WO2018151140A1 - シリコン析出用芯線、該芯線の製造方法、および多結晶シリコンの製造方法 - Google Patents

シリコン析出用芯線、該芯線の製造方法、および多結晶シリコンの製造方法 Download PDF

Info

Publication number
WO2018151140A1
WO2018151140A1 PCT/JP2018/005048 JP2018005048W WO2018151140A1 WO 2018151140 A1 WO2018151140 A1 WO 2018151140A1 JP 2018005048 W JP2018005048 W JP 2018005048W WO 2018151140 A1 WO2018151140 A1 WO 2018151140A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
core wire
polycrystalline silicon
ingot
silicon core
Prior art date
Application number
PCT/JP2018/005048
Other languages
English (en)
French (fr)
Inventor
正芳 西川
井上 裕司
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN202310074529.7A priority Critical patent/CN116005259A/zh
Priority to EP18754364.0A priority patent/EP3584219B1/en
Priority to KR1020197024609A priority patent/KR102371059B1/ko
Priority to US16/484,065 priority patent/US11254579B2/en
Priority to CN201880011350.4A priority patent/CN110291040B/zh
Priority to JP2018568557A priority patent/JP6934025B2/ja
Publication of WO2018151140A1 publication Critical patent/WO2018151140A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a core wire for silicon deposition used for manufacturing polycrystalline silicon, a method for manufacturing the core wire, and a method for manufacturing polycrystalline silicon.
  • Siemens method is known as a method for industrially producing polycrystalline silicon used as a raw material for semiconductors or wafers for photovoltaic power generation.
  • a silicon deposition core wire hereinafter sometimes referred to as a “silicon core wire” standing inside a bell-shaped reactor is energized to bring the silicon deposition temperature (about 600 ° C. or higher) into effect.
  • a source gas containing silane compound gas and hydrogen is supplied into the reactor.
  • the Siemens method is a method in which polycrystalline silicon is deposited on the surface of the silicon core wire and vapor-phase grown using a CVD (Chemical Vapor Deposition) method (see Patent Document 1).
  • the silicon core wire used in such a Siemens method is mainly manufactured by the following two methods (i) and (ii).
  • One method is a method of cutting a polycrystalline silicon rod manufactured by the Siemens method into a silicon core wire.
  • this method one batch of polycrystalline silicon rods obtained from one of a plurality of reactors is used as a polycrystalline silicon rod for producing a silicon core wire.
  • a plurality of silicon core wires are erected in each reactor, and a silicon precipitation reaction is performed.
  • a batch of polycrystalline silicon rods for manufacturing a silicon core wire used in this method may be hereinafter referred to as a core wire manufacturing batch.
  • Another method is to produce a single crystal silicon bulk crystal (single crystal silicon ingot) using the Czochralski method (hereinafter sometimes referred to as CZ method), and process the single crystal silicon ingot.
  • CZ method Czochralski method
  • the silicon core wire obtained by the above method (ii) is susceptible to creep deformation at a high temperature due to the physical property of being made of a single crystal, and therefore may collapse in the reactor at a temperature of 800 ° C. or higher. possible.
  • temperature conditions and the like are limited, and it is difficult to speed up the precipitation reaction of polycrystalline silicon. Therefore, it is difficult to improve the production efficiency of polycrystalline silicon.
  • An embodiment of the present invention has been made in view of the above-described conventional problems, and an object thereof is to realize improvement in production efficiency of polycrystalline silicon.
  • the silicon core wire is manufactured by controlling so that the crystal grains are randomly dispersed and the interstitial oxygen concentration is reduced to a specific range.
  • the silicon core wire having high mechanical properties comparable to a silicon core wire manufactured using the Siemens method can be obtained while having different characteristics, and the present invention has been completed.
  • the core wire for silicon precipitation in one embodiment of the present invention is composed of a polycrystalline silicon rod-shaped body, and the polycrystalline silicon has an interstitial oxygen concentration of 10 ppma or more and 40 ppma or less, and on the side surface in the longitudinal direction of the rod-shaped body, Crystal grains having a crystal grain size of 1 mm or more are observed.
  • a method for producing a core wire for silicon precipitation includes a crystal grain having a crystal grain size of 1 mm or more and an interstitial oxygen concentration by a Czochralski method using polycrystalline silicon as a seed crystal.
  • a silicon core wire having excellent mechanical properties at high temperatures can be provided easily. Therefore, there is no need to provide the core wire manufacturing batch, and the production efficiency of polycrystalline silicon by the Siemens method can be improved.
  • (A) is sectional drawing which shows roughly the internal structure of the reactor for polycrystalline silicon manufacture
  • (b) is the silicon precipitation member which consists of a silicon core wire standingly arranged inside the said reactor. It is a perspective view shown. It is a perspective view which shows the inside of the said reactor roughly.
  • (A) is a cross-sectional view of a polycrystalline silicon ingot as a material for producing a silicon core wire according to an embodiment of the present invention
  • (b) is a schematic view showing a side surface in the longitudinal direction of the silicon core wire. . It is a figure for demonstrating an example of the manufacturing method of the silicon
  • a to B indicates that A is B or more and B or less.
  • FIG. 1A is a cross-sectional view schematically showing the structure of a reactor for producing polycrystalline silicon as an example of production equipment for the polycrystalline silicon rod.
  • FIG. 1 (b) is a perspective view showing a silicon deposition member comprising a silicon core wire, which is erected inside the reactor.
  • FIG. 2 is a perspective view schematically showing the inside of the reactor. FIG. 2 shows a state where the reactor cover is removed.
  • a reactor (reactor for producing polycrystalline silicon) 1 includes a bottom plate (bottom plate) 2 and a bell jar type cover 3 that is detachably connected to the bottom plate 2. Have.
  • the bottom plate 2 is fitted with a raw material gas supply port 6 for supplying a raw material gas into the reactor 1 and a waste gas discharge port 7 for discharging a waste gas which is a gas after reaction in the reactor 1.
  • the source gas is a mixed gas containing a silane compound gas and hydrogen.
  • the silane compound include chlorosilane compounds such as trichlorosilane (SiHCl 3 ), monosilane (SiH 4 ), and the like.
  • the bottom plate 2 is provided with at least a pair of electrodes 4.
  • the electrode 4 is connected to a silicon deposition member 10 composed of a silicon core wire. Accordingly, the number of electrodes 4 is determined in accordance with the number of silicon deposition members 10 installed in the reactor 1.
  • the electrode 4 is connected to the power supply unit 5 so as to be energized.
  • the silicon core wire 11 is processed so as to have a U-shape (torii shape), for example, as shown in FIG.
  • the silicon deposition member 10 is installed with respect to the pair of electrodes 4 and is connected to the electrodes 4 so as to be energized.
  • the silicon deposition member 10 is supplied with power from the power supply unit 5 via the electrode 4 and is heated by energization.
  • Polycrystalline silicon is deposited on the surface of the silicon deposition member 10 to form a polycrystalline silicon rod 8.
  • a plurality of silicon precipitation members 10 are erected in the reactor 1 to form a plurality of polycrystalline silicon rods 8.
  • one of the plurality of polycrystalline silicon rods 8 is formed of the silicon core wire 11.
  • a polycrystalline silicon rod 8a for production was obtained.
  • each part of the reactor 1 except the silicon core wire 11 in one embodiment of the present invention is not particularly limited, and a known technique can be used as appropriate. Therefore, detailed description is omitted for convenience of description.
  • the silicon core wire 11 can generally be manufactured by cutting out the polycrystalline silicon rod 8a (see FIG. 2) of the batch for core wire manufacturing manufactured by (i) Siemens method.
  • the silicon core wire 11 obtained by this method (hereinafter sometimes referred to as “silicon core wire obtained by the Siemens method”) has a low impurity concentration and high quality.
  • silicon core wire obtained by the Siemens method has a low impurity concentration and high quality.
  • the production efficiency of polycrystalline silicon is lowered.
  • the manufacturing efficiency of the polycrystalline silicon rod 8 is reduced.
  • the production efficiency is lowered and there is an economic disadvantage.
  • a technique for manufacturing a silicon core wire 11 by cutting out a single crystal silicon ingot manufactured using the CZ method has been proposed.
  • the CZ method can manufacture a silicon rod more easily than the Siemens method.
  • the silicon core wire 11 obtained by this method (hereinafter sometimes referred to as “silicon core wire obtained by the CZ method”) has relatively few impurities, and is widely accepted in the market due to the simplicity of the manufacturing method. .
  • the silicon core wire obtained by the CZ method is susceptible to thermal deformation at the time of temperature rise due to the physical property of being made of a single crystal, and particularly to creep deformation due to slip at a high temperature. Specifically, at a temperature of 800 ° C. or higher, the reactor 1 may collapse due to creep deformation. Therefore, such a silicon core wire has the following problems. That is, it is difficult to use as a silicon core wire that can withstand reaction conditions for further improving the deposition efficiency of polycrystalline silicon in the Siemens method, such as raising the temperature from the beginning of the precipitation reaction.
  • the present inventors have intensively studied what properties can be satisfied as a silicon core wire to obtain a silicon core wire that can be suitably used in the Siemens method.
  • the single crystal silicon core wire obtained by the CZ method is likely to be thermally deformed when the temperature is raised.
  • the present inventors considered as one of the causes as follows. That is, in general, since a single crystal silicon ingot manufactured by the CZ method has a uniform crystal structure, crystal slip at high temperatures is likely to occur, and therefore, it is considered weak against stress in a specific direction. Therefore, in order to improve the mechanical properties of the silicon core wire under high temperature conditions, it is effective to configure the material structure of the silicon core wire so as to have a plurality of crystal grains having random crystal orientations. They were inspired. The inventors of the present invention have suppressed the decrease in yield stress with respect to the force applied from a specific direction and have made the yield stress of the silicon core wire uniform.
  • the interstitial oxygen concentration in each part of the silicon core wire is adjusted to a concentration at which deterioration of mechanical properties due to precipitation of oxygen or the like is unlikely to occur.
  • a casting method such as a HEM (Heat-Exchange Method) method is well known.
  • HEM Heat-Exchange Method
  • a polycrystalline silicon ingot can be easily obtained.
  • a polycrystalline silicon ingot produced using this method is not preferable as an ingot for producing a silicon core wire that requires high purity because it contains a lot of impurities (contamination) from the crucible and the casting furnace structure.
  • impurities contaminants
  • the present inventors have found the following new method. That is, in the conventional CZ method used exclusively for the production of single crystal silicon, polycrystalline silicon is used as a seed crystal, and the same temperature control, pulling conditions, and seed crystal as in the CZ method are used.
  • the present inventors devised the nature of the above. As a result, the present inventors have found that a polycrystalline silicon ingot having the above desired properties can be produced. According to this method, the interstitial oxygen concentration in the ingot can be controlled when the polycrystalline silicon ingot is pulled up. Then, the polycrystalline silicon ingot can be cut out and processed to produce a silicon core wire having the above desired characteristics.
  • the manufacturing method of the polycrystalline silicon ingot related to the new manufacturing method of the silicon core wire is referred to as a polycrystalline CZ method for convenience of explanation.
  • the silicon core wire of the present embodiment obtained by this polycrystalline CZ method has a high heat-resistant deformation property at a high temperature and a high temperature of 900 ° C. or higher as compared with the silicon core wire obtained by the conventionally proposed CZ method. Excellent mechanical properties are shown below.
