WO2020050127A1 - ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子 - Google Patents

ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子 Download PDF

Info

Publication number
WO2020050127A1
WO2020050127A1 PCT/JP2019/033913 JP2019033913W WO2020050127A1 WO 2020050127 A1 WO2020050127 A1 WO 2020050127A1 JP 2019033913 W JP2019033913 W JP 2019033913W WO 2020050127 A1 WO2020050127 A1 WO 2020050127A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
mmol
carbazol
Prior art date
Application number
PCT/JP2019/033913
Other languages
English (en)
French (fr)
Inventor
琢麿 安田
仁燮 朴
田中 克典
宮下 康弘
康彦 芦刈
Original Assignee
国立大学法人九州大学
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 日本曹達株式会社 filed Critical 国立大学法人九州大学
Priority to US17/272,550 priority Critical patent/US20210332032A1/en
Priority to KR1020217005954A priority patent/KR102533313B1/ko
Priority to CN201980057047.2A priority patent/CN112638874A/zh
Priority to JP2020541162A priority patent/JP7184263B2/ja
Priority to EP19857043.4A priority patent/EP3848352A4/en
Publication of WO2020050127A1 publication Critical patent/WO2020050127A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a 2,3,4,5,6-penta-substituted benzonitrile compound, a light-emitting material, and a light-emitting element using the same, which have excellent light-emitting characteristics.
  • Patent Document 1 discloses 3,5-di (3,6-diphenyl-9H-carbazol-9-yl) -2,4,6-tri (4-cyanophenyl) -benzonitrile and the like.
  • Patent Document 2 discloses 2,3,5,6-tetra (3,6-diphenyl-9H-carbazol-9-yl) -4- (4-cyanophenyl) -benzonitrile and the like.
  • Patent Document 3 discloses 2,3,5,6-tetra (9H-carbazol-9-yl) -4-phenyl-benzonitrile and the like.
  • An object of the present invention is to provide a 2,3,4,5,6-pentasubstituted benzonitrile compound (hereinafter, may be referred to as “the compound of the present invention”), a light-emitting material, and a light-emitting material using the same, which have excellent light-emitting characteristics. It is to provide an element.
  • L is each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group; n represents the number of L, is 1 or 2, Q is each independently a substituted or unsubstituted 3,6-di-t-butyl-9H-carbazol-9-yl group or a substituted or unsubstituted 3,6-diphenyl-9H-carbazol-9-yl group Or a substituted or unsubstituted 3-phenyl-6-t-butyl-9H-carbazol-9-yl group, and m represents the number of Q and is 5-n.
  • L is each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group
  • Q is each independently a substituted or unsubstituted 3,6- It is a di-t-butyl-9H-carbazol-9-yl group or a substituted or unsubstituted 3,6-diphenyl-9H-carbazol-9-yl group.
  • L is each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group
  • Q is each independently a substituted or unsubstituted 3,6- It is a di-t-butyl-9H-carbazol-9-yl group or a substituted or unsubstituted 3,6-diphenyl-9H-carbazol-9-yl group.
  • L is each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group
  • Q is each independently a substituted or unsubstituted 3,6- It is a di-t-butyl-9H-carbazol-9-yl group or a substituted or unsubstituted 3,6-diphenyl-9H-carbazol-9-yl group.
  • L is each independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group
  • Q is each independently a substituted or unsubstituted 3,6- It is a di-t-butyl-9H-carbazol-9-yl group or a substituted or unsubstituted 3,6-diphenyl-9H-carbazol-9-yl group.
  • L is a substituted or unsubstituted nitrogen- or oxygen-containing 5- or 6-membered heteroaryl.
  • L is a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthryl group, a substituted or unsubstituted phenanthryl group, a substituted or unsubstituted group Pyridinyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted furyl group, substituted or unsubstituted thienyl group, substituted or unsubstituted oxazolyl group, substituted or unsubstituted thiazolyl group, substituted or unsubstituted imidazolyl Group,
  • a luminescent material comprising the compound according to any one of [1] to [11].
  • a light-emitting element containing the light-emitting material according to [12].
  • the compound of the present invention is useful as a light emitting material. Some luminescent materials according to the present invention emit delayed fluorescence. The light-emitting element containing the light-emitting material according to the present invention can realize excellent light-emitting efficiency.
  • FIG. 3 is a diagram showing characteristics of voltage-current density-luminance of 3Cz-2PBN-A, 3BuCz-2PBN-A, and 3PCz-2PBN-A. It is a figure which shows the brightness-external quantum efficiency of 3Cz-2PBN-A, 3BuCz-2PBN-A, and 3PCz-2PBN-A ⁇ .
  • FIG. 3 is a diagram showing characteristics of voltage-current density-luminance of 3Cz-2PBN-B, 3BuCz-2PBN-B, and 3PCz-2PBN-B. It is a figure which shows the brightness-external quantum efficiency of 3Cz-2PBN-B, 3BuCz-2PBN-B, and 3PCz-2PBN-B.
  • FIG. 3 is a diagram showing characteristics of voltage-current density-luminance of 3Cz-2PBN-A, 3BuCz-2PBN-A, and 3PCz-2PBN-A.
  • FIG. 4 is a diagram showing voltage-current density-luminance characteristics of 4Cz-1PBN-A and 4BuCz-1PBN-A. It is a figure which shows the brightness-external quantum efficiency of 4Cz-1PBN-A and 4BuCz-1PBN-ABN.
  • FIG. 3 is a diagram showing characteristics of voltage-current density-luminance of 3BuCz-2PBN-C, 3PCz-2PBN-C, 3BuCz-2PBN-D, and 3PCz-2PBN-D. It is a figure which shows the brightness-external quantum efficiency of 3BuCz-2PBN-C, 3PCz-2PBN-C, 3BuCz-2PBN-D, and 3PCz-2PBN-D.
  • FIG. 3 is a diagram showing voltage-current density-luminance characteristics of 4Cz-1PBN-A and 4BuCz-1PBN-A. It is a figure which shows the brightness-external quantum efficiency of 4Cz-1PBN-A and 4BuCz-1
  • FIG. 4 is a diagram showing characteristics of voltage-current density-luminance of 4BuCz-1PBN-A, 4BuCz-1PBN-B, and 4BuCz-1PBN-C.
  • FIG. 4 is a diagram showing luminance-external quantum efficiency of 4BuCz-1PBN-A, 4BuCz-1PBN-B, and 4BuCz-1PBN-C. It is a figure which shows the characteristics of voltage-current density-luminance of 4X-BCz-PBN-Bu, 4X-BCz-PBN-OMe, 4X-BCz-PBN-SMe, and 4X-BCz-PBN-CN.
  • FIG. 4 is a diagram showing characteristics of voltage-current density-luminance of 4X-BCz-PBN-CO2Me, 4X-BCz-PBN-MesBN, and 4X-BCz-PBN-IPN. It is a figure which shows the brightness-external quantum efficiency of 4X-BCz-PBN-CO2Me, 4X-BCz-PBN-MesBN, and 4X-BCz-PBN-IPN.
  • FIG. 3 is a diagram showing characteristics of voltage-current density-luminance of 3Y-BCz-PBN-tBu, 3Y-BCz-PBN-OMe, and 3Y-BCz-PBN-SMe.
  • FIG. 3 is a diagram showing characteristics of voltage-current density-luminance of 3F-BCz-PBN-tBu, 3F-BCz-PBN-OMe, and 3F-BCz-PBN-SMe. It is a figure which shows the brightness-external quantum efficiency of 3F-BCz-PBN-tBu, 3F-BCz-PBN-OMe, and 3F-BCz-PBN-SMe.
  • the 2,3,4,5,6-penta-substituted benzonitrile compound of the present invention is a compound represented by the formula (I).
  • the 2,3,4,5,6-penta-substituted benzonitrile compound of the present invention is preferably a compound represented by the formula (IIa), (IIb), (IIc), (IIIa), (IIIb), (IIIc) ) Or a compound represented by the formula (IVa), more preferably a compound represented by the formula (IIa).
  • the 2,3,4,5,6-penta-substituted benzonitrile compound of the present invention may be a compound represented by the formula (IIId) or (IIIe).
  • L is a substituted or unsubstituted aryl group
  • Q is each independently a substituted or unsubstituted 3,6-di-t-butyl-9H-carbazol-9-yl group It is.
  • L is a substituted or unsubstituted aryl group
  • Q is each independently a substituted or unsubstituted 3,6-di-t-butyl-9H-carbazol-9-yl group It is.
  • L is a substituted or unsubstituted aryl group
  • Q is each independently a substituted or unsubstituted 3,6-di-t-butyl-9H-carbazol-9-yl group It is.
  • L is each independently a substituted or unsubstituted aryl group
  • Q is each independently a substituted or unsubstituted 3,6-di-t-butyl-9H-carbazole- It is a 9-yl group or a substituted or unsubstituted 3,6-diphenyl-9H-carbazol-9-yl group.
  • L is each independently a substituted or unsubstituted aryl group
  • Q is each independently a substituted or unsubstituted 3,6-di-t-butyl-9H-carbazole- It is a 9-yl group or a substituted or unsubstituted 3,6-diphenyl-9H-carbazol-9-yl group.
  • L is each independently a substituted or unsubstituted aryl group
  • Q is each independently a substituted or unsubstituted 3,6-di-t-butyl-9H-carbazole- It is a 9-yl group or a substituted or unsubstituted 3,6-diphenyl-9H-carbazol-9-yl group.
  • L is each independently a substituted or unsubstituted aryl group
  • Q is each independently a substituted or unsubstituted 3,6-di-t-butyl-9H-carbazole- It is a 9-yl group or a substituted or unsubstituted 3,6-diphenyl-9H-carbazol-9-yl group.
  • L is each independently a substituted or unsubstituted aryl group
  • Q is each independently a substituted or unsubstituted 3,6-di-t-butyl-9H-carbazole- It is a 9-yl group or a substituted or unsubstituted 3,6-diphenyl-9H-carbazol-9-yl group.
  • L is each independently a substituted or unsubstituted aryl group
  • Q is each independently a substituted or unsubstituted 3,6-di-t-butyl-9H-carbazole- It is a 9-yl group or a substituted or unsubstituted 3,6-diphenyl-9H-carbazol-9-yl group.
  • the substituted or unsubstituted 3,6-di-t-butyl-9H-carbazol-9-yl group is preferably a group represented by the formula (A).
  • the substituted or unsubstituted 3,6-diphenyl-9H-carbazol-9-yl group is preferably a group represented by the formula (B).
  • the substituted or unsubstituted 3-phenyl-6-t-butyl-9H-carbazol-9-yl group is preferably a group represented by the formula (C).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or a substituent, and * is a bonding moiety. is there.
  • the term “unsubstituted” means that there is only a parent nucleus. When only the name of a group to be a mother nucleus is described, it means “unsubstituted” unless otherwise specified.
  • the term “substituted” means that any hydrogen atom of the parent nucleus is replaced by a group having the same or different structure as the parent nucleus. Thus, a "substituent” is another group attached to a parent nucleus.
  • the number of substituents may be one, or two or more. Two or more substituents may be the same or different.
  • the “substituent” is chemically acceptable and is not particularly limited as long as it has the effects of the present invention.
  • Specific examples of the group that can be a “substituent” include the following groups.
  • a halogeno group such as a fluoro group, a chloro group, a bromo group, and an iodo group;
  • C1-20 such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-pentyl group and n-hexyl group
  • An alkyl group (preferably a C1-6 alkyl group); Vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-methyl-2-propenyl group, 2-methyl-2-propenyl group, 1-penten
  • Ethynyl 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 2-methyl-3-butynyl, 1-pentynyl , 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-2-butynyl, 2-methyl-3-pentynyl, 1-hexynyl, 1,1-dimethyl-2-butynyl, etc.
  • a C2-10 alkynyl group (C2-6 alkynyl group); A C3-8 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cubanyl group; C3-8 cycloalkenyl groups such as 2-cyclopropenyl group, 2-cyclopentenyl group, 3-cyclohexenyl group and 4-cyclooctenyl group; A C6-40 aryl group such as a phenyl group and a naphthyl group (preferably a C6-10 aryl group); 5-membered heteroaryl groups such as pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, ox
  • a C1-6 haloalkyl group such as a chloromethyl group, a chloroethyl group, a trifluoromethyl group, a 1,2-dichloro-n-propyl group, a 1-fluoro-n-butyl group, a perfluoro-n-pentyl group; C2-6 haloalkenyl groups such as 2-chloro-1-propenyl group and 2-fluoro-1-butenyl group; C2-6 haloalkynyl groups such as 4,4-dichloro-1-butynyl group, 4-fluoro-1-pentynyl group and 5-bromo-2-pentynyl group; A C3-6 halocycloalkyl group such as a 3,3-difluorocyclobutyl group; C1-6 haloalkoxy group such as 2-chloro-n-propoxy group, 2,3-dichlorobutoxy group, trifluoromethoxy group, 2,2,2-tri
  • a C1-6 alkylaminocarbonyl group such as a methylaminocarbonyl group, a dimethylaminocarbonyl group, an ethylaminocarbonyl group, an i-propylaminocarbonyl group
  • Imino C1-6 alkyl groups such as iminomethyl group, (1-imino) ethyl group, (1-imino) -n-propyl group
  • Hydroxyimino C1-6 alkyl groups such as hydroxyiminomethyl group, (1-hydroxyimino) ethyl group, (1-hydroxyimino) propyl group
  • a C1-6 alkoxyimino C1-6 alkyl group such as a methoxyiminomethyl group and a (1-methoxyimino) ethyl group
  • a mercapto group C1-20 alkylthio groups (preferably C1-6 alkylthio groups) such as methylthio group, ethylthio group, n-propylthio group, i-propylthio group, n-butylthio group, i-butylthio group, s-butylthio group and t-butylthio group );
  • a C1-6 haloalkylthio group such as a trifluoromethylthio group and a 2,2,2-trifluoroethylthio group;
  • a C2-6 alkenylthio group such as a vinylthio group and an allylthio group;
  • a C2-6 alkynylthio group such as an ethynylthio group and a propargylthio group;
  • a C1-6 alkylsulfinyl group such as a methylsulfinyl group, an ethylsulf
  • C6-20 arylamide groups such as phenylamide group, naphthylamide group, phenylacetamide group, naphthylacetamide group;
  • Tri-C1-10 alkylsilyl groups such as trimethylsilyl group, triethylsilyl group and t-butyldimethylsilyl group (preferably tri-C1-6 alkylsilyl group); Tri-C6-10 arylsilyl groups such as triphenylsilyl group; In these “substituents”, any of the hydrogen atoms in the substituents may be substituted with a group having a different structure.
  • C1-6 indicates that the group serving as a mother nucleus has 1-6 carbon atoms.
  • the number of carbon atoms does not include the number of carbon atoms present in the substituent.
  • an ethoxybutyl group is classified as a C2 alkoxy C4 alkyl group because a group serving as a mother nucleus is a butyl group and a substituent is an ethoxy group.
  • Preferred substituents include a hydroxy group, a halogeno group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, and an alkyl substitution having 1 to 20 carbon atoms.
  • Substituted carbazolyl group alkenyl group having 2 to 10 carbon atoms, alkynyl group having 2 to 10 carbon atoms, alkoxycarbonyl group having 2 to 10 carbon atoms, alkylsulfonyl group having 1 to 10 carbon atoms, haloalkyl having 1 to 10 carbon atoms Group, amide group, alkylamide group having 2 to 10 carbon atoms, trialkylsilyl group having 3 to 20 carbon atoms, trialkylsilylalkyl group having 4 to 20 carbon atoms, Trialkylsilyl alkenyl group prime 5-20 include trialkylsilyl alkynyl group and a nitro group having 5 to 20 carbon atoms.
  • More preferred substituents include a halogeno group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 40 carbon atoms, a heteroaryl group having 3 to 40 carbon atoms, Examples thereof include a diarylamino group having 12 to 40 carbon atoms and a carbazolyl group having 12 to 40 carbon atoms.
  • substituents include a fluoro group, a chloro group, a cyano group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a dialkylamino group having 1 to 10 carbon atoms, and an aryl having 6 to 15 carbon atoms. And heteroaryl groups having 3 to 12 carbon atoms.
  • substituents those which can be further substituted may be substituted by the substituent.
  • the substituted or unsubstituted aryl group for L is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthryl group, or a substituted or unsubstituted anthryl group.
  • Substituted phenanthryl groups can be mentioned. Of these, a substituted or unsubstituted phenyl group is more preferred.
  • the compound of the present invention is not particularly limited by its production method.
  • the compound described in Patent Document 1 or Patent Document 2 is applied to a compound corresponding to a corresponding substituent as a starting material or described in Examples. Can be obtained.
  • the synthesized compound of the present invention can be purified by column chromatography, adsorption and purification using silica gel, activated carbon, activated clay, or the like, recrystallization or crystallization using a solvent, or the like.
  • the compound can be identified by NMR analysis or the like.
  • the compound of the present invention can be used as a light emitting material.
  • the light-emitting material of the present invention can provide a light-emitting element such as an organic photoluminescence element and an organic electroluminescence element. Since the compound of the present invention has a function of assisting light emission of another light emitting material (host material), it can be used by doping another light emitting material.
  • the organic photoluminescence element which is one of the light emitting elements of the present invention, is provided with a light emitting layer containing the light emitting material of the present invention on a substrate.
  • the light-emitting layer can be obtained by a coating method such as spin coating, a printing method such as an inkjet printing method, or a vapor deposition method.
  • the organic electroluminescence device of the present invention has an organic layer provided between an anode and a cathode.
  • the ⁇ organic layer '' in the present invention means a layer substantially located between an anode and a cathode and substantially composed of an organic substance, and these layers contain an inorganic substance within a range that does not impair the performance of the light emitting device of the present invention. May be.
  • the substrate in order, an anode, a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer
  • examples include those comprising a cathode and those further having an electron injection layer between the electron transport layer and the cathode.
  • the light emitting material of the present invention may be doped not only in the light emitting layer but also in the hole injection layer, the hole transport layer, the electron blocking layer, the hole blocking layer, the electron transport layer, or the electron injection layer.
  • the substrate is a support for the light emitting element, and a silicon plate, a quartz plate, a glass plate, a metal plate, a metal foil, a resin film, a resin sheet, or the like is used. Particularly, a glass plate or a plate of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate, and polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too low, the light emitting element may be deteriorated by the outside air passing through the substrate. Therefore, it is preferable to provide a dense silicon oxide film or the like on one or both sides of the synthetic resin substrate to ensure gas barrier properties.
  • An anode is provided on the substrate.
  • a material having a large work function is generally used for the anode.
  • the anode material include metals such as aluminum, gold, silver, nickel, palladium, and platinum; metal oxides such as indium oxide, tin oxide, ITO, zinc oxide, In 2 O 3 —ZnO, and IGZO; Examples thereof include metal halides such as copper halide, carbon black, and conductive polymers such as poly (3-methylthiophene), polypyrrole, and polyaniline.
  • the formation of the anode is usually performed by a sputtering method, a vacuum evaporation method, or the like in many cases.
  • fine particles of metal such as silver, fine particles of copper iodide or the like, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc.
  • they are dispersed in an appropriate binder resin solution and placed on a substrate.
  • An anode can be formed by coating.
  • a conductive polymer a thin film can be directly formed on a substrate by electrolytic polymerization, or an anode can be formed by applying a conductive polymer on the substrate.
  • the anode can be formed by laminating two or more different substances.
  • the thickness of the anode depends on the required transparency. When transparency is required, it is desirable that the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness is usually 10 to 1000 nm, preferably 10 to 1000 nm. 200 nm. If opaque, the anode may be as thick as the substrate.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or more.
  • a hole injection layer provided as needed, in addition to a porphyrin compound represented by copper phthalocyanine, a naphthalenediamine derivative, a star burst type triphenylamine derivative, three or more triphenylamine structures in the molecule, a single bond Or acceptor heterocyclic compounds such as triphenylamine trimers and tetramers such as arylamine compounds having a structure linked by a divalent group containing no hetero atom, hexacyanoazatriphenylene, and coating type polymer materials Can be used. These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method, in addition to a vapor deposition method.
  • the hole transporting material used for the hole transporting layer provided as necessary has a high hole injection efficiency from the anode and can efficiently transport the injected holes.
  • the ionization potential is small, the transparency to visible light is high, the hole mobility is large, the stability is high, and impurities serving as traps are unlikely to be generated during production or use.
  • the element has higher heat resistance. Therefore, a material having a Tg of 70 ° C. or more is desirable.
  • triazole derivatives As a hole transport layer provided as needed, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers.
  • NPD N, N′-diphenyl-N, N′-di (m-tolyl) -benzidine
  • TPD N, N ′ Benzidine derivatives such as -diphenyl-N, N'-di ( ⁇ -naphthyl) -benzidine (hereinafter abbreviated as NPD), N, N, N ', N'-tetrabiphenylylbenzidine, 1,1-bis [ (Di-4-tolylamino) phenyl] cyclohexane (hereinafter abbreviated as TAPC), various triphenylamine trimers and tetramers, and carbazole derivatives.
  • NPD -diphenyl-N, N'-di ( ⁇ -naphthyl) -benzidine
  • TAPC 1,1-bis [ (Di-4-tolylamino) phenyl] cyclohexane
  • TAPC 1,1-bis [ (Di-4-
  • the hole transport layer may be a film having a single-layer structure or a film having a laminated structure.
  • a coating type such as poly (3,4-ethylenedioxythiophene) (hereinafter abbreviated as PEDOT) / poly (styrenesulfonate) (hereinafter abbreviated as PSS) is used.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS poly (styrenesulfonate)
  • PSS poly (styrenesulfonate)
  • trisbromophenylamine hexachloroantimony is further P-doped with respect to a material usually used for the layer, or a polymer having a PD structure in its partial structure.
  • a material usually used for the layer or a polymer having a PD structure in its partial structure.
  • Compounds and the like can be used.
  • a host material having a hole-injecting / transporting property a carbazole derivative such as PPF, PPT, CBP, TCTA, or mCP can be used.
  • TCTA N-carbazolyl triphenylamine
  • mCP 1,3-bis (carbazol-9-yl) benzene
  • Ad-Cz 2,2-bis (4-carbazol-9-ylphenyl) adamantane
  • Carbazole derivatives such as 9- [4- (carbazol-9-yl) phenyl] -9- [4- (triphenylsilyl) phenyl] -9H-fluorene and triphenylsilyl groups.
  • the electron blocking layer may be a film having a single layer structure or a film having a laminated structure, and these materials may be formed by a known method such as a spin coating method and an ink jet method in addition to a vapor deposition method.
  • a thin film can be formed by the method described above.
  • the light-emitting layer is a layer having a function of emitting light by generating excitons by recombination of holes and electrons injected from the anode and the cathode, respectively.
  • the light-emitting layer may be formed using the light-emitting material of the present invention alone, or may be formed by doping a host material with the light-emitting material of the present invention.
  • the host material include metal complexes of quinolinol derivatives such as PPF, PPT, and tris (8-hydroxyquinoline) aluminum (hereinafter abbreviated as Alq3), anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, polyoxins, and the like.
  • Examples thereof include a paraphenylene vinylene derivative, a compound having a bipyridyl group and an orthoterphenyl structure, mCP, a thiazole derivative, a benzimidazole derivative, and a polydialkylfluorene derivative.
  • the light emitting layer may contain a known dopant. Examples of the dopant include quinacridone, coumarin, rubrene, anthracene, perylene and derivatives thereof, benzopyran derivatives, rhodamine derivatives, aminostyryl derivatives and the like.
  • a phosphorescent material such as a green phosphorescent material such as Ir (ppy) 3, a blue phosphorescent material such as FIrpic and FIr6, and a red phosphorescent material such as Btp2Ir (acac) may be used. These can be used alone or in combination of two or more.
  • the light-emitting layer may have a single-layer structure or a stacked-layer structure. These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method, in addition to a vapor deposition method.
  • the lower limit of the amount of the light emitting material of the present invention that can be contained in the light emitting layer is preferably 0.1% by mass, more preferably 1% by mass, and the upper limit is preferably 50% by mass. %, More preferably 20% by mass, even more preferably 10% by mass.
  • a compound having a bipyridyl group and an orthoterphenyl structure such as bathocuproin (hereinafter abbreviated as BCP), an aluminum (III) bis (2-methyl-8- Metal complexes of quinolinol derivatives such as (quinolinato) -4-phenylphenolate (hereinafter abbreviated as BAlq), various rare earth complexes, oxazole derivatives, triazole derivatives, triazine derivatives, and other compounds having a hole-blocking action may be mentioned. it can. These materials may also serve as the material of the electron transport layer. These can be used alone or in combination of two or more.
  • the hole blocking layer may be a film having a single-layer structure or a film having a laminated structure. These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method, in addition to a vapor deposition method.
  • an electron transport layer As an electron transport layer provided as needed, in addition to metal complexes of quinolinol derivatives such as Alq3 and BAlq, various metal complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline derivatives, A phenanthroline derivative, a silole derivative, or the like can be used. These can be used alone or in combination of two or more.
  • the electron transport layer may have a single-layer structure or a multilayer structure. These materials can be formed into a thin film by a known method such as a spin coating method or an ink jet method, in addition to a vapor deposition method.
  • alkali metal salts such as lithium fluoride and cesium fluoride
  • alkaline earth metal salts such as magnesium fluoride
  • ____ metal oxides such as aluminum oxide (merely “metal oxide ) May be used, but this can be omitted in the preferred selection of the electron transport layer and the cathode.
  • a material obtained by further doping a metal such as cesium by N with respect to a material usually used for the layer can be used.
  • Cathode materials include, for example, sodium, sodium-potassium alloy, lithium, tin, magnesium, magnesium / copper mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide mixture, indium, calcium, aluminum, silver, lithium / Aluminum mixture, magnesium silver alloy, magnesium indium alloy, aluminum magnesium alloy and the like.
  • a transparent conductive material By using a transparent conductive material, a transparent or translucent cathode can be obtained.
  • the thickness of the cathode is usually 10 to 5000 nm, preferably 50 to 200 nm.
  • the sheet resistance of the cathode is preferably several hundred ⁇ / ⁇ or more.
  • a metal layer having a high work function and stable against the atmosphere such as aluminum, silver, nickel, chromium, gold, and platinum, is further laminated thereon. It is preferable to increase stability.
  • a cathode interface layer may be provided between the two.
  • Examples of the material used for the cathode interface layer include an aromatic diamine compound, a quinacridone compound, a naphthacene derivative, an organic silicon compound, an organic phosphorus compound, a compound having an N-phenylcarbazole skeleton, and an N-vinylcarbazole polymer. .
  • the light-emitting element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix.
  • a light emitting layer having a thickness of 20 nm was laminated in this order by a vacuum evaporation method (5.0.times.10@-4 Pa or less).
  • PPF was used as a host material of the light emitting layer
  • 2,4,6-tri (9H-carbazol-9-yl) -3,5-diphenyl-benzonitrile (3Cz-2PBN-A) was used as a dope material.
  • the dough material concentration was set to 12.0% by weight.
  • a cathode was formed by stacking a 10-nm thick PPF layer, a 40-nm thick B3PyPB layer, a 1-nm thick 8-hydroxyquinolitho lithium film, and a 100-nm thick aluminum film in this order by a vacuum evaporation method.
  • An organic light emitting diode (OLED) was obtained. The results are shown in FIGS. This organic light-emitting diode had a maximum external quantum efficiency (EQEMax) of 13.1%.
  • Example 1 except that the doping material was changed to 2,4,6-tri (3,6-diphenyl-9H-carbazol-9-yl) -3,5-diphenyl-benzonitrile (3PCz-2PBN-A) Emission evaluation was performed in the same manner. The results are shown in FIGS. EQEMax was 28.1%.
  • Example 2 Comparing Example 1, Example 2, and Example 3, which are the same 2,3-phenyl-substituted skeleton, the compound of the present invention (Example 2 and Example 3) has a relatively high EQEMax and is used as a luminescent material. It turns out to be useful.
  • the temperature was returned to room temperature, water and ethyl acetate were added, and the organic layer was separated.
  • the aqueous layer was further extracted twice with ethyl acetate, and the combined organic layers were washed three times with water and then twice with saturated saline.
  • the organic layer was dried over magnesium sulfate, filtered, and the filtrate was concentrated to obtain a crude product.
  • the crude product was purified by silica gel column chromatography (eluent: n-hexane / ethyl acetate) to obtain a crude product. Further, acetone / n-hexane was added to the crude product, which was irradiated with ultrasonic waves.
  • Emission evaluation was performed in the same manner as in Example 1 except that the dope material was changed to 2,3,5-tri (9H-carbazol-9-yl) -4,6-diphenyl-benzonitrile (3Cz-2PBN-B). went. The results are shown in FIGS. EQEMax was 16.7%.
  • the temperature was returned to room temperature, water and ethyl acetate were added, and the organic layer was separated.
  • the aqueous layer was further extracted twice with ethyl acetate, and the combined organic layers were washed three times with water and then twice with saturated saline.
  • the organic layer was dried over magnesium sulfate, filtered, and the filtrate was concentrated to obtain a crude product.
  • the crude product was purified by silica gel column chromatography (eluent: n-hexane / dichloromethane) to obtain a crude product. Further, dichloromethane / diethyl ether / n-hexane was added to the crude product, and the mixture was irradiated with ultrasonic waves.
  • Example 1 was repeated except that the dope material was changed to 2,3,5-tri (3,6-diphenyl-9H-carbazol-9-yl) -4,6-diphenyl-benzonitrile (3PCz-2PBN-B). Emission evaluation was performed in the same manner. The results are shown in FIGS. EQEMax was 35.1%.
  • the temperature was returned to room temperature, water and ethyl acetate were added, and the organic layer was separated.
  • the aqueous layer was further extracted twice with ethyl acetate, and the combined organic layers were washed three times with water and then twice with saturated saline.
  • the organic layer was dried over magnesium sulfate, filtered, and the filtrate was concentrated to obtain a crude product.
  • the crude product was purified by silica gel column chromatography (eluent: n-hexane / dichloromethane) to obtain a crude product. Further, n-hexane was added to the crude purified product, and the mixture was irradiated with ultrasonic waves.
  • N, N-dimethylformamide (5 mL) to which potassium tert-butoxide (0.73 g, 6.52 mmol) was added at room temperature was added, and the mixture was stirred at room temperature for 30 minutes. Thereafter, N, N-dimethylformamide (10 mL) to which compound 1 (0.4 g, 1.59 mmol) was added was added dropwise over 10 minutes. Thereafter, the mixture was stirred at 80 ° C. for 10 hours. Next, the temperature was returned to room temperature, water (20 mL) was added, and after 30 minutes, chloroform was added to perform extraction.
  • Emission evaluation was performed in the same manner as in Example 1 except that the dope material was changed to 2,3,5,6-tetra (9H-carbazol-9-yl) -4-phenyl-benzonitrile (4Cz-1PBN-A). went. The results are shown in FIGS. EQEMax was 26.1%.
  • Example 7 Comparing Example 7 and Example 8, which are the same 4-phenyl-substituted skeleton, it can be seen that the compound of the present invention (Example 7) has a relatively high EQEMax and is useful as a light emitting material.
  • Example 1 was repeated except that the doping material was changed to 3,4,5-tri (3,6-diphenyl-9H-carbazol-9-yl) -2,6-diphenyl-benzonitrile (3PCz-2PBN-C). Emission evaluation was performed in the same manner. The results are shown in FIGS. EQEMax was 21.6%.
  • 3,6-Diphenylcarbazole (1.75 g, 5.5 mmol) was added to a 100 mL two-necked flask purged with nitrogen, and dissolved in 10 mL of N-methyl-2-pyrrolidone. Thereto was added potassium t-butoxide (0.65 g, 5.8 mmol), and the mixture was stirred at room temperature for 1 hour. Then, 3 ′, 5 ′, 6′-trifluoro- [1,1 ′: 4 ′, 1 ′′ -terphenyl] -2′-carbonitrile (0.42 g, 1.4 mmol) was added to N- under a nitrogen stream.
  • the suspension was added to 10 mL of methyl-2-pyrrolidone, and the mixture was stirred for 20 hours at 120 ° C. After returning to room temperature, water and ethyl acetate were added, the organic layer was separated, and the aqueous layer was extracted twice with ethyl acetate. The combined organic layer was washed three times with water and then twice with saturated saline, and the organic layer was dried over magnesium sulfate, filtered and concentrated to obtain a crude product.
  • the crude product was purified by silica gel column chromatography (eluent: n-hexane / dichloromethane), and the crude product was purified again by silica gel column chromatography (eluent: n-hexane / toluene). (3PCz-2PBN-D) to 0. 93 g was obtained in a yield of 56.7%.
  • Example 1 was repeated except that the doping material was changed to 3,4,6-tri (3,6-diphenyl-9H-carbazol-9-yl) -2,5-diphenyl-benzonitrile (3PCz-2PBN-D). Emission evaluation was performed in the same manner. The results are shown in FIGS. EQEMax was 20.7%.
  • 3,6-Di-t-butylcarbazole (3.62 g, 13.0 mmol) was added to a 300 mL four-necked flask purged with nitrogen, and dissolved in 65 mL of N-methyl-2-pyrrolidone. To this was added potassium t-butoxide (1.58 g, 14.1 mmol), and the mixture was stirred at room temperature for 1 hour.
  • 3 ′, 5 ′, 6′-Trifluoro- [1,1 ′: 4 ′, 1 ′′ -terphenyl] -2′-carbonitrile (1.00 g, 3.2 mmol) was added thereto under a nitrogen stream. The mixture was stirred for 6 hours at 120 ° C.
  • 1,3-Dibromotetrafluorobenzene (6.50 g, 21.1 mmol), phenylboronic acid (2.73 g, 22.4 mmol), potassium carbonate (8.74 g, 63.3 mmol), 26 ml of water, And 65 ml of tetrahydrofuran. Degassed and then purged with argon. Thereafter, Pd (PPh 3 ) 4 (0.56 g, 0.63 mmol) was added, and the mixture was stirred under reflux with heating for 17 hours. The obtained liquid was returned to room temperature, and extracted with 100 ml of diethyl ether.
  • the doped material was 2,4,5,6-tetrakis (3,6-di-tert-butyl-9H-carbazol-9-yl)-[1,1′-biphenyl] -3-carbonitrile (4BuCz-1PBN-
  • the luminescence was evaluated in the same manner as in Example 1 except that C) was changed.
  • the results are shown in FIGS. EQEMax was 26.0%.
  • the doped material was 3,4,5,6-tetrakis (3,6-di-tert-butyl-9H-carbazol-9-yl)-[1,1′-biphenyl] -2-carbonitrile (4BuCz-1PBN-
  • the luminescence was evaluated in the same manner as in Example 1 except that B) was used.
  • the results are shown in FIGS. EQEMax was 22.3%.
  • the doped material was 4 '-(tert-butyl) -2,3,5,6-tetrakis (3,6-di-tert-butyl-9H-carbazol-9-yl)-[1,1'-biphenyl]-
  • the luminescence was evaluated in the same manner as in Example 1 except that 4-carbonitrile (4X-BCz-PBN-Bu) was used. The results are shown in FIGS. EQEMax was 26.5%.
  • Dope material is 2,3,5,6-tetrakis (3,6-di-tert-butyl-9H-carbazol-9-yl) -4'-methoxy- [1,1'-biphenyl] -4-carbonitrile
  • the luminescence was evaluated in the same manner as in Example 1 except that (4X-BCz-PBN-OMe) was used. The results are shown in FIGS. EQEMax was 28.5%.
  • Dope material is 2,3,5,6-tetrakis (3,6-di-tert-butyl-9H-carbazol-9-yl) -4'-methylthio- [1,1'-biphenyl] -4-carbonitrile (4X-BCz-PBN-SMe), except that the luminescence was evaluated in the same manner as in Example 1. The results are shown in FIGS. EQEMax was 29.0%.
  • the doped material was 2,3,5,6-tetrakis (3,6-di-tert-butyl-9H-carbazol-9-yl)-[1,1'-biphenyl] -4,4'-dicarbonitrile ( The luminescence was evaluated in the same manner as in Example 1 except that 4X-BCz-PBN-CN) was used. The results are shown in FIGS. EQEMax was 31.6%.
  • the doped material was 4'-cyano-2 ', 3', 5 ', 6'-tetrakis (3,6-di-tert-butyl-9H-carbazol-9-yl)-[1,1'-biphenyl]-
  • the luminescence was evaluated in the same manner as in Example 1 except that 4-carboxylic acid methyl ester (4X-BCz-PBN-CO 2 Me) was used.
  • the results are shown in FIGS. EQEMax was 30.4%.
  • 3,6-Di-t-butylcarbazole (2.12 g, 7.6 mmol) was added to a 200-mL three-necked flask purged with nitrogen, and dissolved in 30 mL of dehydrated N-methyl-2-pyrrolidone. 82 g, 7.3 mmol) and stirred at room temperature for 1 hour. The mixture was cooled with ice water, and the precursor (0.50 g, 1.70 mmol) dissolved in 5 mL of dehydrated N-methyl-2-pyrrolidone was added under a nitrogen stream, followed by stirring at 100 ° C. for 3 hours. The reaction solution was ice-cooled, cold water was added, and the precipitated solid was collected by filtration.
  • Emission evaluation was performed in the same manner as in Example 1 except that the dope material was changed to 4X-BCz-PBN-MesBN. The results are shown in FIGS. EQEMax was 29.5%.
  • 3,6-Di-t-butylcarbazole (1.84 g, 6.6 mmol) was added to a 200-mL three-necked flask purged with nitrogen, and dissolved in 27 mL of dehydrated N-methyl-2-pyrrolidone. (71 g, 6.3 mmol) and stirred at room temperature for 1 hour. The mixture was cooled with ice water, and the precursor (0.45 g, 1.49 mmol) dissolved in 5 mL of dehydrated N-methyl-2-pyrrolidone was added under a nitrogen stream, followed by stirring at 100 ° C. for 3 hours. The reaction solution was ice-cooled, cold water was added, and the precipitated solid was collected by filtration.
  • the solid was dissolved in dichloromethane, dried over magnesium sulfate and concentrated. The residue was purified by silica gel column chromatography (n-hexane / benzene) to obtain a crude product. The crude product was added with n-hexane and irradiated with ultrasonic waves. The precipitated solid was collected by filtration and the solvent was distilled off, thereby obtaining 1.24 g of the desired product as a yellow solid (yield 62.0%).
  • the doped material was 2,3,5,6-tetrakis (3,6-di-tert-butyl-9H-carbazol-9-yl) -4- (pyridin-2-yl) benzonitrile (4X-BCz-PBN-
  • the luminescence was evaluated in the same manner as in Example 1 except that 2-Py) was used.
  • the results are shown in FIGS. EQEMax was 24.4%.
  • the doped material was 2,3,5,6-tetrakis (3,6-di-tert-butyl-9H-carbazol-9-yl) -4- (pyridin-3-yl) benzonitrile (4X-BCz-PBN-
  • the luminescence was evaluated in the same manner as in Example 1 except that 3-Py) was used.
  • the results are shown in FIGS. EQEMax was 33.6%.
  • the doped material was 2,3,5,6-tetrakis (3,6-di-tert-butyl-9H-carbazol-9-yl) -4- (pyridin-4-yl) benzonitrile (4X-BCz-PBN-
  • the luminescence was evaluated in the same manner as in Example 1 except that 4-Py) was used.
  • the results are shown in FIGS. EQEMax was 30.9%.
  • the doped material was 2,3,5,6-tetrakis (3,6-di-tert-butyl-9H-carbazol-9-yl) -4- (pyrimidin-5-yl) benzonitrile (4X-BCz-PBN-
  • the luminescence was evaluated in the same manner as in Example 1 except that 5-Pm) was used.
  • the results are shown in FIGS. EQEMax was 30.3%.
  • 3,6-Di-t-butylcarbazole (1.16 g, 4.2 mmol) was added to a 200-mL three-necked flask purged with nitrogen, dissolved in 24 mL of dehydrated N-methyl-2-pyrrolidone, and potassium t-butoxide (0.1 mL) was added. (44 g, 3.9 mmol) and stirred at room temperature for 1 hour. The mixture was cooled with ice water, the precursor (0.50 g, 1.19 mmol) was added under a nitrogen stream, and the mixture was stirred at 100 ° C. for 3 hours. The reaction solution was ice-cooled, cold water was added, and the precipitated solid was collected by filtration.
  • Emission evaluation was performed in the same manner as in Example 1, except that the doping material was changed to 3Y-BCz-PBN-tBu. The results are shown in FIGS. EQEMax was 24.6%.
  • 3,6-Di-t-butylcarbazole (1.33 g, 4.8 mmol) was added to a 200-mL three-necked flask purged with nitrogen, and dissolved in 20 mL of dehydrated N-methyl-2-pyrrolidone. (44 g, 3.9 mmol) and stirred at room temperature for 1 hour. The mixture was cooled with ice water, and the precursor (0.51 g, 1.35 mmol) dissolved in 7 mL of dehydrated N-methyl-2-pyrrolidone was added thereto under a nitrogen stream, followed by stirring at 100 ° C. for 3 hours. The reaction solution was ice-cooled, cold water was added, and the precipitated solid was collected by filtration.
  • the solid was dissolved in dichloromethane, dried over magnesium sulfate and concentrated. The residue was purified by silica gel column chromatography (n-hexane / benzene) to obtain 1.63 g of a crude target product. To 3.33 g of the crude product obtained by the same method, n-hexane / ethyl acetate was added, and the crystals precipitated by ultrasonic irradiation were collected by filtration, and the solvent was distilled off to give the target compound as a pale yellow-white solid. 2.37 g was obtained (74.1% yield).
  • 3,6-Di-t-butylcarbazole (1.95 g, 7.0 mmol) was added to a 200-mL three-necked flask purged with nitrogen, and dissolved in 32 mL of dehydrated N-methyl-2-pyrrolidone. 76 g, 6.8 mmol) and stirred at room temperature for 1 hour. The mixture was cooled with ice water, a precursor (0.80 g, 2.00 mmol) was added under a nitrogen stream, and the mixture was stirred at 100 ° C. for 3 hours. The reaction solution was ice-cooled, cold water was added, and the precipitated solid was collected by filtration. The solid was dissolved in dichloromethane, dried over magnesium sulfate and concentrated.
  • Emission evaluation was performed in the same manner as in Example 1, except that the doping material was changed to 3Y-BCz-PBN-SMe. The results are shown in FIGS. EQEMax was 20.9%.
  • 3,6-Di-t-butylcarbazole (1.16 g, 4.2 mmol) was added to a 200-mL three-necked flask purged with nitrogen, and dissolved in 24 mL of dehydrated N-methyl-2-pyrrolidone. (44 g, 3.9 mmol) and stirred at room temperature for 1 hour. The mixture was cooled with ice water, the precursor (0.50 g, 1.19 mmol) was added under a nitrogen stream, and the mixture was stirred at 100 ° C. for 3 hours. The reaction solution was ice-cooled, cold water was added, and the precipitated solid was collected by filtration. The solid was dissolved in dichloromethane, dried over magnesium sulfate and concentrated.
  • Emission evaluation was performed in the same manner as in Example 1, except that the doping material was changed to 3F-BCz-PBN-tBu. The results are shown in FIGS. EQEMax was 26.5%.
  • 3,6-Di-t-butylcarbazole (1.51 g, 5.4 mmol) was added to a 200-mL three-necked flask purged with nitrogen, and dissolved in 25 mL of dehydrated N-methyl-2-pyrrolidone. (58 g, 5.2 mmol) and stirred at room temperature for 1 hour. The mixture was cooled with ice water, and the precursor (0.57 g, 1.54 mmol) dissolved in 6 mL of dehydrated N-methyl-2-pyrrolidone was added under a nitrogen stream, followed by stirring at 100 ° C. for 3 hours. The reaction solution was ice-cooled, cold water was added, and the precipitated solid was collected by filtration.
  • Emission evaluation was performed in the same manner as in Example 1, except that the doping material was changed to 3F-BCz-PBN-OMe. The results are shown in FIGS. EQEMax was 25.2%.
  • 3,6-Di-t-butylcarbazole (1.95 g, 7.0 mmol) was added to a 200-mL three-necked flask purged with nitrogen, and dissolved in 32 mL of dehydrated N-methyl-2-pyrrolidone. 76 g, 6.8 mmol) and stirred at room temperature for 1 hour. The mixture was cooled with ice water, a precursor (0.80 g, 2.00 mmol) was added under a nitrogen stream, and the mixture was stirred at 100 ° C. for 3 hours. The reaction solution was ice-cooled, cold water was added, and the precipitated solid was collected by filtration. The solid was dissolved in dichloromethane, dried over magnesium sulfate and concentrated.
  • the residue was purified by silica gel column chromatography (n-hexane / dichloromethane) to obtain a crude product.
  • the crude product was added with n-hexane / diethyl ether and irradiated with ultrasonic waves.
  • the precipitated crystals were collected by filtration and the solvent was distilled off to obtain 1.85 g of the desired product as a pale yellow solid (yield 78.7%). ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)

