WO2021251461A1 - 化合物、発光材料および発光素子 - Google Patents

化合物、発光材料および発光素子 Download PDF

Info

Publication number
WO2021251461A1
WO2021251461A1 PCT/JP2021/022100 JP2021022100W WO2021251461A1 WO 2021251461 A1 WO2021251461 A1 WO 2021251461A1 JP 2021022100 W JP2021022100 W JP 2021022100W WO 2021251461 A1 WO2021251461 A1 WO 2021251461A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
light emitting
compound
substituted
Prior art date
Application number
PCT/JP2021/022100
Other languages
English (en)
French (fr)
Inventor
香織 藤澤
ヨン ジュ ジョ
善丈 鈴木
勇人 垣添
雄 稲田
ユソク ヤン
Original Assignee
株式会社Kyulux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kyulux filed Critical 株式会社Kyulux
Priority to US18/001,115 priority Critical patent/US20230212177A1/en
Priority to KR1020227043919A priority patent/KR20230022872A/ko
Priority to JP2022530619A priority patent/JPWO2021251461A1/ja
Priority to CN202180041184.4A priority patent/CN115916785A/zh
Publication of WO2021251461A1 publication Critical patent/WO2021251461A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a compound useful as a light emitting material and a light emitting device using the compound.
  • organic electroluminescence elements organic electroluminescence elements
  • various measures have been taken to improve the luminous efficiency by newly developing and combining electron transport materials, hole transport materials, light emitting materials and the like constituting organic electroluminescence devices.
  • research on organic electroluminescence devices using delayed fluorescent materials can be seen.
  • the delayed fluorescent material is a material that emits fluorescence when returning from the excited singlet state to the ground state after an intersystem crossing from the excited triplet state to the excited singlet state occurs in the excited state. Fluorescence by such a pathway is called delayed fluorescence because it is observed later than the fluorescence from the excited singlet state directly generated from the ground state (normal fluorescence).
  • the probability of occurrence of the excited singlet state and the excited triplet state is statistically 25%: 75%, so that the excited singlet state directly generated is used. There is a limit to the improvement of light emission efficiency only by the fluorescence of.
  • the delayed fluorescent material not only the excited singlet state but also the excited triplet state can be used for fluorescence emission by the path via the above-mentioned inverse intersystem crossing, so that the emission is higher than that of the ordinary fluorescent material. Efficiency will be obtained.
  • 2CzPN having the following structure is a material that emits delayed fluorescence, it has a problem that the luminous efficiency is not high and the luminous efficiency is significantly reduced in a high current density region (see Non-Patent Document 1). ).
  • the present inventors have conducted repeated studies for the purpose of providing a more useful compound as a light emitting material for a light emitting device. Then, we proceeded with diligent studies for the purpose of deriving and generalizing the general formulas of compounds that are more useful as luminescent materials.
  • the present inventors have found that among benzonitrile derivatives, a compound having a structure satisfying a specific condition is useful as a light emitting material.
  • the present invention has been proposed based on these findings, and specifically has the following configurations.
  • R 1 to R 5 each independently have a substituted or unsubstituted aromatic hydrocarbon ring group or a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom.
  • R 1 ⁇ R 5 are each independently a donor group (provided that a substituted or unsubstituted aromatic hydrocarbon ring group, and a substituted or unsubstituted containing a nitrogen atom as a ring skeleton constituting atom (Excluding aromatic heterocyclic groups), all three donor groups are not identical, and at least one of the three donor groups is a benzofuran ring fused carbazolyl-9-. It is an ill group.
  • [2] The compound according to [1], wherein R 1 , R 2 and R 4 are independently donor groups.
  • R 1 , R 3 and R 4 are independent donor groups, respectively.
  • the compound of the present invention is useful as a light emitting material. Further, the compound of the present invention includes a compound that emits delayed fluorescence. The compound of the present invention is also useful as a material for an organic light emitting device.
  • the description of the constituent elements described below may be based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples.
  • the numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the isotope species of hydrogen atoms existing in the molecule of the compound used in the present invention are not particularly limited, and for example, all the hydrogen atoms in the molecule may be 1 H, or some or all of them may be 2 H. (Duterium D) may be used.
  • R 1 to R 5 of the general formula (1) are independently substituted or unsubstituted aromatic hydrocarbon ring groups, or substituted or unsubstituted containing a nitrogen atom as a ring skeleton constituent atom. Represents an aromatic heterocyclic group.
  • aromatic hydrocarbon ring group means a group in which the ring (one ring) to be bonded is an aromatic hydrocarbon ring. For example, it contains a phenyl group bonded by one carbon atom constituting the ring skeleton of the benzene ring.
  • the hydrogen atoms constituting the bonded aromatic hydrocarbon ring may be substituted.
  • one or more rings may be condensed on the aromatic hydrocarbon ring to be bonded.
  • another ring may be condensed on the condensed ring. Examples of the ring to be condensed include an aromatic hydrocarbon ring, an aromatic heterocycle, an aliphatic hydrocarbon ring, and an aliphatic heterocycle.
  • Examples of the aromatic hydrocarbon ring include a benzene ring.
  • Examples of the aromatic heterocycle include a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a pyrrole ring, a pyrazole ring, and an imidazole ring.
  • Examples of the aliphatic hydrocarbon ring include a cyclopentane ring, a cyclohexane ring, and a cycloheptane ring.
  • Examples of the aliphatic heterocycle include a piperidine ring, a pyrrolidine ring, and an imidazoline ring.
  • fused ring constituting the aromatic hydrocarbon ring examples include a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyran ring, and a tetracene ring.
  • fused ring containing a hetero atom examples include an indole ring, an isoindole ring, a benzimidazole ring, a benzotriazole ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, and a cinnoline ring.
  • fused rings they are bonded by carbon atoms constituting the benzene ring.
  • the number of carbon atoms of the substituted or unsubstituted aromatic hydrocarbon ring group that can be adopted by R 1 to R 5 is preferably 6 to 40, more preferably 6 to 30, and preferably 6 to 20. More preferred.
  • the number of ring skeleton constituent atoms of the ring to be bonded is preferably 6 to 14, more preferably 6 to 12, and even more preferably 6.
  • aromatic heterocyclic group as used in the present invention means that the ring (one ring) to be bonded is an aromatic heterocycle and is bonded by one carbon atom constituting the ring skeleton of the aromatic heterocycle. It includes, for example, a pyridyl group bonded at one carbon atom constituting the ring skeleton of a pyridine ring.
  • the aromatic heterocycles that can be taken by R 1 to R 5 include a nitrogen atom as a ring skeleton constituent atom of the ring (one ring) to be bonded.
  • the bonded ring may contain a heteroatom other than the nitrogen atom as a ring-skeleton-constituting atom, but it is preferable that the ring contains only a nitrogen atom as the ring-skeleton-constituting heteroatom.
  • the number of heteroatoms contained in the ring to be bonded is preferably 1 to 3, and more preferably 1 or 2.
  • Examples of the ring to be bonded include a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a pyrrole ring, a pyrazole ring, and an imidazole ring.
  • the hydrogen atoms constituting the bonded ring may be substituted. Further, one or more rings may be condensed. Further, another ring may be condensed on the condensed ring.
  • the ring to be condensed include an aromatic hydrocarbon ring, an aromatic heterocycle, an aliphatic hydrocarbon ring, and an aliphatic heterocycle.
  • the aromatic hydrocarbon ring, the aromatic heterocycle, the aliphatic hydrocarbon ring and the aliphatic heterocycle referred to here refer to the corresponding description in the above description of the "aromatic hydrocarbon ring group". Can be done.
  • fused ring constituting the aromatic heterocycle examples include a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, a cinnoline ring, and a pteridine ring.
  • these fused rings they are bonded by carbon atoms constituting the ring skeleton of the heterocycle.
  • the number of carbon atoms of the substituted or unsubstituted aromatic heterocyclic group that can be adopted by R 1 to R 5 is preferably 3 to 30, more preferably 3 to 20, and further preferably 4 to 15. preferable.
  • the number of ring skeleton constituent atoms of the ring to be bonded is preferably 6 to 14, more preferably 6 to 12, and even more preferably 6.
  • the aromatic hydrocarbon ring group and the aromatic heterocyclic group that can be taken from R 1 to R 5 may be substituted.
  • substituents include an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a heteroaryloxy group, a heteroarylthio group and a cyano group. These substituents may be substituted with yet another substituent.
  • Preferred groups of substituents include alkyl groups, aryl groups, alkoxy groups and alkylthio groups.
  • the "alkyl group" referred to here may be linear, branched or cyclic.
  • the number of carbon atoms of the alkyl group can be, for example, 1 or more, 2 or more, and 4 or more. Further, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, and 4 or less. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group and isohexyl group.
  • 2-Ethylhexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, n-decanyl group, isodecanyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group can be mentioned.
  • the alkyl group as a substituent may be further substituted with an aryl group.
  • the "alkenyl group" may be linear, branched or cyclic. Further, two or more of the linear portion, the annular portion and the branched portion may be mixed.
  • the carbon number of the alkenyl group can be, for example, 2 or more and 4 or more. Further, the number of carbon atoms can be 30 or less, 20 or less, 10 or less, 6 or less, and 4 or less.
  • Specific examples of the alkenyl group include ethenyl group, n-propenyl group, isopropenyl group, n-butenyl group, isobutenyl group, n-pentenyl group, isopentenyl group, n-hexenyl group, isohexenyl group and 2-ethylhexenyl group. Can be mentioned.
  • the alkenyl group as a substituent may be further substituted with a substituent.
  • the "aryl group” and the “heteroaryl group” may be a monocyclic ring or a condensed ring in which two or more rings are condensed.
  • the number of fused rings is preferably 2 to 6, and can be selected from, for example, 2 to 4.
  • the ring include a benzene ring, a pyridine ring, a pyrimidine ring, a triazine ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a triphenylene ring, a quinoline ring, a pyrazine ring, a quinoxaline ring, and a naphthylidine ring.
  • arylene group or the heteroarylene group examples include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthrasenyl group, a 2-anthrasenyl group, a 9-anthrasenyl group, a 2-pyridyl group, a 3-pyridyl group, and 4 -Pyridyl groups can be mentioned.
  • the alkyl moiety of the "alkoxy group” and the "alkylthio group the above description and specific examples of the alkyl group can be referred to.
  • aryl portion of the "aryloxy group” and the “arylthio group” the above description and specific examples of the aryl group can be referred to.
  • heteroaryl portion of the “heteroaryloxy group” and the “heteroarylthio group” the above description and specific examples of the heteroaryl group can be referred to.
  • a substituted or unsubstituted aromatic hydrocarbon ring group or a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom can be any two. The two may be the same or different from each other, but are preferably the same. As a combination of the two, for example, a combination of R 3 and R 5 , R 2 and R 5 , R 1 and R 5 , and R 2 and R 4 can be mentioned as preferable examples. As a more preferable example, a combination of R 3 and R 5 , and R 2 and R 5 can be mentioned.
  • two of R 1 to R 5 of the general formula (1) are independently substituted or unsubstituted aromatic hydrocarbon ring groups. More preferably, R 3 and R 5 , R 2 and R 5 , R 1 and R 5 , or R 2 and R 4 , respectively, are independently substituted or unsubstituted aromatic hydrocarbon ring groups. For example, a group in which R 3 and R 5 are independently substituted or unsubstituted aromatic hydrocarbon ring groups, and a group in which R 2 and R 5 are independently substituted or unsubstituted aromatic hydrocarbon ring groups, respectively. Can be mentioned.
  • a substituted or unsubstituted aromatic hydrocarbon ring group which can be taken by two of R 1 to R 5 of the general formula (1) and a substituted or non-substituted aromatic hydrocarbon ring group containing a nitrogen atom as a ring skeleton constituent atom.
  • a specific example of the substituted aromatic heterocyclic group is shown.
  • R 1 to R 5 of the general formula (1) each independently represent a donor group.
  • the donor group referred to here is not a substituted or unsubstituted aromatic hydrocarbon ring group, nor is it a substituted or unsubstituted aromatic heterocyclic group containing a nitrogen atom as a ring skeleton constituent atom.
  • the "donor group” in the present invention is a group having a negative Hammet's ⁇ p value.
  • the “hammet ⁇ p value” is L. P. Proposed by Hammett, it quantifies the effect of substituents on the reaction rate or equilibrium of para-substituted benzene derivatives.
  • the donor group in the present invention is preferably a group containing a substituted amino group.
  • the substituent bonded to the nitrogen atom of the amino group is preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group is more preferable.
  • the substituted amino group is particularly preferably a substituted or unsubstituted diarylamino group or a substituted or unsubstituted diheteroarylamino group.
  • the donor group in the present invention may be a group bonded with a nitrogen atom of a substituted amino group or a group bonded with a group to which a substituted amino group is bonded.
  • the group to which the substituted amino group is bonded is preferably a ⁇ -conjugated group. More preferred are groups bonded at the nitrogen atom of the substituted amino group.
  • the alkyl group, alkenyl group, aryl group and heteroaryl group which are the substituents here the above-mentioned corresponding description regarding the substituent of the aromatic hydrocarbon ring group and the aromatic heterocyclic group can be referred to.
  • Particularly preferred as the donor group in the present invention is a substituted or unsubstituted carbazole-9-yl group.
  • the three donor groups present in the general formula (1) are independently substituted or unsubstituted carbazole-9-yl groups.
  • the substituent of the carbazole-9-yl group includes an alkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, a heteroaryloxy group, a heteroarylthio group and a substituted amino.
  • a group can be mentioned, and preferred substituents include an alkyl group, an aryl group, and a substituted amino group. For a description of the substituted amino group, the description in the previous paragraph can be referred to.
  • the substituted amino group referred to here includes a substituted or unsubstituted carbazolyl group, and particularly includes a substituted or unsubstituted carbazole-9-yl group.
  • the donor group in the present invention preferably has 5 or more atoms other than hydrogen atoms, preferably 10 or more, and more preferably 13 or more. Further, it is preferably 80 or less, more preferably 60 or less, and further preferably 40 or less.
  • At least one of the three donor groups present in the general formula (1) is a carbazolyl-9-yl group fused with a benzofuran ring.
  • the benzofuran ring may be a furan ring that is condensed to a carbazolyl-9-yl group, or a benzene ring that is condensed to a carbazolyl-9-yl group.
  • the former is preferable.
  • only one benzofuran ring may be condensed with the carbazolyl-9-yl group, or two or more benzofuran rings may be condensed with the carbazolyl-9-yl group. When two or more are condensed, their benzofuran rings may have the same structure or different structures.
  • the types of rings to be condensed may be the same or different.