  • the silicon core wire has a smaller difference in oxygen concentration (interstitial oxygen concentration) between the cut silicon core wires than the silicon core wire obtained by the HEM method, and oxygen in the longitudinal direction of each silicon core wire. It is characterized by small fluctuations in concentration and high purity.
  • this silicon core wire By using this silicon core wire, it is not necessary to manufacture the silicon core wire by the Siemens method.
  • the temperature of the silicon core wire can be raised from the beginning of the reaction, enabling efficient deposition, and reducing the risk of collapse due to the deformation of the silicon core wire until the start of deposition.
  • This silicon core wire can be preheated using a carbon heater in the reactor, and can be suitably used for the high-pressure method in the Siemens method. Further, since creep deformation at high temperatures can be suppressed, there is no need to increase the diameter of the core wire. Therefore, the production efficiency of polycrystalline silicon can be improved.
  • FIG. 3A is a cross-sectional view of a polycrystalline silicon ingot as a material for producing the present silicon core wire.
  • FIG. 3B is a schematic view showing a side surface in the longitudinal direction of the silicon core wire.
  • This silicon core wire is composed of a rod-shaped body of polycrystalline silicon, and the above-mentioned polycrystalline silicon has an interstitial oxygen concentration of 10 ppma or more and 40 ppma or less, and has a crystal grain size of 1 mm or more on the side surface in the longitudinal direction of the rod-shaped body. A certain crystal grain is observed.
  • This silicon core wire can be manufactured, for example, by the following method. That is, it is possible to cut and process a polycrystalline silicon ingot containing crystal grains having an interstitial oxygen concentration adjusted to 10 ppma or more and 40 ppma or less and having a crystal grain size of 1 mm or more. The method for manufacturing this polycrystalline silicon ingot will be described in detail later.
  • a cross section (cross section) perpendicular to the longitudinal direction of the polycrystalline silicon ingot is shown in FIG.
  • the polycrystalline silicon ingot in the present embodiment has crystal grains with a maximum side length of 1 mm or more randomly dispersed, although the crystal grains have different sizes. I understand. On the other hand, the crystal contained in the polycrystalline silicon ingot manufactured using the conventional Siemens method is in a very fine state, and such a crystal grain of 1 mm or more is not seen.
  • the polycrystalline silicon ingot is cut to cut a rod-like body of polycrystalline silicon to obtain a silicon core wire.
  • the shape of the silicon core wire after cutting and the shape in the vertical cross section are not particularly limited.
  • the silicon core wire is erected in the reactor 1 (see FIG. 1A), and when polycrystalline silicon is produced by the Siemens method, a polycrystalline silicon rod 8 having a desired diameter is obtained. If it is.
  • the shape of the rod-shaped body of the present silicon core wire is not particularly limited, and may be, for example, any one of a cylinder, an elliptical column, a substantially rectangular prism, or a polygonal prism.
  • the silicon core wire preferably has a cross-sectional area of 0.1 cm 2 or more and 6 cm 2 or less and a length of 0.5 m or more. More preferably, the cross-sectional area is 0.3 cm 2 or more and 2 cm 2 or less, and the length is 1 m or more.
  • the range of the interstitial oxygen concentration of the silicon core wire is 10 ppma or more and 40 ppma or less from the viewpoint of preventing deformation at the time of temperature rise.
  • the range of the interstitial oxygen concentration is more preferably 15 ppma to 35 ppma, and further preferably 20 ppma to 30 ppma.
  • the distribution of the interstitial oxygen concentration in the longitudinal direction of the rod-shaped body is preferably ⁇ 5 ppma / m or less when an arbitrary position in the longitudinal direction is used as a reference. Further, it is more preferably ⁇ 3 ppma / m or less, and further preferably ⁇ 1 ppma / m or less.
  • the absolute value of the difference between the interstitial oxygen concentration measured at an arbitrary position in the rod-like body and the interstitial oxygen concentration measured at a position 1 m away from the position is 5 ppma or less. Means that.
  • the measurement of the interstitial oxygen concentration can be performed using a known measuring apparatus.
  • a Fourier transform infrared spectrophotometer or the like is used.
  • the present silicon core wire is a rod-shaped body made of polycrystalline silicon as an aggregate of silicon crystals. As shown in FIG. 3B, a large number of single crystal grains having a maximum side length of 1 mm or more are observed on the side surface in the longitudinal direction of the silicon core wire.
  • the present silicon core wire has 95% or more of the area (side area) of the side surface on one side surface in the longitudinal direction and a cut surface (crystal grain) having a maximum side length of 1 mm or more. (Cross section).
  • the shape of the crystal grains observed on the side surface of the silicon core wire is not particularly limited, and may vary depending on how the crystal grains appear on the side surface.
  • the maximum piece length of a crystal grain corresponds to the length of the major axis of the crystal grain cross section on the observation surface (for example, when the crystal grain has an irregular shape such as a needle shape or a substantially elliptical shape).
  • the crystal grain cross section is substantially circular, the diameter of the crystal grain cross section corresponds to the maximum piece length.
  • the crystal grains observed on the side surface of the silicon core wire include those having a maximum piece length of 1 mm to 300 mm. In addition, it is more preferable that the crystal grains observed on the side surface of the silicon core wire include those having a maximum piece length of 1 mm to 100 mm.
  • the silicon core wire occupies 50% or more of the area of one side surface in the longitudinal direction by a crystal grain cross section having a maximum side length of 1 mm or more.
  • the ratio of the crystal grain cross section on the side surface can be measured using a known measuring device.
  • a length measuring device may be used, and the crystal grain cross section on the side surface may be observed using an optical microscope.
  • the silicon core wire manufactured using the polycrystalline CZ method has a crystal grain size larger than that of the silicon core wire obtained by the Siemens method. This can mean that it is relatively soft when heated.
  • the silicon core wire adjusts the interstitial oxygen concentration, and some oxygen is taken into the grain boundaries of the polycrystalline silicon. Thereby, softening at the time of temperature rise is suppressed.
  • the silicon core wire preferably has a yield stress at 900 ° C. of 150 MPa or more per cm 2 .
  • Such mechanical characteristics can be obtained when the silicon core wire is a rod-shaped body made of polycrystalline silicon and the interstitial oxygen concentration is within the predetermined range.
  • the thermal deformation at the time of high temperature can be suppressed, and the silicon precipitation process can be performed on high temperature conditions from the initial stage of reaction.
  • Yield stress means a stress that causes permanent set because the stress and the amount of deformation are not proportional.
  • the measurement of the yield stress can be performed using a known measuring device.
  • a three-point bending test according to JIS Z 2248 is used.
  • the silicon core wire preferably has a total concentration of phosphorus and boron (dopant concentration) of 1 ppba or less.
  • the purity of polycrystalline silicon obtained by the Siemens method can be made higher by using the silicon core wire. Therefore, it can be suitably used for semiconductor applications.
  • the measurement of the impurities can be performed using a known measuring apparatus.
  • a photoluminescence method or the like is used.
  • the total concentration of phosphorus and boron contained in the silicon core wire basically depends on the total concentration contained in the polycrystalline silicon ingot.
  • the polycrystalline silicon ingot may be manufactured so that the total concentration of phosphorus and boron is reduced.
  • the present silicon core wire it is not necessary to provide a batch for manufacturing the core wire as in the conventional method. Therefore, the present silicon core wire can be manufactured in parallel with manufacturing polycrystalline silicon in the reactor 1 (polycrystalline silicon manufacturing facility by the Siemens method). As a result, the production cycle of polycrystalline silicon by the reactor 1 can be accelerated and the production efficiency can be improved.
  • the present silicon core wire can raise the temperature from the initial stage of the precipitation reaction of polycrystalline silicon in the reactor 1, and can also reduce the risk of collapse due to the deformation of the silicon core wire.
  • the reaction can proceed.
  • FIG. 4 is a diagram for explaining an example of a method for manufacturing the present silicon core wire.
  • the silicon core wire is produced by polycrystalline silicon containing crystal grains having a crystal grain size of 1 mm or more and an interstitial oxygen concentration of 10 ppma or more and 40 ppma or less by a Czochralski method using polycrystalline silicon as a seed crystal. It is a method including an ingot manufacturing process for manufacturing an ingot, and a processing process for processing the polycrystalline silicon ingot into a rod-shaped body.
  • this silicon core wire manufacturing method includes at least a (1) ingot cutting step, (2) core wire cutting step, and (3) post-processing step as processing steps.
  • an ingot manufacturing device Ingot manufacturing process, a known polycrystalline silicon ingot pulling device (hereinafter referred to as an ingot manufacturing device) generally used in the Czochralski method can be used, and the structure of the ingot manufacturing device is not particularly limited.
  • a silicon raw material for manufacturing a polycrystalline silicon ingot is put into a crucible provided in an ingot manufacturing apparatus.
  • this silicon raw material polycrystalline silicon is usually used.
  • the silicon raw material is not particularly limited, but from the viewpoint of producing a silicon core wire used in the Siemens method using the polycrystalline silicon ingot produced in the ingot production process, the silicon raw material is highly pure and has no metal contamination. Less is preferred.
  • the silicon raw material may include a crushed material (scrap) of polycrystalline silicon generated by a processing step described later, a post-processing step of a polycrystalline silicon rod manufactured by the Siemens method, and the like.
  • a crushed material scrap
  • a post-processing step of a polycrystalline silicon rod manufactured by the Siemens method and the like.
  • the material of the crucible is not particularly limited, but it is preferable to use a quartz crucible whose surface is coated with SiC from the viewpoint of reducing the amount of oxygen mixed in the polycrystalline silicon ingot.
  • the crucible After charging the silicon raw material into the crucible, the crucible is heated to obtain a silicon melt.
  • the temperature at which the crucible is heated is not particularly limited as long as it can melt the silicon raw material.
  • polycrystalline silicon to be a seed crystal is mounted on a holder, and the seed crystal is infiltrated into the silicon melt. After the seed crystal is infiltrated into the silicon melt, various pulling conditions are controlled to expand the crystal to a desired crystal diameter. After the seed crystal grows to a desired crystal diameter, the straight body is pulled up so as to maintain the crystal diameter.
  • the polycrystalline silicon used as the seed crystal is not particularly limited, but is preferably high-purity polycrystalline silicon manufactured by the Siemens method.
  • various pulling conditions include the number of revolutions of the crucible, the pulling speed of the seed crystal, the temperature of the crucible, and the like.
  • known pulling conditions using a single crystal as a seed crystal in the conventional Czochralski method can be adopted without any particular limitation.
  • the inside of the ingot production apparatus is controlled to an inert atmosphere.
  • the inside of the ingot manufacturing apparatus has an argon atmosphere, and the oxygen concentration is low.
  • argon gas may be supplied to the surface of the silicon melt to control the convection of the silicon melt. Thereby, it is possible to reduce oxygen from being transferred from the crucible to the silicon melt, promote the discharge of oxygen dissolved in the silicon melt, and control the oxygen concentration.
  • the diameter of the polycrystalline silicon ingot is preferably 90 mm to 180 mm, more preferably 110 mm to 160 mm.
  • a polycrystalline silicon ingot containing crystal grains having a crystal grain size of 1 mm or more and having an interstitial oxygen concentration of 10 ppma or more and 40 ppma or less can be produced. Further, this polycrystalline silicon ingot has a small variation in interstitial oxygen concentration in the longitudinal direction. In other words, in the polycrystalline silicon ingot, the distribution of interstitial oxygen concentration in the longitudinal direction can be set to be ⁇ 5 ppma / m or less when an arbitrary position in the longitudinal direction is used as a reference.