Abstract

式(I)で表される化合物。 式(I)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、nは、Lの数を表し、1または2であり、Qは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基、置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基、または置換若しくは無置換の3-フェニル-6-t-ブチル-9H-カルバゾール-9-イル基であり、且つmは、Qの数を表し、5-nである。

Description

ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子
 本発明は、発光特性に優れる、2,3,4,5,6-ペンタ置換ベンゾニトリル化合物、発光材料およびそれを用いた発光素子に関する。
 本願は、2018年9月5日に、日本に出願された特願2018-165955号、及び、2019年2月1日に、日本に出願された特願2019-017156に基づき優先権を主張し、その内容をここに援用する。
 ある種カルバゾール-9-イル置換ベンゾニトリル化合物が発光材料として使用できることが知られている。
 例えば、特許文献1は、3,5-ジ(3,6-ジフェニル-9H-カルバゾール-9-イル)-2,4,6-トリ(4-シアノフェニル)-ベンゾニトリルなどを開示している。特許文献2は、2,3,5,6-テトラ(3,6-ジフェニル-9H-カルバゾール-9-イル)-4-(4-シアノフェニル)-ベンゾニトリルなどを開示している。特許文献3は、2,3,5,6-テトラ(9H-カルバゾール-9-イル)-4-フェニル-ベンゾニトリルなどを開示している。
特表2016-539182号公報 WO2016/138077A WO2014/183080A
 本発明の課題は、発光特性に優れる、2,3,4,5,6-ペンタ置換ベンゾニトリル化合物(以下、「本発明化合物」と云うことがある。)、発光材料およびそれを用いた発光素子を提供することである。
 上記課題を解決するために、以下の態様を含む本発明を完成するに至った。
〔1〕 式(I)で表される化合物。
Figure JPOXMLDOC01-appb-C000009
 式(I)中、
 Lは、それぞれ独立に、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、
 nは、Lの数を表し、1または2であり、
 Qは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基、置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基、または置換若しくは無置換の3-フェニル-6-t-ブチル-9H-カルバゾール-9-イル基であり、且つ
 mは、Qの数を表し、5-nである。
〔2〕 式(IIa)で表される前記〔1〕に記載の化合物。
Figure JPOXMLDOC01-appb-C000010
 式(IIa)中、Lは、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基である。
〔3〕 式(IIb)で表される前記〔1〕に記載の化合物。
Figure JPOXMLDOC01-appb-C000011
 式(IIb)中、Lは、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基である。
〔4〕 式(IIc)で表される前記〔1〕に記載の化合物。
Figure JPOXMLDOC01-appb-C000012
 式(IIc)中、Lは、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基である。
〔5〕 式(IIIa)で表される前記〔1〕に記載の化合物。
Figure JPOXMLDOC01-appb-C000013
 式(IIIa)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
〔6〕 式(IIIb)で表される前記〔1〕に記載の化合物。
Figure JPOXMLDOC01-appb-C000014
 式(IIIb)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
〔7〕 式(IIIc)で表される前記〔1〕に記載の化合物。
Figure JPOXMLDOC01-appb-C000015
 式(IIIc)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
〔8〕 式(IVa)で表される前記〔1〕に記載の化合物。
Figure JPOXMLDOC01-appb-C000016
 式(IVa)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
〔9〕 Lが、置換若しくは無置換の含窒素または含酸素の5員環または6員環ヘテロアリールである前記〔1〕~〔8〕のいずれかひとつに記載の化合物。
〔10〕 Lが、置換若しくは無置換のフェニル基、置換若しくは無置換のビフェニル基、置換若しくは無置換のナフチル基、置換若しくは無置換のアントリル基、置換若しくは無置換のフェナントリル基、置換若しくは無置換のピリジニル基、置換若しくは無置換のピリミジニル基、置換若しくは無置換のフリル基、置換若しくは無置換のチエニル基、置換若しくは無置換のオキサゾリル基、置換若しくは無置換のチアゾリル基、置換若しくは無置換のイミダゾリル基、置換若しくは無置換のインドリル基、置換若しくは無置換のキノリニル基、置換若しくは無置換のベンゾフラニル基、置換若しくは無置換のベンゾチエニル基、置換若しくは無置換のベンゾオキサゾリル基、置換若しくは無置換のベンゾチアゾリル基、または置換若しくは無置換のベンゾイミダゾリル基である前記〔1〕~〔8〕のいずれかひとつに記載の化合物。
〔11〕 Lが、置換若しくは無置換のフェニル基、置換若しくは無置換のピリジニル基、または置換若しくは無置換のピリミジニル基である、前記〔1〕~〔8〕のいずれかひとつに記載の化合物。
〔12〕 前記〔1〕~〔11〕のいずれかひとつに記載の化合物を含む発光材料。
〔13〕 前記〔12〕に記載の発光材料を含有する発光素子。
 本発明化合物は、発光材料として有用である。本発明に係る発光材料には、遅延蛍光を放射するものがある。本発明に係る発光材料を含有する発光素子は、優れた発光効率を実現し得る。
3Cz-2PBN-A、3BuCz-2PBN-Aおよび3PCz-2PBN-Aの電圧-電流密度-輝度の特性を示す図である。 3Cz-2PBN-A、3BuCz-2PBN-Aおよび3PCz-2PBN-A の輝度-外部量子効率を示す図である。 3Cz-2PBN-B、3BuCz-2PBN-Bおよび3PCz-2PBN-Bの電圧-電流密度-輝度の特性を示す図である。 3Cz-2PBN-B、3BuCz-2PBN-Bおよび3PCz-2PBN-Bの輝度-外部量子効率を示す図である。 4Cz-1PBN-Aおよび4BuCz-1PBN-Aの電圧-電流密度-輝度の特性を示す図である。 4Cz-1PBN-Aおよび4BuCz-1PBN-A の輝度-外部量子効率を示す図である。 3BuCz-2PBN-C、3PCz-2PBN-C、3BuCz-2PBN-Dおよび3PCz-2PBN-Dの電圧-電流密度-輝度の特性を示す図である。 3BuCz-2PBN-C、3PCz-2PBN-C、3BuCz-2PBN-Dおよび3PCz-2PBN-Dの輝度-外部量子効率を示す図である。 4BuCz-1PBN-A、4BuCz-1PBN-B、および4BuCz-1PBN-Cの電圧-電流密度-輝度の特性を示す図である。 4BuCz-1PBN-A、4BuCz-1PBN-B、および4BuCz-1PBN-Cの輝度-外部量子効率を示す図である。 4X-BCz-PBN-Bu、4X-BCz-PBN-OMe、4X-BCz-PBN-SMe、および4X-BCz-PBN-CNの電圧-電流密度-輝度の特性を示す図である。 4X-BCz-PBN-Bu、4X-BCz-PBN-OMe、4X-BCz-PBN-SMe、および4X-BCz-PBN-CNの輝度-外部量子効率を示す図である。 4X-BCz-PBN-CO2Me、4X-BCz-PBN-MesBN、および4X-BCz-PBN-IPNの電圧-電流密度-輝度の特性を示す図である。 4X-BCz-PBN-CO2Me、4X-BCz-PBN-MesBN、および4X-BCz-PBN-IPNの輝度-外部量子効率を示す図である。 4X-BCz-PBN-2Py、4X-BCz-PBN-3Py、4X-BCz-PBN-4Py、および4X-BCz-PBN-5Pmの電圧-電流密度-輝度の特性を示す図である。 4X-BCz-PBN-2Py、4X-BCz-PBN-3Py、4X-BCz-PBN-4Py、および4X-BCz-PBN-5Pmの輝度-外部量子効率を示す図である。 3Y-BCz-PBN-tBu、3Y-BCz-PBN-OMe、および3Y-BCz-PBN-SMeの電圧-電流密度-輝度の特性を示す図である。 3Y-BCz-PBN-tBu、3Y-BCz-PBN-OMe、および3Y-BCz-PBN-SMeの輝度-外部量子効率を示す図である。 3F-BCz-PBN-tBu、3F-BCz-PBN-OMe、および3F-BCz-PBN-SMeの電圧-電流密度-輝度の特性を示す図である。 3F-BCz-PBN-tBu、3F-BCz-PBN-OMe、および3F-BCz-PBN-SMeの輝度-外部量子効率を示す図である。
 本発明の2,3,4,5,6-ペンタ置換ベンゾニトリル化合物は、式(I)で表される化合物である。
Figure JPOXMLDOC01-appb-C000017
 式(I)中、
 Lは、それぞれ独立に、置換若しくは無置換のアリール基であり、
 nは、Lの数を表し、1または2であり、
 Qは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基、置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基、または置換若しくは無置換の3-フェニル-6-t-ブチル-9H-カルバゾール-9-イル基であり、且つ
 mは、Qの数を表し、5-nである。
 本発明の2,3,4,5,6-ペンタ置換ベンゾニトリル化合物は、好ましくは式(IIa)、式(IIb)、式(IIc)、式(IIIa)、式(IIIb)、式(IIIc)または式(IVa)で表される化合物、より好ましくは式(IIa)で表される化合物である。本発明の2,3,4,5,6-ペンタ置換ベンゾニトリル化合物は、式(IIId)または式(IIIe)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000018
 式(IIa)中、Lは、置換若しくは無置換のアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基である。
Figure JPOXMLDOC01-appb-C000019
 式(IIb)中、Lは、置換若しくは無置換のアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基である。
Figure JPOXMLDOC01-appb-C000020
 式(IIc)中、Lは、置換若しくは無置換のアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基である。
Figure JPOXMLDOC01-appb-C000021
 式(IIIa)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
Figure JPOXMLDOC01-appb-C000022
 式(IIIb)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
Figure JPOXMLDOC01-appb-C000023
 式(IIIc)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
Figure JPOXMLDOC01-appb-C000024
 式(IIId)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
Figure JPOXMLDOC01-appb-C000025
 式(IIIe)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
Figure JPOXMLDOC01-appb-C000026
 式(IVa)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
 置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基は、好ましくは式(A)で表される基である。
Figure JPOXMLDOC01-appb-C000027
 置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基は、好ましくは式(B)で表される基である。
Figure JPOXMLDOC01-appb-C000028
 置換若しくは無置換の3-フェニル-6-t-ブチル-9H-カルバゾール-9-イル基は、好ましくは式(C)で表される基である。
Figure JPOXMLDOC01-appb-C000029
 式(A)、(B)および(C)中、R1、R2,R3、R4、R5およびR6は、それぞれ独立に、水素原子または置換基であり、*は結合部分である。
 本発明において、用語「無置換(unsubstituted)」は、母核となる基のみであることを意味する。母核となる基の名称のみで記載しているときは、別段の断りがない限り「無置換」の意味である。
 一方、用語「置換(substituted)」は、母核となる基のいずれかの水素原子が、母核と同一または異なる構造の基で置換されていることを意味する。従って、「置換基」は、母核となる基に結合した他の基である。置換基は1個であってもよいし、2個以上であってもよい。2個以上の置換基は同一であってもよいし、異なるものであってもよい。
 「置換基」は化学的に許容され、本発明の効果を有する限りにおいて特に制限されない。
 「置換基」となり得る基の具体例としては、以下の基を挙げることができる。
 フルオロ基、クロロ基、ブロモ基、イオド基などのハロゲノ基;
 メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基などのC1~20アルキル基(好ましくはC1~6アルキル基);
 ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-メチル-2-プロペニル基、2-メチル-2-プロペニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-メチル-2-ブテニル基、2-メチル-2-ブテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基などのC2~10アルケニル基(好ましくはC2~6アルケニル基);
 エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-メチル-2-プロピニル基、2-メチル-3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基、1-メチル-2-ブチニル基、2-メチル-3-ペンチニル基、1-ヘキシニル基、1,1-ジメチル-2-ブチニル基などのC2~10アルキニル基(C2~6アルキニル基);
 シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、キュバニル基などのC3~8シクロアルキル基;
 2-シクロプロペニル基、2-シクロペンテニル基、3-シクロヘキセニル基、4-シクロオクテニル基などのC3~8シクロアルケニル基;
 フェニル基、ナフチル基などのC6~40アリール基(好ましくはC6~10アリール基);
 ピロリル基、フリル基、チエニル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、テトラゾリル基などの5員環のヘテロアリール基;
 ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基などの6員環のヘテロアリール基;
 インドリル基、ベンゾフリル基、ベンゾチエニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノリル基、イソキノリル基、キノキサリニル基などの縮合環のヘテロアリール基;
 オキシラニル基、テトラヒドロフリル基、ジオキソラニル基、ジオキラニル基などの環状エーテル基;
 アジリジニル基、ピロリジニル基、ピペリジル基、ピペラジニル基、モルホリニル基などの環状アミノ基;
 水酸基; オキソ基;
 メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、s-ブトキシ基、i-ブトキシ基、t-ブトキシ基などのC1~20アルコキシ基(好ましくはC1~6アルコキシ基);
 ビニルオキシ基、アリルオキシ基、プロペニルオキシ基、ブテニルオキシ基などのC2~6アルケニルオキシ基;
 エチニルオキシ基、プロパルギルオキシ基などのC2~6アルキニルオキシ基;
 フェノキシ基、ナフトキシ基などのC6~10アリールオキシ基;
 チアゾリルオキシ基、ピリジルオキシ基などの5~6員環のヘテロアリールオキシ基;
 カルボキシル基;
 ホルミル基; アセチル基、プロピオニル基などのC1~6アルキルカルボニル基;
 ホルミルオキシ基; アセチルオキシ基、プロピオニルオキシ基などのC1~6アルキルカルボニルオキシ基;
 メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、i-プロポキシカルボニル基、n-ブトキシカルボニル基、t-ブトキシカルボニル基などのC1~6アルコキシカルボニル基;
 クロロメチル基、クロロエチル基、トリフルオロメチル基、1,2-ジクロロ-n-プロピル基、1-フルオロ-n-ブチル基、パーフルオロ-n-ペンチル基などのC1~6ハロアルキル基;
 2-クロロ-1-プロペニル基、2-フルオロ-1-ブテニル基などのC2~6ハロアルケニル基;
 4,4-ジクロロ-1-ブチニル基、4-フルオロ-1-ペンチニル基、5-ブロモ-2-ペンチニル基などのC2~6ハロアルキニル基;
3,3-ジフルオロシクロブチル基などのC3~6ハロシクロアルキル基;
 2-クロロ-n-プロポキシ基、2,3-ジクロロブトキシ基、トリフルオロメトキシ基、2,2,2-トリフルオロエトキシ基などのC1~6ハロアルコキシ基;
 2-クロロプロペニルオキシ基、3-ブロモブテニルオキシ基などのC2~6ハロアルケニルオキシ基;
 クロロアセチル基、トリフルオロアセチル基、トリクロロアセチル基などのC1~6ハロアルキルカルボニル基;
 シアノ基; ニトロ基; アミノ基;
 メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基などのC1~20アルキルアミノ基(好ましくはC1~6アルキルアミノ基);
 アニリノ基、ナフチルアミノ基などのC6~40アリールアミノ基(好ましくはC6~10アリールアミノ基);
 ホルミルアミノ基; アセチルアミノ基、プロパノイルアミノ基、ブチリルアミノ基、i-プロピルカルボニルアミノ基などのC1~6アルキルカルボニルアミノ基;
 メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、n-プロポキシカルボニルアミノ基、i-プロポキシカルボニルアミノ基などのC1~6アルコキシカルボニルアミノ基;
 S,S-ジメチルスルホキシイミノ基などのC1~6アルキルスルホキシイミノ基;
 アミノカルボニル基;
 メチルアミノカルボニル基、ジメチルアミノカルボニル基、エチルアミノカルボニル基、i-プロピルアミノカルボニル基などのC1~6アルキルアミノカルボニル基;
 イミノメチル基、(1-イミノ)エチル基、(1-イミノ)-n-プロピル基などのイミノC1~6アルキル基;
 ヒドロキシイミノメチル基、(1-ヒドロキシイミノ)エチル基、(1-ヒドロキシイミノ)プロピル基などのヒドロキシイミノC1~6アルキル基;
 メトキシイミノメチル基、(1-メトキシイミノ)エチル基などのC1~6アルコキシイミノC1~6アルキル基;
 メルカプト基;
 メチルチオ基、エチルチオ基、n-プロピルチオ基、i-プロピルチオ基、n-ブチルチオ基、i-ブチルチオ基、s-ブチルチオ基、t-ブチルチオ基などのC1~20アルキルチオ基(好ましくはC1~6アルキルチオ基);
 トリフルオロメチルチオ基、2,2,2-トリフルオロエチルチオ基などのC1~6ハロアルキルチオ基;
 ビニルチオ基、アリルチオ基などのC2~6アルケニルチオ基;
 エチニルチオ基、プロパルギルチオ基などのC2~6アルキニルチオ基;
 メチルスルフィニル基、エチルスルフィニル基、t-ブチルスルフィニル基などのC1~6アルキルスルフィニル基;
 トリフルオロメチルスルフィニル基、2,2,2-トリフルオロエチルスルフィニル基などのC1~6ハロアルキルスルフィニル基;
 アリルスルフィニル基などのC2~6アルケニルスルフィニル基;
 プロパルギルスルフィニル基などのC2~6アルキニルスルフィニル基;
 メチルスルホニル基、エチルスルホニル基、t-ブチルスルホニル基などのC1~6アルキルスルホニル基;
 トリフルオロメチルスルホニル基、2,2,2-トリフルオロエチルスルホニル基などのC1~6ハロアルキルスルホニル基;
 アリルスルホニル基などのC2~6アルケニルスルホニル基;
 プロパルギルスルホニル基などのC2~6アルキニルスルホニル基;
 アセトアミド基、N-メチルアミド基、N-エチルアミド基、N-(n-プロピル)アミド基、N-(n-ブチル)アミド基、N-イソブチルアミド基、N-(sec-ブチルアミド)基、N-(t-ブチル)アミド基、N,N-ジメチルアミド基、N,N-ジエチルアミド基、N,N-ジ(n-プロピル)アミド基、N,N-ジ(n-ブチル)アミド基、N,N-ジイソブチルアミド基、N-メチルアセトアミド基、N-エチルアセトアミド基、N-(n-プロピル)アセトアミド基、N-(n-ブチル)アセトアミド基、N-イソブチルアセトアミド基、N-(sec-ブチル)アセトアミド基、N-(t-ブチル)アセトアミド基、N,N-ジメチルアセトアミド基、N,N-ジエチルアセトアミド基、N,N-ジ(n-プロピル)アセトアミド基、N,N-ジ(n-ブチル)アセトアミド基
、N,N-ジイソブチルアセトアミド基等のC2~20アルキルアミド基;
 フェニルアミド基、ナフチルアミド基、フェニルアセトアミド基、ナフチルアセトアミド基等のC6~20アリールアミド基;
 トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基などのトリC1~10アルキルシリル基(好ましくはトリC1~6アルキルシリル基);
 トリフェニルシリル基などのトリC6~10アリールシリル基;
 また、これらの「置換基」は、前記置換基中のいずれかの水素原子が、異なる構造の基で置換されていてもよい。
 「C1~6」などの用語は、母核となる基の炭素原子数が1~6個などであることを表している。この炭素原子数には、置換基の中に在る炭素原子の数を含まない。例えば、エトキシブチル基は、母核となる基がブチル基であり、置換基がエトキシ基であるので、C2アルコキシC4アルキル基に分類する。
 好ましい置換基としては、ヒドロキシ基、ハロゲノ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数12~40のジアリールアミノ基、炭素数12~40の置換もしくは無置換のカルバゾリル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素
数5~20のトリアルキルシリルアルキニル基およびニトロ基が挙げられる。
 より好ましい置換基としては、ハロゲノ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数12~40のジアリールアミノ基、炭素数12~40のカルバゾリル基を挙げることができる。
 さらに好ましい置換基は、フルオロ基、クロロ基、シアノ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のジアルキルアミノ基、炭素数6~15のアリール基、炭素数3~12のヘテロアリール基を挙げることができる。これら置換基のうち、さらに置換可能なものは、前記置換基によって置換されていてもよい。
 Lにおける置換若しくは無置換のアリール基としては、好ましくは置換若しくは無置換のフェニル基、置換若しくは無置換のビフェニル基、置換若しくは無置換のナフチル基、置換若しくは無置換のアントリル基、または置換若しくは無置換のフェナントリル基を挙げることができる。これらのうち、置換若しくは無置換のフェニル基がより好ましい。
 本発明化合物は、その製造方法によって特に限定されず、例えば、対応する置換基に相当する化合物を出発原料として、特許文献1や特許文献2に記載の方法を適用することによってまたは実施例に記載の方法によって得ることができる。
 合成された本発明化合物の精製は、カラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土などによる吸着精製、溶媒による再結晶や晶析法などによって行うことができる。化合物の同定は、NMR分析などによって行なうことができる。
 本発明化合物は発光材料として用いることができる。本発明の発光材料は、有機フォトルミネッセンス素子、有機エレクトロルミネッセンス素子などの発光素子を提供することができる。本発明化合物は、他の発光材料(ホスト材料)の発光をアシストする機能を有するので、他の発光材料にドープして用いることができる。