  • the carbazolyl-9-yl group fused with the benzofuran ring may be substituted.
  • the substituents listed as the substituents of the carbazole-9-yl group can be preferably referred to. If the carbazolyl-9-yl group fused with the benzofuran ring has a ring fused to the carbazolyl-9-yl group as a ring other than the benzofuran ring, the fused ring is an aromatic hydrocarbon ring and a fat. It is preferable that only the ring is selected from the group consisting of group hydrocarbon rings, and more preferably only the aromatic hydrocarbon ring.
  • the carbazolyl-9-yl group fused with the benzofuran ring is also preferably one in which a ring other than the benzofuran ring is not condensed with the carbazolyl-9-yl group. Further, it is also preferable that the carbazolyl-9-yl group condensed with the benzofuran ring is unsubstituted.
  • the three donor groups existing in the general formula (1) are not all the same. All three may be different from each other, or two may be the same and one may be different. The latter is preferred. As a preferred embodiment of the present invention, there may be a case where two are carbazolyl-9-yl groups condensed with a benzofuran ring and the remaining one is a other donor group. Another preferred embodiment of the present invention may be the case where one is a carbazolyl-9-yl group condensed with a benzofuran ring and the other two are other donor groups. The other donor group is preferably a carbazolyl-9-yl group to which the benzofuran ring is not condensed.
  • the three donor groups may be any combination.
  • R 1 , R 2 and R 4 can be mentioned, and an embodiment in which R 1 and R 2 are the same but R 4 is different can be exemplified. It is also possible to exemplify an embodiment in which R 1 and R 4 are the same but R 2 is different. Further, it is possible to exemplify an embodiment in which R 2 and R 4 are the same but R 1 is different. As another preferable combination, R 1 , R 3 and R 4 can be mentioned, and an embodiment in which R 1 and R 3 are the same but R 4 is different can be exemplified.
  • R 1 and R 4 are the same but R 3 is different. Further, it is possible to exemplify an embodiment in which R 3 and R 4 are the same but R 1 is different.
  • R 2 and R 3 and R 4 can be mentioned, and an embodiment in which R 2 and R 3 are the same but R 4 is different can be exemplified. It is also possible to exemplify an embodiment in which R 2 and R 4 are the same but R 3 is different. Further, it is possible to exemplify an embodiment in which R 3 and R 4 are the same but R 2 is different.
  • R 1 , R 3 and R 5 can be mentioned, and an embodiment in which R 1 and R 3 are the same but R 5 is different can be exemplified. It is also possible to exemplify an embodiment in which R 1 and R 5 are the same but R 3 is different. Further, it is possible to exemplify an embodiment in which R 3 and R 5 are the same but R 1 is different.
  • D21 to D26 correspond to specific examples of the carbazolyl-9-yl group in which the benzofuran ring is condensed.
  • the compound represented by the general formula (1) is composed only of an atom selected from the group consisting of a carbon atom, a hydrogen atom, a nitrogen atom, an oxygen atom and a sulfur atom. In a preferred embodiment of the present invention, the compound represented by the general formula (1) is composed only of a carbon atom, a hydrogen atom, a nitrogen atom and an oxygen atom.
  • Tables 1 and 2 below specific examples of the compound represented by the general formula (1) are shown.
  • Table 1 and Table 2 the structure of the compound is shown by specifying R 1 to R 5 for each compound.
  • Table 2 a plurality of compounds are collectively displayed for each column. For example, if the compound 4537-4572 of Table 2, R 2 ⁇ R 5 are fixed to each D1, Ar1, D1, Ar1. Then, the compounds in which R 1 is D27 to D62 are designated as compounds 4537 to 4572 in order.
  • compounds 4573 to 5868 in the structure where R 1 is D1 and R 3 and R 5 are Ar 1, the compounds in which R 2 is D27 and R 4 is D27 to D62 are designated as compounds 4573 to 4608 in this order.
  • R 2 is D28 and R 4 is D27 to D62 as compounds 4609 to 4644 in order
  • R 3 is D29 and R 4 is D27 to D62 as compounds 4645 to 4680 in order.
  • the compound numbers are assigned in the same manner as in the above procedure, and finally, the compounds in which R 2 is D62 and R 4 is D27 to D62 are designated as compounds 5833 to 5868 in order.
  • Tables 1 and 2 the structures of compounds 1 to 16452 are individually specified and specifically disclosed herein. Further, compounds 1d to 16452d in which all hydrogen atoms existing in the molecules of compounds 1 to 16452 are replaced with deuterium atoms are disclosed.
  • Ar82 represents the same structure as Ar1d (a structure in which all hydrogen atoms of Ar1 are replaced with deuterium atoms).
  • the molecular weight of the compound represented by the general formula (1) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (1) is intended to be formed into a film by a vapor deposition method. It is preferably 1200 or less, more preferably 1000 or less, and even more preferably 900 or less. The lower limit of the molecular weight is the molecular weight of the smallest compound represented by the general formula (1).
  • the compound represented by the general formula (1) may be formed into a film by a coating method regardless of the molecular weight. By using the coating method, it is possible to form a film even if the compound has a relatively large molecular weight.
  • the compound represented by the general formula (1) has an advantage that it is easily dissolved in an organic solvent among the cyanobenzene compounds. Therefore, the compound represented by the general formula (1) is easy to apply the coating method and is easy to purify to increase the purity.
  • a compound containing a plurality of structures represented by the general formula (1) in the molecule as a light emitting material.
  • a polymer obtained by pre-existing a polymerizable group in the structure represented by the general formula (1) and polymerizing the polymerizable group as a light emitting material.
  • a monomer containing a polymerizable functional group is prepared in any of R 1 to R 5 of the general formula (1), and this is polymerized alone or copolymerized with another monomer.
  • a polymer having a repeating unit and use the polymer as a light emitting material.
  • dimers and trimers by coupling compounds having a structure represented by the general formula (1) to each other and use them as a light emitting material.
  • a polymer having a repeating unit containing a structure represented by the general formula (1) As an example of a polymer having a repeating unit containing a structure represented by the general formula (1), a polymer containing a structure represented by the following general formula (3) or (4) can be mentioned.
  • Q represents a group containing the structure represented by the general formula (1)
  • L 1 and L 2 represent a linking group.
  • the carbon number of the linking group is preferably 0 to 20, more preferably 1 to 15, and even more preferably 2 to 10.
  • X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
  • L 11 represents a linking group, preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted alkylene group. It is more preferably a phenylene group.
  • R 101 , R 102 , R 103 and R 104 each independently represent a substituent.
  • the linking group represented by L 1 and L 2 can be bonded to any of R 1 to R 5 of the general formula (1) constituting Q. Two or more linking groups may be linked to one Q to form a crosslinked structure or a network structure.
  • a hydroxy group is introduced into any of R 1 to R 5 of the general formula (1), and the following compound is used as a linker. It can be synthesized by reacting to introduce a polymerizable group and polymerizing the polymerizable group.
  • the polymer containing the structure represented by the general formula (1) in the molecule may be a polymer consisting only of repeating units having the structure represented by the general formula (1), or may have other structures. It may be a polymer containing a repeating unit having. Further, the repeating unit having the structure represented by the general formula (1) contained in the polymer may be a single type or two or more types. Examples of the repeating unit having no structure represented by the general formula (1) include those derived from a monomer used for ordinary copolymerization. For example, a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene and styrene can be mentioned.
  • the compound represented by the general formula (1) is a novel compound.
  • the compound represented by the general formula (1) can be synthesized by combining known reactions. For example, by using trifluorocyanobenzene as a starting material and reacting with a halide of an aromatic hydrocarbon in the presence of a catalyst, a derivative having two aromatic hydrocarbon ring groups introduced instead of a hydrogen atom can be obtained. can.
  • the target compound represented by the general formula (1) can be synthesized.
  • the synthesis example described later can be referred to.
  • other compounds represented by the general formula (1) can also be synthesized by using the same procedure or a known synthetic method.
  • the compound represented by the general formula (1) of the present invention is useful as a light emitting material for an organic light emitting device. Therefore, the compound represented by the general formula (1) of the present invention can be effectively used as a light emitting material in the light emitting layer of the organic light emitting device. Further, the compound represented by the general formula (1) of the present invention may be used as a host or an assist dopant.
  • the compound represented by the general formula (1) contains a delayed fluorescent substance that emits delayed fluorescence. That is, the present invention has an invention of a delayed fluorescent substance having a structure represented by the general formula (1), an invention using a compound represented by the general formula (1) as a delayed fluorescent substance, and the general formula (1).
  • An invention of a method of emitting delayed fluorescence using the represented compound is also provided.
  • An organic light emitting element using such a compound as a light emitting material has a feature that it emits delayed fluorescence and has high luminous efficiency. The principle will be explained below by taking an organic electroluminescence device as an example.
  • an organic electroluminescence element carriers are injected into a light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light.
  • 25% of the generated excitons are excited to the excited singlet state, and the remaining 75% are excited to the excited triplet state. Therefore, it is more efficient to use energy by using phosphorescence, which is light emitted from the excited triplet state.
  • phosphorescence which is light emitted from the excited triplet state.
  • the excited triplet state has a long lifetime, energy deactivation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and the quantum yield of phosphorescence is generally not high in many cases.
  • the delayed fluorescent material radiates fluorescence by crossing the excited singlet state into the excited singlet state due to the triplet-triplet annihilation or absorption of heat energy after the energy transitions to the excited triplet state due to intersystem crossing or the like. do.
  • a heat-activated delayed fluorescent material that absorbs heat energy is considered to be particularly useful.
  • the excitons in the excited singlet state radiate fluorescence as usual.
  • excitons in the excited triplet state absorb the heat generated by the device, cross the terms to the excited singlet, and radiate fluorescence.
  • the light is emitted from the excited singlet, the light is emitted at the same wavelength as the fluorescence, but the life of the light (emission life) generated by the inverse intersystem crossing from the excited triplet state to the excited singlet state is normal. Since it is longer than the fluorescence of, it is observed as a fluorescence delayed from these. This can be defined as delayed fluorescence.
  • the ratio of compounds in the excited singlet state which normally produced only 25% by absorbing heat energy after carrier injection, is 25% or more. It will be possible to raise it to.
  • the heat of the device sufficiently causes intersystem crossing from the excited triplet state to the excited singlet state and emits delayed fluorescence. Efficiency can be dramatically improved.
  • an excellent organic light emitting element such as an organic photoluminescence element (organic PL element) or an organic electroluminescence element (organic EL element) is used.
  • the organic photoluminescence device has a structure in which at least a light emitting layer is formed on a substrate.
  • the organic electroluminescence device has at least an anode, a cathode, and a structure in which an organic layer is formed between the anode and the cathode.
  • the organic layer includes at least a light emitting layer, and may be composed of only a light emitting layer, or may have one or more organic layers in addition to the light emitting layer.
  • FIG. 1 shows a specific structural example of the organic electroluminescence device.
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is a light emitting layer
  • 6 is an electron transport layer
  • 7 is a cathode.
  • each member and each layer of the organic electroluminescence device will be described.
  • the description of the substrate and the light emitting layer also applies to the substrate and the light emitting layer of the organic photoluminescence element.
  • the organic electroluminescence device of the present invention is preferably supported by a substrate.
  • the substrate is not particularly limited as long as it is conventionally used for organic electroluminescence devices, and for example, a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
  • anode As the anode in the organic electroluminescence element, a metal having a large work function (4 eV or more), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is preferably used.
  • an electrode material include a metal such as Au, and a conductive transparent material such as CuI, indium tin oxide (ITO), SnO 2, and ZnO.
  • a material such as IDIXO (In 2 O 3- ZnO) that is amorphous and can produce a transparent conductive film may be used.
  • a thin film may be formed by forming a thin film of these electrode materials by a method such as thin film deposition or sputtering, and a pattern of a desired shape may be formed by a photolithography method, or when pattern accuracy is not required so much (about 100 ⁇ m or more). ), A pattern may be formed through a mask having a desired shape during vapor deposition or sputtering of the electrode material.
  • a coatable material such as an organic conductive compound
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the sheet resistance as the anode is preferably several hundred ⁇ / sq. (Ohms per square) or less.
  • the film thickness depends on the material, but is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a metal having a small work function (4 eV or less) (referred to as an electron-injectable metal), an alloy, an electrically conductive compound, or a mixture thereof is used as an electrode material.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O). 3 ) Examples include mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron-injectable metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, from the viewpoint of electron injectability and durability against oxidation and the like.
  • a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like are suitable.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as thin film deposition or sputtering.
  • the sheet resistance of the cathode is preferably several hundred ⁇ / sq.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the anode or the cathode of the organic electroluminescence element is transparent or translucent, because the emission brightness is improved.
  • a transparent or translucent cathode can be manufactured, and by applying this, an element having both the anode and the cathode transparent can be obtained. Can be made.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer. , Preferably include light emitting materials and host materials. As the light emitting material, one or more selected from the compound group of the present invention represented by the general formula (1) can be used. In order for the organic electroluminescence device and the organic photoluminescence device of the present invention to exhibit high light emission efficiency, it is important to confine the singlet excitons and triplet excitons generated in the light emitting material in the light emitting material.
  • a host material in addition to the light emitting material in the light emitting layer.