  • the processing step for processing the polycrystalline silicon ingot manufactured in the above ingot manufacturing step into a rod-like body will be described below.
  • equipment similar to the method of cutting a silicon core wire from a conventional polycrystalline silicon rod and single crystal silicon ingot can be used, and detailed description thereof is omitted.
  • the polycrystalline silicon ingot 20 manufactured by the method of the present embodiment is cut as follows. That is, cutting is performed in a direction parallel to the longitudinal direction so that a plurality of flat plates are cut out from the polycrystalline silicon ingot 20. In other words, the polycrystalline silicon ingot 20 is cut so that the longitudinal direction of the cut out flat plate is the pulling direction in the production of the polycrystalline silicon ingot 20.
  • a diamond wire saw can be used as a method for cutting the polycrystalline silicon ingot 20.
  • the process of said (1) and (2) may include the process of performing surface treatments, such as a grinding
  • the silicon deposition member 10 can be manufactured by connecting a plurality of silicon core wires 11 before being used for manufacturing polycrystalline silicon by the Siemens method.
  • the polycrystalline silicon ingot 20 can be processed relatively easily because it is difficult to cleave like a single crystal silicon ingot. Therefore, it is possible to prevent a decrease in yield due to breakage that may occur in the machining process.
  • ⁇ Polycrystalline silicon production method> In the method for producing polycrystalline silicon according to one aspect of the present invention, at least the silicon deposition member 10 (silicon deposition core wire) connected to the silicon core wires described above is provided on the bottom plate (bottom plate) 2 of the reactor 1. A step of cross-linking between the pair of electrodes 4 (cross-linking step), and supplying the raw material gas containing the gas of the silane compound and hydrogen to the reactor 1 while energizing and heating the silicon precipitation member 10, the silicon precipitation member And a step of depositing silicon on the surface of 10 (precipitation step).
  • a silicon core wire 11 may be used instead of the silicon deposition member 10.
  • the cross-linking step and the precipitation step a conventionally known method can be used except that the silicon precipitation member 10 to which the silicon core wire in one embodiment of the present invention is connected is used as the silicon precipitation member 10.
  • the energization to the silicon deposition member 10 is started via the electrode 4 and the temperature of the silicon deposition member 10 is heated to a temperature equal to or higher than the silicon deposition temperature.
  • the deposition temperature of silicon is about 600 ° C. or higher.
  • the silicon deposition member 10 is energized and heated so as to be maintained at a temperature of about 900 to 1000 ° C.
  • the energization heating of the silicon deposition member 10 can be performed while supplying the raw material gas into the reactor 1.
  • the source gas contains a silane compound gas and hydrogen. Silicon is generated by the reaction of the raw material gas, that is, the reduction reaction of the silane compound.
  • silane compound gas a silane compound gas such as monosilane, trichlorosilane, silicon tetrachloride, monochlorosilane, or dichlorosilane is used, and trichlorosilane gas is generally preferably used.
  • Hydrogen is also used as a reducing gas.
  • a gas other than hydrogen may be used as the reducing gas.
  • hydrogen gas is used excessively.
  • this reduction reaction is represented by the following formula.
  • the present invention includes the following inventions.
  • a polycrystalline silicon rod-shaped body wherein the polycrystalline silicon has an interstitial oxygen concentration of 10 ppma or more and 40 ppma or less, and a crystal grain having a grain size of 1 mm or more on a side surface in the longitudinal direction of the rod-shaped body.
  • a core wire for silicon deposition characterized in that is observed.
  • the polycrystalline silicon is characterized in that the distribution of interstitial oxygen concentration in the longitudinal direction of the rod-shaped body is ⁇ 5 ppma / m or less with respect to an arbitrary position in the longitudinal direction.
  • An ingot for producing a polycrystalline silicon ingot containing crystal grains having a crystal grain size of 1 mm or more and having an interstitial oxygen concentration of 10 ppma or more and 40 ppma or less by the Czochralski method using polycrystalline silicon as a seed crystal A manufacturing method of a silicon deposition core wire, comprising: a manufacturing process; and a processing process of processing the polycrystalline silicon ingot into a rod-shaped body.
  • Example 1 and 2 A polycrystalline silicon ingot was manufactured according to the procedure of the Czochralski method described below. First, 55 kg of high-purity polycrystalline silicon having a dopant concentration of 1 ppba or less was charged into a quartz crucible. The crucible was placed in a Czochralski-type pulling furnace to grow crystals. The obtained polycrystalline silicon ingot having a diameter of 100 mm and a length of 2400 mm was cut into 8 mm square to obtain a silicon core wire.
  • the interstitial oxygen concentration of the polycrystalline silicon ingot was measured using a Fourier transform infrared spectrophotometer. As a result, the interstitial oxygen concentration contained in the short direction of the polycrystalline silicon ingot was 15 ppma or more and 30 ppma or less.
  • the distribution of the interstitial oxygen concentration in the longitudinal direction of the polycrystalline silicon ingot is such that the difference between the concentration at the other measurement location and the reference is ⁇ 5 ppma / m or less, based on the concentration at the location measured at any location. Met.
  • the distribution of the interstitial oxygen concentration in the longitudinal direction of the silicon core wire is ⁇ 5 ppma / m or less, the silicon core wire having an average value of the oxygen concentration in the longitudinal direction of 26 ppma, and the silicon core wire having an interstitial oxygen concentration of 16 ppma Was cut out.
  • the content of crystal grains was measured with an optical microscope.
  • crystal grains having a maximum piece length of 1 mm or more were measured.
  • 95% or more of the side area was occupied by the cut surface of the crystal grains having a maximum piece length of 1 mm or more.
  • 2 or more and 25 or less of the above crystal grains were contained per 1 cm 2 on the side surface.
  • FIG. 5 A method for evaluating the amount of deflection and the amount of plastic deformation at a high temperature of the silicon core wire will be described with reference to FIG.
  • one end side of the silicon core wire 11 having a short-side diameter of 8 mm (8 mm square) was held and fixed by a holding member 30.
  • the length of the silicon core wire 11 that is not held by the holding member 30 is 1 m.
  • the silicon core wire 11 and the holding member 30 were maintained so that the longitudinal direction of the silicon core wire 11 was in the horizontal direction (direction perpendicular to the direction of gravity), and heated at 900 ° C. for 1 hour.
  • the amount of deviation from the initial position at the tip of the silicon core wire 11 was measured as the amount of deflection after the temperature was raised to 900 ° C.
  • the bending amount extends in a direction perpendicular to the center of the open end of the silicon core wire 11 and the surface of the holding member 30 on the side where the silicon core wire 11 protrudes from the center of the other end of the silicon core wire 11. The distance between the straight line is shown.
  • the silicon core wire 11 heated to 900 ° C. for 1 hour and then cooled to room temperature was measured by the same method as the above-described deflection amount, and the obtained value was defined as the plastic deformation amount.
  • the amount of deflection of the silicon core wire 11 after heating at 900 ° C. was 13.8 mm and 13 mm, and the amount of plastic deformation after heating was 0 mm.
  • the total concentration of phosphorus and boron contained in the silicon bulk was measured by a photoluminescence method. As a result, it is understood that the total concentration of phosphorus and boron is 1 ppba or less, which is the same as that of the raw material polycrystalline silicon, and the silicon core wire 11 can be obtained with high purity.
  • the silicon core wire in this example has suppressed thermal deformation at a temperature rise of 900 ° C., and in the process of depositing silicon in the Siemens method, it is possible to perform a precipitation reaction at a high temperature from the beginning of the reaction. It was proved to be.
  • the silicon core wire obtained in this example was used in a reactor for producing polycrystalline silicon used in the Siemens method, the silicon core wire showed the same physical properties as the test results. From this, it was confirmed that the silicon core wire obtained in this example has sufficient strength in the process of producing polycrystalline silicon using the Siemens method.
  • the interstitial oxygen concentration of the obtained single crystal silicon ingot was measured using a Fourier transform infrared spectrophotometer.
  • the interstitial oxygen concentration contained in the short direction of the single crystal silicon ingot is 15 ppma or more and 30 ppma or less, and the distribution of interstitial oxygen in the longitudinal direction is ⁇ 5 ppma / m or less when an arbitrary location is used as a reference. Met.
  • the content of crystal grains was measured.
  • the above crystal grains having a maximum piece length of 1 mm or more were not confirmed.
  • the distribution of the oxygen concentration in the longitudinal direction is ⁇ 5 ppma / m or less, the average value of the oxygen concentration in the longitudinal direction is 28 ppma, and the oxygen concentration is 18 ppma.
  • a single crystal silicon core wire was cut out.
  • the amount of bending of the silicon core wire when heated at 900 ° C. was about 44 mm, and the amount of plastic deformation of the silicon core wire after heating was about 30 mm.
  • the total concentration of phosphorus and boron contained in the silicon core wire was measured. As a result, the total concentration of phosphorus and boron was 1 ppba or less.
  • a polycrystalline silicon ingot was manufactured according to the procedure of the HEM method described below. First, 500 kg of high-purity polycrystalline silicon having a dopant concentration of 1 ppba or less was charged into a quartz crucible. The crucible was placed in a HEM type purification furnace, and the temperature was raised above the melting point of polycrystalline silicon. After melting the polycrystalline silicon, a polycrystalline ingot having a length of 2700 mm, a width of about 300 mm, and a height of about 300 mm was obtained by unidirectional solidification from the crucible bottom. The obtained polycrystalline silicon ingot was cut into an 8 mm square to obtain a silicon core wire having an average oxygen concentration in the longitudinal direction of 50 ppma.
  • the content of crystal grains was measured with an optical microscope. A crystal grain having a maximum piece length of 1 mm or more was measured. In each of the silicon core wires, 95% or more of the side area was occupied by the cut surface of the crystal grains having a maximum piece length of 1 mm or more. Further, in each of the above silicon core wires, 2 or more and 25 or less of the above crystal grains were contained per 1 cm 2 on the side surface.
  • the amount of plastic deformation of the silicon core wire after heating was 20 mm. Further, the amount of deflection of the silicon core wire when heated to 900 ° C. was 33.9 mm.
  • the total concentration of phosphorus and boron contained in the silicon core wire was measured. As a result, the total concentration of phosphorus and boron exceeded 10 ppba.
  • hydrogen gas and gaseous chlorosilane compound were supplied into the bell jar as raw material gas to deposit polycrystalline silicon.
  • the obtained polycrystalline silicon rod was cut into 8 mm square to obtain a silicon core wire.
  • the physical properties of the silicon core wire were evaluated by the same method as in Example 1.
  • the content of crystal grains having a maximum piece length of 1 mm or more on the side surface of the silicon core wire was measured. On the side surface of the silicon core wire, crystal grains having a maximum piece length of 1 mm or more were not confirmed.
  • the interstitial oxygen concentration was less than 1 ppma.
  • the amount of plastic deformation of the silicon core wire after heating was 0 mm. Further, the amount of deflection of the silicon core wire when heated to 900 ° C. was 11.8 mm.
  • the total concentration of phosphorus and boron contained in the silicon core wire was measured. As a result, the total concentration of phosphorus and boron was 1 ppba or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Silicon Compounds (AREA)