 本発明の発光素子のひとつである有機フォトルミネッセンス素子は、基板上に本発明の発光材料を含有する発光層を設けてなる。発光層は、スピンコートなどのような塗布法、インクジェット印刷法などのような印刷法、蒸着法などによって得ることができる。
 本発明の有機エレクトロルミネッセンス素子は陽極と陰極との間に有機層を設けてなる。本発明における「有機層」とは、陽極と陰極の間に位置する、実質的に有機物からなる層を意味し、これらの層は本発明の発光素子の性能を損なわない範囲で無機物を含んでいてもよい。
 本発明の有機エレクトロルミネッセンス素子の一実施形態における構造としては、基板上に順次に、陽極、正孔注入層、正孔輸送層、電子阻止層、発光層、正孔阻止層、電子輸送層、陰極からなるもの、また、電子輸送層と陰極の間にさらに電子注入層を有するものを挙げることができる。これらの多層構造においては有機層を何層か省略することが可能であり、例えば基板上に順次に、陽極、正孔輸送層、発光層、電子輸送層、電子注入層、陰極とすることや、陽極、正孔輸送層、発光層、電子輸送層、陰極とすることもできる。
本発明の発光材料は、発光層のみならず、正孔注入層、正孔輸送層、電子阻止層、正孔阻止層、電子輸送層、または電子注入層にドープさせてもよい。
 基板は発光素子の支持体となるものであり、シリコン板、石英板、ガラス板、金属板、金属箔、樹脂フィルム、樹脂シートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が低すぎると、基板を通過する外気により発光素子が劣化することがある。このため、合成樹脂基板のどちらか片側もしくは両側に緻密なシリコン酸化膜等を設けてガスバリア性を確保することが好ましい。
 基板上には陽極が設けられる。陽極には仕事関数の大きい材料が一般に用いられる。陽極用材料として、例えば、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属;インジウム酸化物、スズ酸化物、ITO、酸化亜鉛、In23-ZnO、IGZOなどの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、或は、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子などを挙げることができる。陽極の形成は、通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などの場合には、適当なバインダー樹脂溶液に分散し、基板上に塗布することにより陽極を形成することもできる。さらに、導電性高分子の
場合は電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成したりすることもできる。
 陽極は異なる2種以上の物質を積層して形成することも可能である。陽極の厚さは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常、60%以上、好ましくは80%以上とすることが望ましく、この場合、厚みは、通常、10~1000nm、好ましくは10~200nmである。不透明でよい場合、陽極は基板の厚みと同程度でもよい。陽極のシート抵抗は数百Ω/□以上であることが好ましい。
 必要に応じて設けられる正孔注入層として、銅フタロシアニンに代表されるポルフィリン化合物のほか、ナフタレンジアミン誘導体、スターバースト型のトリフェニルアミン誘導体、分子中にトリフェニルアミン構造を3個以上、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物などのトリフェニルアミン3量体および4量体、ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物や塗布型の高分子材料を用いることができる。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 必要に応じて設けられる正孔輸送層に用いられる正孔輸送材料としては、陽極からの正孔注入効率が高く、かつ、注入された正孔を効率よく輸送することができることが好ましい。そのためには、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが好ましい。上記の一般的要求以外に、車載表示用の応用を考えた場合、素子にはさらに耐熱性が高いことが好ましい。従って、Tgとして70℃以上の値を有する材料が望ましい。
 必要に応じて設けられる正孔輸送層として、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマーなどを挙げることができる。
より具体的に、m-カルバゾリルフェニル基を含有する化合物、N,N’-ジフェニル-N,N’-ジ(m-トリル)-ベンジジン(以後、TPDと略称する)、N,N’-ジフェニル-N,N’-ジ(α-ナフチル)-ベンジジン(以後、NPDと略称する)、N,N,N’,N’-テトラビフェニリルベンジジンなどのベンジジン誘導体、1,1-ビス[(ジ-4-トリルアミノ)フェニル]シクロヘキサン(以後、TAPCと略称する)、種々のトリフェニルアミン3量体および4量体やカルバゾール誘導体などを挙げることができる。これらは、1種単独でまたは2種以上を組み合わせて用いることができる。正孔輸送層は、単層構造の膜であってもよいし、積層構造の膜であってもよい。また、正孔の注入・輸送層として、ポリ(3,4-エチレンジオキシチオフェン)(以後、PEDOTと
略称する)/ポリ(スチレンスルフォネート)(以後、PSSと略称する)などの塗布型の高分子材料を用いることができる。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 また、正孔注入層あるいは正孔輸送層において、前記層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモンをPドーピングしたものや、PDの構造をその部分構造に有する高分子化合物などを用いることができる。正孔注入・輸送性のホスト材料として、PPF、PPT、CBPやTCTA、mCPなどのカルバゾール誘導体などを用いることができる。
 正孔注入材料として用いることができる好ましい化合物(hi1)~(hi7)を以下に挙げる。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 正孔輸送材料として用いることができる好ましい化合物(ht1)~(ht38)を以下に挙げる。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
 必要に応じて設けられる電子阻止層として、4,4’,4”-トリ(N-カルバゾリル)トリフェニルアミン(以後、TCTAと略称する)、9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン、1,3-ビス(カルバゾール-9-イル)ベンゼン(以後、mCPと略称する)、2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン(以後、Ad-Czと略称する)などのカルバゾール誘導体、9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレンに代表されるトリフェニルシリル基とトリアリールアミン構造を有する化合物などの電子阻止作用を有する化合物を用いることができる。これらは、1種単独でまたは2種以上を組み合わせて用いることができる。電子阻止層は、単層構造の膜であってもよいし、積層構造の膜であってもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 電子阻止材料として用いることができる好ましい化合物(es1)~(es5)を以下に挙げる。
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
 発光層は、陽極および陰極のそれぞれから注入される正孔および電子が再結合することにより励起子が生成して、発光する機能を有する層である。発光層は本発明の発光材料単独で形成してもよいし、ホスト材料に本発明の発光材料をドープして形成してもよい。ホスト材料の例としては、PPF、PPT、トリス(8-ヒドロキシキノリン)アルミニウム(以後、Alq3と略称する)などのキノリノール誘導体の金属錯体、アントラセン誘導体、ビススチリルベンゼン誘導体、ピレン誘導体、オキサゾール誘導体、ポリパラフェニレンビニレン誘導体、ビピリジル基とオルトターフェニル構造を有する化合物、mCP、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを挙げることができる。発光層には公知のドーパントが含まれていてもよい。ドーパントとしては、キナクリドン、クマリン、ルブレン、アントラセン、ペリレンおよびそれらの誘導体、ベンゾピラン誘導体、ローダミン誘導体、アミノスチリル誘導体などを挙げることができる。また、Ir(ppy)3などの緑色の燐光発光体、FIrpic、FIr6などの青色の燐光発光体、Btp2Ir(acac)などの赤色の燐光発光体などの燐光性の発光体を用いてもよい。これらは、1種単独でまたは2種以上を組み合わせて用いることができる。発光層は、単層構造の膜であってもよいし、積層構造の膜であってもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 ホスト材料を用いた場合、発光層に含有させることができる本発明の発光材料の量は、下限が、好ましくは0.1質量%、より好ましくは1質量%であり、上限が、好ましくは50質量%、より好ましくは20質量%、さらに好ましくは10質量%である。
 発光層のホスト材料として用いることができる好ましい化合物(el1)~(el42)を以下に挙げる。
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
 必要に応じて設けられる正孔阻止層として、ビピリジル基とオルトターフェニル構造を有する化合物、バソクプロイン(以後、BCPと略称する)などのフェナントロリン誘導体や、アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(以後、BAlqと略称する)などのキノリノール誘導体の金属錯体、各種の希土類錯体、オキサゾール誘導体、トリアゾール誘導体、トリアジン誘導体など、正孔阻止作用を有する化合物を挙げることができる。これらの材料は電子輸送層の材料を兼ねてもよい。これらは、1種単独でまたは2種以上を組み合わせて用いることができる。正孔阻止層は、単層構造の膜であってもよいし、積層構造の膜であってもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 正孔阻止材料として用いることができる好ましい化合物(hs1)~(hs11)を以下に挙げる。
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
 必要に応じて設けられる電子輸送層として、Alq3、BAlqをはじめとするキノリノール誘導体の金属錯体のほか、各種金属錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、カルボジイミド誘導体、キノキサリン誘導体、フェナントロリン誘導体、シロール誘導体などを用いることができる。これらは、1種単独でまたは2種以上を組み合わせて用いることができる。電子輸送層は、単層構造の膜であってもよいし、積層構造の膜であってもよい。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 必要に応じて設けられる電子注入層として、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの__金属酸化物(単に「金属酸化物」で良いです)などを用いることができるが、電子輸送層と陰極の好ましい選択においては、これを省略することができる。
 電子注入層あるいは電子輸送層において、前記層に通常使用される材料に対し、さらにセシウムなどの金属をNドーピングしたものを用いることができる。
 電子輸送材料として用いることができる好ましい化合物(et1)~(et30)を以下に挙げる。
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
 電子注入材料として用いることができる好ましい化合物(ei1)~(ei4)を以下に挙げる。
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
 安定化材料として用いることができる好ましい化合物(st1)~(st5)を以下に挙げる。
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
 陰極には仕事関数の小さい材料が一般に用いられる。陰極用材料として、例えば、ナトリウム、ナトリウム-カリウム合金、リチウム、スズ、マグネシウム、マグネシウム/銅混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、インジウム、カルシウム、アルミニウム、銀、リチウム/アルミニウム混合物、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金などが用いられる。透明導電性材料を用いることによって透明または半透明な陰極を得ることができる。陰極の厚さは、通常、10~5000nm、好ましくは50~200nmである。陰極のシート抵抗は数百Ω/□以上であることが好ましい。
 低仕事関数金属から成る陰極を保護する目的で、この上にさらに、アルミニウム、銀、ニッケル、クロム、金、白金等の、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性を増すため好ましい。また、陰極と、隣接する有機層(例えば電子輸送層や、電子注入層)とのコンタクトを向上させるために、両者の間に陰極界面層を設けてもよい。陰極界面層に用いられる材料としては、芳香族ジアミン化合物、キナクリドン化合物、ナフタセン誘導体、有機シリコン化合物、有機リン化合物、N-フェニルカルバゾール骨格を有する化合物、N-ビニルカルバゾール重合体などを挙げることができる。
 本発明の発光素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。
 以下、本発明化合物の合成の一例を示し、本発明化合物の奏する効果の例を示す。
(実施例1)
〔2,4,6-トリ(9H-カルバゾール-9-イル)-3,5-ジフェニル-ベンゾニトリル(3Cz-2PBN-A)の合成〕
Figure JPOXMLDOC01-appb-C000172
 炭酸カリウム(15.36g,111.1mmol)、および9H-カルバゾール(13.5g,80.8mmol)を窒素置換した100mLの三口フラスコに加え、さらに、脱水N―メチル-2-ピロリドン100mLを加えて、1時間室温で撹拌した。これに、窒素気流下で、2,4,6-トリフルオロ-3,5-ジフェニルベンゾニトリル(6.25g,20.2mmol)を加え、80℃で23時間撹拌した。次いで、室温に戻し、メタノールを加え、ろ過により固体を取り除いた。その後、ろ液に水を加え、析出した結晶をアセトンとヘキサンで洗浄し、減圧下乾燥して目的物(3Cz-2PBN-A)の黄色固体を収量1.40g、収率9.2%で得た。
1H-NMR(400MHz,DMSO-d6,δ) : 8.07(d,J=8.0Hz,4H), 7.81-7.78(m,8H), 7.49(td,J=8.0Hz,0.8Hz,4H), 7.37(td,J=7.2Hz,0.8Hz,2H), 7.23(t,J=7.6Hz,4H), 7.06(t,J=8.0Hz,2H), 6.81(dd,J=7.2Hz,1.2Hz,4H), 6.55(tt,J=7.6Hz,1.6Hz,2H), 6.44(t,J=7.6Hz,4H)
〔発光評価〕
 膜厚50nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に10nm厚のHAT-CN層、40nm厚のTAPC層、10nm厚のCCP層、10nm厚のmCP層、および20nm厚の発光層をこの順で真空蒸着法(5.0×10-4Pa以下)によって積層させた。
 発光層のホスト材料としてPPFを用い、ドープ材料として2,4,6-トリ(9H-カルバゾール-9-イル)-3,5-ジフェニル-ベンゾニトリル(3Cz-2PBN-A)を用いた。ドーブ材料濃度を12.0重量%に設定した。
 次いで、10nm厚のPPF層、40nm厚のB3PyPB層、1nm厚の8-ヒドロキシキノリトリチウム膜、および100nm厚のアルミニウム膜をこの順で真空蒸着法にて積層させることにより陰極を形成させて、有機発光ダイオード(OLED)を得た。結果を図1および2に示す。この有機発光ダイオードは、外部量子効率の最大値(EQEMax)が13.1%であった。
(実施例2)
〔2,4,6-トリ(3,6-ジフェニル-9H-カルバゾール-9-イル)-3,5-ジフェニル-ベンゾニトリル(3PCz-2PBN-A)の合成〕
Figure JPOXMLDOC01-appb-C000173
 炭酸カリウム(2.50g,17.8mmol)、および3,6-ジフェニルー9H-カルバゾール(4.10g,12.9mmol)を窒素置換した100mLの三口フラスコに加え、さらに、脱水N―メチル-2-ピロリドン16.2mLを加えて1時間室温で撹拌した。これに、窒素気流下で、2,4,6-トリフルオロー3,5-ジフェニルベンゾニトリル(1.00g,3.23mmol)を加え、80℃で16時間撹拌した。次いで、室温に戻し、メタノールを加え、ろ過により固体を取り除いた。その後、ろ液に水を加え、析出した結晶をアセトンとヘキサンで洗浄し、固体を減圧下乾燥して目的物(3PCz-2PBN-A)の緑色固体を収量1.20g、収率30.8%で得た。
1H-NMR(400MHz,DMSO-d6,δ): 8.59(d,J=1.6Hz,4H), 8.37(d,J=2.0Hz,2H), 8.02-7.99(m,6H), 7.87-7.75(m,18H), 7.52-7.45(m,12H), 7.37-7.30(m,6H), 7.03(dd,J=7.0Hz,1.2Hz,4H), 6.66-6.58(m,6H)
〔発光評価〕
 ドープ材料を2,4,6-トリ(3,6-ジフェニル-9H-カルバゾール-9-イル)-3,5-ジフェニル-ベンゾニトリル(3PCz-2PBN-A)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図1および2に示す。EQEMaxは28.1%であった。
(実施例3)
〔2,4,6-トリ(3,6-ジ-t-ブチル-9H-カルバゾール-9-イル)-3,5-ジフェニル-ベンゾニトリル(3BuCz-2PBN-A)の合成〕
Figure JPOXMLDOC01-appb-C000174
 炭酸カリウム(2.83g,20.5mmol)、および3,6-ジ-t-ブチル-カルバゾール(4.16g,14.9mmol)を窒素置換した100mLの三口フラスコに加え、さらに、脱水N―メチル-2-ピロリドン20mLを加えて1時間室温で撹拌した。これに、窒素気流下で、2,4,6-トリフルオロ-3,5-ジフェニルベンゾニトリル(1.15g,3.72mmol)を加え、80℃で32時間撹拌した。次いで、室温に戻し、メタノールを加え、ろ過により固体を取り除いた。その後、ろ液に水を加え、析出した結晶をクロロホルムに溶解し、水洗した。その後、硫酸マグネシウムで乾燥し濃縮した。濃縮物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=19/1)にて精製し、目的物(3BuCz-2PBN-A)の淡黄色固体を収量1.20g、収率29.7%で得た。
1H-NMR(400MHz,CDCl3,δ) : 7.94(d,J=2.0Hz,4H), 7.73(d,J=1.6Hz,2H), 7.42(dd,J=8.8Hz,1.6Hz,4H), 7.27(dd,J=8.6Hz,2.0Hz,4H), 7.13(d,J=8Hz,4H), 6.98(d,J=8.8Hz,2H), 6.63(d,J=7.8Hz,4H), 6.50(t,J=6.4Hz,2H), 6.38(t,J=7.6Hz,4H), 1.39(s,36H), 1.31(s,18H)
〔発光評価〕
 ドープ材料を2,4,6-トリ(3,6-ジ-t-ブチル-9H-カルバゾール-9-イル)-3,5-ジフェニル-ベンゾニトリル(3BuCz-2PBN-A)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図1および2に示す。EQEMaxは22.6%であった。
 同じ2,3-フェニル置換の骨格である、実施例1、実施例2および実施例3を対比すると、本発明化合物(実施例2および実施例3)はEQEMaxが相対的に高く、発光材料として有用であることがわかる。
(実施例4)
〔2,3,5-トリ(9H-カルバゾール-9-イル)-4,6-ジフェニル-ベンゾニトリル(3Cz-2PBN-B)の合成〕
Figure JPOXMLDOC01-appb-C000175
 炭酸カリウム(2.76g,20.0mmol)、および9H-カルバゾール(2.42g,14.5mmol)を窒素置換した100mLの三口フラスコに加え、さらに、脱水N-メチル-2-ピロリドン18mLを加えて1時間室温で撹拌した。これに、窒素気流下で、2,3,5-トリフルオロ-4,6-ジフェニルベンゾニトリル(1.12g,3.6mmol)を脱水N-メチル-2-ピロリドン18mLに溶解して加え、100℃で20時間撹拌した。次いで、室温に戻し、水と酢酸エチルを加え、有機層を分液した。
更に水層を酢酸エチルで2回抽出し、混合した有機層を水で3回洗浄し、次いで飽和食塩水で2回洗浄した。有機層を硫酸マグネシウムで脱水し、ろ過して、ろ液を濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:n-ヘキサン/酢酸エチル)で精製することで粗精製物を得た。さらに、粗精製物にアセトン/n-ヘキサンを加え、超音波照射した。その後、ろ過してn-ヘキサンで洗浄することで目的物(3Cz-2PBN-B)の淡黄色固体を2.46g、収率90.5%で得た。
1H-NMR(400MHz,DMSO-d6,δ): 7.88(d,J=8.0Hz,2H), 7.85(d,J=8.0Hz,2H), 7.82(d,J=8.0Hz,2H), 7.80(d,J=8.0Hz,2H), 7.64(d,J=8.4Hz,2H), 7.60(d,J=7.6Hz,2H), 7.41-7.37(m,2H), 7.35-7.32(m,2H), 7.25-7.21(m,2H), 7.12-7.03(m,9H), 6.89(t,J=7.6Hz,2H), 6.68(d,J=7.2Hz,2H), 6.42(t,J=7.6Hz,1H), 6.27(t,J=7.6Hz,2H)
〔発光評価〕
 ドープ材料を2,3,5-トリ(9H-カルバゾール-9-イル)-4,6-ジフェニル-ベンゾニトリル(3Cz-2PBN-B)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図3および4に示す。EQEMaxは16.7%であった。
(実施例5)
〔2,3,5-トリ(3,6-ジフェニル-9H-カルバゾール-9-イル)-4,6-ジフェニル-ベンゾニトリル(3PCz-2PBN-B)の合成〕
Figure JPOXMLDOC01-appb-C000176
 炭酸カリウム(0.74g,5.4mmol)、および3,6-ジフェニル-9H-カルバゾール(1.12g,3.5mmol)を窒素置換した100mLの三口フラスコに加え、さらに、脱水N-メチル-2-ピロリドン8.0mLを加えて1時間室温で撹拌した。これに、窒素気流下で、2,3,5-トリフルオロ-4,6-ジフェニルベンゾニトリル(0.24g,0.8mmol)を加え、100℃で4日間撹拌した。次いで、室温に戻し、水と酢酸エチルを加え、有機層を分液した。更に水層を酢酸エチルで2回抽出し、混合した有機層を水で3回洗浄し、次いで飽和食塩水で2回洗浄した。有機層を硫酸マグネシウムで脱水し、ろ過して、ろ液を濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:n-ヘキサン/ジクロロメタン)で精製するこ
とで粗精製物を得た。さらに、粗精製物にジクロロメタン/ジエチルエーテル/n-ヘキサンを加え、超音波照射した。その後、ろ過してn-ヘキサンで洗浄することで目的物(3PCz-2PBN-B)の黄色固体を0.90g、収率96.1%で得た。
1H-NMR(400MHz,DMSO-d6,δ): 8.44(d,J=2.0Hz,2H), 8.27(d,J=1.6Hz,2H), 8.05(d,J=1.6Hz,2H), 8.00(d,J=8.8Hz,2H), 7.89(d,J=8.8Hz,2H), 7.82-7.79(m,6H), 7.73(d,J=8.8Hz,2H), 7.63(d,J=7.6Hz,4H,), 7.56(d,J=7.2Hz,4H), 7.53-7.47(m,8H), 7.43-7.26(m,16H), 
7.19-7.15(m,3H), 6.97(d,J=7.2Hz,2H), 6.58-6.48(m,3H)
〔発光評価〕
 ドープ材料を2,3,5-トリ(3,6-ジフェニル-9H-カルバゾール-9-イル)-4,6-ジフェニル-ベンゾニトリル(3PCz-2PBN-B)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図3および4に示す。EQEMaxは35.1%であった。
(実施例6)
〔2,3,5-トリ(3,6-ジ-t-ブチル-9H-カルバゾール-9-イル)-4,6-ジフェニル-ベンゾニトリル(3BuCz-2PBN-B)の合成〕
Figure JPOXMLDOC01-appb-C000177
