ヘテロ環同士が縮環した構造を有する基、これらの芳香族ヘテロ環にベンゼン環が縮環した構造を有する基であることが好ましい。また、キノン環またはピロン環にベンゼン環が縮環した構造を有し、ベンゼン環から水素原子を1つ除いた1価の基もハメットのσp値が正の基として好ましい。ここで、キノン環またはピロン環に縮環するベンゼン環は置換基で置換されていてもよい。キノン環またはピロン環に縮環するベンゼン環が置換基を有する場合の置換基、および、ヘテロアリール基が置換基を有する場合の置換基として、例えば炭素数1~20のアルキル基、炭素数6~40のアリール基、シアノ基、ハロゲン原子、炭素数5~40のヘテロアリール基等を挙げることができる。これらの置換基のうち置換基により置換可能なものは置換されていてもよい。また、Aにはフェニル基が含まれる。mが2以上であるとき、複数のAのうちシアノ基の数は例えば0~2個とすることができ、1個である場合が2個である場合よりも好ましい。
 以下において、Aが表すハメットのσp値が正の基の具体例を例示する。ただし、本発明において、Aが表すハメットのσp値が正の基は、これらの基によって限定的に解釈されるべきものではない。以下に例示する基のうち、環構造を有するものは、環構造を構成するいずれか1つのメチン基(-CH=)の水素原子とLが置き換わってLと結合する。カルボニル基(-CO-)のCOの左右の線およびスルホニル基(-SO-)のSOの左右の線は、それぞれ単結合(結合手)を表す。カルボニル基(-CO-)およびスルホニル基(-SO-)は、一方の単結合でLと直接結合するか、連結基を介してLと連結し、他方の単結合には原子団が結合する。原子団としては置換もしくは無置換のアルキル基、アリール基、ヘテロアリール基等を挙げることができ、アルキル基の炭素数としては1~20が好ましく、アリール基の炭素数としては6~40が好ましく、ヘテロアリール基の炭素数としては5~40が好ましい。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 次に、Dについて説明する。
 Lが表す芳香族連結基には、n個のDが結合している。nは2以上の整数であり、複数のDのうちの2つは、ともに共通する芳香環を含んでいるが、互いに異なる構造を有する基である。共通する芳香環の種類は特に制限されず、芳香族炭化水素環であっても芳香族複素環であってもよい。芳香族炭化水素環と芳香族複素環の説明と好ましい範囲については、下記の条件(a)および(b)の説明の対応する箇所を参照することができる。好ましい芳香環としてベンゼン環を挙げることができるが、これに制限されるものではない。また、芳香環を含む基としてジアリールアミノ構造やカルバゾリル構造を含む基等を好ましく例示することができるが、これらに制限されるものではない。複数のDのうちの2つは、ともにヘテロ原子を有する基であることが好ましく、窒素原子を含む基であることがより好ましい。具体的な構造として、後述する一般式(2)~(9)のいずれかで表される基を挙げることができる。
 複数のDのうちの2つは、下記条件(a)または(b)を満たすことが好ましい。
 条件(a)
 2つのDがいずれもLに結合する原子を含む芳香環を有しており、2つのDの間で、その芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
 条件(b)
 2つのDがいずれもLに結合する連結基と該連結基に結合している1つ以上の芳香環を有しており、2つのDの両方で連結基に結合している芳香環が1つである場合、2つのDの間で、連結基および連結基に結合している芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。2つのDの両方で連結基に結合している芳香環が2つ以上である場合、2つのDの間で、連結基、連結基に結合している芳香環の数、および、複数の芳香環はそれぞれ共通しているが、2つのDの間の、互いに共通する芳香環の組み合わせの少なくとも1つにおいて、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
 以下の説明では、条件(a)または(b)を満たす2つのDの一方を「一方のD」といい、他方を「他方のD」という。条件(a)または(b)を満たす2つのD(「一方のD」と「他方のD」)は、複数のDのうちの1組であってもよいし、2組以上であってもよい。
 また、条件(a)においては、一方のDが有する「Lに結合する原子を含む芳香環」を「一方の芳香環」といい、他方のDが有する「Lに結合する原子を含む芳香環」を「他方の芳香環」という。
 条件(b)において、「2つのDの両方で連結基に結合している芳香環が2つ以上である場合、2つのDの間で、連結基、連結基に結合している芳香環の数、および、複数の芳香環はそれぞれ共通しているが、2つのDの間の、互いに共通する芳香環の組み合わせの少なくとも1つにおいて、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる」とは、一方のDにおいて、3価の連結基を介してLにベンゼン環とナフタレン環が連結している場合を例にすると、一方のDと同様に、他方のDにおいても、3価の連結基を介してLにベンゼン環とナフタレン環が連結しており、互いに共通する芳香環の組み合わせ、すなわち一方のDのベンゼン環と他方のDのベンゼン環の組み合わせ、もしくは一方のDのナフタレン環と他方のDのナフタレン環の組み合わせ、またはそれらの組み合わせの両方で、環に置換している置換基の数、環の置換基で置換されている位置、環に置換している置換基の構造の少なくとも1つの条件が互いに異なることである。条件(b)においては、2つのDの両方で連結基に結合している芳香環が1つである場合には、一方のDが有する「連結基に連結している芳香環」を「一方の芳香環」といい、他方のDが有する「連結基に連結している芳香環」を「他方の芳香環」という。2つのDの両方で連結基に結合している芳香環が2つ以上である場合には、2つのDの間の「互いに共通する芳香環の組み合わせ」であって、置換基条件の少なくとも1つが異なるものの一方を「一方の芳香環」といい、他方を「他方の芳香環」という。
 また、以下の説明では、「芳香環に置換している置換基の数」、「芳香環の置換基で置換されている位置」、および、「芳香環に置換している置換基の構造」を総称して「置換基条件」ということがある。
 条件(a)および(b)における芳香環は、芳香族炭化水素環であっても芳香族複素環であってもよく、単環であっても縮合環であってもよい。芳香環が連結環を構成している場合には、最もLに近い側の芳香環が条件(a)および(b)における芳香環であることとする。芳香環が共通するとは、一方の芳香環と他方の芳香環の間において、置換基で置き換わった水素原子の数と置換基条件を除いて構造が全て同じであることを意味する。
 条件(b)における連結基は、Lと1つの芳香環を連結する2価の連結基であってもよいし、Lと2つ以上の芳香環を連結する3価以上の連結基であってもよい。連結基に結合している芳香環が2つ以上である場合、連結基に結合している芳香環同士は互いに同一であっても異なっていてもよい。
 芳香環における置換基条件の相違の判定は、以下のようにして行うことができる。
 まず、一のDと、これとは別のDにおいて、共通する芳香環(Lに結合する原子を含む芳香環のうち共通する芳香環、または、Lに連結基を介して連結している芳香環のうち共通する芳香環)の置換基の数を対比する。置換基の数が異なる場合には、上記の置換基条件のうち「芳香環に置換している置換基の数」が異なると判定する。置換基の数が同じである場合には、芳香環の置換基で置換されている位置(置換位置)を対比し、異なる置換位置が1つでもあれば、上記の置換基条件のうち「芳香環の置換基で置換されている位置」が異なると判定する。置換位置が全て同じである場合には、芳香環に置換している置換基の構造を対比する。一のDの芳香環に置換している置換基の少なくとも1つが、別のDの芳香環の、対応する置換位置に置換している置換基と構造が異なる場合には、上記の置換基条件のうち「芳香環に置換している置換基の構造」が異なると判定する。ここで、別のDの芳香環の「対応する置換位置」とは、一のDの芳香環の置換位置と芳香環の構造式上で共通する位置であり、具体的には、2つDの芳香環の構造式を、置換位置を全て合わせて重ねたとき、重なる位置同士が「対応する置換位置」に相当する。もしくは、IUPAC命名法に従って付した芳香環の位置番号が共通する位置が「対応する置換位置」に相当する。ただし、芳香環の構造式が線対称構造をとる場合、対称軸を中心に180℃回転させたときに重なる位置同士も「対応する置換位置」に含めて判断し、一のDの芳香環に置換している置換基の少なくとも1つが、別のDの芳香環の、両方の対応する置換位置に置換している置換基のいずれとも構造が異なる場合に、「芳香環に置換している置換基の構造」が異なると判定する。例えば、カルバゾール環の3位に置換している置換基については、別のカルバゾール環の3位に置換している置換基と6位に置換している置換基の両方と異なる場合がこれに相当する。
 「置換基の構造が異なる」とは、例えば置換基の種類、置換基を構成する原子の種類および各原子の数、飽和結合の有無または位置、鎖状構造(直鎖構造、分枝構造、分枝構造である場合の枝分かれの位置)、環状構造(環員数、芳香環または非芳香環、縮環の有無)の少なくとも1つの条件が異なることを意味する。また、芳香環に置換した2つの置換基が互いに結合して環構造を形成している場合、その2つの置換基をそれぞれ置換基条件における「置換基」として見ることができる。例えば、芳香環がナフタレン環である場合、ナフタレン環全体で「芳香環」として見てもよいし、隣り合う位置が置換基で置換されたベンゼン環として見てもよい。ナフタレン環を隣り合う位置が置換基で置換されたベンゼン環として見たとき、無置換のベンゼン環とは、芳香環が共通し、置換基の数が異なる関係になる。本発明では、2つのDの間で、対象となる芳香環同士がこのような関係にある場合にも、条件(a)または(b)を満たすと判定することとする。
 これらの置換基条件の中では、「芳香環に置換している置換基の数」が一方の芳香環と他方の芳香環で異なることが好ましく、他方の芳香環が少なくとも1つの置換基で置換されており、他方の芳香環が無置換であることがより好ましい。
 条件(a)または(b)を満たす2つのDは、ジアリールアミン構造(ただし、ジアリールアミン構造を構成する2つのアリール基は互いに結合していてもよい)を含むことが好ましい。本発明における「ジアリールアミン構造」とは、窒素原子に2つのアリール基が結合した構造を意味し、2つのアリール基は互いに結合していてもよく、置換基で置換されていてもよい。アリール基が置換基を有する場合の置換基の好ましい範囲と具体例については、一般式(2)のR11~R19等がとりうる置換基の好ましい範囲と具体例を参照することができる。ジアリールアミン構造のアリール基を構成する芳香族炭化水素環は、単環であっても、2以上の芳香族炭化水素環が縮合した縮合環であってもよい。ジアリールアミン構造のアリール基を構成する芳香族炭化水素環の炭素数は、6~22であることが好ましく、6~18であることがより好ましく、6~14であることがさらに好ましく、6~10であることがさらにより好ましい。ジアリールアミン構造のアリール基の具体例として、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基を挙げることができる。また、ジアリールアミン構造の2つのアリール基が互いに結合している場合、2つのアリール基は単結合で結合していてもよいし、連結基を介して連結していてもよい。2つのアリール基を連結する連結基として、酸素原子、硫黄原子、置換もしくは無置換のアルキレン基を挙げることができ、アルキレン基が置換基を有する場合の置換基として、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を挙げることができる。2つのアリール基が互いに結合しているジアリールアミン構造の具体例として、カルバゾール構造、フェノキサジン構造、フェノチアジン構造、アクリジン構造を挙げることができ、条件(a)または(b)を満たす2つのDはカルバゾール構造を含むことがより好ましい。
 ジアリールアミン構造を含む基において、ジアリールアミン構造はLと単結合で結合していてもよいし、Lと2価の連結基を介して連結していてもよい。2価の連結基は特に限定されない。ジアリールアミン構造は、その2つのアリール基のいずれかの水素原子とLまたは2価の連結基が置き換わってLまたは2価の連結基と結合してもよいし、その窒素原子がLまたは2価の連結基と結合していてもよいが、ジアリールアミン構造の窒素原子がLまたは2価の連結基と結合していることが好ましく、ジアリールアミン構造の窒素原子がLに直接結合(単結合で結合)していることがより好ましい。すなわち、ジアリールアミン構造は、ジアリールアミノ基(ただし、ジアリールアミン構造を構成する2つのアリール基は互いに結合していてもよい)であることが好ましく、Lに単結合で結合したジアリールアミノ基であることがより好ましい。
 ここで、ジアリールアミン構造と条件(a)または(b)の関係については、まず、ジアリールアミン構造の2つのアリール基が互いに結合しており、その一方のアリール基または窒素原子がLに単結合で結合している場合、ジアリールアミン構造全体が条件(a)における芳香環に対応する。
 ジアリールアミン構造の2つのアリール基が互いに結合しており、その一方のアリール基または窒素原子がLに2価の連結基で連結している場合、2価の連結基が条件(b)における連結基に対応し、ジアリールアミン構造全体が条件(b)における芳香環に対応する。
 ジアリールアミン構造の2つのアリール基が互いに結合しておらず、その一方のアリール基がLに単結合で結合している場合、Lに単結合で結合している一方のアリール基が条件(a)の芳香環に対応する。
 ジアリールアミン構造の2つのアリール基が互いに結合しておらず、その窒素原子がLに単結合で結合している場合、Lに単結合で結合している窒素原子が条件(b)の連結基に対応し、2つのアリール基が条件(b)の芳香環に対応する。
 ジアリールアミン構造の2つのアリール基が互いに結合しておらず、その一方のアリール基がLに2価の連結基で連結している場合、2価の連結基が条件(b)の連結基に対応し、2価の連結基に結合している一方のアリール基が条件(b)の芳香環に対応する。
 ジアリールアミン構造の2つのアリール基が互いに結合しておらず、その窒素原子がLに2価の連結基で連結している場合、2価の連結基と窒素原子が条件(b)の連結基に対応し、2つのアリール基が条件(b)の芳香環に対応する。
 条件(a)を満たす2つのD(「一方のD」と「他方のD」)は、下記一般式(2)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000031
 一般式(2)において、R11~R19は各々独立に水素原子、置換基、またはLとの結合位置を表し、R11~R19のうちの1つはLとの結合位置である。Lとの結合位置であるものは、R19であることが好ましい。置換基の数は特に制限されず、R11~R19のうちの、Lとの結合位置を除いたすべてが無置換(水素原子)であってもよい。R11~R19うちの2つ以上が置換基である場合、複数の置換基は互いに同一であっても異なっていてもよい。ただし、一方のDとなる一般式(2)で表される基と他方のDとなる一般式(2)で表される基の間では、条件(a)を満たすように、R11~R19のうちの置換基の数、置換基であるものの位置、および、置換基の構造の少なくとも1つの条件が互いに異なる。
 例えば、一方のDでは、R11~R18の少なくとも1つが置換基であり、他方のDでは、R11~R18のうち、一方のDで置換基であるものに対応するものが水素原子であることが好ましく、一方のDでは、R13およびR16の少なくとも一方が置換基であり、他方のDでは、R13およびR16のうち、一方のDで置換基であるものに対応するものが水素原子であることがより好ましい。また、一方のDでは、R13およびR16の両方が置換基であることがさらに好ましく、R13およびR16の両方が置換もしくは無置換のアリール基であることがさらにより好ましい。他方のDでは、R11~R18の全てが水素原子であることがさらに好ましい。
 以下において、一般式(2)で表される基の具体例を例示する。ただし、本発明において用いることができる一般式(2)で表される基はこれらの具体例によって限定的に解釈されるべきものではない。以下に例示する基において、ベンゼン環から伸びていて、他の原子との間の連結基として表示されていない単一の線はメチル基を表すものである。以下に例示する基は、カルバゾール環の1~9位に結合している水素原子とLが置き換わってLと結合する。カルバゾール環におけるLの結合位置は9位であることが好ましい。条件(a)を満たす2つのDの組み合わせとしては、例えばこれらの基から選択される2種類の基の組み合わせを採用することができる。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 条件(a)または(b)を満たす2つのD(「一方のD」と「他方のD」)は、下記一般式(3)~(5)のいずれかで表される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000035
 一般式(3)~(5)において、R21~R31、R41~R53、R61~R73は各々独立に水素原子、置換基、またはLとの結合位置を表し、R21~R31のうちの1つ、R41~R53のうちの1つ、R61~R73のうちの1つは、それぞれLとの結合位置である。Lとの結合位置であるものは、R31、R53、R73であることが好ましい。R21~R30のうちの1つ、R41~R52のうちの1つ、R61~R72のうちの1つがLとの結合位置である場合、一般式(3)~(5)のいずれかで表される基は条件(a)の対象になる。R31、R53、R73がLとの結合位置である場合、一般式(3)~(5)のいずれかで表される基は条件(b)の対象になり、窒素原子が条件(b)の連結基に対応し、窒素原子に結合しているベンゼン環、ナフタレン環が条件(b)の芳香環に対応する。一般式(3)~(5)における置換基の数は特に制限されず、R21~R31、R41~R53、R61~R67、R68~R72のうちの、Lとの結合位置を除いたすべてが無置換(水素原子)であってもよい。また、一般式(3)~(5)のそれぞれにおいて置換基が2つ以上ある場合、それらの置換基は互いに同一であっても異なっていてもよい。ただし、一方のDとなる一般式(3)~(5)のいずれかで表される基と、他方のDとなる一般式(3)~(5)のいずれかで表される基の間では、条件(a)または条件(b)を満たすように、R21~R31、R41~R53およびR61~R73の少なくともいずれかの群において、置換基の数、置換基であるものの位置、および、置換基の構造の少なくとも1つの条件が互いに異なる。
 以下において、一般式(3)~(5)のいずれかで表される基の具体例を例示する。ただし、本発明において用いることができる一般式(3)~(5)のいずれかで表される基はこれらの具体例によって限定的に解釈されるべきものではない。以下に例示する基において、ベンゼン環から伸びていて、他の原子との間の連結基として表示されていない単一の線はメチル基を表すものである。以下に例示する基は、環構造を構成するいずれか1つのメチン基(-CH=)の水素原子、または、窒素原子に結合している水素原子とLが置き換わってLと結合する。これらの基におけるLの結合位置は窒素原子であること好ましい。条件(a)または(b)を満たす2つのDの組み合わせとしては、例えばこれらの基から選択される2種類の基の組み合わせを採用することができる。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 条件(a)または(b)を満たす2つのD(「一方のD」と「他方のD」)は、下記一般式(6)で表される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000040