Abstract

多結晶シリコンの生産効率を向上させる。シリコン芯線(11)は、多結晶シリコンの棒状体からなり、多結晶シリコンは、格子間酸素濃度が10ppma以上40ppma以下であり、かつ、棒状体の長手方向の側面において、結晶粒径が1mm以上の結晶粒が観察される。

Description

シリコン析出用芯線、該芯線の製造方法、および多結晶シリコンの製造方法
 本発明は、多結晶シリコンの製造に用いられるシリコン析出用芯線、該芯線の製造方法、および多結晶シリコンの製造方法に関する。
 半導体または太陽光発電用ウェハの原料として使用される多結晶シリコンを工業的に製造する方法として、シーメンス法(Siemens法)が知られている。シーメンス法では、鐘型(ベルジャー型)の反応器内部に立設したシリコン析出用芯線(以下、「シリコン芯線」と称することがある)を通電してシリコンの析出温度(約600℃以上)に加熱し、上記反応器内にシラン化合物のガスおよび水素を含む原料ガスを供給する。シーメンス法は、これにより、CVD(Chemical Vapor Deposition)法を用いて、シリコン芯線の表面上に多結晶シリコンを析出、および気相成長させる方法である(特許文献1参照)。
 このようなシーメンス法に用いられる上記シリコン芯線は、主に下記(i)および(ii)の2種類の方法にて製造されている。
 (i)1つの方法は、シーメンス法にて製造した多結晶シリコンロッドを切り出して、シリコン芯線とする方法である。一般に、該方法は、複数の反応器のうち1つより得られる1バッチ分の多結晶シリコンロッドを、シリコン芯線製造用の多結晶シリコンロッドとするものである。上記複数の反応器において、各反応器内部には複数のシリコン芯線が立設され、シリコンの析出反応が行われている。この方法で用いられる、シリコン芯線製造用の多結晶シリコンロッドのバッチのことを以下では芯線製造用バッチと称することがある。
 (ii)もう1つの方法は、チョクラルスキー法(以下、CZ法と称することがある)を用いて単結晶シリコンのバルク結晶(単結晶シリコンインゴット)を作製し、該単結晶シリコンインゴットを加工してシリコン芯線を製造する方法である。
特開2016-138021号公報
 多結晶シリコンの需要の増大に伴って、多結晶シリコンの生産効率を高める種々の技術が提案されているが、生産効率の更なる向上が要望されている。
 しかし、上記(i)の方法にて製造したシリコン芯線を使用する場合、上記芯線製造用バッチを設けること、および多結晶シリコンの製造設備を用いてシリコン芯線を製造することから、多結晶シリコンの生産効率が低下するという問題がある。
 また、上記(ii)の方法により得られたシリコン芯線は、単結晶からなるという物性上、高温時にクリープ変形を起こし易いため、800℃以上の温度下では、反応器内にて倒壊することがあり得る。そのため、シーメンス法による多結晶シリコンの製造において、温度条件等が制限され、多結晶シリコンの析出反応を高速化することが妨げられる。それゆえ、多結晶シリコンの生産効率を向上させることが難しい。
 本発明の一態様は、上記従来の問題点に鑑みなされたものであり、その目的は、多結晶シリコンの生産効率を向上させることを実現することにある。
 本発明者らが鋭意研究を行った結果、シーメンス法以外の方法にてシリコン芯線を製造するに際して、以下のことを見出した。すなわち、結晶粒がランダムに分散し、かつ格子間酸素濃度が特定の範囲内にまで低減するように制御してシリコン芯線を製造する。これにより、その特性を異としながら、シーメンス法を用いて製造したシリコン芯線に匹敵する高い機械特性を有するシリコン芯線が得られることを見出し、本発明を完成させるに至った。
 本発明の一態様におけるシリコン析出用芯線は、多結晶シリコンの棒状体からなり、前記多結晶シリコンは、格子間酸素濃度が10ppma以上40ppma以下であり、かつ、棒状体の長手方向の側面において、結晶粒径が1mm以上の結晶粒が観察される。
 また、本発明の一態様におけるシリコン析出用芯線の製造方法は、種結晶として多結晶シリコンを用いたチョクラルスキー法により、結晶粒径が1mm以上の結晶粒を含み、かつ格子間酸素濃度が10ppma以上40ppma以下である多結晶シリコンインゴットを製造するインゴット製造工程と、前記多結晶シリコンインゴットを棒状体に加工する加工工程と、を含む。
 本発明の一態様によれば、高温時における機械特性が優れたシリコン芯線を簡便に提供することができる。そのため、上記芯線製造用バッチを設けることが不要となり、シーメンス法による多結晶シリコンの生産効率を向上させることができるという効果を奏する。
(a)は、多結晶シリコン製造用反応器の内部構造を概略的に示す断面図であり、(b)は、上記反応器の内部に立設される、シリコン芯線からなるシリコン析出用部材を示す斜視図である。 上記反応器の内部を概略的に示す斜視図である。 (a)は、本発明の一実施形態におけるシリコン芯線を製造する素材としての多結晶シリコンインゴットの横断面図であり、(b)は、上記シリコン芯線の長手方向の側面を示す模式図である。 本発明の一実施形態におけるシリコン芯線の製造方法の一例を説明するための図である。 シリコン芯線の高温時における撓み量を試験する方法を説明するための断面図である。
 以下、本発明の実施の形態について説明する。なお、以下の記載は発明の趣旨をより良く理解させるためのものであり、特に指定のない限り、本発明を限定するものではない。また、本明細書において、「A~B」とは、A以上B以下であることを示している。
 <多結晶シリコン製造装置>
 本発明の一実施の形態に係るシリコン析出用芯線(以下、単に「シリコン芯線」と称する)についての理解の一助のために、先ず、図1の(a)、(b)、および図2を用いて、シーメンス法において用いられる多結晶シリコンロッドの製造設備の一例について概説する。図1の(a)は、上記多結晶シリコンロッドの製造設備の一例としての多結晶シリコン製造用反応器の構造を概略的に示す断面図である。図1の(b)は、上記反応器の内部に立設される、シリコン芯線からなるシリコン析出用部材を示す斜視図である。図2は、上記反応器の内部を概略的に示す斜視図である。なお、図2では、反応器のカバーを除去した状態を示している。
 図1の(a)に示すように、反応器(多結晶シリコン製造用反応器)1は、底板(底盤)2と、底板2に対して着脱自在に連結されるベルジャー型のカバー3とを有している。
 底板2には、反応器1内へ原料ガスを供給するための原料ガス供給口6と、反応器1内における反応後のガスである廃ガスを排出するための廃ガス排出口7とが嵌入されている。上記原料ガスは、シラン化合物のガスおよび水素を含む混合ガスである。シラン化合物としては、例えば、トリクロロシラン(SiHCl)等のクロロシラン化合物、およびモノシラン(SiH)等が挙げられる。
 また、底板2には、少なくとも一対の電極4が設けられている。上記電極4に、シリコン芯線により構成されるシリコン析出用部材10が接続される。従って、電極4の数は、反応器1の内部に設置されるシリコン析出用部材10の数に対応して決定される。電極4は、電力供給部5と通電可能に接続されている。
 シリコン芯線11は、例えば、図1の(b)に示すように、コの字状(鳥居状)になるように加工される。加工後、シリコン析出用部材10は、一対の電極4に対して設置され、電極4と通電可能に接続される。シリコン析出用部材10は、電極4を介して電力供給部5から電力が供給され通電加熱される。
 シリコン析出用部材10の表面上に、多結晶シリコンが析出し、多結晶シリコンロッド8が形成される。
 図2に示すように、反応器1の内部には、シリコン析出用部材10が複数立設され、複数の多結晶シリコンロッド8が形成される。前述したように、従来法としての、シーメンス法にて製造した多結晶シリコンロッド8を用いてシリコン芯線11を製造する方法では、複数の多結晶シリコンロッド8のうちの1つをシリコン芯線11の製造用の多結晶シリコンロッド8a(芯線製造用バッチ)としていた。
 なお、本発明の一態様におけるシリコン芯線11を除く反応器1の各部の構成は特に限定されず、既知の技術を適宜用いることができる。そのため、説明の便宜上、詳細な説明は省略する。
 次に、上記のような反応器1に用いられるシリコン芯線11に関する、本発明の知見の概略的な説明をする。
 <本発明の知見の概略的な説明>
 従来、シーメンス法による多結晶シリコンの製造において、生産効率を向上させるために、シリコン芯線を予備加熱する、昇温速度を速くする、反応器内の温度および圧力を高くする、原料ガスの供給量を多くする、並びに、多結晶シリコンロッドの径を大きくする、等の種々の技術が提案され、適用されている。
 前述のように、シリコン芯線11は、一般に、(i)シーメンス法にて製造した芯線製造用バッチの多結晶シリコンロッド8a(図2参照)を切り出して製造することができる。この方法により得られたシリコン芯線11(以下、「シーメンス法にて得られたシリコン芯線」と称することがある)は、不純物濃度が低く、高品質である。しかし、このような多結晶シリコンロッド8aは、緻密かつ硬質であることが求められることから、反応条件を緩やかにして製造しなければならず、その結果多結晶シリコンの生産効率が低下する。そして、反応器1を使用して製造する必要があることから、多結晶シリコンロッド8の製造効率を下げる。このように、上記(i)の方法では、生産効率が低下し、経済的なデメリットがあった。
 そこで、(ii)CZ法を用いて製造した単結晶シリコンインゴットを切り出してシリコン芯線11を製造する技術が提案されている。CZ法は、シーメンス法と比べて簡易にシリコンロッドを製造することが可能とされている。この方法により得られたシリコン芯線11(以下、「CZ法にて得られたシリコン芯線」と称することがある)は、不純物が比較的少なく、その製法の簡便さから市場に広く受け入れられている。
 ところで、多結晶シリコンの析出の効率化を考慮した際、析出反応の初期からシリコン芯線11の温度を上げ、できるだけ反応初期から析出速度を上げることで、単位時間生産効率を上げることが好ましいと本発明者らは考える。また、シリコン芯線11の温度を反応初期から上げることにより、シリコン芯線11の表面上における酸化膜の付着の防止ができる。
 ここで、CZ法にて得られたシリコン芯線は、単結晶からなるという物性上、昇温時に熱変形を起こし易く、特に、高温時においてスリップによりクリープ変形を起こし易い。具体的には、800℃以上の温度では、クリープ変形により反応器1内にて倒壊することがあり得る。そのため、このようなシリコン芯線は、以下のような問題があった。すなわち、析出反応の初期から温度を上げるといった、シーメンス法における多結晶シリコンの析出効率の更なる向上を図るための反応条件に耐え得るシリコン芯線として用いることが困難である。