  • the host material an organic compound in which at least one of the excitation singlet energy and the excitation triplet energy has a higher value than that of the light emitting material of the present invention can be used.
  • the singlet excitons and triplet excitons generated in the light emitting material of the present invention can be confined in the molecules of the light emitting material of the present invention, and the luminous efficiency thereof can be sufficiently brought out.
  • any host material that can achieve high luminous efficiency is particularly restricted. Can be used in the present invention without.
  • the light emission is generated from the light emitting material of the present invention contained in the light emitting layer.
  • This emission includes both fluorescent and delayed fluorescence.
  • the light emitted from the host material may be partially or partially emitted.
  • the content of the compound represented by the general formula (1) in the light emitting layer is preferably less than 50% by weight.
  • the upper limit of the content of the compound represented by the general formula (1) is preferably less than 30% by weight, and the upper limit of the content is, for example, less than 20% by weight, less than 10% by weight, and 5% by weight. It can be less than%, less than 3% by weight, less than 1% by weight, and less than 0.5% by weight.
  • the lower limit is preferably 0.001% by weight or more, and may be, for example, more than 0.01% by weight, more than 0.1% by weight, more than 0.5% by weight, more than 1% by weight.
  • the host material in the light emitting layer is preferably an organic compound having a hole transporting ability and an electron transporting ability, preventing a long wavelength of light emission, and having a high glass transition temperature.
  • the compound represented by the general formula (1) can also be used as a host material for the light emitting layer.
  • the injection layer is a layer provided between the electrode and the organic layer in order to reduce the driving voltage and improve the emission brightness.
  • the injection layer includes a hole injection layer and an electron injection layer, and is located between the anode and the light emitting layer or the hole transport layer. And may be present between the cathode and the light emitting layer or the electron transport layer.
  • the injection layer can be provided as needed.
  • the blocking layer is a layer capable of blocking the diffusion of charges (electrons or holes) and / or excitons present in the light emitting layer to the outside of the light emitting layer.
  • the electron blocking layer can be placed between the light emitting layer and the hole transporting layer to prevent electrons from passing through the light emitting layer toward the hole transporting layer.
  • the hole blocking layer can be placed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer towards the electron transporting layer.
  • the blocking layer can also be used to prevent excitons from diffusing outside the light emitting layer. That is, the electron blocking layer and the hole blocking layer can also function as exciton blocking layers, respectively.
  • the electron blocking layer or exciton blocking layer is used to mean that one layer includes a layer having the functions of an electron blocking layer and an exciton blocking layer.
  • the hole blocking layer has a function of an electron transporting layer in a broad sense.
  • the hole blocking layer has a role of blocking the holes from reaching the electron transporting layer while transporting electrons, which can improve the recombination probability of electrons and holes in the light emitting layer.
  • the material of the hole blocking layer the material of the electron transport layer described later can be used as needed.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has a role of blocking electrons from reaching the hole transporting layer while transporting holes, which can improve the probability of recombination of electrons and holes in the light emitting layer. ..
  • the exciton blocking layer is a layer for blocking excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer, and excitons are inserted by inserting this layer. It is possible to efficiently confine it in the light emitting layer, and it is possible to improve the light emitting efficiency of the element.
  • the exciton blocking layer can be inserted into either the anode side or the cathode side adjacent to the light emitting layer, and both can be inserted at the same time.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode are inserted.
  • the layer can be inserted adjacent to the light emitting layer between and.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the cathode and the excitation adjacent to the cathode side of the light emitting layer can be provided.
  • An electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided between the child blocking layer and the electron blocking layer.
  • the blocking layer it is preferable that at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is higher than the excited singlet energy and the excited triplet energy of the light emitting material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer may be provided with a single layer or a plurality of layers.
  • the hole transporting material has either injection or transport of holes or an electron barrier property, and may be either an organic substance or an inorganic substance.
  • Known hole transporting materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, and the like.
  • Examples thereof include amino-substituted carcon derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilben derivatives, silazane derivatives, aniline-based copolymers, and conductive polymer oligomers, especially thiophene oligomers, which include porphyrin compounds and aromatics. It is preferable to use a group tertiary amine compound and a styrylamine compound, and it is more preferable to use an aromatic tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer may be provided with a single layer or a plurality of layers.
  • the electron transporting material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • Examples of the electron transport layer that can be used include a nitro-substituted fluorene derivative, a diphenylquinone derivative, a thiopyrandioxide derivative, a carbodiimide, a freolenidene methane derivative, anthracinodimethane and anthrone derivatives, and an oxadiazole derivative.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is replaced with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the compound represented by the general formula (1) may be used not only for one organic layer (for example, an electron transport layer) but also for a plurality of organic layers. ..
  • the compounds represented by the general formula (1) used for each organic layer may be the same or different from each other.
  • the above injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transport layer and the like are also represented by the general formula (1).
  • Compounds may be used.
  • the film forming method of these layers is not particularly limited, and may be formed by either a dry process or a wet process.
  • preferable compounds are given as materials that can be further added. For example, it may be added as a stabilizing material.
  • the organic electroluminescence device manufactured by the above method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by the excitation singlet energy, the light having a wavelength corresponding to the energy level is confirmed as fluorescent emission and delayed fluorescent emission. Further, in the case of light emission by excited triplet energy, the wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished by fluorescence and delayed fluorescence.
  • the excitation triplet energy is unstable, the rate constant of heat deactivation is large, and the rate constant of light emission is small, so that the phosphorescence is immediately deactivated. Therefore, it can hardly be observed at room temperature.
  • the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
  • the organic electroluminescence device of the present invention can be applied to any of a single device, a device having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. According to the present invention, by incorporating the compound represented by the general formula (1) in the light emitting layer, an organic light emitting device having greatly improved luminous efficiency can be obtained.
  • the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various applications. For example, it is possible to manufacture an organic electroluminescence display device using the organic electroluminescence device of the present invention.
  • organic electroluminescence element of the present invention can be applied to organic electroluminescence lighting and a backlight, which are in great demand.
  • the emission characteristics are evaluated by a source meter (Caseley: 2400 series), a semiconductor parameter analyzer (Agilent Technology: E5273A), an optical power meter measuring device (Newport: 1930C), and an optical spectroscope. (Ocean Optics Co., Ltd .: USB2000), spectroradiometer (Topcon Co., Ltd .: SR-3) and streak camera (Hamamatsu Photonics Co., Ltd. C4334 type) were used.
  • Dimethylformamide (26 mL) was added to 1.04 g (6.24 mmol) of carbazole and 1.08 g (7.80 mmol) of potassium carbonate under a nitrogen stream, and the mixture was stirred at room temperature for 2 hours. 1.42 g (2.60 mmol) of Intermediate 2 was added to the reaction mixture, and the mixture was stirred at 100 ° C. for 16 hours. The reaction solution was returned to room temperature, water was added, and the precipitate was filtered off. The filtrate was washed with methanol and vacuum dried.
  • Examples 1 and 2 Fabrication and evaluation of thin film Compound 26 and PYD2Cz are different vapor deposition sources on a quartz substrate by a vacuum deposition method under the condition that the degree of vacuum is less than 1 ⁇ 10 -3 Pa.
  • a thin film having a concentration of compound 26 of 20% by weight was formed to a thickness of 100 nm to obtain a thin film of Example 1.
  • a thin film was formed according to the same procedure using compound 1626, comparative compound 1, and comparative compound 2 instead of compound 26, and these thin films were sequentially processed into thin films of Example 2, Comparative Example 1, and Comparative Example 2. And said.
  • the emission spectrum was observed using 300 nm excitation light, and the peak wavelength ( ⁇ max ) was read.
  • the lifetime of delayed fluorescence ( ⁇ d ) was obtained from the transient attenuation curve of emission observed using the same excitation light.
  • PLQY photoluminescence quantum efficiency
  • E ST is the lowest excited singlet energy (E S1) and the lowest excited triplet energy of the measurement target compound (E T1) found through the following procedure is a value obtained by calculating the E S1 -E T1 ..
  • Minimum excitation singlet energy (ES1 ) The fluorescence spectrum of the thin film of the compound to be measured was measured at room temperature (300K) (vertical axis: emission intensity, horizontal axis: wavelength). A tangent line was drawn for the rising edge of the emission spectrum on the short wave side, and the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained. The value obtained by converting this wavelength value into an energy value by the following conversion formula was defined as ES1 .
  • E S1 [eV] 1239.85 / ⁇ edge (2) Minimum excited triplet energy ( ET1 )
  • the same thin film was cooled to 77 [K] with liquid nitrogen, the sample for phosphorescence measurement was irradiated with excitation light (300 nm), and phosphorescence was measured using a detector.
  • the emission spectrum after 100 milliseconds after the irradiation with the excitation light was defined as the phosphorescence spectrum.
  • a tangent line was drawn for the rising edge of the phosphorescence spectrum on the short wavelength side, and the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained.
  • the value obtained by converting this wavelength value into an energy value using the above conversion formula was defined as ET1 .
  • the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side was drawn as follows. When moving on the spectrum curve from the short wavelength side of the phosphorescence spectrum to the maximum value on the shortest wavelength side of the maximum values of the spectrum, tangents at each point on the curve were considered toward the long wavelength side. This tangent increases in slope as the curve rises (ie, as the vertical axis increases). The tangent line drawn at the point where the value of the slope reaches the maximum value was taken as the tangent line with respect to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and the value of the gradient closest to the maximum value on the shortest wavelength side is the maximum.
  • the tangent line drawn at the point where the value was taken was taken as the tangent line to the rising edge of the phosphorescent spectrum on the short wavelength side.
  • Examples 3 to 4 Preparation and evaluation of dope thin films having different host materials
  • the host materials of Examples 1 and 2 are changed from PYD2Cz to PPF, and the thin films of Examples 3 and 4 are formed according to the same procedure. did.
  • the lifetimes ( ⁇ d ) of the delayed fluorescence of Examples 3 and 4 were 12.5 ⁇ s and 18.8 ⁇ s, respectively.
  • the photoluminescence quantum efficiencies (PLQY) of Examples 3 and 4 were 70% and 81%, respectively.
  • Example 5 Fabrication and evaluation of thin films of similar light-emitting materials with different constituent elements
  • a compound 3387 is deposited on a quartz substrate by a vacuum vapor deposition method under conditions of a vacuum degree of less than 1 ⁇ 10 -3 Pa.
  • the neat thin film of Example 5 having a thickness of 100 nm was formed.
  • the neat thin film of Comparative Example 3 was formed by using Comparative Compound 3 instead of Compound 3387 according to the same procedure.
  • the peak wavelength ( ⁇ max ) was 493 nm in Example 5 and 499 nm in Comparative Example 3.
  • Example 5 using a compound having a carbazolyl-9-yl group condensed with a benzofuran ring is more than Comparative Example 3 using a compound having a carbazolyl-9-yl group condensed with a benzothiophene ring. It shows that the emission peak wavelength is on the short wavelength side and the emission efficiency is high. Further, a thin film having a concentration of 20% by weight of the compound 3387 is deposited on a quartz substrate by a vacuum vapor deposition method under the condition of a vacuum degree of less than 1 ⁇ 10 -3 Pa from different vapor deposition sources.
  • Comparative Example 3 It was formed to have a thickness of 100 nm and used as a dope thin film of Example 5. Further, the comparative compound 3 was used instead of the compound 3387 to form the dope thin film of Comparative Example 3 according to the same procedure. A transient attenuation curve of emission was obtained using 300 nm excitation light to determine the lifetime of delayed fluorescence ( ⁇ d ). As a result, Comparative Example 3 had 11.4 ⁇ s, while Example 5 had 7.4 ⁇ s, which was about 30% shorter.
  • Example 6 Fabrication and evaluation of organic electroluminescence device
  • ITO indium tin oxide
  • the layers were laminated at a degree of 1 ⁇ 10 -6 Pa.
  • a first hole injection layer made of a first hole injection material is formed on ITO
  • a second hole injection layer made of a second hole injection material is formed on the first hole injection layer
  • hole transport is formed on the second hole injection layer.
  • a hole transport layer made of a material was formed, and an electron blocking layer made of an electron blocking material was further formed on the hole transport layer.
  • compound 26 and the host material were co-deposited from different vapor deposition sources to form a light emitting layer having a concentration of compound 26 of 30% by weight.
  • a hole blocking layer made of a hole blocking material was formed, an electron transport layer was formed on the hole blocking layer, and an electrode was further formed on the electron transport layer.
  • the organic electroluminescence device of Example 6 was produced.
  • compound 1626 instead of compound 26 the organic electroluminescence device of Example 7 was produced by the same procedure.
  • Each of the organic electroluminescence devices of Examples 6 and 7 exhibits high luminous efficiency, a low drive voltage, and a high device life (device durability). Further, by using other compounds of the present invention, it is possible to provide an organic electroluminescence element which exhibits high luminous efficiency, has a low driving voltage, and has a long element life (element durability).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