 炭酸カリウム(4.04g,29.2mmol)、および3,6-ジフェニル-9H-カルバゾール(5.47g,19.6mmol)を窒素置換した200mLの三口フラスコに加え、さらに、脱水N-メチル-2-ピロリドン32.0mLを加えて1時間室温で撹拌した。これに、窒素気流下で、2,3,5-トリフルオロ-4,6-ジフェニルベンゾニトリル(1.00g,3.2mmol)を加え、100℃で3日間撹拌した。次いで、室温に戻し、水と酢酸エチルを加え、有機層を分液した。更に水層を酢酸エチルで2回抽出し、混合した有機層を水で3回洗浄し、次いで飽和食塩水で2回洗浄した。有機層を硫酸マグネシウムで脱水し、ろ過して、ろ液を濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:n-ヘキサン/ジクロロメタン)で精製することで粗精製物を得た。さらに、粗精製物にn-ヘキサンを加え、超音波照射した。
その後、ろ過してn-ヘキサンで洗浄することで目的物(3BuCz-2PBN-B)の淡黄白色固体を2.79g、収率79.3%で得た。
1H-NMR(400MHz,DMSO-d6,δ): 7.90(d,J=2.0Hz,2H), 7.74(d,J=2.0Hz,2H), 7.58(d,J=8.8Hz,2H), 7.50(d,J=1.6Hz,2H), 7.39(td,J=8.8Hz,2.0Hz,4H), 7.27(d,J=8.4Hz,2H), 7.18(d,J=8.8Hz,2H), 7.11-7.05(m,5H), 6.97(dd,J=8.8Hz,2.0Hz,2H), 6.78(d,7.2Hz,2H), 6.47(t,J=8.0Hz,1H), 6.36(t,J=8.0Hz,2H), 1.35(s,18H), 1.31(s,18H), 1.22(s,18H)
〔発光評価〕
 ドープ材料を2,3,5-トリ(3,6-ジ-t-ブチル-9H-カルバゾール-9-イル)-4,6-ジフェニル-ベンゾニトリル(3BuCz-2PBN-B)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図3および4に示す。EQEMaxは24.4%であった。
 同じ1,4フェニル置換の骨格である、実施例4、実施例5および実施例6を対比すると、本発明化合物(実施例5および実施例6)はEQEMaxが相対的に高く、発光材料として有用であることがわかる。
(実施例7)
〔2,3,5,6-テトラ(3,6-ジ-t-ブチル-9H-カルバゾール-9-イル)-4-フェニル-ベンゾニトリル(4BuCz-1PBN-A)の合成〕
Figure JPOXMLDOC01-appb-C000178
 窒素置換したフラスコに 酢酸パラジウム(II)(0.64g,2.85mmol)、炭酸銀(15.8g,57.3mmol)、およびジフェニルヨードニウムトリフルオロメタンスルホン酸(16.0g,37.2mmol)を加えて、3回脱気した。その後、2,3,5,6-テトラフルオロベンゾニトリル(5.0g,28.6mmol)、ピバル酸(2.92g, 28.6mmol)、ジメチルスルホキシド(2 mL)、およびN,N-ジメチルホルムアミド(40mL) を加え、130℃で10時間攪拌した。次いで、室温に戻し、セライトを用いて不純物を取り除いた。その後、酢酸エチルを加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させて、カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:9)により精製し、白色固体の化合物1 (2.94g, 41%)を得た。
1H NMR (400 MHz, CDCL3): δ 7.56-7.52 (m, 3H), 7.48-7.45 (m, 2H).
 窒素置換したフラスコに3,6-ジ-tert-ブチルカルバゾール(1.37g, 4.90mmol)、およびN,N-ジメチルホルムアミド(10mL)を加えた。その後、室温でカリウム tert-ブトキシド(0.55g,4.90mmol)を加えたN,N-ジメチルホルムアミド(5mL)を加えて、室温で30分間攪拌した。その後、化合物1(0.3g,1.19mmol)を加えたN,N-ジメチルホルムアミド(10mL)を10分間かけて滴下した。その後80℃で10時間攪拌した。室温に戻し、水(20mL)を加え、30分間経過後にクロロホルムを加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させて、カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:9)により精製し、黄色い固体の化合物2(4BuCz-1PBN-A)(1.32g, 86%)を得た。
1H NMR (400 MHz, DMSO-d6): δ 7.76 (d, J = 1.2Hz, 4H), 7.56 (d, J = 1.2Hz, 4H), 7.46 (d, J = 8.4Hz, 4H), 7.42 (d, J = 8.8Hz, 4H), 7.09 (dd,J =8.8,1.2Hz, 6H), 7.02(dd,J = 8.4, 1.6Hz, 4H), 6.60-6.57(m, 3H), 1.32(s, 36H), 1.26(s, 36H)
〔発光評価〕
 ドープ材料を2,3,5,6-テトラ(3,6-ジ-t-ブチル-9H-カルバゾール-9-イル)-4-フェニル-ベンゾニトリル(4BuCz-1PBN-A)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図5および6に示す。EQEMaxは40.1%であった。
(実施例8)
〔2,3,5,6-テトラ(9H-カルバゾール-9-イル)-4-フェニル-ベンゾニトリル(4Cz-1PBN-A)の合成〕
Figure JPOXMLDOC01-appb-C000179
 窒素置換したフラスコに、酢酸パラジウム(II)(0.64g,2.85mmol)、炭酸銀(15.8g,57.3mmol)、およびジフェニルヨードニウムトリフルオロメタンスルホン酸(16.0g,37.2mmol)を加えて、3回脱気した。その後、2,3,5,6-テトラフルオロベンゾニトリル(5.0g,28.6mmol)、ピバル酸(2.92g, 28.6mmol)、ジメチルスルホキシド(2 mL)、およびN,N-ジメチルホルムアミド(40mL)を加え、130℃で10時間攪拌した。次いで、室温に戻し、セライトを用いて不純物を取り除いた。その後、酢酸エチルを加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させて、カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:9)により精製し、白色固体の化合物1 (2.94g, 41%)を得た。1H NMR (400 MHz, CDCL3): δ 7.56-7.52 (m, 3H), 7.48-7.45 (m, 2H).
 窒素置換したフラスコにカルバゾール(1.09g, 6.52mmol)、およびN,N-ジメチルホルムアミド(10mL)を加えた。その後、室温でカリウムtert-ブトキシド(0.73g,6.52mmol)を加えたN,N-ジメチルホルムアミド(5mL)を加えて、室温で30分間攪拌した。その後、化合物1(0.4g,1.59mmol)を加えたN,N-ジメチルホルムアミド(10mL)を10分間かけて滴下した。その後、80℃で10時間攪拌した。次いで、室温に戻し、水(20mL)を加え、30分間経過した後にクロロホルムを加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させて、カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:9)により精製し、黄色い固体の化合物2(4Cz-1PBN-A)(1.18g,88%)を得た。
1H NMR(400MHz, DMSO-d6): δ 7.92(d,J =8.4Hz,4H),7.89-7.87(m,8H), 7.65 (d,J = 7.2Hz,4H), 7.24(td,J = 7.2,1.2Hz,4H), 7.15-7.08(m,8H), 6.94(td,J =7.4,0.8Hz,4H), 6.72(dd,J =8.4, 1.2Hz,2H), 6.44(tt,J =8.0,1.2Hz,1H), 6.31(t,J = 7.8Hz, 2H).
〔発光評価〕
 ドープ材料を2,3,5,6-テトラ(9H-カルバゾール-9-イル)-4-フェニル-ベンゾニトリル(4Cz-1PBN-A)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図5および6に示す。EQEMaxは26.1%であった。
 同じ4-フェニル置換の骨格である実施例7および実施例8を対比すると、本発明化合物(実施例7)はEQEMaxが相対的に高く、発光材料として有用であることがわかる。
(合成例9)
〔4’,5’,6’-トリフルオロ-[1,1’:3’,1”-テルフェニル]-2’-カルボニトリル(2PBN-C)の合成〕
Figure JPOXMLDOC01-appb-C000180
 200mlナスフラスコに3,4,5-トリフルオロベンゾニトリル(3.00g,19.1mmol)、ブロムベンゼン(6.00g,38.2mmol)、2-エチルヘキサン酸(280mg,1.91mmol)、炭酸カリウム(7.91g,57.3mmmol)、およびキシレン45mlを加えた。脱気・アルゴン置換を行った。それにトリシクロヘキシルホスフィン(20%トルエン溶液5.10ml,2.87mmol)、および酢酸パラジウム(214mg,0.96mmmol)を加え、140℃で18時間撹拌した。室温に戻し、酢酸エチルを加えセライトを用いて不溶物を濾別した。ろ液を水洗した。その後、硫酸マグネシウムを加え乾燥させ、ロータリーエバポレーターで濃縮した。
濃縮物をn-ヘキサン/酢酸エチル=9/1で洗浄し、目的物(2PBN-C)の白色結晶を4.43g得た。(収率75.1%)
1H-NMR(400MHz,CDCl3,δ):7.55~7.47(m,10H)
(実施例9)
〔3,4,5-トリ(3,6-ジ-t-ブチル-9H-カルバゾール-9-イル)-2,6-ジフェニル-ベンゾニトリル(3BuCz-2PBN-C)の合成〕
Figure JPOXMLDOC01-appb-C000181
 100mLの三口フラスコに4’,5’,6’-トリフルオロ-[1,1’:3’,1”-テルフェニル]-2’-カルボニトリル(0.75g,2.43mmol)、3,6-ジ(t-ブチル)カルバゾール(2.71g,9.70mmol)、カリウムt-ブトキシド (1.33g,10.9mmol)、およびN-メチル-2-ピロリドン15mLを加えて100℃で71時間撹拌した。それに氷水100mlを加え、析出物をろ過した。ろ物をエーテルに溶解し、水洗した。その後、硫酸マグネシウムで乾燥させ濃縮した。濃縮物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=19/1)にて分離精製を行い、目的物(3BuCz-2PBN-C)を1.25g(収率47.3%)得た。
1H-NMR(400MHz,CDCl 3,δ): 7.45(d,4H), 7.30(d,2H), 7.28(d,2H), 7.13(d,2H), 7.04(m,6H), 6.88(d,4H), 6.87(d,4H), 6.67(d,2H), 6.49(dd,2H), 1.24(s,36H), 1.17(s,18H)
〔発光評価〕
 ドープ材料を3,4,5-トリ(3,6-ジ-t-ブチル-9H-カルバゾール-9-イル)-2,6-ジフェニル-ベンゾニトリル(3BuCz-2PBN-C)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図7および8に示す。EQEMaxは12.0%であった。
(実施例10)〔3,4,5-トリ(3,6-ジフェニル-9H-カルバゾール-9-イル)-2,6-ジフェニル-ベンゾニトリル(3PCz-2PBN-C)の合成〕
Figure JPOXMLDOC01-appb-C000182
 50mLの三口フラスコに4’,5’,6’-トリフルオロ-[1,1’:3’,1”-テルフェニル]-2’-カルボニトリル(0.36g,1.17mmol)、3,6-ジフェニルカルバゾール(1.50g,4.70mmol)、カリウムt-ブトキシド (0.64g,5.24mmol)、およびN-メチル-2-ピロリドン8mLを加えて140℃で18.5時間撹拌した。それに氷水100mlを加え、析出物をろ過した。ろ物をクロロホルムに溶解し、水洗した。その後、硫酸マグネシウムで乾燥させ、濃縮した。濃縮物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=2/3)にて分離精製を行い、目的物(3PCz-2PBN-C)を0.75g(収率53.2%)得た。
1H-NMR(400MHz,CDCl 3,δ): 7.80(s,4H), 7.47-7.41(m,14H), 7.36-7.32(m,8H), 7.28-7.21(m,22H), 7.16-7.14(m,6H), 7.09(d,2H), 6.86(dd,2H)
〔発光評価〕
 ドープ材料を3,4,5-トリ(3,6-ジフェニル-9H-カルバゾール-9-イル)-2,6-ジフェニル-ベンゾニトリル(3PCz-2PBN-C)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図7および8に示す。EQEMaxは21.6%であった。
(合成例11)
〔3’,5’,6’-トリフルオロ-[1,1’:4’,1”-テルフェニル]-2’-カルボニトリル(2PBN-D)の合成〕
Figure JPOXMLDOC01-appb-C000183
 200mlナスフラスコに2,4,5-トリフルオロベンゾニトリル(3.00g,19.1mmol)、ブロムベンゼン(6.00g,38.2mmol)、2-エチルヘキサン酸(280mg,1.91mmol)、炭酸カリウム(7.91g,57.3mmmol)、およびキシレン45mlを加えた。脱気・アルゴン置換を行った。それにトリシクロヘキシルホスフィン(20%トルエン溶液5.10ml,2.87mmol)、および酢酸パラジウム(214mg,0.96mmmol)を加え、140℃で15時間撹拌した。室温に戻し、酢酸エチルを加えセライトを用いて不溶物を濾別した。ろ液を水洗した。その後、硫酸マグネシウムを加え乾燥させ、ロータリーエバポレーターで濃縮した。
濃縮物にクロロホルム150mlを加えて加熱溶解した。それにn-ヘキサン300mlを加えて冷却した。析出した白色固体をろ過し、目的物(2PBN-D)を4.40g(収率74.6%)得た。
1H-NMR(400MHz,CDCl3,δ):7.54~7.47(m,10H)
(実施例11)
〔3,4,6-トリ(3,6-ジフェニル-9H-カルバゾール-9-イル)-2,5-ジフェニル-ベンゾニトリル(3PCz-2PBN-D)の合成〕
Figure JPOXMLDOC01-appb-C000184
 3,6-ジフェニルカルバゾール(1.75g,5.5mmol)を窒素置換した100mLの二口フラスコに加え、N-メチル-2-ピロリドン10mLに溶解した。それにカリウムt-ブトキシド(0.65g,5.8mmol)を加えて室温で1時間撹拌した。それに窒素気流下で3’,5’,6’-トリフルオロ-[1,1’:4’,1”-テルフェニル]-2’-カルボニトリル(0.42g,1.4mmol)をN-メチル-2-ピロリドン10mLに懸濁して加え、120℃で20時間撹拌した。次いで、室温に戻し、水と酢酸エチルを加え、有機層を分液した。更に水層を酢酸エチルで2回抽出し、混合した有機層を水で3回洗浄し、次いで飽和食塩水で2回洗浄した。有機層を硫酸マグネシウムで脱水し、ろ過・濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:n-ヘキサン/ジクロロメタン)で精製し粗精製物を得た。粗精製物を再度シリカゲルカラムクロマトグラフィー(溶出液:n-ヘキサン/トルエン)で精製することで目的物(3PCz-2PBN-D)を0.93g、収率56.7%で得た。
1H-NMR(400MHz,CDCl3,δ): 8.32(d,J=2.0Hz,2H), 7.33-7.70(m,8H), 7.66(d,J=2.0Hz,2H), 7.53-7.26(m,30H), 7.26-7.21(m,5H), 7.13(dd,J=8.4Hz,2.0Hz,2H), 7.05(d,J=8.4Hz,2H), 6.99(d,J=8.8Hz,2H,), 6.91-6.89(m,2H), 6.67-6.57(m,3H) 
〔発光評価〕
 ドープ材料を3,4,6-トリ(3,6-ジフェニル-9H-カルバゾール-9-イル)-2,5-ジフェニル-ベンゾニトリル(3PCz-2PBN-D)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図7および8に示す。EQEMaxは20.7%であった。
(実施例12)
〔3,4,6-トリ(3,6-ジ-t-ブチル-9H-カルバゾール-9-イル)-2,5-ジフェニル-ベンゾニトリル(3BuCz-2PBN-D)の合成〕
Figure JPOXMLDOC01-appb-C000185
 3,6-ジ-t-ブチルカルバゾール(3.62g,13.0mmol)を窒素置換した300mLの四口フラスコに加え、N-メチル-2-ピロリドン65mLに溶解した。
それにカリウムt-ブトキシド(1.58g,14.1mmol)を加えて室温で1時間撹拌した。それに窒素気流下で3’,5’,6’-トリフルオロ-[1,1’:4’,1”-テルフェニル]-2’-カルボニトリル(1.00g,3.2mmol)を加え、120℃で6時間撹拌した。その後、130℃で14時間撹拌した。次いで、室温に戻し、水と酢酸エチルを加え、有機層を分液した。更に水層を酢酸エチルで2回抽出し、混合した有機層を水で3回洗浄し、次いで飽和食塩水で2回洗浄した。有機層を硫酸マグネシウムで脱水し、ろ過・濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:n-ヘキサン/ジクロロメタン、n-ヘキサン/トルエン)で精製することで目的物(3BuCz-2PBN-D)を1.73g、収率49.2%で得た。
1H-NMR(400MHz,CDCl3,δ): 8.03(d,J=1.2Hz,2H), 7.44-7.40(m,6H), 7.35(d,J=1.6Hz,2H), 7.17(d,J=8.4Hz,2H), 7.10-7.06(m,3H), 6.83-6.76(m,6H), 6.66(d,J=8.4Hz,2H), 6.62(d,J=8.8Hz,2H), 6.56-6.46(m,3H), 1.43(s,18H), 1.29(s,18H), 1.25(s,18H)
〔発光評価〕
 ドープ材料を3,4,6-トリ(3,6-ジ-t-ブチル-9H-カルバゾール-9-イル)-2,5-ジフェニル-ベンゾニトリル(3BuCz-2PBN-D)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図7および8に示す。EQEMaxは15.6%であった。
(合成例13)
〔2,4,5,6-テトラフルオロ-[1,1’-ビフェニル]-3-カルボニトリル(1PBN-C)の合成〕
Figure JPOXMLDOC01-appb-C000186
 300mlナスフラスコに1,3-ジブロモテトラフロロベンゼン(6.50g, 21.1mmol)、フェニルボロン酸(2.73g, 22.4mmol)、炭酸カリウム(8.74g, 63.3mmol)、水 26ml、およびテトラヒドロフラン 65mlを加えた。脱気し、次いでアルゴン置換を行った。その後、Pd(PPh34 (0.56g, 0.63mmol)を加え、加熱還流下17時間撹拌した。得られた液を室温に戻し、ジエチルエーテル100mlを加え抽出した。その後、50mlの水で2回水洗し、硫酸マグネシウムで乾燥させ、ロータリーエバポレーターで濃縮した。濃縮物をシリカゲルカラムクロマトグラフィー(n-ヘキサン)にて分離精製し、3-ブロモ-2,4,5,6-テトラフロロ-1,1’-ビフェニルを2.93g(収率45.5%)得た。
1H-NMR(400MHz,CDCl3,δ):7.50~7.38(m,5H)
 200mlナスフラスコに3-ブロモ-2,4,5,6-テトラフロロ-1,1’-ビフェニル(2.97g, 9.74mmol)、シアン化銅(1.74g, 19.4mmol)、ヨウ化ナトリウム(0.29g, 1.93mmol)、およびN-メチル-2-ピロリドン30mlを加え、150℃で22.5時間撹拌した。室温まで冷却した。
これにジエチルエーテル50mlを加え、10%アンモニア水で洗浄し、次いで水で洗浄した。その後、硫酸マグネシウムを加えて乾燥させ、ロータリーエバポレーターで濃縮した。濃縮物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=2/1)にて分離精製し、目的物2,4,5,6-テトラフルオロ-[1,1’-ビフェニル]-3-カルボニトリルを2.05g(収率83.3%)得た。
1H-NMR(400MHz,CDCl3,δ):7.51-7.48(m,3H),7.40-7.37(m,2H)
(実施例13)
〔2,4,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-[1,1’-ビフェニル]-3-カルボニトリル(4BuCz-1PBN-C)の合成〕
Figure JPOXMLDOC01-appb-C000187
 50mLのナスフラスコに2,4,5,6-テトラフルオロ-[1,1’-ビフェニル]-3-カルボニトリル(0.25g, 1.00mmol)、3,6-ジt-ブチル-カルバゾール(1.25g, 4.47mmol)、および脱水DMF10mlを加え、氷水バスで冷却した。 60%水素化ナトリウム(0.20g, 5.00mmol)を少しずつ加えた。その後、室温で2時間撹拌した。得られた液を氷水に注加し、析出物をろ過した。ろ物をエーテルにて溶解させ、水洗した。その後、硫酸マグネシウムで乾燥させ、次いで濃縮した。濃縮物をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=2/1)にて分離精製した。得られた精製物を2-プロパノールで洗浄し、目的物(4BuCz-1PBN-C)を1.14g(収率88.9%)得た。
1H-NMR(400MHz,CDCl 3,δ):8.01(d,2H), 7.59(s,2H), 7.46~7.44(m,4H), 7.18(dd, 4H), 6.98(d,4H), 6.91(dd,4H), 6.67~6.64(m,4H), 6.55~6.52(3H,m), 6.43(dd,2H), 1.43(s,18H), 1.30(s,18H), 1.22(s,18H), 1.21(s,18H)
〔発光評価〕
 ドープ材料を2,4,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-[1,1’-ビフェニル]-3-カルボニトリル(4BuCz-1PBN-C)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図9および10に示す。
EQEMaxは26.0%であった。
(実施例14)
〔3,4,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-[1,1’-ビフェニル]-2-カルボニトリル(4BuCz-1PBN-B)の合成〕
Figure JPOXMLDOC01-appb-C000188
 窒素置換したフラスコに 酢酸パラジウム(II)(0.13 g,0.58mmol)、炭酸銀(3.15g, 11.4mmol)、およびジフェニルヨードニウムトリフルオロメタンスルホン酸(3.19g, 7.42mmol)を加えて、3回脱気した。その後、2,3,4,5-テトラフルオロベンゾニトリル(1.0 g, 5.71mmol)、ピバル酸(0.58g, 5.68mmol)、ジメチルスルホキシド(0.5 mL)、およびN,N-ジメチルホルムアミド(8mL) を加えて、130℃で10時間攪拌した。その後、室温に戻し、セライトを用いて不純物を取り除いた。その後、酢酸エチルを加えて、抽出を行った。有機層に硫酸ナトリウムを加え乾燥させて、カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:9)により精製し、白色固体の化合物1を(0.49g, 34%)得た。
1H NMR (400 MHz, CDCl3): δ 7.58-7.53 (m, 3H), 7.51-7.45 (m, 3H)
 窒素置換したフラスコに3,6-ジ-tert-ブチルカルバゾール(1.37g, 4.90mmol)、およびN,N-ジメチルホルムアミド(10 mL)を加えた。その後、室温でカリウム tert-ブトキシド(0.55g, 4.90mmol)とN,N-ジメチルホルムアミド(5mL)との混合物を加えて、室温で30分間攪拌した。
その後、化合物1(0.30g, 1.19mmol)とN,N-ジメチルホルムアミド(10mL)との混合物を10分間かけて滴下した。その後、80℃で10時間攪拌した。その後、室温に戻し、水(20 mL)を加え、30分後にクロロホルムを加え抽出を行った。有機層に硫酸ナトリウムを加え乾燥させ、カラムクロマトグラフィー(酢酸エチル:ヘキサン=1:9)により精製し、黄色い固体の化合物2(4BuCz-1PBN-B)を(1.24g, 81%)得た。
1H NMR (400 MHz, DMSO-d6): δ 7.73 (d, J = 1.0Hz, 2H), 7.52 (d, J = 6.8Hz, 4H), 7.32-7.27 (m, 4H), 7.21-7.11 (m, 11H), 6.99 (d, J =8.4Hz, 2H), 6.87 (d,J = 8.8Hz, 2H), 6.63-6.59(m, 4H), 1.33 (s, 18H), 1.27 (s, 18H), 1.16 (d, J = 8.0Hz, 36H)
〔発光評価〕