 上記変形を抑制するために、シリコン芯線の径を増大させることにより、機械強度を上昇させることは可能である。しかし、シリコン芯線の径を増大させた場合、シリコン芯線の表面温度を高温に維持させる際に過剰なエネルギーが必要となる。また、シリコン芯線を製造するための素材(インゴット)からシリコン芯線を切り出す際に、得られるシリコン芯線の数が減少するため、生産効率上好ましくない。
 このような状況の中、本発明者らは、シリコン芯線としてどのような性質を満たすことができれば、シーメンス法に好適に用いることができるシリコン芯線を得られるのか鋭意検討を行った。
 CZ法にて得られた単結晶シリコン芯線は、昇温時に熱変形を起こし易い。本発明者らは、この原因の1つとして、以下のように考えた。すなわち、一般に、CZ法にて製造された単結晶シリコンインゴットは均一な結晶構造をもつことから、高温時の結晶滑りが発生しやすく、そのため特定方向の応力に対して弱いと考えた。そのため、高温条件下におけるシリコン芯線の機械特性を向上させるためには、シリコン芯線の材料組織を、ランダムな結晶方位を有する複数の結晶粒を有するように構成することが有効であると、本発明者らは着想した。本発明者らは、上記のことにより、特定方向から加えられた力に対する降伏応力の低下を抑制し、シリコン芯線の降伏応力の均一化を図った。
 さらに、上記ランダムに配置された単結晶粒自体の強度を上げるために、シリコン芯線の各部における格子間酸素濃度を、酸素の析出等による機械物性の低下が起きにくい濃度に調整し、該濃度の変動を小さくすることにより、以下の効果を得ることを考えた。すなわち、シリコン芯線の各部の降伏応力を均一化し、酸素濃度制御によりシリコン芯線を高強度化することにより、シーメンス法による析出までの昇温時におけるシリコン芯線の熱変形を抑制することができる。
 ここで、多結晶のシリコンインゴットを得る方法として、HEM(Heat Exchange Method)法などの鋳造による方法がよく知られている。この方法では、多結晶シリコンインゴットを容易に得ることができる。しかし、この方法を用いて製造される多結晶シリコンインゴットは、坩堝および鋳造炉構造体からの不純物の混入(汚染)が多く、高純度が求められるシリコン芯線の製造用インゴットとしては好ましくない。また、インゴットへの酸素の混入を制御することが難しく、インゴットのボトムからトップまで酸素濃度を均一に制御することは非常に困難である。
 そこで、本発明者らは、上記の着想をもとに、所望の性質を有するシリコン芯線を製造する方法について更なる鋭意研究を行った結果、以下のような新たな方法を見出した。すなわち、従来、単結晶シリコンの生産に専ら使用されるCZ法において、種結晶に多結晶シリコンを使用して、CZ法と同様の設備を用いて、初期の温度制御、引上げ条件、および種結晶の性質などを本発明者らは工夫した。その結果、本発明者らは、上記の所望の性質を有する多結晶シリコンインゴットを製造することができることを見出した。この方法によれば、多結晶シリコンインゴットを引き上げる際に、該インゴットにおける格子間酸素濃度を制御することができる。そして、この多結晶シリコンインゴットを切り出して加工し、上記の所望の特性を有するシリコン芯線を製造することができる。
 本明細書では、このシリコン芯線の新たな製造方法に関する、多結晶シリコンインゴットの製造方法を、説明の便宜上、多結晶CZ法と称する。
 この多結晶CZ法によって得られる本実施の形態のシリコン芯線は、従来から提案されているCZ法にて得られたシリコン芯線に比べて、高温時の耐熱変形性が高く、900℃以上の高温下において優れた機械特性を示す。また、本シリコン芯線は、HEM法にて得られたシリコン芯線に比べて、切り出された各シリコン芯線間の酸素濃度(格子間酸素濃度)の差が小さいとともに、各シリコン芯線の長手方向における酸素濃度の変動も小さく、かつ純度が高いという特徴を有する。
 本シリコン芯線を使用することにより、シーメンス法にてシリコン芯線を製造する必要が無い。また、反応初期からシリコン芯線の温度を上げることができ、効率的な析出が可能となり、析出開始までのシリコン芯線の変形由来による倒壊リスクも低減できる。本シリコン芯線は、反応器内にて、カーボンヒータを用いて予熱することが可能であり、シーメンス法における高圧法に好適に使用することができる。また、高温時のクリープ変形を抑止することができるため、芯線の径を増加させる必要もなくなる。したがって、多結晶シリコンの生産効率を向上させることができる。
 次に、本発明の実施の形態におけるシリコン芯線について説明する。
 <シリコン芯線(シリコン析出用芯線)>
 本発明の実施の形態におけるシリコン芯線について、図3を参照しながら説明する。図3の(a)は、本シリコン芯線を製造する素材としての多結晶シリコンインゴットの横断面図である。図3の(b)は、本シリコン芯線の長手方向の側面を示す模式図である。
 本シリコン芯線は、多結晶シリコンの棒状体からなり、上記多結晶シリコンは、格子間酸素濃度が10ppma以上40ppma以下であり、かつ、棒状体の長手方向の側面において、1mm以上の結晶粒径である結晶粒が観察される。
 本シリコン芯線は、例えば以下の方法により製造することができる。すなわち、格子間酸素濃度が10ppma以上40ppma以下に調整され、かつ1mm以上の結晶粒径である結晶粒を含む多結晶シリコンインゴットを切り出し、加工して製造することができる。この多結晶シリコンインゴットの製造方法について、詳しくは後述する。この多結晶シリコンインゴットの長手方向に垂直な断面(横断面)を図3の(a)に示す。
 図3の(a)に示すように、本実施の形態における多結晶シリコンインゴットは、結晶粒の大きさに差異があるものの、最大辺長が1mm以上の結晶粒がランダムに分散していることがわかる。これに対して、従来のシーメンス法を用いて製造した多結晶シリコンインゴットに含まれる結晶は非常に微細な状態であり、このような1mm以上の結晶粒は見られない。
 (形状)
 上記多結晶シリコンインゴットを切断して、多結晶シリコンの棒状体を切り出し、シリコン芯線を得る。このとき、切り出し後のシリコン芯線の外形および垂直断面における形状としては、特に限定されない。シリコン芯線は、上記反応器1(図1の(a)参照)内に立設して、シーメンス法による多結晶シリコンの製造を行ったとき、所望の径の多結晶シリコンロッド8が得られる形であればよい。
 本シリコン芯線の棒状体の形状としては、特に限定されず、例えば、円柱、楕円柱、略方形の角柱、または多角形の角柱のいずれかであってよい。また、上記シリコン芯線は、断面積が0.1cm以上6cm以下であり、長さが0.5m以上であることがより好ましい。また、断面積が0.3cm以上2cm以下であり、長さが1m以上であることがさらに好ましい。シリコン芯線の径を大きくすることで高温時の熱変形を抑制し得るが、その場合、多結晶シリコン製造の効率が低下する。一方、上記構成によれば、シリコン芯線の大きさを所定の範囲内に抑えることができるため、多結晶シリコン製造の効率悪化が生じない。
 (格子間酸素濃度)
 本シリコン芯線の格子間酸素濃度の範囲は、昇温時における変形を防ぐという観点から、10ppma以上40ppma以下である。また、上記格子間酸素濃度の範囲は、15ppma以上35ppma以下、さらには20ppma以上30ppma以下であることがより好ましい。
 また、上記棒状体の長手方向における格子間酸素濃度の分布が、長手方向の任意の箇所を基準とした場合に、±5ppma/m以下であることが好ましい。また、±3ppma/m以下であることがより好ましく、±1ppma/m以下であることがさらに好ましい。これは、例えば、上記棒状体における任意の位置において計測された格子間酸素濃度と、該位置から1m離れた位置において計測された格子間酸素濃度との互いの差の絶対値が5ppma以下であることを意味する。
 ここで、上記格子間酸素濃度の測定は、公知の測定装置を用いて行うことができる。例えば、フーリエ変換赤外分光光度計等が用いられる。
 上記構成によれば、シリコン芯線の全長間における格子間酸素濃度の変動が大きいことにより生じ得る、シリコン芯線の高温時における熱変形を抑制することができる。
 (側面の外観)
 図3の(b)を用いて本シリコン芯線に含まれる結晶について説明する。本シリコン芯線は、シリコン結晶の集合体としての多結晶シリコンからなる棒状体である。図3の(b)に示すように、本シリコン芯線の長手方向の側面において、最大辺長が1mm以上の単結晶粒が多数観察される。
 また、他の視点では、本シリコン芯線は、長手方向における1つの側面において、該側面の面積(側面積)の95%以上を、最大辺長が1mm以上である結晶粒の切断面(結晶粒断面)が占めているといえる。
 本シリコン芯線の側面において観察される結晶粒の形状は特に限定されず、上記側面における結晶粒の見え方によって異なり得る。例えば、結晶の形状が針状である場合、結晶が側面の長手方向へ横たわる場合は、針状に、また、針状結晶の立ち上がり具合によって、側面の結晶形状は略楕円状または略円状へと変化する。従って、本発明において、結晶粒の最大片長とは、(例えば、結晶粒が針状、略楕円状などの異型状である場合)観察面における結晶粒断面の長軸の長さに相当する。結晶粒断面が略円形状の場合には、該結晶粒断面の直径が最大片長に相当する。
 また、本シリコン芯線の側面において観察される結晶粒において、最大片長が1mm以上300mm以下のものが含まれる。また、本シリコン芯線の側面において観察される結晶粒において、最大片長が1mm以上100mm以下のものが含まれることがより好ましい。
 また、本シリコン芯線は、長手方向における1つの側面において、該側面の面積の50%以上を、最大辺長1mm以上の結晶粒断面が占めていることがさらに好ましい。
 ここで、上記側面における結晶粒断面が占める割合の測定は、公知の測定装置を用いて行うことができる。例えば、長さ測定器を用いてよく、光学顕微鏡を用いて上記側面における結晶粒断面を観察してもよい。
 このように、多結晶CZ法を用いて製造した本シリコン芯線は、シーメンス法にて得られたシリコン芯線よりも、結晶粒径が大きくなっている。これは、昇温時において比較的軟化し易いことを意味し得る。ここで、本シリコン芯線は、格子間酸素濃度を調整しており、多少の酸素は、多結晶シリコンの粒界に取り込まれる。これにより、昇温時における軟化を抑制するものである。
 (降伏応力)
 本シリコン芯線は、900℃における降伏応力が、1cmあたり150MPa以上であることが好ましい。このような機械特性(高温時における強度)は、シリコン芯線が多結晶シリコンからなる棒状体であること、および格子間酸素濃度が上記所定範囲内であることにより、得ることができる。上記構成によれば、高温時における熱変形を抑制することができ、反応初期から高温条件下でシリコンの析出工程を行うことができる。降伏応力とは、応力と変形量とが比例しなくなり、永久ひずみを生じる応力を意味する。
 ここで、上記降伏応力の測定は、公知の測定装置を用いて行うことができる。例えば、JIS Z 2248による3点曲げ試験等が用いられる。