 一般式(6)において、R81~R95は各々独立に水素原子、置換基、またはLとの結合位置を表し、R81~R95のうちの1つはLとの結合位置である。Lとの結合位置であるものはR83であることが好ましい。一般式(6)で表される基では、窒素原子に結合している3つのベンゼン環のうち、Lとの結合位置を有するベンゼン環が条件(a)の芳香環に対応する。または、Lとの結合位置を有するベンゼン環と窒素原子を条件(b)の連結基に対応させ、残りの2つのベンゼン環を条件(b)の芳香環に対応させて見ることもできる。置換基の数は特に制限されず、R81~R95のうちの、Lとの結合位置を除いたすべてが無置換(水素原子)であってもよい。また、R81~R95のうちの2つ以上が置換基である場合、複数の置換基は互いに同一であっても異なっていてもよい。ただし、一方のDとなる一般式(6)で表される基と、他方のDとなる一般式(6)で表される基の間では、条件(a)または(b)を満たすように、R81~R83、R86~R90およびR91~R95の少なくともいずれかの群において、置換基の数、置換基であるものの位置、および、置換基の構造の少なくとも1つの条件が互いに異なる。
 条件(a)を満たす2つのD(「一方のD」と「他方のD」)は、下記一般式(7)で表される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000041
 一般式(7)において、R101~R109は各々独立に水素原子、置換基、またはLとの結合位置を表し、R101~R109のうちの1つはLとの結合位置である。Lとの結合位置であるものは、R109であることが好ましい。置換基の数は特に制限されず、R101~R109のうちの、Lとの結合位置を除いたすべてが無置換(水素原子)であってもよい。R101~R109のうちの2つ以上が置換基である場合、複数の置換基は互いに同一であっても異なっていてもよい。ただし、一方のDとなる一般式(7)で表される基と、他方のDとなる一般式(7)で表される基の間では、条件(a)を満たすように、R101~R109のうちの置換基の数、置換基であるものの位置、および、置換基の構造の少なくとも1つの条件が互いに異なる。
 条件(a)を満たす2つのD(「一方のD」と「他方のD」)は、下記一般式(8)で表される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000042
 一般式(8)において、R111~R119は各々独立に水素原子、置換基、またはLとの結合位置を表し、R111~R119のうちの1つはLとの結合位置である。Lとの結合位置であるものは、R119であることが好ましい。置換基の数は特に制限されず、R111~R119のうちのLとの結合位置を除いたすべてが無置換(水素原子)であってもよい。R111~R119のうちの2つ以上が置換基である場合、複数の置換基は互いに同一であっても異なっていてもよい。ただし、一方のDとなる一般式(8)で表される基と、他方のDとなる一般式(8)で表される基の間では、条件(a)を満たすように、R111~R119のうちの置換基の数、置換基であるものの位置、および、置換基の構造の少なくとも1つの条件が互いに異なる。
 条件(a)を満たす2つのD(「一方のD」と「他方のD」)は、下記一般式(9)で表される基であることも好ましい。
Figure JPOXMLDOC01-appb-C000043
 一般式(9)において、R121~R131は各々独立に水素原子、置換基、またはLとの結合位置を表し、R121~R131のうちの1つはLとの結合位置である。Lとの結合位置であるものは、R131であることが好ましい。置換基の数は特に制限されず、R121~R131のうちの、Lとの結合位置を除いたすべてが無置換(水素原子)であってもよい。R121~R131のうちの2つ以上が置換基である場合、複数の置換基は互いに同一であっても異なっていてもよい。ただし、一方のDである一般式(9)で表される基と、他方のDである一般式(9)で表される基の間では、条件(a)を満たすように、R121~R131のうちの置換基の数、置換基であるものの位置、および、置換基の構造の少なくとも1つの条件が互いに異なる。
 一般式(2)のR11~R19と、一般式(3)のR21~R31と、一般式(4)のR41~R53と、一般式(5)のR61~R73と、一般式(6)のR81~R95と、一般式(7)のR101~R109と、一般式(8)のR111~R119と、一般式(9)のR121~R131がとりうる置換基として、例えばヒドロキシ基、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基およびニトロ基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは、例えばこれらの具体例の置換基により置換されていてもよい。より好ましい置換基は、炭素数1~20の置換もしくは無置換のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40の置換もしくは無置換のアリール基、炭素数1~20の置換もしくは無置換のジアリールアミノ基、置換もしくは無置換のカルバゾリル基である。
 Dのうちの条件(a)または(b)を満たす基を除いた残りの基はハメットのσp値が負の基であればよく、他には特に制限されないが、ジアリールアミン構造(ただし、ジアリールアミン構造を構成する2つのアリール基は互いに結合していてもよい)を含むことが好ましく、ジアリールアミノ基(ただし、ジアリールアミノ基を構成する2つのアリール基は互いに結合していてもよい)を含むことがより好ましく、一般式(2)~(9)で表される基であることがさらに好ましい。これらの構造および基の説明と好ましい範囲、具体例については、条件(a)または(b)を満たす2つのDにおける、ジアリールアミン構造、ジアリールアミノ基、一般式(2)~(9)で表される基についての説明と好ましい範囲、具体例を参照することができる。ただし、これらの参照において、条件(a)または(b)に関する記載については参照する内容に含めないこととする。
 一般式(1)で表される化合物は、下記一般式(10)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000044
 一般式(10)において、Aはハメットのσp値が正の基を表す。R~Rは各々独立に水素原子、ハメットのσp値が正の基またはハメットのσp値が負の基を表し、R~Rの少なくとも2つはハメットのσp値が負の基(ただしフェニル基は除く)である。R~Rの1つ以上がハメットのσp値が正の基であるとき、Aが表すハメットのσp値が正の基およびR~Rのうちのハメットのσp値が正の基は互いに同一であっても異なっていてもよい。
 R~Rのうちのハメットのσp値が負の基の2つは、下記条件(a)または条件(b)を満たすことが好ましい。
 条件(a)
 2つのハメットのσp値が負の基が、いずれもLに結合する原子を含む芳香環を有しており、2つのハメットのσp値が負の基の間で、その芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
 条件(b)
 2つのハメットのσp値が負の基が、いずれもLに結合する連結基と該連結基に結合している1つ以上の芳香環を有しており、2つのハメットのσp値が負の基の両方で連結基に結合している芳香環が1つである場合、2つのハメットのσp値が負の基の間で、連結基および連結基に結合している芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。2つのハメットのσp値が負の基の両方で連結基に結合する芳香環が2つ以上である場合、2つのハメットのσp値が負の基の間で、連結基、連結基に結合している芳香環の数、および、複数の芳香環はそれぞれ共通しているが、2つのハメットのσp値が負の基の間の、互いに共通する芳香環の組み合わせの少なくとも1つにおいて、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
 A、R~Rが表すハメットのσp値が正の基、R~Rが表すハメットのσp値が負の基、および、R~Rのうちのハメットのσp値が負の基の2つの説明と好ましい範囲、具体例、および、条件(a)、(b)の説明については、一般式(1)のAが表すハメットのσp値が正の基、Dが表すハメットのσp値が負の基、複数のDのうちの2つについての説明と好ましい範囲、具体例、および条件(a)および(b)についての説明をそれぞれ参照することができる。
 R~Rのうちハメットのσp値が正の基であるものの数は、0~3であることが好ましく、0~2であることがより好ましく、0または1であることがさらに好ましく、0であることが最も好ましい。R~Rのうちハメットのσp値が負の基であるものの数は、2~5であることが好ましく、3~5であることがより好ましく、4または5であることがさらに好ましく、5であることが最も好ましい。R~Rのうち、条件(a)または条件(b)を満たす2つの基であるもの組み合わせは1つであっても2つであってもよい。また、条件(a)または条件(b)を満たす2つの基であるもの組み合わせは、一般式(1)におけるベンゼン環の互いに点対称な位置にあるものの組み合わせであることが好ましい。すなわち、RとRの組み合わせ、および、RとRの組み合わせの一方または両方が条件(a)または条件(b)を満たすことが好ましい。
 一般式(1)で表される化合物は、下記一般式(11)で表される化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000045
 一般式(11)において、AX1はハメットのσp値が正の基を表す。RX11~RX14は各々独立に水素原子、ハメットのσp値が正の基またはハメットのσp値が負の基を表し、RX11~RX14の少なくとも2つはハメットのσp値が負の基(ただしフェニル基は除く)である。RX11~RX14の1つ以上がハメットのσp値が正の基であるとき、AX1が表すハメットのσp値が正の基およびRX11~RX14のうちのハメットのσp値が正の基は互いに同一であっても異なっていてもよい。
 RX11~RX14のうちのハメットのσp値が負の基の2つは、上記の条件(a)または条件(b)を満たすことが好ましい。
 A、RX11~RX14が表すハメットのσp値が正の基、RX11~RX14が表すハメットのσp値が負の基、および、RX11~RX14のうちのハメットのσp値が負の基の2つの説明と好ましい範囲、具体例、および、条件(a)、(b)の説明については、一般式(1)のAが表すハメットのσp値が正の基、Dが表すハメットのσp値が負の基、複数のDのうちの2つについての説明と好ましい範囲、具体例、および条件(a)および(b)についての説明をそれぞれ参照することができる。
 RX11~RX14のうちハメットのσp値が正の基であるものの数は、0~2であることが好ましく、0または1であることがより好ましく、0であることが最も好ましい。RX11~RX14のうちハメットのσp値が負の基であるものの数は、2~4であることが好ましく、3または4であることがより好ましく、4であることがさらに好ましい。RX11~RX14のうち、条件(a)または条件(b)を満たす2つの基であるもの組み合わせは1つであっても2つであってもよい。
 以下において、一般式(1)で表される化合物の具体例を例示する。具体例のうち、化合物1~7については表において特定するとともに構造式も以下に掲載する。また、化合物8以降については表においてのみ特定する。ただし、本発明において用いることができる一般式(1)で表される化合物はこれらの具体例によって限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000046
 以下の表に、一般式(10)または一般式(11)で表される化合物の具体例を掲載する。一般式(10)や一般式(11)の中の置換基を表す一般式(2a)と一般式(2b)も以下に記載する。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
 表1~8中におけるD1~D60およびA1~A13の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
 一般式(1)で表される化合物の分子量は、例えば一般式(1)で表される化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることがさらにより好ましい。分子量の下限値は、一般式(1)で表される最小化合物の分子量である。
 一般式(1)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。
 本発明を応用して、分子内に一般式(1)で表される構造を複数個含む化合物を、発光材料として用いることも考えられる。
 例えば、一般式(1)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、発光材料として用いることが考えられる。具体的には、一般式(1)のL、A、Dのいずれかに重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を発光材料として用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしをカップリングさせることにより、二量体や三量体を得て、それらを発光材料として用いることも考えられる。
 一般式(1)で表される構造を含む繰り返し単位を有する重合体の例として、下記一般式(12)または(13)で表される構造を含む重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000069
 一般式(12)または(13)において、Qは一般式(1)で表される構造を含む基を表し、LおよびLは連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
 一般式(12)または(13)において、R201、R202、R203およびR204は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
 LおよびLで表される連結基は、Qを構成する一般式(1)の構造のL、A、Dのいずれかに結合することができる。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。
 繰り返し単位の具体的な構造例として、下記一般式(14)~(17)で表される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000070
 これらの一般式(14)~(17)を含む繰り返し単位を有する重合体は、一般式(1)の構造のL、A、Dのいずれかにヒドロキシ基を導入しておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000071
 分子内に一般式(1)で表される構造を含む重合体は、一般式(1)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもよい。また、重合体の中に含まれる一般式(1)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができる。
[一般式(1)で表される化合物の合成方法]
 一般式(1)で表される化合物は、既知の反応を組み合わせることによって合成することができる。例えば、Aがすでに導入されている芳香族化合物に対して、Dをさらに導入することにより合成することができる。Dの導入は、例えば芳香族求核置換反応によって行うことが可能である。そのような反応を一般化したスキームを以下に一例として挙げる。
Figure JPOXMLDOC01-appb-C000072
 一般式(18)~(20)におけるA、L、m、nの定義は、一般式(1)における定義と同じである。一般式(18)および(19)におけるXはハロゲン原子を表す。ハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、フッ素原子、塩素原子、臭素原子が好ましく、フッ素原子、塩素原子がより好ましく、フッ素原子がさらにより好ましい。一般式(19)、(20)およびH-DにおけるDと、一般式(20)およびH-DにおけるDは、それぞれ独立にハメットのσp値が負の基(ただしフェニル基は除く)である。ただし、DとDの構造は互いに異なる。pは1以上であって、n未満の整数である。分子内に複数のAが存在するとき、複数のAは互いに同一であっても異なっていてもよい。分子内に複数のXが存在するとき、複数のXは互いに同一であっても異なっていてもよい。
 上記の(スキーム1)においては、Aがすでに導入されているハロゲン置換芳香族化合物を出発物質として用いる。この出発物質に対して、H-Dを反応させることにより、芳香環に結合しているハロゲン原子の少なくとも1つをDで置換する。これによって、一般式(19)で表される化合物を得ることができる。このときの反応条件を制御したり、精製条件を変えたり、Dを導入したい位置のXとDを導入したい位置のXのハロゲン種を異なるものとしたりすることにより、得られる一般式(19)のpの値や芳香環におけるDの導入位置を制御することができる。次に、得られた一般式(19)の化合物に対して、H-Dを反応させることにより、芳香環に結合している残りのハロゲン原子をDで置換する。これによって、一般式(20)で表される化合物を得ることができる。一般式(20)で表される化合物は、一般式(1)で表される化合物である。
 (スキーム1)は、H-Dを反応させた後にH-Dを反応させるという2段階反応によって一般式(1)で表される化合物を合成するものであるが、H-Dを反応させた後にH-Dを反応させ、さらにH-Dを反応させる3段階反応で一般式(1)で表される化合物を合成することも可能である。ここでDは、DやDとは異なる構造を有する、ハメットのσp値が負の基である。この3段階反応によれば、D、D、Dの3種のDを有する一般式(1)の化合物を得ることができる。また、この考え方をさらに応用して多段階反応を行うことにより、D、D、D・・・Dのw種のDを有する一般式(1)の化合物を得ることもできる。
 (スキーム1)は、H-Dを反応させた後にH-Dを反応させるという逐次反応を行うものであるが、以下の(スキーム2)に示すように、出発物質である一般式(18)とともに、H-DとH-Dを反応混合物中に存在させて、一気に一般式(20)で表される化合物を得ることも可能である。このとき、反応条件、H-DとH-Dの存在比率、ハロゲン原子種、精製条件などを制御することにより、所望のpを有する化合物を得ることができる。スキーム2を応用すれば、H-D、H-D・・・H-Dを反応混合物中に存在させておくことにより、D、D、D・・・Dのw種のDを有する一般式(1)の化合物を得ることも可能である。
Figure JPOXMLDOC01-appb-C000073
