WO2018153303A1 - 含镁的改性y型分子筛、其制备方法及包含它的催化剂 - Google Patents

含镁的改性y型分子筛、其制备方法及包含它的催化剂 Download PDF

Info

Publication number
WO2018153303A1
WO2018153303A1 PCT/CN2018/076431 CN2018076431W WO2018153303A1 WO 2018153303 A1 WO2018153303 A1 WO 2018153303A1 CN 2018076431 W CN2018076431 W CN 2018076431W WO 2018153303 A1 WO2018153303 A1 WO 2018153303A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
weight
type molecular
modified
content
Prior art date
Application number
PCT/CN2018/076431
Other languages
English (en)
French (fr)
Inventor
周灵萍
张蔚琳
许明德
陈振宇
田辉平
朱玉霞
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710093369.5A external-priority patent/CN108452826B/zh
Priority claimed from CN201710093368.0A external-priority patent/CN108452825B/zh
Priority claimed from CN201710097151.7A external-priority patent/CN108452835B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to RU2019127289A priority Critical patent/RU2770421C2/ru
Priority to US16/484,880 priority patent/US11053129B2/en
Priority to MYPI2019004663A priority patent/MY195283A/en
Priority to JP2019545357A priority patent/JP7163298B2/ja
Publication of WO2018153303A1 publication Critical patent/WO2018153303A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/005Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/023Preparation of physical mixtures or intergrowth products of zeolites chosen from group C01B39/04 or two or more of groups C01B39/14 - C01B39/48
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/16After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/24After treatment, characterised by the effect to be obtained to stabilize the molecular sieve structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • C01P2006/37Stability against thermal decomposition