 (不純物濃度)
 本シリコン芯線は、リンおよびボロンの総濃度(ドーパント濃度)が1ppba以下であることが好ましい。この場合、該シリコン芯線を用いて、シーメンス法により得られる多結晶シリコンの純度をより高純度にすることができる。そのため、半導体用途に好適に用いることができる。
 ここで、上記不純物の測定は、公知の測定装置を用いて行うことができる。例えば、フォトルミネッセンス法等が用いられる。
 シリコン芯線に含まれるリンおよびボロンの総濃度は、多結晶シリコンインゴットに含まれるそれらの総濃度に基本的に依存する。後述する多結晶シリコンインゴットの製造工程において、リンおよびボロンの総濃度が低減するように多結晶シリコンインゴットを製造すればよい。
 なお、本シリコン芯線は、用途に応じて、所望の機能を付加するために、他の元素(例えば、C等)が添加されていてもよい。このような元素の添加および濃度調整は、後述する多結晶シリコンインゴットの製造工程において、比較的容易に行うことができる。
 以上のように、本シリコン芯線によれば、従来方法のように芯線製造用バッチを設ける必要がない。そのため、上記反応器1(シーメンス法による多結晶シリコンの製造設備)にて多結晶シリコンを製造することと並行して、本シリコン芯線を製造することができる。その結果、反応器1による多結晶シリコンの製造サイクルを早め、生産効率を向上させることができる。
 また、本シリコン芯線は、反応器1内において、多結晶シリコンの析出反応の初期から温度を上げることができるとともに、シリコン芯線の変形由来による倒壊リスクも低減でき、効率的な析出条件にて、反応を進行させることが可能である。
 したがって、本シリコン芯線を用いることにより、多結晶シリコンの生産効率を向上させることができる。
 <シリコン芯線の製造方法>
 本シリコン芯線の製造方法の一例について、図4を参照しながら説明する。図4は、本シリコン芯線の製造方法の一例を説明するための図である。
 本シリコン芯線の製造方法は、種結晶として多結晶シリコンを用いたチョクラルスキー法により、結晶粒径が1mm以上の結晶粒を含み、かつ格子間酸素濃度が10ppma以上40ppma以下である多結晶シリコンインゴットを製造するインゴット製造工程と、上記多結晶シリコンインゴットを棒状体に加工する加工工程と、を含む方法である。
 そして、本シリコン芯線の製造方法は、加工工程として、(1)インゴットの切断工程、(2)芯線の切り出し工程、(3)後処理工程を少なくとも包含している。
 (インゴット製造工程)
 本インゴット製造工程では、一般に、チョクラルスキー法において用いられる公知の多結晶シリコンインゴット引上げ装置(以下、インゴット製造装置と称する)を用いることができ、該インゴット製造装置の構造は特に限定されない。
 インゴット製造工程では、先ず、インゴット製造装置内に備えられている坩堝に、多結晶シリコンインゴットを製造するためのシリコン原料を入れる。このシリコン原料としては、通常、多結晶シリコンが用いられる。シリコン原料は特に限定されないが、インゴット製造工程にて製造した多結晶シリコンインゴットを用いて、シーメンス法に用いられるシリコン芯線を製造するという観点から、シリコン原料は、高純度であり、かつ金属汚染が少ないものが好ましい。
 なお、シリコン原料は、後述する加工工程、および、シーメンス法により製造された多結晶シリコンロッドの後処理工程、等により生成した多結晶シリコンの破砕物(スクラップ)を含んでもよい。これにより、多結晶シリコンの製造工程の全体的な材料歩留りを向上させることができる。
 また、上記坩堝の材質は、特に限定されないが、多結晶シリコンインゴットに混入する酸素量を低減するという観点から、表面にSiCをコーティングした石英坩堝を用いることが好ましい。
 シリコン原料を上記坩堝へ装入した後、上記坩堝を加熱してシリコン融解液を得る。坩堝を加熱する温度は、シリコン原料を融解し得る温度であればよく、特に限定されない。
 次に、種結晶となる多結晶シリコンを保持具に装着し、該種結晶をシリコン融解液に浸潤させる。上記種結晶をシリコン融解液に浸潤させた後、各種引上げ条件を制御して、所望の結晶径まで拡径させる。種結晶が所望の結晶径まで成長した後、当該結晶径を維持するように直胴部の引上げを行う。
 上記種結晶として用いる多結晶シリコンは、特に限定されないが、シーメンス法により製造した高純度の多結晶シリコンであることが好ましい。
 ここで、各種引上げ条件として、坩堝の回転数、種結晶の引上げ速度、および坩堝の温度等が挙げられる。本インゴット製造工程では、これらの条件として、従来のチョクラルスキー法における、種結晶として単結晶を用いる公知の引き上げ条件を、特に制限すること無く採用できる。
 多結晶シリコンインゴットの一連の製造において、インゴット製造装置内は不活性雰囲気に制御されている。例えば、インゴット製造装置内は、アルゴン雰囲気となっており、酸素濃度が低くなっている。また、シリコン融解液の表面にアルゴンガスを供給して、シリコン融解液の対流を制御するようになっていてもよい。これにより、坩堝からシリコン融解液へ酸素が移行することを低減すると共に、シリコン融液に溶解した酸素の排出を促進させ、酸素濃度を制御することができる。
 また、多結晶シリコンインゴットの直径は、好ましくは90mm~180mm、さらに好ましくは110mm~160mmである。多結晶シリコンロッドの直径が大きいほど、一度の製造工程で多量の原料が得られる、すなわち、多数のシリコン芯線を製造することができる。
 このような本インゴット製造工程により、格子間酸素濃度が制御され、不純物が低濃度である多結晶シリコンインゴットを製造することができる。また、上記インゴット製造工程では、引き上げ初期から、ランダムな結晶方位をもつ複数の結晶粒を有する多結晶シリコンインゴットを製造することができる。
 具体的には、結晶粒径が1mm以上の結晶粒を含み、かつ格子間酸素濃度が10ppma以上40ppma以下である多結晶シリコンインゴットを製造することができる。また、この多結晶シリコンインゴットは、長手方向において、格子間酸素濃度のバラツキが小さい。換言すれば、多結晶シリコンインゴットは、長手方向における格子間酸素濃度の分布が、長手方向の任意の箇所を基準とした場合に、±5ppma/m以下であるとすることができる。
 上記インゴット製造工程にて製造した多結晶シリコンインゴットを棒状体に加工する加工工程について、以下に説明する。なお、以下に説明する工程においては、従来の多結晶シリコンロッドおよび単結晶シリコンインゴットからシリコン芯線を切り出す方法と同様の設備等を用いることができ、詳細な説明は省略する。
 (1)インゴットの切断工程
 多結晶シリコンインゴットの切断工程では、図4において「(1)多結晶シリコンインゴットの切断」として示すように、本実施の形態の方法にて製造した多結晶シリコンインゴット20を、以下のように切断する。すなわち、多結晶シリコンインゴット20から複数の平板が切り出されるように、その長手方向に並行な方向にて切断する。換言すれば、切り出された平板の長手方向が、多結晶シリコンインゴット20の製造における引き上げ方向となるように、多結晶シリコンインゴット20を切断する。
 多結晶シリコンインゴット20を切断する方法として、例えばダイヤモンドワイヤソーを用いることができる。
 (2)芯線の切り出し工程
 芯線の切り出し工程では、図4において「(2)芯線の切り出し」として示すように、上記多結晶シリコンインゴット20から切り出された平板21を、さらに切断して棒状体を切り出す。この棒状体の形状は、特に限定されない。
 なお、上記(1)および(2)の行程には、研磨工程およびエッチング工程等の表面処理を行う工程が適宜含まれていてもよい。
 (3)後処理工程
 後処理工程では、図4において「(3)後処理」として示すように、上記切り出された棒状体について、後処理を行い、シリコン芯線11を製造する。
 この後処理としては、シリコン芯線の製造において公知の処理を行うことができる。また、シーメンス法による多結晶シリコンの製造に用いられるまでの間に、複数のシリコン芯線11を連結して、シリコン析出用部材10を製造することができる。
 上記加工工程において、多結晶シリコンインゴット20は、単結晶のシリコンインゴットのような劈開が生じ難いことから、加工を比較的容易に行うことができる。そのため、加工工程において生じ得る破損による歩留りの低下を防止することができる。
 また、以上の各行程において、高純度のシリコン原料を使用して多結晶シリコンインゴット20を製造し、該多結晶シリコンインゴット20を加工してシリコン芯線を製造するにあたって、不純物汚染を低減することができる。そのため、半導体用途の多結晶シリコンロッドの製造に十分使用することができるシリコン芯線を製造することができる。また、太陽光発電等のPV用途としても十分な品質のシリコン芯線を製造することができる。
 <多結晶シリコン製造方法>
 本発明の一態様における多結晶シリコンの製造方法では、以上に説明したシリコン芯線が連結されたシリコン析出用部材10(シリコン析出用芯線)を、反応器1の底板(底盤)2に設けた少なくとも一対の電極4間に架橋する工程(架橋工程)と、反応器1にシラン化合物のガスと水素とを含む原料ガスを供給しながらシリコン析出用部材10に通電して加熱し、シリコン析出用部材10の表面にシリコンを析出させる工程(析出工程)と、を含む。
 なお、上記シリコン析出用部材10のかわりに、シリコン芯線11を用いてもよい。
 上記架橋工程および析出工程としては、シリコン析出用部材10として、本発明の一態様におけるシリコン芯線が連結されたシリコン析出用部材10を用いること以外は、従来公知の方法を用いることができる。
 上記析出工程について、以下に概略的に説明する。
 電極4を介してシリコン析出用部材10への通電を開始し、シリコン析出用部材10の温度をシリコンの析出温度以上に加熱する。シリコンの析出温度は、約600℃以上である。シリコン析出用部材10上にシリコンを迅速に析出するという観点から、900~1000℃程度の温度に保持されるように、シリコン析出用部材10を通電加熱する。ここで、反応器1内に設けられたカーボンヒータ(図示せず)にて、シリコン析出用部材10を予備加熱することが好ましい。
 上記のシリコン析出用部材10の通電加熱は、反応器1内に原料ガスを供給しながら行うことができる。原料ガスは、シラン化合物のガスと水素とを含む。この原料ガスの反応、つまり、シラン化合物の還元反応によってシリコンを生成させる。
 シラン化合物のガスとしては、モノシラン、トリクロロシラン、四塩化ケイ素、モノクロロシラン、ジクロロシランなどのシラン化合物のガスが使用され、一般的には、トリクロロシランガスが好適に使用される。また、水素は、還元ガスとして使用される。上記還元ガスとして、水素以外のものを用いてもよい。なお、上記の原料ガスにおいては、一般に還元性ガス(水素ガス)が過剰に使用される。