 (スキーム1)や(スキーム2)における目的化合物は、下記のような芳香族求核置換反応を応用することによって合成することができる。また、S. Tanimoto, et al., Chem.Lett., 45, 770 (2016)に記載される方法にしたがって合成することも可能である。具体的な反応条件や合成手順については、後述の合成例の記載を参照することができる。
Figure JPOXMLDOC01-appb-C000074
(合成中間体)
 上記一般式(19)で表される化合物は、一般式(20)で表される化合物[一般式(1)で表される化合物]の合成中間体として有用である。
 一般式(19)におけるA、L、m、nの説明と好ましい範囲については、一般式(1)におけるA、L、m、nの説明と好ましい範囲を参照することができる。一般式(19)におけるpは、1以上であってn未満である整数であるが、1~3の範囲内であることが好ましく、1または2であることがより好ましい。一般式(19)におけるDについては、一般式(1)におけるDの説明と好ましい範囲を参照することができるが、好ましくはヘテロ原子を含む基であり、より好ましくはヘテロ原子に芳香環が結合した基である。ヘテロ原子としては窒素原子を採用することが好ましい。好ましい具体例として、ジアリールアミン構造、カルバゾリル構造を含む基を挙げることができる。Aとしては、シアノ基を好ましく採用することができる。また、pが2以上であって、Lが6員芳香環連結基であるとき、少なくとも2つのXは互いに6員芳香環のパラ位に位置するように結合していることが好ましい。
 一般式(19)の具体的化合物例として、一般式(1)の具体的化合物例の表における一般式(2b)で表される基をハロゲン原子に置換した化合物を挙げることができる。すなわち、一般式(1)の具体的化合物例として挙げた化合物番号1~912の一般式(2b)で表される基をフッ素原子に置換した各化合物を化合物番号1001~1912として本明細書に具体的に開示する。また、般式(1)の具体的化合物例として挙げた化合物番号1~912の一般式(2b)で表される基を塩素原子に置換した各化合物を化合物番号2001~2912として本明細書に具体的に開示する。また、一般式(1)の具体的化合物例として挙げた化合物番号1~912の一般式(2b)で表される基を臭素原子に置換した各化合物を化合物番号3001~3912として本明細書に具体的に開示する。さらに、一般式(1)の具体的化合物例として挙げた化合物番号1~912の一般式(2b)で表される基をヨウ素原子に置換した各化合物を化合物番号4001~4912として本明細書に具体的に開示する。なお、化合物番号1001~4912のうち、対応する化合物番号1~912に一般式(2b)が存在しないものは欠番とする。
[有機発光素子]
 本発明の一般式(1)で表される化合物は、発光素子用の材料として有用であり、特に、有機発光素子の発光材料として好適に用いることができる。このため、本発明の一般式(1)で表される化合物は、有機発光素子の発光層に発光材料として効果的に用いることができる。一般式(1)で表される化合物の中には、遅延蛍光を放射する遅延蛍光材料(遅延蛍光体)が含まれている。すなわち本発明は、一般式(1)で表される構造を有する遅延蛍光体の発明と、一般式(1)で表される化合物を遅延蛍光体として使用する発明と、一般式(1)で表される化合物を用いて遅延蛍光を発光させる方法の発明も提供する。そのような化合物を発光材料として用いた有機発光素子は、遅延蛍光を放射し、発光効率が高いという特徴を有する。その原理を、有機エレクトロルミネッセンス素子を例にとって説明すると以下のようになる。
 有機エレクトロルミネッセンス素子においては、正負の両電極より発光材料にキャリアを注入し、励起状態の発光材料を生成し、発光させる。通常、キャリア注入型の有機エレクトロルミネッセンス素子の場合、生成した励起子のうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起される。従って、励起三重項状態からの発光であるリン光を利用するほうが、エネルギーの利用効率が高い。しかしながら、励起三重項状態は寿命が長いため、励起状態の飽和や励起三重項状態の励起子との相互作用によるエネルギーの失活が起こり、一般にリン光の量子収率が高くないことが多い。一方、遅延蛍光材料は、項間交差等により励起三重項状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆項間交差され蛍光を放射する。有機エレクトロルミネッセンス素子においては、なかでも熱エネルギーの吸収による熱活性化型の遅延蛍光材料が特に有用であると考えられる。有機エレクトロルミネッセンス素子に遅延蛍光材料を利用した場合、励起一重項状態の励起子は通常通り蛍光を放射する。一方、励起三重項状態の励起子は、デバイスが発する熱を吸収して励起一重項へ項間交差され蛍光を放射する。このとき、励起一重項からの発光であるため蛍光と同波長での発光でありながら、励起三重項状態から励起一重項状態への逆項間交差により、生じる光の寿命(発光寿命)は通常の蛍光やりん光よりも長くなるため、これらよりも遅延した蛍光として観察される。これを遅延蛍光として定義できる。このような熱活性化型の励起子移動機構を用いれば、キャリア注入後に熱エネルギーの吸収を経ることにより、通常は25%しか生成しなかった励起一重項状態の化合物の比率を25%以上に引き上げることが可能となる。100℃未満の低い温度でも強い蛍光および遅延蛍光を発する化合物を用いれば、デバイスの熱で充分に励起三重項状態から励起一重項状態への項間交差が生じて遅延蛍光を放射するため、発光効率を飛躍的に向上させることができる。
 特に、一般式(1)で表される化合物であって遅延蛍光を放射するものは、三重項励起状態から一重項励起状態への逆項間交差の速度定数kRISCが非常に大きいため、励起過程での三重項励起子の蓄積が効果的に抑制されると推測される。これにより、一般式(1)で表される化合物を用いた発光素子では、三重項励起子の蓄積に起因する励起子消滅やデバイス劣化が抑えられ、より高い発光効率と優れた高い耐久性を得ることができる。また、励起子消滅が抑えられることにより、有機レーザーの実現にも大いに貢献することができる。
 本発明の一般式(1)で表される化合物を発光層の発光材料として用いることにより、有機フォトルミネッセンス素子(有機PL素子)や有機エレクトロルミネッセンス素子(有機EL素子)などの優れた有機発光素子を提供することができる。このとき、本発明の一般式(1)で表される化合物は、いわゆるアシストドーパントとして、発光層に含まれる他の発光材料の発光をアシストする機能を有するものであってもよい。すなわち、発光層に含まれる本発明の一般式(1)で表される化合物は、発光層に含まれるホスト材料の最低励起一重項エネルギー準位と発光層に含まれる他の発光材料の最低励起一重項エネルギー準位の間の最低励起一重項エネルギー準位を有するものであってもよい。
 有機フォトルミネッセンス素子は、基板上に少なくとも発光層を形成した構造を有する。また、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
 以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
(基板)
 本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
(陽極)
 有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(陰極)
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
(発光層)
 発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。発光材料としては、一般式(1)で表される本発明の化合物群から選ばれる1種または2種以上を用いることができる。本発明の有機エレクトロルミネッセンス素子および有機フォトルミネッセンス素子が高い発光効率を発現するためには、発光材料に生成した一重項励起子および三重項励起子を、発光材料中に閉じ込めることが重要である。従って、発光層中に発光材料に加えてホスト材料を用いることが好ましい。ホスト材料としては、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が本発明の発光材料よりも高い値を有する有機化合物を用いることができる。その結果、本発明の発光材料に生成した一重項励起子および三重項励起子を、本発明の発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。もっとも、一重項励起子および三重項励起子を十分に閉じ込めることができなくても、高い発光効率を得ることが可能な場合もあるため、高い発光効率を実現しうるホスト材料であれば特に制約なく本発明に用いることができる。本発明の有機発光素子または有機エレクトロルミネッセンス素子において、発光は発光層に含まれる本発明の発光材料から生じる。この発光は蛍光発光および遅延蛍光発光の両方を含む。但し、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
 ホスト材料を用いる場合、発光材料である本発明の化合物が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
 発光層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
(阻止層)
 阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
(正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
(電子阻止層)
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
(励起子阻止層)
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
(正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 有機エレクトロルミネッセンス素子を作製する際には、一般式(1)で表される化合物を発光層に用いるだけでなく、発光層以外の層にも用いてもよい。その際、発光層に用いる一般式(1)で表される化合物と、発光層以外の層に用いる一般式(1)で表される化合物は、同一であっても異なっていてもよい。例えば、上記の注入層、阻止層、正孔阻止層、電子阻止層、励起子阻止層、正孔輸送層、電子輸送層などにも一般式(1)で表される化合物を用いてもよい。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。
 まず、発光層のホスト材料としても用いることができる好ましい化合物を挙げる。
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
 次に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000081
 次に、正孔輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
 次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000089
 次に、正孔阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000090
 次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000094
 さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。
Figure JPOXMLDOC01-appb-C000095
 上述の方法により作製された有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、りん光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
 一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
 本発明の有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、発光層に一般式(1)で表される化合物を含有させることにより、発光効率が大きく改善された有機発光素子が得られる。本発明の有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。
 本発明には、下記の事項も含まれている。
[1] 下記一般式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000096
[一般式(1)において、Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基であり、Dはハメットのσp値が負の基であり、mは1以上の整数であり、nは2以上の整数である。mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。複数のDのうちの2つは、下記条件(a)または下記条件(b)を満たす。
 条件(a)
 2つのDがいずれもLに結合する原子を含む芳香環を有しており、前記2つのDの間で、その芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
 条件(b)
 つのDがいずれもLに結合する連結基と該連結基に結合している1つの芳香環を有しており、前記2つのDの間で、前記連結基および前記連結基に結合している芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。2つのDがいずれもLに結合する連結基と該連結基に結合している2つ以上の芳香環を有しており、前記2つのDの間で、前記連結基、前記連結基に結合している芳香環の数、および、複数の芳香環はそれぞれ共通しているが、前記2つのDの間の、互いに共通する芳香環の組み合わせの少なくとも1つにおいて、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。]
[2] 前記複数のDのうちの2つが、ジアリールアミン構造(ただし、ジアリールアミン構造を構成する2つのアリール基は互いに結合していてもよい)を含む、[1]に記載の化合物。
[3] 前記ジアリールアミン構造がカルバゾール構造である、[2]に記載の化合物。
[4] 前記複数のDのうちの2つが、ジアリールアミノ基(ただし、ジアリールアミノ基を構成する2つのアリール基は互いに結合していてもよい)を含む、[1]に記載の化合物。
[5] 前記ジアリールアミノ基がLに単結合で結合している、[4]に記載の化合物。
[6] 前記複数のDのうちの2つが前記条件(a)を満たす、[1]~[5]のいずれか1項に記載の化合物。
[7] 前記複数のDのうちの2つが下記一般式(2)で表される基である、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000097
[一般式(2)において、R11~R19は各々独立に水素原子、置換基、またはLとの結合位置を表し、R11~R19のうちの1つはLとの結合位置である。]
[8] 前記一般式(2)のR19がLとの結合位置である、[7]に記載の化合物。
[9] 前記複数のDのうちの2つの一方は、前記一般式(2)のR11~R18の少なくとも1つが置換基であり、前記複数のDのうちの2つの他方は、前記一般式(2)のR11~R18のうち、前記複数のDのうちの2つの一方で置換基であるものに対応するものが水素原子である、[7]または[8]に記載の化合物。
[10] 前記複数のDのうちの2つの一方は、前記一般式(2)のR13およびR16の少なくとも一方が置換基である、[7]~[9]のいずれか1項に記載の化合物。
[11] 前記置換基が、置換もしくは無置換のアルキル基または置換もしくは無置換のアリール基である、[9]または[10]に記載の化合物。
[12] 前記一般式(1)で表される化合物が、下記一般式(10)で表される化合物である、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000098
[一般式(10)において、Aはハメットのσp値が正の基を表す。R~Rは各々独立に水素原子、ハメットのσp値が正の基またはハメットのσp値が負の基を表し、R~Rの少なくとも2つはハメットのσp値が負の基である。R~Rのうちの1つ以上がハメットのσp値が正の基であるとき、Aが表すハメットのσp値が正の基およびR~Rのうちのハメットのσp値が正の基は互いに同一であっても異なっていてもよい。R~Rのうちのハメットのσp値が負の基の2つは、下記条件(a)または条件(b)を満たす。
 条件(a)
 2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する原子を含む芳香環を有しており、前記2つのハメットのσp値が負の基の間で、その芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
 条件(b)
 2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する連結基と該連結基に結合している1つの芳香環を有しており、前記2つのハメットのσp値が負の基の間で、前記連結基および前記連結基に結合している芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する連結基と該連結基に結合している2つ以上の芳香環を有しており、前記2つのハメットのσp値が負の基の間で、前記連結基、前記連結基に結合している芳香環の数、および、複数の芳香環はそれぞれ共通しているが、前記2つのハメットのσp値が負の基の間の、互いに共通する芳香環の組み合わせの少なくとも1つにおいて、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。]
[13] 前記一般式(10)のR~Rがハメットのσp値が負の基である、[12]に記載の化合物。
[14] 前記一般式(10)のRとRの組み合わせ、および、RとRの組み合わせの少なくとも一方が前記条件(a)または(b)を満たす、[13]に記載の化合物。
[15] [1]~[14]のいずれか1項に記載の化合物からなる発光材料。
[16] [1]~[14]のいずれか1項に記載の化合物を含むことを特徴とする発光素子。
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、発光特性の評価は、ソースメータ(ケースレー社製:2400シリーズ)、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、光学分光器(オーシャンオプティクス社製:USB2000)、分光放射計(トプコン社製:SR-3)およびストリークカメラ(浜松ホトニクス(株)製C4334型)を用いて行った。
 実施例で用いた化合物の励起一重項状態からの放射速度定数k、励起三重項状態からの無放射速度定数knr 、励起一重項状態から励起三重項状態への項間交差の速度定数kISC、励起三重項状態から励起一重項状態への逆項間交差の速度定数kRISCは、プロンプト成分(通常の蛍光成分)および遅延成分の寿命、アルゴンバブリング前後の発光量子収率から求めた。