Definitions

  • the present invention relates to a modified Y-type molecular sieve having high stability containing magnesium, a preparation method thereof and a catalyst comprising the same.
  • High-silica Y-type molecular sieve containing magnesium used for heavy oil conversion to increase diesel production.
  • the preparation of high-silicon Y-type molecular sieves in the industry mainly adopts hydrothermal method.
  • the NaY zeolite is subjected to multiple rare earth ion exchange and multiple high-temperature hydrothermal roasting to prepare a high-silicon Y-type molecular sieve containing rare earth, which is also prepared.
  • the most common method for high silicon Y molecular sieves The most common method for high silicon Y molecular sieves.
  • the disadvantage of hydrothermal preparation of rare earth-containing high-silica Y-type molecular sieves is that the too harsh hydrothermal treatment conditions will destroy the structure of the molecular sieve, and the Y-type molecular sieve with a high silicon-to-aluminum ratio cannot be obtained; It is beneficial to improve the stability of the molecular sieve and form a new acid center, but too much extra-framework aluminum reduces the selectivity of the molecular sieve; in addition, many of the de-aluminized holes in the molecular sieve cannot be timely supplemented by the silicon migrated from the skeleton. It often causes lattice defects of molecular sieves, and the molecular sieve has low crystal retention.
  • the heat and hydrothermal stability of the rare earth-containing high-silice Y-type molecular sieve prepared by the hydrothermal method is poor, and the lattice collapse temperature is low, and the crystallinity retention rate and specific surface area retention rate are low after hydrothermal aging. .
  • the raw material NaY zeolite has a SiO 2 /Al 2 O 3 ratio of 6.0 and is relatively expensive.
  • the method is also followed by a rare earth exchange of NaY, followed by a hydrothermal treatment, as well as the disadvantages of the aforementioned U.S. Patent Nos. 4,584,287 and 4,429,053.
  • Gas phase chemistry is another important method for the preparation of high silica molecular sieves first reported by Beyer and Mankui in 1980.
  • the gas phase chemical method generally uses SiCl 4 under nitrogen protection and anhydrous NaY zeolite to react at a certain temperature. The entire reaction process makes full use of the external Si source provided by SiCl 4 , and the dealumination and silicon supplementation reactions are completed by isomorphous substitution.
  • U.S. Patent No. US 4,273,753, US 4,438,178 and Chinese Patent Publication No. CN1382525A, CN1194941A, CN1683244A discloses the use of aluminum SiCl 4 gas phase chemical method of ultra-stable type Y molecular sieve off.
  • the heavy gas cracking activity of the existing gas phase ultra-stable molecular sieve is not high, and the prior art does not propose a method for further improving the heavy oil cracking activity of the gas phase ultra-stable molecular sieve.
  • the liquid phase (NH 4 ) 2 SiF 6 aluminum-enriched silicon method is also a main method for preparing ultra-stable molecular sieves.
  • the principle of the method is to replace the molecular sieve skeleton with Si in (NH 4 ) 2 SiF 6 in solution.
  • the Al atom in the middle which in turn produces an ultra-stable molecular sieve with an increased ratio of silicon to aluminum.
  • (NH 4 ) 2 SiF 6 aluminum-added silicon method is characterized in that it can prepare ultra-stable molecular sieve with a skeleton SiO 2 /Al 2 O 3 molar ratio of 10-30 or higher, high thermal stability, and no non-framework aluminum Or Al 2 O 3 fragments, the relative crystallinity is higher.
  • the insoluble matter AlF 3 and residual fluorosilicate formed by (NH 4 ) 2 SiF 6 during the dealumination process may affect the hydrothermal stability of the molecular sieve, and (NH 4 ) 2 SiF 6 may pollute the environment.
  • the secondary pores are absent in the prepared ultrastable molecular sieve.
  • the existing magnesium-containing high-silica Y-type molecular sieve has low heavy oil cracking activity and low diesel selectivity.
  • the object of the present invention is to provide a magnesium-containing high stability modified Y type molecular sieve suitable for heavy oil catalytic cracking processing, a preparation method thereof and a catalyst comprising the same, the modified Y type molecular sieve has a higher heavy oil Cracking activity and better diesel selectivity.
  • the present invention provides a modified Y-type molecular sieve containing magnesium having a rare earth oxide content of about 4 to 11% by weight, a magnesium oxide content of about 0.1 to 4% by weight, and a sodium oxide content of about 0.3-0.8% by weight, the total pore volume is about 0.33-0.39 mL/g, and the pore volume of the secondary pore of the modified Y-type molecular sieve having a pore diameter of 2-100 nm accounts for about a percentage of the total pore volume of the modified Y-type molecular sieve.
  • the unit cell constant is about 2.440-2.455 nm
  • the non-framework aluminum content in the modified Y-type molecular sieve is not more than about 20% of the total aluminum content
  • the lattice collapse temperature is not lower than about 1045 °C.
  • the present invention provides a method of preparing a modified Y-type molecular sieve containing magnesium, the method comprising the steps of:
  • the Y-type molecular sieve obtained in the step (1) is calcined at a temperature of about 350 to 480 ° C and a water vapor atmosphere of about 30 to 90% by volume for about 4.5 to 7 hours to obtain a Y-type molecular sieve having a reduced unit cell constant;
  • the Y-type molecular sieve obtained in the step (2) is contacted with silicon tetrachloride gas to obtain a high-silicon ultra-stable Y-type molecular sieve, and the contact reaction is carried out under the following conditions: SiCl 4 : Y-type molecular sieve on a dry basis
  • the weight ratio is about 0.1-0.7:1, the reaction temperature is about 200-650 ° C, and the reaction time is about 10 minutes to about 5 hours;
  • the high-silicon ultra-stable Y-type molecular sieve obtained in the step (3) is subjected to a modification treatment with a magnesium compound to obtain the modified Y-type molecular sieve containing magnesium.
  • the invention provides a catalytic cracking catalyst comprising a modified Y-type molecular sieve according to the invention or a modified Y-type molecular sieve prepared according to the process of the invention.
  • the catalyst comprises from about 10% to about 50% by weight, based on the weight of the catalyst, of the modified Y-type molecular sieve, and from about 10% to about 40% by weight, based on the alumina, of alumina.
  • the catalyst comprises from about 10% to about 50% by weight, based on the weight of the catalyst, of the modified Y-type molecular sieve, and from about 2% to about 40% by weight, based on the dry basis, of the additive-containing additive.
  • the magnesium-containing modified Y-type molecular sieve provided by the invention has high thermal stability and hydrothermal stability, and has higher heavy oil conversion activity and lower coke selectivity than the existing Y-type molecular sieve when used for catalytic cracking of heavy oil. , with higher diesel yield and light oil yield and total liquid recovery.
  • the method for preparing a modified Y-type molecular sieve containing magnesium can prepare a magnesium-containing high-silicon ultra-stable Y-type molecular sieve having a certain secondary pore structure with high crystallinity, high thermal stability and high hydrothermal stability, wherein the molecular sieve comprises The aluminum is evenly distributed and the non-framework aluminum content is small.
  • the Y-type molecular sieve is used for catalytic cracking of heavy oil, the coke selectivity is good, and the heavy oil cracking activity is high, and the diesel oil yield, the light oil yield and the total liquid collection when the molecular sieve is used for catalytic cracking of heavy oil can be improved.
  • the modified Y-type molecular sieve provided by the present invention can be used as an active component of a catalytic cracking catalyst for heavy oil or inferior oil conversion.
  • the catalytic cracking catalyst with the molecular sieve as the active component has strong heavy oil conversion ability, high stability, good coke selectivity and high light oil yield and diesel yield.
  • the catalytic cracking catalyst provided by the invention has higher activity and hydrothermal stability than the existing cracking catalyst based on the magnesium Y-containing molecular sieve, and has higher heavy oil conversion activity and lower coke for heavy oil catalytic cracking. Selectivity, higher diesel yield, higher light oil yield and total liquid recovery.
  • the catalyst of the invention is suitable for catalytic cracking of various hydrocarbon oils, and is particularly suitable for catalytic cracking of heavy oil.
  • the hydrocarbon oils include, but are not limited to, atmospheric residue, vacuum residue, vacuum gas oil, atmospheric gas oil, straight run gas oil, propane light/heavy deasphalted oil, and coker gas oil.
  • any specific numerical values (including the endpoints of the numerical ranges) disclosed herein are not limited to the precise value of the numerical value, but should be understood to cover the value close to the precise value. Moreover, for the disclosed numerical range, one or more new ones can be obtained between the endpoint values of the range, the endpoint values and the specific point values in the range, and the specific point values. Numerical ranges, these new numerical ranges are also considered to be specifically disclosed herein.
  • RIPP test method involved in the present invention can be specifically referred to "Petrochemical Analysis Method (RIPP Test Method)", edited by Yang Cuiding, Science Press, September 1990, first edition, 263-268, 412-415 and 424- 426, ISBN: 7-03-001894-X, which is incorporated herein in its entirety by reference.
  • Y molecular sieve and “Y zeolite” are used interchangeably and the terms “NaY molecular sieve” and “NaY zeolite” are also used interchangeably.
  • second pore refers to a pore having a pore size (referred to as a diameter) of from 2 to 100 nm in a molecular sieve.
  • the term "inorganic acid above medium strength” refers to a mineral acid having an acid strength above HNO 2 (nitrous acid), including but not limited to HClO 4 (perchloric acid), HI (hydrogen iodide), HBr ( Hydrobromic acid), HCl (hydrochloric acid), HNO 3 (nitric acid), H 2 SeO 4 (selenic acid), H 2 SO 4 (sulfuric acid), HClO 3 (chloric acid), H 2 SO 3 (sulfuric acid), H 3 PO 3 (phosphoric acid) and HNO 2 (nitrous acid) and the like.
  • rare earth solution and “rare earth salt solution” are used interchangeably, preferably as an aqueous solution of a rare earth salt.
  • normal cell size Y-type molecular sieve means that the unit cell constant of the Y-type molecular sieve is in the range of the unit cell constant of the conventional NaY molecular sieve, preferably in the range of about 2.465 nm to about 2.472 nm.
  • normal pressure means that the pressure is about 1 atm.
  • the dry basis weight of a substance refers to the weight of the solid product obtained by calcining the material at 800 ° C for 1 hour.
  • the present invention provides a modified Y-type molecular sieve containing magnesium, the modified molecular sieve having an oxidized rare earth content of about 4 to 11% by weight, a magnesium oxide content of about 0.1 to 4% by weight, and a sodium oxide content. It is about 0.3-0.8% by weight, the total pore volume is about 0.33-0.39 mL/g, and the pore volume of the secondary pore having the modified Y-type molecular sieve pore diameter of 2-100 nm accounts for the total pore volume of the modified Y-type molecular sieve.
  • the unit cell constant is about 2.440-2.455 nm
  • the non-framework aluminum content in the modified Y-type molecular sieve is not more than about 20% of the total aluminum content
  • the lattice collapse temperature is not less than about 1045. °C.
  • the modified Y-type molecular sieve provided by the present invention has a lattice collapse temperature of not less than about 1045 ° C.
  • the modified Y-type molecular sieve has a lattice collapse temperature of about 1045-1075 ° C.
  • the modified Y-type molecular sieve provided by the present invention has a magnesium oxide content of from about 0.5% to about 3% by weight.
  • the modified Y-type molecular sieve provided by the present invention has a unit cell constant of about 2.440-2.455 nm, for example, 2.441-2.453 nm or 2.442-2.451 nm.
  • the modified Y-type molecular sieve provided by the present invention is a high-silica Y-type molecular sieve having a framework silica-alumina ratio (SiO 2 /Al 2 O 3 molar ratio) of about 7.3-14, for example about 7.8- 13.2 or 8.5-12.6.
  • a framework silica-alumina ratio SiO 2 /Al 2 O 3 molar ratio
  • the modified Y-type molecular sieve provided by the present invention has a non-framework aluminum content as a percentage of the total aluminum content of not more than about 20%, for example, about 13 to 19% by weight.
  • the modified Y-type molecular sieve provided by the present invention has a crystal retention of about 30% or more after aging for 17 hours at 800 ° C, atmospheric pressure, and 100 vol% steam atmosphere, for example, about 30-45. %, 32-40%, 35-44% or 38-43%.
  • the modified Y-type molecular sieve provided by the present invention has a relative crystallinity of not less than about 55%.
  • the modified Y-type molecular sieve has a relative crystallinity of about 55-68%, for example, It is about 58-66%.
  • the modified Y-type molecular sieve provided by the present invention has a specific surface area of about 600-670 m 2 /g, for example, about 610-660 m 2 /g, 620-655 m 2 /g or 630-650 m 2 / g.
  • the modified Y-type molecular sieves provided herein have a total pore volume of from about 0.33 to about 0.39 mL/g, such as from about 0.35 to about 0.39 mL/g or from 0.35 to 0.37 mL/g.
  • the modified Y-type molecular sieve provided by the present invention has a pore volume of the secondary pore having a pore diameter of 2.0-100 nm as a percentage of the total pore volume of about 10-30%, for example, about 15-25%, 17-22% or 20-28%.
  • the modified Y-type molecular sieve provided by the present invention has an oxidized rare earth content of RE 4 O 3 of about 4 to 11% by weight, preferably about 4.5 to 10% by weight, for example, about 5 to 9 weight%.
  • the modified Y-type molecular sieves provided herein have a sodium oxide content of no more than about 0.8%, may be from about 0.3 to 0.8% by weight, such as from about 0.5 to 0.80% by weight or from 0.4 to 0.6% by weight.
  • the modified Y-type molecular sieves provided herein have a rare earth oxide content of from about 4 to 11% by weight, preferably from about 4.5 to 10% by weight; and a magnesium oxide content of from about 0.1 to about 4% by weight, for example About 0.5-3 wt%; sodium oxide content of about 0.3-0.8 wt%, preferably about 0.35-0.75 wt%, for example about 0.4-0.6 wt%; total pore volume of about 0.33-0.39 mL/g, pore size 2
  • the pore volume of the -100 nm secondary pore is about 10-30%, preferably about 15-25%; the unit cell constant is about 2.440-2.455 nm, and the framework silica-alumina ratio (SiO 2 /Al 2 O 3 molar ratio) is about 7-14, the percentage of non-framework aluminum content in the molecular sieve to the total aluminum content is not more than about 20%, preferably about 13-19, and the relative crystallinity is
  • the modified Y-type molecular sieve provided by the present invention comprises the step of contacting the Y-type molecular sieve with silicon tetrachloride for dealuminization and silicon-retaining reaction in the preparation process.
  • the modified Y-type molecular sieve provided by the present invention is non-"surface-rich", and the ratio of the surface SiO 2 /Al 2 O 3 molar ratio to the framework SiO 2 /Al 2 O 3 molar ratio is less than Or equal to 1, usually less than 1.
  • the present invention provides a method for preparing a modified Y-type molecular sieve containing magnesium, comprising the steps of:
  • the Y-type molecular sieve obtained in the step (1) is subjected to a modification treatment to obtain a Y-type molecular sieve having a reduced unit cell constant, and the modification treatment is to treat the Y-type molecular sieve at a temperature of about 350 to 480 ° C and Baking for about 4.5-7 hours under an atmosphere of about 30-90% by volume of water vapor (also called 30-90% by volume steam atmosphere or 30-90% water vapor);
  • the ultra-stable modified Y-type molecular sieve obtained in the step (3) is contacted with a magnesium compound to carry out a magnesium modification treatment to obtain the modified Y-type molecular sieve containing magnesium.
  • the modified Y-type molecular sieve preparation method provided by the present invention performs an ion exchange reaction between a NaY molecular sieve and a rare earth solution in the step (1) to obtain a rare earth-containing conventional unit cell size with a reduced sodium oxide content.
  • Y-type molecular sieve The NaY molecular sieve may be commercially available or prepared according to an existing method.
  • the NaY molecular sieve has a unit cell constant of about 2.465-2.472 nm and a framework silica to alumina ratio (SiO 2 /Al 2 O 3 mole). The ratio is about 4.5 to 5.2, the relative crystallinity is about 85% or more, for example, about 85 to 95%, and the sodium oxide content is about 13.0-13.8% by weight.
  • the NaY molecular sieve described in the step (1) is subjected to an ion exchange reaction with a rare earth solution, and the exchange temperature is preferably about 15-95 ° C, for example, about 65-95 ° C; and the exchange time is preferably about 30-120. Minutes, for example about 45-90 minutes; NaY molecular sieves (on a dry basis): rare earth salt (as RE 2 O 3 ): H 2 O is about 1:0.01-0.18:5-15 by weight.
  • the NaY molecular sieve is subjected to an ion exchange reaction with the rare earth solution, and the NaY molecular sieve and the rare earth are used in a weight ratio of about 1:0.01 to 0.18:5-15 according to the NaY molecular sieve: rare earth salt: H 2 O.
  • the salt and water form a mixture which is stirred at about 15-95 ° C, for example about 65-95 ° C, preferably for about 30-120 minutes for the exchange of rare earth ions with sodium ions.
  • the NaY molecular sieve, the rare earth salt and the water are mixed to form a slurry, and the NaY molecular sieve and the water can be slurried, and then an aqueous solution of a rare earth salt and/or a rare earth salt is added to the slurry, the rare earth solution.
  • the rare earth salt is preferably a rare earth chloride and/or a rare earth nitrate.
  • the rare earth is, for example, one or more of La, Ce, Pr, Nd, and mixed rare earth.
  • the mixed rare earth contains one or more of La, Ce, Pr, and Nd, or further contains at least one of rare earths other than La, Ce, Pr, and Nd.
  • step (1) further comprises a washing step for the purpose of washing away the exchanged sodium ions, for example, washing with deionized water or deionized water.
  • the rare earth content of the conventional unit cell-sized Y-type molecular sieve having a reduced sodium oxide content obtained by the step (1) is about 4.5 to 13% by weight, for example, about 5.5, based on RE 2 O 3 .
  • the modified Y-type molecular sieve preparation method provided by the present invention in step (2) comprises a rare earth-containing conventional unit cell size Y-type molecular sieve at a temperature of about 350-480 ° C and a volume of about 30-90.
  • the mixture is calcined under a water vapor atmosphere for about 4.5-7 hours for treatment.
  • the calcination temperature of step (2) is about 380-460 ° C
  • the calcination atmosphere is about 40-80 vol% steam atmosphere
  • the calcination time is about 5-6 hours.
  • the water vapor atmosphere contains from about 30 to 90% by volume water vapor and further contains one or more of other gases such as air, helium or nitrogen.
  • the unit cell constant of the reduced cell constant of the unit cell constant described in step (2) is from about 2.450 to 2.462 nm.
  • the Y-type molecular sieve obtained in the step (2) has a water content of not more than about 1% by weight, which is directly used in the contact reaction of the step (3).