 ドープ材料を3,4,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-[1,1’-ビフェニル]-2-カルボニトリル(4BuCz-1PBN-B)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図9および10に示す。EQEMaxは22.3%であった。
(実施例15)
〔2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-[1,1’-ビフェニル]-4-カルボニトリル(4BuCz-1PBN-A)の合成〕
 実施例7と同様の方法にて目的物(4BuCz-1PBN-A)を得た。
Figure JPOXMLDOC01-appb-C000189
〔発光評価〕
 ドープ材料を2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-[1,1’-ビフェニル]-4-カルボニトリル(4BuCz-1PBN-A)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図9および10に示す。
(合成例16)4'-(tert-ブチル)-2,3,5,6-テトラフロロ-[1,1'-ビフェニル]-4-カルボニトリルの合成
Figure JPOXMLDOC01-appb-C000190
 50mlナスフラスコに2,3,5,6-テトラフルオロベンゾニトリル(0.50g,2.86mmol)、4-tert-ブチルブロムベンゼン(0.64g,3.00mmol)、2-エチルヘキサン酸(41.0mg,0.29mmol)、炭酸カリウム(0.59g,4.29mmmol)、キシレン10mlを加えた。脱気・アルゴン置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液0.45ml,0.25mmol)、酢酸パラジウム(19.2mg,0.09mmmol)を加え、140℃で16時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥しロータリーエバポレーターで濃縮した。 残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=2/1)で分離精製を行い、目的物の結晶を0.50g得た。(収率56.8%)
1H-NMR(400MHz, CDCl3, δ) : 7.53(d,2H)、7.40(d,2H)、1.36(s,9H)
(実施例16) 4'-(tert-ブチル)-2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-[1,1'-ビフェニル]-4-カルボニトリル (4X-BCz-PBN-Bu)
Figure JPOXMLDOC01-appb-C000191
 100mLのナスフラスコに4'-(tert-ブチル)-2,3,5,6-テトラフロロ-[1,1'-ビフェニル]-4-カルボニトリル(0.50g, 1.63mmol)、3,6-ジt-ブチル-カルバゾール(2.05g,7.34mmol)、脱水DMF20mlを加え、氷水バスで冷却した。 60%水素化ナトリウム(0.33g, 8.15mmol)を少しづつ加えた後、室温で5時間撹拌した。 反応液を氷水に注加し、析出した結晶をろ過した。結晶をエーテルに溶解し、水洗後、硫酸マグネシウムで乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=2/1)にて分離精製を行った。得られた結晶を2-プロパノールで洗浄し目的物1.66g(収率75.8%)を得た。
1H-NMR(400MHz, CDCl3, δ) : 7.55(d,4H)、7.42(d,4H)、6.94(dd,4H)、6.88(d, 4H)、6.78(dd,6H)、6.62(d,4H)、6.48(d,2H)、1.35(s,36H)、1.39(s,36H)、0.71(s,9H)
〔発光評価〕
 ドープ材料を4'-(tert-ブチル)-2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-[1,1'-ビフェニル]-4-カルボニトリル (4X-BCz-PBN-Bu)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図11および12に示す。EQEMaxは26.5%であった。
(合成例17)4'-メトキシ-2,3,5,6-テトラフロロ-[1,1'-ビフェニル]-4-カルボニトリルの合成
Figure JPOXMLDOC01-appb-C000192
 50mlナスフラスコに2,3,5,6-テトラフルオロベンゾニトリル(0.80g,4.57mmol)、4- メトキシブロムベンゼン(0.90g,4.80mmol)、2-エチルヘキサン酸(66.0mg,0.46mmol)、炭酸カリウム(0.95g,6.86mmmol)、キシレン10mlを加えた。 脱気・アルゴン置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液0.72ml,0.41mmol)、酢酸パラジウム(31.0mg,0.14mmmol)を加え、140℃で17.5時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥しロータリーエバポレーターで濃縮した。 残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=2/1)で分離精製を行い、目的物の結晶を0.63g得た。(収率49.2%)
1H-NMR(400MHz, CDCl3, δ) : 7.41(d,2H)、7.03(d,2H)、3.87(s,3H)
(実施例17)  2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-4'-メトキシ-[1,1'-ビフェニル]-4-カルボニトリル (4X-BCz-PBN-OMe)
Figure JPOXMLDOC01-appb-C000193
 100mLのナスフラスコに4'-メトキシ-2,3,5,6-テトラフロロ- [1,1'-ビフェニル]-4-カルボニトリル(0.50g, 1.78mmol)、3,6-ジt-ブチル-カルバゾール(2.24g,8.01mmol)、脱水DMF20mlを加え、氷水バスで冷却した。 60%水素化ナトリウム(0.36g, 8.90mmol)を少しづつ加えた後、室温で3時間さらに80℃で2時間撹拌した。 反応液を氷水に注加し、析出した結晶をろ過した。結晶をエーテルに溶解し、水洗後、硫酸マグネシウムで乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=2/1)にて分離精製を行った。得られた結晶を2-プロパノールで洗浄し目的物1.93g(収率82.5%)を得た。
1H-NMR(400MHz, CDCl3, δ) : 7.54(d,4H)、7.43(d,4H)、6.93(dd,4H)、 6.86(d, 4H)、6.81(dd,6H)、6.63(d,4H)、6.06(d,2H)、3.23(s,3H)、1.34(s,36H)、1.30(s,36H) 
〔発光評価〕
 ドープ材料を2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-4'-メトキシ-[1,1'-ビフェニル]-4-カルボニトリル (4X-BCz-PBN-OMe)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図11および12に示す。EQEMaxは28.5%であった。
(合成例18)4'-メチルチオ-2,3,5,6-テトラフロロ- [1,1'-ビフェニル]-4-カルボニトリルの合成
Figure JPOXMLDOC01-appb-C000194
 50mlナスフラスコに2,3,5,6-テトラフルオロベンゾニトリル(0.80g,4.57mmol)、4-メチルチオブロムベンゼン(0.97g,4.80mmol)、2-エチルヘキサン酸(66.0mg,0.46mmol)、炭酸カリウム(0.95g,6.86mmmol)、キシレン10mlを加えた。 脱気・アルゴン置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液0.72ml,0.41mmol)、酢酸パラジウム(31.0mg,0.14mmmol)を加え、140℃で17.5時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥しロータリーエバポレーターで濃縮した。 残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=2/1)で分離精製を行い、目的物の結晶を0.68g得た。(収率50.0%)
1H-NMR(400MHz, CDCl3, δ) : 7.37(d,2H)、7.34(d,2H)、2.53(s,3H)
(実施例18)  2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-4'-メチルチオ-[1,1'-ビフェニル]-4-カルボニトリル (4X-BCz-PBN-SMe)
Figure JPOXMLDOC01-appb-C000195
 100mLのナスフラスコに4'-メチルチオ-2,3,5,6-テトラフロロ- [1,1'-ビフェニル]-4-カルボニトリル(0.50g, 1.68mmol)、3,6-ジt-ブチル-カルバゾール(2.12g,7.56mmol)、脱水DMF20mlを加え、氷水バスで冷却した。 60%水素化ナトリウム(0.34g, 8.40mmol)を少しづつ加えた後、室温で4時間撹拌した。 反応液を氷水に注加し、析出した結晶をろ過した。結晶をエーテルに溶解し、水洗後、硫酸マグネシウムで乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=19/1)にて分離精製を行った。得られた結晶を2-プロパノールで洗浄し目的物2.08g(収率92.9%)を得た。
1H-NMR(400MHz, CDCl3, δ) : 7.56(d,4H)、 7.44(d,4H)、 6.95(dd,4H)、6.85(d, 4H)、6.83(dd,6H)、6.64(d,4H)、6.42(d,2H)、1.96(s,3H)、1.36(s,36H)、1.32(s,36H) 
〔発光評価〕
 ドープ材料を2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-4'-メチルチオ-[1,1'-ビフェニル]-4-カルボニトリル (4X-BCz-PBN-SMe)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図11および12に示す。EQEMaxは29.0%であった。
(合成例19)2,3,5,6-テトラフロロ-[1,1'-ビフェニル]-4,4'-ジカルボニトリルの合成
Figure JPOXMLDOC01-appb-C000196
 50mlナスフラスコに2,3,5,6-テトラフルオロベンゾニトリル(0.80g,4.57mmol)、4- シアノブロムベンゼン(0.87g,4.80mmol)、2-エチルヘキサン酸(66.0mg,0.46mmol)、炭酸カリウム(0.95g,6.86mmmol)、キシレン15mlを加えた。 脱気・アルゴン置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液0.72ml,0.41mmol)、酢酸パラジウム(31.0mg,0.14mmmol)を加え、140℃で18時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥しロータリーエバポレーターで濃縮した。 残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=1/1)で分離精製を行い、目的物の結晶を0.79g得た。(収率62.7%)
1H-NMR(400MHz, CDCl3, δ) : 7.83(d,2H)、7.58(d,2H)
(実施例19) 2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-[1,1'-ビフェニル]-4,4'-ジカルボニトリル (4X-BCz-PBN-CN)
Figure JPOXMLDOC01-appb-C000197
 50mLのナスフラスコに2,3,5,6-テトラフロロ-[1,1'-ビフェニル]-4,4'-ジカルボニトリル(0.25g, 0.91mmol)、3,6-ジt-ブチル-カルバゾール(1.27g,4.55mmol)、脱水DMF10mlを加え、氷水バスで冷却した。 60%水素化ナトリウム(0.18g, 4.53mmol)を少しづつ加えた後、室温で2時間さらに80℃で5時間撹拌した。 反応液を氷水に注加し、析出した結晶をろ過した。結晶をエーテルに溶解し、水洗後、硫酸マグネシウムで乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=1/1)にて分離精製を行った。得られた結晶を2-プロパノールで洗浄し目的物1.12g(収率94.1%)を得た。
1H-NMR(400MHz, CDCl3, δ) : 7.57(d,4H)、 7.46(d,4H)、7.03 (d,2H)、 6.96(dd, 4H)、6.87(d,4H)、6.84(dd,6H)、6.59(d,4H)、1.35(s,36H)、1.31(s,36H) 
〔発光評価〕
 ドープ材料を2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-[1,1'-ビフェニル]-4,4'-ジカルボニトリル (4X-BCz-PBN-CN)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図11および12に示す。EQEMaxは31.6%であった。
(合成例20)4'-シアノ-2',3',5',6'-テトラフロロ-[1,1'-ビフェニル]-4-カルボン酸メチルエステルの合成
Figure JPOXMLDOC01-appb-C000198
 100mlナスフラスコに2,3,5,6-テトラフルオロベンゾニトリル(1.00g,5.71mmol)、4-メトキシカルボニルブロムベンゼン(1.29g,6.00mmol)、2-エチルヘキサン酸(82.0mg,0.57mmol)、炭酸カリウム(1.18g,8.56mmmol)、キシレン20mlを加えた。 脱気・アルゴン置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液0.90ml,0.51mmol)、酢酸パラジウム(38.5mg,0.17mmmol)を加え、140℃で18時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥しロータリーエバポレーターで濃縮した。 残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=1/1)で分離精製を行い、目的物の結晶を1.29g得た。(収率72.9%)
1H-NMR(400MHz, CDCl3, δ) : 8.18(d,2H)、7.54(d,2H)、3.96(s,3H)
(実施例20)  4'-シアノ-2',3',5',6'-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-[1,1'-ビフェニル]-4-カルボン酸メチルエステル (4X-BCz-PBN-CO2Me)
Figure JPOXMLDOC01-appb-C000199
 100mLのナスフラスコに4-(4-メトキシカルボニルフェニル)-2,3.5,6-テトラフルオロベンゾニトリル(0.50g, 1.78mmol)、3,6-ジt-ブチル-カルバゾール(2.24g,8.01mmol)、脱水DMF20mlを加え、氷水バスで冷却した。 60%水素化ナトリウム(0.36g, 8.90mmol)を少しづつ加えた後、室温で3時間さらに80℃で2時間撹拌した。 反応液を氷水に注加し、析出した結晶をろ過した。結晶をエーテルに溶解し、水洗後、硫酸マグネシウムで乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=2/1)にて分離精製を行った。得られた結晶を2-プロパノールで洗浄し目的物1.93g(収率82.5%)を得た。
1H-NMR(400MHz, CDCl3, δ) : 7.54(d,4H)、7.43(d,4H)、6.93(dd,4H)、6.86(d, 4H)、6.81(dd,6H)、6.63(d,4H)、6.06(d,2H)、3.23(s,3H)、1.34(s,36H)、1.30(s,36H) 
〔発光評価〕
 ドープ材料を4'-シアノ-2',3',5',6'-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-[1,1'-ビフェニル]-4-カルボン酸メチルエステル (4X-BCz-PBN-CO2Me)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図13および14に示す。EQEMaxは30.4%であった。
(実施例21) 4X-BCz-PBN-MesBNの合成
Figure JPOXMLDOC01-appb-C000200
 200mLの三口フラスコに2,4,6-トリメチルフェニルボロン酸(2.62g,16.0mmol)、4-ブロモ-2,3,5,6-テトラフルオロベンゾニトリル(2.03g,8.0mmol)、リン酸カリウム(6.80g,32.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(0.37g,0.40mmol)、SPhos(0.66g,1.61mmol)、脱水トルエン100mLを加え、脱気・窒素置換を行った後、120℃で22時間撹拌した。 反応液を室温に戻し、トルエンを加えセライトを用いて不溶物を濾別した。濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ジクロロメタン)で精製し、無色油状物の前駆体を1.09g得た(収率46.5%)。
1H-NMR(400MHz,CDCl3,δ):7.01(s,2H),2.35(s,3H),2.05(s,6H)
Figure JPOXMLDOC01-appb-C000201
 窒素置換した200mLの三口フラスコに3,6-ジ-t-ブチルカルバゾール(2.12g,7.6mmol)を加え、脱水N-メチル-2-ピロリドン30mLに溶解し、t-ブトキシカリウム(0.82g,7.3mmol)を加えて室温で1時間撹拌した。この混合物を氷水冷し、窒素気流下で前駆体(0.50g,1.70mmol)を脱水N-メチル-2-ピロリドン5mLに溶解して加え、100℃で3時間撹拌した。反応液を氷水冷し、冷水を加え析出した固体を濾取した。固体をジクロロメタンに溶解し、硫酸マグネシウムで乾燥して濃縮した。残渣に酢酸エチルを加え超音波照射し、析出した固体を濾取して溶媒を留去することで淡黄緑色固体の目的物を2.05g得た(収率90.3%)。
1H-NMR(400MHz,CDCl3,δ):7.52(d,J=1.6Hz,4H),7.38(s,4H),6.89(dd,J=8.4Hz,2.0Hz,4H),6.81(d,J=8.8Hz,4H),6.73-6.68(m,8H),6.26(s,2H),2.17(s,6H),1.70(s,3H),1.35(s,36H),1.30(s,36H)
〔発光評価〕
 ドープ材料を4X-BCz-PBN-MesBNに換えた以外は実施例1と同じ方法で発光評価を行った。結果を図13および14に示す。EQEMaxは29.5%であった。
(実施例22) 4X-BCz-PBN-IPNの合成
Figure JPOXMLDOC01-appb-C000202
 200mLの三口フラスコに3,5-ジシアノフェニルボロン酸ピナコールエステル(0.51g,2.0mmol)、4-ブロモ-2,3,5,6-テトラフルオロベンゾニトリル(0.62g,2.4mmol)、リン酸カリウム(1.69g,8.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(90.2mg,0.10mmol)、SPhos(162.8mg,0.40mmol)、脱水トルエン25mLを加え、脱気・窒素置換を行った後、120℃で22時間撹拌した。 反応液を室温に戻し、トルエンを加えセライトを用いて不溶物を濾別した。濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製し、前駆体を微黄白色固体として0.18g得た(収率30.4%)。
1H-NMR(400MHz,CDCl3,δ):8.12(t,J=1.2Hz,1H),8.00(d,J=1.2Hz,2H)
Figure JPOXMLDOC01-appb-C000203
 窒素置換した200mLの三口フラスコに3,6-ジ-t-ブチルカルバゾール(1.84g,6.6mmol)を加え、脱水N-メチル-2-ピロリドン27mLに溶解し、t-ブトキシカリウム(0.71g,6.3mmol)を加えて室温で1時間撹拌した。この混合物を氷水冷し、窒素気流下で前駆体(0.45g,1.49mmol)を脱水N-メチル-2-ピロリドン5mLに溶解して加え、100℃で3時間撹拌した。反応液を氷水冷し、冷水を加え析出した固体を濾取した。固体をジクロロメタンに溶解し、硫酸マグネシウムで乾燥して濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン)で精製し、粗精製物を得た。粗精製物にn-ヘキサンを加え超音波照射し、析出した固体を濾取して溶媒を留去することで黄色固体の目的物を1.24g得た(収率62.0%)。
1H-NMR(400MHz,CDCl3,δ):7.64(d,J=1.6Hz,4H),7.50(d,J=1.6Hz,4H),7.12(d,J=1.2Hz,2H),7.07(dd,J=8.8Hz,2.0Hz,4H),7.02-6.96(m,9H),6.67(d,J=8.4Hz,4H),1.36(s,36H),1.32(s,36H)
〔発光評価〕
 ドープ材料を4X-BCz-PBN-IPNに換えた以外は実施例1と同じ方法で発光評価を行った。結果を図13および14に示す。EQEMaxは31.0%であった。
(合成例23)2,3,5,6-テトラフロロ-4-(ピリジン-2-イル)ベンゾニトリルの合成
Figure JPOXMLDOC01-appb-C000204
 50mlナスフラスコに2,3,5,6-テトラフルオロベンゾニトリル(0.50g,2.86mmol)、2-ブロムピリジン(0.47g,3.0mmol)、2-エチルヘキサン酸(41.0mg,0.29mmol)、炭酸カリウム(0.59g,4.29mmmol)、キシレン10mlを加えた。脱気・アルゴン置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液0.45ml,0.25mmol)、酢酸パラジウム(19.2mg,0.09mmmol)を加え、140℃で18時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥しロータリーエバポレーターで濃縮した。 残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=7/3)で分離精製を行い、目的物の結晶を0.56g得た。(収率77.8%)
1H-NMR(400MHz, CDCl3, δ) : 8.80(d,1H)、7.88(m,1H)、7.51(d,1H)、7.45(m,1H)
(実施例23) 2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-4-(ピリジン-2-イル)ベンゾニトリル (4X-BCz-PBN-2-Py)
Figure JPOXMLDOC01-appb-C000205
 100mLのナスフラスコに2,3,5,6-テトラフロロ-4-(ピリジン-2-イル)ベンゾニトリル(0.50g, 1.98mmol)、3,6-ジt-ブチル-カルバゾール(2.49g, 8.91mmol)、脱水DMF20mlを加え、氷水バスで冷却した。 60%水素化ナトリウム(0.40g, 9.90mmol)を少しづつ加えた後、室温で5時間撹拌した。 反応液を氷水に注加し、析出した結晶をろ過した。結晶をエーテルに溶解し、水洗後、硫酸マグネシウムで乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=2/1)にて分離精製を行った。得られた結晶を2-プロパノールで洗浄し目的物2.26g(収率89.0%)を得た。
1H-NMR(400MHz, CDCl3, δ) : 7.84(d,1H)、7.56(d,4H)、7.42(d,4H)、6.98-6.95(m, 5H)、6.92(d,4H)、6.86-6.83(m,5H)、6.77(d,4H)、6.43(dd,1H)、1.36(s,36H)、 1.30(s,36H) 
〔発光評価〕
 ドープ材料を2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-4-(ピリジン-2-イル)ベンゾニトリル (4X-BCz-PBN-2-Py)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図15および16に示す。EQEMaxは24.4%であった。
(合成例24)2,3,5,6-テトラフロロ-4-(ピリジン-3-イル)ベンゾニトリルの合成
Figure JPOXMLDOC01-appb-C000206
 100mlナスフラスコに2,3,5,6-テトラフルオロベンゾニトリル(1.15g,6.57mmol)、3-ブロムピリジン(1.09g,6.90mmol)、2-エチルヘキサン酸(95mg,0.66mmol)、炭酸カリウム(1.36g,9.86mmmol)、キシレン20mlを加えた。脱気・アルゴン置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液1.04ml,0.59mmol)、酢酸パラジウム(44.0mg,0.18mmmol)を加え、140℃で18時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥しロータリーエバポレーターで濃縮した。 残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=7/3)で分離精製を行い、目的物の結晶を1.16g得た。(収率69.9%)