 実施例で用いた化合物の最低励起一重項エネルギー準位(ES1)と最低励起三重項エネルギー準位(ET1)の差ΔESTは、最低励起一重項エネルギー準位(ES1)と最低励起三重項エネルギー準位(ET1)を以下の方法で算出し、ΔEST=ES1-ET1により求めた。
(1)最低励起一重項エネルギー準位(ES1
 測定対象化合物のトルエン溶液(濃度10-5mol/L)を調製して試料とした。常温(300K)でこの試料の蛍光スペクトルを測定した。蛍光スペクトルは、縦軸を発光、横軸を波長とした。この発光スペクトルの短波側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をES1とした。
  換算式:ES1[eV]=1239.85/λedge
 発光スペクトルの測定は、励起光源にLED光源(Thorlabs社製、M340L4)を用いて検出器(浜松ホトニクス社製、PMA-50)により行った。
(2)最低励起三重項エネルギー準位(ET1
 最低励起一重項エネルギー準位(ES1)の測定で用いたのと同じ試料を、液体窒素によって77[K]に冷却し、励起光(340nm)を燐光測定用試料に照射し、検出器を用いて燐光を測定した。励起光照射後から100ミリ秒以降の発光を燐光スペクトルとした。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をET1とした。
  換算式:ET1[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引いた。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
 なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
化合物の合成
(合成例1) 化合物1の合成
Figure JPOXMLDOC01-appb-C000099
 化合物zをAdv. Opt. Mater. 4, 688-693 (2016)に記載されている方法と同等の方法で合成した。
 次に、窒素気流下で水素化ナトリウム(60% 鉱物油分散物、0.08g、1.98mmol)のテトラヒドロフラン溶液(20mL)に3,6-ジメチルカルバゾール(0.39g、1.98mmol)を加え、室温で1時間攪拌した。この混合物を0℃に冷却して化合物z(0.5g、0.79mmol)を加え、50℃で12時間攪拌した。この反応混合物を氷水に加えてクエンチし、ろ過することによって粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=3:2)で精製し、黄色固体の化合物1(0.79g、0.75mmol、収率95%)を得た。
1H NMR: (500 MHz, acetone-d6): δ (ppm) = 7.83 (d, J = 8.2 Hz, 4H),7.71 (d, J = 7.1 Hz, 4H), 7.64 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H),7.34 (d, J = 7.2 Hz, 2H), 7.09 (m, 12H), 6.72 (t, J = 7.9 Hz, 2H), 6.62 (d, J =8.4 Hz, 2H), 6.45 (d, J = 8.3 Hz, 4H), 2.11 (s, 12H)
(合成例2) 化合物2の合成
Figure JPOXMLDOC01-appb-C000100
 窒素気流下で水素化ナトリウム(60% 鉱物油分散物、0.14g、3.58mmol)のテトラヒドロフラン溶液(20mL)に3,6-ジ-tert-ブチルカルバゾール(1g、3.58mmol)を加え、室温1時間攪拌した。この混合物を0℃に冷却して化合物z(1.04g、1.63mmol)を加え、50℃で12時間攪拌した。この反応混合物を氷水に加えてクエンチし、ろ過することによって粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:1)で精製し、黄色固体の化合物2(1.8g、1.56mmol、収率96%)を得た。
(合成例3) 化合物3の合成
Figure JPOXMLDOC01-appb-C000101
 窒素気流下で水素化ナトリウム(60% 鉱物油分散物、0.13g、3.15mmol)のテトラヒドロフラン溶液(20mL)に3,6-ジフェニルカルバゾール(1g、3.15mmol)を加え、室温1時間攪拌した。この混合物を0℃に冷却して化合物z(0.8g、1.26mmol)を加え、50℃で12時間攪拌した。この反応混合物を氷水に加えてクエンチし、ろ過することによって粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=3:2)で精製し、黄色固体の化合物3(1.36g、1.10mmol、収率87%)を得た。
1H NMR: (500 MHz, acetone-d6): δ (ppm) = 7.82 (m, 14H), 7.72 (d, J =8.7 Hz, 4H), 7.45 (m, 8H), 7.35 (m, 10H), 7.26 (t, J = 8.6 Hz, 4H), 7.16 (t, J= 8.3 Hz, 4H), 7.10 (t, J = 7.9 Hz, 4H), 6.98 (d, J = 8.6 Hz, 4H), 6.75 (m, 4H)
(合成例4) 化合物4の合成
Figure JPOXMLDOC01-appb-C000102
 化合物yをAdv. Opt. Mater. 4, 688-693 (2016) に記載されている方法と同等の方法で合成した。
 次いで、窒素気流下で水素化ナトリウム(60% 鉱物油分散物、0.08g、1.92mmol)のテトラヒドロフラン溶液(20mL)に3,6-ジメチルカルバゾール(0.37g、1.92mmol)を加え、室温1時間攪拌した。この混合物を0℃に冷却し、化合物y(1.0g、1.28mmol)を加え、50℃で12時間攪拌した。この反応混合物を氷水に加えてクエンチし、ろ過することによって粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=3:2)で精製し、黄色固体の化合物4(1.08g、1.13mmol、収率88%)を得た。
(合成例5) 化合物5の合成
Figure JPOXMLDOC01-appb-C000103
 窒素気流下で水素化ナトリウム(60% 鉱物油分散物、0.08g、1.92mmol)のテトラヒドロフラン溶液(20mL)に3,6-ジーtert-ブチルカルバゾール(0.54g、1.92mmol)を加え、室温1時間攪拌した。この混合物を0℃に冷却して化合物y(1.0g、1.28mmol)を加え、50℃で12時間攪拌した。この反応混合物を氷水に加えてクエンチし、ろ過することによって粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=3:2)で精製し、黄色固体の化合物5(1.16g、1.11mmol、収率87%)を得た。
(合成例6) 化合物6の合成
Figure JPOXMLDOC01-appb-C000104
 窒素気流下で水素化ナトリウム(60% 鉱物油分散物、0.08g、1.92mmol)のテトラヒドロフラン溶液(20mL)に3,6-ジフェニルカルバゾール(0.61g、1.92mmol)を加え、室温1時間攪拌した。この混合物を0℃に冷却して化合物y(1.0g、1.28mmol)を加え、50℃で12時間攪拌した。この反応混合物を氷水に加えてクエンチし、ろ過することによって粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=3:2)で精製し、黄色固体の化合物6(1.18g、1.09mmol、収率85%)を得た。
1H NMR: (500 MHz, acetone-d6): δ (ppm) = 7.82 (m, 8H), 7.75 (m, 4H),7.67 (t, J = 7.8 Hz, 4H), 7.45 (m, 4H), 7.35 (m, 8H), 7.25 (t, J = 8.0 Hz, 2H),7.11 (m, 8H), 6.95 (d, J = 8.6 Hz, 2H), 6.74 (m, 4H), 6.66 (t, J = 7.8 Hz, 4H)
(合成例7) 化合物7の合成
Figure JPOXMLDOC01-appb-C000105
 窒素気流下で水素化ナトリウム(60% 鉱物油分散物、0.08g、1.98mmol)のテトラヒドロフラン溶液(15mL)に3,9’-ビカルバゾール(0.66g、1.98mmol)を加え、室温1時間攪拌した。この混合物を0℃に冷却して化合物z(0.5g、0.79mmol)を加え、50℃で12時間攪拌した。この反応混合物を氷水に加えてクエンチし、ろ過することによって粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:1)で精製し、黄色固体の化合物7(0.54g、0.43mmol、収率54%)を得た。
(合成例8) 化合物35の合成
Figure JPOXMLDOC01-appb-C000106
 窒素気流下、トリブチル錫クロリド(5.06g、4.45mL、13.78mmol)および、4-ブロモ-2,3,5,6-テトラフルオロベンゾニトリル(2.92g、11.50mmol)のトルエン溶液(50mL)に、トリ(о-トリル)ホスフィン(0.525g、1.72mmol)およびトリス(ジベンジリデンアセトン)パラジウム(0)(1.57g、1.72mmol)を加え、100℃に昇温し、21時間攪拌した。この混合物を室温に戻し、水を加えてクエンチし、酢酸エチルにより抽出、セライトろ過した。次に、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(ジクロロメタン:ヘキサン=1:2)で精製し、白色固体の化合物a(2.42g、9.63mmol、収率83.7%)を得た。
H-NMR(500MHz、CDCl3、δ):7.56-7.51(m,3H),7.48-7.45(m,2H)
ASAPマススペクトル分析:理論値251.0、観測値251.1
 窒素気流下、水素化ナトリウム(60% 鉱物油分散物、0.125g、3.14mmol)のテトラヒドロフラン溶液(10mL)に9H-カルバゾール(0.397g、2.38mmol)を加え、室温1時間攪拌した。この混合物を-50℃に冷却し、化合物a(0.3g、1.19mmol)を加え、冷却バスを取り外し、徐々に室温に戻しながら22時間攪拌した。この反応混合物を氷水に加えてクエンチし、酢酸エチルにより抽出、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=1:2)で精製し、黄色固体の化合物b(0.486g、0.89mmol、収率74.8%)を得た。
H-NMR(500MHz、CDCl3、δ):8.16(d,J=7.5Hz,4H)、7.62-7.59(m,2H)、7.54-7.49(m,7H)、7.38(dt,J=7.5Hz,1.0Hz,4H),7.30(d,J=7.5Hz,4H)、
ASAPマススペクトル分析:理論値545.2、観測値545.2
Figure JPOXMLDOC01-appb-C000107
 100mLの三口フラスコに3-フェニル-9H-カルバゾール0.575g(2.36mmol)、炭酸カリウム0.702g(3.94mmol)、化合物b 0.5g(0.788mmol)を入れ、当該フラスコ内を窒素置換した。この混合物へ脱水1-メチル-2-ピロリドン10mLを加えた後、窒素雰囲気下、100℃で12時間加熱撹拌した。撹拌後、この混合物を室温に戻した後、水を加えて吸引ろ過した。得られた固体をトルエンへ溶解させシリカゲルカラムクロマトグラフィーで精製した。得られたフラクションを濃縮し、クロロホルムとアセトニトリルの混合溶媒で再結晶したところ淡黄色固体の化合物35(収量:0.60g、収率:77%)を得た。
H NMR(500MHz,CDCl,δ):7.77(d,J=1.2,2H),7.55-7.69(m,4H),7.60(d,J=7.5Hz,2H),7.51(dd,J=8.5Hz,4H),7.42(td,J=8.0,J=2.0,4H),7.32-6.94(m,24H),6.75(d,J=7.5,2H),6.55(td,J=7.51,J=1.2,1H),6.46(t,J=7.5,2H)
ASAPマススペクトル分析:理論値991.37、観測値992.39
(合成例9) 化合物38の合成
Figure JPOXMLDOC01-appb-C000108
 窒素気流下、3,6-ジフェニルカルバゾール(0.66g、2.06mmol)と炭酸カリウム(0.43g、3.11mmol)の1-メチル-2-ピロリドン溶液(10mL)に合成例8で得た化合物b(0.45g、0.825mmol)を加え、100℃、48時間攪拌した。この混合物を室温に戻し、水を加えてクエンチし、酢酸エチルにより抽出、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=1:1)で精製し、黄色固体の化合物38(0.575g、0.502mmol、収率60.9%)を得た。
H-NMR(500MHz、CDCl3、δ):7.81(d,J=1.5Hz,4H)、7.72-7.70(m,4H)、7.54-7.52(m,8H)、7.43(t,J=7.5Hz,8H)、7.32(t,J=7.5Hz、4H)、7.29-7.06(m,20H)、6.86-6.83(m,2H)、6.61-6.58(m,1H)、6.56-6.52(m,2H)
ASAPマススペクトル分析:理論値1143.4、観測値1143.4
(合成例10) 化合物48の合成
Figure JPOXMLDOC01-appb-C000109
 窒素気流下、水素化ナトリウム(60% 鉱油分散物、0.315g、7.88mmol)のテトラヒドロフラン溶液(10mL)に3,6-ジフェニルカルバゾール(0.95g、2.97mmol)を加え、室温1時間攪拌した。この混合物を-50℃に冷却し、合成例8で得た化合物a(0.3g、1.19mmol)を加え、冷却バスを取り外し、徐々に室温に戻しながら17時間攪拌した。この反応混合物を氷水に加えてクエンチし、酢酸エチルにより抽出、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=1:2)で精製し、黄色固体の化合物c(0.308g、0.362mmol、収率30.4%)および黄色固体の化合物d(0.70g、0.609mmol、収率51.2%)を得た。
化合物c:
H-NMR(500MHz、CDCl3、δ):8.42(d,J=1.0Hz,4H)、7.80(dd,J=7.0Hz,2.0Hz,4H)、7.74(dd,J=8.0Hz,1.0Hz,8H)、7.68-7.65(m,2H)、7.58-7.48(m,11H)、7.42(d,J=8.0Hz、4H)、7.40-7.36(m,4H)
ASAPマススペクトル分析:理論値849.3、観測値849.3
化合物d:
H-NMR(500MHz、CDCl3、δ):8.47(d,J=1.5Hz,2H)、7.89(dd,J=8.5Hz,2.0Hz,2H)、7.83(d,J=1.5Hz,2H)、7.80-7.78(m,4H)、7.74(d,J=1.5Hz、2H)、
7.66(d,J=8.0Hz、2H)、7.54-7.52(m,4H)、7.48-7.44(m,8H)、7.42-7.27(m,18H)、7.19-7.16(m,7H)、7.01(d,J=8.0Hz、2H)
ASAPマススペクトル分析:理論値1148.4、観測値1148.4
Figure JPOXMLDOC01-appb-C000110
 窒素気流下、9H-カルバゾール(0.175g、1.05mmol)と炭酸カリウム(0.184g、1.33mmol)の1-メチル-2-ピロリドン溶液(10mL)に化合物c(0.30g、0.35mmol)を加え、100℃、20時間攪拌した。この混合物を室温に戻し、水を加えてクエンチし、酢酸エチルにより抽出、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=1:2)で精製し、黄色固体の化合物48(0.317g、0.277mmol、収率79.1%)を得た。
H-NMR(500MHz、CDCl3、δ):7.96(d,J=1.5Hz,4H)、7.59-7.55(m,12H)、7.45(t,J=7.5Hz,8H)、7.35-7.31(m,12H)、7.07-7.01(m,4H)、7.00-6.94(m,8H)、6.76-6.74(m,2H)、6.58-6.54(m、1H)、6.45(t,J=8.0Hz、2H)
ASAPマススペクトル分析:理論値1143.4、観測値1143.3
(合成例11) 化合物55の合成
Figure JPOXMLDOC01-appb-C000111
 窒素気流下、水素化ナトリウム(60% 鉱油分散物、0.90g、22.51mmol)のテトラヒドロフラン溶液(120mL)に9H-カルバゾール(4.78g、28.59mmol)を加え、1時間攪拌した。この混合物を-50℃に冷却し、2,3,5,6-テトラフルオロベンゾニトリル(2.50g、14.28mmol)を加え、冷却バスを取り外し、徐々に室温に戻しながら110時間攪拌した。この反応混合物を氷水に加えてクエンチし、酢酸エチルにより抽出、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:1)で精製し、淡黄色固体の化合物e(2.42g、5.15mmol、収率36.1%)を得た。
H-NMR(500MHz、CDCl3、δ):8.16(d,J=7.5Hz,4H)、7.68(t,JH-F=9.0Hz,1H)、7.51(dt,J=7.5Hz,1.0Hz,4H)、7.38(dt,J=7.5Hz,1.0Hz,4H),7.23(d,J=7.5Hz,4H)、
ASAPマススペクトル分析:理論値469.1、観測値469.1
 窒素気流下、3,6-ジフェニルカルバゾール(0.57g、1.81mmol)と炭酸カリウム(0.38g、2.75mmol)の1-メチル-2-ピロリドン溶液(9mL)に化合物e(0.34g、0.724mmol)を加え、100℃、24時間攪拌した。この混合物を室温に戻し、水を加えてクエンチし、酢酸エチルにより抽出、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:1)で精製し、黄色固体の化合物55(0.515g、0.482mmol、収率66.6%)を得た。
H-NMR(500MHz、CDCl3、δ):8.54(s,1H)、8.04(s,4H)、7.81(d,J=7.5Hz,4H)、7.61-7.59(m,8H),7.47-7.39(m,20H),7.36-7.33(m,4H),7.25-7.22(m,4H),7.18-7.15(m,4H)
ASAPマススペクトル分析:理論値1067.4、観測値1067.4
(合成例12) 化合物108の合成
Figure JPOXMLDOC01-appb-C000112
 100mLの三口フラスコに3,6-ジメチル-9H-カルバゾール1.56g(9.00mmol)、水素化ナトリウム0.400g(60% 鉱油分散物、1.00mmol)を入れ、当該フラスコ内を窒素置換した。この混合物へ脱水テトラヒドロフラン80mLを加えた後、窒素雰囲気下で1時間撹拌したのちテトラフルオロテレフタロニトリル0.8g(4.00mmol)を加えた。この混合物を50℃で12時間加熱撹拌した後、室温に戻した後、水を加え吸引ろ過により固体を得た。得られた固体を昇華法により精製したところ赤色固体の化合物f(収量:0.8g、収率:36%)を得た。