  • step (2) further comprises the step of drying the calcined Y-type molecular sieve to a water content of no more than about 1% by weight.
  • the Y-type molecular sieve having a reduced unit cell constant obtained in the step (2) has a solid content of not less than about 99% by weight.
  • step (2) may further comprise an optional washing, filtering and drying step, and optionally a step of contacting the acid solution for channel cleaning to obtain an ultrastable modified Y-type molecular sieve.
  • the weight ratio of the SiCl 4 : Y type molecular sieve (on a dry basis) is preferably about 0.3-0.6:1.
  • the temperature of the reaction is preferably from about 350 to 500 °C.
  • the step (3) may further comprise a washing step, which may be carried out by a conventional washing method, and may be washed with water such as deionized water or deionized water for the purpose of removing Na + , Cl remaining in the molecular sieve. - and soluble by-products such as Al 3+ .
  • the washing condition may be: the weight ratio of the washing water to the molecular sieve may be about 5-20: 1 , usually the molecular sieve:H 2 O weight ratio is about 1:6-15, the pH is preferably about 2.5-5.0, the washing temperature. It is about 30-60 ° C.
  • the washing so that washing liquid was not detected in the washed free Na +, Cl - and the like Al 3+ ion, typically the washed zeolite Na +, Cl - and the content of each of Al 3+ ions not More than about 0.05% by weight.
  • the modified Y-type molecular sieve preparation method provided by the present invention in step (3) the obtained gas phase ultra-stable modified Y-type molecular sieve is contacted with an acid solution for reaction (this invention is called channel cleaning modification) Sex, referred to as pore cleaning, or acid treatment modification).
  • the gas phase ultra-stable modified Y-type molecular sieve is reacted with an acid solution to be a molecular sieve which is subjected to gas phase super-stable modification treatment, that is, the gas phase ultra-stable modified Y-type molecular sieve.
  • the washing condition may be: the weight ratio of the washing water to the molecular sieve may be about 5-20: 1 , usually the molecular sieve:H 2 O weight ratio is about 1:6-15, and the pH is preferably about 2.5-5.0.
  • the washing temperature is about 30-60 ° C) and optionally dried to obtain a modified Y-type molecular sieve provided by the present invention.
  • the gas phase ultra-stable modified Y-type molecular sieve obtained in the step (3) is contacted with an acid solution, wherein the weight ratio of the acid to the molecular sieve (on a dry basis) is about 0.001-0.15:1.
  • the weight ratio of water to molecular sieve on a dry basis is about 5-20:1, for example about 8-15:1, and the temperature at which the contact is reacted is It is about 60-100 ° C, for example about 80-99 ° C, preferably about 88-98 ° C.
  • the acid in the acid solution is at least one organic acid and at least one medium strength or higher mineral acid.
  • the organic acid may be one or more of oxalic acid, malonic acid, succinic acid (succinic acid), methyl succinic acid, malic acid, tartaric acid, citric acid, salicylic acid, and medium strength or higher.
  • the inorganic acid may be one or more of phosphoric acid, hydrochloric acid, nitric acid, and sulfuric acid.
  • the channel cleaning modification temperature is about 80-99 ° C, such as 85-98 ° C
  • the treatment modification time is about 60 minutes or more, for example, about 60-240 minutes or 90-180 minutes.
  • the weight ratio of the organic acid to the molecular sieve is about 0.01-0.10:1, for example, about 0.03-0.1:1 or 0.02-0.05:1; the weight ratio of the inorganic acid to the molecular sieve above medium strength is about 0.01-0.06:1.
  • the weight ratio of water to molecular sieve is preferably from about 5 to about 20:1, for example from about 8 to about 15:1.
  • the channel cleaning modification is carried out in two steps, first contacting the molecular sieve with a medium strength or higher mineral acid, wherein the weight ratio of the inorganic acid to the molecular sieve above medium strength is about 0.01- 0.05:1, for example about 0.02-0.05:1, the weight ratio of water to molecular sieve is preferably about 5-20:1, for example about 8-15:1, and the temperature of the contact reaction is about 80-99 ° C, preferably 90- The reaction time is about 60-120 minutes at 98 ° C; then the molecular sieve obtained after the treatment is contacted with an organic acid, and the weight ratio of the organic acid to the molecular sieve is about 0.02-0.1:1, for example, about 0.02-0.10: 1 or 0.05-0.08:1, the weight ratio of water to molecular sieve is preferably from about 5 to 20:1, for example from about 8 to 15:1, and the temperature of the contact reaction is from about 80 to 99 ° C, preferably from about 90 to 98 °
  • the step (4) of the method for preparing a modified Y-type molecular sieve provided by the present invention comprises subjecting the ultra-stable modified Y-type molecular sieve obtained in the step (3) to a magnesium modification treatment with a magnesium compound.
  • the ultra-stable modified Y-type molecular sieve filter cake obtained in the step (3) is directly or dried and added to a solution containing a magnesium compound such as a magnesium salt, and stirred at about 5 to 50 ° C.
  • the magnesium compound solution and the molecular sieve are used in an amount such that the weight ratio of water to molecular sieve (on a dry basis) is about 1-6, preferably about 1.5-3.5, magnesium (calculated as magnesium oxide) and molecular sieve (by dry basis).
  • the weight ratio is from about 0.001 to 0.04, preferably from about 0.005 to 0.035; preferably, the magnesium salt is magnesium chloride and/or magnesium nitrate.
  • the method for preparing the modified Y-type molecular sieve provided by the present invention comprises the following steps:
  • the NaY molecular sieve is subjected to ion exchange reaction with a rare earth solution, filtered, and washed to obtain a rare earth-containing conventional unit cell-sized Y-type molecular sieve having a reduced sodium oxide content; the ion exchange is usually stirred at a temperature of about 15-95. Exchange at a temperature of °C, preferably about 65-95 ° C for about 30-120 minutes;
  • the filter cake is dried and then calcined at about 500-650 ° C for 1-3 hours to obtain a magnesium-modified high-silicon ultra-stable Y-type molecular sieve;
  • the weight ratio of water to molecular sieve is about 1-6, preferably about 1.5-3.5, and the weight ratio of magnesium (calculated as magnesium oxide) to molecular sieve is It is about 0.001 to 0.04, preferably about 0.005 to 0.035.
  • the invention provides a catalytic cracking catalyst comprising a modified Y-type molecular sieve according to the invention or a modified Y-type molecular sieve prepared according to the process of the invention.
  • the catalytic cracking catalyst provided by the present invention comprises from about 10% to about 50% by weight, based on the weight of the catalyst, of the modified Y-type molecular sieve, about 10-40 on alumina. A weight percent alumina binder, and from about 10 to 80 weight percent clay on a dry basis.
  • the alumina binder is selected from one or more of the various forms of alumina, hydrated alumina, and aluminum sol typically used in cracking catalysts, for example, selected from gamma-alumina. , ⁇ -alumina, ⁇ -alumina, bismuth-alumina, Pseudoboemite, Boehmite, Gibbsite, Bayerite or aluminum sol One or more of them are preferably pseudoboehmite and/or aluminum sol.
  • the catalytic cracking catalyst contains from about 2 to 15% by weight, preferably from about 3 to 10% by weight, based on the dry basis, of an aluminum sol binder and/or from about 10 to 30% by weight, preferably about 15 on a dry basis. - 25% by weight of pseudo-boehmite binder.
  • the catalyst of the present invention contains from about 10% to about 50% by weight, such as from about 15% to about 45% or from about 25% to about 40% by weight, based on the weight of the catalyst.
  • the binder is preferably an alumina binder.
  • the catalytic cracking catalyst provided by the present invention comprises from about 10% to about 50% by weight, based on the weight of the catalyst, of the modified Y-type molecular sieve, about 2-40 on a dry basis. % by weight of the additive-containing alumina and about 10 to 80% by weight of the clay on a dry basis; wherein the additive-containing alumina is based on the weight of the additive-containing alumina on a dry basis Containing about 60-99.5 wt% alumina and about 0.5-40 wt% of an additive selected from one or more of the compounds containing an alkaline earth metal, a lanthanide metal, silicon, gallium, boron, and/or phosphorus elements.
  • the catalytic cracking catalyst provided by the present invention has a content of the modified Y-type molecular sieve on a dry basis of about 10 to 50% by weight, preferably about 15 to 45% by weight, for example, about 20% by weight. - 40% by weight, 25-40% by weight or 25-35 % by weight.
  • the clay is present in the catalytic cracking catalyst of the present invention in an amount of no more than about 70% by weight, preferably from about 10% to about 70% by weight, based on the weight of the catalyst.
  • the clay is selected from one or more of the clays used as a cracking catalyst component, such as kaolin, halloysite, montmorillonite, diatomaceous earth, halloysite, saponite, rector, One or more of sepiolite, attapulgite, hydrotalcite, and bentonite, which are well known to those skilled in the art.
  • the content of the clay in the catalytic cracking catalyst provided by the present invention may be from about 20 to 55% by weight, more preferably from about 30 to 50% by weight, based on the dry basis.
  • the amount of the additive-containing alumina in the catalytic cracking catalyst of the present invention is from about 2 to 40% by weight, preferably from about 2 to 2, based on the weight of the catalyst. 20% by weight.
  • the additive-containing alumina can be prepared according to the methods described in the patents CN1915486A, CN1915485A, CN1916116A, all of which are hereby incorporated by reference in entirety.
  • the additive-containing alumina contains from about 70 to 95% by weight of alumina, and from about 5 to 30% by weight of the additive on a dry basis, based on the dry weight of the additive-containing alumina.
  • the additive described therein is preferably a compound containing phosphorus and/or magnesium.
  • the additive-containing alumina is prepared by a process comprising the following steps:
  • step (3) The product of step (2) is mixed with an additive, optionally dried and optionally calcined.
  • the acid is used in the step (1) of the method for preparing the additive-containing alumina such that the weight ratio of the acid to the alumina in the pseudoboehmite is from about 0.05 to about 0.3.
  • the slurrying of step (1) results in a slurry having a pseudo-boehmite and water having a solids content of from about 10% to about 50% by weight, preferably from about 15% to about 30% by weight.
  • the acid is selected from one or more of a mineral acid and an organic acid.
  • the inorganic acid may be one or more of hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid
  • the organic acid may be formic acid or acetic acid.
  • the aging temperature in the step (2) of the method for preparing the additive-containing alumina is from room temperature to about 80 ° C, the room temperature is, for example, about 15 to 40 ° C, and the aging time is about 0.5. -4 hours.
  • the mixture of the product of the step (2) and the additive in the step (3) of the method for preparing the additive-containing alumina can be directly used for preparing a catalytic cracking catalyst, that is, the formed mixture.
  • Mixing with other components forming a catalytic cracking catalyst can also be used to prepare a catalyst after drying and calcination.
  • the drying is, for example, drying, spray drying.
  • the calcination temperature in the step (3) of the method for preparing the additive-containing alumina is about 350-800 ° C, for example about 400-600 ° C, and the calcination time is, for example, about 0.5- 8 hours.
  • the additive is selected from one or more of the group consisting of alkaline earth metals, lanthanide metals, silicon, gallium, boron, and/or phosphorus elements, including alkaline earth metals, copper-based metals, a compound of silicon, gallium, boron or phosphorus, which may be an oxide or a hydrated oxide of these elements, such as magnesium oxide, magnesium hydroxide in an alkaline earth metal, an oxidized rare earth in a lanthanide metal, a silicon oxide, a silica sol, One or more of phosphorus oxides; or a salt containing the above elements, such as a nitrate in an alkaline earth metal, a rare earth chloride in a lanthanide metal, a silicate, or a phosphate.
  • alkaline earth metals lanthanide metals
  • silicon, gallium, boron, and/or phosphorus elements including alkaline earth metals, copper-based metals, a compound of silicon, gallium,
  • the mixing is directly mixing the product obtained in the step (2); when the additive is a salt containing the element
  • the mixing is preferably carried out by first formulating the salt into an aqueous solution and then mixing with the product obtained in the step (2).
  • the mixing described in each step can be carried out by various existing methods, and the preferred method is to mix under conditions sufficient to slurry the materials (such as pseudoboehmite, additives), and the slurry is It is well known to those skilled in the art that it involves introducing a sufficient amount of water to slurry the material such that the solids content of the slurry is generally from about 10% to about 50% by weight, preferably from about 15% to about 30% by weight.
  • the catalytic cracking catalyst of the present invention comprises both an additive-containing alumina and an alumina binder, wherein the alumina binder is based on the weight of the catalyst on a dry basis.
  • the content is not more than about 32% by weight, preferably about 5 to 32% by weight.
  • the catalytic cracking catalyst comprises from about 2 to 15% by weight, preferably from about 3 to 10% by weight, based on the dry basis, of an aluminum sol binder and/or from about 10 to about 30 on a dry basis.
  • a wt% boehmite binder preferably from about 15% to about 25% by weight.
  • the total content of the alumina binder and the additive-containing alumina in the catalyst of the present invention is from about 10 to 40% by weight, for example about 20, based on the weight of the catalyst. 35 wt%, and the content of the additive-containing alumina is about 2 to 20% by weight.
  • the catalyst provided by the present invention may further contain other molecular sieves other than the modified Y-type molecular sieve, which is selected from molecular sieves suitable for use in catalytic cracking catalysts, such as zeolites having MFI structure, Beta.
  • molecular sieves suitable for use in catalytic cracking catalysts such as zeolites having MFI structure, Beta.
  • zeolites having MFI structure, Beta One or more of zeolites, other Y-type molecular sieves, and non-zeolitic molecular sieves.
  • the other molecular sieve may be present in an amount of from about 0% to about 40% by weight, such as from about 0% to about 30% by weight or from 1% to 20% by weight.
  • the other Y-type molecular sieves are present in an amount of no more than about 40% by weight on a dry basis, for example from about 1 to 40% by weight or from 0 to 20% by weight.
  • One or more of the other Y-type molecular sieves such as REY, REHY, DASY, SOY and PSRY, one or more of the MFI structure zeolites such as HZSM-5, ZRP and ZSP, said beta Zeolites such as H ⁇ , one or more of non-zeolitic molecular sieves such as aluminum phosphate molecular sieves (AlPO molecular sieves), silicoaluminophosphate molecular sieves (SAPO molecular sieves).
  • the other molecular sieves are present in an amount of no more than about 20% by weight, based on the weight of the catalyst.
  • the present invention provides a catalytic cracking catalyst comprising from about 10% to about 50% by weight, based on the weight of the catalyst, of the modified Y-type molecular sieve on a dry basis, about 2-40 on a dry basis.
  • the weight percent of the additive-containing alumina from about 0 to 40 weight percent alumina binder on a dry basis, and from about 10 to 80 weight percent clay on a dry basis.
  • the catalytic cracking catalyst comprises about 25-40% by weight of the modified Y-type molecular sieve on a dry basis, about 2-20% by weight on the dry basis of the additive-containing alumina, and a dry basis.
  • the alumina binder is about 5-30% by weight and the clay is about 30-50% by weight on a dry basis, and the total content of the alumina binder and the additive-containing alumina is about 20-35% by weight.
  • the catalyst of the present invention in addition to the modified Y-type molecular sieve, can be prepared by known methods, and these preparation methods are detailed in the patents CN1916116A, CN1362472A, CN1727442A, CN1132898C, CN1727445A, CN1098130A. All of these documents are hereby incorporated by reference in their entirety. Further, spray drying, washing, and drying are all prior art, and the present invention has no special requirements.
  • the method of preparing the catalyst comprises mixing the modified Y-type molecular sieve, the additive-containing alumina, the clay, the optional alumina binder, and water, spray drying, and washing. , filtration, drying steps.
  • the invention provides the following preferred embodiments:
  • a modified Y-type molecular sieve containing magnesium characterized in that the modified Y-type molecular sieve has an oxidized rare earth content of about 4 to 11% by weight, a magnesium oxide content of about 0.1 to 4% by weight, and a sodium oxide content. It is about 0.3-0.8% by weight, the total pore volume is about 0.33-0.39 mL/g, and the pore volume of the secondary pore having a pore diameter of 2-100 nm of the modified Y-type molecular sieve is about 10-30% of the total pore volume.
  • the unit cell constant is about 2.440-2.455 nm
  • the non-framework aluminum content in the modified Y-type molecular sieve is not more than about 20% of the total aluminum content
  • the lattice collapse temperature is not lower than about 1045 °C.
  • modified Y-type molecular sieve according to the first aspect, wherein the modified Y-type molecular sieve has a pore volume of the secondary pore having a pore diameter of 2 to 100 nm as a percentage of the total pore volume of about 15 to 25%.
  • the modified Y-type molecular sieve according to claim 1 or 2 wherein the non-framework aluminum content in the modified Y-type molecular sieve accounts for about 13-19% of the total aluminum content, and the framework silicon-aluminum ratio is The SiO 2 /Al 2 O 3 molar ratio is about 7-14.
  • modified Y-type molecular sieve according to any one of the aspects 1 to 3, wherein the modified Y-type molecular sieve has a lattice collapse temperature of about 1045-1075 °C.
  • the modified Y-type molecular sieve according to any one of the aspects 1 to 5, characterized in that, after aging at 800 ° C, atmospheric pressure, and 100% steam atmosphere for 17 hours, the relative of the modified Y-type molecular sieve
  • the crystallization retention is about 30% or more, for example, about 30-45%.
  • modified Y-type molecular sieve according to any one of the aspects 1 to 6, wherein the modified Y-type molecular sieve has a relative crystallinity of about 55 to 68%.
  • modified Y-type molecular sieve according to any one of the aspects 1-7, wherein the modified Y-type molecular sieve has an oxidized rare earth content of about 4.5 to 10% by weight and a sodium oxide content of about 0.4- 0.6% by weight, the unit cell constant is 2.442-2.451 nm, and the framework silica-alumina ratio is about 8.5-12.6.
  • the high-silicon ultra-stable Y-type molecular sieve obtained in the step (3) is subjected to a modification treatment with a magnesium compound to obtain the modified Y-type molecular sieve.