1H-NMR(400MHz, CDCl3, δ) : 8.76-8.73(m,2H)、7.80(d,1H)、7.50-7.47(t,1H)
(実施例24) 2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-4-(ピリジン-3-イル)ベンゾニトリル (4X-BCz-PBN-3-Py)
Figure JPOXMLDOC01-appb-C000207
 100mLのナスフラスコに2,3,5,6-テトラフロロ-4-(ピリジン-3-イル)ベンゾニトリル(0.50g, 1.98mmol)、3,6-ジt-ブチル-カルバゾール(2.49g, 8.91mmol)、脱水DMF20mlを加え、氷水バスで冷却した。 60%水素化ナトリウム(0.40g, 9.90mmol)を少しづつ加えた後、室温で4.5時間撹拌した。 反応液を氷水に注加し、析出した結晶をろ過した。結晶をエーテルに溶解し、水洗後、硫酸マグネシウムで乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=2/3)にて分離精製を行った。得られた結晶を2-プロパノールで洗浄し目的物2.18g(収率85.8%)を得た。
1H-NMR(400MHz, CDCl3, δ) : 8.22(d,1H)、7.81(d,1H)、7.57(d,4H)、7.45(d, 4H)、7.23(d,1H)、6.96(dd,4H)、6.89(d,4H)、6.84(dd,4H)、6.62(d,4H)、6.49(dd,1H)、  1.36(s,36H)、1.31(s,36H) 
〔発光評価〕
 ドープ材料を2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-4-(ピリジン-3-イル)ベンゾニトリル (4X-BCz-PBN-3-Py)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図15および16に示す。EQEMaxは33.6%であった。
(合成例25)2,3,5,6-テトラフロロ-4-(ピリジン-4-イル)ベンゾニトリルの合成
Figure JPOXMLDOC01-appb-C000208
 50mlナスフラスコに2,3,5,6-テトラフルオロベンゾニトリル(0.80g,4.57mmol)、4-ブロムピリジン塩酸塩(0.93g,4.80mmol)、2-エチルヘキサン酸(66.0mg,0.46mmol)、炭酸カリウム(1.58g,11.4mmmol)、キシレン15mlを加えた。 脱気・アルゴン置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液0.72ml,0.41mmol)、酢酸パラジウム(31.0mg,0.14mmmol)を加え、140℃で17時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥しロータリーエバポレーターで濃縮した。 残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=1/4)で分離精製を行い、目的物の結晶を0.70g得た。(収率60.9%)
1H-NMR(400MHz, CDCl3, δ) : 8.81(d,2H)、7.38(d,2H)
(実施例25) 2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-4-(ピリジン-4-イル)ベンゾニトリル (4X-BCz-PBN-4-Py)
Figure JPOXMLDOC01-appb-C000209
 100mLのナスフラスコに2,3,5,6-テトラフロロ-4-(ピリジン-4-イル)ベンゾニトリル(0.50g, 1.98mmol)、3,6-ジt-ブチル-カルバゾール(2.49g, 8.91mmol)、脱水DMF20mlを加え、氷水バスで冷却した。 60%水素化ナトリウム(0.40g, 9.90mmol)を少しづつ加えた後、室温で5時間撹拌した。 反応液を氷水に注加し、析出した結晶をろ過した。結晶をエーテルに溶解し、水洗後、硫酸マグネシウムで乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ベンゼン)にて分離精製を行った。得られた結晶を2-プロパノールで洗浄し目的物2.24g(収率88.2%)を得た。
1H-NMR(400MHz, CDCl3, δ) : 7.82(d,2H)、7.56(d,4H)、7.45(d,4H)、6.95(dd, 4H)、6.87-6.82(m,10H)、6.62(d,4H)、1.35(s,36H)、1.31(s,36H) 
〔発光評価〕
 ドープ材料を2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-4-(ピリジン-4-イル)ベンゾニトリル (4X-BCz-PBN-4-Py)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図15および16に示す。EQEMaxは30.9%であった。
(合成例26)2,3,5,6-テトラフロロ-4-(ピリミジン-5-イル)ベンゾニトリルの合成
Figure JPOXMLDOC01-appb-C000210
 100mlナスフラスコに2,3,5,6-テトラフルオロベンゾニトリル(1.00g,5.71mmol)、5-ブロムピリミジン(0.95g,6.00mmol)、2-エチルヘキサン酸(82.0mg,0.57mmol)、炭酸カリウム(1.18g,8.57mmmol)、キシレン20mlを加えた。脱気・アルゴン置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液0.90ml,0.50mmol)、酢酸パラジウム(38.52mg,0.18mmmol)を加え、140℃で18時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥しロータリーエバポレーターで濃縮した。 残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=7/3)で分離精製を行い、目的物の結晶を0.96g得た。(収率66.5%)
1H-NMR(400MHz, CDCl3, δ) : 9.35(s,1H)、8.91(s,2H)
(実施例26) 2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-4-(ピリミジン-5-イル)ベンゾニトリル (4X-BCz-PBN-5-Pm)
Figure JPOXMLDOC01-appb-C000211
 100mLのナスフラスコに2,3,5,6-テトラフロロ-4-(ピリミジン-5-イル)ベンゾニトリル(0.50g, 1.98mmol)、3,6-ジt-ブチル-カルバゾール(2.48g, 8.91mmol)、脱水DMF20mlを加え、氷水バスで冷却した。 60%水素化ナトリウム(0.40g, 9.90mmol)を少しづつ加えた後、室温で4時間撹拌した。 反応液を氷水に注加し、析出した結晶をろ過した。結晶をエーテルに溶解し、水洗後、硫酸マグネシウムで乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン=2/3)にて分離精製を行った。得られた結晶を2-プロパノールで洗浄し目的物2.23g(収率87.8%)を得た。
1H-NMR(400MHz, CDCl3, δ) : 8.39(s,1H)、 8.27(s,2H)、7.57(d,4H)、7.47(d, 4H)、6.97(dd,4H)、6.90(d,4H)、6.86(dd,4H)、6.59(d,4H)、1.36(s,36H), 1.31(s,36H)
〔発光評価〕
 ドープ材料を2,3,5,6-テトラキス(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-4-(ピリミジン-5-イル)ベンゾニトリル (4X-BCz-PBN-5-Pm)に換えた以外は実施例1と同じ方法で発光評価を行った。結果を図15および16に示す。EQEMaxは30.3%であった。
(実施例27) 3Y-BCz-PBN-tBuの合成
Figure JPOXMLDOC01-appb-C000212
 100mLナスフラスコに2,4,6-トリフルオロベンゾニトリル(1.00g,6.4mmol)、1-ブロモ-4-t-ブチルベンゼン(2.86g,13.4mmol)、2-エチルヘキサン酸(93.8mg,0.65mmol)、炭酸カリウム(2.64g,19.1mmol)、脱水キシレン20mLを加えた。脱気・窒素置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液1.6mL,0.95mmol)、酢酸パラジウム(72.6mg,0.32mmol)を加え、140℃で24時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えセライトを用いて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン)で精製し、淡茶白色固体の前駆体を1.44g得た(収率53.7%)。
1H-NMR(400MHz,CDCl3,δ):7.51(d,J=8.0Hz,4H),7.37(d,J=8.4Hz,4H),1.37(s,18H)
Figure JPOXMLDOC01-appb-C000213
 窒素置換した200mLの三口フラスコに3,6-ジ-t-ブチルカルバゾール(1.16g,4.2mmol)を加え、脱水N-メチル-2-ピロリドン24mLに溶解し、t-ブトキシカリウム(0.44g,3.9mmol)を加えて室温で1時間撹拌した。この混合物を氷水冷し、窒素気流下で前駆体(0.50g,1.19mmol)を加え、100℃で3時間撹拌した。反応液を氷水冷し、冷水を加え析出した固体を濾取した。固体をジクロロメタンに溶解し、硫酸マグネシウムで乾燥して濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製し、目的物の粗結晶を0.81g得た。同様の方法により得られた粗結晶3.28gに酢酸エチルを加え、超音波照射して析出した結晶を濾取し、溶媒を留去して淡黄緑色固体の目的物を2.25g得た(収率57.7%)。
1H-NMR(400MHz,CDCl3,δ):7.94(d,J=1.2Hz,4H),7.71(d,J=2.0Hz,2H),7.38(dd,J=8.8Hz,2.0Hz,4H),7.21(dd,J=8.8Hz,2.0Hz,2H),7.10(d,J=8.8Hz,4H),6.93(d,J=8.4Hz,2H),6.43(d,J=8.0Hz,4H),6.33(d,J=8.8Hz,4H),1.39(s,36H),1.31(s,18H),0.77(s,18H)
〔発光評価〕
 ドープ材料を3Y-BCz-PBN-tBuに換えた以外は実施例1と同じ方法で発光評価を行った。結果を図17および18に示す。EQEMaxは24.6%であった。
(実施例28) 3Y-BCz-PBN-OMeの合成
Figure JPOXMLDOC01-appb-C000214
 100mLナスフラスコに2,4,6-トリフルオロベンゾニトリル(1.00g,6.4mmol)、4-ブロモアニソール(2.51g,13.4mmol)、2-エチルヘキサン酸(92.9mg,0.64mmol)、炭酸カリウム(2.64g,19.1mmol)、脱水キシレン20mLを加えた。脱気・窒素置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液1.6mL,0.95mmol)、酢酸パラジウム(72.4mg,0.32mmol)を加え、140℃で24時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えセライトを用いて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン)で精製し、白色固体の前駆体を0.52g得た(収率22.1%)。
1H-NMR(400MHz,CDCl3,δ):7.37(d,J=8.8Hz,4H),7.03-7.00(m,4H),3.87(s,6H)
Figure JPOXMLDOC01-appb-C000215
 窒素置換した200mLの三口フラスコに3,6-ジ-t-ブチルカルバゾール(1.33g,4.8mmol)を加え、脱水N-メチル-2-ピロリドン20mLに溶解し、t-ブトキシカリウム(0.44g,3.9mmol)を加えて室温で1時間撹拌した。この混合物を氷水冷し、窒素気流下で前駆体(0.51g,1.35mmol)を脱水N-メチル-2-ピロリドン7mLに溶解して加え、100℃で3時間撹拌した。反応液を氷水冷し、冷水を加え析出した固体を濾取した。固体をジクロロメタンに溶解し、硫酸マグネシウムで乾燥して濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン)で精製し、目的物の粗精製物を1.63g得た。同様の方法により得られた粗精製物3.33gにn-ヘキサン/酢酸エチルを加え、超音波照射して析出した結晶を濾取し、溶媒を留去して淡々黄白色固体として目的物を2.37g得た(収率74.1%)。
1H-NMR(400MHz,CDCl3,δ):7.96(d,J=2.0Hz,4H),7.76(d,J=2.0Hz,2H),7.41(dd、J=8.8Hz,2.0Hz,4H),7.27(dd,2H),7.11(d,J=8.0Hz,4H),6.96(d,J=8.8Hz,2H),6.52(d,J=8.8Hz,4H),5.92(d,J=9.2Hz,4H),3.29(s,6H),1.40(s,36H),1.33(s,18H)
〔発光評価〕
 ドープ材料を3Y-BCz-PBN-OMeに換えた以外は実施例1と同じ方法で発光評価を行った。結果を図17および18に示す。EQEMaxは21.5%であった。
(実施例29) 3Y-BCz-PBN-SMeの合成
Figure JPOXMLDOC01-appb-C000216
 100mLナスフラスコに2,4,6-トリフルオロベンゾニトリル(1.00g,6.4mmol)、4-ブロモチオアニソール(2.71g,13.3mmol)、2-エチルヘキサン酸(94.3mg,0.65mmol)、炭酸カリウム(2.66g,19.2mmol)、脱水キシレン20mLを加えた。脱気・窒素置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液1.6mL,0.95mmol)、酢酸パラジウム(75.6mg,0.34mmol)を加え、140℃で21時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えセライトを用いて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製した後、n-ヘキサン/酢酸エチルで洗浄して白色固体の前駆体を1.43g得た(収率56.0%)。
1H-NMR(400MHz,CDCl3,δ):7.35(s,8H),2.53(s,6H)
Figure JPOXMLDOC01-appb-C000217
 窒素置換した200mLの三口フラスコに3,6-ジ-t-ブチルカルバゾール(1.95g,7.0mmol)を加え、脱水N-メチル-2-ピロリドン32mLに溶解し、t-ブトキシカリウム(0.76g,6.8mmol)を加えて室温で1時間撹拌した。この混合物を氷水冷し、窒素気流下で前駆体(0.80g,2.00mmol)を加え、100℃で3時間撹拌した。反応液を氷水冷し、冷水を加え析出した固体を濾取した。固体をジクロロメタンに溶解し、硫酸マグネシウムで乾燥して濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン)で精製し、目的物の粗精製物を2.25g得た。粗精製物にn-ヘキサンを加え、超音波照射して析出した結晶を濾取し、溶媒を留去して微黄白色固体の目的物を1.52g得た(収率64.7%)。
1H-NMR(400MHz,CDCl3,δ):7.96(d,J=2.0Hz,4H),7.77(d,J=2.0Hz,2H),7.41(dd,J=8.4Hz,2.0Hz,4H),7.26(dd,J=8.4Hz,2.0Hz,2H),6.93(d,J=8.0Hz,2H),6.50(d,J=8.4Hz,4H),6.28(d,J=8.4Hz,4H),1.99(s,6H),1.40(s,36H),1.34(s,18H)
〔発光評価〕
 ドープ材料を3Y-BCz-PBN-SMeに換えた以外は実施例1と同じ方法で発光評価を行った。結果を図17および18に示す。EQEMaxは20.9%であった。
(実施例30) 3F-BCz-PBN-tBuの合成
Figure JPOXMLDOC01-appb-C000218
 100mLナスフラスコに2,3,5-トリフルオロベンゾニトリル(1.00g,6.4mmol)、1-ブロモ-4-t-ブチルベンゼン(2.85g,13.4mmol)、2-エチルヘキサン酸(94.7mg,0.66mmol)、炭酸カリウム(2.64g,19.1mmol)、脱水キシレン20mLを加えた。脱気・窒素置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液1.6mL,0.95mmol)、酢酸パラジウム(72.4mg,0.32mmol)を加え、140℃で22時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えセライトを用いて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン)で精製し白色固体の前駆体を2.54g得た(収率94.7%)。
1H-NMR(400MHz,CDCl3,δ):7.53(d,J=10.4Hz,4H),7.45-7.43(m,4H),1.37(s,18H)
Figure JPOXMLDOC01-appb-C000219
 窒素置換した200mLの三口フラスコに3,6-ジ-t-ブチルカルバゾール(1.16g,4.2mmol)を加え、脱水N-メチル-2-ピロリドン24mLに溶解し、t-ブトキシカリウム(0.44g,3.9mmol)を加えて室温で1時間撹拌した。この混合物を氷水冷し、窒素気流下で前駆体(0.50g,1.19mmol)を加え、100℃で3時間撹拌した。反応液を氷水冷し、冷水を加え析出した固体を濾取した。固体をジクロロメタンに溶解し、硫酸マグネシウムで乾燥して濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)で精製し、粗精製物を0.76g得た。同様の方法により得られた粗結晶1.44gを酢酸エチルに溶かして混合、溶媒を留去して淡黄緑白色固体の目的物を1.41g得た(収率49.5%)。
1H-NMR(400MHz,CDCl3,δ):7.80(s,2H),7.54(s,2H),7.38(s,2H),7.26(d,J=8.8Hz,2H),7.15(d,J=8.4Hz,2H),6.99(t,J=8.0Hz,4H),6.91(d,J=8.8Hz,4H),6.85(d,J=8.4Hz,2H),6.76(d,J=8.0Hz,2H),6.59(dd,J=10.4Hz,8.8Hz,4H),6.38(d,J=8.0Hz,2H),1.37(s,18H),1.34(s,18H),1.27(s,18H),1.09(s,9H),0.73(s,9H)
〔発光評価〕
 ドープ材料を3F-BCz-PBN-tBuに換えた以外は実施例1と同じ方法で発光評価を行った。結果を図19および20に示す。EQEMaxは26.5%であった。
(実施例31) 3F-BCz-PBN-OMeの合成
Figure JPOXMLDOC01-appb-C000220
 100mLナスフラスコに2,3,5-トリフルオロベンゾニトリル(1.00g,6.4mmol)、4-ブロモアニソール(2.50g,13.4mmol)、2-エチルヘキサン酸(96.5mg,0.67mmol)、炭酸カリウム(2.64g,19.1mmol)、脱水キシレン20mLを加えた。脱気・窒素置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液1.6mL,0.95mmol)、酢酸パラジウム(72.3mg,0.32mmol)を加え、140℃で22時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えセライトを用いて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン)で精製し白色固体の前駆体を1.51g得た(収率64.2%)。
1H-NMR(400MHz,CDCl3,δ):7.46-7.42(m,4H),7.05-7.02(m,4H),3.87(s,6H)
Figure JPOXMLDOC01-appb-C000221
 窒素置換した200mLの三口フラスコに3,6-ジ-t-ブチルカルバゾール(1.51g,5.4mmol)を加え、脱水N-メチル-2-ピロリドン25mLに溶解し、t-ブトキシカリウム(0.58g,5.2mmol)を加えて室温で1時間撹拌した。この混合物を氷水冷し、窒素気流下で前駆体(0.57g,1.54mmol)を脱水N-メチル-2-ピロリドン6mLに溶解して加え、100℃で3時間撹拌した。反応液を氷水冷し、冷水を加え析出した固体を濾取した。固体を酢酸エチルに溶解し、硫酸マグネシウムで乾燥して濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン)で精製し、粗精製物を0.80g得た。同様の方法により得られた粗精製物2.07gにn-ヘキサン/酢酸エチルを加え超音波照射して析出した結晶を濾取し、溶媒を留去して微黄白色固体として目的物を1.82g得た(収率64.7%)。
1H-NMR(400MHz,CDCl3,δ):7.85(d,J=1.6Hz,2H),7.53(d,J=2.0Hz,2H),7.38(d,J=2.0Hz,2H),7.31(dd,J=8.8Hz,2.0Hz,2H),7.19(d,J=8.4Hz,2H),7.01(d,J=8.8Hz,2H),6.90(dd,J=8.0Hz,1.6Hz,2H),6.81-6.77(m,4H),6.64-6.55(m,6H),5.94(d,J=8.8Hz,2H),3.62(s,3H),3.25(s,3H),1.39(s,18H),1.34(s,18H),1.28(s,18H)
〔発光評価〕
 ドープ材料を3F-BCz-PBN-OMeに換えた以外は実施例1と同じ方法で発光評価を行った。結果を図19および20に示す。EQEMaxは25.2%であった。
(実施例32) 3F-BCz-PBN-SMeの合成
Figure JPOXMLDOC01-appb-C000222
 100mLナスフラスコに2,3,5-トリフルオロベンゾニトリル(1.00g,6.4mmol)、4-ブロモチオアニソール(2.72g,13.4mmol)、2-エチルヘキサン酸(95.0mg,0.66mmol)、炭酸カリウム(2.65g,19.2mmol)、脱水キシレン20mLを加えた。脱気・窒素置換を行った後、トリシクロヘキシルホスフィン(20%トルエン溶液1.6mL,0.95mmol)、酢酸パラジウム(73.0mg,0.33mmol)を加え、140℃で21時間撹拌した。 反応液を室温に戻し、酢酸エチルを加えセライトを用いて不溶物を濾別した。濾液を水洗後、硫酸マグネシウムを加え乾燥し濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ベンゼン)で精製した後、n-ヘキサン/酢酸エチルで洗浄して白色固体として前駆体を2.05g得た(収率80.2%)。
1H-NMR(400MHz,CDCl3,δ):7.42-7.34(m,8H),2.54(s,6H)
Figure JPOXMLDOC01-appb-C000223
 窒素置換した200mLの三口フラスコに3,6-ジ-t-ブチルカルバゾール(1.95g,7.0mmol)を加え、脱水N-メチル-2-ピロリドン32mLに溶解し、t-ブトキシカリウム(0.76g,6.8mmol)を加えて室温で1時間撹拌した。この混合物を氷水冷し、窒素気流下で前駆体(0.80g,2.00mmol)を加え、100℃で3時間撹拌した。反応液を氷水冷し、冷水を加え析出した固体を濾取した。固体をジクロロメタンに溶解し、硫酸マグネシウムで乾燥して濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/ジクロロメタン)で精製し、粗精製物を得た。粗精製物にn-ヘキサン/ジエチルエーテルを加え超音波照射して析出した結晶を濾取し、溶媒を留去して淡黄色固体として目的物を1.85g得た(収率78.7%)。
1H-NMR(400MHz,CDCl3,δ):7.85(d,J=1.6Hz,2H),7.53(d,J=2.0Hz,2H),7.38(d,J=1.2Hz,2H),7.31(dd,J=8.8Hz,2.0Hz,2H),7.18(d,J=8.4Hz,2H),6.99(d,J=8.8Hz,2H),6.92-6.89(m,4H),6.80-6.77(m,4H),6.60(d,J=8.4Hz,2H),6.57(d,J=8.4Hz,2H),6.29(d,J=8.4Hz,2H),2.30(s,3H),1.95(s,3H),1.39(s,18H),1.34(s,18H),1.28(s,18H)
〔発光評価〕
 ドープ材料を3F-BCz-PBN-SMeに換えた以外は実施例1と同じ方法で発光評価を行った。結果を図19および20に示す。EQEMaxは22.0%であった。
 発光特性に優れる、2,3,4,5,6-ペンタ置換ベンゾニトリル化合物、発光材料およびそれを用いた発光素子を提供することができる。