 100mLの三口フラスコに3,6-ジフェニル-9H-カルバゾール0.696g(2.18mmol)、炭酸カリウム0.647g(3.63mmol)、化合物f 0.4g(0.726mmol)を入れ、当該フラスコ内を窒素置換した。この混合物へ脱水1-メチル-2-ピロリドン10mLを加えた後、窒素雰囲気下、100℃で12時間加熱撹拌した。撹拌後、この混合物を室温に戻した後、水を加えて吸引ろ過した。得られた固体をクロロホルムとアセトニトリルの混合溶媒で再結晶したところ赤色固体の化合物108(収量:0.62g、収率:74%)を得た。
H NMR(500MHz,CDCl,δ):8.01(d,J=1.5Hz,4H),7.62(dd,J=8.0Hz,J=1.0Hz,8H),7.50-7.43(m,12H),7.41(dd,J=7.5,J=1.5,4H),7.37(t,J=7.5,4H),7.33(d,J=8.5Hz,4H),7.17(d,J=8Hz,4H),6.99(dd,J=8Hz,J=1.5Hz,4H),2.41(s,12H)
ASAPマススペクトル分析:理論値1148.46、観測値1150.51
(合成例13) 化合物149の合成
Figure JPOXMLDOC01-appb-C000113
 窒素気流下、9H-カルバゾール(0.142g、0.849mmol)と炭酸カリウム(0.18g、1.30mmol)の1-メチル-2-ピロリドン溶液(10mL)に化合物d(0.65g、0.566mmol)を加え、100℃、120時間攪拌した。この混合物を室温に戻し、水を加えてクエンチした。得られた沈殿物をメタノール洗浄し、これをシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=3:2)で精製し、橙色固体の化合物149(0.284g、0.219mmol、収率38.7%)を得た。
H-NMR(500MHz、CDCl3、δ):7.98(d,J=1.0Hz,2H)、7.85(d,J=1.0Hz,2H)、7.73(d,J=2.0Hz,2H)、7.60-7.58(m,6H)、7.49-7.44(m,12H)、7.39-7.24(m,20H)、7.19-7.16(m,4H)、7.12-7.09(m,2H)、7.05-6.97(m,6H)、6.93(d,J=8.0Hz、2H)、6.64(t,J=8.0Hz、1H)、6.58(t,J=8.0Hz、2H)
ASAPマススペクトル分析:理論値1295.5、観測値1295.2
(合成例14) 化合物313の合成
Figure JPOXMLDOC01-appb-C000114
 窒素気流下、水素化ナトリウム(60% 鉱油分散物、0.265g、6.63mmol)のテトラヒドロフラン溶液(45mL)に9H-カルバゾール(1.42g、8.49mmol)を加え、室温1時間攪拌した。この混合物を-50℃に冷却し、2,3,5,6-テトラフルオロ-4-ピリジンカルボニトリル(0.749g、4.25mmol)を加え、冷却バスを取り外し、徐々に室温に戻しながら24時間攪拌した。この反応混合物を氷水に加えてクエンチし、酢酸エチルにより抽出、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物を酢酸エチル/メタノールにより再沈殿することで、橙色固体の化合物g(0.989g、2.10mmol、収率49.4%)を得た。
H-NMR(500MHz、CDCl3、δ):8.19(d,J=7.5Hz,2H)、8.15(d,J=7.5Hz,2H)、7.69-7.67(m,2H)、7.54(dt,J=7.5、1.0Hz、4H)、7.44(dt,J=7.5、1.5Hz、4H)、7.30(d,J=8.0Hz、2H)
13C-NMR(125MHz、CDCl3、δ):154.66、154.64、152.67、152.65、150.66、150.62、148.47、148.43、139.63、138.59、126.80、126.76、125.14、124.55、122.71、122.14、120.98、120.54、120.02、119.75、115.74、115.69、115.62、115.57、111.53、111.50、109.74、108.76、108.73
ASAPマススペクトル分析:理論値470.1、観測値470.1
 窒素気流下、3,6-ジフェニルカルバゾール(0.849g、2.66mmol)と炭酸カリウム(0.55g、3.99mmol)の1-メチル-2-ピロリドン溶液(13mL)に化合物g(0.50g、1.06mmol)を加え、100℃、48時間攪拌した。この混合物を室温に戻し、水を加えてクエンチし、酢酸エチルにより抽出、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(トルエン:ヘキサン=1:1)で精製し、橙色固体の化合物313(0.963g、0.901mmol、収率84.7%)を得た。
H-NMR(500MHz、CDCl3、δ):8.07(d,J=1.5Hz,2H)、8.00(d,J=1.5Hz,2H)、7.84(d,J=7.0Hz,2H)、7.76(d,J=7.0Hz,2H)、7.63(d,J=8.0Hz,4H)7.58(d,J=8.0Hz,4H),7.54-7.43(m,14H)、7.38-7.32(m,8H)、7.30―7.07(m、10H)
ASAPマススペクトル分析:理論値1068.4、観測値1068.3
(合成例15) 化合物11の合成
Figure JPOXMLDOC01-appb-C000115
 窒素気流下、水素化ナトリウム(60%鉱油分散物、0.15g、3.78mmol)のテトラヒドロフラン溶液(15mL)に3-メチル-9H-カルバゾール(0.51g、.83mmol)を加え、室温1時間攪拌した。この混合物を50℃に冷却し、化合物z(0.6g、0.95mmol)を加え、50℃に加熱し12時間撹拌した、反応混合物に水を加えて沈殿させ、沈殿物をろ取した。ろ取した混合物をシリカゲルカラムクロマトグラフィー(トルエン)で精製し、化合物B(0.65g、0.68mmol、収率71.9%)を得た。
H-NMR(500MHz、CDCl3、δ):7.76-7.72(m,4H)、7.30-7.12(m,10H)、7.10-7.02(m,10H)、6.98(t,J=8.5Hz,2H)、6.91(t,J=8.5Hz,2H)、6.76-6.71(m,4H)、6.61-6.53(m,4H)、6.41(t,J=8.5Hz,2H)、2.17-2.16(m,6H)
ASAPマススペクトル分析:理論値956.4、観測値957.3
(合成例16) 化合物150の合成
Figure JPOXMLDOC01-appb-C000116
 窒素気流下、3-メチル-9H-カルバゾール(0.57g、3.20mmol)と炭酸カリウム(0.95g、5.33mmol)の1-メチル-2-ピロリドン溶液(10mL)に化合物e(0.50g、1.07mmol)を加え、120℃、36時間攪拌した。この混合物を室温に戻し、水を加えて沈殿させ、沈殿物をろ取した。ろ取した混合物をシリカゲルカラムクロマトグラフィー(トルエン)で精製し、化合物A(0.40g、0.51mmol、収率47.4%)を得た。
H-NMR(500MHz、CDCl3、δ):8.38(s,1H)、7.83-7.79(m,4H)、7.75-7.72(m,2H)、7.58(d,J=4.0Hz,2H)、7.43-7.33(m,4H)、7.30-7.11(m,12H)、7.10-7.03(m,4H)、7.00-6.93(m,2H)、2.41(s,3H)、2.39(s,3H)
ASAPマススペクトル分析:理論値791.3、観測値792.4
(合成例17) 化合物151の合成
Figure JPOXMLDOC01-appb-C000117
 アルゴン気流下、4-ブロモ-2,3,5,6-テトラフルオロベンゾニトリル(3g、11.9mmol)をトルエン(100ml)に溶解し、0.3Mの炭酸ナトリウム水溶液(67ml)を加えた。Pd(PPh(1.38g、1.19mmol)と5’-m-テトラフェニルボロン酸(3.92g、14.3mmol)を加え、一晩加熱還流した。室温に冷却後、有機層を分離し、水槽をジクロロメタンで抽出した。有機層をまとめ、無水硫酸ナトリウムで乾燥した。乾燥剤をろ過、ろ液を減圧蒸留によって濃縮し、粗製物を得た。得られた粗製物をシリカゲルクロマトグラフィー(ヘキサン:クロロホルム=4:1)で生成し、白色粉末の化合物i(2.37g、5.88mmol、49.4%)を得た。
 アルゴン気流下、水素化ナトリウム(60%鉱油分散物、0.2g,4.96mmol)のテトラヒドロフラン溶液(50ml)に9H-カルバゾール(0.83g、4.96mmol)を加え、室温1時間攪拌した。この混合物を-50℃に冷却し、化合物i(1.0g、2.48mmol)を加え、冷却バスを取り外し、徐々に室温に戻しながら2時間攪拌した。この反応混合物を氷水に加えてクエンチし、ジクロロメタンにより抽出、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(ヘキサン:トルエン=3:2)で精製し、白色固体の化合物j(0.96g、1.38mmol、55.6%)を得た。
 アルゴン気流下、水素化ナトリウム(60%鉱油分散物、0.17g、4.14mmol)のテトラヒドロフラン溶液(30ml)に3,6-ジフェニルカルバゾール(1.32g、4.14mmol)を加え、室温1時間攪拌した。化合物2(0.96g、1.38mmol)を加え、50℃で一晩加熱した。この反応混合物を氷水に加えてクエンチし、個体を回収した。得られた個体をシリカゲルカラムクロマトグラフィー(トルエン)で精製し、黄色固体の化合物151(1.10g、0.85mmol、61.5%)を得た。
(合成例18) 化合物152の合成
Figure JPOXMLDOC01-appb-C000118
 窒素気流下、水素化ナトリウム(60% 鉱油分散物、0.17g、7.17mmol)のテトラヒドロフラン溶液(15mL)に9H-カルバゾール(0.80g、4.78mmol)を加え、室温1時間攪拌した。この混合物を-50℃に冷却し、化合物1(0.4g、1.59mmol)を加え、冷却バスを取り外し、徐々に室温に戻しながら24時間攪拌した。この反応混合物を氷水に加えてクエンチし、酢酸エチルにより抽出、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(ヘキサン:トルエン=2:1)で精製し、黄色固体の化合物h(0.69g、1.00mmol、収率62.9%)を得た。
H-NMR(500MHz、CDCl3、δ):8.20(d,J=8.5Hz,2H)、7.72-7.68(m,2H)、7.61-7.56(m,4H)、7.51(d,J=8.5Hz,2H)、7.44(t,J=8.5Hz,2H)、7.16-7.11(m,4H)、7.10-6.94(m,13H)
ASAPマススペクトル分析:理論値692.2、観測値692.1
 窒素気流下、3,6-ジフェニルカルバゾール(0.35g、1.08mmol)と炭酸カリウム(0.20g、1.44mmol)の1-メチル-2-ピロリドン溶液(10mL)に化合物h(0.50g、0.72mmol)を加え、100℃、48時間攪拌した。この混合物を室温に戻し、水を加えてクエンチし、得られた沈殿物をメタノール洗浄した。これをクロロホルム/メタノールにより再沈殿することで、黄色固体の化合物3(0.56g、0.564mmol、収率77.6%)を得た。
H-NMR(500MHz、CDCl3、δ):7.80(d,J=1.5Hz,2H)、7.73-7.68(m,4H)、7.59-7.57(m,2H)、7.52(dd,J=8.0Hz,J=1.5Hz,4H)、7.42(t,J=8.0Hz,4H)、7.33-7.22(m,6H)、7.19(dd,J=8.0Hz,J=1.5Hz,2H)、7.14-6.92(m,16H)、6.74(dd,J=8.0Hz,J=1.5Hz,2H)、6.55(t,J=8.0Hz,1H)、6.48(t,J=8.0Hz,2H)
ASAPマススペクトル分析:理論値991.4、観測値991.8
有機フォトルミネッセンス素子の作製と評価
(実施例1) 化合物1を用いた有機フォトルミネッセンス素子の作製
 化合物1のトルエン溶液(濃度10-5mol/L)を調製した。
 また、石英基板上に真空蒸着法にて、真空度5×10-4Pa以下の条件にて化合物1の薄膜を50nmの厚さで形成して有機フォトルミネッセンス素子とした。
(実施例2~6) 化合物2~6を用いた有機フォトルミネッセンス素子の作製
 化合物1の代わりに化合物2~6を用いること以外は、実施例1と同様にして化合物2~6のトルエン溶液を調製し、また、化合物2~6の薄膜を形成して有機フォトルミネッセンス素子とした。
(比較例1~3) 比較化合物1~3を用いた有機フォトルミネッセンス素子の作製
 化合物1の代わりに下記の比較化合物1~3を用いること以外は、実施例1と同様にして化合物2~6のトルエン溶液を調製し、また、比較化合物1~3の薄膜を形成して有機フォトルミネッセンス素子とした。
Figure JPOXMLDOC01-appb-C000119
 実施例1~3、4、6および比較例1で作製したトルエン溶液の吸収スペクトルを図2に示し、340nm励起光による蛍光スペクトルを図3に示し、340nm励起光による発光の過渡減衰曲線を図4に示し、340nm励起光による燐光スペクトルを図5に示す。各実施例で用いた化合物とその光学物性値を表9に示す。なお、表9において、測定を行っていないものについては「-」で表記した。
Figure JPOXMLDOC01-appb-T000120
 表9に示すように、化合物1~6は、比較化合物1に比べて逆項間交差の速度定数kRISCが遥かに大きく、また、比較化合物1~3に比べて高いPL量子収率(フォトルミネッセンス量子収率)を有していた。
(実施例7~13) 化合物11、35、38、55、150、151、152とホスト材料を用いた有機フォトルミネッセンス素子の作製と評価
 表10に記載される発光材料とホスト材料を異なる蒸着源から真空度5×10-4Pa以下で共蒸着することにより石英基板上に50nm厚の薄膜を形成して有機フォトルミネッセンス素子とした。各素子の蛍光スペクトルの最大発光波長、窒素雰囲気下におけるPL量子収率、遅延蛍光寿命、ΔESTを表10に示す。いずれも高いPL量子収率を有していた。
Figure JPOXMLDOC01-appb-T000121
(実施例14および15) 化合物108、313とホスト材料を用いた有機フォトルミネッセンス素子の作製と評価
 発光材料として化合物108または化合物313を用い、ホスト材料としてmCBPを用いること以外は実施例7~13と同様にして、有機フォトルミネッセンス素子を作成して評価した。
 化合物108を用いた素子の遅延蛍光寿命は8.9ms、ΔESTは0.15eVであり、化合物313を用いた素子の遅延蛍光寿命は4.0ms、ΔESTは0.11eVであった。
有機エレクトロミネッセンス素子の作製と評価
(実施例16) 化合物3を用いた有機エレクトロルミネッセンス素子の作製と評価
 膜厚50nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度2×10-5Paで積層した。
 まず、ITO上にHATCNを60nmの厚さに蒸着して正孔注入層を形成し、その上に、TrisPCzを30nmの厚さに蒸着して正孔輸送層を形成した。続いて、mCBPを5nmの厚さに蒸着して電子阻止層を形成した。次に、化合物3とmCBPを異なる蒸着源から共蒸着し、30nmの厚さの発光層を形成した。この時、化合物3の濃度は20重量%とした。その上に、DTRZを10nmの厚さに蒸着して正孔阻止層を形成し、その上に、BpyTP2とLiq(重量比7:3)を異なる蒸着源から共蒸着し、30nmの厚さに蒸着して電子輸送層を形成した。さらにLiqを2nmの厚さに形成し、次いでアルミニウム(Al)を100nmの厚さに形成することにより陰極を形成した。
 以上の工程により、実施例16の有機エレクトロルミネッセンス素子を作製した。
(実施例17) 化合物6を用いた有機エレクトロルミネッセンス素子の作製と評価
 化合物3の代わりに化合物6を用いること以外は、実施例16と同様にして化合物8の有機エレクトロルミネッセンス素子を作製した。
(比較例4) 比較化合物1を用いた有機エレクトロルミネッセンス素子の作製と評価
 化合物3の代わりに比較化合物1を用いること以外は、実施例16と同様にして比較例4の有機エレクトロルミネッセンス素子を作製した。
 実施例16、17、比較例4で製造した有機エレクトロルミネッセンス素子の蛍光スペクトルを図6に示し、電流密度-電圧特性を図7に示し、電流密度-外部量子効率特性を図8に示し、輝度の時間変化を図9に示す。図7に示すように、実施例16と実施例17の有機エレクトロルミネッセンス素子は、それぞれ19.4%、17.3%の高い外部量子効率を達成した。これらの外部量子効率は、ハメットのσp値が負の基が全て同じ基である発光材料を用いた比較例4の有機エレクトロルミネッセンス素子の外部量子効率(16.0%)よりも、さらに高いものであった。また、図9に示すように、実施例16と実施例17の有機エレクトロルミネッセンス素子は、比較例4の有機エレクトロルミネッセンス素子よりも明らかに長寿命であった。
(実施例18~25) 化合物11、13、38、55、150、151、152、313を用いた有機エレクトロルミネッセンス素子の作製と評価
 膜厚50nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度2×10-5Paで積層した。
 まず、ITO上にHATCNを60nmの厚さに蒸着して正孔注入層を形成し、その上に、TrisPCzを15nmの厚さに蒸着して正孔輸送層を形成した。続いて、mCBPを5nmの厚さに蒸着して電子阻止層を形成した。次に、表11に記載される発光材料とホスト材料を異なる蒸着源から共蒸着し、30nmの厚さの発光層を形成した。この時、発光材料の濃度は20重量%とした。その上に、SF3-TRZを10nmの厚さに蒸着して正孔阻止層を形成し、その上に、SF3-TRZとLiq(重量比7:3)を異なる蒸着源から共蒸着し、30nmの厚さに蒸着して電子輸送層を形成した。さらにLiqを20nmの厚さに形成し、次いでアルミニウム(Al)を100nmの厚さに形成することにより陰極を形成した。以上の工程により、表11に示す8種の有機エレクトロルミネッセンス素子を作製した。
 これらの各有機エレクトロルミネッセンス素子の蛍光スペクトルの最大発光波長と1000cd/mにおける外部量子効率を測定した結果を表11に示す。いずれも高い外部量子効率を有していた。
Figure JPOXMLDOC01-appb-T000122
(実施例26) 化合物108を用いた有機エレクトロルミネッセンス素子の作製と評価
 発光材料として化合物108を用い、ホスト材料としてmCBPを用いること以外は実施例18~25と同様にして、有機エレクトロルミネッセンス素子を作成した。最大発光波長は576nmであった。
 以下に実施例で用いた材料の構造式を示す。
Figure JPOXMLDOC01-appb-C000123
 本発明の化合物はより高い発光効率を有し、発光材料として有用である。本発明の化合物を用いることにより、発光効率が極めて高い発光素子を提供することが可能である。このため、本発明は産業上の利用可能性が高い。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極