  • Item 11 The method according to Scheme 9, characterized in that the rare earth content of the rare earth-containing conventional unit cell size Y-type molecular sieve having a reduced sodium oxide content in the step (1) is about 4.5 in terms of RE 2 O 3 . 13% by weight, the sodium oxide content is about 5 to 9.5% by weight, for example about 5.5 to 9.0% by weight, and the unit cell constant is about 2.465 to 2.472 nm.
  • step (1) the NaY molecular sieve is contacted with a rare earth salt solution for ion exchange reaction according to NaY molecular sieve: rare earth salt: H 2 O
  • a mixture of NaY molecular sieve, rare earth salt and water is formed in a weight ratio of about 1:0.01 to 0.18:5-15, and stirred.
  • step (1) of contacting the NaY molecular sieve with the rare earth solution for ion exchange reaction comprises: mixing the NaY molecular sieve with the deionized water, stirring Next, adding a rare earth salt and/or a rare earth salt solution for ion exchange reaction, filtering and washing; the conditions of the ion exchange reaction are: exchange temperature is about 15-95 ° C, exchange time is about 30-120 minutes, the rare earth salt The solution is an aqueous solution of about a rare earth salt.
  • step (2) The method of any one of aspects 9-13, wherein the calcination temperature in step (2) is about 380-460 ° C, and the firing atmosphere is about 40-80% steam atmosphere.
  • the firing time is about 5-6 hours.
  • the unit cell constant of the reduced unit cell constant obtained in the step (2) has a unit cell constant of about 2.450-2.462 nm.
  • the water content in the Y-type molecular sieve having a reduced unit cell constant is not more than about 1% by weight.
  • washing method of the step (3) is washing with water
  • the washing condition is: molecular sieve: H 2 O is about 1: 6-15
  • the pH is about 2.5-5.0 and the washing temperature is about 30-60 °C.
  • the rare earth salt is rare earth chloride and/or rare earth nitrate
  • the magnesium compound is magnesium chloride and/or magnesium nitrate
  • the acid solution according to the step (3) contains an organic acid and a medium-strength inorganic acid, and a medium-strength inorganic acid and a molecular sieve.
  • the weight ratio is about 0.01-0.05:1
  • the weight ratio of the organic acid to the molecular sieve is about 0.02-0.10:1
  • the weight ratio of water to molecular sieve is about 5-20:1
  • the contact temperature is about 80-99 °C.
  • the contact time is about 1-4 hours.
  • the contacting with the acid solution in the step (3) is first contacting with a medium-strength inorganic acid and then contacting the organic acid, and
  • the medium-strength inorganic acid is contacted under the condition that the weight ratio of the inorganic acid to the molecular sieve is about 0.01-0.05:1, the weight ratio of water to molecular sieve is about 5-20:1, and the contact time is about 60- 120 minutes, the contact temperature is about 90-98 ° C;
  • the organic acid is selected from the group consisting of oxalic acid, malonic acid, succinic acid, methyl succinic acid, malic acid, tartaric acid, citric acid, and salicyl
  • the medium or higher inorganic acid is selected from one or more of phosphoric acid, hydrochloric acid, nitric acid, and sulfuric acid.
  • the modifying treatment with the magnesium compound according to the step (4) comprises: adding the molecular sieve to the solution containing the magnesium salt at about 5 Stir at -50 ° C for about 10 - 120 minutes, then add ammonia water, adjust the pH of the solution to about 7.5-10, stir evenly, filter, rinse with water, dry the filter cake, and roast at 500-650 ° C At least 1 hour, a magnesium-modified high-silicon ultra-stable Y-type molecular sieve is obtained; wherein the mixture of the magnesium salt-containing solution and the molecular sieve has a weight ratio of water to molecular sieve of about 1-6, preferably about 1.5-3.5, for oxidation
  • the weight ratio of the magnesium salt to the molecular sieve is from about 0.001 to about 0.04, preferably from about 0.005 to about 0.035.
  • a catalytic cracking catalyst comprising about 10-50% by weight of modified Y-type molecular sieve on a dry basis, about 2-40% by weight on a dry basis of additive-containing alumina, and about 10 on a dry basis. - 80% by weight of clay; wherein, in the dry basis, the additive-containing alumina contains about 60 to 99.5% by weight of alumina and 0.5 to 40% by weight of an additive selected from the group consisting of alkaline earth metals, One or more of a compound of a metal, silicon, gallium, boron or phosphorus element, the modified Y-type molecular sieve containing the modified Y-type molecular sieve according to any one of the aspects 1-8 or The modified Y-type molecular sieve prepared according to the method described in any one of Schemes 9-21.
  • step (1) (2) aging the mixed slurry of step (1) at a temperature of from room temperature to about 90 ° C for about 0 to 24 hours;
  • step (3) Mixing the product of step (2) with an additive, optionally drying and optionally calcining.
  • a catalytic cracking catalyst comprising about 10-50% by weight of a modified Y-type molecular sieve containing magnesium, about 10-40% by weight of an alumina binder based on alumina, and a dry basis Approximately 10 to 80% by weight of clay; the magnesium-containing modified Y-type molecular sieve has an oxidized rare earth content of about 4 to 11% by weight, a magnesium oxide content of about 0.1 to 4% by weight, and a sodium oxide content of about 0.3- 0.8% by weight, the total pore volume is about 0.33-0.39mL/g, and the pore volume of the secondary pore having a pore diameter of 2-100 nm of the modified Y-type molecular sieve accounts for about 10-30% of the total pore volume, the unit cell
  • the constant is about 2.440-2.455 nm
  • the non-framework aluminum content in the modified Y-type molecular sieve is not more than about 20% of the total aluminum content
  • the lattice collapse temperature is not
  • a catalytic cracking catalyst comprising about 10-50% by weight of a modified Y-type molecular sieve containing magnesium, about 2-40% by weight of alumina containing an additive on a dry basis, and a dry basis From about 10 to 80% by weight of the clay; wherein the additive-containing alumina contains from about 60 to 99.5% by weight of alumina and from about 0.5 to 40% by weight of the additive, based on the dry basis, the additive being selected from the group consisting of One or more of alkaline earth metal, lanthanide metal, silicon, gallium, boron or phosphorus element, the magnesium-containing modified Y-type molecular sieve has an oxidized rare earth content of about 4 to 11% by weight, and a magnesium oxide content It is about 0.1-4% by weight, the sodium oxide content is about 0.3-0.8% by weight, the total pore volume is about 0.33-0.39 mL/g, and the pore volume of the secondary pore of the modified Y-type molecular sieve
  • the percentage of the total pore volume is about 10-30%, the unit cell constant is about 2.440-2.455 nm, and the percentage of the non-framework aluminum content in the modified Y-type molecular sieve to the total aluminum content is not more than about 20%, and the lattice collapses.
  • the temperature is not lower than about 1045 ° C.
  • NaY molecular sieves were supplied by Qilu Branch of Sinopec Catalyst Co., Ltd., with a sodium oxide content of 13.5% by weight and a framework silica-alumina ratio (SiO 2 /Al 2 O 3 molar ratio) of 4.6.
  • the cell constant is 2.470nm and the relative crystallinity is 90%; the rare earth chloride and rare earth nitrate are chemically pure reagents produced by Beijing Chemical Plant; the pseudo-boehmite is an industrial product produced by Shandong Aluminum Plant with a solid content of 61% by weight; kaolin The kaolin clay for cracking catalyst produced by Suzhou China Kaolin Company has a solid content of 76% by weight; the aluminum sol is supplied by Qilu Branch of Sinopec Catalyst Co., Ltd., wherein the alumina content is 21% by weight.
  • SiO 2 /Al 2 O 3 (2.5858-a 0 ) ⁇ 2/(a 0 -2.4191)
  • a 0 is a unit cell constant and the unit is nm.
  • the total silicon-aluminum ratio of the molecular sieve is calculated according to the content of Si and Al elements determined by X-ray fluorescence spectrometry.
  • the ratio of the skeleton silicon to aluminum ratio determined by the XRD method and the total silicon to aluminum ratio determined by XRF can calculate the ratio of the skeleton Al to the total Al, and further Calculate the ratio of non-framework Al to total Al.
  • the crystal structure collapse temperature was determined by differential thermal analysis (DTA).
  • the determination method of the secondary pore volume is as follows: according to the RIPP151-90 standard method (see “Petrochemical Analysis Method (RIPP Test Method)", Yang Cuiding et al., Science Press, September 1990 The first edition, pp. 424-426) determines the total pore volume of the molecular sieve according to the adsorption isotherm, and then determines the micropore volume of the molecular sieve from the adsorption isotherm according to the T mapping method, and subtracts the micropore volume from the total pore volume.
  • RIPP151-90 standard method see “Petrochemical Analysis Method (RIPP Test Method)", Yang Cuiding et al., Science Press, September 1990 The first edition, pp. 424-426) determines the total pore volume of the molecular sieve according to the adsorption isotherm, and then determines the micropore volume of the molecular sieve from the adsorption isotherm according to the T mapping method, and subtracts the micropore volume from the total pore volume
  • the molar ratio of the SiO 2 /Al 2 O 3 on the surface of the molecular sieve was determined as follows: XPS photoelectron spectroscopy was used to determine the mass percentage of Si and Al atoms on the surface of the molecular sieve, and then the SiO on the surface of the molecular sieve was calculated. 2 / Al 2 O 3 molar ratio. XPS photoelectron spectroscopy was performed on a Thermo Scientific ESCALab 250 X-ray photoelectron spectrometer. The excitation source is monochromated AlK ⁇ X-ray with an energy of 1486.6 eV and a power of 150 W.
  • the permeability used for narrow scanning is 30 eV.
  • the basic vacuum at the time of analysis was approximately 6.5 x 10 -10 mbar. Binding can be corrected with C1s peaks (284.8 eV) of alkyl carbon or contaminated carbon.
  • the filter cake was dried and placed in a muffle furnace and calcined at 590 ° C for 2 hours to obtain a modified Y-type molecular sieve containing magnesium, which was designated as SZ2, and its physicochemical properties are shown in Table 1.
  • the filter cake was dried, placed in a muffle furnace and calcined at 580 ° C for 2 hours to obtain a modified Y-type molecular sieve containing magnesium, which was designated as SZ3, and its physicochemical properties are listed in Table 1.
  • the filter cake was dried and placed in a muffle furnace and calcined at 580 ° C for 2 hours to obtain a magnesium-containing ultrastable Y type molecular sieve, which was designated as DZ3, and its physicochemical properties are listed in Table 1.
  • the filter cake was dried and placed in a muffle furnace and calcined at 580 ° C for 2 hours to obtain a magnesium-containing ultrastable Y type molecular sieve, which was designated as DZ4, and its physicochemical properties are shown in Table 1.
  • Examples 4-6 illustrate the catalytic cracking activity and stability of the modified Y-type molecular sieve of the present invention prepared in Examples 1-3.
  • the modified Y-type molecular sieves SZ1, SZ2 and SZ3 prepared in Examples 1-3 were respectively prepared as catalysts, and the catalyst numbers were sequentially SC1, SC2 and SC3. After the catalyst was aged at 800 ° C, 100% steam for 4 hours or 17 hours, the light oil micro-reaction activity of the catalyst was evaluated, and the evaluation results are shown in Table 3.
  • the obtained catalyst contained 30% by weight of the modified Y-type molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • Light oil micro-reaction activity (MA) (gasoline production below 216 ° C + gas production + coke production) / total amount of feed ⁇ 100%.
  • Comparative Examples 5-8 illustrate the catalytic cracking activity and stability of the ultrastable Y-type molecular sieve prepared in Comparative Examples 1-4.
  • the ultrastable Y type molecular sieves DZ1, DZ2, DZ3 and DZ4 prepared in Comparative Examples 1-4 were each mixed with pseudoboehmite, kaolin, water and aluminum sol, and spray-dried to prepare
  • the microsphere catalyst the composition ratio of each catalyst was the same as that of Example 4-6, and the content of the ultrastable Y type molecular sieve in the catalyst was 30% by weight.
  • the catalyst numbers are in turn DC1, DC2, DC3 and DC4.
  • the evaluation methods are shown in Examples 4-6, and the evaluation results are shown in Table 3.
  • Examples 7-9 illustrate the catalytic cracking reaction performance of the modified Y-type molecular sieve of the present invention prepared in Examples 1-3.
  • the SC1, SC2 and SC3 catalysts were aged at 800 ° C and 100% steam for 17 hours, and their catalytic cracking performance was evaluated on a small fixed fluidized bed reactor (ACE).
  • ACE small fixed fluidized bed reactor
  • the cracked gas and product oil were collected separately and analyzed by gas chromatography. analysis.
  • the catalyst loading was 9 g
  • the reaction temperature was 500 ° C
  • the weight hourly space velocity was 16 h -1
  • the weight ratio of the agent oil was shown in Table 5.
  • the raw material properties of the ACE experiment are shown in Table 4, and the evaluation results are shown in Table 5.
  • Comparative Examples 9-12 illustrate the catalytic cracking performance of the ultrastable Y-type molecular sieve prepared in Comparative Examples 1-4.
  • the DC1, DC2, DC3 and DC4 catalysts were aged for 17 hours at 800 ° C and 100% steam, and their catalytic cracking performance was evaluated on a small fixed fluidized bed reactor (ACE).
  • the evaluation methods are shown in Examples 7-9.
  • the raw material properties of the ACE experiment are shown in Table 4, and the evaluation results are shown in Table 5.
  • the modified Y-type molecular sieve provided by the invention has the following advantages: the sodium oxide content is low, the non-framework aluminum content of the molecular sieve is relatively high, and the molecular sieve has a pore diameter of 2.0-100 nm. The pore volume of the pores is higher than the total pore volume percentage.
  • the unit cell constant of the molecular sieve is small and the rare earth content is high, the crystallinity value measured is high and the thermal stability is high.
  • the modified Y-type molecular sieve provided by the present invention has high relative crystallinity after being exposed to severe conditions at 800 ° C for 17 hours in a bare state, indicating that the modified Y-type molecular sieve provided by the present invention Has high hydrothermal stability.
  • the catalytic cracking catalyst prepared by using the modified Y-type molecular sieve provided by the present invention as an active component has higher hydrothermal stability and has significantly lower coke selectivity, and has Significantly higher liquid recovery, light oil yield is significantly higher, diesel yield is higher, diesel-to-steam ratio is higher, and heavy oil conversion activity is higher.
  • Examples 4A-9A are examples of catalytic cracking catalysts comprising modified Y-type molecular sieves and modified matrices in accordance with the present invention.
  • the prepared kaolin slurry is further added with a slurry of the prepared additive-containing alumina, and beaten; then, 1800 g (dry basis) of SZ1 molecular sieve prepared in Example 1 and REY molecular sieve [Zilu Branch of Sinopec Catalyst Co., Ltd.) are added, Rare earth content (as RE 2 O 3 ) 18% by weight, silicon to aluminum ratio (SiO 2 /Al 2 O 3 molar ratio) 4.6] 300 g (dry basis), beating. Then, spray drying was carried out at an inlet temperature of 650 ° C and an exhaust gas temperature of 180 ° C, washed with deionized water, and dried to obtain a catalyst, which was designated as SC1A.
  • 394 g of pseudo-boehmite having an alumina content of 61% by weight was added to 1958 g of deionized water, and 49 ml of chemically pure hydrochloric acid (containing 36% by weight of HCl) was added under stirring, followed by aging at 70 ° C for 1 hour. Then, 288 g of an aqueous solution of magnesium chloride hexahydrate (manufactured by Beijing Shuanghuan Reagent Co., Ltd.) (164 g of magnesium chloride hexahydrate) was added and beaten to obtain a slurry of alumina containing the additive.
  • 1142 g of an aluminum sol having an alumina content of 21% by weight was added to 1001 g of deionized water, and 2336 g of kaolin having a solid content of 76% by weight was added thereto with stirring, and beaten for 60 minutes to obtain a kaolin slurry.
  • 1180 g of pseudo-boehmite having an alumina content of 61% by weight was added to 5876 g of deionized water, 128 ml of hydrochloric acid (chemically pure, concentration 36% by weight) was added under stirring, and the prepared kaolin was added after aging for 60 minutes.
  • Example 2 Slurry, beaten; a slurry of the prepared additive-containing alumina was further added, and beaten; then, 1824 g (dry basis) of the SZ2 molecular sieve prepared in Example 2 was added and beaten. Then, spray drying and washing treatment (the same as in Example 4A) were carried out, and drying was carried out to obtain a catalyst, which was designated as SC2A.
  • the catalyst was obtained by drying, and it was recorded as DC1A.
  • the obtained DC1A catalyst contained 30% by weight of DZ1 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • the DZ2 molecular sieve prepared by the comparative example 2, the kaolin, the water, the pseudo-boehmite binder and the aluminum sol are slurried according to the preparation method of the conventional catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst, and the prepared catalytic cracking catalyst is prepared. It is referred to as DC2A (refer to the catalyst preparation method of Comparative Example 5A).
  • the obtained DC2A catalyst contained 30% by weight of DZ2 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • the DZ3 molecular sieve prepared by the comparative example 3, the kaolin, the water, the pseudo-boehmite binder and the aluminum sol are slurried according to the preparation method of the conventional catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst, and the prepared catalytic cracking catalyst is prepared. It is referred to as DC3A (refer to the catalyst preparation method of Comparative Example 5A).
  • the obtained DC3A catalyst contained 30% by weight of DZ3 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • a catalyst was prepared according to the method of Example 5A except that the molecular sieve DZ3 prepared in Comparative Example 3 was used instead of the molecular sieve SZ2 used therein to obtain a catalyst DC4A.
  • the SC1A, SC2A and SC3A catalysts were aged at 800 ° C, 100% water vapor for 17 hours, and their catalytic cracking performance was evaluated on a small fixed fluidized bed reactor (ACE).
  • ACE small fixed fluidized bed reactor
  • the cracked gas and product oil were collected separately and analyzed by gas chromatography. analysis.
  • the catalyst loading was 9 g
  • the reaction temperature was 500 ° C
  • the weight hourly space velocity was 16 h -1
  • the weight ratio of the agent oil was shown in Table 5A
  • the properties of the raw materials of the ACE experiment are shown in Table 4, and the evaluation results are shown in Table 5A.
  • the DC1A, DC2A, DC3A and DC4A catalysts were aged at 800 ° C, 100% water vapor atmosphere for 17 hours, and their catalytic cracking reaction performance was evaluated on a small fixed fluidized bed reactor (ACE).
  • ACE small fixed fluidized bed reactor
  • the evaluation method is shown in Example 7A- 9A, the raw material properties of the ACE experiment are shown in Table 4, and the evaluation results are shown in Table 5A.
  • the catalytic cracking catalyst provided by the invention has significantly lower coke selectivity, has a significantly higher liquid recovery, has a lighter oil yield, a higher diesel yield, a higher diesel to steam ratio, and a heavy oil.
  • the conversion activity is higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Nanotechnology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