下記一般式で表される化合物は発光材料として有用である。R1~R5のうちの2個は芳香族炭化水素環基または窒素原子を含む芳香族複素環基、R1~R5のうちの3個はドナー性基で、そのうちの少なくとも1つはベンゾフラン環が縮合したカルバゾリル-9-イル基である。

Description

化合物、発光材料および発光素子
 本発明は、発光材料として有用な化合物とそれを用いた発光素子に関する。
 有機エレクトロルミネッセンス素子(有機EL素子)などの発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、ホール輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、遅延蛍光材料を利用した有機エレクトロルミネッセンス素子に関する研究も見受けられる。
 遅延蛍光材料は、励起状態において、励起三重項状態から励起一重項状態への逆項間交差を生じた後、その励起一重項状態から基底状態へ戻る際に蛍光を放射する材料である。こうした経路による蛍光は、基底状態から直接生じた励起一重項状態からの蛍光(通常の蛍光)よりも遅れて観測されるため、遅延蛍光と称されている。ここで、例えば、発光性化合物をキャリアの注入により励起した場合、励起一重項状態と励起三重項状態の発生確率は統計的に25%:75%であるため、直接生じた励起一重項状態からの蛍光のみでは、発光効率の向上に限界がある。一方、遅延蛍光材料では、励起一重項状態のみならず、励起三重項状態も上記の逆項間交差を介した経路により蛍光発光に利用することができるため、通常の蛍光材料に比べて高い発光効率が得られることになる。
 このような原理が明らかにされて以降、様々な研究により種々の遅延蛍光材料が発見されるに至っている。しかしながら、遅延蛍光を放射する材料であれば、直ちに発光材料として有用である訳ではない。遅延蛍光材料の中には、逆項間交差が比較的生じにくいものもあり、遅延蛍光の寿命が長いものもある。また、高電流密度領域で励起子が蓄積して発光効率が低下してしまったり、長時間駆動を続けると急速に劣化してしまったりするものもある。したがって、実用性の点で改善の余地がある遅延蛍光材料が極めて多いのが実情である。このため、遅延蛍光材料として知られているベンゾニトリル系化合物においても、課題があることが指摘されている。例えば、下記の構造を有する2CzPNは遅延蛍光を放射する材料であるものの、発光効率が高くないうえ、高電流密度領域での発光効率の低下が著しいという課題を抱えている(非特許文献1参照)。
Figure JPOXMLDOC01-appb-C000003
Organic Electronics 14 (2013)2721-2726
 このような課題を抱えていることが指摘されているにもかかわらず、遅延蛍光材料の化学構造と特性との関係については十分な解明がなされているとは言いがたい。このため、発光材料として有用な化合物の化学構造を一般化するのは現状では困難であり、不明な点が多い。
 このような状況下において本発明者らは、発光素子用の発光材料としてより有用な化合物を提供することを目的として研究を重ねた。そして、発光材料としてより有用な化合物の一般式を導きだして一般化することを目的として鋭意検討を進めた。
 上記の目的を達成するために鋭意検討を進めた結果、本発明者らは、ベンゾニトリル誘導体のうち、特定の条件を満たす構造を持つ化合物が発光材料として有用であることを見いだした。本発明は、こうした知見に基づいて提案されたものであり、具体的に、以下の構成を有する。
[1] 下記一般式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000004
[一般式(1)において、
 R~Rのうちの2個は、各々独立に、置換もしくは無置換の芳香族炭化水素環基、または、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基を表し、
 R~Rのうちの3個は、各々独立に、ドナー性基(ただし、置換もしくは無置換の芳香族炭化水素環基、および、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基は除く)を表し、3個のドナー性基がすべて同一であることはなく、また、3個のドナー性基のうちの少なくとも1つはベンゾフラン環が縮合したカルバゾリル-9-イル基である。]
[2] R、RおよびRが、各々独立にドナー性基である、[1]に記載の化合物。
[3] R、RおよびRが、各々独立にドナー性基である、[1]に記載の化合物。
[4] 前記3個のドナー性基のうち、2個が互いに同一である、[1]~[3]のいずれか1項に記載の化合物。
[5] 前記ベンゾフラン環が縮合したカルバゾリル-9-イル基が、カルバゾリル-9-イル基を構成する一方のベンゼン環にベンゾフラン環が直接縮合した構造を有する、[1]~[4]のいずれか1項に記載の化合物。
[6] 前記ベンゾフラン環が縮合したカルバゾリル-9-イル基が下記のいずれかの構造を有する、[5]に記載の化合物。
Figure JPOXMLDOC01-appb-C000005
[上記の各構造において、水素原子は置換されていてもよい。]
[7] R~Rのうちの2個が、前記ベンゾフラン環が縮合したカルバゾリル-9-イル基である、[5]または[6]に記載の化合物。
[8] 前記2個のベンゾフラン環が縮合したカルバゾリル-9-イル基が、互いに同一である、[7]に記載の化合物。
[9] R~Rのうちの1個だけが、前記ベンゾフラン環が縮合したカルバゾリル-9-イル基である、[5]または[6]に記載の化合物。
[10] R~Rのうちの2個が、各々独立に、置換もしくは無置換の芳香族炭化水素環基である、[1]~[9]のいずれか1項に記載の化合物。
[11] R~Rのうちの2個が、各々独立に、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基である、[1]~[10]のいずれか1項に記載の化合物。
[12] R~Rのうちの前記2個が、互いに同一である、[10]または[11]に記載の化合物。
[13] [1]~[12]のいずれか1項に記載の化合物からなる発光材料。
[14] [1]~[12]のいずれか1項に記載の化合物を含むことを特徴とする発光素子。
[15] 前記発光素子が発光層を有しており、前記発光層が前記化合物とホスト材料を含む、[14]に記載の発光素子。
[16] 前記発光素子が発光層を有しており、前記発光層が前記化合物と発光材料を含み、前記発光材料から主として発光する、[14]に記載の発光素子。
 本発明の化合物は、発光材料として有用である。また、本発明の化合物の中には遅延蛍光を放射する化合物が含まれる。また、本発明の化合物は有機発光素子の材料としても有用である。
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべてHであってもよいし、一部または全部がH(デューテリウムD)であってもよい。
[一般式(1)で表される化合物]
Figure JPOXMLDOC01-appb-C000006
 一般式(1)のR~Rのうちの2個は、各々独立に、置換もしくは無置換の芳香族炭化水素環基、または、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基を表す。
 本発明でいう「芳香族炭化水素環基」とは、結合する環(1つの環)が芳香族炭化水素環である基を意味する。例えば、ベンゼン環の環骨格を構成する1つの炭素原子で結合するフェニル基が含まれる。その結合する芳香族炭化水素環を構成する水素原子は置換されていてもよい。また、結合する芳香族炭化水素環には、1つ以上の環が縮合していてもよい。また、縮合した環にはさらに別の環が縮合していてもよい。縮合する環としては、芳香族炭化水素環、芳香族複素環、脂肪族炭化水素環、脂肪族複素環を挙げることができる。芳香族炭化水素環としてはベンゼン環を挙げることができる。芳香族複素環としては、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ピロール環、ピラゾール環、イミダゾール環を挙げることができる。脂肪族炭化水素環としては、シクロペンタン環、シクロヘキサン環、シクロヘプタン環を挙げることができる。脂肪族複素環としては、ピペリジン環、ピロリジン環、イミダゾリン環を挙げることができる。芳香族炭化水素環を構成する縮合環の具体例として、ナフタレン環、アントラセン環、フェナントレン環、ピラン環、テトラセン環を挙げることができる。また、ヘテロ原子を含む縮合環の具体例として、インドール環、イソインドール環、ベンゾイミダゾール環、ベンゾトリアゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、シンノリン環を挙げることができる。ただし、これらの縮合環の具体例では、ベンゼン環を構成する炭素原子で結合する。
 R~Rが採りうる置換もしくは無置換の芳香族炭化水素環基の炭素原子数は6~40であることが好ましく、6~30であることがより好ましく、6~20であることがさらに好ましい。結合する環の環骨格構成原子数は6~14であることが好ましく、6~12であることがより好ましく、6であることがさらに好ましい。
 本発明でいう「芳香族複素環基」とは、結合する環(1つの環)が芳香族複素環であって、なおかつ、その芳香族複素環の環骨格を構成する1つの炭素原子で結合する基を意味する、例えば、ピリジン環の環骨格を構成する1つの炭素原子で結合するピリジル基が含まれる。R~Rが採りうる芳香族複素環は、結合する環(1つの環)の環骨格構成原子として窒素原子を含む。結合する環には、窒素原子以外のヘテロ原子が環骨格構成原子として含まれていてもよいが、好ましいのは、環骨格構成ヘテロ原子として窒素原子だけを含む場合である。結合する環に含まれるヘテロ原子の数は1~3であることが好ましく、1または2であることがより好ましい。結合する環としては、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ピロール環、ピラゾール環、イミダゾール環を挙げることができる。その結合する環を構成する水素原子は置換されていてもよい。また、1つ以上の環が縮合していてもよい。また、縮合した環にはさらに別の環が縮合していてもよい。縮合する環としては、芳香族炭化水素環、芳香族複素環、脂肪族炭化水素環、脂肪族複素環を挙げることができる。ここでいう芳香族炭化水素環、芳香族複素環、脂肪族炭化水素環および脂肪族複素環の具体例については、上記の「芳香族炭化水素環基」の説明における対応する記載を参照することができる。芳香族複素環を構成する縮合環の具体例として、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、シンノリン環、プテリジン環を挙げることができる。ただし、これらの縮合環の具体例では、複素環の環骨格を構成する炭素原子で結合する。
 R~Rが採りうる置換もしくは無置換の芳香族複素環基の炭素原子数は3~30であることが好ましく、3~20であることがより好ましく、4~15であることがさらに好ましい。結合する環の環骨格構成原子数は6~14であることが好ましく、6~12であることがより好ましく、6であることがさらに好ましい。
 R~Rが採りうる芳香族炭化水素環基と芳香族複素環基は置換されていてもよい。置換基として、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、ヘテロアリールオキシ基、ヘテロアリールチオ基、シアノ基を挙げることができる。これらの置換基は、さらに別の置換基で置換されていてもよい。好ましい置換基の群として、アルキル基、アリール基、アルコキシ基、アルキルチオ基を挙げることができる。
 ここでいう「アルキル基」は、直鎖状、分枝状、環状のいずれであってもよい。また、直鎖部分と環状部分と分枝部分のうちの2種以上が混在していてもよい。アルキル基の炭素数は、例えば1以上、2以上、4以上とすることができる。また、炭素数は30以下、20以下、10以下、6以下、4以下とすることができる。アルキル基の具体例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソヘキシル基、2-エチルヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、n-ノニル基、イソノニル基、n-デカニル基、イソデカニル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基を挙げることができる。置換基たるアルキル基は、さらにアリール基で置換されていてもよい。
 「アルケニル基」は、直鎖状、分枝状、環状のいずれであってもよい。また、直鎖部分と環状部分と分枝部分のうちの2種以上が混在していてもよい。アルケニル基の炭素数は、例えば2以上、4以上とすることができる。また、炭素数は30以下、20以下、10以下、6以下、4以下とすることができる。アルケニル基の具体例として、エテニル基、n-プロペニル基、イソプロペニル基、n-ブテニル基、イソブテニル基、n-ペンテニル基、イソペンテニル基、n-ヘキセニル基、イソヘキセニル基、2-エチルヘキセニル基を挙げることができる。置換基たるアルケニル基は、さらに置換基で置換されていてもよい。
 「アリール基」および「ヘテロアリール基」は、単環であってもよいし、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合している環の数は2~6であることが好ましく、例えば2~4の中から選択することができる。環の具体例として、ベンゼン環、ピリジン環、ピリミジン環、トリアジン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、キノリン環、ピラジン環、キノキサリン環、ナフチリジン環を挙げることができる。アリーレン基またはヘテロアリーレン基の具体例として、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基を挙げることができる。
 「アルコキシ基」および「アルキルチオ基」のアルキル部分については、上記のアルキル基の説明と具体例を参照することができる。「アリールオキシ基」および「アリールチオ基」のアリール部分については、上記のアリール基の説明と具体例を参照することができる。「ヘテロアリールオキシ基」および「ヘテロアリールチオ基」のヘテロアリール部分については、上記のヘテロアリール基の説明と具体例を参照することができる。
 一般式(1)のR~Rのうち、置換もしくは無置換の芳香族炭化水素環基、または、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基であるものは、任意の2つであってよい。2つは、互いに同一であっても異なっていてもよいが、同一であることが好ましい。2つの組み合わせとして、例えば、RとR、RとR、RとR、RとRの組み合わせを好ましい例として挙げることができる。より好ましい例として、RとR、RとRの組み合わせを挙げることができる。
 本発明の好ましい一態様では、一般式(1)のR~Rのうちの2つは、各々独立に、置換もしくは無置換の芳香族炭化水素環基である。より好ましくは、RとR、RとR、RとR、またはRとRが、各々独立に、置換もしくは無置換の芳香族炭化水素環基である。例えば、RとRが各々独立に置換もしくは無置換の芳香族炭化水素環基である群や、RとRが各々独立に置換もしくは無置換の芳香族炭化水素環基である群を挙げることができる。