Claims (13)

  1.  式(I)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
     式(I)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、
     nは、Lの数を表し、1または2であり、
     Qは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基、置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基、または置換若しくは無置換の3-フェニル-6-t-ブチル-9H-カルバゾール-9-イル基であり、且つ
     mは、Qの数を表し、5-nである。
  2.  式(IIa)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
     式(IIa)中、Lは、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基である。
  3.  式(IIb)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
     式(IIb)中、Lは、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基である。
  4.  式(IIc)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
     式(IIc)中、Lは、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基である。
  5.  式(IIIa)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
     式(IIIa)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
  6.  式(IIIb)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
     式(IIIb)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
  7.  式(IIIc)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
     式(IIIc)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
  8.  式(IVa)で表される請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008
     式(IVa)中、Lは、それぞれ独立に、置換若しくは無置換のアリール基、または置換若しくは無置換のヘテロアリール基であり、且つQは、それぞれ独立に、置換若しくは無置換の3,6-ジ-t-ブチル-9H-カルバゾール-9-イル基または置換若しくは無置換の3,6-ジフェニル-9H-カルバゾール-9-イル基である。
  9.  Lが、置換若しくは無置換の含窒素または含酸素の5員環または6員環ヘテロアリールである請求項1~8のいずれかひとつに記載の化合物。
  10.  Lが、置換若しくは無置換のフェニル基、置換若しくは無置換のビフェニル基、置換若しくは無置換のナフチル基、置換若しくは無置換のアントリル基、置換若しくは無置換のフェナントリル基、置換若しくは無置換のピリジニル基、置換若しくは無置換のピリミジニル基、置換若しくは無置換のフリル基、置換若しくは無置換のチエニル基、置換若しくは無置換のオキサゾリル基、置換若しくは無置換のチアゾリル基、置換若しくは無置換のイミダゾリル基、置換若しくは無置換のインドリル基、置換若しくは無置換のキノリニル基、置換若しくは無置換のベンゾフラニル基、置換若しくは無置換のベンゾチエニル基、置換若しくは無置換のベンゾオキサゾリル基、置換若しくは無置換のベンゾチアゾリル基、または置換若しくは無置換のベンゾイミダゾリル基である請求項1~8のいずれかひとつに記載の化合物。
  11.  Lが置換若しくは無置換のフェニル基、置換若しくは無置換のピリジニル基、または置換若しくは無置換のピリミジニル基である、請求項1~8のいずれかひとつに記載の化合物。
  12.  請求項1~11のいずれかひとつに記載の化合物を含む発光材料。
  13.  請求項12に記載の発光材料を含有する発光素子。
PCT/JP2019/033913 2018-09-05 2019-08-29 ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子 WO2020050127A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/272,550 US20210332032A1 (en) 2018-09-05 2019-08-29 Benzonitrile derivative, light-emitting material, and light-emitting element using same
KR1020217005954A KR102533313B1 (ko) 2018-09-05 2019-08-29 벤조니트릴 유도체, 발광 재료 및 그것을 사용한 발광 소자
CN201980057047.2A CN112638874A (zh) 2018-09-05 2019-08-29 苯甲腈衍生物、发光材料和使用该发光材料的发光元件
JP2020541162A JP7184263B2 (ja) 2018-09-05 2019-08-29 ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子
EP19857043.4A EP3848352A4 (en) 2018-09-05 2019-08-29 BENZONITRILE DERIVATIVE, LIGHT EMITTING MATERIAL AND LIGHT EMITTING ELEMENT THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-165955 2018-09-05
JP2018165955 2018-09-05
JP2019-017156 2019-02-01
JP2019017156 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020050127A1 true WO2020050127A1 (ja) 2020-03-12