公开了一种含镁的改性Y型分子筛、其制备方法和包含它的催化剂,该改性Y型分子筛的氧化稀土含量为约4-10重量%,氧化镁含量为约0.1-4重量%,氧化钠含量为约0.3-0.8重量%,总孔体积为约0.33-0.39mL/g,该改性Y型分子筛的孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约10-30%,晶胞常数为约2.440-2.455nm,该改性Y型分子筛中非骨架铝含量占总铝含量的百分比不高于约20%,晶格崩塌温度不低于约1045℃。该改性Y型分子筛可用于制备催化裂化催化剂,用于重油催化裂化时,具有更高的重油转化活性和较低的焦炭选择性,以及更高的柴油收率、轻质油收率和总液收。

Description

含镁的改性Y型分子筛、其制备方法及包含它的催化剂 技术领域
本发明涉及一种含镁的高稳定性的改性Y型分子筛、其制备方法及包含它的催化剂。
背景技术
含镁的高硅Y型分子筛,用于重油转化可增产柴油。目前,工业上制取高硅Y型分子筛主要采用水热法,其中将NaY沸石进行多次稀土离子交换和多次高温水热焙烧,可以制备出含稀土的高硅Y型分子筛,这也是制备高硅Y型分子筛最为常规的方法。但是,水热法制备含稀土高硅Y型分子筛的不足之处在于:由于过于苛刻的水热处理条件会破坏分子筛的结构,不能得到硅铝比很高的Y型分子筛;骨架外铝的产生虽对提高分子筛的稳定性和形成新的酸中心有益,但过多的骨架外铝降低了分子筛的选择性;另外,分子筛中的许多脱铝空穴不能及时被骨架上迁移出的硅补上,往往造成分子筛的晶格缺陷,分子筛的结晶保留度较低。因此,水热法制备出的含稀土高硅Y型分子筛的热及水热稳定性较差,表现在其晶格崩塌温度低,经水热老化后其结晶度保留率及比表面积保留率低。
美国专利US 4,584,287和US 4,429,053中,将NaY沸石先用稀土离子交换而后进行水蒸气处理,所述方法由于稀土离子的屏蔽作用和支撑使水蒸汽处理过程中分子筛的铝脱除比较困难,分子筛在水蒸汽处理前的晶胞常数增大到2.465-2.475nm,而处理后为2.420-2.464nm,降低晶胞常数所需温度较高(593-733℃)。
美国专利US 5,340,957和US 5,206,194提供的方法中,原料NaY沸石的SiO 2/Al 2O 3比为6.0,成本较高。所述方法也是将NaY进行稀土交换后,再进行水热处理,同样存在前述美国专利US 4,584,287和US 4,429,053的缺点。
气相化学法是Beyer和Mankui在1980年首先报道的制备高硅分子筛的另一种重要方法。气相化学法一般采用氮气保护下的SiCl 4与无水NaY沸石在一定温度下进行反应。整个反应过程充分利用SiCl 4提供的外来Si源,通过同晶取代一次完成脱铝和补硅反应。美国专利US  4,273,753、US 4,438,178和中国专利公开CN1382525A,CN1194941A,CN1683244A公开了利用SiCl 4气相化学脱铝制超稳Y型分子筛的方法。但是现有气相超稳分子筛的重油裂化活性不高,现有技术没有提出进一步提高气相超稳分子筛重油裂化活性的方法。
此外,液相(NH 4) 2SiF 6抽铝补硅法也是一种制备超稳分子筛的主要方法,该方法的原理是在溶液中利用(NH 4) 2SiF 6中的Si去取代分子筛骨架中的Al原子,进而生成硅铝比提高的超稳分子筛。(NH 4) 2SiF 6抽铝补硅法的特点是可以制备骨架SiO 2/Al 2O 3摩尔比为10-30或更高的超稳分子筛,热稳定性高,并且不存在非骨架铝或Al 2O 3碎片,相对结晶度较高。但是,由于扩散的关系,使得(NH 4) 2SiF 6脱Al不均匀而形成表面Al缺乏,故称“表面富硅”。另外,(NH 4) 2SiF 6在脱铝过程中形成的难溶物AlF 3和残留的氟硅酸盐会影响分子筛的水热稳定性,并且(NH 4) 2SiF 6会污染环境,所制备的超稳分子筛中缺少二级孔。
因此,现有含镁的高硅Y型分子筛的重油裂化活性不高,柴油选择性也不高。
发明内容
本发明的目的是提供一种适用于重质油催化裂化加工的含镁的高稳定性的改性Y型分子筛、其制备方法及包含它的催化剂,该改性Y型分子筛具有更高的重油裂化活性和更好的柴油选择性。
一方面,本发明提供了一种含镁的改性Y型分子筛,该改性分子筛的氧化稀土含量为约4-11重量%,氧化镁含量为约0.1-4重量%,氧化钠含量为约0.3-0.8重量%,总孔体积为约0.33-0.39mL/g,该改性Y型分子筛孔径为2-100nm的二级孔的孔体积占该改性Y型分子筛总孔体积的百分比为约10-30%,晶胞常数为约2.440-2.455nm,该改性Y型分子筛中非骨架铝含量占总铝含量的百分比不高于约20%,晶格崩塌温度不低于约1045℃。
另一方面,本发明提供了含镁的改性Y型分子筛的制备方法,该方法包括以下步骤:
(1)将NaY分子筛与稀土盐溶液接触进行离子交换反应,得到氧化钠含量降低的含稀土的Y型分子筛;
(2)将步骤(1)得到的Y型分子筛在约350-480℃的温度和约 30-90体积%水蒸汽气氛下焙烧约4.5-7小时,得到晶胞常数降低的Y型分子筛;
(3)将步骤(2)得到的Y型分子筛与四氯化硅气体接触反应,得到高硅超稳Y型分子筛,所述接触反应在如下条件下进行:SiCl 4∶以干基计的Y型分子筛的重量比为约0.1-0.7∶1、反应温度为约200-650℃、反应时间为约10分钟至约5小时;以及
(4)将步骤(3)得到的高硅超稳Y型分子筛用镁化合物进行改性处理,以得到所述含镁的改性Y型分子筛。
再一方面,本发明提供了包含根据本发明的改性Y型分子筛或者按照本发明方法制备得到的改性Y型分子筛的催化裂化催化剂。
在一优选实施方式中,以催化剂的重量为基准,所述催化剂含有以干基计约10-50重量%的所述改性Y型分子筛、以氧化铝计约10-40重量%的氧化铝粘结剂,和以干基计约10-80重量%的粘土。
在一优选实施方式中,以催化剂的重量为基准,所述催化剂含有以干基计约10-50重量%的所述改性Y型分子筛、以干基计约2-40重量%的含添加剂的氧化铝和以干基计约10-80重量%的粘土;其中,以所述含添加剂的氧化铝重量为基准,以干基计,所述含添加剂的氧化铝中含有约60-99.5重量%的氧化铝和约0.5-40重量%的添加剂,所述添加剂选自含有碱土金属、镧系金属、硅、镓、硼和/或磷元素的化合物中的一种或多种。
本发明提供的含镁的改性Y型分子筛的热稳定性和水热稳定性高,用于重油催化裂化时,较现有Y型分子筛具有更高的重油转化活性和较低的焦炭选择性,具有更高的柴油收率和轻质油收率和总液收。
本发明提供的含镁的改性Y型分子筛制备方法,可以制备高结晶度、高热稳定性及高水热稳定性的具有一定二级孔结构的含镁的高硅超稳Y型分子筛,该分子筛中铝分布均匀,非骨架铝含量少。该Y型分子筛用于重油催化裂化时,焦炭选择性好,重油裂化活性高,可以提高分子筛用于重油催化裂化时的柴油收率、轻质油收率和总液收。
本发明提供的改性Y型分子筛可用作催化裂化催化剂的活性组元,用于重油或劣质油转化。以此分子筛为活性组元的催化裂化催化剂具有较强的重油转化能力,较高的稳定性、较好的焦炭选择性及较高的轻质油收率及柴油收率。
本发明提供的催化裂化催化剂,较现有基于含镁Y型分子筛的裂化催化剂具有更高的活性和水热稳定性,用于重油催化裂化时,具有更高的重油转化活性和较低的焦炭选择性,具有更高的柴油收率,更高的轻质油收率和总液收。
本发明催化剂适用于各种烃油的催化裂化,尤其适用于重油催化裂化。例如,所述烃油包括但不限于常压渣油、减压渣油、减压瓦斯油、常压瓦斯油、直馏瓦斯油、丙烷轻/重脱沥青油和焦化瓦斯油。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
本发明中涉及的RIPP试验方法具体可参见《石油化工分析方法(RIPP试验方法)》,杨翠定等编,科学出版社,1990年9月第一版,第263-268、412-415和424-426页,ISBN:7-03-001894-X,其经此引用全文并入本文。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
在本文中,术语“Y型分子筛”和“Y型沸石”可互换使用,且术语“NaY分子筛”和“NaY沸石”也可互换使用。
在本文中,术语“二级孔”是指分子筛中孔径(指直径)为2-100nm的孔。
在本文中,术语“中等强度以上的无机酸”是指酸强度在HNO 2(亚硝酸)以上的无机酸,包括但不限于HClO 4(高氯酸)、HI(碘化氢)、HBr(氢溴酸)、HCl(盐酸)、HNO 3(硝酸)、H 2SeO 4(硒酸)、H 2SO 4(硫酸)、HClO 3(氯酸)、H 2SO 3(亚硫酸)、H 3PO 3(磷酸)和HNO 2(亚硝酸)等等。
在本文中,术语“稀土溶液”和“稀土盐溶液”可互换使用,优选 为稀土盐的水溶液。
在本文中,表述“常规晶胞大小的Y型分子筛”表示该Y型分子筛的晶胞常数在常规NaY分子筛的晶胞常数的范围内,优选在约2.465nm至约2.472nm的范围内。
在本文中,术语“常压”表示压力为约1atm。
在本文中,物质的干基重量是指该物质在800℃焙烧1小时得到的固体产物重量。
在第一方面,本发明提供了一种含镁的改性Y型分子筛,该改性分子筛的氧化稀土含量为约4-11重量%,氧化镁含量为约0.1-4重量%,氧化钠含量为约0.3-0.8重量%,总孔体积为约0.33-0.39mL/g,该改性Y型分子筛孔径为2-100nm的二级孔的孔体积占该改性Y型分子筛总孔体积的百分比为约10-30%,晶胞常数为约2.440-2.455nm,该改性Y型分子筛中非骨架铝含量占总铝含量的百分比不高于约20%,晶格崩塌温度不低于约1045℃。
在一优选实施方式中,本发明提供的改性Y型分子筛的晶格崩塌温度不低于约1045℃,优选地,所述改性Y型分子筛的晶格崩塌温度为约1045-1075℃,例如约1050-1070℃。
在一优选实施方式中,本发明提供的改性Y型分子筛的氧化镁含量为约0.5-3重量%。
在一优选实施方式中,本发明提供的改性Y型分子筛的晶胞常数为约2.440-2.455nm,例如为2.441-2.453nm或2.442-2.451nm。
在一优选实施方式中,本发明提供的改性Y型分子筛为高硅Y型分子筛,其骨架硅铝比(SiO 2/Al 2O 3摩尔比)为约7.3-14,例如为约7.8-13.2或8.5-12.6。
在一优选实施方式中,本发明提供的改性Y型分子筛中非骨架铝含量占总铝含量的百分比不高于约20%,例如为约13-19重量%。
在一优选实施方式中,本发明提供的改性Y型分子筛在800℃、常压、100体积%水蒸汽气氛下老化17小时后的结晶保留度为约30%以上,例如为约30-45%、32-40%、35-44%或38-43%。
在一优选实施方式中,本发明提供的改性Y型分子筛的相对结晶度为不低于约55%,优选地,所述改性Y型分子筛的相对结晶度为约55-68%,例如为约58-66%。
在一优选实施方式中,本发明提供的改性Y型分子筛的比表面积为约600-670m 2/g,例如为约610-660m 2/g、620-655m 2/g或630-650m 2/g。
在一优选实施方式中,本发明提供的改性Y型分子筛的总孔体积为约0.33-0.39mL/g,例如为约0.35-0.39mL/g或0.35-0.37mL/g。
在一优选实施方式中,本发明提供的改性Y型分子筛的孔径为2.0-100nm的二级孔的孔体积占总孔体积的百分比为约10-30%,例如为约15-25%、17-22%或20-28%。
在一优选实施方式中,本发明提供的改性Y型分子筛中以RE 2O 3计的氧化稀土含量为约4-11重量%,优选为约4.5-10重量%,例如为约5-9重量%。
在一优选实施方式中,本发明提供的改性Y型分子筛的氧化钠含量不超过约0.8%,可以为约0.3-0.8重量%,例如为约0.5-0.80重量%或0.4-0.6重量%。
在某些优选实施方式中,本发明提供的改性Y型分子筛的氧化稀土含量为约4-11重量%,优选为约4.5-10重量%;氧化镁含量为约0.1-4重量%,例如约0.5-3重量%;氧化钠含量为约0.3-0.8重量%,优选为约0.35-0.75重量%,例如约0.4-0.6重量%;总孔体积为约0.33-0.39mL/g,孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约10-30%,优选约15-25%;晶胞常数为约2.440-2.455nm,骨架硅铝比(SiO 2/Al 2O 3摩尔比)为约7-14,分子筛中非骨架铝含量占总铝含量的百分比不高于约20%,优选为约13-19,相对结晶度不低于约55%,例如为约55-68%,晶格崩塌温度为约1045-1075℃,例如约1047-1065℃。
在一优选实施方式中,本发明提供的改性Y型分子筛在制备过程中包括将Y型分子筛与四氯化硅接触进行脱铝补硅反应的步骤。
在某些具体实施方式中,本发明提供的改性Y型分子筛是非“表面富硅”的,其表面SiO 2/Al 2O 3摩尔比与骨架SiO 2/Al 2O 3摩尔比的比值小于或等于1,通常小于1。
在第二方面,本发明提供了一种含镁的改性Y型分子筛的制备方法,其包括以下步骤:
(1)将NaY分子筛与稀土溶液接触进行离子交换反应,得到氧化钠含量降低的含稀土的Y型分子筛;
(2)将步骤(1)得到的Y型分子筛进行改性处理,得到晶胞常 数降低的Y型分子筛,所述改性处理为将所述Y型分子筛在约350-480℃的温度和含约30-90体积%水蒸汽的气氛(也称30-90体积%水蒸汽气氛或称30-90%水蒸汽)下焙烧约4.5-7小时;
(3)将步骤(2)得到的Y型分子筛与SiCl 4气体在温度为约200-650℃的条件下接触反应,其中优选地,SiCl 4∶以干基计的Y型分子筛的重量比为约0.1-0.7∶1,反应时间为约10分钟至约5小时;以及
(4)将步骤(3)得到的超稳改性Y型分子筛与镁化合物接触进行镁改性处理,以得到所述含镁的改性Y型分子筛。
在某些优选实施方式中,本发明提供的改性Y型分子筛制备方法在步骤(1)中将NaY分子筛与稀土溶液进行离子交换反应,以得到氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛。所述NaY分子筛,可以商购或者按照现有方法制备,在一优选实施方式中,所述NaY分子筛的晶胞常数为约2.465-2.472nm,骨架硅铝比(SiO 2/Al 2O 3摩尔比)为约4.5-5.2,相对结晶度为约85%以上,例如为约85-95%,氧化钠含量为约13.0-13.8重量%。
在一优选实施方式中,步骤(1)所述的NaY分子筛与稀土溶液进行离子交换反应,交换温度优选为约15-95℃,例如为约65-95℃;交换时间优选为约30-120分钟,例如约45-90分钟;NaY分子筛(以干基计)∶稀土盐(以RE 2O 3计)∶H 2O为约1∶0.01-0.18∶5-15重量比。
在一优选实施方式中,所述的NaY分子筛与稀土溶液进行离子交换反应包括,按照NaY分子筛∶稀土盐∶H 2O为约1∶0.01-0.18∶5-15的重量比将NaY分子筛、稀土盐和水形成混合物,在约15-95℃、例如约65-95℃搅拌,优选搅拌约30-120分钟进行稀土离子与钠离子的交换。
在一优选实施方式中,将NaY分子筛、稀土盐和水形成混合物,可以将NaY分子筛和水形成浆液,然后在所述的浆液中加入稀土盐和/或稀土盐的水溶液,所述的稀土溶液为稀土盐的溶液,所述的稀土盐优选为氯化稀土和/或硝酸稀土。所述的稀土例如La、Ce、Pr、Nd以及混合稀土中的一种或多种。优选地,所述的混合稀土中含有La、Ce、Pr和Nd中的一种或多种,或还含有除La、Ce、Pr和Nd以外的稀土中的至少一种。
在一优选实施方式中,步骤(1)还包括洗涤步骤,其目的是洗去交换出的钠离子,例如,可以使用去离子水或脱阳离子水洗涤。
在一优选实施方式中,步骤(1)得到的氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛的稀土含量以RE 2O 3计为约4.5-13重量%,例如为约5.5-13重量或5.5-12重量%,氧化钠含量不超过约9.5重量%,例如为约5.5-9.5重量%,晶胞常数为约2.465-2.472nm。
在某些优选实施方式中,本发明提供的改性Y型分子筛制备方法在步骤(2)中将含稀土的常规晶胞大小的Y型分子筛在约350-480℃的温度和约30-90体积%水蒸汽气氛下焙烧约4.5-7小时进行处理。
在一优选实施方式中,步骤(2)的焙烧温度为约380-460℃,焙烧气氛为约40-80体积%水蒸汽气氛,焙烧时间为约5-6小时。
在一优选实施方式中,所述的水蒸汽气氛中含有约30-90体积%水蒸气,且还含有其它气体,例如空气、氦气或氮气中的一种或多种。
在一优选实施方式中,步骤(2)中所述的晶胞常数降低的Y型分子筛的晶胞常数为约2.450-2.462nm。
在一优选实施方式中,步骤(2)得到的Y型分子筛的水含量不超过约1重量%,将其直接用于步骤(3)的接触反应。
在另一优选实施方式中,步骤(2)进一步包括对焙烧得到的Y型分子筛进行干燥,使其水含量不超过约1重量%的步骤。
在一优选实施方式中,步骤(2)所得晶胞常数降低的Y型分子筛的固含量不低于约99重量%。
在一优选实施方式中,步骤(2)还可包括任选的洗涤、过滤和干燥步骤,以及任选的与酸溶液接触进行孔道清理的步骤,以得到超稳改性Y型分子筛。
在某些优选实施方式中,本发明提供的改性Y型分子筛制备方法的步骤(3)中,SiCl 4∶Y型分子筛(以干基计)的重量比优选为约0.3-0.6∶1,所述反应的温度优选为约350-500℃。
在一优选实施方式中,步骤(3)还可以包括洗涤步骤,洗涤方法可以采用常规的洗涤方法,可用水洗涤例如脱阳离子水或去离子水洗涤,目的是除去分子筛中残存的Na +,Cl -及Al 3+等可溶性副产物。例如,洗涤条件可以为:洗涤水与分子筛的重量比可以为约5-20∶1,通常分子筛∶H 2O重量比为约1∶6-15,pH值优选为约2.5-5.0,洗涤温度为约30-60℃。优选地,所述洗涤,使得洗涤后的洗涤液中检测不出游离的Na +,Cl -及Al 3+等离子,通常洗涤后的分子筛中Na +,Cl -及Al 3+ 离子各自的含量不超过约0.05重量%。
在一优选实施方式中,本发明提供的改性Y型分子筛制备方法在步骤(3)中,将得到的气相超稳改性Y型分子筛与酸溶液接触进行反应(本发明称为孔道清理改性,简称孔道清理,或称酸处理改性)。
在进一步优选的实施方式中,所述的将气相超稳改性Y型分子筛与酸溶液接触进行反应,是将经过气相超稳改性处理的分子筛即所述的气相超稳改性Y型分子筛与酸溶液混合,并反应一段时间,然后将反应后的分子筛与酸溶液分离例如经过过滤分离,然后经任选的洗涤(洗涤是除去分子筛中残存的Na +,Cl -及Al 3+等可溶性副产物,例如洗涤条件可以为:洗涤水与分子筛的重量比可以为约5-20∶1,通常分子筛∶H 2O重量比为约1∶6-15,pH值优选为约2.5-5.0,洗涤温度为约30-60℃)和任选的干燥,得到本发明提供的改性Y型分子筛。
在进一步优选的实施方式中,所述步骤(3)得到的气相超稳改性Y型分子筛与酸溶液接触,其中酸与分子筛(以干基计)的重量比为约0.001-0.15∶1,例如为约0.002-0.1∶1或0.01-0.05∶1,水与以干基计的分子筛重量比为约5-20∶1,例如为约8-15∶1,所述接触进行反应的温度为约60-100℃,例如约80-99℃,优选约88-98℃。
在一优选实施方式中,所述的酸溶液(酸的水溶液)中的酸为至少一种有机酸和至少一种中等强度以上的无机酸。所述的有机酸可以为草酸,丙二酸、丁二酸(琥珀酸)、甲基丁二酸、苹果酸、酒石酸、柠檬酸、水杨酸中的一种或多种,中等强度以上的无机酸可以为磷酸、盐酸、硝酸及硫酸中的一种或多种。
在一优选实施方式中,所述孔道清理改性的温度为约80-99℃例如85-98℃,处理改性的时间为约60分钟以上,例如为约60-240分钟或90-180分钟。所述的有机酸与分子筛的重量比例为约0.01-0.10∶1例如为约0.03-0.1∶1或0.02-0.05∶1;中等强度以上的无机酸与分子筛的重量比例为约0.01-0.06∶1例如为约0.01-0.05∶1或0.02-0.05∶1,水与分子筛的重量比例优选为约5-20∶1例如为约8-15∶1。
在一优选实施方式中,所述的孔道清理改性,分两步进行,先用中等强度以上的无机酸与所述分子筛接触,其中中等强度以上的无机酸与分子筛的重量比例为约0.01-0.05∶1,例如为约0.02-0.05∶1,水与分子筛的重量比例优选为约5-20∶1,例如为约8-15∶1,接触反应 的温度为约80-99℃优选90-98℃,反应时间为约60-120分钟;然后将该处理后得到的分子筛与有机酸接触,所述的有机酸与分子筛的重量比例为约0.02-0.1∶1,例如为约0.02-0.10∶1或0.05-0.08∶1,水与分子筛的重量比例优选为约5-20∶1,例如为约8-15∶1,接触反应的温度为约80-99℃、优选约90-98℃,反应时间为约60-120分钟,其中所述重量比中,分子筛以干基计。