 トリクロロシランガスと水素ガスを用いた場合を例に取ると、この還元反応は、下記式で表される。
 SiHCl3 +H→S+3HCl
上述の方法によって、シリコン析出用部材10の表面に多結晶シリコンを析出させて、多結晶シリコンロッド8を得る。
 <まとめ>
 以上のように、本発明は以下の発明を包含する。
 〔1〕多結晶シリコンの棒状体からなり、前記多結晶シリコンは、格子間酸素濃度が10ppma以上40ppma以下であり、かつ、棒状体の長手方向の側面において、結晶粒径が1mm以上の結晶粒が観察されることを特徴とするシリコン析出用芯線。
 〔2〕前記多結晶シリコンは、前記棒状体の長手方向における格子間酸素濃度の分布が、長手方向の任意の箇所を基準とした場合に、±5ppma/m以下であることを特徴とする〔1〕に記載のシリコン析出用芯線。
 〔3〕前記シリコン析出用芯線は、900℃における降伏応力が、1cmあたり150MPa以上であることを特徴とする〔1〕又は〔2〕に記載のシリコン析出用芯線。
 〔4〕前記多結晶シリコンは、リンおよびボロンの総濃度が1ppba以下であることを特徴とする〔1〕~〔3〕のいずれか1つに記載のシリコン析出用芯線。
 〔5〕前記シリコン析出用芯線は、断面積が0.1cm以上6cm以下であり、長さが0.5m以上であることを特徴とする〔1〕~〔4〕のいずれか1つに記載のシリコン析出用芯線。
 〔6〕種結晶として多結晶シリコンを用いたチョクラルスキー法により、結晶粒径が1mm以上の結晶粒を含み、かつ格子間酸素濃度が10ppma以上40ppma以下である多結晶シリコンインゴットを製造するインゴット製造工程と、前記多結晶シリコンインゴットを棒状体に加工する加工工程と、を含むことを特徴とするシリコン析出用芯線の製造方法。
 〔7〕〔1〕~〔5〕のいずれか1つに記載のシリコン析出用芯線を、多結晶シリコン製造用反応器の底盤に設けた少なくとも一対の電極間に架橋する工程と、前記多結晶シリコン製造用反応器にシラン化合物のガスと水素とを含む原料ガスを供給しながら前記シリコン析出用芯線に通電して加熱し、前記シリコン析出用芯線の表面にシリコンを析出させる工程と、を含むことを特徴とする多結晶シリコンの製造方法。
 以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例1および2)
 以下に述べるチョクラルスキー法の手順に沿って、多結晶シリコンインゴットを製造した。先ず、石英製坩堝内へ、ドーパント濃度1ppba以下である高純度の多結晶シリコンを55kg投入した。上記坩堝を、チョクラルスキー型引上げ炉に設置し、結晶の育成を行った。得られた直径100mm、および長さ2400mmの多結晶シリコンインゴットを8mm角に切り出して、シリコン芯線を得た。
 多結晶シリコンインゴットの格子間酸素濃度について、フーリエ変換型赤外分光光度器を用いて測定した。結果、上記多結晶シリコンインゴットの短手方向に含まれる格子間酸素濃度は、15ppma以上30ppma以下であった。上記多結晶シリコンインゴットの長手方向の格子間酸素濃度の分布は、任意の箇所において測定した箇所の濃度を基準とした場合に、他の測定箇所における濃度と基準との差が±5ppma/m以下であった。具体的には、シリコン芯線の長手方向の格子間酸素濃度の分布が±5ppma/m以下であり、長手方向の酸素濃度の平均値が26ppmaのシリコン芯線、および格子間酸素濃度が16ppmaのシリコン芯線を切り出した。
 シリコン芯線の側面積において、結晶粒の含有率を光学顕微鏡により測定した。なお、本実施例において、最大片長が1mm以上の結晶粒を計測の対象とした。上記シリコン芯線はいずれも、側面積の95%以上が、最大片長が1mm以上の上記結晶粒の切断面が占めていた。また、上記シリコン芯線はいずれも、側面において、上記結晶粒が1cmあたり2個以上25個以下含まれていた。
 (撓み量および塑性変形量の評価)
 シリコン芯線における高温時の撓み量、および塑性変形量の評価方法について、図5を用いて説明する。図5に示すように、短手方向の径が8mm(8mm角)のシリコン芯線11の一端側を保持部材30にて保持および固定した。ここで、シリコン芯線11における、保持部材30にて保持されていない部分の長さを1mとした。シリコン芯線11の長手方向が、水平方向(重力方向に対して直角をなす方向)となるように、シリコン芯線11および保持部材30を配置した状態を維持して、900℃で1時間加熱した。
 900℃で1時間加熱した時点において、シリコン芯線11の先端(保持されていない方の端、開放端)における、初期位置からの偏移量を、900℃昇温後の撓み量として測定した。換言すれば、この撓み量とは、シリコン芯線11の上記開放端の中心と、シリコン芯線11の他端の中心から保持部材30におけるシリコン芯線11が突出している側の面に垂直な方向に延びる直線と、の間の距離を示している。
 また、900℃で1時間加熱後、室温に冷却したシリコン芯線11について、上記撓み量と同じ方法にて測定を行い、得られた値を塑性変形量とした。結果、上記シリコン芯線11の900℃昇温後の撓み量は、13.8mmおよび13mmであり、加熱後における塑性変形量は、いずれも0mmであった。
 さらに、上記シリコンバルクに含有されるリンおよびボロンの総濃度をフォトルミネッセンス法において測定した。その結果、上記リンおよびボロンの総濃度は、原料の多結晶シリコンと同程度の1ppba以下であり、シリコン芯線11は、高純度で得られることがわかる。
 以上の結果から、本実施例におけるシリコン芯線は、900℃の昇温時における熱変形が抑制されており、シーメンス法においてシリコンを析出する工程において、反応初期から高温下での析出反応が可能であることが実証された。
 また、本実施例において得られたシリコン芯線を、シーメンス法に用いられる多結晶シリコン製造用反応器に用いたところ、上記シリコン芯線は上記試験結果と同様の物性を示した。このことから、本実施例で得られたシリコン芯線が、シーメンス法を用いて多結晶シリコンを製造する工程において、十分な強度を有することが確認された。
 (比較例1および2)
 チョクラルスキー法において、種結晶として単結晶シリコンを用いること以外は実施例1と同様の手順に従って、単結晶シリコンインゴットおよびシリコン芯線を得た。また、得られたシリコン芯線の物性について、実施例1と同様の手法により評価した。
 得られた単結晶シリコンインゴットの格子間酸素濃度について、フーリエ変換型赤外分光光度器を用いて測定した。上記単結晶シリコンインゴットの短手方向に含まれる格子間酸素濃度は、15ppma以上30ppma以下であり、長手方向の格子間酸素の分布は、任意の箇所を基準とした場合に、±5ppma/m以下であった。
 得られたシリコン芯線の側面積において、結晶粒の含有率を測定した。得られたシリコン芯線の側面積には、最大片長が1mm以上の上記結晶粒が確認されなかった。
 上記単結晶シリコン芯線の格子間酸素濃度を測定した結果、長手方向の酸素濃度の分布が±5ppma/m以下であり、長手方向の酸素濃度の平均値が28ppmaのシリコン芯線、および酸素濃度が18ppmaの単結晶シリコン芯線を切り出した。
 上記シリコン芯線の塑性変形量を測定した結果、上記シリコン芯線における900℃昇温時の撓み量はいずれも約44mmであり、加熱後におけるシリコン芯線の塑性変形量はいずれも約30mmであった。
 上記シリコン芯線に含有されるリンおよびボロンの総濃度を測定した。その結果、上記リンおよびボロンの総濃度は、1ppba以下であった。
 以上の結果から、本比較例において得られるシリコン芯線は、シーメンス法にてシリコンを析出する工程において、反応初期から高温下での析出反応を行うことが難しいことが推測された。
 (比較例3)
 以下に述べるHEM法の手順に沿って、多結晶シリコンインゴットを製造した。先ず、石英製坩堝内へ、ドーパント濃度1ppba以下である高純度の多結晶シリコンを500kg投入した。上記坩堝を、HEM型精製炉に設置し、多結晶シリコンの融点以上に昇温させた。多結晶シリコンを融解後、坩堝底部からの一方向凝固により、結晶方向がランダムに配置された、長さが2700mm、幅が約300mm、および高さが約300mmの多結晶インゴットを得た。得られた多結晶シリコンインゴットを8mm角に切り出して、長手方向の平均酸素濃度が50ppmaであるシリコン芯線を得た。
 上記シリコン芯線の側面積において、結晶粒の含有率を光学顕微鏡により測定した。なお、最大片長が1mm以上の結晶粒を計測の対象とした。上記シリコン芯線はいずれも、側面積の95%以上が、最大片長が1mm以上の上記結晶粒の切断面が占めていた。また、上記シリコン芯線はいずれも、側面において、上記結晶粒が1cmあたり2個以上25個以下含まれていた。
 また、上記シリコン芯線の塑性変形量を測定した結果、加熱後における上記シリコン芯線の塑性変形量は20mmであった。また、上記シリコン芯線について900℃昇温時の撓み量は33.9mmであった。
 上記シリコン芯線に含有されるリンおよびボロンの総濃度を測定した。その結果、上記リンおよびボロンの総濃度は、10ppbaを上回った。
 以上の結果から、本比較例において得られるシリコン芯線は、シーメンス法にてシリコンを析出する工程において、反応初期から高温下での析出反応を行うことが難しいことが推測された。また、ドーパント濃度が高くなっていることがわかる。
 (参考例)
 シーメンス法を用いて多結晶シリコンロッドおよびシリコン芯線を得た。
 まず、ベルジャー内に、原料ガスとして、水素ガスおよびガス状にしたクロロシラン化合物を供給して、多結晶シリコンの析出を行った。得られた多結晶シリコンロッドを8mm角に切り出して、シリコン芯線を得た。
 上記シリコン芯線の物性について、実施例1と同様の手法により評価した。
 上記シリコン芯線の側面において、最大片長が1mm以上である結晶粒の含有率を測定した。上記シリコン芯線の側面上においては、最大片長が1mm以上の結晶粒は確認されなかった。
 上記シリコン芯線の格子間酸素濃度を測定した結果、格子間酸素濃度は1ppma未満であった。
 また、上記シリコン芯線の塑性変形量を測定した結果、加熱後における上記シリコン芯線の塑性変形量は0mmであった。また、上記シリコン芯線について900℃昇温時の撓み量は11.8mmであった。
 上記シリコン芯線に含有されるリンおよびボロンの総濃度を測定した。その結果、上記リンおよびボロンの総濃度は、1ppba以下であった。
 これらの実施例、比較例、および参考例の結果を、表1に纏めて示す。
Figure JPOXMLDOC01-appb-T000001
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組合せて得られる実施形態についても本発明の技術的範囲に含まれる。
 1 反応器(多結晶シリコン製造用反応器)
 2 底板(底盤)
 3 カバー
 4 電極
 8 多結晶シリコンロッド
 10 シリコン析出用部材
 11 シリコン芯線(シリコン析出用芯線)