Claims (28)

  1.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基またはフェニル基であり、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、mは1以上の整数であり、nは2以上の整数である。mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。複数のDのうちの2つは、ともに共通する芳香環を含んでいるが、互いに異なる構造を有する基である。]
  2.  前記複数のDのうちの2つがいずれもヘテロ原子を含む基である、請求項1に記載の化合物。
  3.  前記複数のDのうちの2つがいずれもヘテロ原子に2つ以上の芳香環が結合した構造を含む基である、請求項2に記載の化合物。
  4.  前記複数のDのうちの2つがジアリールアミン構造(ただし、ジアリールアミン構造を構成する2つのアリール基は互いに結合していてもよい)を含む、請求項3に記載の化合物。
  5.  前記ジアリールアミン構造がカルバゾール構造である、請求項4に記載の化合物。
  6.  前記mが1である、請求項1~5のいずれか1項に記載の化合物。
  7.  前記mが2以上である、請求項1~5のいずれか1項に記載の化合物。
  8.  前記複数のDのうちの2つが下記条件(a)または下記条件(b)を満たす、請求項1~7のいずれか1項に記載の化合物。
     条件(a)
     2つのDがいずれもLに結合する原子を含む芳香環を有しており、前記2つのDの間で、その芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
     条件(b)
     2つのDがいずれもLに結合する連結基と該連結基に結合している1つの芳香環を有しており、前記2つのDの間で、前記連結基および前記連結基に結合している芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。2つのDがいずれもLに結合する連結基と該連結基に結合している2つ以上の芳香環を有しており、前記2つのDの間で、前記連結基、前記連結基に結合している芳香環の数、および、複数の芳香環はそれぞれ共通しているが、前記2つのDの間の、互いに共通する芳香環の組み合わせの少なくとも1つにおいて、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。]
  9.  前記複数のDのうちの2つが前記条件(a)を満たす、請求項8に記載の化合物。
  10.  前記複数のDのうちの2つが下記一般式(2)で表される基である、請求項1~9のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(2)において、R11~R19は各々独立に水素原子、置換基、またはLとの結合位置を表し、R11~R19のうちの1つはLとの結合位置である。]
  11.  前記一般式(2)のR19がLとの結合位置である、請求項10に記載の化合物。
  12.  前記複数のDのうちの2つの一方は、前記一般式(2)のR11~R18の少なくとも1つが置換基であり、前記複数のDのうちの2つの他方は、前記一般式(2)のR11~R18のうち、前記複数のDのうちの2つの一方で置換基であるものに対応するものが水素原子である、請求項10または11に記載の化合物。
  13.  前記複数のDのうちの2つの一方は、前記一般式(2)のR13およびR16の少なくとも一方が置換基である、請求項10~12のいずれか1項に記載の化合物。
  14.  前記置換基が、置換もしくは無置換のアルキル基または置換もしくは無置換のアリール基である、請求項12または13に記載の化合物。
  15.  前記一般式(1)で表される化合物が、下記一般式(10)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    [一般式(10)において、Aはハメットのσp値が正の基を表す。R~Rは各々独立に水素原子、ハメットのσp値が正の基またはハメットのσp値が負の基を表し、R~Rの少なくとも2つはハメットのσp値が負の基(ただしフェニル基は除く)である。R~Rのうちの1つ以上がハメットのσp値が正の基であるとき、Aが表すハメットのσp値が正の基およびR~Rのうちのハメットのσp値が正の基は互いに同一であっても異なっていてもよい。]
  16.  前記R~Rのうちのハメットのσp値が負の基の2つは、下記条件(a)または条件(b)を満たす、請求項15に記載の化合物。
     条件(a)
     2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する原子を含む芳香環を有しており、前記2つのハメットのσp値が負の基の間で、その芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
     条件(b)
     2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する連結基と該連結基に結合している1つの芳香環を有しており、前記2つのハメットのσp値が負の基の間で、前記連結基および前記連結基に結合している芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する連結基と該連結基に結合している2つ以上の芳香環を有しており、前記2つのハメットのσp値が負の基の間で、前記連結基、前記連結基に結合している芳香環の数、および、複数の芳香環はそれぞれ共通しているが、前記2つのハメットのσp値が負の基の間の、互いに共通する芳香環の組み合わせの少なくとも1つにおいて、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。]
  17.  前記一般式(10)のRとRの組み合わせ、および、RとRの組み合わせの少なくとも一方が前記条件(a)または(b)を満たす、請求項16に記載の化合物。
  18.  前記一般式(10)のR~Rがハメットのσp値が負の基(ただしフェニル基は除く)である、請求項15~17のいずれか1項に記載の化合物。
  19.  前記一般式(1)で表される化合物が、下記一般式(11)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    [一般式(11)において、AX1はハメットのσp値が正の基を表す。RX11~RX14は各々独立に水素原子、ハメットのσp値が正の基またはハメットのσp値が負の基を表し、RX11~RX14の少なくとも2つはハメットのσp値が負の基(ただしフェニル基は除く)である。RX11~RX14の1つ以上がハメットのσp値が正の基であるとき、AX1が表すハメットのσp値が正の基およびRX11~RX14のうちのハメットのσp値が正の基は互いに同一であっても異なっていてもよい。]
  20.  前記RX11~RX14のうちのハメットのσp値が負の基の2つは、下記条件(a)または条件(b)を満たす、請求項19に記載の化合物。
     条件(a)
     2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する原子を含む芳香環を有しており、前記2つのハメットのσp値が負の基の間で、その芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
     条件(b)
     2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する連結基と該連結基に結合している1つの芳香環を有しており、前記2つのハメットのσp値が負の基の間で、前記連結基および前記連結基に結合している芳香環は共通しているが、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。2つのハメットのσp値が負の基が、いずれも一般式(10)のベンゼン環に結合する連結基と該連結基に結合している2つ以上の芳香環を有しており、前記2つのハメットのσp値が負の基の間で、前記連結基、前記連結基に結合している芳香環の数、および、複数の芳香環はそれぞれ共通しているが、前記2つのハメットのσp値が負の基の間の、互いに共通する芳香環の組み合わせの少なくとも1つにおいて、その芳香環に置換している置換基の数、芳香環の置換基で置換されている位置、および、芳香環に置換している置換基の構造の少なくとも1つの条件が互いに異なる。
  21.  請求項1~20のいずれか1項に記載の化合物からなる発光材料。
  22.  請求項1~20のいずれか1項に記載の化合物を含むことを特徴とする発光素子。
  23.  下記一般式(18)で表される化合物に下記一般式(21)で表される化合物と下記一般式(22)で表される化合物を反応させる工程を含む、一般式(1)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    [一般式(18)において、Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基またはフェニル基であり、Xはハロゲン原子であり、mは1以上の整数であり、nは2以上の整数である。mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。複数のXは互いに同一であっても異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000006
    [一般式(21)において、Dはハメットのσp値が負の基(ただしフェニル基は除く)である。]
    Figure JPOXMLDOC01-appb-C000007
    [一般式(22)において、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、Dとは異なる構造を有する基である。]
    Figure JPOXMLDOC01-appb-C000008
    [一般式(1)において、Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基またはフェニル基であり、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、mは1以上の整数であり、nは2以上の整数である。mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。複数のDのうちの2つは、ともに共通する芳香環を含む基であり、互いに異なる構造を有する基である。]
  24.  下記一般式(19)で表される化合物に下記一般式(22)で表される化合物を反応させる工程を含む、一般式(1)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000009
    [一般式(19)において、Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基またはフェニル基であり、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、mは1以上の整数であり、nは1以上の整数である。mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。nが2以上であるとき、複数のDは互いに同一であっても異なっていてもよい。Xはハロゲン原子であり、pは1以上でn未満の整数である。]
    Figure JPOXMLDOC01-appb-C000010
    [一般式(22)において、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、Dとは異なる構造を有する基である。]
    Figure JPOXMLDOC01-appb-C000011
    [一般式(1)において、Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基またはフェニル基であり、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、mは1以上の整数であり、nは2以上の整数である。mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。複数のDのうちの2つは、ともに共通する芳香環を含む基であり、互いに異なる構造を有する基である。]
  25.  下記一般式(19)で表される化合物。
    Figure JPOXMLDOC01-appb-C000012
    [一般式(19)において、Lはm+n価の芳香族連結基であり、Aはハメットのσp値が正の基またはフェニル基であり、Dはハメットのσp値が負の基(ただしフェニル基は除く)であり、mは1以上の整数であり、nは1以上の整数である。mが2以上であるとき、複数のAは互いに同一であっても異なっていてもよい。nが2以上であるとき、複数のDは互いに同一であっても異なっていてもよい。Xはハロゲン原子であり、pは1以上でn未満の整数である。ただし、下記の構造を有する化合物は一般式(19)には含まれない。]
    Figure JPOXMLDOC01-appb-C000013
  26.  前記ハロゲン原子がフッ素原子である、請求項25に記載の化合物。
  27.  前記Dの少なくとも1つがジアリールアミノ基(ただし、ジアリールアミノ基を構成する2つのアリール基は互いに結合していてもよい)である、請求項25または26に記載の化合物。
  28.  前記Aの少なくとも1つがシアノ基である、請求項25~27のいずれか1項に記載の化合物。
     