在某些优选实施方式中,本发明提供的改性Y型分子筛制备方法的步骤(4)将步骤(3)得到的超稳改性Y型分子筛用镁化合物进行镁改性处理。在一优选实施方式中,包括将步骤(3)得到的超稳改性Y型分子筛滤饼直接或干燥后加入含有镁化合物例如镁盐的溶液中,在约5-50℃的条件下搅拌约10-120分钟,然后,加入氨水,调节溶液的pH到约7.5-10,搅拌均匀后,过滤,并用中性水淋洗,之后,将滤饼干燥后置于马弗炉中于约500-650℃焙烧约1小时以上,例如约1-5小时或约2-3小时,得到镁改性的高硅超稳Y型分子筛。其中,在含镁化合物溶液与分子筛的用量,使水与分子筛(以干基计)的重量比为约1-6,优选约1.5-3.5,镁(以氧化镁计)与分子筛(以干基计)的重量比为约0.001-0.04,优选约0.005-0.035;优选地,所述镁盐为氯化镁和/或硝酸镁。
在一优选实施方式中,本发明提供的改性Y型分子筛的制备方法包括以下步骤:
(1)将NaY分子筛与稀土溶液进行离子交换反应,过滤,洗涤,得到氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛;所述离子交换通常在搅拌、温度为约15-95℃、优选约65-95℃的条件下交换约30-120分钟;
(2)将所述氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛在约350-480℃的温度和含约30-90体积%水蒸汽的气氛下焙烧约4.5-7小时,干燥,得到水含量低于约1重量%的晶胞常数降低的Y型分子筛;所述晶胞常数降低的Y型分子筛的晶胞常数为约2.450-2.462nm;
(3)将水含量低于约1重量%的所述晶胞常数降低的Y型分子筛与经加热汽化的SiCl 4气体接触,其中SiCl 4∶水含量低于约1重量%的晶胞常数降低的Y型分子筛(以干基计)的重量比为约0.1-0.7∶1,在 温度为约200-650℃的条件下接触反应约10分钟至约5小时,任选地进行孔道清理,洗涤和过滤,得到气相超稳改性Y型分子筛滤饼;
(4)将步骤(3)得到的气相超稳改性Y型分子筛滤饼与镁盐水溶液混合,在约5-50℃的条件下搅拌约10-120分钟,然后,加入氨水,调节溶液的pH到约7.5-10,搅拌均匀后,过滤,并用中性水淋洗,将滤饼干燥后,于约500-650℃焙烧1-3小时,得到镁改性高硅超稳Y型分子筛;其中,在镁盐的水溶液与气相超稳改性Y型分子筛形成的混合物中,水与分子筛的重量比为约1-6,优选约1.5-3.5,镁(以氧化镁计)与分子筛的重量比为约0.001-0.04,优选为约0.005-0.035。
在第三方面,本发明提供了包含根据本发明的改性Y型分子筛或者按照本发明方法制备得到的改性Y型分子筛的催化裂化催化剂。
在某些优选实施方式中,以催化剂的重量为基准,本发明提供的催化裂化催化剂含有以干基计约10-50重量%的所述改性Y型分子筛、以氧化铝计约10-40重量%的氧化铝粘结剂,和以干基计约10-80重量%的粘土。
在优选实施方式中,所述氧化铝粘结剂选自裂化催化剂通常所使用的各种形态的氧化铝、水合氧化铝以及铝溶胶中的一种或多种,例如,选自γ-氧化铝、η-氧化铝、θ-氧化铝、χ-氧化铝、拟薄水铝石(Pseudoboemite)、一水铝石(Boehmite)、三水铝石(Gibbsite)、拜耳石(Bayerite)或铝溶胶中的一种或多种,优选为拟薄水铝石和/或铝溶胶。例如,所述催化裂化催化剂中含有以干基计约2-15重量%、优选约3-10重量%的铝溶胶粘结剂和/或以干基计约10-30重量%、优选约15-25重量%的拟薄水铝石粘结剂。
在某些优选实施方式中,以催化剂的重量为基准,本发明所述催化剂中含有以干基计约10-50重量%、例如约15-45重量%或25-40重量%的所述改性Y型分子筛,和以干基计约50-90重量%、例如55-85重量%或60-75重量%的基质,其中所述基质包括含添加剂的氧化铝、粘土以及任选的粘结剂,所述的粘结剂优选为氧化铝粘结剂。
在进一步优选的实施方式中,以催化剂的重量为基准,本发明提供的催化裂化催化剂含有以干基计约10-50重量%的所述改性Y型分子筛、以干基计约2-40重量%的含添加剂的氧化铝和以干基计约10-80重量%的粘土;其中,以所述含添加剂的氧化铝的重量为基准,以干基计,所 述含添加剂的氧化铝中含有约60-99.5重量%的氧化铝和约0.5-40重量%的添加剂,所述添加剂选自含有碱土金属、镧系金属、硅、镓、硼和/或磷元素的化合物中的一种或多种。
在一优选实施方式中,本发明提供的催化裂化催化剂中,以干基计所述改性Y型分子筛的含量为约10-50重量%,优选为约15-45重量%,例如为约20-40重量%、25-40重量%或25-35重量%。
在某些优选实施方式中,以所述催化剂的重量为基准,本发明所提供的催化裂化催化剂中所述粘土的含量不超过约70重量%,优选为约10-70重量%。优选地,所述粘土选自用作裂化催化剂组分的粘土中的一种或多种,例如高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、皂石、累托土、海泡石、凹凸棒石、水滑石和膨润土中的一种或多种,这些粘土为本领域技术人员所公知。特别优选地,本发明提供的催化裂化催化剂中所述粘土的含量以干基计可为约20-55重量%,更优选为约30-50重量%。
在某些优选实施方式中,以催化剂的重量为基准,本发明所述催化裂化催化剂中,所述含添加剂的氧化铝的含量以干基计为约2-40重量%,优选为约2-20重量%。优选地,所述含添加剂的氧化铝可按照专利CN1915486A、CN1915485A、CN1916116A所述的方法制备,所有这些文献经此引用全文并入本文。优选地,以所述含添加剂的氧化铝干基重量为基准,所述含添加剂的氧化铝中含有约70-95重量%的氧化铝,和以干基计约5-30重量%的添加剂,其中所述的添加剂优选为含磷和/或镁的化合物。
在一优选实施方式中,所述含添加剂的氧化铝通过包括如下步骤的方法制备:
(1)将拟薄水铝石与足以使其浆化的水和酸在搅拌下混合,其中酸的用量使所述酸与拟薄水铝石中氧化铝的重量比值为约0.01-0.5;
(2)将步骤(1)的混合浆液于室温至约90℃的温度下老化约0-24小时;以及
(3)将步骤(2)的产物与添加剂混合,任选干燥和任选焙烧。
在进一步优选的实施方式中,所述含添加剂的氧化铝的制备方法的步骤(1)中酸的用量使所述酸与拟薄水铝石中氧化铝的重量比为约0.05-0.3。优选地,步骤(1)所述浆化使拟薄水铝石与水形成的浆液的 固含量为约10-50重量%,优选约15-30重量%。所述酸选自无机酸、有机酸中的一种或多种,例如,所述无机酸可以是盐酸、硝酸、硫酸和磷酸中的一种或多种,所述有机酸可以是甲酸、乙酸、草酸或拧橡酸中的一种或多种,优选为盐酸或硝酸。
在进一步优选的实施方式中,所述含添加剂的氧化铝的制备方法的步骤(2)中的老化温度为室温至约80℃,所述室温例如为约15-40℃,老化时间为约0.5-4小时。
在一优选实施方式中,所述含添加剂的氧化铝的制备方法的步骤(3)中将步骤(2)的产物与添加剂形成的混合物,可以直接用于制备催化裂化催化剂,即将所形成的混合物与形成催化裂化催化剂的其它组分混合,也可以干燥和焙烧后用于制备催化剂。所述的干燥例如烘干、喷雾干燥。
在进一步优选的实施方式中,所述含添加剂的氧化铝的制备方法的步骤(3)中所述焙烧的温度为约350-800℃,例如约400-600℃,焙烧时间为例如约0.5-8小时。
在一优选实施方式中,所述添加剂选自含碱土金属、镧系金属、硅、镓、硼和/或磷元素的化合物中的一种或多种,所述含有碱土金属、铜系金属、硅、镓、硼或磷元素的化合物,可以是这些元素的氧化物、水合氧化物,如碱土金属中的氧化镁、氢氧化镁,镧系金属中的氧化稀士,氧化硅、硅溶胶,氧化磷中的一种或多种;也可以是含有上述元素的盐,如碱土金属中的硝酸盐,镧系金属中的氯化稀土,硅酸盐,磷酸盐中的一种或多种。当所述添加剂为所述元素的氧化物和/或水含氧化物时,所述混合是将所述步骤(2)得到的产物直接与其混合;当所述添加剂为含有所述元素的盐中的一种或多种时,所述混合优选首先将所述盐配制成水溶液后再与所述步骤(2)得到的产物混合。各步骤中所述的混合,可采用现有的各种方法实现,优选的方法是在足以使所述物料(如拟薄水铝石、添加剂)浆化的条件下混合,所述浆化为本领域技术人员所公知,其中包括为使物料浆化引入足够量的水,所述水的引入量使浆液的固含量通常为约10-50重量%,优选为约15-30重量%。
在一优选实施方式中,本发明所述的催化裂化催化剂含有含添加剂的氧化铝和氧化铝粘结剂两者,其中以催化剂的重量为基准,以干基计, 所述氧化铝粘结剂的含量不超过约32重量%,优选为约5-32重量%。在进一步优选的实施方式中,所述催化裂化催化剂中含有以干基计约2-15重量%、优选约3-10重量%的铝溶胶粘结剂和/或以干基计约10-30重量%、优选约15-25重量%的拟薄水铝石粘结剂。
在进一步优选的实施方式中,以催化剂的重量为基准,本发明所述催化剂中所述氧化铝粘结剂和含添加剂的氧化铝的总含量为约10-40重量%,例如为约20-35重量%,且含添加剂的氧化铝的含量为约2-20重量%。
在一优选实施方式中,本发明提供的催化剂还可含有所述改性Y型分子筛以外的其它分子筛,所述其它分子筛选自适用于催化裂化催化剂中使用的分子筛,例如具有MFI结构沸石、Beta沸石、其它Y型分子筛和非沸石分子筛的一种或多种。所述其它分子筛的含量可以为约0-40重量%,例如为约0-30重量%或1-20重量%。优选地,以干基计所述其它Y型分子筛的含量不超过约40重量%,例如可以为约1-40重量%或0-20重量%。所述其它Y型分子筛例如REY、REHY、DASY、SOY和PSRY中的一种或多种,所述的MFI结构沸石例如HZSM-5、ZRP和ZSP中的一种或多种,所述的beta沸石例如Hβ,非沸石分子筛例如磷酸铝分子筛(AlPO分子筛)、硅铝磷分子筛(SAPO分子筛)中的一种或多种。优选地,以催化剂的重量为基准,其它分子筛的含量不超过约20重量%。
在一优选实施方式中,本发明提供的催化裂化催化剂,以催化剂的重量为基准,含有以干基计约10-50重量%的所述改性Y型分子筛、以干基计约2-40重量%的所述含添加剂的氧化铝、以干基计约0-40重量%的氧化铝粘结剂和以干基计约10-80重量%的粘土。优选地,所述催化裂化催化剂含有以干基计约25-40重量%的所述改性Y型分子筛、以干基计约2-20重量%的所述含添加剂的氧化铝、以干基计约5-30重量%的氧化铝粘结剂和以干基计约30-50重量%的粘土,并且氧化铝粘结剂和含添加剂的氧化铝的总含量为约20-35重量%。
在某些实施方式中,除所述改性Y型分子筛之外,本发明所述催化剂可采用已知方法制备,这些制备方法在专利CN1916116A、CN1362472A、CN1727442A、CN1132898C、CN1727445A、CN1098130A中有详尽的描述,所有这些文献经此引用全文并入本文。并且,喷雾 干燥、洗涤、干燥均为现有技术,本发明没有特殊要求。例如,在一优选实施方式中,所述催化剂的制备方法包括将所述改性Y型分子筛、含添加剂的氧化铝、粘土、任选的氧化铝粘结剂和水混合打浆、喷雾干燥以及洗涤、过滤、干燥的步骤。
特别优选地,本发明提供了如下的优选实施方案:
方案1.一种含镁的改性Y型分子筛,其特征在于,该改性Y型分子筛的氧化稀土含量为约4-11重量%,氧化镁含量为约0.1-4重量%,氧化钠含量为约0.3-0.8重量%,总孔体积为约0.33-0.39mL/g,该改性Y型分子筛的孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约10-30%,晶胞常数为约2.440-2.455nm,该改性Y型分子筛中非骨架铝含量占总铝含量的百分比不高于约20%,晶格崩塌温度不低于约1045℃。
方案2.按照方案1所述的改性Y型分子筛,其特征在于,该改性Y型分子筛孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约15-25%。
方案3.按照方案1或2所述的改性Y型分子筛,其特征在于,该改性Y型分子筛中非骨架铝含量占总铝含量的百分比为约13-19%,骨架硅铝比以SiO 2/Al 2O 3摩尔比计为约7-14。
方案4.按照方案1-3中任一项所述的改性Y型分子筛,其特征在于,该改性Y型分子筛的晶格崩塌温度为约1045-1075℃。
方案5.按照方案1-4中任一项所述的改性Y型分子筛,其特征在于,氧化镁含量为约0.5-3重量%。
方案6.按照方案1-5中任一项所述的改性Y型分子筛,其特征在于,在800℃、常压、100%水蒸气气氛老化17小时后,该改性Y型分子筛的相对结晶保留度为约30%以上,例如为约30-45%。
方案7.按照方案1-6中任一项所述的改性Y型分子筛,其特征在于,该改性Y型分子筛的相对结晶度为约55-68%。
方案8.按照方案1-7中任一项所述的改性Y型分子筛,其特征在于,该改性Y型分子筛的氧化稀土含量为约4.5-10重量%,氧化钠含量为约0.4-0.6重量%,晶胞常数为2.442-2.451nm,骨架硅铝比为约8.5-12.6。
方案9.一种改性Y型分子筛的制备方法,该方法包括以下步骤:
(1)将NaY分子筛与稀土盐溶液接触进行离子交换反应,过滤、洗涤,任选干燥,得到氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛;
(2)将上述氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛在约350-480℃的温度和约30-90体积%水蒸汽气氛下焙烧约4.5-7小时,任选干燥,得到晶胞常数降低的Y型分子筛;
(3)将所述晶胞常数降低的Y型分子筛与四氯化硅气体接触反应,任选洗涤和过滤,任选与酸溶液接触进行孔道清理,得到高硅超稳Y型分子筛;所述接触反应中,SiCl 4∶以干基计的所述晶胞常数降低的Y型分子筛的重量比为约0.1-0.7∶1、反应温度为约200-650℃、反应时间为约10分钟至约5小时;以及
(4)将步骤(3)得到的高硅超稳Y型分子筛用镁化合物进行改性处理,以得到所述改性Y型分子筛。
方案10.根据方案9所述的方法,其特征在于,步骤(1)中所述氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛的晶胞常数为约2.465-2.472nm,氧化钠含量不超过约9.5重量%。
方案11.根据方案9所述的方法,其特征在于,步骤(1)中所述氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛的稀土含量以RE 2O 3计为约4.5-13重量%,氧化钠含量为约5-9.5重量%、例如为约5.5-9.0重量%,晶胞常数为约2.465-2.472nm。
方案12.根据方案9-11中任一项所述的方法,其特征在于,步骤(1)所述将NaY分子筛与稀土盐溶液接触进行离子交换反应为按照NaY分子筛∶稀土盐∶H 2O为约1∶0.01-0.18∶5-15的重量比将NaY分子筛、稀土盐和水形成混合物,搅拌。
方案13.根据方案9-12中任一项所述的方法,其特征在于,步骤(1)所述将NaY分子筛与稀土溶液接触进行离子交换反应包括:将NaY分子筛与脱阳离子水混合,搅拌下,加入稀土盐和/或稀土盐溶液进行离子交换反应,过滤,洗涤;离子交换反应的条件为:交换温度为约15-95℃,交换时间为约30-120分钟,所述的稀土盐溶液为约稀土盐的水溶液。
方案14.根据方案9-13中任一项所述的方法,其特征在于,步骤(2)所述焙烧温度为约380-460℃,所述焙烧气氛为约40-80%水蒸汽 气氛,所述焙烧时间为约5-6小时。
方案15.根据方案9-14中任一项所述的方法,其特征在于,步骤(2)中得到的所述晶胞常数降低的Y型分子筛的晶胞常数为约2.450-2.462nm,所述的晶胞常数降低的Y型分子筛中的水含量不超过约1重量%。
方案16.根据方案9-15中任一项所述的方法,其特征在于,步骤(3)所述的洗涤方法为用水洗涤,洗涤条件为:分子筛∶H 2O为约1∶6-15,pH值为约2.5-5.0,洗涤温度为约30-60℃。
方案17.根据方案9-16中任一项所述的方法,其特征在于,所述的稀土盐为氯化稀土和/或硝酸稀土;所述的镁化合物为氯化镁和/或硝酸镁。
方案18.根据方案9-17中任一项所述的方法,其特征在于,步骤(3)所述的酸溶液中含有有机酸和中等强度以上的无机酸,中等强度以上的无机酸与分子筛的重量比为约0.01-0.05∶1,有机酸与分子筛的重量比为约0.02-0.10∶1,水与分子筛的重量比为约5-20∶1,接触的温度为约80-99℃,接触时间为约1-4小时。
方案19.根据方案9-18中任一项所述的方法,其特征在于,步骤(3)所述的与酸溶液接触是先与中等强度以上的无机酸接触,然后与有机酸接触,与中等强度以上的无机酸接触的条件为:中等强度以上的无机酸与分子筛的重量比为约0.01-0.05∶1,水与分子筛的重量比为约5-20∶1,接触时间为约60-120分钟,接触温度为约90-98℃;与有机酸接触条件为:有机酸与分子筛的重量比为约0.02-0.10∶1,水与分子筛的重量比为约5-20∶1,接触时间为约60-120分钟,接触温度为约90-98℃。
方案20.根据方案18或19所述的方法,其特征在于,所述的有机酸选自草酸,丙二酸、丁二酸、甲基丁二酸、苹果酸、酒石酸、柠檬酸和水杨酸中的一种或多种;所述中等强度以上的无机酸选自磷酸、盐酸、硝酸和硫酸中的一种或多种。
方案21.根据方案9-20中任一项所述的方法,其特征在于,步骤(4)所述的用镁化合物进行改性处理包括:将分子筛加入含有镁盐的溶液中,在约5-50℃的条件下搅拌约10-120分钟,然后,加入氨水,调节溶液的pH到约7.5-10,搅拌均匀后,过滤,并用水淋洗,将滤饼 干燥,于500-650℃焙烧至少1小时,得到镁改性高硅超稳Y型分子筛;其中,所述含镁盐的溶液与分子筛形成的混合物中,水与分子筛的重量比为约1-6,优选约1.5-3.5,以氧化镁计镁盐与分子筛的重量比为约0.001-0.04,优选约0.005-0.035。
方案22.一种催化裂化催化剂,含有以干基计约10-50重量%的改性Y型分子筛、以干基计约2-40重量%的含添加剂的氧化铝和以干基计约10-80重量%的粘土;其中,以干基计,所述含添加剂的氧化铝中含有约60-99.5重量%的氧化铝和0.5-40重量%的添加剂,所述添加剂选自含有碱土金属、镧系金属、硅、镓、硼或磷元素的化合物中的一种或多种,所述含镁的改性Y型分子筛为方案1-8中任一项所述的改性Y型分子筛或者按照方案9-21中任一项所述的方法制备得到的改性Y型分子筛。
方案23.根据方案22所述的催化裂化催化剂,其特征在于,所述的催化剂包含以干基计约25-40重量%的所述改性Y型分子筛、以干基计约2-20重量%的所述含添加剂的氧化铝、以干基计约5-30重量%的氧化铝粘结剂和以干基计约30-50重量%的粘土。
方案24.根据方案22或23所述的催化裂化催化剂,其特征在于,所述粘土选自高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、皂石、累托土、海泡石、凹凸棒石、水滑石和膨润土中的一种或多种。
方案25.根据方案22-24中任一项所述的催化裂化催化剂,其特征在于,所述含添加剂的氧化铝通过包括如下步骤的方法制备:
(1)、将拟薄水铝石与足以使其浆化的水和酸在搅拌下混合,其中酸的用量使所述酸与拟薄水铝石中氧化铝的重量比为约0.01-0.5;
(2)、将步骤(1)的混合浆液于室温至约90℃的温度下老化约0-24小时;以及
(3)、将步骤(2)的产物与添加剂混合,任选干燥和任选焙烧。
方案26.一种催化裂化催化剂,含有以干基计约10-50重量%的含镁的改性Y型分子筛、以氧化铝计约10-40重量%的氧化铝粘结剂和以干基计约10-80重量%的粘土;所述含镁的改性Y型分子筛的氧化稀土含量为约4-11重量%,氧化镁含量为约0.1-4重量%,氧化钠含量为约0.3-0.8重量%,总孔体积为约0.33-0.39mL/g,该改性Y型分子筛的孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约 10-30%,晶胞常数为约2.440-2.455nm,该改性Y型分子筛中非骨架铝含量占总铝含量的百分比不高于约20%,晶格崩塌温度不低于约1045℃。
方案26.一种催化裂化催化剂,含有以干基计约10-50重量%的含镁的改性Y型分子筛、以干基计约2-40重量%的含添加剂的氧化铝和以干基计约10-80重量%的粘土;其中,以干基计,所述含添加剂的氧化铝中含有约60-99.5重量%的氧化铝和约0.5-40重量%的添加剂,所述添加剂选自含有碱土金属、镧系金属、硅、镓、硼或磷元素的化合物中的一种或几种,所述含镁的改性Y型分子筛的氧化稀土含量为约4-11重量%,氧化镁含量为约0.1-4重量%,氧化钠含量为约0.3-0.8重量%,总孔体积为约0.33-0.39mL/g,该改性Y型分子筛的孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约10-30%,晶胞常数为约2.440-2.455nm,该改性Y型分子筛中非骨架铝含量占总铝含量的百分比不高于约20%,晶格崩塌温度不低于约1045℃。
实施例
下面将结合实施例对本发明予以进一步说明,但并不因此而限制本发明。
原料:以下实施例和对比例中,NaY分子筛为中国石化催化剂有限公司齐鲁分公司提供,氧化钠含量为13.5重量%,骨架硅铝比(SiO 2/Al 2O 3摩尔比)为4.6,晶胞常数为2.470nm,相对结晶度为90%;氯化稀土和硝酸稀土为北京化工厂生产的化学纯试剂;拟薄水铝石为山东铝厂生产的工业产品,固含量61重量%;高岭土为苏州中国高岭土公司生产的裂化催化剂专用高岭土,固含量76重量%;铝溶胶由中国石化催化剂有限公司齐鲁分公司提供,其中氧化铝含量21重量%。