 以下において、一般式(1)のR~Rのうちの2個が採ることができる、置換もしくは無置換の芳香族炭化水素環基と、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基の具体例を示す。
Figure JPOXMLDOC01-appb-C000007
 一般式(1)のR~Rのうちの3個は、各々独立に、ドナー性基を表す。ただし、ここでいうドナー性基は、置換もしくは無置換の芳香族炭化水素環基ではなく、また、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基でもない。
 本発明における「ドナー性基」は、ハメットのσp値が負の基である。ここで、「ハメットのσp値」は、L.P.ハメットにより提唱されたものであり、パラ置換ベンゼン誘導体の反応速度または平衡に及ぼす置換基の影響を定量化したものである。具体的には、パラ置換ベンゼン誘導体における置換基と反応速度定数または平衡定数の間に成立する下記式:
      log(k/k0) = ρσp
または
      log(K/K0) = ρσp
における置換基に特有な定数(σp)である。上式において、kは置換基を持たないベンゼン誘導体の速度定数、k0は置換基で置換されたベンゼン誘導体の速度定数、Kは置換基を持たないベンゼン誘導体の平衡定数、K0は置換基で置換されたベンゼン誘導体の平衡定数、ρは反応の種類と条件によって決まる反応定数を表す。本発明における「ハメットのσp値」に関する説明と各置換基の数値については、Hansch,C.et.al.,Chem.Rev.,91,165-195(1991)のσp値に関する記載を参照することができる。ハメットのσp値が負の基は電子供与性(ドナー性)を示し、ハメットのσp値が正の基は電子求引性(アクセプター性)を示す傾向がある。
 本発明におけるドナー性基は、置換アミノ基を含む基であることが好ましい。アミノ基の窒素原子に結合する置換基は、置換もしくは無置換のアルキル基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基であることが好ましく、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基であることがより好ましい。置換アミノ基は、特に、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のジヘテロアリールアミノ基であることが好ましい。本発明におけるドナー性基は、置換アミノ基の窒素原子で結合する基であってもよいし、置換アミノ基が結合した基で結合する基であってもよい。置換アミノ基が結合する基は、π共役基であることが好ましい。より好ましいのは、置換アミノ基の窒素原子で結合する基である。ここでいう置換基たるアルキル基、アルケニル基、アリール基およびヘテロアリール基については、芳香族炭化水素環基と芳香族複素環基の置換基に関する上記の対応する記載を参照することができる。
 本発明におけるドナー性基として特に好ましいのは、置換もしくは無置換のカルバゾール-9-イル基である。一般式(1)に存在する3個のドナー性基は、各々独立に置換もしくは無置換のカルバゾール-9-イル基であることが好ましい。カルバゾール-9-イル基の置換基としては、アルキル基、アルケニル基、アリール基、ヘテロアリール基、アルコキシ基、アルキルチオ基、アリールオキシ基、アリールチオ基、ヘテロアリールオキシ基、ヘテロアリールチオ基、置換アミノ基を挙げることができ、好ましい置換基として、アルキル基、アリール基、置換アミノ基を挙げることができる。置換アミノ基の説明については、1つ前の段落の記載を参照することができる。また、ここでいう置換アミノ基には置換もしくは無置換のカルバゾリル基が含まれ、特に置換もしくは無置換のカルバゾール-9-イル基が含まれる。
 本発明におけるドナー性基は、水素原子以外の原子数が5以上であることが好ましく、10以上であることが好ましく、13以上であることがさらに好ましい。また、80以下であることが好ましく、60以下であることがより好ましく、40以下であることがさらに好ましい。
 一般式(1)に存在する3個のドナー性基のうちの少なくとも1つはベンゾフラン環が縮合したカルバゾリル-9-イル基である。ベンゾフラン環はフラン環でカルバゾリル-9-イル基に縮合するものであってもよいし、ベンゼン環でカルバゾリル-9-イル基に縮合するものであってもよい。好ましいのは前者である。また、カルバゾリル-9-イル基には、ベンゾフラン環が1つだけ縮合していてもよいし、2つ以上が縮合していてもよい。2つ以上が縮合しているとき、それらのベンゾフラン環は同一構造であっても、異なる構造であってもよい。また、縮合する環の種類も、同一であっても異なっていてもよい。ベンゾフラン環が縮合したカルバゾリル-9-イル基は置換されていてもよい。置換基としては、カルバゾール-9-イル基の置換基として挙げた置換基を好ましく参照することができる。ベンゾフラン環が縮合したカルバゾリル-9-イル基は、ベンゾフラン環以外の環としてカルバゾリル-9-イル基に縮合している環が存在する場合、その縮合している環は芳香族炭化水素環および脂肪族炭化水素環からなる群より選択される環だけであることが好ましく、芳香族炭化水素環だけであることがより好ましい。ベンゾフラン環が縮合したカルバゾリル-9-イル基は、カルバゾリル-9-イル基にベンゾフラン環以外の環が縮合していないものである場合も好ましい。さらに、ベンゾフラン環が縮合したカルバゾリル-9-イル基は無置換であることも好ましい。
 一般式(1)に存在する3個のドナー性基は、すべてが同一であることはない。3個のすべてが互いに異なっていてもよいし、2個が同一で1個が異なっていてもよい。好ましいのは後者である。本発明の好ましい一態様として、2個がベンゾフラン環が縮合したカルバゾリル-9-イル基であり、残りの1個がそれ以外のドナー性基である場合を挙げることができる。本発明の別の好ましい一態様として、1個がベンゾフラン環が縮合したカルバゾリル-9-イル基であり、他の2個がそれ以外のドナー性基である場合を挙げることができる。それ以外のドナー性基は、ベンゾフラン環が縮合していないカルバゾリル-9-イル基であることが好ましい。
 一般式(1)のR~Rのうちドナー性基である3つは、いずれの組み合わせであってもよい。好ましい組み合わせとしてRとRとRを挙げることができ、RとRが同一でRが異なる態様を例示することができる。また、RとRが同一でRが異なる態様を例示することもできる。さらに、RとRが同一でRが異なる態様を例示することもできる。別の好ましい組み合わせとして、RとRとRを挙げることができ、RとRが同一でRが異なる態様を例示することができる。また、RとRが同一でRが異なる態様を例示することもできる。さらに、RとRが同一でRが異なる態様を例示することもできる。別の好ましい組み合わせとして、RとRとRを挙げることができ、RとRが同一でRが異なる態様を例示することができる。また、RとRが同一でRが異なる態様を例示することもできる。さらに、RとRが同一でRが異なる態様を例示することもできる。別の好ましい組み合わせとして、RとRとRを挙げることができ、RとRが同一でRが異なる態様を例示することができる。また、RとRが同一でRが異なる態様を例示することもできる。さらに、RとRが同一でRが異なる態様を例示することもできる。
 以下において、一般式(1)のR~Rのうちの3個が採ることができるドナー性基の具体例を示す。D21~D26が、ベンゾフラン環が縮合したカルバゾリル-9-イル基の具体例に相当する。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 本発明の好ましい一態様では、一般式(1)で表される化合物は、炭素原子、水素原子、窒素原子、酸素原子および硫黄原子からなる群より選択される原子だけで構成される。本発明の好ましい一態様では、一般式(1)で表される化合物は、炭素原子、水素原子、窒素原子および酸素原子だけで構成される。
 以下の表1および表2において、一般式(1)で表される化合物の具体例を示す。表1および表2では、R~Rを化合物ごとに特定することにより化合物の構造を示している。表2では各段ごとに複数の化合物をまとめて表示している。例えば、表2の化合物4537~4572であれば、R~RはそれぞれD1、Ar1、D1、Ar1に固定されている。そして、RがD27~D62であるものを、順に化合物4537~4572としている。化合物4573~5868であれば、RがD1で、RおよびRがAr1である構造において、RがD27であって、RがD27~D62であるものを順に化合物4573~4608とし、RがD28であって、RがD27~D62であるものを順に化合物4609~4644とし、RがD29であって、RがD27~D62であるものを順に化合物4645~4680とする要領で化合物番号を振ってゆき、最後にRがD62であって、RがD27~D62であるものを順に化合物5833~5868としている。表1および表2にて、化合物1~16452は個別に構造が特定され、本明細書にて具体的に開示されている。また、化合物1~16452の分子内に存在する水素原子をすべて重水素原子に置換したものを化合物1d~16452dとして開示する。なお、以下の化合物のうち回転異性体が存在する場合は、回転異性体の混合物と、分離した各回転異性体も、本明細書に開示されているものとする。また、以下の表1~6においてAr82は、Ar1dと同じ構造(Ar1のすべての水素原子を重水素原子に置換した構造)を表す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 一般式(1)で表される化合物の分子量は、例えば一般式(1)で表される化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、900以下であることがさらにより好ましい。分子量の下限値は、一般式(1)で表される最小化合物の分子量である。
 一般式(1)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。一般式(1)で表される化合物は、シアノベンゼン系化合物の中では有機溶媒に溶解しやすいという利点がある。このため、一般式(1)で表される化合物は塗布法を適用しやすいうえ、精製して純度を高めやすい。
 本発明を応用して、分子内に一般式(1)で表される構造を複数個含む化合物を、発光材料として用いることも考えられる。
 例えば、一般式(1)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、発光材料として用いることが考えられる。具体的には、一般式(1)のR~Rのいずれかに重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を発光材料として用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしをカップリングさせることにより、二量体や三量体を得て、それらを発光材料として用いることも考えられる。
 一般式(1)で表される構造を含む繰り返し単位を有する重合体の例として、下記一般式(3)または(4)で表される構造を含む重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000043
 一般式(3)または(4)において、Qは一般式(1)で表される構造を含む基を表し、LおよびLは連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
 一般式(3)または(4)において、R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
 LおよびLで表される連結基は、Qを構成する一般式(1)のR~Rのいずれかに結合することができる。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。
 繰り返し単位の具体的な構造例として、下記式(5)~(8)で表される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000044
 これらの式(5)~(8)を含む繰り返し単位を有する重合体は、一般式(1)のR~Rのいずれかにヒドロキシ基を導入しておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000045
 分子内に一般式(1)で表される構造を含む重合体は、一般式(1)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもよい。また、重合体の中に含まれる一般式(1)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができる。
[一般式(1)で表される化合物の合成方法]
 一般式(1)で表される化合物は、新規化合物である。
 一般式(1)で表される化合物は、既知の反応を組み合わせることによって合成することができる。例えば、トリフッ化シアノベンゼンを出発物質として、触媒の存在下に芳香族炭化水素のハロゲン化物と反応させることにより、水素原子のかわりに芳香族炭化水素環基を2個導入した誘導体を得ることができる。得られた誘導体に触媒存在下でカルバゾールを反応させることにより、フッ素原子の一部をカルバゾール-9-イル基で置換し、さらに、ベンゾフラン環が縮合したカルバゾールを反応させることにより、残りのフッ素原子をベンゾフラン環が縮合したカルバゾール-9-イル基で置換することができる。これによって、目的とする一般式(1)で表される化合物を合成することができる。この反応の具体的な条件や反応手順については、後述の合成例を参考にすることができる。また、その他の一般式(1)で表される化合物も、同様の手順や公知の合成法を利用することにより合成することが可能である。
[有機発光素子]
 本発明の一般式(1)で表される化合物は、有機発光素子の発光材料として有用である。このため、本発明の一般式(1)で表される化合物は、有機発光素子の発光層に発光材料として効果的に用いることができる。また、本発明の一般式(1)で表される化合物は、ホストまたはアシストドーパントとして用いてもよい。
 一般式(1)で表される化合物の中には、遅延蛍光を放射する遅延蛍光体が含まれている。すなわち本発明は、一般式(1)で表される構造を有する遅延蛍光体の発明と、一般式(1)で表される化合物を遅延蛍光体として使用する発明と、一般式(1)で表される化合物を用いて遅延蛍光を発光させる方法の発明も提供する。そのような化合物を発光材料として用いた有機発光素子は、遅延蛍光を放射し、発光効率が高いという特徴を有する。その原理を、有機エレクトロルミネッセンス素子を例にとって説明すると以下のようになる。