Claims (7)

  1.  多結晶シリコンの棒状体からなり、
     前記多結晶シリコンは、
      格子間酸素濃度が10ppma以上40ppma以下であり、かつ、
      棒状体の長手方向の側面において、結晶粒径が1mm以上の結晶粒が観察されることを特徴とするシリコン析出用芯線。
  2.  前記多結晶シリコンは、前記棒状体の長手方向における格子間酸素濃度の分布が、長手方向の任意の箇所を基準とした場合に、±5ppma/m以下であることを特徴とする請求項1に記載のシリコン析出用芯線。
  3.  前記シリコン析出用芯線は、900℃における降伏応力が、1cmあたり150MPa以上であることを特徴とする請求項1又は2に記載のシリコン析出用芯線。
  4.  前記多結晶シリコンは、リンおよびボロンの総濃度が1ppba以下であることを特徴とする請求項1~3のいずれか一項に記載のシリコン析出用芯線。
  5.  前記シリコン析出用芯線は、断面積が0.1cm以上6cm以下であり、長さが0.5m以上であることを特徴とする請求項1~4のいずれか一項に記載のシリコン析出用芯線。
  6.  種結晶として多結晶シリコンを用いたチョクラルスキー法により、結晶粒径が1mm以上の結晶粒を含み、かつ格子間酸素濃度が10ppma以上40ppma以下である多結晶シリコンインゴットを製造するインゴット製造工程と、
     前記多結晶シリコンインゴットを棒状体に加工する加工工程と、を含むことを特徴とするシリコン析出用芯線の製造方法。
  7.  請求項1~5のいずれか一項に記載のシリコン析出用芯線を、多結晶シリコン製造用反応器の底盤に設けた少なくとも一対の電極間に架橋する工程と、
     前記多結晶シリコン製造用反応器にシラン化合物のガスと水素とを含む原料ガスを供給しながら前記シリコン析出用芯線に通電して加熱し、前記シリコン析出用芯線の表面にシリコンを析出させる工程と、を含むことを特徴とする多結晶シリコンの製造方法。
PCT/JP2018/005048 2017-02-20 2018-02-14 シリコン析出用芯線、該芯線の製造方法、および多結晶シリコンの製造方法 WO2018151140A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202310074529.7A CN116005259A (zh) 2017-02-20 2018-02-14 硅析出用芯线
EP18754364.0A EP3584219B1 (en) 2017-02-20 2018-02-14 Core wire for use in silicon deposition, method for producing said core wire, and method for producing polycrystalline silicon
KR1020197024609A KR102371059B1 (ko) 2017-02-20 2018-02-14 다결정 실리콘의 제조 방법
US16/484,065 US11254579B2 (en) 2017-02-20 2018-02-14 Core wire for use in silicon deposition, method for producing said core wire, and method for producing polycrystalline silicon
CN201880011350.4A CN110291040B (zh) 2017-02-20 2018-02-14 多晶硅的制造方法
JP2018568557A JP6934025B2 (ja) 2017-02-20 2018-02-14 シリコン析出用芯線、該芯線の製造方法、および多結晶シリコンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017029470 2017-02-20
JP2017-029470 2017-02-20

Publications (1)

Publication Number Publication Date
WO2018151140A1 true WO2018151140A1 (ja) 2018-08-23

Family

ID=63169357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005048 WO2018151140A1 (ja) 2017-02-20 2018-02-14 シリコン析出用芯線、該芯線の製造方法、および多結晶シリコンの製造方法

Country Status (7)

Country Link
US (1) US11254579B2 (ja)
EP (1) EP3584219B1 (ja)
JP (1) JP6934025B2 (ja)
KR (1) KR102371059B1 (ja)
CN (2) CN110291040B (ja)
TW (1) TWI791486B (ja)
WO (1) WO2018151140A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021172563A (ja) * 2020-04-27 2021-11-01 三菱マテリアル株式会社 多結晶シリコン製造用シードの製造方法及び切断加工治具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263149A (ja) * 2008-04-23 2009-11-12 Shin Etsu Chem Co Ltd 多結晶シリコンロッドの製造方法
WO2011071098A1 (ja) * 2009-12-09 2011-06-16 三菱マテリアル株式会社 赤外線透過部材用シリコン材料及び赤外線透過部材
US20130277889A1 (en) * 2012-04-20 2013-10-24 Creative Innovations, Inc. Method and apparatus for manufacturing silicon seed rods
JP2013252990A (ja) * 2012-06-06 2013-12-19 Tokuyama Corp 多結晶シリコンロッドの製造方法と製造装置
JP2014028747A (ja) * 2012-06-29 2014-02-13 Mitsubishi Materials Corp 多結晶シリコンロッド
JP2016138021A (ja) 2015-01-28 2016-08-04 株式会社トクヤマ 多結晶シリコンロッドの製造方法と製造装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667585A (en) * 1994-12-27 1997-09-16 Shin-Etsu Chemical Co., Ltd. Method for the preparation of wire-formed silicon crystal
JP3881647B2 (ja) * 2003-10-07 2007-02-14 住友チタニウム株式会社 多結晶シリコンロッド及びその製造方法
US7972703B2 (en) 2005-03-03 2011-07-05 Ferrotec (Usa) Corporation Baffle wafers and randomly oriented polycrystalline silicon used therefor
JPWO2006104107A1 (ja) * 2005-03-29 2008-09-11 京セラ株式会社 多結晶シリコン基板及びその製造方法、多結晶シリコンインゴット、光電変換素子、並びに光電変換モジュール
JP2010062466A (ja) * 2008-09-05 2010-03-18 Sumco Corp 垂直シリコンデバイス用シリコンウェーハ及びその製造方法、シリコン単結晶、並びに、垂直シリコンデバイス
RU2011139137A (ru) * 2009-02-27 2013-04-10 Токуяма Корпорейшн Стержень поликристаллического кремния и устройство для его получения
JP5719282B2 (ja) * 2011-11-29 2015-05-13 信越化学工業株式会社 多結晶シリコンの製造方法
JP5969230B2 (ja) * 2012-03-16 2016-08-17 株式会社トクヤマ 多結晶シリコンロッド
JP6248952B2 (ja) 2015-01-16 2017-12-20 トヨタ自動車株式会社 排気浄化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263149A (ja) * 2008-04-23 2009-11-12 Shin Etsu Chem Co Ltd 多結晶シリコンロッドの製造方法
WO2011071098A1 (ja) * 2009-12-09 2011-06-16 三菱マテリアル株式会社 赤外線透過部材用シリコン材料及び赤外線透過部材
US20130277889A1 (en) * 2012-04-20 2013-10-24 Creative Innovations, Inc. Method and apparatus for manufacturing silicon seed rods
JP2013252990A (ja) * 2012-06-06 2013-12-19 Tokuyama Corp 多結晶シリコンロッドの製造方法と製造装置
JP2014028747A (ja) * 2012-06-29 2014-02-13 Mitsubishi Materials Corp 多結晶シリコンロッド
JP2016138021A (ja) 2015-01-28 2016-08-04 株式会社トクヤマ 多結晶シリコンロッドの製造方法と製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584219A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021172563A (ja) * 2020-04-27 2021-11-01 三菱マテリアル株式会社 多結晶シリコン製造用シードの製造方法及び切断加工治具
JP7427516B2 (ja) 2020-04-27 2024-02-05 高純度シリコン株式会社 多結晶シリコン製造用シードの製造方法

Also Published As

Publication number Publication date
EP3584219B1 (en) 2022-10-05
EP3584219A4 (en) 2020-11-04
KR102371059B1 (ko) 2022-03-07
CN116005259A (zh) 2023-04-25
EP3584219A1 (en) 2019-12-25
US20200002178A1 (en) 2020-01-02
JPWO2018151140A1 (ja) 2019-12-12
TW201841833A (zh) 2018-12-01
TWI791486B (zh) 2023-02-11
US11254579B2 (en) 2022-02-22
CN110291040B (zh) 2023-03-17
CN110291040A (zh) 2019-09-27
JP6934025B2 (ja) 2021-09-08
KR20190121771A (ko) 2019-10-28

Similar Documents

Publication Publication Date Title
AU2009201143B2 (en) Method of manufacturing polycrystalline silicon rod
JP5633219B2 (ja) 多結晶シリコンの製造方法及び製造装置
US7105053B2 (en) Energy efficient method for growing polycrystalline silicon
EP2402287B1 (en) Polycrystalline silicon rod and device for producing same
JP5657737B2 (ja) 多結晶シリコンロッドおよびそれの製造方法
US9074299B2 (en) Polycrystalline silicon rod
JP5507512B2 (ja) 多結晶シリコンの製造方法
JP2011068553A (ja) 多結晶シリコンの製造方法、製造装置及び多結晶シリコン
JP5940680B2 (ja) 多結晶シリコンロッドおよびポリシリコンを生成するための方法
CN106283180A (zh) 多晶硅的制造方法以及单晶硅的制造方法
WO2018151140A1 (ja) シリコン析出用芯線、該芯線の製造方法、および多結晶シリコンの製造方法
KR20140048034A (ko) 다결정 실리콘의 증착 방법
JP5823058B2 (ja) ポリシリコンの製造方法
JP2004277223A (ja) 高強度多結晶シリコン及びその製造方法
JP2020117408A (ja) 多結晶シリコン棒、多結晶シリコンロッドおよびその製造方法
JP2018123033A (ja) 多結晶シリコン棒の製造方法および多結晶シリコン棒
JP3864693B2 (ja) シリコン単結晶の製造方法
JP2013043809A (ja) 炭素ドープシリコン単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568557

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197024609

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018754364

Country of ref document: EP

Effective date: 20190920