分析方法:在各对比例和实施例中,分子筛的元素含量由X射线荧光光谱法测定;分子筛的晶胞常数、相对结晶度由X射线粉末衍射法(XRD)采用RIPP 145-90、RIPP 146-90标准方法(参见《石油化工分析方法(RIPP试验方法)》,杨翠定等编,科学出版社,1990年9月第一版,第412-415页)测定,分子筛的骨架硅铝比由下式计算而得:
SiO 2/Al 2O 3=(2.5858-a 0)×2/(a 0-2.4191)
其中,a 0为晶胞常数,单位为nm。
分子筛的总硅铝比依据X射线荧光光谱法测定的Si与Al元素含量计算的,由XRD法测定的骨架硅铝比与XRF测定的总硅铝比可计算骨架Al与总Al的比值,进而计算非骨架Al与总Al的比值。晶体结构崩塌温度由差热分析法(DTA)测定。
在各对比例和实施例中,二级孔体积的测定方法如下:按照RIPP151-90标准方法(参见《石油化工分析方法(RIPP试验方法)》,杨翠定等编,科学出版社,1990年9月第一版,第424-426页)根据吸附等温线测定出分子筛的总孔体积,然后从吸附等温线按照T作图法测定出分子筛的微孔体积,将总孔体积减去微孔体积得到二级孔体积,
在各对比例和实施例中,分子筛表面SiO 2/Al 2O 3摩尔比的测定方法如下:利用XPS光电子能谱测定分子筛表面的Si及Al原子的质量百分含量,然后计算分子筛表面的SiO 2/Al 2O 3摩尔比。XPS光电子能谱测定在Thermo Scientific公司的ESCALab250型X射线光电子能谱仪上进行。激发源为单色化AlKαX射线,能量为1486.6eV,功率为150W。窄扫描所用通透能为30eV。分析时的基础真空约为6.5×10 -10mbar。结合能用烷基碳或污染碳的C1s峰(284.8eV)校正。
各对比例和实施例中所用化学试剂未特别注明的,其规格为化学纯。
实施例1
取2000克NaY分子筛(以干基计)加入到20升脱阳离子水溶液中搅拌使其混合均匀,加入600ml的RE(NO 3) 3溶液(以RE 2O 3计的溶液浓度为319g/L),搅拌,升温至90-95℃保持1小时,然后过滤、洗涤,滤饼于120℃干燥,得到晶胞常数为2.471nm、氧化钠含量7.0重量%、以RE 2O 3计稀土含量8.8重量%的Y型分子筛。随后,在温度390℃,含50体积%水蒸汽和50体积%空气的气氛下焙烧6小时,得到晶胞常数为2.455nm的Y型分子筛,之后进行干燥处理,使其水含量低于1重量%。然后,按照SiCl 4∶Y型分子筛(干基计)为0.5∶1的重量比,通入经加热汽化的SiCl 4气体,在温度为400℃的条件下,反应2小时。随后,用20升脱阳离子水洗涤,然后过滤,将分子筛滤 饼加入含有氯化镁的溶液中,其中水与分子筛的重量比为2.5,镁(以氧化镁计)与分子筛的重量比为0.01。在25℃的条件下搅拌40分钟,然后加入氨水,调节溶液的pH为8.5,搅拌均匀,过滤,并用去离子水淋洗。将滤饼干燥后置于马弗炉中于550℃焙烧2小时,得到含镁的改性Y型分子筛,记为SZ1,其物化性质列于表1中。
将SZ1在裸露状态经800℃、常压、100%水蒸气老化17小时后,用XRD方法分析SZ1老化前后的分子筛的相对结晶度,并计算老化后的相对结晶保留度,结果见表2,其中:
Figure PCTCN2018076431-appb-000001
实施例2
取2000克NaY分子筛(以干基计)加入到25升脱阳离子水溶液中搅拌使其混合均匀,加入800ml的RECl 3溶液(以RE 2O 3计的溶液浓度为319g/L),搅拌,升温至90-95℃保持1小时,然后过滤、洗涤,滤饼于120℃干燥,得到晶胞常数为2.471nm、氧化钠含量为5.5重量%、以RE 2O 3计稀土含量为11.3重量%的Y型分子筛。随后,在温度450℃,80%水蒸汽下焙烧5.5小时,得到晶胞常数为2.461nm的Y型分子筛,之后进行干燥处理,使其水含量低于1重量%。然后,按照SiCl 4∶Y型分子筛为0.6∶1的重量比,通入经加热汽化的SiCl 4气体,在温度为480℃的条件下,反应1.5小时。随后,用20升脱阳离子水洗涤,然后过滤,将分子筛滤饼加入含有硝酸镁的溶液中,其中水与分子筛的重量比为2.3,镁(以氧化镁计)与分子筛的重量比为0.02。在30℃的条件下搅拌35分钟,然后加入氨水,调节溶液的pH为9,搅拌均匀后,过滤,并用去离子水淋洗。将滤饼干燥后置于马弗炉中于590℃焙烧2小时,得到含镁的改性Y型分子筛,记为SZ2,其物化性质列于表1中。
将SZ2在裸露状态经800℃、常压、100%水蒸气老化17小时后,用XRD方法分析SZ2老化前后的分子筛的相对结晶度,并计算老化后的相对结晶保留度,结果见表2。
实施例3
取2000克NaY分子筛(干基)加入到22升脱阳离子水溶液中搅拌使其混合均匀,加入570ml的RECl 3溶液(以RE 2O 3计的溶液浓度为319g/L),搅拌,升温至90-95℃保持搅拌1小时,然后过滤、洗涤, 滤饼于120℃干燥,得到晶胞常数为2.471nm、氧化钠含量为7.5重量%、以RE 2O 3计稀土含量为8.5重量%的Y型分子筛。然后,在温度470℃,70体积%水蒸汽下焙烧5小时,得到晶胞常数为2.458nm的Y型分子筛,之后进行干燥处理,使其水含量低于1重量%。然后,按照SiCl 4∶Y型分子筛为0.4∶1的重量比,通入经加热汽化的SiCl 4气体,在温度为500℃的条件下,反应1小时。随后,用20升脱阳离子水洗涤,然后过滤,将分子筛滤饼加入含有氯化镁的溶液中,其中水与分子筛的重量比为3.2,镁(以氧化镁计)与分子筛的重量比为0.025。在20℃的条件下搅拌45分钟,然后加入氨水,调节溶液的pH为9.2,搅拌均匀后,过滤,并用去离子水淋洗。将滤饼干燥后置于马弗炉中于580℃焙烧2小时,得到含镁的改性Y型分子筛,记为SZ3,其物化性质列于表1中。
将SZ3在裸露状态经800℃、常压、100%水蒸气老化17小时后,用XRD方法分析SZ3老化前后的分子筛的相对结晶度,并计算老化后的相对结晶保留度,结果见表2。
对比例1
取2000克NaY分子筛(干基)加入到20升脱阳离子水溶液中搅拌使其混合均匀,加入1000克(NH 4) 2SO 4,搅拌,升温至90-95℃保持1小时,然后过滤、洗涤。滤饼于120℃干燥之后进行水热改性处理,水热改性处理的条件为:温度650℃,100%水蒸汽下焙烧5小时。随后,加入到20升脱阳离子水溶液中搅拌使其混合均匀,加入1000克(NH 4) 2SO 4,搅拌,升温至90-95℃保持1小时,然后过滤、洗涤。滤饼于120℃干燥之后进行第二次水热改性处理,水热改性处理的条件为:温度650℃,100%水蒸汽下焙烧5小时。得到两次离子交换两次水热改性的不含稀土的水热超稳Y型分子筛,记为DZ1,其物化性质列于表1中。
将DZ1在裸露状态经800℃、常压、100%水蒸气老化17小时后,用XRD方法分析DZ1老化前后的分子筛的相对结晶度,并计算老化后的相对结晶保留度,结果见表2。
对比例2
取2000克NaY分子筛(干基)加入到20升脱阳离子水溶液中搅拌使其混合均匀,加入1000克(NH 4) 2SO 4,搅拌,升温至90-95℃保持1小时,然后过滤、洗涤。滤饼于120℃干燥之后进行水热改性处理,水 热改性处理的条件为:温度650℃、100%水蒸汽下焙烧5小时。随后,加入到20升脱阳离子水溶液中搅拌使其混合均匀,加入200ml的RE(NO 3) 3溶液(以RE 2O 3计的溶液浓度为319g/L)及900克(NH 4) 2SO 4,搅拌,升温至90-95℃保持1小时,然后过滤、洗涤。滤饼于120℃干燥之后进行第二次水热改性处理,水热改性处理的条件为:温度650℃,100%水蒸汽下焙烧5小时。得到两次离子交换两次水热改性的含稀土的水热超稳Y型分子筛,记为DZ2,其物化性质列于表1中。
将DZ2在裸露状态经800℃、常压、100%水蒸气老化17小时后,用XRD方法分析DZ2老化前后的分子筛的相对结晶度,并计算老化后的相对结晶保留度,结果见表2。
对比例3
取2000克NaY分子筛(干基)加入到20升脱阳离子水溶液中搅拌使其混合均匀,加入650ml的RE(NO 3) 3溶液(以RE 2O 3计的溶液浓度为319g/L),搅拌,升温至90-95℃保持1小时,然后过滤、洗涤,随后对分子筛进行干燥处理,使其水含量低于1重%。然后,按照SiCl 4∶Y型分子筛为0.4∶1的重量比,通入经加热汽化的SiCl 4气体,在温度为580℃的条件下,反应1.5小时。随后,用20升脱阳离子水洗涤,然后过滤,将分子筛滤饼加入含有氯化镁的溶液中,其中水与分子筛的重量比为3.2,镁(以氧化镁计)与分子筛的重量比为0.025。在20℃的条件下搅拌45分钟,然后加入氨水,调节溶液的pH为9.2,搅拌均匀后,过滤,并用去离子水淋洗。将滤饼干燥后置于马弗炉中于580℃焙烧2小时,得到含镁的超稳Y型分子筛,记为DZ3,其物化性质列于表1中。
将DZ3在裸露状态经800℃、常压、100%水蒸气老化17小时后,用XRD方法分析DZ3老化前后的分子筛的相对结晶度,并计算老化后的相对结晶保留度,结果见表2。
对比例4
取2000克NaY分子筛(干基)加入到22升脱阳离子水溶液中搅拌使其混合均匀,加入570ml的RECl 3溶液(以RE 2O 3计的溶液浓度为319g/L),搅拌,升温至90-95℃保持搅拌1小时,然后过滤、洗涤,滤饼于120℃干燥,得到晶胞常数为2.471nm、氧化钠含量为7.5重量%、以RE 2O 3计稀土含量为8.5重量%的Y型分子筛。然后,在温度650 ℃,100体积%水蒸汽气氛下焙烧5小时,之后进行干燥处理,使其水含量低于1重量%。然后,按照SiCl 4∶Y型分子筛为0.4∶1的重量比,通入经加热汽化的SiCl 4气体,在温度为500℃的条件下,反应1小时。随后,用20升脱阳离子水洗涤,然后过滤,将分子筛滤饼加入含有氯化镁的溶液中,其中水与分子筛的重量比为3.2,镁(以氧化镁计)与分子筛的重量比为0.025。在20℃的条件下搅拌45分钟,然后加入氨水,调节溶液的pH为9.2,搅拌均匀后,过滤,并用去离子水淋洗。将滤饼干燥后置于马弗炉中于580℃焙烧2小时,得到含镁的超稳Y型分子筛,记为DZ4,其物化性质列于表1中。
将DZ4在裸露状态经800℃、常压、100%水蒸气老化17小时后,用XRD方法分析DZ4老化前后的分子筛的相对结晶度,并计算老化后的相对结晶保留度,结果见表2。
实施例4-6
实施例4-6说明实施例1-3制备的本发明改性Y型分子筛的催化裂化活性及其稳定性。
将实施例1-3制备的改性Y型分子筛SZ1、SZ2和SZ3分别制备成催化剂,催化剂编号依次为SC1、SC2和SC3。将催化剂经800℃、100%水蒸气老化4小时或17小时后,评价催化剂的轻油微反活性,评价结果列于表3中。
催化剂制备方法:
取714.5克氧化铝含量为21重量%的铝溶胶加入1565.5克脱阳离子水中,开启搅拌,加入2763克固含量为76重量%的高岭土,分散60分钟得到分散好的高岭土浆液。取2049克氧化铝含量为61重量%的拟薄水铝石加入8146克脱阳离子水中,在搅拌状态下加入210ml浓度为36重量%的盐酸,酸化60分钟后加入分散好的高岭土浆液。然后,加入磨细的所述改性Y型分子筛1500克(干基),搅拌均匀后,进行喷雾干燥和洗涤处理,烘干得到催化剂。所得到的催化剂中含有所述改性Y型分子筛30重量%,高岭土42重量%,拟薄水铝石25重量%和铝溶胶3重量%。
轻油微反活性评价方法:
采用RIPP 92-90的标准方法(参见《石油化工分析方法(RIPP试验方法)》,杨翠定等编,科学出版社,1990年9月第一版,第263-268 页)评价各催化剂的轻油微反活性,催化剂装量为5.0g,反应温度为460℃,原料油为馏程235-337℃的大港轻柴油。产物组成由气相色谱分析,根据产物组成计算出轻油微反活性。
轻油微反活性(MA)=(产物中低于216℃的汽油产量+气体产量+焦炭产量)/进料总量×100%。
对比例5-8
对比例5-8说明对比例1-4制备的超稳Y型分子筛的催化裂化活性及其稳定性。
按照实施例4-6的催化剂制备方法将对比例1-4制备的超稳Y型分子筛DZ1、DZ2、DZ3和DZ4各自与拟薄水铝石、高岭土、水及铝溶胶混合,喷雾干燥制备成微球催化剂,各催化剂的组成比例同实施例4-6,催化剂中超稳Y型分子筛的含量均为30重量%。催化剂编号依次为DC1、DC2、DC3及DC4。将催化剂经800℃、100%水蒸气老化4小时或17小时后,评价其轻油微反活性。评价方法见实施例4-6,评价结果列于表3中。
实施例7-9
实施例7-9说明实施例1-3制备的本发明改性Y型分子筛的催化裂化反应性能。
将SC1、SC2和SC3催化剂经800℃、100%水蒸气老化17小时后,在小型固定流化床反应器(ACE)上评价其催化裂化反应性能,裂化气和产品油分别收集并由气相色谱分析。催化剂装量为9g,反应温度为500℃,重时空速为16h -1,剂油重量比见表5。ACE实验的原料性质见表4,评价结果见表5。
对比例9-12
对比例9-12说明对比例1-4制备的超稳Y型分子筛的催化裂化反应性能。
DC1、DC2、DC3和DC4催化剂经800℃、100%水蒸气老化17小时后,在小型固定流化床反应器(ACE)上评价其催化裂化反应性能,评价方法见实施例7-9。ACE实验的原料性质见表4,评价结果见表5。
表1 改性Y型分子筛的性质
Figure PCTCN2018076431-appb-000002
由表1可见,本发明提供的改性Y型分子筛,同时具备以下优点:氧化钠含量低,分子筛的硅铝比较高时的非骨架铝含量较少,分子筛中孔径为2.0-100nm的二级孔的孔体积占总孔体积百分比较高,在分子筛晶胞常数较小、稀土含量较高时测定的结晶度值较高,具有高的热稳定性。
表2 改性Y型分子筛的老化测试
Figure PCTCN2018076431-appb-000003
由表2可知,本发明提供的改性Y型分子筛,在裸露状态下经过800℃、17小时的苛刻条件老化后,具有较高的相对结晶保留度,表明本发明提供的改性Y型分子筛具有高的水热稳定性。
表3 催化裂化催化剂的微反活性
Figure PCTCN2018076431-appb-000004
表4 ACE评价原料油的性质
Figure PCTCN2018076431-appb-000005
表5 催化裂化催化剂的催化裂化性能
Figure PCTCN2018076431-appb-000006
由表3及表5所列的结果可见,以本发明提供的改性Y型分子筛为活性组元制备的催化裂化催化剂具有更高的水热稳定性,具有明显更低的焦炭选择性,具有明显更高的液收,轻质油收率明显更高,柴油收率提高,柴汽比更高,重油转化活性更高。
以下实施例4A-9A为包含根据本发明的改性Y型分子筛和改性基质的催化裂化催化剂的实施例。
实施例4A
取786克氧化铝含量为61重量%的拟薄水铝石加入到3909克脱阳离子水中,在搅拌状态下加入97.5ml化学纯的盐酸(含36重量%HCl),于70℃老化1小时。然后,加入82.5ml磷酸(北京化工厂生产,浓度85%,分析纯)和六水氯化镁(北京双环试剂厂生产,分析纯)水溶液185克(其中六水氯化镁102克),打浆,得到含添加剂的氧化铝的浆液。
取2499克氧化铝含量为21重量%的铝溶胶加入5475克脱阳离子水中,在搅拌下加入2926.5克固含量为76重量%的高岭土,打浆60分钟, 得到高岭土浆液。将1180.5克氧化铝含量为61重量%的拟薄水铝石加入到4690.5克脱阳离子水中,打浆;在搅拌下向其中加入115.5ml化学纯盐酸(含36重量%HCl),老化60分钟后加入所制备的高岭土浆液,再加入所制备的含添加剂的氧化铝的浆液,打浆;然后加入实施例1制备的SZ1分子筛1800克(干基)和REY分子筛[中国石化催化剂有限公司齐鲁分公司生产,稀土含量(以RE 2O 3计)18重量%,硅铝比(SiO 2/Al 2O 3摩尔比)4.6]300克(干基),打浆。然后,在入口温度650℃,尾气温度180℃下进行喷雾干燥,用去离子水洗涤,烘干得到催化剂,记为SC1A。
实施例5A
将394克氧化铝含量为61重量%的拟薄水铝石加入到1958克脱阳离子水中,在搅拌下加入49ml化学纯的盐酸(含36重量%HCl),然后于70℃老化1小时。然后,加入六水氯化镁(北京双环试剂厂生产,分析纯)水溶液288克(其中六水氯化镁164克),打浆,得到含添加剂的氧化铝的浆液。
取1142克氧化铝含量为21重量%的铝溶胶加入1001克脱阳离子水中,搅拌下加入2336克固含量为76重量%的高岭土,打浆60分钟,得到高岭土浆液。将1180克氧化铝含量为61重量%的拟薄水铝石加入到5876克脱阳离子水中,在搅拌状态下加入128ml盐酸(化学纯,浓度36重量%),老化60分钟后加入所制备的高岭土浆液,打浆;再加入所制备的含添加剂的氧化铝的浆液,打浆;然后加入实施例2制备的SZ2分子筛1824克(干基),打浆。然后再进行喷雾干燥和洗涤处理(同实施例4A),烘干,得到催化剂,记为SC2A。
实施例6A
取650克氧化铝含量为61重量%的拟薄水铝石加入到3232克脱阳离子水中,在搅拌下加入81.5ml化学纯的盐酸(HCl含量为36重量%),在70℃老化1小时,之后加入194ml磷酸(北京化工厂生产,浓度85重量%,分析纯),打浆,得到含添加剂的氧化铝的浆液。
取1885克氧化铝含量为21重量%的铝溶胶加入3014克脱阳离子水中,搅拌下加入3855克固含量为76重量%的高岭土,打浆60分钟,得到高岭土浆液。取2596克氧化铝含量为61重量%的拟薄水铝石加入8402克脱阳离子水中,在搅拌状态下加入281ml化学纯的盐酸(浓度 36重量%),老化60分钟后加入所制备的高岭土浆液,打浆;再加入所制备的含添加剂的氧化铝的浆液,打浆;然后加入实施例3制备的SZ3分子筛1980克(干基)、REY分子筛(同实施例1所用REY分子筛)634克(干基)和ZRP-5分子筛(中国石化催化剂有限公司齐鲁分公司生产,稀土含量0.5重量%,硅铝比45)396克(干基),打浆。然后再进行喷雾干燥和洗涤处理(同实施例4A),烘干,得到催化剂,记为SC3A。
对比例5A
取1429克氧化铝含量为21重量%的铝溶胶加入3131克脱阳离子水中,开启搅拌,加入5526克固含量为76重量%的高岭土分散60分钟。取4098克氧化铝含量为61重量%的拟薄水铝石加入16292克脱阳离子水中,在搅拌状态下加入420ml化学纯的盐酸(浓度36重量%)。酸化60分钟后加入分散好的高岭土浆液,然后加入磨细的对比例1制备的DZ1分子筛3000克(干基)。搅拌均匀后,进行喷雾干燥和洗涤处理,烘干得到催化剂,记为DC1A。其中,所得到的DC1A催化剂中含有DZ1分子筛30重量%,高岭土42重量%,拟薄水铝石25重量%,铝溶胶3重量%。
对比例6A
将对比例2制备的DZ2分子筛、高岭土、水、拟薄水铝石粘合剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为DC2A(参照对比例5A的催化剂制备方法)。其中,所得到的DC2A催化剂中含有DZ2分子筛30重量%,高岭土42重量%,拟薄水铝石25重量%,铝溶胶3重量%。
对比例7A
将对比例3制备的DZ3分子筛、高岭土、水、拟薄水铝石粘合剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为DC3A(参照对比例5A的催化剂制备方法)。其中,所得到的DC3A催化剂中含有DZ3分子筛30重量%,高岭土42重量%,拟薄水铝石25重量%,铝溶胶3重量%。
对比例8A
按照实施例5A的方法制备催化剂,不同的是用对比例3制备的分子筛DZ3代替其中使用的分子筛SZ2,得到催化剂DC4A。
实施例7A-9A
将SC1A、SC2A和SC3A催化剂经800℃、100%水蒸气老化17小时后,在小型固定流化床反应器(ACE)上评价其催化裂化反应性能,裂化气和产品油分别收集并由气相色谱分析。催化剂装量为9g,反应温度为500℃,重时空速为16h -1,剂油重量比见表5A,ACE实验的原料性质见表4,评价结果见表5A。
对比例9A-12A
将DC1A、DC2A、DC3A和DC4A催化剂经800℃、100%水蒸气气氛下老化17小时后,在小型固定流化床反应器(ACE)上评价其催化裂化反应性能,评价方法见实施例7A-9A,ACE实验的原料性质见表4,评价结果见表5A。
表5A 催化裂化催化剂的催化裂化性能
Figure PCTCN2018076431-appb-000007
由表5A可见,本发明提供的催化裂化催化剂具有明显更低的焦炭 选择性,具有明显更高的液收,轻质油收率明显更高,柴油收率提高,柴汽比更高,重油转化活性更高。
在上文的说明书中,已经参照特定的实施方式描述了本发明的构思。然而,本领域技术人员可以理解,在不脱离所附的权利要求中限定的本发明范围的情况下可以做出各种修改和变更。因此,说明书和附图应认为是说明性的,而不是限制性的,并且所有这类修改和变更应当涵盖在本发明的范围之内。
可以理解,本文为清楚起见以独立的多个实施方式的形式描述的某些特征也可以作为组合提供在单一的实施方式中。相反,为简要起见以单一实施方式的形式描述的多个不同特征也可以单独地或以任何子组合的形式提供。