Family

ID=69723167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033913 WO2020050127A1 (ja) 2018-09-05 2019-08-29 ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子

Country Status (7)

Country Link
US (1) US20210332032A1 (ja)
EP (1) EP3848352A4 (ja)
JP (1) JP7184263B2 (ja)
KR (1) KR102533313B1 (ja)
CN (1) CN112638874A (ja)
TW (1) TWI719618B (ja)
WO (1) WO2020050127A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409241A (zh) * 2020-11-27 2021-02-26 清华大学 一种有机化合物及其应用及采用该化合物的有机电致发光器
CN112409240A (zh) * 2020-11-20 2021-02-26 清华大学 一种有机化合物及其应用及采用该化合物的有机电致发光器
CN114685353A (zh) * 2020-12-28 2022-07-01 北京鼎材科技有限公司 用于有机发光器件的有机化合物、有机电致发光器件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7226806B2 (ja) * 2017-06-23 2023-02-21 株式会社Kyulux 有機発光ダイオードに用いられる組成物
CN115745869A (zh) * 2022-10-28 2023-03-07 清华大学 一种有机化合物及采用该化合物的有机电致发光器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014183080A1 (en) 2013-05-09 2014-11-13 Nitto Denko Corporation Emissive compounds for light emitting devices
WO2016138077A1 (en) 2015-02-24 2016-09-01 Nitto Denko Corporation Gas sensor element
WO2016152605A1 (ja) * 2015-03-23 2016-09-29 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子用材料、発光材料および有機エレクトロルミネッセンス素子
JP2016539182A (ja) * 2013-10-30 2016-12-15 日東電工株式会社 発光デバイス用発光化合物
WO2017115834A1 (ja) * 2015-12-28 2017-07-06 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2018047948A1 (ja) * 2016-09-09 2018-03-15 東洋紡株式会社 有機発光素子ならびにそれに用いる発光材料および化合物
JP2018519663A (ja) * 2015-06-16 2018-07-19 昆山国顕光電有限公司Kunshan Go−Visionox Opto−Electronics Co., Ltd. 有機エレクトロルミネッセンス装置及びその製造方法
WO2018155642A1 (ja) * 2017-02-24 2018-08-30 国立大学法人九州大学 化合物、発光材料および発光素子
JP2018165955A (ja) 2017-03-28 2018-10-25 大阪瓦斯株式会社 火災警報器
WO2018237389A1 (en) * 2017-06-23 2018-12-27 Kyulux Inc. MATERIAL COMPOSITION FOR USE IN ORGANIC ELECTROLUMINESCENT DIODE
JP2019017156A (ja) 2017-07-05 2019-01-31 Solネットワーク株式会社 太陽電池パネル配置
US20190241549A1 (en) * 2018-02-02 2019-08-08 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5624270B2 (ja) * 2007-09-18 2014-11-12 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
JP2014135466A (ja) * 2012-04-09 2014-07-24 Kyushu Univ 有機発光素子ならびにそれに用いる発光材料および化合物
TWI637944B (zh) * 2013-11-28 2018-10-11 九州有機光材股份有限公司 發光材料、有機發光元件及化合物
CN106316924B (zh) * 2015-06-16 2020-01-24 清华大学 一种热活化延迟荧光材料
JP6668152B2 (ja) * 2015-12-28 2020-03-18 株式会社Kyulux 化合物、発光材料および有機発光素子
US11069860B2 (en) * 2017-08-21 2021-07-20 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN109422674B (zh) * 2017-08-25 2024-03-22 三星显示有限公司 有机分子,特别是用于光电子器件的有机分子
CN109994628B (zh) * 2017-12-29 2021-05-04 昆山国显光电有限公司 有机电致发光器件及有机电致发光器件的制备方法
JP7325731B2 (ja) * 2018-08-23 2023-08-15 国立大学法人九州大学 有機エレクトロルミネッセンス素子
US11903308B2 (en) * 2018-09-07 2024-02-13 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
TWI741639B (zh) * 2019-06-14 2021-10-01 國立大學法人九州大學 間二氰苯化合物、發光材料及使用其之發光元件

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526025A (ja) * 2013-05-09 2016-09-01 日東電工株式会社 発光装置用の発光性化合物
WO2014183080A1 (en) 2013-05-09 2014-11-13 Nitto Denko Corporation Emissive compounds for light emitting devices
JP2016539182A (ja) * 2013-10-30 2016-12-15 日東電工株式会社 発光デバイス用発光化合物
WO2016138077A1 (en) 2015-02-24 2016-09-01 Nitto Denko Corporation Gas sensor element
WO2016152605A1 (ja) * 2015-03-23 2016-09-29 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子用材料、発光材料および有機エレクトロルミネッセンス素子
JP2018519663A (ja) * 2015-06-16 2018-07-19 昆山国顕光電有限公司Kunshan Go−Visionox Opto−Electronics Co., Ltd. 有機エレクトロルミネッセンス装置及びその製造方法
WO2017115834A1 (ja) * 2015-12-28 2017-07-06 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2018047948A1 (ja) * 2016-09-09 2018-03-15 東洋紡株式会社 有機発光素子ならびにそれに用いる発光材料および化合物
WO2018155642A1 (ja) * 2017-02-24 2018-08-30 国立大学法人九州大学 化合物、発光材料および発光素子
JP2018165955A (ja) 2017-03-28 2018-10-25 大阪瓦斯株式会社 火災警報器
WO2018237389A1 (en) * 2017-06-23 2018-12-27 Kyulux Inc. MATERIAL COMPOSITION FOR USE IN ORGANIC ELECTROLUMINESCENT DIODE
JP2019017156A (ja) 2017-07-05 2019-01-31 Solネットワーク株式会社 太陽電池パネル配置
US20190241549A1 (en) * 2018-02-02 2019-08-08 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3848352A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409240A (zh) * 2020-11-20 2021-02-26 清华大学 一种有机化合物及其应用及采用该化合物的有机电致发光器
CN112409241A (zh) * 2020-11-27 2021-02-26 清华大学 一种有机化合物及其应用及采用该化合物的有机电致发光器
CN114685353A (zh) * 2020-12-28 2022-07-01 北京鼎材科技有限公司 用于有机发光器件的有机化合物、有机电致发光器件

Also Published As

Publication number Publication date
TWI719618B (zh) 2021-02-21
EP3848352A4 (en) 2022-06-01
EP3848352A1 (en) 2021-07-14
US20210332032A1 (en) 2021-10-28
CN112638874A (zh) 2021-04-09
KR102533313B1 (ko) 2023-05-16
TW202033502A (zh) 2020-09-16
JPWO2020050127A1 (ja) 2021-08-26
JP7184263B2 (ja) 2022-12-06
KR20210039418A (ko) 2021-04-09

Similar Documents

Publication Publication Date Title
JP7184263B2 (ja) ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子
JP6994724B2 (ja) ジシアノピラジン化合物、発光材料、およびそれを用いた発光素子
JP6958967B2 (ja) ヘテロ環化合物およびこれを含む有機発光素子
JP6760616B2 (ja) ジシアノn−ヘテロ環化合物、発光材料およびそれを用いた発光素子
JP6948644B2 (ja) ジシアノペンタヘリセン化合物、発光材料およびそれを用いた発光素子
JP7386486B2 (ja) イソフタロニトリル化合物、発光材料およびそれを用いた発光素子
WO2021210501A1 (ja) ホウ素含有化合物、発光材料およびそれを用いた発光素子
KR102671951B1 (ko) 이소프탈로니트릴 화합물, 발광 재료 및 그것을 사용한 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541162

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217005954

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019857043

Country of ref document: EP

Effective date: 20210406