 有機エレクトロルミネッセンス素子においては、正負の両電極より発光材料にキャリアを注入し、励起状態の発光材料を生成し、発光させる。通常、キャリア注入型の有機エレクトロルミネッセンス素子の場合、生成した励起子のうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起される。従って、励起三重項状態からの発光である燐光を利用するほうが、エネルギーの利用効率が高い。しかしながら、励起三重項状態は寿命が長いため、励起状態の飽和や励起三重項状態の励起子との相互作用によるエネルギーの失活が起こり、一般に燐光の量子収率が高くないことが多い。一方、遅延蛍光材料は、項間交差等により励起三重項状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆項間交差され蛍光を放射する。有機エレクトロルミネッセンス素子においては、なかでも熱エネルギーの吸収による熱活性化型の遅延蛍光材料が特に有用であると考えられる。有機エレクトロルミネッセンス素子に遅延蛍光材料を利用した場合、励起一重項状態の励起子は通常通り蛍光を放射する。一方、励起三重項状態の励起子は、デバイスが発する熱を吸収して励起一重項へ項間交差され蛍光を放射する。このとき、励起一重項からの発光であるため蛍光と同波長での発光でありながら、励起三重項状態から励起一重項状態への逆項間交差により、生じる光の寿命(発光寿命)は通常の蛍光よりも長くなるため、これらよりも遅延した蛍光として観察される。これを遅延蛍光として定義できる。このような熱活性化型の逆項間交差機構を用いれば、キャリア注入後に熱エネルギーの吸収を経ることにより、通常は25%しか生成しなかった励起一重項状態の化合物の比率を25%以上に引き上げることが可能となる。100℃未満の低い温度でも強い蛍光および遅延蛍光を発する化合物を用いれば、デバイスの熱で充分に励起三重項状態から励起一重項状態への項間交差が生じて遅延蛍光を放射するため、発光効率を飛躍的に向上させることができる。
 本発明の一般式(1)で表される化合物を発光層の発光材料として用いることにより、有機フォトルミネッセンス素子(有機PL素子)や有機エレクトロルミネッセンス素子(有機EL素子)などの優れた有機発光素子を提供することができる。有機フォトルミネッセンス素子は、基板上に少なくとも発光層を形成した構造を有する。また、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
 以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
(基板)
 本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
(陽極)
 有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/sq.(ohms per square)以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(陰極)
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/sq.(ohms per square)以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
(発光層)
 発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。発光材料としては、一般式(1)で表される本発明の化合物群から選ばれる1種または2種以上を用いることができる。本発明の有機エレクトロルミネッセンス素子および有機フォトルミネッセンス素子が高い発光効率を発現するためには、発光材料に生成した一重項励起子および三重項励起子を、発光材料中に閉じ込めることが重要である。従って、発光層中に発光材料に加えてホスト材料を用いることが好ましい。ホスト材料としては、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が本発明の発光材料よりも高い値を有する有機化合物を用いることができる。その結果、本発明の発光材料に生成した一重項励起子および三重項励起子を、本発明の発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。もっとも、一重項励起子および三重項励起子を十分に閉じ込めることができなくても、高い発光効率を得ることが可能な場合もあるため、高い発光効率を実現しうるホスト材料であれば特に制約なく本発明に用いることができる。本発明の有機発光素子または有機エレクトロルミネッセンス素子において、発光は発光層に含まれる本発明の発光材料から生じる。この発光は蛍光発光および遅延蛍光発光の両方を含む。但し、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
 発光層における一般式(1)で表される化合物の含有量は、50重量%未満とすることが好ましい。さらに、一般式(1)で表される化合物の含有量の上限値は30重量%未満とすることが好ましく、また、含有量の上限値は例えば20重量%未満、10重量%未満、5重量%未満、3重量%未満、1重量%未満、0.5重量%未満とすることもできる。下限値は0.001重量%以上とすることが好ましく、例えば0.01重量%超、0.1重量%超、0.5重量%超、1重量%超とすることもできる。
 発光層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。
 一般式(1)で表される化合物は、発光層のホスト材料として使用することもできる。
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
(阻止層)
 阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
(正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
(電子阻止層)
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
(励起子阻止層)
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
(正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 有機エレクトロルミネッセンス素子を作製する際には、一般式(1)で表される化合物を1層の有機層(例えば、電子輸送層)に用いるだけでなく、複数の有機層にも用いてもよい。その際、各有機層に用いる一般式(1)で表される化合物は、互いに同一であっても異なっていてもよい。例えば、電子輸送層や発光層の他に、上記の注入層、阻止層、正孔阻止層、電子阻止層、励起子阻止層、正孔輸送層などにも一般式(1)で表される化合物を用いてもよい。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。
 まず、発光層のホスト材料としても用いることができる好ましい化合物を挙げる。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
 次に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000051
 次に、正孔輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000052
 次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000053
 次に、正孔阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000054
 次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000055
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000056
 さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。
Figure JPOXMLDOC01-appb-C000057
 上述の方法により作製された有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、燐光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
 一方、燐光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定であり、熱失活の速度定数が大きく、発光の速度定数が小さいことから直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
 本発明の有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、発光層に一般式(1)で表される化合物を含有させることにより、発光効率が大きく改善された有機発光素子が得られる。本発明の有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。
 以下に合成例と実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、発光特性の評価は、ソースメータ(ケースレー社製:2400シリーズ)、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、光学分光器(オーシャンオプティクス社製:USB2000)、分光放射計(トプコン社製:SR-3)およびストリークカメラ(浜松ホトニクス(株)製C4334型)を用いて行った。
(合成例1)化合物26の合成
(1-1)中間体1の合成
Figure JPOXMLDOC01-appb-C000058
 2,3,5-トリフルオロベンゾニトリル1.57g(10.0mmol)、炭酸カリウム4.15g(30.0mmol)、Pd(PPhCl0.25g(0.03mmol)、トリシクロヘキシルホスフィン0.25g(0.09mmol)のキシレン(30mL)溶液に、窒素気流下、2-エチルヘキサン酸0.29g(2.00mmol)とブロモベンゼン6.28g(40.0mmol)を加え、80℃で24時間および100℃で24時間攪拌した。反応溶液を室温に戻し、飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。溶媒を留去し、シリカゲルカラムクロマトグラフィー(ヘキサン:クロロホルム=9:1~7:3)で精製し、白色固体として中間体1を2.20g(7.13mmol,収率73%)得た。
1H NMR (500 MHz, CDCl3, δ): 7.60-7.45 (m, 10H)
ASAP MSスペクトル分析: C19H10F3N: 理論値309.08, 観測値310.10
(1-2)中間体2の合成
Figure JPOXMLDOC01-appb-C000059
 窒素気流下、水素化ナトリウム0.35g(14.7mmol)と12H-[3,2-a]-ベンゾフロカルバゾール1.26g(4.90mmol)にジメチルホルムアミド(40mL)を加え、室温で1時間攪拌した。その反応混合物を中間体1(2.17g,7.00mmol)のジメチルホルムアミド(20mL)溶液に対して0℃で加え、10時間攪拌した。その後、10℃に昇温し、6時間攪拌した。反応溶液に水を加えてクエンチし、酢酸エチルで抽出、有機層を水と飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、溶媒を留去した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:トルエン=2:1)で精製し、薄黄色固体として中間体2を0.93g(1.70mmol,収率35%)得た。
1H NMR (500 MHz, CDCl3, δ): 8.23 (d, J = 8.7 HZ, 1H), 8.17 (d, J = 6.9 HZ, 1H), 7.65 (d, J = 8.7 Hz, 1H), 7.63 (d, J = 8.7 HZ, 1H), 7.57-7.38 (m, 13H), 7.25-7.14 (m, 1H), 7.10 (t, J = 7.8 HZ, 1H), 6.13 (d, J = 7.8 HZ, 1H)
ASAP MSスペクトル分析: C37H20F2N2O 理論値546.15, 観測値547.65
(1-3)化合物26の合成
Figure JPOXMLDOC01-appb-C000060
 窒素気流下、カルバゾール1.04g(6.24mmol)と炭酸カリウム1.08g(7.80mmol)にジメチルホルムアミド(26mL)を加え、室温で2時間攪拌した。その反応混合物に中間体2を1.42g(2.60mmol)加え、100℃で16時間攪拌した。反応溶液を室温に戻し、水を加え、析出物を濾別した。濾上物をメタノールで洗浄し、真空乾燥した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:トルエン=2:5)で精製し、薄黄色固体として化合物26を1.71g(2.03mmol,収率76%)得た。
1H NMR (500 MHz, CDCl3, δ): 7.87 (t, J = 8.7 HZ, 2H), 7.81 (d, J = 8.7 HZ, 1H), 7.72-7.65 (m, 2H), 7.58-7.50 (m, 3H), 7.47-7.42 (m, 2H), 7.35 (d, J =8.2 HZ, 2H), 7.33-7.31 (m, 2H), 7.27-7.08 (m, 7H), 7.06-6.87 (m, 7H), 6.69 (t, J= 7.6 HZ, 1H), 6.69-6.58 (br, 2H), 6.55 (d, J = 8.2 HZ, 1H), 6.46 (t, J = 7.6 HZ, 1H), 6.39-6.29 (br, 2H), 6.27 (t, J= 8.2 HZ, 1H)
ASAP MSスペクトル分析: C61H36N4O理論値840.29, 観測値841.51
(合成例2)化合物1626の合成
(2-1)中間体3の合成
Figure JPOXMLDOC01-appb-C000061
 窒素気流下、2,4,5-トリフルオロベンゾニトリル3.0g(19.1mmol)、ブロモベンゼン8.99g(57.3mmol)、炭酸カリウム7.92g(57.3mmol)、2-エチルヘキサン酸0.28g(1.91mmol)、トリシクロヘキシルホスフィン0.48g(1.72mmol)のキシレン溶液(10mL)にジクロロビス(トリフェニルホスフィン)パラジウム(II)0.40g(0.57mmol)を加え、100℃で終夜攪拌した。その反応溶液を室温に戻した後、水を加えてクエンチし、クロロホルムで抽出した。エバポレータ―により溶媒を留去し、シリカゲルカラムクロマトグラフィー(ヘキサン:クロロホルム)で精製し、白色固体の中間体3を4.99g(16.13mmol、収率84.5%)で得た。
1H NMR (400 MHz, CDCl3, δ): 7.51-7.54 (m, 4H), 7.56-7.61 (m, 6H)
ASAP MSスペクトル分析: C19H10F3N: 理論値309.1, 観測値310.1
(2-2)中間体4の合成
Figure JPOXMLDOC01-appb-C000062