Claims (20)

  1. 一种含镁的改性Y型分子筛,其特征在于,该改性Y型分子筛的氧化稀土含量为约4-11重量%,氧化镁含量为约0.1-4重量%,氧化钠含量为约0.3-0.8重量%,总孔体积为约0.33-0.39mL/g,该改性Y型分子筛的孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约10-30%,晶胞常数为约2.440-2.455nm,该改性Y型分子筛中非骨架铝含量占总铝含量的百分比不高于约20%,晶格崩塌温度不低于约1045℃。
  2. 根据权利要求1所述的改性Y型分子筛,其特征在于,该改性Y型分子筛孔径为2-100nm的二级孔的孔体积占总孔体积的百分比为约15-25%。
  3. 根据权利要求1或2所述的改性Y型分子筛,其特征在于,该改性Y型分子筛中非骨架铝含量占总铝含量的百分比为约13-19%,骨架硅铝比以SiO 2/Al 2O 3摩尔比计为约7-14。
  4. 根据权利要求1-3中任一项所述的改性Y型分子筛,其特征在于,该改性Y型分子筛的晶格崩塌温度为约1045-1075℃。
  5. 根据权利要求1-4中任一项所述的改性Y型分子筛,其特征在于,氧化镁含量为约0.5-3重量%。
  6. 根据权利要求1-5中任一项所述的改性Y型分子筛,其特征在于,在800℃、常压、100%水蒸气气氛下老化17小时后,该改性Y型分子筛的相对结晶保留度为约30%以上。
  7. 根据权利要求1-6中任一项所述的改性Y型分子筛,其特征在于,该改性Y型分子筛的相对结晶度为约55-68%。
  8. 根据权利要求1-7中任一项所述的改性Y型分子筛,其特征在于,该改性Y型分子筛的氧化稀土含量为约4.5-10重量%,氧化钠含量为约0.4-0.6重量%,晶胞常数为2.442-2.451nm,骨架硅铝比以SiO 2/Al 2O 3摩尔比计为约8.5-12.6。
  9. 一种含镁的改性Y型分子筛的制备方法,其特征在于,包括以下步骤:
    (1)将NaY分子筛与稀土盐溶液接触进行离子交换反应,得到氧化钠含量降低的含稀土的Y型分子筛;
    (2)将步骤(1)得到的Y型分子筛在约350-480℃的温度和约30-90体积%水蒸汽气氛下焙烧约4.5-7小时,得到晶胞常数降低的Y型分子筛;
    (3)将步骤(2)得到的Y型分子筛与四氯化硅气体接触反应,得到高硅超稳Y型分子筛,所述接触反应在如下条件下进行:SiCl 4∶以干基计的Y型分子筛的重量比为约0.1-0.7∶1、反应温度为约200-650℃、反应时间为约10分钟至约5小时;以及
    (4)将步骤(3)得到的高硅超稳Y型分子筛用镁化合物进行改性处理,以得到所述含镁的改性Y型分子筛。
  10. 根据权利要求9所述的方法,其特征在于,步骤(1)中所述氧化钠含量降低的含稀土的Y型分子筛的晶胞常数为约2.465-2.472nm,氧化钠含量不超过约9.5重量%。
  11. 根据权利要求9所述的方法,其特征在于,步骤(1)中所述氧化钠含量降低的含稀土的Y型分子筛中稀土含量以RE 2O 3计为约4.5-13重量%,氧化钠含量为约5-9.5重量%,晶胞常数为约2.465-2.472nm。
  12. 根据权利要求9-11中任一项所述的方法,其特征在于,步骤(1)中所述NaY分子筛与稀土溶液的离子交换反应在如下条件下进行:NaY分子筛∶稀土盐∶H 2O重量比为约1∶0.01-0.18∶5-15,交换温度为约15-95℃,交换时间为约30-120分钟。
  13. 根据权利要求9-12中任一项所述的方法,其特征在于,步骤(2)中焙烧温度为约380-460℃,焙烧气氛为约40-80%水蒸汽气氛,焙烧时间为约5-6小时。
  14. 根据权利要求9-13中任一项所述的方法,其特征在于,步骤(2)中得到的所述晶胞常数降低的Y型分子筛的晶胞常数为约2.450-2.462nm,其水含量不超过约1重量%。
  15. 根据权利要求9-14中任一项所述的方法,其特征在于,所述的稀土盐为氯化稀土和/或者硝酸稀土;所述的镁化合物为氯化镁和/或硝酸镁。
  16. 根据权利要求9-15中任一项所述的方法,其特征在于,步骤(4)所述的用镁化合物进行改性处理包括:将所述分子筛加入含镁盐的溶液中,其中水与分子筛的重量比为约1-6,以氧化镁计镁盐与分子 筛的重量比为约0.001-0.04;在约5-50℃的条件下搅拌约10-120分钟,然后加入氨水调节溶液的pH到约7.5-10,随后过滤并将滤饼于约500-650℃焙烧至少约1小时,得到所述含镁的改性Y型分子筛。
  17. 包含根据权利要求1-8中任一项所述的改性Y型分子筛或者按照权利要求9-16中任一项所述的方法制备得到的改性Y型分子筛的催化裂化催化剂。
  18. 根据权利要求17所述的催化裂化催化剂,其特征在于,所述催化剂含有以干基计约10-50重量%的所述改性Y型分子筛、以氧化铝计约10-40重量%的氧化铝粘结剂,和以干基计约10-80重量%的粘土。
  19. 根据权利要求17所述的催化裂化催化剂,其特征在于,所述催化剂含有以干基计约10-50重量%的所述改性Y型分子筛、以干基计约2-40重量%的含添加剂的氧化铝和以干基计约10-80重量%的粘土;其中,以所述含添加剂的氧化铝重量为基准,以干基计,所述含添加剂的氧化铝中含有约60-99.5重量%的氧化铝和约0.5-40重量%的添加剂,其中所述添加剂选自含有碱土金属、镧系金属、硅、镓、硼和/或磷元素的化合物中的一种或多种。
  20. 根据权利要求19所述的催化裂化催化剂,其特征在于,所述催化剂包含以干基计约25-40重量%的所述改性Y型分子筛、以干基计约2-20重量%的所述含添加剂的氧化铝、以干基计约5-30重量%的氧化铝粘结剂和以干基计约30-50重量%的粘土。
PCT/CN2018/076431 2017-02-21 2018-02-12 含镁的改性y型分子筛、其制备方法及包含它的催化剂 WO2018153303A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2019127289A RU2770421C2 (ru) 2017-02-21 2018-02-12 Модифицированное магнием молекулярное сито типа y, его получение и содержащий его катализатор
US16/484,880 US11053129B2 (en) 2017-02-21 2018-02-12 Magnesium modified Y-type molecular sieve, preparation thereof and catalyst comprising the same
MYPI2019004663A MY195283A (en) 2017-02-21 2018-02-12 Magnesium Modified Y-Type Molecular Sieve, Preparation Thereof and Catalyst Comprising the same
JP2019545357A JP7163298B2 (ja) 2017-02-21 2018-02-12 マグネシウム改質y型分子篩、その生成方法、およびそれを含む触媒

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710093369.5 2017-02-21
CN201710093369.5A CN108452826B (zh) 2017-02-21 2017-02-21 一种催化裂化催化剂
CN201710093368.0A CN108452825B (zh) 2017-02-21 2017-02-21 一种镁改性高硅超稳y型分子筛及其制备方法
CN201710093368.0 2017-02-21
CN201710097151.7A CN108452835B (zh) 2017-02-22 2017-02-22 一种催化裂化催化剂
CN201710097151.7 2017-02-22

Publications (1)

Publication Number Publication Date
WO2018153303A1 true WO2018153303A1 (zh) 2018-08-30

Family

ID=63254100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076431 WO2018153303A1 (zh) 2017-02-21 2018-02-12 含镁的改性y型分子筛、其制备方法及包含它的催化剂

Country Status (6)

Country Link
US (1) US11053129B2 (zh)
JP (1) JP7163298B2 (zh)
MY (1) MY195283A (zh)
RU (1) RU2770421C2 (zh)
TW (1) TWI778020B (zh)
WO (1) WO2018153303A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988428A (zh) * 2022-07-11 2022-09-02 吉林大学 一种高硅铝比y型分子筛及其制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY191917A (en) * 2017-02-22 2022-07-18 China Petroleum & Chem Corp Catalytic cracking catalyst and preparation thereof
US11130917B2 (en) * 2018-08-20 2021-09-28 China Petroleum & Chemical Corporation Modified Y-type molecular sieve, catalytic cracking catalyst comprising the same, their preparation and application thereof
CN113952969B (zh) * 2020-07-20 2023-07-11 中国石油化工股份有限公司 一种催化裂化催化剂及其制备方法和应用
CN114433219B (zh) * 2020-10-30 2023-07-14 中国石油化工股份有限公司 烃油催化裂解催化剂及其应用
CN116265107A (zh) * 2021-12-17 2023-06-20 中国石油天然气股份有限公司 一种多产柴油催化裂化催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307087A (zh) * 2000-01-27 2001-08-08 中国石油化工集团公司 一种石油催化裂化催化剂
CN1382631A (zh) * 2001-04-28 2002-12-04 中国石油化工股份有限公司 一种稀土y型沸石
CN1566273A (zh) * 2003-06-30 2005-01-19 中国石油化工股份有限公司 一种含分子筛的烃类裂化催化剂及其制备方法
CN101081369A (zh) * 2006-05-31 2007-12-05 中国石油化工股份有限公司 一种含稀土高硅y型沸石及其制备方法
US20130131419A1 (en) * 2011-11-22 2013-05-23 Exxonmobil Research And Engineering Company Gibbsite catalytic cracking catalyst

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273753A (en) 1979-09-10 1981-06-16 Mobil Oil Corporation De-aluminization of aluminosilicates
US4429053A (en) 1981-12-04 1984-01-31 Union Oil Company Of California Rare earth-containing Y zeolite compositions
US4584287A (en) 1981-12-04 1986-04-22 Union Oil Company Of California Rare earth-containing Y zeolite compositions
US4438178A (en) 1982-10-27 1984-03-20 Fiber Industries, Inc. Adhesive activated polyester fibrous material
US4793161A (en) * 1987-11-27 1988-12-27 Kamyr Ab Effective diffuser/thickener screen backflushing
CN1065844A (zh) * 1991-04-18 1992-11-04 中国石油化工总公司石油化工科学研究院 低稀土含量超稳y型沸石的制备方法
US5206194A (en) 1991-06-20 1993-04-27 Union Oil Company Of America Process for reactivating a deactivated crystalline molecular sieve group VIII metal catalyst
CN1034718C (zh) 1993-07-29 1997-04-30 中国石油化工总公司 一种裂化催化剂及其制备方法
CN1057977C (zh) 1997-03-31 2000-11-01 中国石油化工总公司 一种含富硅超稳y沸石的催化剂组合物的制备方法
CN1112247C (zh) 1999-11-17 2003-06-25 中国石化集团齐鲁石油化工公司 含小晶粒y型分子筛的催化剂的制备
CN1160436C (zh) 2001-01-04 2004-08-04 中国石油化工股份有限公司 一种催化裂化催化剂的制备方法
CA2445597C (en) 2001-04-28 2011-01-04 China Petroleum And Chemical Corporation A rare earth zeolite y and the preparation process thereof
CN1121903C (zh) 2001-04-28 2003-09-24 中国石油化工股份有限公司 一种稀土高硅y型沸石的制备方法
CN1170634C (zh) 2001-05-30 2004-10-13 中国石油化工股份有限公司 一种高硅y沸石的制备方法
CN1286721C (zh) 2004-04-14 2006-11-29 中国石油化工股份有限公司 一种分子筛的气相抽铝补硅方法
CN1311907C (zh) 2004-07-29 2007-04-25 中国石油化工股份有限公司 一种石油烃裂化催化剂及其制备方法
CN1322924C (zh) 2004-07-29 2007-06-27 中国石油化工股份有限公司 烃类裂化催化剂及其制备方法
CN100357399C (zh) * 2005-03-31 2007-12-26 中国石油化工股份有限公司 一种裂化催化剂的制备方法
CN100569915C (zh) 2005-08-17 2009-12-16 中国石油化工股份有限公司 一种催化裂化催化剂
CN1915486B (zh) 2005-08-17 2010-05-12 中国石油化工股份有限公司 一种含添加剂的具有拟薄水铝石结构的水合氧化铝
CN1915485B (zh) 2005-08-17 2010-05-12 中国石油化工股份有限公司 一种含添加剂的氧化铝
CN101285001B (zh) * 2007-04-12 2011-11-30 中国石油化工股份有限公司 一种催化裂化催化剂
JP5126613B2 (ja) * 2008-03-31 2013-01-23 一般財団法人石油エネルギー技術センター 接触分解触媒及びその製造方法ならびに炭化水素油の接触分解方法
CN101745418B (zh) 2008-11-28 2012-10-10 中国石油化工股份有限公司 一种催化裂化催化剂及其制备和应用
CN102020289B (zh) * 2009-09-10 2012-07-25 中国石油化工股份有限公司 一种超稳y沸石及其制备和应用方法
CN103159227B (zh) 2011-12-15 2015-05-13 中国石油天然气股份有限公司 一种镁改性超稳稀土y型分子筛及其制备方法
CN103157506B (zh) * 2011-12-15 2015-09-23 中国石油天然气股份有限公司 一种高轻收重油催化裂化催化剂及其制备方法
JP5940935B2 (ja) * 2012-08-17 2016-06-29 日揮触媒化成株式会社 炭化水素接触分解用触媒
JP6346188B2 (ja) * 2012-10-26 2018-06-20 中国石油化工股▲ふん▼有限公司 ゼオライトを作製する方法および装置
RU2509605C1 (ru) * 2013-01-09 2014-03-20 Открытое акционерное общество "Газпромнефть-Омский НПЗ" Способ приготовления катализатора с низким содержанием редкоземельных элементов для крекинга нефтяных фракций

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307087A (zh) * 2000-01-27 2001-08-08 中国石油化工集团公司 一种石油催化裂化催化剂
CN1382631A (zh) * 2001-04-28 2002-12-04 中国石油化工股份有限公司 一种稀土y型沸石
CN1566273A (zh) * 2003-06-30 2005-01-19 中国石油化工股份有限公司 一种含分子筛的烃类裂化催化剂及其制备方法
CN101081369A (zh) * 2006-05-31 2007-12-05 中国石油化工股份有限公司 一种含稀土高硅y型沸石及其制备方法
US20130131419A1 (en) * 2011-11-22 2013-05-23 Exxonmobil Research And Engineering Company Gibbsite catalytic cracking catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988428A (zh) * 2022-07-11 2022-09-02 吉林大学 一种高硅铝比y型分子筛及其制备方法和应用
CN114988428B (zh) * 2022-07-11 2023-10-24 吉林大学 一种高硅铝比y型分子筛及其制备方法和应用

Also Published As

Publication number Publication date
US11053129B2 (en) 2021-07-06
RU2019127289A3 (zh) 2021-07-21
RU2770421C2 (ru) 2022-04-18
RU2019127289A (ru) 2021-03-23
MY195283A (en) 2023-01-12
TWI778020B (zh) 2022-09-21
JP7163298B2 (ja) 2022-10-31
JP2020508280A (ja) 2020-03-19
US20190375646A1 (en) 2019-12-12
TW201833030A (zh) 2018-09-16

Similar Documents

Publication Publication Date Title
WO2018153303A1 (zh) 含镁的改性y型分子筛、其制备方法及包含它的催化剂
WO2018153301A1 (zh) 改性y型分子筛、其制备方法及包含它的催化剂
CN108452827B (zh) 一种催化裂化催化剂
TWI760436B (zh) 催化裂解催化劑及其製備方法
CN108452838B (zh) 一种催化裂化催化剂
CN108452829B (zh) 一种催化裂化催化剂
CN108452825B (zh) 一种镁改性高硅超稳y型分子筛及其制备方法
CN108452835B (zh) 一种催化裂化催化剂
CN108452833B (zh) 一种催化裂化催化剂
CN108452834B (zh) 一种催化裂化催化剂
TWI805793B (zh) 改性y型分子篩、包含它的催化裂解催化劑、及其製備和用途
CN108452826B (zh) 一种催化裂化催化剂
CN110833850B (zh) 催化裂化催化剂及其制备方法和应用
CN110833855B (zh) 催化裂化催化剂及其制备方法和应用
CN110653002B (zh) 一种催化裂化催化剂
CN108452836B (zh) 一种催化裂化催化剂
CN110653001B (zh) 一种催化裂化催化剂
TW202009218A (zh) 改性y型分子篩、包含它的催化裂解催化劑、及其製備和用途
CN110833854A (zh) 催化裂化催化剂及其制备方法和应用
CN110653000B (zh) 一种催化裂化催化剂及其制备和应用
TWI802718B (zh) 改性y型分子篩、包含它的催化裂解催化劑、及其製備和用途
CN110841695A (zh) 一种改性y型分子筛及其制备方法
CN110833860B (zh) 催化裂化催化剂及其制备方法和应用
CN110841690B (zh) 一种改性y型分子筛及其制备方法
CN110652999A (zh) 一种多产异构c4的高稳定性改性y型分子筛及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545357

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757162

Country of ref document: EP

Kind code of ref document: A1