PCT/JP2018/006764 2017-02-24 2018-02-23 化合物、発光材料および発光素子 WO2018155642A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019501841A JP7222549B2 (ja) 2017-02-24 2018-02-23 化合物、発光材料および発光素子
KR1020197027489A KR102507944B1 (ko) 2017-02-24 2018-02-23 화합물, 발광 재료 및 발광 소자
CN201880013706.8A CN110366548A (zh) 2017-02-24 2018-02-23 化合物、发光材料及发光元件
US16/488,374 US12120952B2 (en) 2017-02-24 2018-02-23 Compound, light-emitting material and light-emitting element
EP18757582.4A EP3587399A4 (en) 2017-02-24 2018-02-23 COMPOUND, LIGHT EMITTING MATERIAL AND LIGHT EMITTING ELEMENT
JP2023010763A JP7486238B2 (ja) 2017-02-24 2023-01-27 化合物、発光材料および発光素子
JP2024071222A JP2024109592A (ja) 2017-02-24 2024-04-25 化合物、発光材料および発光素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017034159 2017-02-24
JP2017-034159 2017-02-24
JP2017091634 2017-05-02
JP2017-091634 2017-05-02

Publications (1)

Publication Number Publication Date
WO2018155642A1 true WO2018155642A1 (ja) 2018-08-30