 窒素気流下、9H-カルバゾール3.24g(19.4mmol)、炭酸カリウム2.68g(19.4mmol)、中間体3を3.00g(9.7mmol)溶解したジメチルホルムアミド(25mL)およびテトラヒドロフラン溶液(25mL)を70℃で終夜攪拌した。この混合物を室温に戻した後、飽和塩化アンモニウム溶液を加えてクエンチし、クロロホルムで抽出した。エバポレータ―により溶媒を留去し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:9)で精製し、中間体4を0.50g(0.83mmol、収率8.5%)で得た。
 1H NMR (400 MHz, CDCl3, δ): 6.46 (t, J = 8.4 HZ, 2H), 6.57 (d, J = 6.4 HZ, 4H), 7.17 (t, J = 6.8 HZ, 4H), 7.23 (t, J= 7.2 HZ, 4H), 7.36 (dd, J = 8.8 HZ, 4H), 7.54-7.57 (m, 2H), 7.74 (d, J = 6.8 HZ, 2H), 7.99-8.02 (m, 4H),
ASAP MSスペクトル分析: C43H26FN3: 理論値603.2, 観測値604.2
(2-3)化合物1626の合成
Figure JPOXMLDOC01-appb-C000063
 窒素気流下、5H-ベンゾフロ[3,2-c]カルバゾール0.51g(1.99mmol)、炭酸カリウム0.27g(1.99mmol)、中間体4を0.80g(1.33mmol)溶解したジメチルホルムアミド溶液(10mL)を120℃で終夜攪拌した。この混合物を室温に戻した後、飽和塩化アンモニウム溶液を加えてクエンチし、クロロホルムで抽出した。エバポレータ―により溶媒を留去し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:9)で精製し、化合物1626を0.95g(1.13mmol、収率85.0%)で得た。
1H NMR(400 MHz, CDCl3, δ): 6.39 (t, J = 8.0 HZ, 2H), 6.52 (t, J = 8.0 HZ, 1H), 6.60 (d, J= 8.0 HZ, 2H), 6.81-6.89 (m, 3H), 6.91-6.98 (m, 4H), 7.01-7.16 (m, 6H), 7.23-7.47 (m, 12H), 7.54 (t, J = 6.8 HZ, 2H), 7.85 (d, J= 6.8 HZ, 1H), 7.99-8.05 (m, 3H)
ASAP MSスペクトル分析: C61H36N4O: 理論値840.3, 観測値841.3
(合成例3)化合物3387の合成
(3-1)中間体5の合成
Figure JPOXMLDOC01-appb-C000064
 3,4,5-トリフルオロベンゾニトリル3.00g(19.1mmol)、炭酸カリウム7.92g(57.0mmol)、Pd(PPhCl0.42g(0.57mmol)、トリシクロヘキシルホスフィン0.48g(1.72mmol)のキシレン(57mL)溶液に、窒素気流下、2-エチルヘキサン酸0.55g(3.82mmol)とブロモベンゼン12.0g(76.4mmol)を加え、80℃で7時間および100℃で16時間攪拌した。反応溶液を室温に戻し、飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。溶媒を留去し、シリカゲルカラムクロマトグラフィー(ヘキサン:ジクロロメタン=1/1,ヘキサン:酢酸エチル=3/17)で精製し、白色固体として中間体5を4.34g(14.0mmol,収率73%)得た。
1H NMR (500 MHz, CDCl3, δ): 7.53-7.43 (m, 10H)
ASAP MSスペクトル分析: C19H10F3N: 理論値309.08, 観測値310.04
(3-2)中間体6の合成
Figure JPOXMLDOC01-appb-C000065
 窒素気流下、7H-ベンゾフロ[2,3-b]カルバゾール1.00g(3.88mmol)、中間体5を1.50g,(4.85mmol)、炭酸カリウム1.01g(7.28mmol)にジメチルホルムアミド(15mL)を加え、13時間100℃で攪拌した。反応溶液に水を加えてクエンチし、懸濁液をろ過した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:ジクロロメタン=2:3)で精製し、中間体6を2.07g(3.79mmol,収率78%)得た。
1H NMR (500 MHz, CDCl3, δ): 8.64 (s, 1H), 8.23 (d, J = 7.5 Hz, 1H), 8.06 (d, J = 7.5 Hz, 1H), 7.64-7.35 (m, 16H), 7.25-7.24 (m, 1H)
ASAP MSスペクトル分析: C37H20F2N2O 理論値546.15, 観測値547.24
(3-3)化合物3387の合成
Figure JPOXMLDOC01-appb-C000066
 窒素気流下、9H-カルバゾール1.10g(6.58mmol)、中間体6を1.50g(2.74mmol)、炭酸カリウム1.33g(9.59mmol)にジメチルホルムアミド(19mL)を加え、15時間130℃で攪拌した。反応溶液に水を加えてクエンチし、懸濁液をろ過した。粗生成物をシリカゲルカラムクロマトグラフィー(o-ジクロロベンゼン)で精製後、o-ジクロロベンゼンに溶解してメタノールで沈殿を生じ固体をろ過して精製し、化合物3387を2.05g(2.44mmol,収率89%)得た。
1H NMR (400 MHz, CDCl3, δ): 7.75-7.72 (m, 2H), 7.51-7.39 (m, 6H), 7.34-7.11 (m, 11H), 7.07-6.98 (m, 7H), 6.95-6.87 (m, 6H), 6.81 (t, J = 7.5 Hz, 2H), 6.74 (t, J = 7.5 Hz, 1H), 6.59 (t, J = 7.5 Hz, 1H). ASAP MSスペクトル分析: C61H36N4O 理論値840.29, 観測値841.47
(合成例4)比較化合物3の合成
(4-1)中間体7の合成
Figure JPOXMLDOC01-appb-C000067
 窒素気流下、7H-ベンゾチオ[2,3-b]カルバゾール0.92g(3.36mmol)と中間体5を1.30g(4.20mmol)と炭酸カリウム0.87g(6.30mmol)にジメチルホルムアミド(13mL)を加え、13時間100℃で攪拌した。反応溶液に水を加えてクエンチし、懸濁液をろ過した。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:ジクロロメタン=2:3)で精製し、中間体7を1.56g(2.77mmol,収率66%)得た。
1H NMR (500 MHz, CDCl3, δ): 8.66 (s, 1H), 8.30-8.26 (m, 2H), 7.84 (d, J= 8.0 Hz, 1H), 7.63-7.49 (m, 13H), 7.45 (d, J = 8.0 Hz, 1H), 7.40 (t, J= 7.5 Hz, 1H), 7.25-7.24 (m, 1H)
ASAP MSスペクトル分析: C37H20F2N2S 理論値562.64, 観測値563.24
(4-2)比較化合物3の合成
Figure JPOXMLDOC01-appb-C000068
 窒素気流下、9H-カルバゾール1.07g(6.41mmol)と中間体7を1.50g(2.67mmol)と炭酸カリウム1.29g(9.35mmol)にジメチルホルムアミド(20mL)を加え、15時間130℃で攪拌した。反応溶液に水を加えてクエンチし、懸濁液をろ過した。粗生成物をシリカゲルカラムクロマトグラフィー(o-ジクロロベンゼン)で精製後、o-ジクロロベンゼンに溶解してメタノールで再沈殿で精製し、比較化合物3を2.07g(2.42mmol,収率90%)得た。
1H NMR (400 MHz, CDCl3, δ): 7.99 (s, 1H), 7.92-7.88 (m, J = 6.0, 4.3 Hz, 1H), 7.68-7.65 (m, J = 7.1, 2.9 Hz, 1H), 7.51-7.49 (m, 5H), 7.40-7.26 (m, 15H), 7.19 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 7.08-7.00 (m, 6H), 6.96-6.87 (m, 5H), 6.83 (t, J = 7.5 Hz, 2H), 6.74 (t, J = 7.5 Hz, 1H), 6.58 (t, J = 8.0 Hz, 1H).
 ASAP MSスペクトル分析: C61H36N4S 理論値856.27, 観測値857.44
(実施例1~2、比較例1~2)薄膜の作製と評価
 石英基板上に真空蒸着法にて、真空度1×10-3Pa未満の条件にて化合物26とPYD2Czとを異なる蒸着源から蒸着し、化合物26の濃度が20重量%である薄膜を100nmの厚さで形成し、実施例1の薄膜とした。
 また、化合物26のかわりに、化合物1626、比較化合物1、比較化合物2を用いて、同じ手順にしたがって薄膜を形成した、これらの薄膜を、順に実施例2、比較例1、比較例2の薄膜とした。
 得られた各薄膜について、300nm励起光を用いて発光スペクトルを観測し、ピーク波長(λmax)を読み取った。また、同じ励起光を用いて観測した発光の過渡減衰曲線から遅延蛍光の寿命(τd)を得た。さらに、下記の測定法にしたがってΔESTを測定し、300nm励起光を用いて窒素雰囲気下でフォトルミネッセンス量子効率(PLQY)も測定した。各測定結果は、表3に示す通りであった。
 ΔESTは、測定対象化合物の最低励起一重項エネルギー(ES1)と最低励起三重項エネルギー(ET1)を下記の手順により求めて、ES1-ET1を計算することにより得た値である。
(1)最低励起一重項エネルギー(ES1
 測定対象化合物の薄膜の蛍光スペクトルを常温(300K)で測定した(縦軸:発光強度、横軸:波長)。この発光スペクトルの短波側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をES1とした。
   換算式:ES1[eV]=1239.85/λedge
(2)最低励起三重項エネルギー(ET1
 同じ薄膜を液体窒素によって77[K]に冷却し、励起光(300nm)を燐光測定用試料に照射し、検出器を用いて燐光を測定した。励起光照射後から100ミリ秒以降の発光を燐光スペクトルとした。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を上記の換算式でエネルギー値に換算した値をET1とした。
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引いた。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考えた。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
 なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
Figure JPOXMLDOC01-appb-T000069
 実施例1と比較例1の対比結果と、実施例2と比較例2の対比結果は、ベンゾフラン環が縮合したカルバゾリル-9-イル基を導入した本発明の化合物のΔESTが小さくて、遅延蛍光の寿命(τd)が短くて、フォトルミネッセンス量子効率(PLQY)が高いことを示している。
(実施例3~4)ホスト材料が異なるドープ薄膜の作製と評価
 実施例1および実施例2のホスト材料をPYD2CzからPPFに変えて、同じ手順にしたがって実施例3と実施例4の薄膜を形成した。
 得られた薄膜に同様にして励起光を照射したところ遅延蛍光が観測された。実施例3と実施例4の遅延蛍光の寿命(τd)は、それぞれ12.5μsと18.8μsであった。また、実施例3と実施例4のフォトルミネッセンス量子効率(PLQY)は、それぞれ70%と81%であった。
(実施例5、比較例3)構成元素が異なる類似発光材料の薄膜の作製と評価
 石英基板上に真空蒸着法にて、真空度1×10-3Pa未満の条件にて化合物3387を蒸着することにより、厚さ100nmの実施例5のニート薄膜を形成した。また、化合物3387のかわりに、比較化合物3を用いて、同じ手順にしたがって比較例3のニート薄膜を形成した。
 実施例1~3と同様に、得られた薄膜に励起光を照射したところ、いずれの薄膜からも遅延蛍光が観測された。ピーク波長(λmax)は、実施例5が493nmであり、比較例3が499nmであった。また、フォトルミネッセンス量子効率(PLQY)は、実施例5は比較例3の1.1倍であった。これらの結果は、ベンゾフラン環が縮合したカルバゾリル-9-イル基を有する化合物を用いた実施例5が、ベンゾチオフェン環が縮合したカルバゾリル-9-イル基を有する化合物を用いた比較例3よりも発光ピーク波長が短波長側になるうえ、発光効率も高いことを示している。
 さらに、石英基板上に真空蒸着法にて、真空度1×10-3Pa未満の条件にて化合物3387とPPFとを異なる蒸着源から蒸着し、化合物3387の濃度が20重量%である薄膜を100nmの厚さで形成し、実施例5のドープ薄膜とした。また、化合物3387のかわりに、比較化合物3を用いて、同じ手順にしたがって比較例3のドープ薄膜を形成した。300nm励起光を用いて発光の過渡減衰曲線を得て、遅延蛍光の寿命(τd)を決定した。その結果、比較例3は11.4μsであったのに対して、実施例5が7.4μsであり、約3割短かった。このことから、ベンゾフラン環が縮合したカルバゾリル-9-イル基を有する化合物は、ベンゾチオフェン環が縮合したカルバゾリル-9-イル基を有する化合物よりも遅延蛍光の寿命が短いことを示している。
(実施例6~7)有機エレクトロルミネッセンス素子の作製と評価
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基材上に、各薄膜を真空蒸着法にて、真空度1×10-6Paで積層した。まず、ITO上に第1正孔注入材料からなる第1正孔注入層を形成し、その上に第2正孔注入材料からなる第2正孔注入層を形成し、その上に正孔輸送材料からなる正孔輸送層を形成し、さらにその上に電子阻止材料からなる電子阻止層を形成した。その上に、化合物26とホスト材料を異なる蒸着源から共蒸着し、化合物26の濃度が30重量%の発光層を形成した。次に、正孔阻止材料からなる正孔阻止層を形成し、その上に電子輸送層を形成し、さらにその上に電極を形成した。以上の手順により、実施例6の有機エレクトロルミネッセンス素子を作製した。
 また、化合物26のかわりに化合物1626を用いて、同じ手順により実施例7の有機エレクトロルミネッセンス素子を作製した。
 実施例6および実施例7の各有機エレクトロルミネッセンス素子は、高い発光効率を示し、駆動電圧が低く、素子寿命(素子耐久性)も高い。
 また、その他の本発明の化合物を用いることによっても、高い発光効率を示し、駆動電圧が低く、素子寿命(素子耐久性)が高い有機エレクトロルミネッセンス素子を提供することができる。
Figure JPOXMLDOC01-appb-C000070