Family

ID=63253881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006764 WO2018155642A1 (ja) 2017-02-24 2018-02-23 化合物、発光材料および発光素子

Country Status (7)

Country Link
US (1) US12120952B2 (ja)
EP (1) EP3587399A4 (ja)
JP (3) JP7222549B2 (ja)
KR (1) KR102507944B1 (ja)
CN (1) CN110366548A (ja)
TW (1) TWI752174B (ja)
WO (1) WO2018155642A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087936A1 (ja) * 2017-11-01 2019-05-09 東洋紡株式会社 π電子共役単位とカルバゾール基を有する化合物
US10547014B2 (en) 2017-06-23 2020-01-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
WO2020050127A1 (ja) * 2018-09-05 2020-03-12 国立大学法人九州大学 ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子
WO2020059520A1 (ja) * 2018-09-21 2020-03-26 コニカミノルタ株式会社 ベンゾニトリル誘導体及びその製造方法、インク組成物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜及び有機エレクトロルミネッセンス素子
WO2020059326A1 (ja) * 2018-09-21 2020-03-26 コニカミノルタ株式会社 ベンゾニトリル誘導体及びその製造方法、インク組成物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜及び有機エレクトロルミネッセンス素子
US10644249B2 (en) 2017-12-22 2020-05-05 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
JP2020083888A (ja) * 2018-11-16 2020-06-04 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機電界発光素子及び有機電界発光素子用化合物
WO2020151543A1 (zh) * 2019-01-23 2020-07-30 苏州久显新材料有限公司 热激活延迟荧光化合物、发光材料及有机电致发光器件
WO2020189330A1 (ja) * 2019-03-19 2020-09-24 コニカミノルタ株式会社 機能性膜、その形成方法及び有機エレクトロルミネッセンス素子
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
US10892425B1 (en) 2017-03-03 2021-01-12 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN112585239A (zh) * 2018-04-11 2021-03-30 纳米技术有限公司 具有量子点和热活化延迟荧光分子的顶发射型印刷显示器
WO2021065725A1 (ja) * 2019-09-30 2021-04-08 国立大学法人九州大学 レーザー素子、化合物、化合物の製造方法、レージング増感剤
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021094269A1 (en) 2019-11-12 2021-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
US11069860B2 (en) 2017-08-21 2021-07-20 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
WO2021157642A1 (ja) * 2020-02-04 2021-08-12 株式会社Kyulux ホスト材料、組成物および有機発光素子
US11104669B2 (en) 2018-02-02 2021-08-31 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
JP2021525218A (ja) * 2017-12-05 2021-09-24 株式会社Kyulux 有機発光ダイオードに用いられる組成物
WO2021191058A1 (en) 2020-03-23 2021-09-30 Merck Patent Gmbh Materials for organic electroluminescent devices
US11283027B1 (en) 2017-03-03 2022-03-22 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US20220112163A1 (en) * 2020-10-13 2022-04-14 Samsung Display Co., Ltd. Heterocyclic compound and light-emitting device including the same
US11444250B2 (en) 2017-12-05 2022-09-13 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11482681B2 (en) 2018-07-27 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
US11498914B2 (en) 2018-03-30 2022-11-15 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11542260B2 (en) 2018-01-31 2023-01-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11575088B2 (en) 2017-12-22 2023-02-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11608333B2 (en) 2018-03-20 2023-03-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11778904B2 (en) 2018-05-09 2023-10-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11849634B2 (en) 2017-09-01 2023-12-19 Kyulux, Inc. Composition of matter for use in organic light- emitting diodes
US11985893B2 (en) 2019-11-08 2024-05-14 Samsung Display Co., Ltd. Organic electroluminescence device and aromatic compound for organic electroluminescence device
WO2024105066A1 (en) 2022-11-17 2024-05-23 Merck Patent Gmbh Materials for organic electroluminescent devices
US12122768B2 (en) 2018-09-05 2024-10-22 Kyushu University, National University Corporation Benzonitrile derivative, light-emitting material, and light-emitting element using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325731B2 (ja) * 2018-08-23 2023-08-15 国立大学法人九州大学 有機エレクトロルミネッセンス素子
KR102427666B1 (ko) * 2019-05-23 2022-08-02 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 장치
CN112289942B (zh) * 2020-10-30 2022-11-29 苏州大学 基于绿色热激活延迟荧光材料的掺杂电子器件及其制备方法
CN112300056A (zh) * 2020-10-30 2021-02-02 苏州大学 一种绿色热激活延迟荧光材料及其制备方法
WO2022088123A1 (zh) * 2020-10-30 2022-05-05 苏州大学 一种绿色热激活延迟荧光材料及其制备方法
WO2022088111A1 (zh) * 2020-10-30 2022-05-05 苏州大学 基于热激活延迟荧光材料的超厚非掺杂电致发光器件及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113755A1 (ja) * 2009-03-31 2010-10-07 新日鐵化学株式会社 燐光発光素子用材料及びこれを用いた有機電界発光素子
JP2011176250A (ja) * 2010-01-28 2011-09-08 Fujifilm Corp 有機電界発光素子
JP2014043541A (ja) 2012-04-09 2014-03-13 Kyushu Univ 有機発光素子ならびにそれに用いる発光材料および化合物
WO2016124704A1 (de) * 2015-02-06 2016-08-11 Technische Universität Dresden Blaue fluoreszenzemitter
WO2016152605A1 (ja) * 2015-03-23 2016-09-29 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子用材料、発光材料および有機エレクトロルミネッセンス素子
WO2016181846A1 (ja) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2017082246A1 (ja) * 2015-11-10 2017-05-18 国立大学法人九州大学 ジシアノピラジン化合物、発光材料、それを用いた発光素子、および2,5-ジシアノ-3,6-ジハロゲノピラジンの製造方法
WO2017115835A1 (ja) * 2015-12-28 2017-07-06 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2017155102A1 (ja) * 2016-03-11 2017-09-14 国立大学法人九州大学 発光材料、有機発光素子および化合物
JP2017226838A (ja) * 2016-06-17 2017-12-28 株式会社Kyulux 発光材料、有機発光素子および化合物
WO2018047948A1 (ja) * 2016-09-09 2018-03-15 東洋紡株式会社 有機発光素子ならびにそれに用いる発光材料および化合物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079293B2 (ja) * 1992-06-18 2000-08-21 京セラミタ株式会社 電子写真感光体
JPH07324058A (ja) 1994-05-30 1995-12-12 Mita Ind Co Ltd m−フェニレンジアミン誘導体およびそれを用いた電子写真感光体
JP2008133225A (ja) 2006-11-29 2008-06-12 Toyo Ink Mfg Co Ltd インドール誘導体およびその用途
KR101345566B1 (ko) * 2008-07-28 2014-01-07 삼성전자주식회사 양면 조명용 led 렌즈와 led 모듈 및 이를 이용한led 양면 조명장치
KR101070223B1 (ko) * 2009-05-14 2011-10-06 덕산하이메탈(주) 아릴아미노 구조를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
JP2014135466A (ja) * 2012-04-09 2014-07-24 Kyushu Univ 有機発光素子ならびにそれに用いる発光材料および化合物
WO2014133062A1 (ja) 2013-02-28 2014-09-04 株式会社カネカ 有機el素子、ならびにそれを用いた照明器具及びディスプレイ装置
US20160126478A1 (en) 2013-05-09 2016-05-05 Nitto Denko Corporation Emissive compounds for light emitting devices
JP6288085B2 (ja) 2013-05-22 2018-03-07 コニカミノルタ株式会社 電子デバイス、有機エレクトロルミネッセンス素子、有機薄膜太陽電池及び色素増感型太陽電池
JP6304255B2 (ja) 2013-08-16 2018-04-04 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、電子デバイス、発光装置及び発光材料
JP6326251B2 (ja) 2014-03-12 2018-05-16 株式会社カネカ 発光材料及びそれを用いた有機el素子
CN106316924B (zh) * 2015-06-16 2020-01-24 清华大学 一种热活化延迟荧光材料
KR102572294B1 (ko) * 2015-09-25 2023-08-30 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JP6668152B2 (ja) * 2015-12-28 2020-03-18 株式会社Kyulux 化合物、発光材料および有機発光素子

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113755A1 (ja) * 2009-03-31 2010-10-07 新日鐵化学株式会社 燐光発光素子用材料及びこれを用いた有機電界発光素子
JP2011176250A (ja) * 2010-01-28 2011-09-08 Fujifilm Corp 有機電界発光素子
JP2014043541A (ja) 2012-04-09 2014-03-13 Kyushu Univ 有機発光素子ならびにそれに用いる発光材料および化合物
WO2016124704A1 (de) * 2015-02-06 2016-08-11 Technische Universität Dresden Blaue fluoreszenzemitter
WO2016152605A1 (ja) * 2015-03-23 2016-09-29 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子用材料、発光材料および有機エレクトロルミネッセンス素子
WO2016181846A1 (ja) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2017082246A1 (ja) * 2015-11-10 2017-05-18 国立大学法人九州大学 ジシアノピラジン化合物、発光材料、それを用いた発光素子、および2,5-ジシアノ-3,6-ジハロゲノピラジンの製造方法
WO2017115835A1 (ja) * 2015-12-28 2017-07-06 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2017155102A1 (ja) * 2016-03-11 2017-09-14 国立大学法人九州大学 発光材料、有機発光素子および化合物
JP2017226838A (ja) * 2016-06-17 2017-12-28 株式会社Kyulux 発光材料、有機発光素子および化合物
WO2018047948A1 (ja) * 2016-09-09 2018-03-15 東洋紡株式会社 有機発光素子ならびにそれに用いる発光材料および化合物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ADV. OPT. MATER., vol. 4, 2016, pages 688 - 693
H. NAKANOTANI ET AL., SCIENTIFIC REPORTS, vol. 3, 2013, pages 2127
H. UOYAMA ET AL., NATURE, vol. 492, 2012, pages 234
HANSCH, C., CHEM. REV., vol. 91, 1991, pages 165 - 195
S. TANIMOTO ET AL., CHEM. LETT., vol. 45, 2016, pages 770

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11283027B1 (en) 2017-03-03 2022-03-22 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10892425B1 (en) 2017-03-03 2021-01-12 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10547014B2 (en) 2017-06-23 2020-01-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11069860B2 (en) 2017-08-21 2021-07-20 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11849634B2 (en) 2017-09-01 2023-12-19 Kyulux, Inc. Composition of matter for use in organic light- emitting diodes
WO2019087936A1 (ja) * 2017-11-01 2019-05-09 東洋紡株式会社 π電子共役単位とカルバゾール基を有する化合物
JP7153363B2 (ja) 2017-12-05 2022-10-14 株式会社Kyulux 有機発光ダイオードに用いられる組成物
US11444250B2 (en) 2017-12-05 2022-09-13 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
JP2021525218A (ja) * 2017-12-05 2021-09-24 株式会社Kyulux 有機発光ダイオードに用いられる組成物
US11575088B2 (en) 2017-12-22 2023-02-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10644249B2 (en) 2017-12-22 2020-05-05 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11542260B2 (en) 2018-01-31 2023-01-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11104669B2 (en) 2018-02-02 2021-08-31 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11608333B2 (en) 2018-03-20 2023-03-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11498914B2 (en) 2018-03-30 2022-11-15 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US12077700B2 (en) 2018-04-11 2024-09-03 Kyulux, Inc. Top-emitting printed display with quantum dots and thermally activated delayed fluorescence molecules
CN112585239A (zh) * 2018-04-11 2021-03-30 纳米技术有限公司 具有量子点和热活化延迟荧光分子的顶发射型印刷显示器
US11778904B2 (en) 2018-05-09 2023-10-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11482681B2 (en) 2018-07-27 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
KR102533313B1 (ko) * 2018-09-05 2023-05-16 고쿠리쓰다이가쿠호진 규슈다이가쿠 벤조니트릴 유도체, 발광 재료 및 그것을 사용한 발광 소자
TWI719618B (zh) * 2018-09-05 2021-02-21 國立大學法人九州大學 苯甲腈衍生物、發光材料及使用其之發光元件
JPWO2020050127A1 (ja) * 2018-09-05 2021-08-26 国立大学法人九州大学 ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子
WO2020050127A1 (ja) * 2018-09-05 2020-03-12 国立大学法人九州大学 ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子
CN112638874A (zh) * 2018-09-05 2021-04-09 国立大学法人九州大学 苯甲腈衍生物、发光材料和使用该发光材料的发光元件
US12122768B2 (en) 2018-09-05 2024-10-22 Kyushu University, National University Corporation Benzonitrile derivative, light-emitting material, and light-emitting element using same
KR20210039418A (ko) * 2018-09-05 2021-04-09 고쿠리쓰다이가쿠호진 규슈다이가쿠 벤조니트릴 유도체, 발광 재료 및 그것을 사용한 발광 소자
EP3848352A4 (en) * 2018-09-05 2022-06-01 Kyushu University, National University Corporation BENZONITRILE DERIVATIVE, LIGHT EMITTING MATERIAL AND LIGHT EMITTING ELEMENT THEREOF
JP7184263B2 (ja) 2018-09-05 2022-12-06 国立大学法人九州大学 ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子
WO2020059520A1 (ja) * 2018-09-21 2020-03-26 コニカミノルタ株式会社 ベンゾニトリル誘導体及びその製造方法、インク組成物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜及び有機エレクトロルミネッセンス素子
WO2020059326A1 (ja) * 2018-09-21 2020-03-26 コニカミノルタ株式会社 ベンゾニトリル誘導体及びその製造方法、インク組成物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜及び有機エレクトロルミネッセンス素子
JP2020083888A (ja) * 2018-11-16 2020-06-04 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機電界発光素子及び有機電界発光素子用化合物
JP7545800B2 (ja) 2018-11-16 2024-09-05 三星ディスプレイ株式會社 有機電界発光素子及び有機電界発光素子用化合物
WO2020151543A1 (zh) * 2019-01-23 2020-07-30 苏州久显新材料有限公司 热激活延迟荧光化合物、发光材料及有机电致发光器件
WO2020189330A1 (ja) * 2019-03-19 2020-09-24 コニカミノルタ株式会社 機能性膜、その形成方法及び有機エレクトロルミネッセンス素子
JPWO2020189330A1 (ja) * 2019-03-19 2020-09-24
JP7405135B2 (ja) 2019-03-19 2023-12-26 コニカミノルタ株式会社 機能性膜、その形成方法及び有機エレクトロルミネッセンス素子
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021065725A1 (ja) * 2019-09-30 2021-04-08 国立大学法人九州大学 レーザー素子、化合物、化合物の製造方法、レージング増感剤
CN114450814A (zh) * 2019-09-30 2022-05-06 国立大学法人九州大学 激光元件、化合物、化合物的制造方法、激光增感剂
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
US11985893B2 (en) 2019-11-08 2024-05-14 Samsung Display Co., Ltd. Organic electroluminescence device and aromatic compound for organic electroluminescence device
WO2021094269A1 (en) 2019-11-12 2021-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021157642A1 (ja) * 2020-02-04 2021-08-12 株式会社Kyulux ホスト材料、組成物および有機発光素子
WO2021191058A1 (en) 2020-03-23 2021-09-30 Merck Patent Gmbh Materials for organic electroluminescent devices
US20220112163A1 (en) * 2020-10-13 2022-04-14 Samsung Display Co., Ltd. Heterocyclic compound and light-emitting device including the same
WO2024105066A1 (en) 2022-11-17 2024-05-23 Merck Patent Gmbh Materials for organic electroluminescent devices

Also Published As

Publication number Publication date
TW201835044A (zh) 2018-10-01
JP2024109592A (ja) 2024-08-14
JP7222549B2 (ja) 2023-02-15
US12120952B2 (en) 2024-10-15
KR20190120789A (ko) 2019-10-24
US20200235313A1 (en) 2020-07-23
JPWO2018155642A1 (ja) 2019-12-19
CN110366548A (zh) 2019-10-22
EP3587399A4 (en) 2021-03-10
EP3587399A1 (en) 2020-01-01
TWI752174B (zh) 2022-01-11
JP2023061972A (ja) 2023-05-02
JP7486238B2 (ja) 2024-05-17
KR102507944B1 (ko) 2023-03-08

Similar Documents

Publication Publication Date Title
JP7486238B2 (ja) 化合物、発光材料および発光素子
JP6318155B2 (ja) 化合物、発光材料および有機発光素子
JP6263524B2 (ja) 化合物、発光材料および有機発光素子
JP6326050B2 (ja) 化合物、発光材料および有機発光素子
JP6277182B2 (ja) 化合物、発光材料および有機発光素子
JP6392240B2 (ja) 発光材料、有機発光素子および化合物
JP5679496B2 (ja) 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
JP5594750B2 (ja) 化合物、発光材料および有機発光素子
JP6430370B2 (ja) 発光材料、有機発光素子および化合物
JP6225111B2 (ja) 発光材料、化合物、およびそれらを用いた有機発光素子
WO2020039708A1 (ja) 有機エレクトロルミネッセンス素子
WO2015080183A1 (ja) 発光材料、有機発光素子および化合物
WO2015002213A1 (ja) 発光材料、遅延蛍光体、有機発光素子および化合物
WO2018159662A1 (ja) 化合物、発光材料および有機発光素子
JP2017226838A (ja) 発光材料、有機発光素子および化合物
WO2014136860A1 (ja) 化合物、発光材料および有機発光素子
WO2014126076A1 (ja) 化合物、発光材料および有機発光素子
WO2021251461A1 (ja) 化合物、発光材料および発光素子
JP2019006988A (ja) 発光材料、化合物、遅延蛍光体および発光素子
WO2017155102A1 (ja) 発光材料、有機発光素子および化合物
JP2016084283A (ja) 化合物、発光材料および有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197027489

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018757582

Country of ref document: EP

Effective date: 20190924