Claims (16)

  1.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、
     R~Rのうちの2個は、各々独立に、置換もしくは無置換の芳香族炭化水素環基、または、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基を表し、
     R~Rのうちの3個は、各々独立に、ドナー性基(ただし、置換もしくは無置換の芳香族炭化水素環基、および、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基は除く)を表し、3個のドナー性基がすべて同一であることはなく、また、3個のドナー性基のうちの少なくとも1つはベンゾフラン環が縮合したカルバゾリル-9-イル基である。]
  2.  R、RおよびRが、各々独立にドナー性基である、請求項1に記載の化合物。
  3.  R、RおよびRが、各々独立にドナー性基である、請求項1に記載の化合物。
  4.  前記3個のドナー性基のうち、2個が互いに同一である、請求項1~3のいずれか1項に記載の化合物。
  5.  前記ベンゾフラン環が縮合したカルバゾリル-9-イル基が、カルバゾリル-9-イル基を構成する一方のベンゼン環にベンゾフラン環が直接縮合した構造を有する、請求項1~4のいずれか1項に記載の化合物。
  6.  前記ベンゾフラン環が縮合したカルバゾリル-9-イル基が下記のいずれかの構造を有する、請求項5に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    [上記の各構造において、水素原子は置換されていてもよい。]
  7.  R~Rのうちの2個が、前記ベンゾフラン環が縮合したカルバゾリル-9-イル基である、請求項5または6に記載の化合物。
  8.  前記2個のベンゾフラン環が縮合したカルバゾリル-9-イル基が、互いに同一である、請求項7に記載の化合物。
  9.  R~Rのうちの1個だけが、前記ベンゾフラン環が縮合したカルバゾリル-9-イル基である、請求項5または6に記載の化合物。
  10.  R~Rのうちの2個が、各々独立に、置換もしくは無置換の芳香族炭化水素環基である、請求項1~9のいずれか1項に記載の化合物。
  11.  R~Rのうちの2個が、各々独立に、環骨格構成原子として窒素原子を含む置換もしくは無置換の芳香族複素環基である、請求項1~10のいずれか1項に記載の化合物。
  12.  R~Rのうちの前記2個が、互いに同一である、請求項10または11に記載の化合物。
  13.  請求項1~12のいずれか1項に記載の化合物からなる発光材料。
  14.  請求項1~12のいずれか1項に記載の化合物を含むことを特徴とする発光素子。
  15.  前記発光素子が発光層を有しており、前記発光層が前記化合物とホスト材料を含む、請求項14に記載の発光素子。
  16.  前記発光素子が発光層を有しており、前記発光層が前記化合物と発光材料を含み、前記発光材料から主として発光する、請求項14に記載の発光素子。
PCT/JP2021/022100 2020-06-11 2021-06-10 化合物、発光材料および発光素子 WO2021251461A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/001,115 US20230212177A1 (en) 2020-06-11 2021-06-10 Compound, light-emitting material, and light-emitting element
KR1020227043919A KR20230022872A (ko) 2020-06-11 2021-06-10 화합물, 발광 재료 및 발광 소자
JP2022530619A JPWO2021251461A1 (ja) 2020-06-11 2021-06-10
CN202180041184.4A CN115916785A (zh) 2020-06-11 2021-06-10 化合物、发光材料及发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020101635 2020-06-11
JP2020-101635 2020-06-11

Publications (1)

Publication Number Publication Date
WO2021251461A1 true WO2021251461A1 (ja) 2021-12-16

Family

ID=78846117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022100 WO2021251461A1 (ja) 2020-06-11 2021-06-10 化合物、発光材料および発光素子

Country Status (5)

Country Link
US (1) US20230212177A1 (ja)
JP (1) JPWO2021251461A1 (ja)
KR (1) KR20230022872A (ja)
CN (1) CN115916785A (ja)
WO (1) WO2021251461A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140374A1 (ja) * 2022-01-24 2023-07-27 株式会社Kyulux 化合物、発光材料および発光素子
WO2024088239A1 (zh) * 2022-10-28 2024-05-02 清华大学 一种有机化合物及采用该化合物的有机电致发光器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018237389A1 (en) * 2017-06-23 2018-12-27 Kyulux Inc. MATERIAL COMPOSITION FOR USE IN ORGANIC ELECTROLUMINESCENT DIODE
US20190058130A1 (en) * 2017-08-21 2019-02-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN109651406A (zh) * 2019-01-23 2019-04-19 苏州久显新材料有限公司 热激活延迟荧光化合物、发光材料及有机电致发光器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018237389A1 (en) * 2017-06-23 2018-12-27 Kyulux Inc. MATERIAL COMPOSITION FOR USE IN ORGANIC ELECTROLUMINESCENT DIODE
US20190058130A1 (en) * 2017-08-21 2019-02-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN109651406A (zh) * 2019-01-23 2019-04-19 苏州久显新材料有限公司 热激活延迟荧光化合物、发光材料及有机电致发光器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140374A1 (ja) * 2022-01-24 2023-07-27 株式会社Kyulux 化合物、発光材料および発光素子
WO2024088239A1 (zh) * 2022-10-28 2024-05-02 清华大学 一种有机化合物及采用该化合物的有机电致发光器

Also Published As

Publication number Publication date
JPWO2021251461A1 (ja) 2021-12-16
KR20230022872A (ko) 2023-02-16
CN115916785A (zh) 2023-04-04
US20230212177A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
JP7486238B2 (ja) 化合物、発光材料および発光素子
JP7226718B2 (ja) 有機発光素子、組成物および膜
JP6668152B2 (ja) 化合物、発光材料および有機発光素子
JP6318155B2 (ja) 化合物、発光材料および有機発光素子
KR101999881B1 (ko) 화합물, 발광 재료 및 유기 발광 소자
JP7023452B2 (ja) 発光材料、有機発光素子および化合物
JP6225111B2 (ja) 発光材料、化合物、およびそれらを用いた有機発光素子
JP6088995B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2015080183A1 (ja) 発光材料、有機発光素子および化合物
KR20220127220A (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
JP7410571B2 (ja) 化合物、発光材料、遅延蛍光体、有機発光素子、酸素センサー、分子の設計方法およびプログラム
KR20220074924A (ko) 화합물, 유기 일렉트로루미네센스 소자용 재료, 유기 일렉트로루미네센스 소자 및 전자 기기
WO2021251461A1 (ja) 化合物、発光材料および発光素子
WO2019004254A1 (ja) 発光材料、化合物、遅延蛍光体および発光素子
KR102385133B1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
JP7267563B2 (ja) 発光材料、化合物、遅延蛍光体および発光素子
WO2017115834A1 (ja) 化合物、発光材料および有機発光素子
WO2017115835A1 (ja) 化合物、発光材料および有機発光素子
KR102673509B1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR102678424B1 (ko) 발광 재료, 화합물, 지연 형광체 및 발광 소자
JP2019206511A (ja) 化合物、発光材料および有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530619

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822062

Country of ref document: EP

Kind code of ref document: A1